

Capstone Project
Presentation and Demo

Presented by:
Junfeng Xian
Seung Yeong Park
Hongkyu Ahn
Andy Back

#### OUTLINE

- 1. Company Background
- 2. Project Motivation
- 3. Business & Marketing
- 4. System Overview
- 5. System Specifications
- 6. Time & Budget
- 7. Future Work
- 8. Conclusion
- 9. Questions

#### BACKGROUND OF NBS<sup>2</sup>

- 4 members
- Junfeng Xian (CEO)
- Seung Yeong Park (Chief Marketing Officer)
- Hongkyu Ahn (Chief Technical Officer)
- Andy Back (Chief Information Office/CFO)

#### MOTIVATION OF SMART WALKER

"As we age, it is important to maintain as much independence as possible so we can still have maximum enjoyment from life" – insis.net

## MOTIVATION OF SMART WALKER



Source: NYTimes

#### WALKER SAFETY CONSIDERATION



(Source: Medical Museion, University of Copenhagen)

- 1. "Lock" in open position but "Do Not" engage wheel locks while walker is moving
- 2. "Never" use walker as a wheelchair
- 3. "Do not" to overload the basket, as walker might lose the balance

(Source: Shoppers Home Health Care)

# WALKER MARKETS

|                    | Category A<br>(Walkers with<br>wheels)                                             | Category B<br>(Walkers<br>without wheels)                 | Smart Walker from<br>NBS <sup>2</sup>                                                                                                                                   |  |  |
|--------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Product<br>Example |                                                                                    |                                                           |                                                                                                                                                                         |  |  |
| Features           | <ul> <li>Manual Brake/Lock</li> <li>4 Wheels</li> <li>Height Adjustment</li> </ul> | <ul><li>No wheels</li><li>Height     Adjustment</li></ul> | <ul> <li>All features from Category A</li> <li>Extra obstacle detection feature</li> <li>Location indicator</li> <li>Scheduler</li> <li>Auto email generator</li> </ul> |  |  |
| Price<br>Range     | \$199 ~ \$499                                                                      | \$99 ~ \$199                                              | \$199 ~ \$499                                                                                                                                                           |  |  |

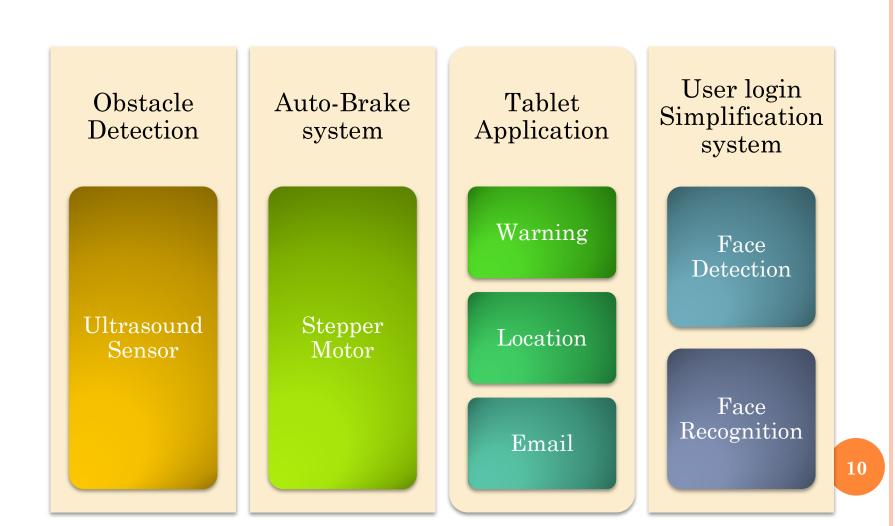
## System Overview

- Product main features
  - A walker with an extra safety feature
  - The location indicator
  - Auto-email generation for family member
- Target Customer
  - Elderly people with difficulty in mobility

