

Visually Impaired Assistant (VIA)

Ahmad Ibrahim (Chief Financial Officer, Chief Information Officer) Rob Sanchez (Chief Technical Officer, Chief Operating Officer) Jessica Zanewich (Chief Executive Officer)

December 15th, 2014

- ► Team Roles
- Motivation
- Background
- VIA Explained
- Component Explanations
- Integration Discussion
- Alternative Implementations
- Cost
- Financing

- Marketability
- Competition
- Budget
- Timeline
- What we learned.
- Future plans

Team Members

- Jessica Zanewich (CEO)
 - Project Director
 - Head of the audio feedback system
- Ahmad Ibrahim (CFO and CIO)
 - Finances manager
 - Head of absolute orientation functionality
 - Case Design
 - Obstacle detection
- Rob Sanchez (CTO and COO)
 - Technical leader
 - Head of the sensors functionality

Motivation

- Our motivation was of a curiosity nature
- Interested in surrounding area navigation
- Came up with a detection device for the visually impaired
- Great project for us because of interest in sensors and gyroscopes

Background

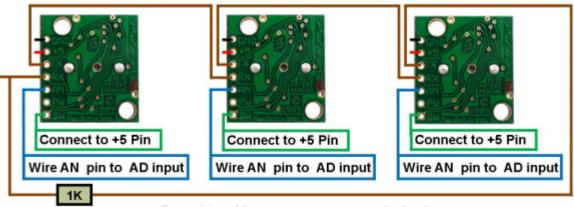
- Know there is a similar idea with GPS used for orientation
- However, very few technical products have true viability
- We wanted to use a different implementation method than was previously used

Visually Impaired Assistant (VIA)

- The Visually Impaired Assistant is an alternative and more technologically advanced way for visually impaired people to navigate through an environment
- It is a remote-like device that "senses" an object, such as stairs or walls, in the area in front of the person and uses audio to relay that information back to the user.
- We hoped to make an affordable, yet better functioning, substitute (so they are not limited by their reach)
- Basic premise was to make it similar to a Wii Mote, so it is comfortable to hold.

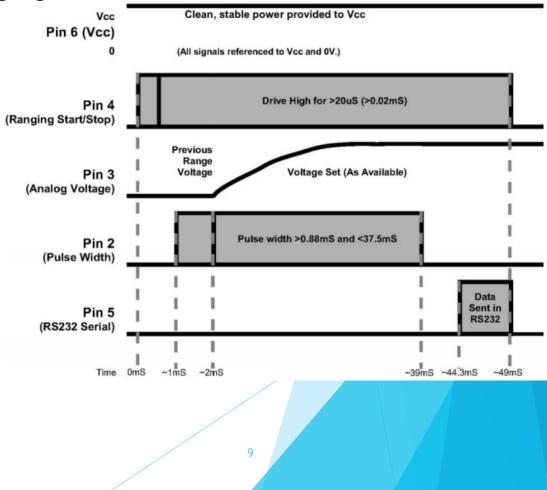
Overview of Components

- Sensors used for distance
- Gyroscope used to detect orientation
- Audio used to give feedback to the user
- Communication protocol used for trinket communication



Sensors

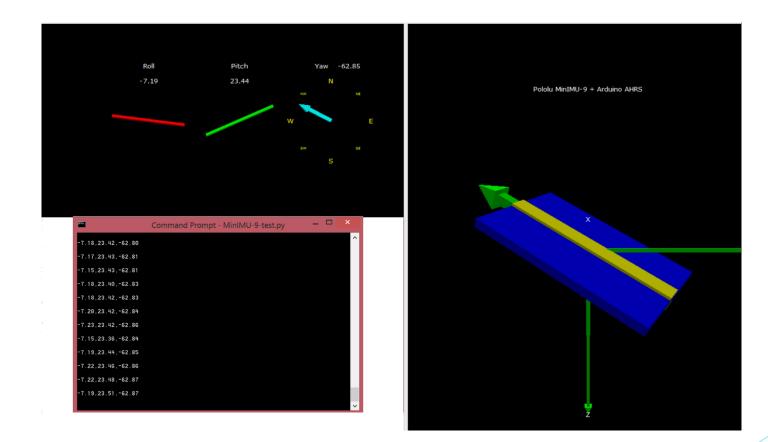
- Methods used to synchronize sensors:
 - RX/TX series connection
 - Fixed delay between enables
 - Sequence and Delay
- Issues with sensor throughout process



Sensors (2)

