

Searcue Team

& Gurjeet Matharu (CEO)
& Seyed Ahmari (COO)
& Hesam Fatahi (CMO)
& Lekabari Nghana (CTO)
& Avi Gill (CFO)

Motivation

- Save lives
- Reduces human error
- Reduces search and rescue operation costs

Search and Rescue

- Every year people are lost in places such as mountains and forests
- The cost of using regular helicopters for search and rescue is around \$1800 per hour
- Mission stops at sunset

Market

- Various Applications
 - Security & Surveillance
 - Delivery
 - Military
 - Photography
- "Airware" raised more than \$40 million in venture capital funding.

The Searcue System:

- The use of Unmanned Aerial Vehicles for search and rescue operations
- Components of the Searcue System
 The UAV
 - Person Identification Server (Image Processing)
 - Alert system for Users/Search and Rescue team

System Overview

UAV - Why Quadcopter?

Full mobility – 6 degrees

- Ability to investigate various terrain with low risk to humans
- Can hover allowing for wide array of manoeuvres
- Flight controller allows for stability during flight making close interaction safe

Working Principle

- A quadcopter is an unmanned aerial vehicle (UAV) which incorporates a mixture of electronics and mechanics
- A quadcopter has four motors whose speed and direction of rotation correspond to movement in a particular direction (throttle, pitch, roll and yaw)

Normal Speed

System Overview: UAV

Basic Materials Required

- Arduino microcontroller
- Brushless Motors 920kV
- Transmitter and Receiver
- Electronic Speed Controllers (ESC)
- Propellers
- Frame
- Sensors gyroscope, accelerometer, magnetometer and barometer
- Battery

Microcontroller – Flight Control

SEARCUE

- Arduino based
 - Inertial Measurement Unit
 - Barometer
 - ≻ GPS

Alternatives

- Various hobby flight controllers (Hobbyking.com)
- > Raspberry Pi

Circuitry

- Power Distribution
- Electric Speed Controllers
- Motors

Structure/Physics

- Frame
- Thrust
- Weight
- Flight time

Transmitter/Receiver

SEARCUE

Manual Control of Quadcopter

Quadcopter Review

- Chosen due to versatile nature
 Other drones cannot hold altitude while offering the same maneuverability
- Arduino based flight controller
 > Offers real time kernel (RPi does not)
 > Most flight controller software is based on arduino

Camera – Video Transfer –

SEARCUE

- Raspberry pi
 - Camera module
 - Linux based tools/development tools
 - > gstreamer

Alternatives

- Go pro
- USB/IP cameras

Image Processing Server

- Server side computation
 - Heavy CPU load requires server side computing
 - Sends email notifications

Software

- Microcontroller
 - AeroQuad Software
 - Cheapest and most efficient

Alternatives

- > openPilot
- > Ardupilot
- Wii Sensor boards

Raspberry Pi – Camera

- Raspberry Pi
 - GstreamerSSH
 - Cheap HD cameraEfficient

Server

- Server
 - High CPU needs for image processing HD video
 - > OpenCV
 - > NGINX
 - ➢ POCO
 - > HTML

Searcue Server/Website

- Standalone application (OP)
 > Image processing
- Web-based application
 - Rtmp protocol for live streaming
 - Client side html javascript
 - Server side php
 - > Overall Design Formatting CSS

Component	Predicted Cost(\$)	Actual Cost(\$)	Difference(\$)
Turnigy 9ch Transmitter and 8ch Receiver	75	90	15
GPS Shield Kit	75	75	0
Raspberry Pi, WIFI dongle and Pi camera	65	100	35
4x DJI 920KV Brushless Motors	50	50	0
4x Electronic Speed Controllers	50	80	30
9DOF Sensor Stick	50	50	0
Cable Connectors, spacers and wires	50	50	0
Zippy 4000mAh Battery	30	30	0
Carbon Fiber Frame	30	30	0
AeroQuad Shield	30	30	0
Power supply / distribution board	30	30	0
Carbon Fiber Propellers	20	20	0
Barometer BMP180	15	15	0
Battery Charger	0	70	70
Subtotal	570	720	150
Shipping and Duty	60	100	40
Total	630	820	190

Market

- Competitors such as the DJI Phantom retail for about 800 dollars
- Most other Quadcopters retail for that range

Timeline

Actual	Expected	Project Timeline	
Sep 13	Sep 13	Research	
Sep 20	Sep 20	Functional Specification	
Oct 12	Oct 12	Design Specifications	
Dec 12	Sep20	Ordering/ Buying parts	
Dec 15	Dec 7	Documentation/ Website	
Nov 16	Nov 16	Process Report	
Nov 5	Oct 26	Flight and Flight controller	
Oct 20	Oct 12	Prototyping Flight and Flight controller	
Nov 10	Oct 26	Debugging the flight and flight Controller Prototype	
Dec15	Nov 23	Image processing and Automation	
Nov 25	Nov 9	Integration image processing into the Quadcopter	
Dec 10	Nov 23	Debugging the final prototype	

Searcue Summary

SEARCUE

Quadcopter

- Camera
- Server
 - > Web application
 - Image Processing
 - Email notification

Future of Searcue: **Product Improvements** SEARCUE

- Develop better algorithms for search and rescue
- Implement better cameras thermal
- More refined software package
- Real-time image processing
- Autonomous flight using waypoint

Future of Searcue – Other Applications

- Security
- Photography
- Geographical Surveys

Challenges

- Receiver
- 9DOF voltages
- ESC calibration
- RTMP Server
- Wifi/LAN

Conclusion

- We expect future endeavours for Searcue by enhancing our product
- We learned
 - Communicate and work efficiently in a team
 - > Writing technical documents
 - Aerodynamics, sensors, microcontrollers, communication protocols, and various image processing techniques
- This was a valuable experience and we are proud of our accomplishments

Acknowledgements

- Dr. Andrew Rawicz and Steve Whitmore
- Jamal Bahari, Lukas Merhi and Mona Rahbar
- Fred Heep
- Craig Scratchley
- George Xu
- Daman Dhillon
- Mohammad Kavin
- ESSEF Endowment

Questions?