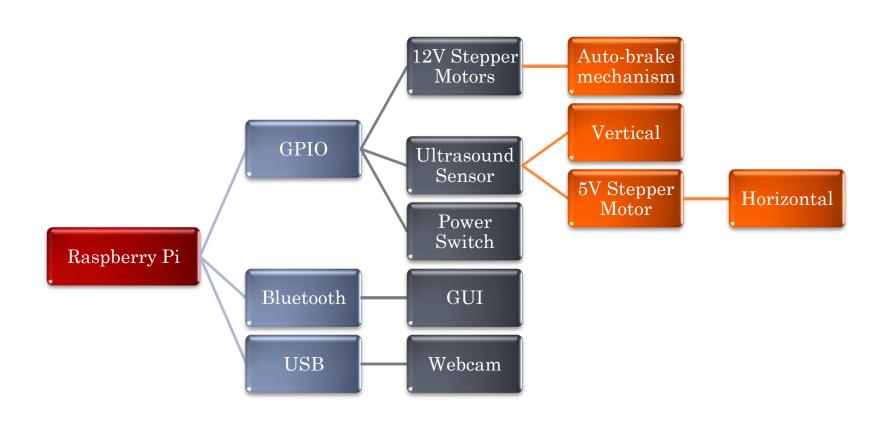







## PHOTO OF SMART WALKER

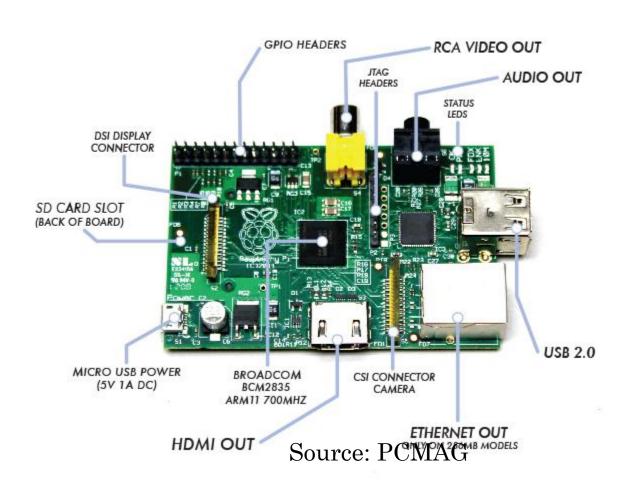





## System Overview

## - Main functionality modules



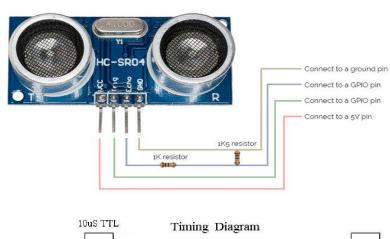

## System Overview – Block Diagram

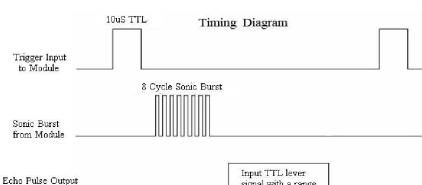


## DESIGN CHOICES

| Name          | Arduino Uno  | Raspberry Pi                   | BeagleBone                                  |
|---------------|--------------|--------------------------------|---------------------------------------------|
| Model Tested  | R3           | Model B                        | Rev A5                                      |
| Price         | \$29.95      | \$35                           | \$89                                        |
| Size          | 2.95"x2.10"  | 3.37"x2.125"                   | 3.4"x2.1"                                   |
| Processor     | ATMega 328   | ARM11                          | ARM Cortex-A8                               |
| Clock Speed   | 16MHz        | 700MHz                         | 700MHz                                      |
| RAM           | 2KB          | 256MB                          | 256MB                                       |
| Flash         | 32KB         | (SD Card)                      | 4GB(microSD)                                |
| EEPROM        | 1KB          |                                |                                             |
| Input Voltage | 7-12v        | 5v                             | 5v                                          |
| Min Power     | 42mA (.3W)   | 700mA (3.5W)                   | 170mA (.85W)                                |
| Digital GPIO  | 14           | 17                             | 66                                          |
| Analog Input  | 6 10-bit     | N/A                            | 7 12-bit                                    |
| PWM           | 6            |                                | 8                                           |
| TWI/I2C       | 2            | 1                              | 2                                           |
| SPI           | 1            | 1                              | 1                                           |
| UART          | 1            | 1                              | 5                                           |
| Dev IDE       | Arduino Tool | IDLE, Scratch,<br>Squeak/Linux | Python, Scratch,<br>Squeak,<br>Cloud9/Linux |
| Ethernet      | N/A          | 10/100                         | 10/100                                      |
| USB Master    | N/A          | 2 USB 2.0                      | 1 USB 2.0                                   |
| Video Out     | N/A          | HDMI, Composite                | N/A                                         |
| Audio Output  | N/Source:    | http://makezine.c              | om) Analog                                  |