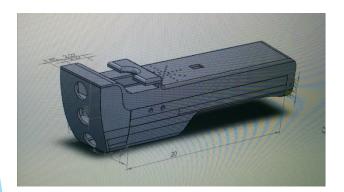
Repeat to add as many sensors as desired

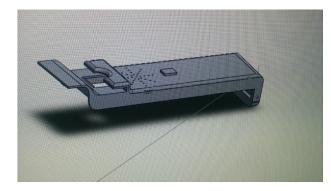
Timing Diagram



Device Orientation

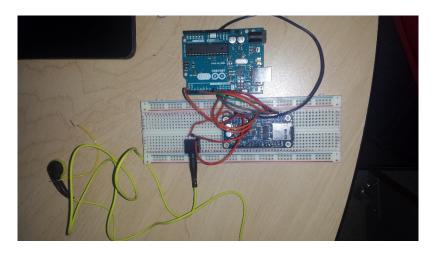
- 9 degree of freedom chip
- Combination between the L3GD20H 3-axis gyroscope, LSM303D 3-axis accelerometer and 3-axis magnetometer
- Gets the velocity, acceleration, and magnetic field readings: finds absolute orientation
- Clear pitch, yaw, roll
- > Yaw can drift occasionally, but does not matter for our product


Absolute Orientation Script



Case

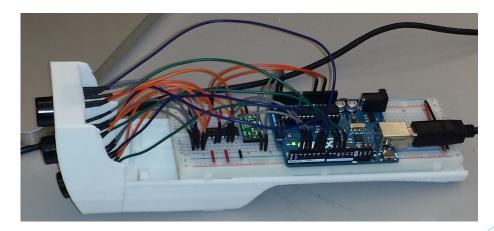
- SolidWorks done in 3 pieces:
 - Front for the sensors
 - Bottom that holds the components
 - ▶ Top cover with speaker holder
- Used 3DHubs.com (special thanks to Lukas for the recommendation)



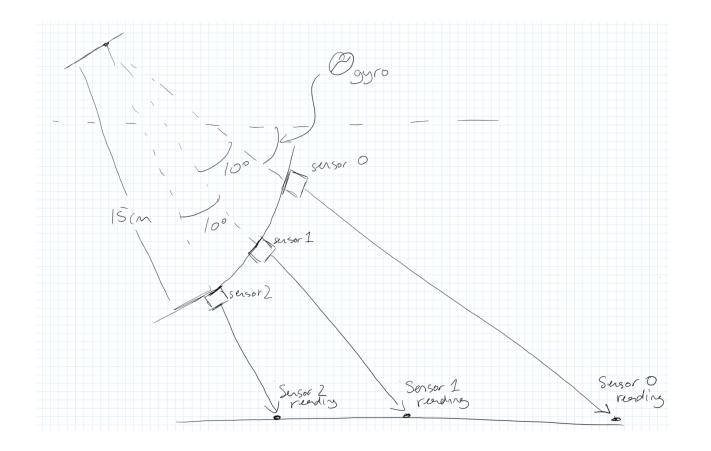
AUDIO FEEDBACK SYSTEM

- Has its own separate microcontroller
- Also use a VS1053 breakout board to help with the decoding of audio files (OGG format)
- Use a singular speaker with an amplifier at the input to produce quality sound (for the speaker used).
- Headphone jack as an option as well.

