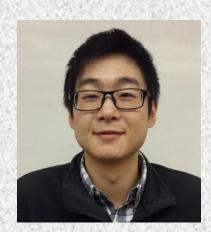


Presents... Augmented Reality Telepresence System

Pandora Vision Team

Rashika Raizada(CEO)



Harpreet Basron(COO)

Pandora Vision Team

Chenjie Yao(CTO)

Jeremy Borys(CMO)

Kiavash Mirzahossein(CFO)

Presentation Outline

Motivation

Introduction

System Overview

- Head-Controlled Stereoscopic Camera (HCSC) Sub-System
- The Control System
- Head-Mounted Display
- Integration/Interconnection
- Design Challenges/Modifications
- Project Timeline
- Ginances
- Future of the ART System
 Conclusion

Motivation- Social Benefit

Advancements in industrialization -> automated manufacturing

> Eliminate/reduce human presence in hazardous operating conditions/locations

Employees performing maintenance duties/ monitoring operations in hazardous operating conditions/locations

Improve operation and safety conditions in manufacturing plants

Between 2008-2012

human presence in

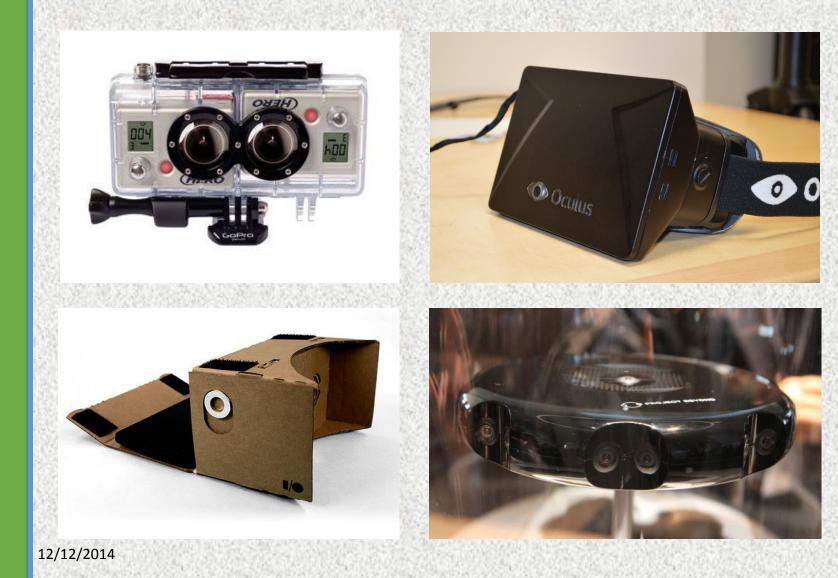
manufacturing sector

over 3000 injury

claims in BC!

Caused by

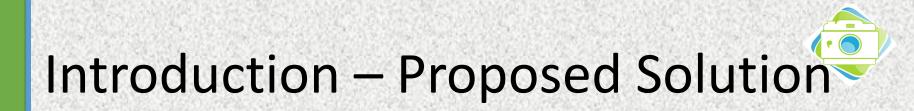
Motivation – Social Benefit



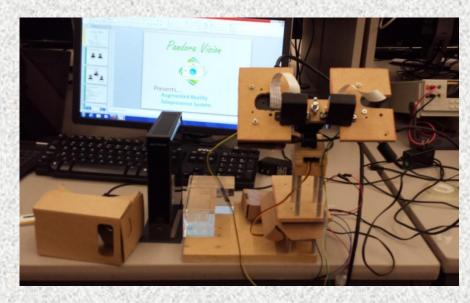
Motivation – Market

- □ Viable solution: Virtual Reality (VR) to create a sense of physical presence
 - Recent increase in research and investment in VR
 - Oculus Rift purchased for \$2 billion dollars by Facebook in 2014
- Samsung Project Beyond, Google Cardboard, GoPro
 3-D Hero System
- Potential in the market for a surveillance system which uses VR as an enhancement

Motivation – Market


Motivation – Curiosity

ENSC440/305 Project- a perfect opportunity to explore


Given the technology available to us(cost permitting), our knowledge and technical skills, what can we "engineer"?