## RASPBERRY PI

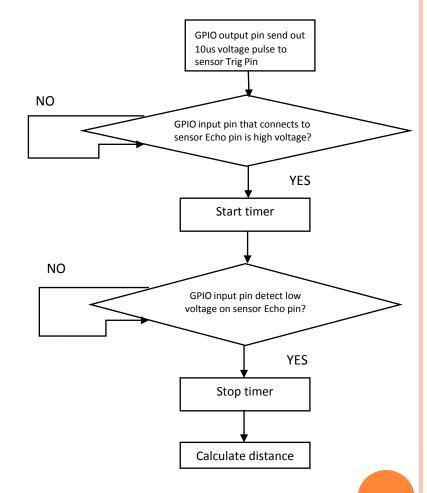




#### OBSTACLE SENSING

- Vertical
  - detect down-steps in front of the walker
- Horizontal
  - detect blocks and obstacles in front of the walker

### Ultrasound Sensor

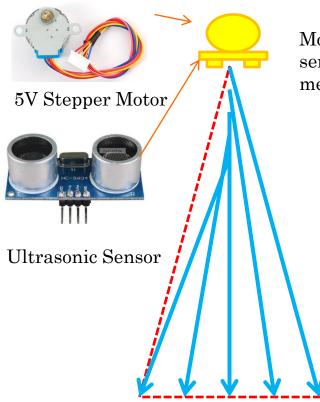
- Sensor controlling flow chart
- Sensor timing diagram






to User Timeing Circuit

signal with a range


in proportion



#### MOTOR AND SENSOR MECHANISM

Horizontal distance sensor is attached to the shaft of motor for rotation

-To cover the wide range in the front



Motor and sensor mechanism

#### LINE SCANNING APPROACH

- -Scan a line in 1 scan cycle
- -Discretely scan pattern
- -Speed of walker movement limits scanning quality

#### Warning # 1 - Auto-brake system



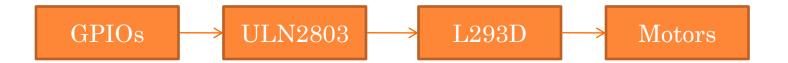
- •Brake mechanism is controlled by motor on each side
- •They are designed to apply brake gradually

#### **Implementation**

•Frictional brake with rubber pad at the contacting surface

#### STEPPER MOTOR




- •200 steps /rev, 12V, 350mA
- •2Kg\*cm torque

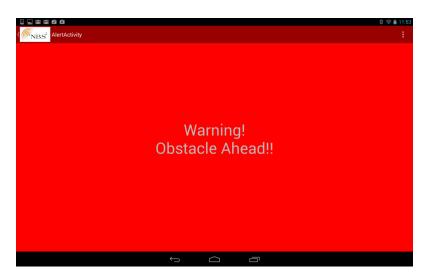
#### Source:

#### Adafruit

- •Controlled by the raspberry pi GPIO pin
- •Powered by 8 AA batteries
- •Forward and backup steps to apply and release the brake