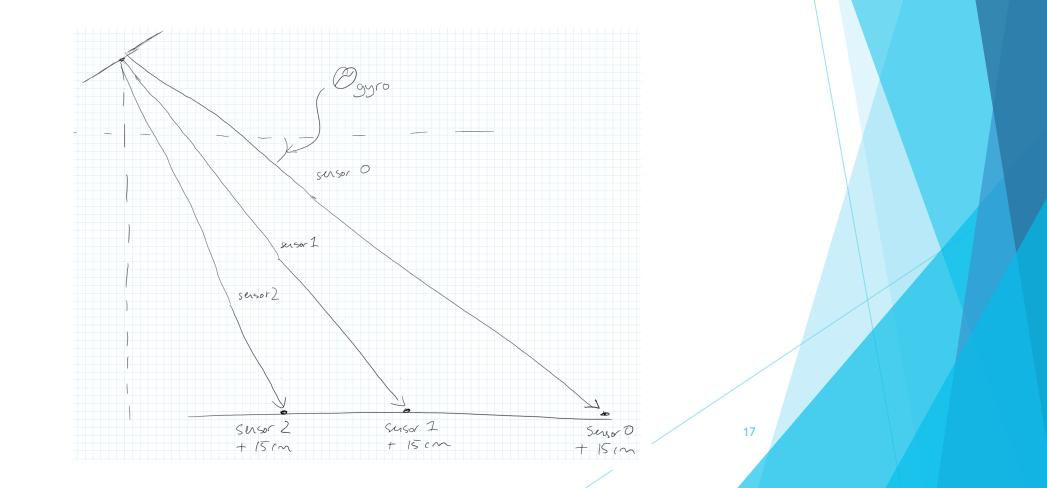
Communications Protocol

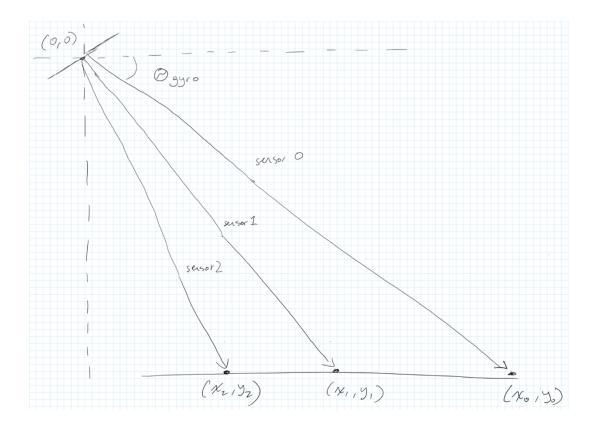

- Transmitter sends 8 bits individually through a single digital pin
- Receiver takes in those 8 bits and distinguishes specific bits as "object" and "distance"

- The bits for each parameter are converted into integers.
- These integers are used to play a specified audio clip

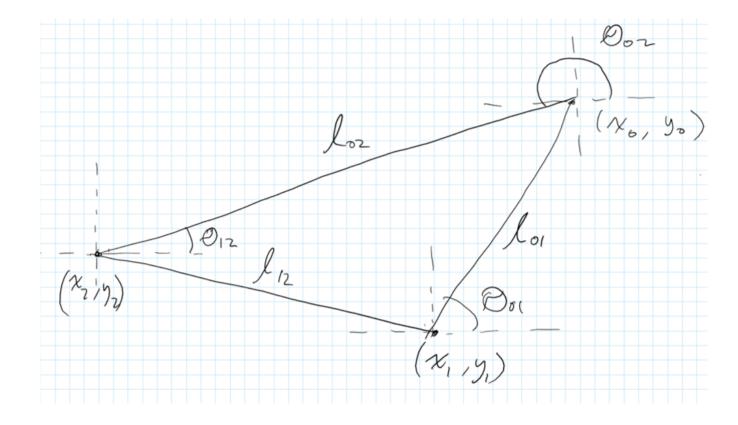

Integration

- Two Main Stages:
 - Sensors and gyroscope integration
 - Integrate audio with previous step
 - Obstacle detection




Obstacle Detection Algorithm


Obstacle Detection Algorithm (2)


Obstacle Detection Algorithm (3)

Obstacle Detection Algorithm (4)

Obstacle Detection Algorithm (5)

Cost and Financing

- Total Spending: \$746.78
- Faulty 3d printing reimbursement: \$139.38
- Total spent if reimbursed: \$607.40
- Funding from the ESSSEF for \$475.00
- Hoping for financing from the Wighton Fund

Budget

- Initial budget estimate totalled \$567.84
- Finished our product spending a total of \$607.40
- Over budget by \$39.56
- Should have increased our budget for more quality materials

Competition

- The main competition on the market comes from the main stays of the visually impaired lifestyle
- White Cane
- Guide Dog
- GPS based systems

Marketability

- Geared towards the visually impaired
- Technologically advanced
- Better range
- More accurate description (*Depends on sensors)

Timeline

- Biggest discrepancy in our time line was the lack of time taken into account for documentation
- Sensors: Alternating between working and not working
- Hard to spread the work out over the term with the documentation used as a consideration for each portion