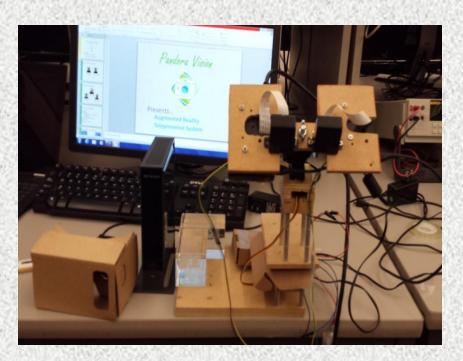
□ Find a solution to the problem

VR devices, hardware, circuitry, Android application development, Software, Multimedia, GUI development, Multi-threaded based programming, signal processing

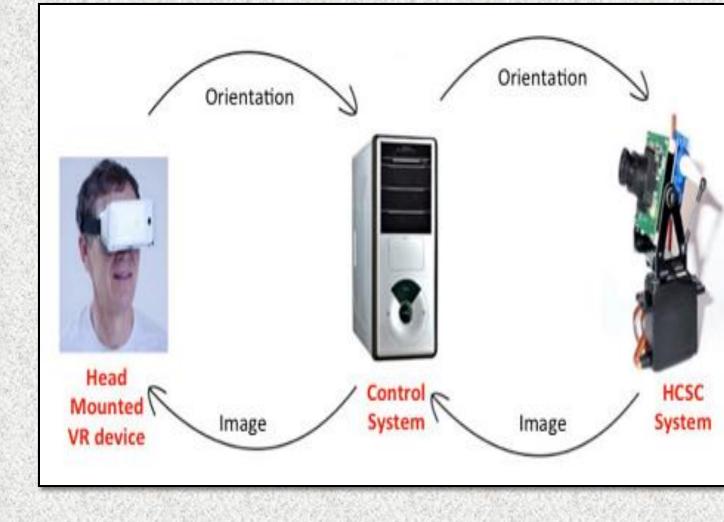
Augmented Reality Telepresence System

Purpose

- Camera system in a remote location providing real-time video feedback
- Use VR as a tool to transform received video feedback into a stereoscopic video = create sense of physical presence
- Maneuver the camera system to change the field of view


12/12/2014

Introduction


System characteristics:

- Camera system with approximately 180 degrees range of motion in yaw and pitch axes in a remote location
- Real-time stereoscopic video feed received by the user
- Head-mounted display (VR device) to maneuver camera system's field of view and receive real-time stereoscopic video feedback
- Android application to communicate with the camera system
- Simple GUI for user interaction with the system

The ART System Block Diagram

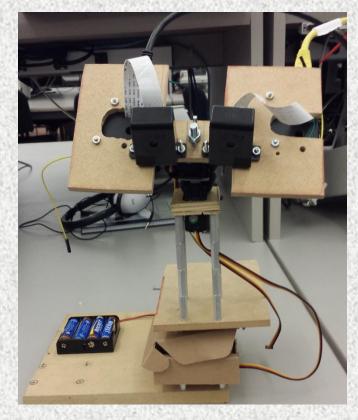
System Overview

System breakdown

- Two sub-systems:
 - Head-Controlled Stereoscopic Camera (HCSC)
 - Control System
- Head-mounted display (VR device)
- GUI
- Android App

Main functions

- User receives real-time stereoscopic video feedback of the remote location
- Communication between two sub-systems
- HCSC mimics user's head movement
- Maneuvering of the HCSC by the head-mounted display
- A functional GUI that enables user interaction with the system



Purpose:

- Receive head-orientation data from control system and change field of view of the cameras accordingly
- Capture and send video from the cameras to the control system

System components:

- Two Raspberry Pis (Rpi)
- Two camera board modules
- Two servo motors
- Pan tilt mount
- Power supply

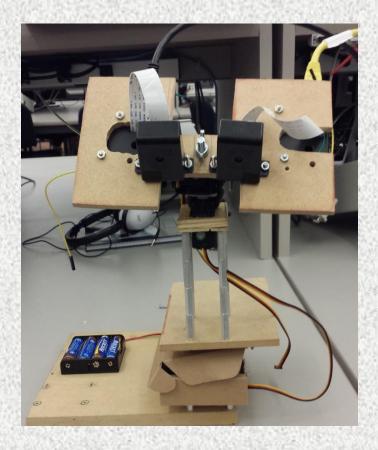
U Why RPi?

- H.264 hardware encoder
- Small/lightweight
- Cheap (approx. \$50)
- General Purpose Input/Output(GPIO) pins
 - Head-orientation data
 - Pulse Width Modulator(PWM)
 - Control servo motors
- Camera Serial Interface (CSI) connector port
 - Ideal for streaming video
 - Camera board modules

□ Why RPi camera board modules?