#### CIRCUIT




ULN2803: Amplification/protection

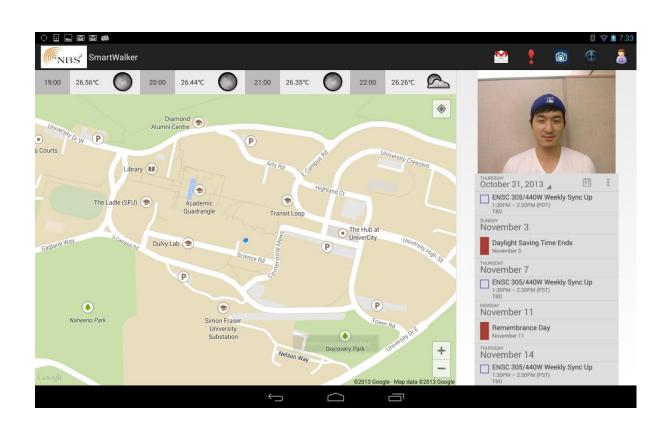
L293D : Amplification

4 outputs from L293 to motors

#### Warning #2 – Software Side

- Different types of warning
  - Visual warning
  - Audible warning
  - Physical warning






#### ANDROID

- Most used smartphone operating system
  - 81% of the global smartphone shipment from last quarter\*
- Open source
- Most devices cheaper than other products
  - Entry level Android phones (\$200) vs iPhone 5c (\$600) or iPhone4s (\$450)
- No developer fee
- o Only tablet we had was an Android device ©

#### **GUI**

- No User Interaction while in use
- Personalized email and scheduler
- Location and Weather information



#### MODULE TESTING

- Manual testing
  - Basic smoke test on actual devices (Nexus 10, Nexus 4)
  - UI button presses
  - Bluetooth connection with Raspberry Pi
- Automated testing
  - Google's UI Testing framework (UIAutomatorViewer) exists, but not used

#### USER INTERFACE SIMPLIFICATION

#### **Objective:**

- Simplify the login procedure for the personalized email and scheduler
- Consider target customers
- Power Save mode





Source: Logitech

## DESIGN CHOICES

|                | Fingerprint<br>Sensor                  | QR Code                                                                                | ID Card<br>reader                    | NFC/RFID                              | Face<br>Recognition                             |
|----------------|----------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|-------------------------------------------------|
| Usability      | Difficult to use                       | Requires ID card<br>with QR code<br>printed                                            | Requires ID card                     | Requires ID card                      | Might require ID card                           |
| Interface      | USB                                    | USB                                                                                    | USB                                  | USB or UART                           | USB                                             |
| Accuracy       | Not possible with damaged fingerprints | Accuracy depends on a camera                                                           | Very Accurate                        | Very Accurate                         | Accuracy depends on<br>a lightning<br>condition |
| Design<br>Cost | Very High ( >\$70)                     | Low (<\$20)                                                                            | High (~\$50)                         | Medium<br>(~\$40)                     | Low (<\$20)                                     |
| ETC            | Not suitable<br>for our<br>solution    | Lack of<br>familiarity<br>among the<br>elderly people<br>Requires a reader<br>software | Difficult to<br>reproduce<br>ID card | Difficult to<br>reproduc<br>e ID card | Easy to reproduce<br>ID card                    |

25

### FACE DETECTION & FACE RECOGNITION

• Open source OpenCV2 library equnder BSD license Convert to Crop the face **Histogram Equalization + Color** remapping VS Classifier detects **Brightness Correction + Image** Embossing filter

## IMAGE CROPPING WITH FACE DETECTION





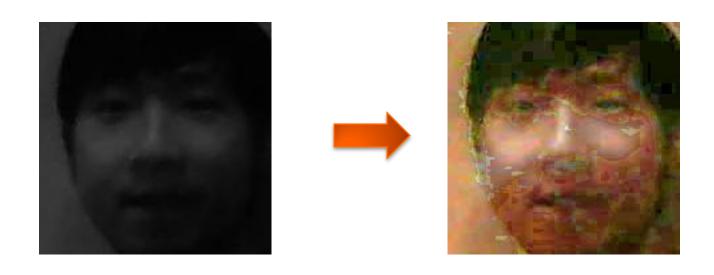


#### TESTING WITHOUT PRE-PROCESSING








Brightness = 22.50Detected = No Brightness = 36.16 Detected = No Brightness = 124.35 Detected = Yes Recognized = Yes Euclidean Distance = 4757