Initial Timeline

Task Name	Duration	Start	Finish	Jug 31 4	Sep Sep 14 S	n 21 See	28 Oct	Oct	Oct 26	Nov 2	Nov 9		Nov 22	Nov 30	Dec 7
i 💌			_	tug ST 、	Sep 14 S	ep z i joep				NOV 2					Dec 7
Arduino and Sensor Research	34	09/12/14	10/29/14												
Project Proposal	6	09/15/14	09/22/14												
Buy components	1	09/18/14	09/18/14												
Get familiar with Arduino and test first sensor	4	09/20/14	09/24/14												
Sensor Distance Measuring	8	09/24/14	10/03/14												
Troubleshooting of sensors	2	10/03/14	10/06/14												
Audible warning feedback for all 3 sensors	2	10/06/14	10/07/14												
Functional Specification	0	10/14/14	10/14/14					•							
Sensors able to distinguish different types of obstacles	13	10/10/14	10/28/14												
Design Specification	0	11/03/14	11/03/14							•					
Proper Warning System	3	10/29/14	10/31/14												
Warning system troubleshooting	3	11/01/14	11/04/14												
LEDs to indicate visually impaired system in use	3	11/05/14	11/07/14		 										
Gyroscope	5	11/08/14	11/13/14	-											
Speaker Implementation and volume control	3	11/13/14	11/17/14												
Put into case (and final troubleshooting)	8	11/18/14	11/27/14	-											
Integration and Final Unit Testing	7	11/21/14	12/01/14												
Written progress report	0	11/17/14	11/17/14									•			
Date to be ready for demo	0	12/02/14	12/02/14											•	
Post-Mortem	0	12/02/14	12/02/14											•	
				-											
				-									_		24

Learned

Real World:

- Should have not worried about money to such a great extent in favor of better quality sensors
- Account for testing time and put a hard deadline for each component
- Reassess the project as we go and be willing to change ideas and reconsider decisions
- Team management (learning to deal with different personalities)
- Accurate project timelines
- Juggling work with school

Technical

- Strengthened soldering and desoldering skills
- Programming with Arduinos and Adafruit Trinket
- Learned strong usage of SolidWorks

Future Plans

Get better sensors for better accuracy

► GPS

- Bluetooth (for a single headphone to listen through)
- Improved prototype (functionality, looks, ergonomics)
- Working with visually impaired for future testing and development

Conclusion

- Wished the sensors would have cooperated better to truly develop our ideas to where we wanted
- > Though we were only slightly over budget, should have spent more for quality
- Learned quite a bit both technically and working in real world through this project
- Hope to continue working on the aspects that could not come together to improve the product

Acknowledgements

- Special thanks to: Steve Whitmore, Andrew Rawicz, Lukas-Karim Merhi, Jamal Bahari, Mona Rahbar
- Additional thanks to: ESSS, Oreo the dog, for keeping us sane through the night
- And, of course, to our friends and family supporting us along the way and today

References

- PADS. Retrieved [December 12, 2014]. About PADS [Online]. Available: http://www.pads.ca/ about-pads/
- University of Florida. Retreved [December 12, 2014]. Drishti: An Integrated Navigation System for Visually Impaired and Disabled [Online]. Available: http://www.icta.ufl.edu/projects/ ubidata/publications/wearableConf.pdf
- World Blind Union. Retrieved [December 14, 2014]. White Cane Information [Online]. Available: http://www.worldblindunion.org/English/resources/Pages/White-Caninformation.aspx/
- Adafruit. Retrieved [December 14, 2014]. VS1053b Datasheet [Online]. Available: http:// www.adafruit.com/datasheets/vs1053.pdf
- Maxbotix. Retrieved [December 14, 2014]. MB1010 Datasheet [Online]. Available: http:// www.maxbotix.com/documents/LV-MaxSonar-EZ_Datasheet.pdf
- Laughing Squid. Retrieved [December 14, 2014]. Tacit, A Glove That Lets Blind People Navigate Using Sonar [Online]. Available: http://laughingsquid.com/tacit-a-glove-that-letsblind-people-navigate-using-sonar/

Questions?

Visually Impaired Assistant (VIA)

Ahmad Ibrahim (Chief Financial Officer, Chief Information Officer) Robert Sanchez (Chief Technical Officer, Chief Operating Officer) Jessica Zanewich (Chief Executive Officer)

April 20th, 2015

Outline

- VIA Overview
- Reflections
- Adaptations
- VIA Changes
- Future Plans
- Conclusion
- Questions

Visually Impaired Assistant(VIA) Overview

- Utilizes three I2CXL-MaxSonar-WR/WRC ultrasonic sensors for obstacle realization
- Device orientation is done with the Pololu MinImu-9 nine degree of freedom chip
- Audio feedback is done using the BlueSMiRF Silver Bluetooth adapter and an Android application

Reflections

- Previous iteration:
 - ► Too ambitious
 - Lacked technical experience
- Current iteration:
 - Focus on proof of concept

