

Smart Blinds Systems

Project Team

- Jorden Bryer CEO
- Chaman Toor CTO
- Willy Wong CFO
- Clark Zhao COO

Outline

- Background
- High Level Design
- Main Components
- Functional Spec Deviations
- Final Schedule
- Total Costs
- Demo
- Individual Responsibilities
- Questions

Background

- Waking up in the morning can be one of the most difficult parts of the daily routine
- Natural light can help you wake up in the morning
- Manually closing the blinds every night can be a hassle for large buildings
- Design an automated blind system to solve these issues

Current Solutions

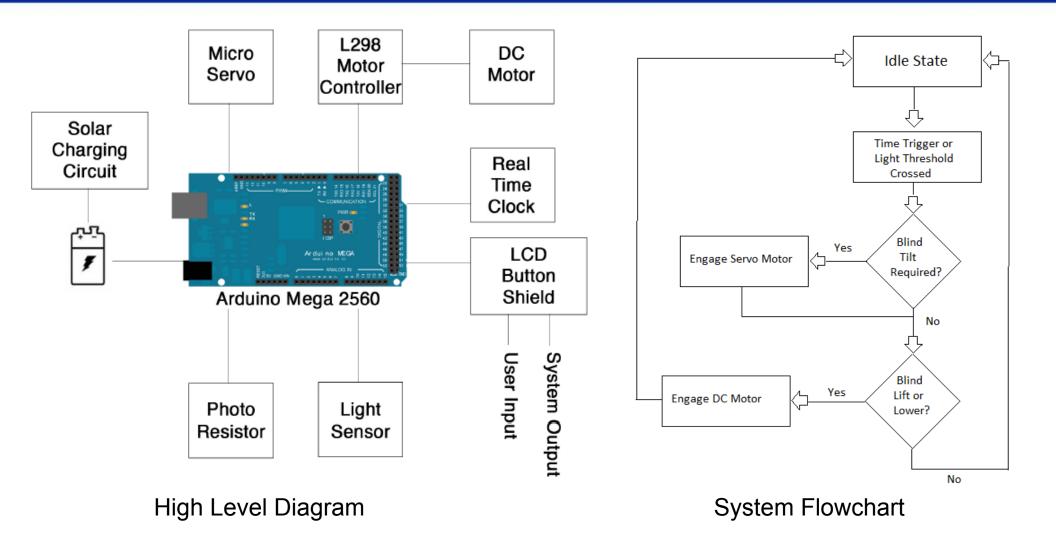
- 1.) Electric Curtain Tracks - HT100 [1]
 - Requires a custom track to be installed
 - Can be used with a remote control

2.)Dawn to Dusk electric curtain [2]

- Needs a Glider
 Track for the curtains
- Weight limitations on curtains
- Needs to plugged into a wall socket

Current Solutions

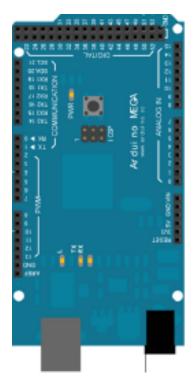
Glider Track – View: Looking Up


Our Solution

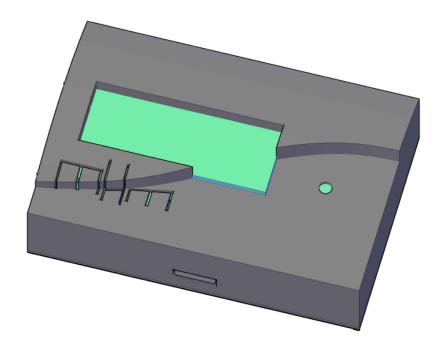
- Integration of manual and automated system
 - Enabled by alarm utilizing a real time clock
 - Detects sunlight and inside light conditions
 - Sensors monitor light levels and control blinds according to a users settings
 - Compact design that fits securely in regular blind housings