# HISTOGRAM EQUALIZATION AND COLOR REMAPPING



"Nonlinear Image Enhancement to Improve Face Detection in Complex Lighting Environment" - Li Tao, Ming-Jung Seow and Vijayan K. Asari

# HISTOGRAM EQUALIZATION AND COLOR REMAPPING



- Processing time: ~3 minutes
- Noisy

### BRIGHTNESS ADJUSTMENT



Brightness = 22.50 Detected = No

Brightness = 73.16 Detected = Yes Recognized = Yes Euclidean Distance = 4825.6

## EMBOSSING FILTER



$$\begin{bmatrix} -2 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

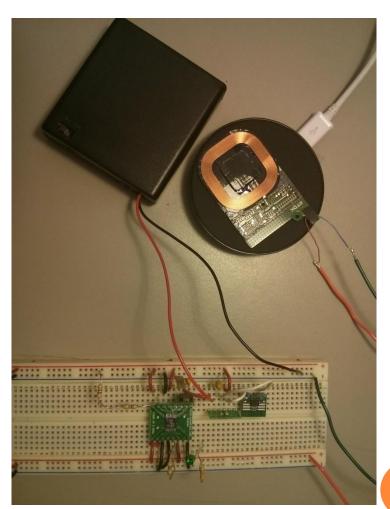


#### OVERALL

- Results depend on the lightening conditions
- Due to the limitation of Eigenface algorithm, the face recognition becomes worse in a dark environment -> Warning pops up on an Android App

# POWER CONSUMPTION

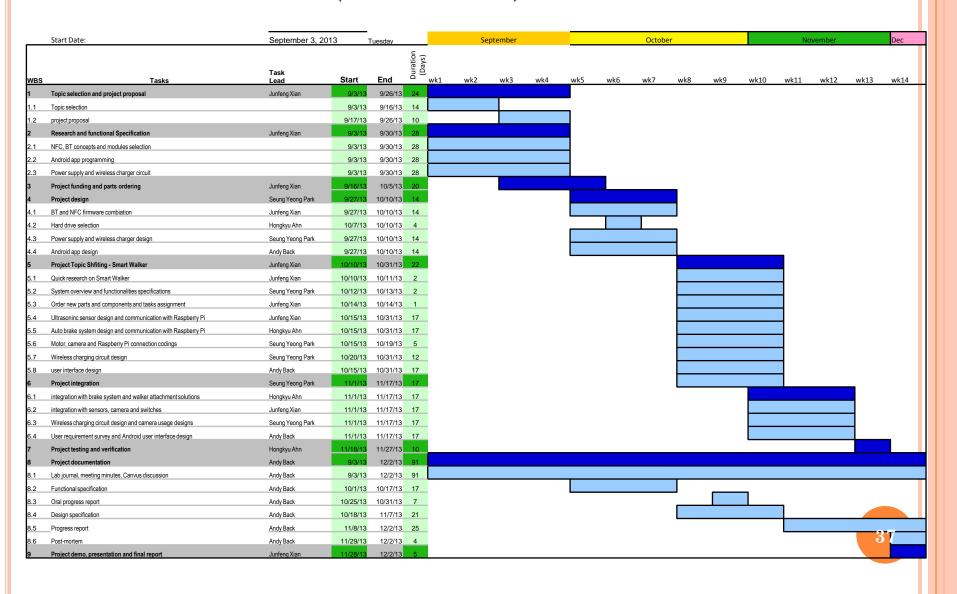
| System               | Battery type                               | Voltage           | Capacity (mA) | Estimated<br>Battery life<br>(hours) (1) | Features                   |
|----------------------|--------------------------------------------|-------------------|---------------|------------------------------------------|----------------------------|
| Raspberry Pi         | 5V Li-Ion<br>Battery Pack                  | 5V<br>(regulated) | 4400          | 6.3                                      | Chargeable                 |
| 12V stepper<br>Motor | 1.2V AA NiMH Battery (8 of them in series) | 9.6V              | 2450          | 7                                        | Chargeable,<br>Replaceable |
| 5V stepper<br>Motor  | 1.2V AA NiMH Battery (4 of them in series) | 5V                | 2450          | 27                                       | Chargeable,<br>Replaceable |


<sup>(1)</sup> Please note that the actual battery life might be longer since we made an estimation based on the maximum current consumption.