- Small/lightweight
- Cheap (approx. \$30)
- CSI cable (very high transfer rate)
- Video format: raw H.264 (accelerated)
- Designed for interaction with RPi
- Ideal resolution and data transfer rate specifications

	Field of View	Still Image	Video Capture		
1	(inches)	Capture	Resolution		
		Resolution	@90 fps	@60 fps	@30 fps
	194 (wide) 195(distance)	5 MP (2592x1944)	640x480p	720p, 640x480p	1080 HD, 1080p


Why Lynxmotion servo motors?

- 180 degree rotation along yaw and pitch axes
- Small/lightweight
- Capable of lifting up to 3.3 Kg
- Standard mounting apparatus
- PWM- easy control

- Mechanical Design
 - Weight per servo
 <3.3Kg
 - RPi and camera boards secured in casing
 - Minimizes strain on CSI ribbon cable
 - Clearance during Yaw and Pitch movements

The Control Sub-System

Purpose:

- Measure and send user's headorientation data to the HCSC system
- Receive real-time video feedback from the HCSC
- System components:
 - Android phone
 - PC
 - Google Cardboard/Oculus Rift

The Control Sub-System

Android App

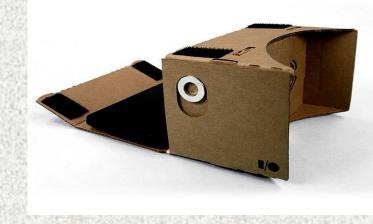
- Purpose:
 - measure head-orientation and send to control PC
 - Receive video feedback display
- Real Time Streaming
 Protocol (RTSP), Google
 API for RTSP
- User enters IP address of control PC and port #

	Gyroscope Orientation X (Yaw) :-72	
1.5	Orientation Z (Pitch) :-6	
	Server IP:	
	Port:	
	OFF	
	Video Link:	
	oneVideo	
	rtsp:/ /192.168.1.3:8554/ pi_encode.h264	
	rtsp:/ /192.168.1.7:8554/ pi_encode.h264	
	twoVideo	
	\leq	

The Control Sub-System

User Interface Functionality

- Display IP address of control PC
- Display IP addresses of the RPis in HCSC and connects to them automatically
- Initializes the ART system: transfer of head orientation from Android app to RPis



Head-Mounted Display

Purpose:

- VR- Create sense of physical presence
- Measure and track headorientation data

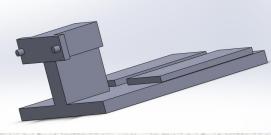
Integration/Interconnection

- Communication between HCSC and Control System
- □ Stereoscopic video feed- how we achieve this
- Powering the systems
- Compatibility

Design Challenges/Modifications

Original design vs current design

Servo motors:


- jitter caused by gyro drift and noise of output signals of accelerometer/magnetometer
- https://www.youtube.com/watch?v=Pwirwv5bagc&index=4&list =PLMzS6u2NrDI_UCI-Q849feATfaBKyh2hs
- Solution: Sensor Fusion Algorithm via Complimentary Filter

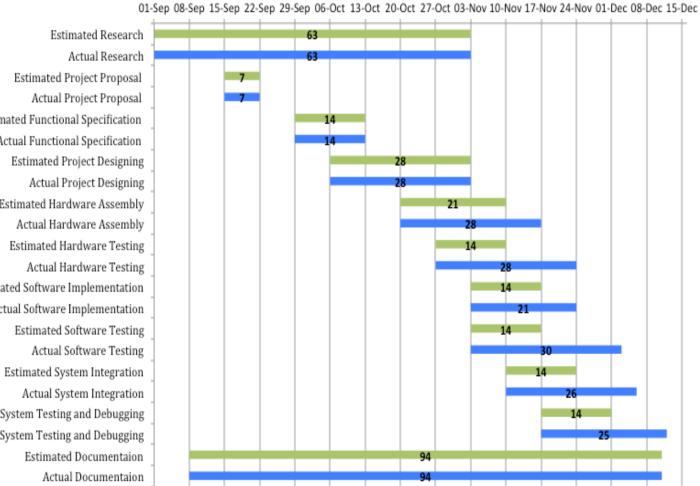
□ Video streaming:

- Incompatibility between Gstreamer and Android application
- https://www.youtube.com/watch?v=9XF7iQT6dFl&index=1&list =PLMzS6u2NrDI_UCI-Q849feATfaBKyh2hs

Mechanical Design of HCSC

Design Challenges/Modifications

GUI


- Stereoscopic video from RPi are transferred directly to Android app to reduce latency
- Video no longer displayed on GUI
- Control PC IP address added for user convenience

