

NaviCane: Navigation Assisting Cane

Vincent Guan
Edwin Leong
Raymond Li
Darren Tong

Vincent Guan, CEO

Mechanical Design

Edwin Leong, COO

Embedded Software

Raymond Li, CFO

Hardware Design

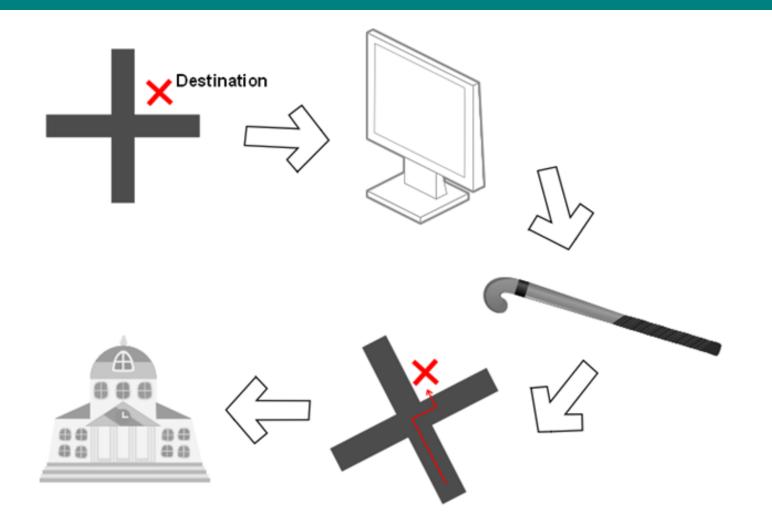
Darren Tong, CTO

Software Application

- 1. Background and Motivation
- 2. Project Overview
- 3. Project Specification
- 4. Business Model
- 5. Future Work & Improvements
- 6. Acknowledgements
- 7. References

"It is not miserable to be blind; it is miserable to be incapable of enduring blindness."

- John Milton



How do we effectively enhance the travel of a visually impaired user?

Motors

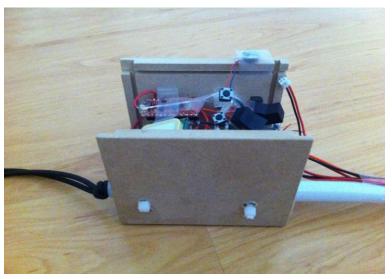
Output

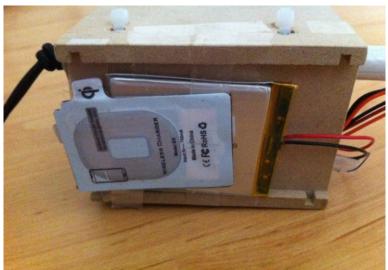
Google **User requests** Calculate Transfer data Maps API through USB to for routes and sends destinations nodes Microprocessor coordinates **NaviCane** Input **Digital Compass Destinations and** Microprocessor **GPS Detects** Route to **Directions from** Computes the **Provides** User's Current Destination User's Computer **Direction to Each Mapping** Location **Processing** Software Coordinates **Route Node Processing Object** Ultrasonic **Haptic Feedback** Distance to Alter via Vibration **Sensors Detects Haptic Feedback**

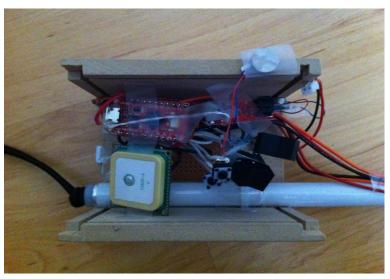
Software Application

Intensity

Obstacles





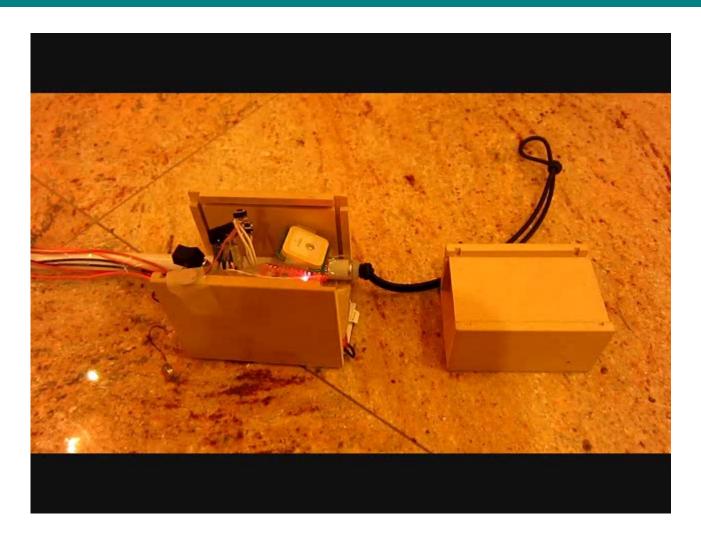


Mechanical Design

Weight:

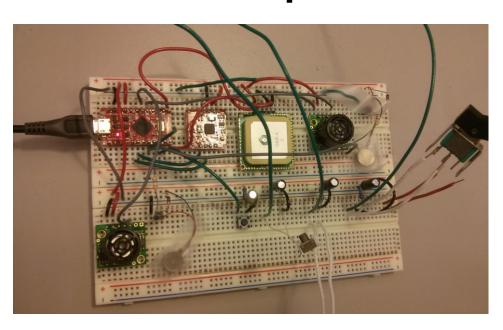
(Cane: less than 300 grams)

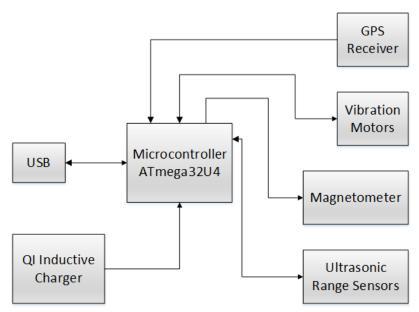
Wooden case: weighs 80-100 grams


Dimensions:

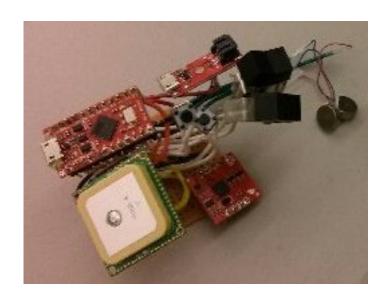
71mm (w) x 99mm (h) x 75mm (d)

- Slidable doors to allow easy access to hardware components
- Light material for handle
- Hidden slot for battery underneath

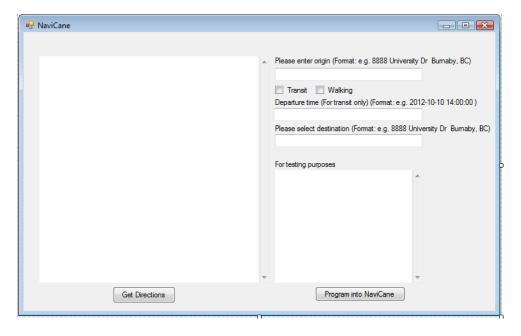

Project Specification



Developmental Hardware Design



Hardware Prototype



- Two toggle switches
- Two push buttons
- Two vibration motors
- USB charging
- Wireless charging
- Weighs about 50 grams
- Battery life of at least one day during real use

Software Application

- Directions from Google Maps API
- 3 textboxes, 2 buttons, 1 checkbox
- Outputs the GPS the coordinates that Google Maps API provides for the route

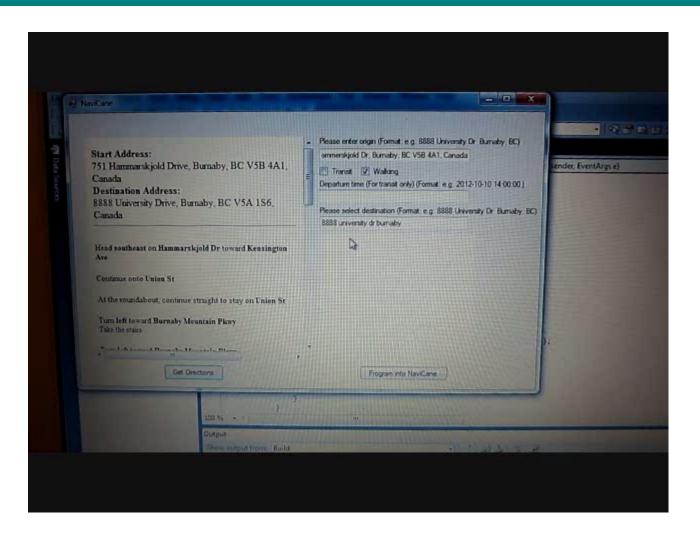
Project Specification

√ NaviCane	
	Please enter origin (Format: e.g. 8888 University Dr. Burnaby, BC) Transit Walking Departure time (For transit only) (Format: e.g. 2012-10-10 14:00:00)
	Please select destination (Format: e.g. 8888 University Dr. Burnaby, BC)
Get Directions	Frogram into NaviCane