# CHARGING SOLUTION (PROOF OF CONCEPT)

- Easy to charge
- Wireless Charging
- Qi Standard (WPC)






#### SCHEDULE

- Delays on schedule
  - Change in topics (1st week of October)
  - Late arrival for ordered parts
  - Parts not functioning suddenly -> Late integration
- Difficulties
  - Change in topics
  - Full course load for all team members

## SCHEDULE (CONT'D)



## Development & Production Costs

| Income                              |       |                                 |        |
|-------------------------------------|-------|---------------------------------|--------|
| Grant from ESSS                     | \$250 |                                 |        |
|                                     |       | Total                           | \$250  |
| Expense                             |       |                                 |        |
| Raspberry Pi (x2)                   | \$130 | Web cam                         | \$12   |
| Bluetooth Dongle (x2)               | \$40  | Rechargeable<br>Batteries (x12) | \$45   |
| Used walker                         | \$50  | Acryl                           | \$50   |
| SD card                             | \$25  | Battery Pack                    | \$50   |
| Wireless charger/circuit components | \$80  | Parts (screws, wood, etc)       | \$40   |
| Wireless charger transmitter        | \$55  | Sensors (x2)                    | \$30   |
| Motors                              | \$30  |                                 |        |
|                                     |       | Total                           | \$697  |
| Total                               |       |                                 |        |
| \$250 - \$697                       |       | Total                           | -\$447 |

- Proposed cost for prototype was \$400
- Extra cost of \$297 incurred due to the change in topics
- Were able to re-use most parts that were already ordered

## BUSINESS CONSIDERATION

- Survey Results
  - Total number of participants: 14
  - Most elders were reluctant to any changes
  - On a bright side, more than 50% of elders in 60s were fairly comfortable with smartphones

## FUTURE DEVELOPMENT

- Different audience target
  - Young moms with baby stroller
- App Support on other platforms
  - iOS
  - Windows Phone
  - BB10
- Use less power consuming Microcontroller
  - Can support stronger motor
- Add another motor on front wheel
  - Can be used to steer wheel to change directions

# COMPARISON FUNCTIONAL SPEC AND DESIGN SPEC

- *Improve* sensor systems by adding sensor-motor mechanism on horizontal detection
- *Increase* the torque of brake motor by using 12V stepper motors
- *Integrate* auto-email feature in the user interface application
- *Implement* face recognition and face detection functions in the system

## CONCLUSION

- Great learning experience
  - project management skills
  - cover most critical ENSC courses
- > Great teamwork
  - help each other to solve problems
  - motivate each other
  - share ideas

## Individual Contributions

## JUNFENG XIAN

#### Responsibility (CEO)

- Assign tasks to group members
- Organize team activities and team meetings
- Develop obstacle detection module and main program on Raspberry Pi

#### Activities

- Raspberry Pi GPIO configuration
- Sensor selection
- Ultrasonic sensor and Raspberry Pi integration
- Sensor detection algorithm
- System integration
- System testing related to micro-controller and sensors

#### Correlated to specific knowledge in ENSC courses

- ENSC 351 multi-thread programming
- ENSC 387 sensors and actuators
- ENSC 489 SolidWorks modeling

## Hongkyu Ahn

#### **Technical**

- Brake mechanism to be work with motors
- Frame and wood work, mounting components
- Software to configure forward steps and backward steps for motor
- Amplifying circuit