00	ART System			0 0 0	ART System
lead Orientation Data	Camera Images			ART system cont	rol ontions:
	Left Eye	Right Eye		ART system com	Head Orientation Da
				Start	Yaw: NOT FOUND
				Stop	Pitch: NOT FOUN
				Reset	
RT system control options:			and the state of the second	Ras	pberry Pis' IP Addresses
Start				P	I1: NOT RUNNING
Stop				P	12: NOT RUNNING
Reset				Control IP Ad	dress: 207.23.187.201 Test
Maria Carlo Carlos Carlos	NEW WINDOWS W	19.031 5257 525			

Project Timeline

Estimated Functional Specification Actual Functional Specification Estimated Hardware Assembly Estimated Software Implementation Actual Software Implementation Estimated System Testing and Debugging Actual System Testing and Debugging

Project Timeline

Causes of delay in meeting soft deadlines:

- Android Application:
 - Incompatibility between multimedia frameworks and our application
- Mechanical design:
 - unexpected malfunctions, jitter in controlling servo motors, lack of experience
- Video Streaming:
 - Incompatibility between multimedia frameworks Achieving lower latency in video streaming from 7s (unacceptable) to 500ms (desirable)

Finances

Table: Estimated cost breakdown of materials

Category of Equipment	Part	Quantity	Estimated Unit Cost (\$)
Microcontroller	Raspberry Pi	1	50.00
Memory	16 GB SD Card	1	10.00
Cable	USB Cable	1	10.00
Camera	Webcam (720p resolution)	2	100.00
Miscellaneous	Pan tilt mount (Lynxmotion)	1	35.00
Devices	Servomotor (HS-422)	4	50.00
Camera	Camera multi-mount	1	70.00
VR Device	Google Card board	1	35.00
Camera	Camera mount tripod	1	30.00
Miscellaneous	Shipping & handling fees	N/A	200.00
	Total cost	N/A	590.00
	Total cost (incl. 20% contingency)	N/A	708.00

Finances

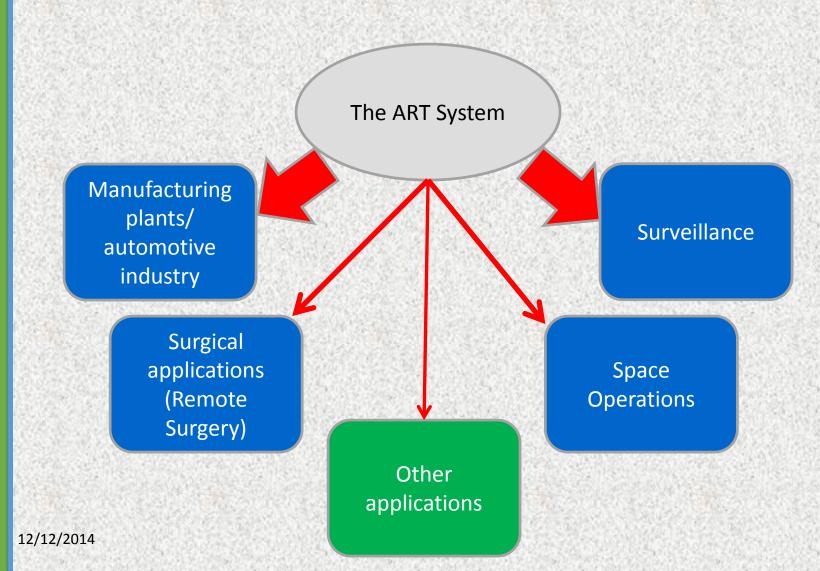
Budget Analysis

 Funding: \$500 from Engineering Science Student Endowment Fund (ESSEF)

Table: Fina	l cost breakdown o	f materials upon	completion of project
-------------	--------------------	------------------	-----------------------

Item Purchased	Date Purchased (DD/MM/2014)	Amount (CAD)	Reason for Purchase
Markers for whiteboard	5/24/2014	\$4.00	Meetings
Raspberry Pi B+ Mode Ultimate Camera kit	6/10/2014	\$95.95	Project parts
2 Camera Board Modules for Raspberry Pi	6/10/2014	\$69.98	Project parts
Lynxmotion Pan and Tilt kit	6/10/2014	\$50.39	Project parts
Raspberry Pi B+ Model kit	18/11/2014	\$100.74	Project parts
Netgear WNR3500L Router	17/11/2014	\$45.24	Project parts
Ethernet cables	17/11/2014	\$8.94	Project parts
Casing for circuitry, battery pack, screws, etc	2/12/2014	\$99.10	Project parts
Presentation complimentaries	12/12/2014	\$25.50	Project parts
	Total=	\$499.84	

