SIMON FRASER UNIVERSITY SCHOOL OF ENGINEERING SCIENCE ENSC 305/440 – CAPSTONE PROJECT

Group Members:

Mohammad Naghshineh

Nima Soroudi

Ashraf Jerbi

Ritik Looned

Moataz Mednini

Objectives

- Team Members
- Motivation
 - Effect of Alcohol on Brain
 - BAC Limits
- Business Consideration
 - Market Potential
 - > Business competition
 - Target Client
- System Overview
- System Design
 - Hardware
 - Software
- Project Details
 - Timeline
 - Budget
 - > Team Dynamics
- Conclusion & Summary
- > Acknowledgement and References
- Questions

Team Members - Roles

Ritik Looned, Team Leader

- Inspire and encourage the sub-group towards its development
- Gas sensor + Interlock implementation
- Assisted in software implementation

Nima Soroudi, Electrical Designer

- Troubleshooting and debugging hardware components
- Gas sensor + Interlock implementation
- Ordering and deciding on parts
- Minutes

Team Members – roles Cont'd

Mohammad Naghshineh, Project Manager

- Funding and Documentation
- Deciding and purchasing on parts
- Assisting electrical engineer
- Packaging and integration

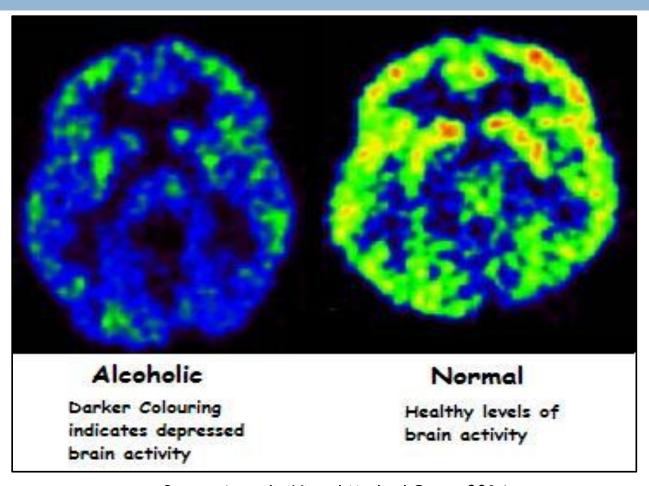
Ashraf Jerbi, Software Engineer

- Programming software algorithm
- Integrating Module
- System Testing
- Hardware design assistance

Moataz Medini, Software Engineer

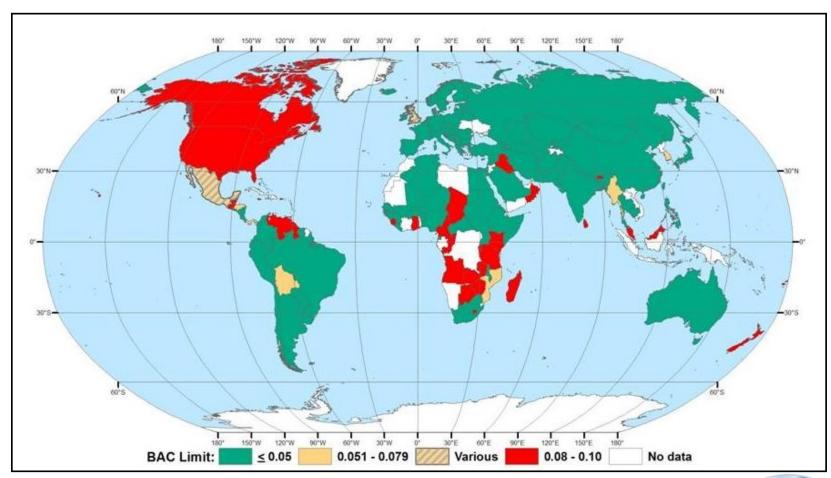
- Deciding and purchasing on parts
- Documentation Lead
- System Testing + software algorithm
- Filming

Motivation


- 2,541 individuals killed in motor vehicle accidents in Canada 2010
- At least 1,082 were impairment-related
- Driving while one's ability is impeded by alcohol or drugs is a crime under the Criminal Code of Canada
- \$20.62 billion financial loss by Federal Ministry of Transportation