#### Activities

- Research, ordering and picking up parts/materials
- Failed a couple of brake mechanism
- Required extensive iterative/repetitive testing for brake mechanism

# Correlated to specific knowledge in ENSC courses ENSC 220, ENSC 351(programming part), ENSC 489,

## SEUNG YEONG PARK

#### **Technical**

- Face detection for enabling power saving mode
- Face recognition for user interface simplification
- Early version of motor control script
- Qi Wireless Charging circuit as for the proof of concept

#### Activities

- Motor code integration by enabling a thread from the early version of main code
- System integration and testing related to face recognition/detection
- Overall system integration on Raspberry Pi / Circuit to provide a protection to GPIO
- Choosing the IC chips for motor circuit and wireless charging circuit
- Wireless Charging circuit testing

#### Correlated to specific knowledge in ENSC courses

- ENSC 351 multi-thread programming on Linux
- ENSC 424 image processing (image convolution, histogram equalization)
- ENSC 220 fundamentals of electronics

### ANDY BACK

#### Responsibility (CIO, CFO)

#### **Technical**

- Android app development using Java
- Raspberry Pi Bluetooth communication

#### Activities

- Android app development (Bluetooth, Google Maps, Email)
- Responsible for all the meeting minutes
- Market research (survey)

#### Correlated to specific knowledge in ENSC courses

ENSC 351 – Multi-threaded Programming

ENSC 488 – Coding experience

ENSC 427 – Communication System (for Bluetooth)

## DEMO

## QUESTIONS

## ACKNOWLEDGEMENT

- o Mr. Lucky One
- o Mr. Mike Sjoerdsma
- o Mr. Lukas-Karim Merhi
- o Ms. Mona Rahbar
- o Mr. Ali Rahbar
- o Mr. Jamal Bahari

#### REFERENCES

- [1] NBS2 Solutions Inc., "Functional Specification for Smart Walker System", Simon Fraser University, Burnaby, BC, Canada, Oct 13 2013.
- o [2] Toshiba, ULN2803A 8ch Darlington Sink Driver, 2010. [Online] Available: http://www.adafruit.com/datasheets/ULN2803A.pdf [Accessed: Nov 6, 2013].
- o [3] Logitech, "Webcam C210 Support", date unknown. [Online] Availble: http://www.logitech.com/en-us/support/webcam-c210 [Accessed: Nov 2, 2013].
- [4] Linear Technology, LTC4060 Standalone Linear NiMH/NiCd Fast Battery Charger Datasheet, 2012. [Online] Available: http://cds.linear.com/docs/en/datasheet/4060f.pdf [Accessed: Nov 2, 2013].
- [5] Wireless Power Consortium, "Wireless Power Technology", date unknown. [Online] Available: http://www.wirelesspowerconsortium.com/technology [Accessed: Nov 4, 2013]. QI charging reference
- [6] Intel Corporation, "OpenCV 2.4.7.0 documentation", OpenCV, date unknown. [Online] Avaiable: http://docs.opencv.org/index.html [Accessed: Oct 30, 2013].
- [7] P. Wilson and J. Fernandez, Facial Feature Detection Using Haar Classifiers, the Consortium for Computing Sciences in Colleges, Texas, 2006. Available: http://nichol.as/papers/Wilson/Facial%20feature%20detection%20using%20Haar.pdf [Accessed: Oct 29, 2013].
- [8] M. Turk and A. Pentland, Eigenfaces for Recognition. *Journal of Cognitive Neuroscience*, 3 (1), 1991a. Available: http://www.cs.ucsb.edu/~mturk/Papers/jcn.pdf [Accessed: Oct 18, 2013].
- [9] A. Martines, "Fisherfaces", Ohio State University, Ohio, 2011. [Online] Available: http://www.scholarpedia.org/article/Fisherfaces [Accessed: Nov 9, 2013].
- o [10] Elec Freaks, HC-SR04 *Ultrasonic Raging Module datasheet*, date unknown. [Online] Available: http://elecfreaks.com/store/download/HC-SR04.pdf [Accessed: Oct 10, 2013].

# Thank You