Project Objectives

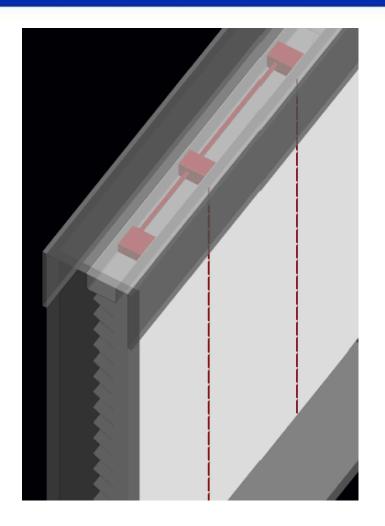
- Motorized blind lifting and tilting mechanisms to control the light entering a room
- Ambient light sensing, allowing our microcontroller to obtain real time data on light conditions
- Software interface to allow the user to program a number of settings
- Aesthetically pleasing design with cords, motors, and other electrical components hidden


High Level Design

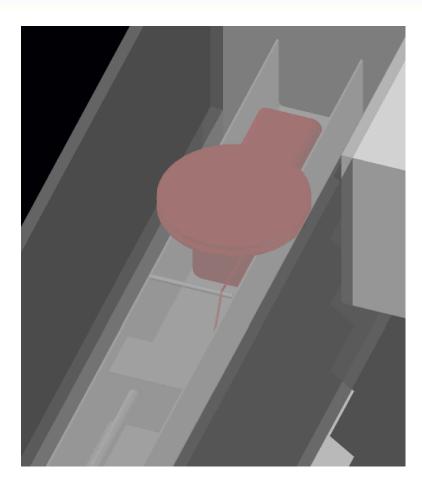
Main Components


- 1.) Arduino Mega Microcontroller
- 2.) LCD Panel User Interface
- 3.) Blind Tilt Mechanism
- 4.) Blind Lift Mechanism
- 5.) Photo Resistor
- 6.) BH1750 Light Sensor
- 7.) Software

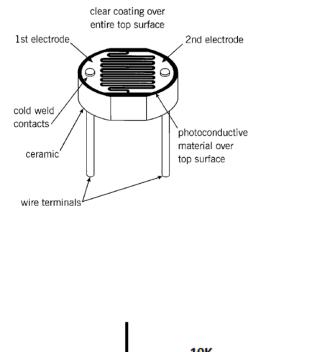
Arduino Microcontroller


- Heart of the device
- Powers all components
- I2C used for light sensor and real time clock

User Interface

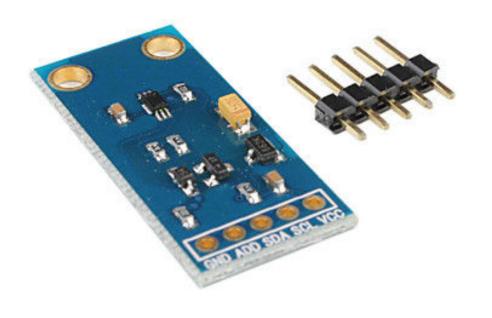

- •The LCD panel allows user interaction
- Push buttons
 - •Set Alarm
 - •Set Clock
 - •Set Light settings
 - •Reset the device