Effect of Alcohol on Brain

- Affects brain chemistry by altering levels of neurotransmitters.
- Neurotransmitters: chemical messengers that transmit the signals throughout the body that control thought processes, behaviour and emotion.
 - Excitatory: stimulate brain electrical activity.
 - Inhibitory: they decrease brain electrical activity.
- Alcohol increases the effects of the inhibitory neurotransmitter, GABA.
- Also increases the amount of the chemical dopamine in the brain's reward center => feeling of pleasure.
- Results: difficulty in walking, blurred vision, slurred speech, slowed reaction times, impaired memory.


Brain Activity level

Source: Australia Virtual Medical Centre 2014

BAC Limits Word Wide

Source: National Transportation Safety Board of United State of America 2013 Group6_Capstone Project 4/24/2014

Market Potential

Financial Profits

> \$20.62 billion financial loss reported by Federal Ministry of Transportation in 2010 alone indicates the need for such devices.

Social Profits

- Research shows that alcohol interlocks reduce recidivism among both first-time and repeat offenders.
- More than 10 evaluations of interlock applications \rightarrow reduction in recidivism 35-90% (Voas and Marques 2003).
- > 15 scientific studies \rightarrow while interlocks installed, the re-arrest rate of offenders decreased by median of 67% (Elder et al. 2011).
- ➤ A Swedish study → the frequency of annual DWI offenses decreased approx. 60% among offenders who completed a 2 year interlock program.

Business Competition

Alcoguard at Volvo Cars

- Fuel-cell technology accurate and reliable
- Integrated solution for increased user-friendliness
- > Sales start in early 2008

Toyota

- Sweat sensors on the steering wheel to take BAC,
- Ready for production by 2009, still under research.

Source: Mobility and Transport, European Commission

Business Competition Cont'd

Nissan

- > Testing the system in partnership with the Japanese government
- > still under research.

Alcolock V3, United Kingdom

- Personal Breath Tester
- Commercial Interlocks
- Law Enforcement

Source: Alcolock United Kingdom

Target Clients

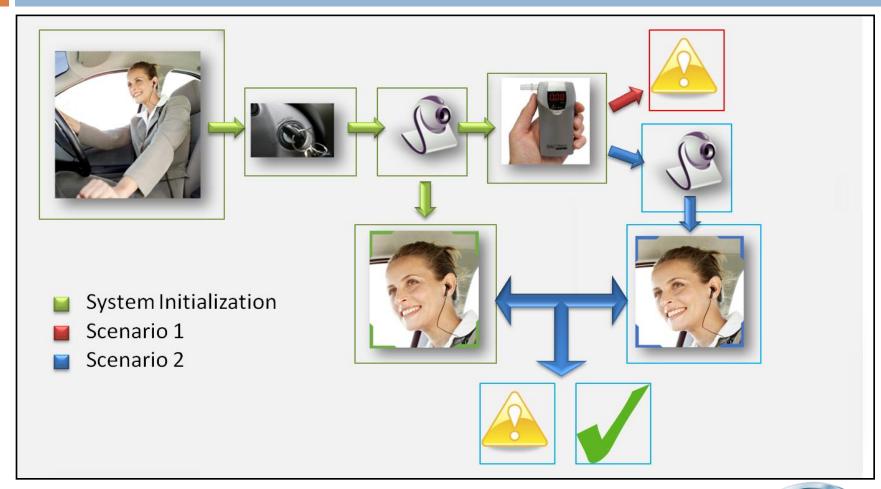
- Convicted DUI offenders Government
 - Florida Department of Highway Safety & Motor Vehicles
 - Since Florida's alcohol interlock program began in 2004, over 21,000 drivers have participated in the program.
- Insurance companies
 - > 5,000 interlocks used in the Swedish transport market
- Commercialized Company
 - > Companies transporting passengers or dangerous goods
 - > Taxi companies and driving schools

THE NATIONAL TRANSPORTATION SAFETY BOARD

Difficulties in Industry

- Current design requires frequent breath sample
 - Disturbing
 - Annoying
- > Cheating is a prevalent occurrence on current systems