Embedded Software

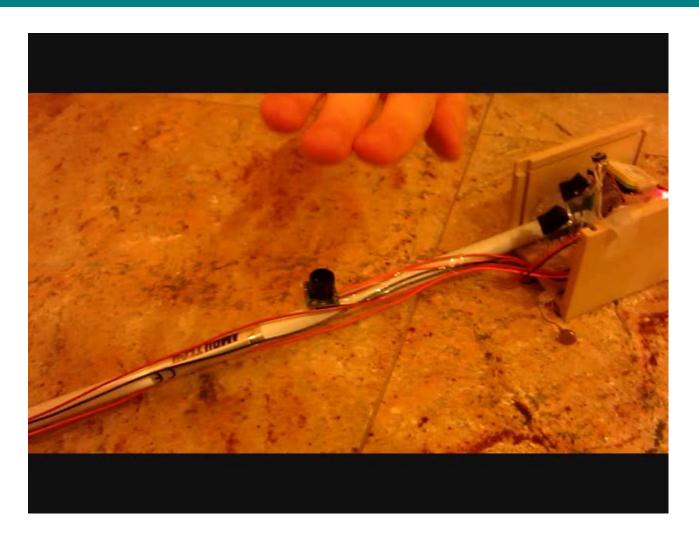
Ultrasonic Object Detection

- 2 ultrasonic sensors
- 1 haptic feedback motor


GPS Navigation System

- GPS module, communicates to satellite
- Compass, determines direction
- 1 haptic feedback motor

Serial Port Communications



Project Specification

Project Specification

Market

- 31.9% of the participants surveyed indicated they require the use of a white cane. [6]
- Estimated that 285 million people worldwide are visually impaired, equating to roughly 4% of the entire human population. [5]

Market

• In 2001, about 196,000 people with a "severe" limitation in seeing have access to the Internet, and about 102,000 persons with a severe limitation in seeing use a computer on a regular basis. [7]