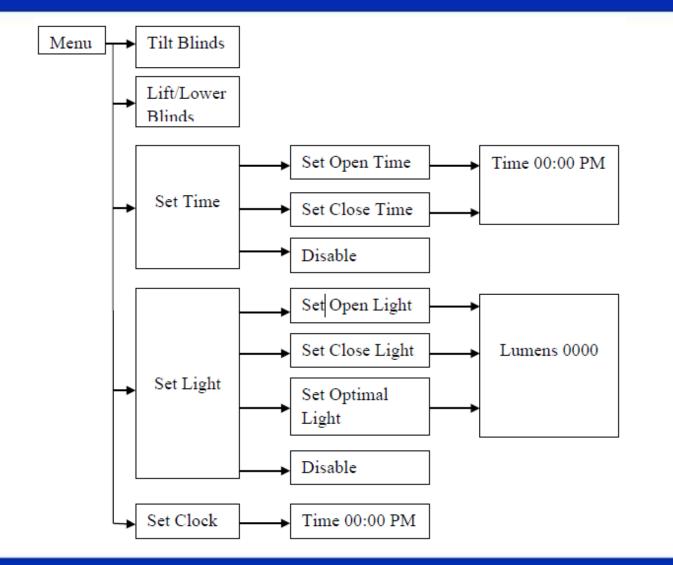
Blind Tilt Mechanism


- Serves to Tilt the blinds
- Triggered by either the Light Sensor or Photo resistor
- Consists of:
 - Servo Motor
 - Tilt Rod

Blind Lift Mechanism

- Serves to Lift the blinds
- Triggered by either the Light Sensor or Photo resistor
- Consists of:
 - DC Motor
 - String Spool
 - L298 Motor
 Controller


Photo Resistor


- Serves to detect either day or night
- Triggered by absence or presence of Sunlight
- Connected in a voltage divider configuration
- The output of this component is a voltage level which corresponds different LUX

BH1750 Light Sensor

- Serves to detect accurate light levels inside the room
- Adjusts the tilt on the blinds to optimize light in room
- Interfaced using I2C bus

Software

Functional Spec Deviations

- There is no solar charging component
 - Charge time for battery is very long
 - Solar array supplies very little current
 - Tried Lead Acid and NiMH batteries
 - Rechargeable batteries that fit our requirements are very large and heavy
- No audio alarm
 - Decided wasn't completely necessary to our design

Final Schedule

		Sept					Octobor				Nov				
		1	9	16	5 23	1	9	16	23	1	9	16	23	1	9
Research															
Order Parts															
L298 Motor Controler															
Bidirectiona	I DC Motor														
Servo I	Motor														
I2C Digital Li	ght Sensor														
Grove Real Time Clock															
LCD and But	tton Shield														
Solar Array and Battery															
Assembly of Modules															
Integration/Testing															

Total Costs

• •	Total Fund granted from ESSS Total expenditure till now Remaining Fund	\$500 \$403 \$97
•	Expenditure details	
•	1 Inch Light filtering Blinds and Frame	\$36
•	Arduino Mega 2560	\$70
•	LCD button Shield Kit for Arduino	\$26
•	Ardumoto – Motor Driver Shield	\$30
•	Grove RTC	\$12
•	Light Sensor and Photoresistor	\$10
•	Servo	\$15
•	Motors (Step and Bi-Directional)	\$32
•	Medium Duty Solar Panel	\$17
•	Batteries, Clips and cables	\$45
•	Speaker, Glue Stick, Prototype Board, and Bobbin	\$24
•	Housing raw materials, shrink wrap, cable	\$25
•	Solder equipment, flux, soldering wick	\$25

٠

Future Improvements

- Reducing cost replacing our microcontroller
- Add production level features defined in functional specification
- Improvements to the lift mechanism reliability, and overall design
- Implementing the solar charging circuit
- Add audible morning alarm feature

Conclusion

- The project was complex enough that it could be completed in 3 months
- Everyone's schedule was accommodating which really helped
- It helped having that contingency fund just incase anything went wrong
- Only minor deviations to our functional specification were required to fit the project into the allowable timeline

Individual Responsibilites

- Jorden
- Chaman
- Willy
- Clark

Acknowledgement

- Bonnie Gray 3D printer
- Lucky One
- Mike Sjoerdsma
- Lukas-Karim Merhi
- Reza (350 TA)
- 440/305 TA's

Reference

[1] -

http://exp-china.com/electric-curtains-catalogs/ electric-curtain-tracks-ht100

- [2] http://www.amazon.co.uk/Electric-curtain-blindautomatic-feature/dp/B00DBYG966
- [3] http://www.instructables.com/id/BH1750-Digital-Light-Sensor/
- [4] http://learn.adafruit.com/photocells