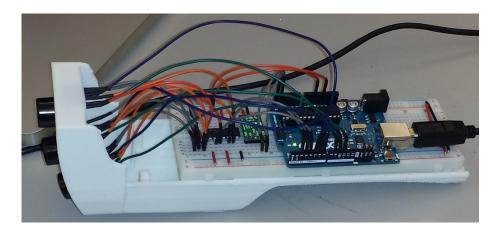
Adaptations

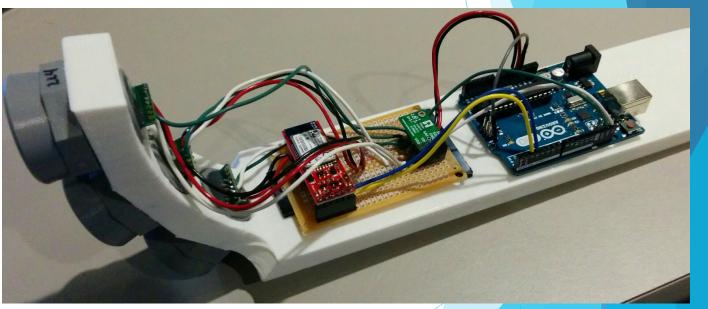
- Work re-allocation with two members
 - Ahmad: Detection algorithm, CAD
 - Robert: Component integration, audio feedback

- Product simplification
- Worked more independently

VIA Changes

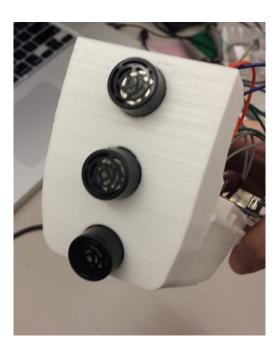
Focused on device simplification

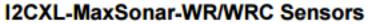

More reliable ultrasonic sensors

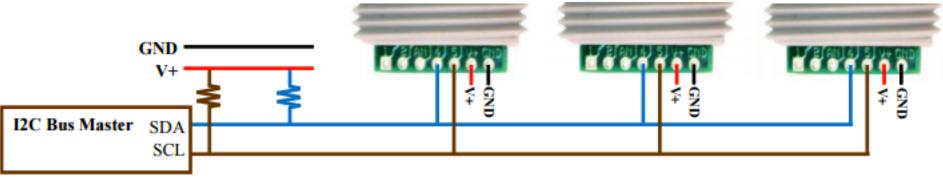

Using a Bluetooth modem instead of a standalone audio component to reduce circuit size and system complexity

VIA Changes - Device Simplification

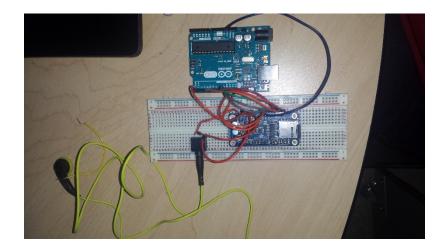
Much simpler circuit can be made ever smaller by using a Trinket instead of an Arduino

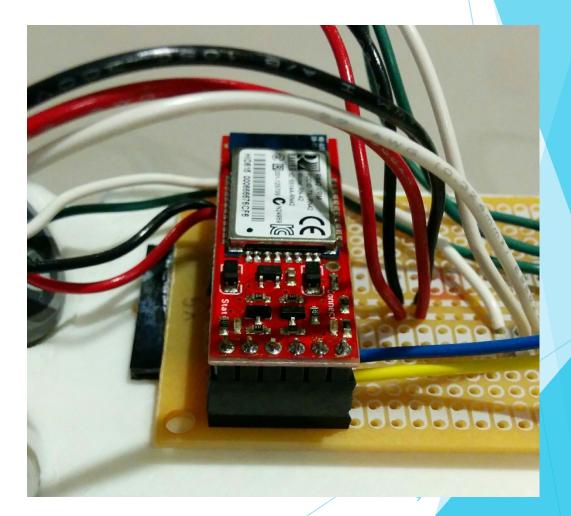





VIA Changes - Sensors

As we learned unfortunately late into the previous semester, our issues were due to incapable sensors





VIA Changes - Audio Feedback

Utilizing a Bluetooth module instead of a separate microcontroller allowed us to simplify the circuit, and remove the extra overhead of the microcontroller-tomicrocontroller communication

Future Plans

- Previous iteration goals:
 - Get better sensors for better accuracy
 - ► GPS
 - Bluetooth (for a single headphone to listen through)
 - Improved prototype (functionality, looks, ergonomics)
- Current iteration goals:
 - ► GPS
 - Improved product(functionality, looks, ergonomics)
 - Working with visually impaired for future testing and development of the Android App

Conclusion

Create a working prototype before worrying about optimizations

11

Focus on one goal at a time

Design tasks to be independent

Questions?