Home Air Monitor

By Clean Space Inc.

Team Introduction

Elaine Chiang

Chief Executive Officer

Joanne Leong

Chief Financial Officer

Peterson Poon

Chief Operations Officer

Presentation Outline

- 1. Introductions
- 2. Project Overview
- 3. Hardware
- 4. Software
- 5. Project Logistics
- 6. Future
- 7. Conclusion

Project Introduction

Observed Problems:

- — Poor air quality of indoor space
- Majority of our time is spent indoors
- Some solutions available on market can be costly

http://www.top-air-purifier-reviews. org/air-purifier-water-filter.html

Project Introduction

Proposed Solution:

- —Home Air Monitor (H.A.
 M) to observe and alert
- An aid to existing devices to improve air quality
- User control

Justification of Sensors

- Why monitor particles?
- Why monitor humidity and temperature?
- Why monitor carbon monoxide?

Justification of Phone App

- Mobile phones are often with a user
- Allows customization
- Live data
- Experience

http://www.bsminfo.com/doc/grocery-and-convenience-store-it-news-for-vars-january-0004

System Overview

Components of Project

Hardware

- Arduino Yun
- MQ 7 Carbon Monoxide Sensor
- Sharp Optical Dust Sensor
- RHT-03 Humidity and Temperature Sensor

Hardware

Microcontroller (Arduino Yun)

- Easy to learn and use
- Wifi capabilities
- Multiple i/o pins
 - 12 analog and 20 digital
- Open source

[?] http://arduino.cc/en/Main/ArduinoBoardYun

Sharp Optical Dust Sensor

cm 1	2		3	4	5	
		0 Q 0 - 4 - 4	i pa	444	a pa pa	
		1				

https://www.sparkfun.com/products/9689

Sharp GP2Y1010AU0F

- Low cost compared to similar products
 - Dylos DC1100 ~ \$200
- Analog signal returned maps voltage to measure dust density

Calculation in Optical Dust Sensor

- 1. Data read from analog pin is converted to output voltage
- Output voltage is mapped to dust density based on specifications
- Dust density returned in mg/m³

Output Voltage vs. Dust Density

Humidity Temperature Sensor

RHT03 Sensor

- Also known as DHT22
- Well supported libraries
- Low cost and high accuracy
 - humidity 2-5%
 - temperature +/- 0.5
 degrees celsius

Calculations in RHT03 Sensor

 MCU has received 40 bits data from RHT03 as

 0000 0010 1000 1100
 0000 0001 0101 1111
 1110 1110

 16 bits RH data
 16 bits T data
 check sum

http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/Weather/RHT03.pdf

- Arduino initiates request
- 40 bit data output
 - 16 bits to humidity
 - 16 bits to temperature

Carbon Monoxide Sensor

https://www.sparkfun.com/products/9403

MQ7 CO Sensor

- 20 2000 ppm
- Simple and small

Components of Project - Cont'd

Software

- Eclipse and Android Developer Tools
- Arduino IDE
- Repository: Github

Mobile Application

living room

Requires Attention

Ignored

Details	
Particle Count (mg):	5.80509
Humidity:	45.5
Temperature:	20.6
Carbon Monoxide (ppm):	166.0
Sample Area (Cubic m):	45

Changed

- Steps to designing a mobile application
- Things we learned from app development

Application Functionality

living room

Graph

- Used GraphView
- Open Source library specifically for use in Android applications
- Documentation and examples were available

home furnace

Project Funding

Quantity	Component	Total Cost
2	Sharp GP2Y1010AU0F (Optical Dust Sensor)	\$21.56
1	Arduino Yun	\$78.45
1	MQ 7 Carbon Monoxide Sensor	\$11.70
1	RHT 03 Humidity/Temperature Sensor	\$14.77
	PCB Materials	\$33.46
	Case and other demo materials	\$46.99
		Ø

Project Schedule

Project Timeline

Proposed Timeline (Lighter)

Actual Timeline (Darker)

Work Distribution

High-Level Task	Elaine	Joanne	Peterson
Documentation Writing	XX	х	х
Documentation Planning	xx	х	х
Documentation Editing	х	XX	х
Mechanical Design	х	XX	XX
Mechanical Work	х	XX	х
Circuit Design	х	х	х
PCB Creation (Printing, soldering, testing)	xx	х	х
Sensor Research	х	х	XX
Arduino To Use Sensors	х	XX	XX
Mobile Application Design (Includes prototype)	XX	х	Х
Mobile Application Implementation	xx	xx	х
Testing	х	х	XX
Administrative tasks	х	х	х
Purchasing parts, Budgeting	х	х	х

General Usage

for Furnace

- 1. Set up H.A.M
- 2. Connect H.A.M to phone
- 3. Load mobile application
- 4. Check live data for sensors
 - a. Receive warnings
 - b. View historical data

Project Future

https://www.mindflash.com/wp-content/uploads/2013/08/Improve1.jpg

Server implementation
Further mobile application features

Acknowledgements

Cleanspace Logo Design by Jacqueline Lee Video editing by Alvin Man DHT library by Adafruit GraphView Library by Jonas Gehring Fluid UI

Video

Questions

CLEAN

http://en.hdyo.org/assets/ask-question-2-fb180173e13f21ad6ae73ba29b08cd02.jpg