Future of the ART System


□ Future development/improvement

- Low latency to real-time
- Increase distance between the remote location and the user
- Added features and easy to troubleshoot
- Design a circuit to power the entire HCSC
- Reliability/Durability requirements
 - Long-term functionality of components
 - Stable and continuous functionality over a long period of time(>24 hours)
- Safety Requirements
 - Circuitry, devices, powering systems safe under abnormal conditions (temperature, humidity,)
 - Meet the most applicable standards relevant to the scope of the system
- Marketability and market potential
 - Currently no product in market targeted specifically for manufacturing plants and similar industries

Future of the ART System

Future of the ART System – Business Case

 Total Cost : \$621.39
 Market Price : \$1000
 Profit : \$378.61
 per prototype
 30% ROI

Project Part	Cost (\$)
2 Raspberry Pis	110.00
2 Cameras	76.00
Lynxmotion Pan and Tilt Kit	50.39
Google Card board	35.00
Accessories	50.00
Employee Royalty	300.00
Total cost	621.39

Conclusion

Prototype model of the ART system complete

Enhanced development if given more time and money

Learning outcomes:

- Android application development
- Video streaming using various methods over WIFI
- Mechanical design, machine tools, assembling parts
- User Interface design
- Virtual Reality devices
- Compatibility between software platforms
- Setting up development environments
- Group dynamics, effective communication
- Technical documentation
- Meeting soft/hard deadlines
- Experience of the process and each phase of building a prototype
- Proud of our accomplishment and this eventually "enjoyable" experience

Acknowledgements

Dr. Andrew Rawicz and Mr. Steve Whitmore ENSC 440-305 Teaching Assistants **ESSEF** Endowment □ Fred Heep Gary Houghton Gary Schum

References

- <u>http://vscnyc.com/our-services/commercial-industrial/</u>
- http://anewworldsociety.ning.com/notes/inde x/feed?type=all&sort=updated&xn_auth=no
- <u>http://lifeboat.com/ex/flexible.automated.ma</u> <u>nufacturing</u>
- <u>http://www.thousand-</u> <u>thoughts.com/2012/03/android-sensor-</u> <u>fusion-tutorial/</u>

Questions

Background

- To get the 3 orientation angles of an Android device, use SensorManager.get() method
- Two of the angles: accelerometer (gravity vector) and magnetometer (magnetic field sensor) outputs. Both outputs inaccurate and lots of noise
- Gyroscope provides angular rotation speeds for all 3 axes. More accurate and shorter response time
 - Speed values integrated over time (multiply angular speeds by time interval between last and current sensor output, yields rotational increment). Sum yields absolute device orientation
- Problem: Gryo drift
 - Small errors produced during each iteration. Result in constant slow rotation of calculated orientation

- □Solution to orientation output noise from accelerometer/magnetometer and gyro drift:
- Sensor Fusion Algorithm via Complimentary Filter
 Sensor Fusion Algorithm:
 - Gyroscope output applied only for orientation changes in short time intervals
 - Magnetometer/accelerometer output data used as support information for long periods of time

Result:

- low-pass filtering of accelerometer/magnetic field sensor output data
- high-pass filtering of gyroscope signals
 accel

 accMagOrientation
 magnet
 gyro
 ∑
 gyro
 ∑
 gyro

Figure 1: Sensor Fusion algorithm block diagram

time interval

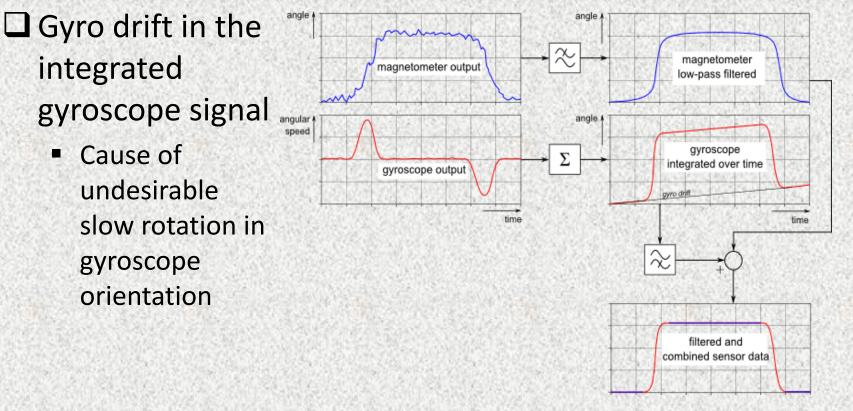
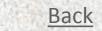



Figure 2: Intermediate signals in the filtering process