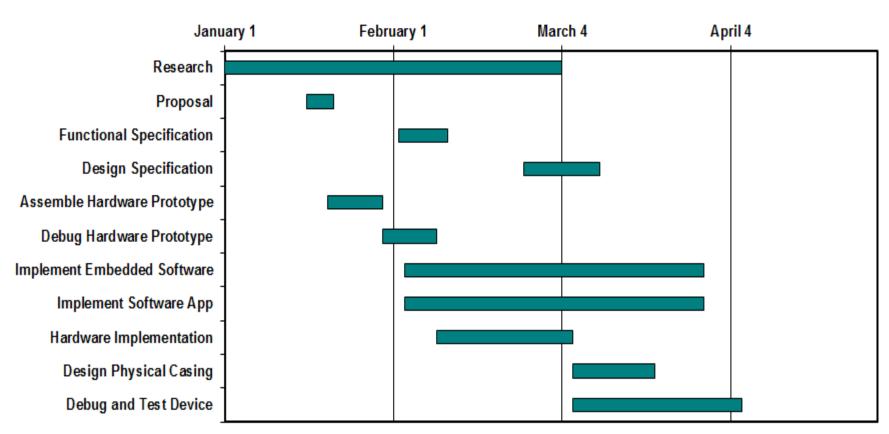
Business Model

Competition

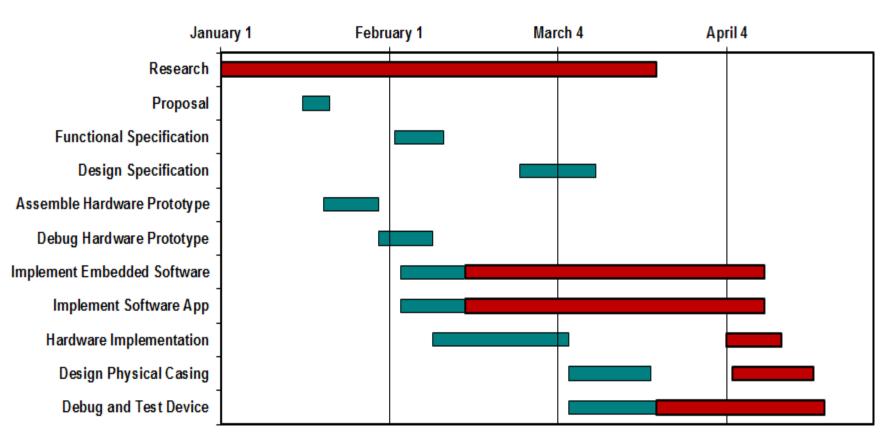
Competitor	Pros	Cons	
Guide Dog	 Live reflexes to determine safety Genuine interactions with a companion 	 Training one costs over \$35,000 [4] Raising costs ~\$700 per month 	
White Cane	 Cost-efficient; averages ~\$40 Introduced for almost a century, after WWI 	 Only provides basic functionalities Cannot detect obstacles not within the cane's reach 	
GPS for Visually Impaired	 Allows audio feedback to communicate with user Independent mobility device 	 Cannot determine if proposed route is applicable Not discreet Can cost up to \$2000 	

Business Model

Materials & Costs


List of Materials	Estimated Unit Cost	Actual Unit Cost
Arduino Pro Micro	\$30	\$25
Two Ultrasonic Sensors (LV-EZ0 and LV-EZ1)	\$60	\$54
Two Vibration Motors	\$10	\$10
GPS Module with Embedded Antenna (LS20031)	\$60	\$60
Magnetometer Breakout Board (LSM303DLMTR)	\$15	\$30
White Cane and Physical Case	\$40	\$35
Buzzer/Speaker	\$5	N/A
Battery + Charging Circuit	\$30	\$27
Wireless Charging Circuit and Charger	N/A	\$80
Printed Circuit Board	\$150	N/A
Miscellaneous (Header pins, Electronic components, Protoboard, cables)	\$ 15	\$15
Miscellaneous (Taxes, Shipping+Handling, Duties+Brokerage)	\$70	\$158
Total Cost	\$470	\$494

25


Estimated Schedule

Actual Schedule

Scope & Design Changes

- Alternative routes as a "next node"
- Mechanical case as an attachment
- Incorporated QI wireless inductive charging
- Implemented support for travelling using public transportation

Future Plans & Improvements

- Audio Feedback
- Voice control
- GLONASS
- Battery fuel gauge
- Battery temperature monitor (thermistor)
- 3G modem Assisted GPS and Connection
- Bluetooth connection to smartphones

Conclusion

- Built a navigation assisting prototype cane
- Designed a client application to receive and transfer route information from Google Maps
- Implemented an intuitive code to guide a visually impaired user to a destination

Things we've learned

- Hardware and software experience
- Communication
- Planning
- Time management
- Plan for mistakes
- Don't be optimistic

Acknowledgements

- Dr. Andrew Rawicz
- Mr. Steve Whitmore
- Mr. Lukas-Karim Merhi
- Mr. Ali Ostadfar
- Mr. Hsiu-Yang Tseng
- Mr. Ken Guan
- Engineering Student Society Endowment Fund

References

- [1] Israel Guide Dog (2012, May 30). *Israel Guide Dog Center for the Blind*. [Online]. Available: http://israelseen.com/2012/05/30/israel-guide-dog-center-for-the-blind
- [2] Visually Impaired Persons of Charlotte County. *Welcome to VIP of Charlotte County.* [Online]. Available: http://www.vipofcc.com
- [3] Navigadget. (2007, Jun. 26). *GPS for the blind or visually impaired.* [Online]. Available: http://www.navigadget.com/index.php/2007/06/26/gps-for-the-blind-or-visually-impaired
- [4] Canadian Guide Dogs for the Blind. *The Guider Project.* [Online]. Available: http://www.guidedogs.ca/_txtguiderproject.htm
- [5] World Health Organization. (2012, June). *Visual Impairment and Blindness*. [Online]. Available: http://www.who.int/mediacentre/factsheets/fs282/en/
- [6] Canadian Government. (2009, Feb. 26). *Table 2 Aids and assistive devices used by people with severe seeing limitation, 2006.* [Online]. Available: http://www.statcan.gc.ca/pub/89-628-x/2009013/tab/tab2-eng.htm
- [7] Elaine Gerber and Corinne Kirchner. (2001). Who's Surfing? Internet Access and Computer Use by Visually Impaired Youth and Adults. Journal of Visual Impairment & Blindness, 95 (3), 176-181.

Questions & Answers

Thank you!