What is the solution



System Overview – 2 scenarios

- 1. The user is intoxicated and thus is not allowed to operate the vehicle.
 - The Blood Alcohol Content (BAC) > legal limits, the ignition kill switch is actuated to prevent operation of the vehicle.
- 2. The user is sober and although no immediate restrictive action is taken further authentication is required.
 - The BAC < legal limit, the driver is permitted to operate the vehicle</p>
 - A further identity check must be performed to authenticate the driver with the breath sample.
 - Images are captured and compared with the stored database to verify a match.
 - In case of a mismatch, various notification strategies to the authorities are considered.

System Overview cont'd

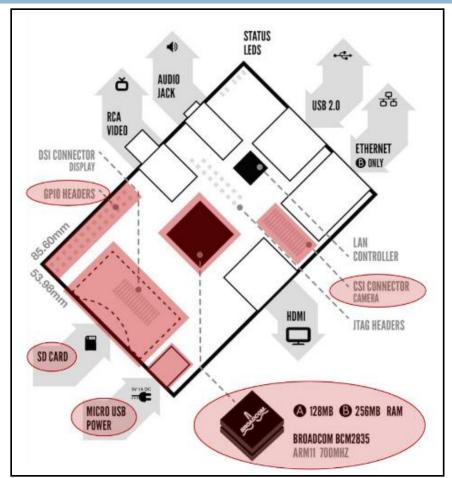


Figure 1: System overview illustrating the high level operation of the device $Group6_Capstone\ Project\ 4/24/2014$

System Design - Processing Unit

- Raspberry Pi
 - > Small, portable, low power
 - Linux-based OS
 - Ample connectivity
 - > External storage

System Design - Software Algorithm

- > Implemented in Python on the Raspberry Pi
 - > Excellent collection of available libraries
 - OpenCV Imaging processing
 - Numpy Numerical calculations
 - Spidev Serial Peripheral Interface Communication
 - AdafruitCharLCD User interface LCD
 - GPIO Connecting input/output components

System Design – Face Detection

- Haar cascade classifier to detect faces
 - > Effective object detection for facial features

System Design – Face Comparison

- Eigenfaces to classify face comparison
 - Negative database 70 images captures wide demographic

Positive database 10 images – optimized for time and accuracy

Group6_Capstone Project

4/24/2014

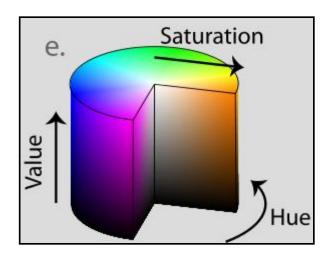
System Design – Face Comparison

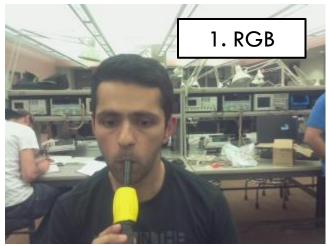
Positive Eigenface

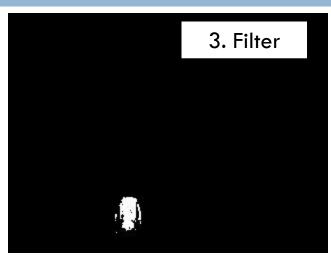
Ritik's Face Profile

Nima's Face Profile

Negative Eigenface




System Design – Breathalyzer Detection


- Convert RedGreenBlue (RGB) to HueSaturationValue (HSV) spectrum
- Intuitive for computer vision and image analysis
 - \rightarrow Hue \rightarrow tint of colour
 - ➤ Saturation → amount of colour
 - ➤ Value → brightness of colour

System Design – Breathalyzer Detection

Filter:

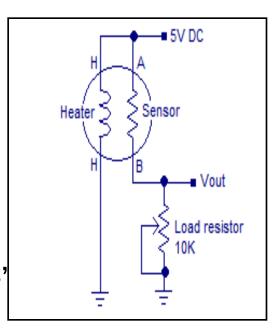
Hue [30,40] Saturation [100,240] Value [100,240]

Pixel Count:

Threshold > 200 pixels

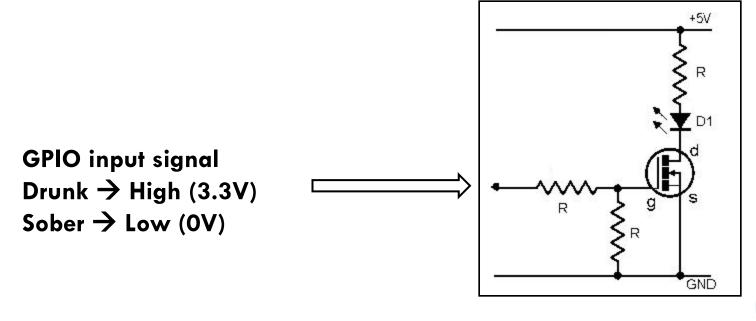
System Design - Breathalyzer

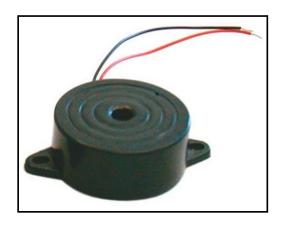
- Limitations with commercial breathalyzer
 - Inaccurate readings
 - Extensive time and drinking required to simulate drunk case
 - Law enforcement agencies often rely on blood or urine analysis regardless
- ▶ Benefits of MQ Gas Sensor
 - Fast response time
 - ➤ Reliable detection of alcohol


System Design – Gas sensor

- Determine the Blood Alcohol Content (BAC)
- Alcohol sensor detects the ethanol vapours present
- Oxidization of ethanol vapours at anode
 - ightharpoonup CH₃CH₂OH(g) + H₂O(l) ightharpoonup CH₃CO₂H(l) + 4H⁺(aq) + 4e⁻¹
- Reduction of oxygen at cathode
 - $O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(I)$
- The overall reaction is the oxidation of ethanol to acetic acid and water.
 - ightharpoonup CH₃CH₂OH(I) + O₂(g) \rightarrow CH₃COOH(I) + H₂O(I)
- Electrical current produced by reaction approximates BAC

Gas Sensor cont'd

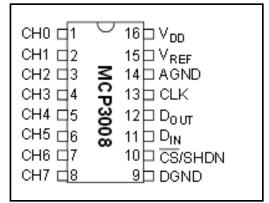

- Attempted calibration
 - Unsuccessful sensor too sensitive
 - > Settling time too slow
- Applied rate of change method
 - ▶ Large positive changes → 'Drunk sample'
 - ➤ Small changes → 'Sober sample'
 - ➤ Negligible change → 'No sample'


System Design – Ignition Kill Switch

- N channel POWER MOSFET
- Enhancement Mode operation
- Turn on LED if drunk driver detected

System Design - Buzzer

- > High frequency continuous tone
- Low power operation Input 3.3V from GPIO
- Possibly imitates alarm system of vehicle
- Illustrates notification system for failed authentication cases



System Design - ADC

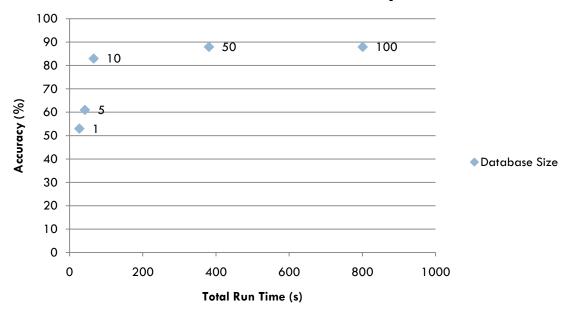
- MCP3008 8 Channel 10 Bit Analog to Digital Converter
- Raspberry Pi has no analog inputs
- SPI communication
- Channel 0 Gas Sensor
- Channel 1 Key

System Design – LCD User Interface

- Practical hardware wiring to CPU
- Well documented software library package
- Low power operation
- Adjustable backlight

System Design – Vehicle Simulation

- Potentiometer simulates key position
 - > OFF, ACC, ON
- > Audio imitates vehicle operation
 - ➤ Authenticated sober driver → Vroom! Vroom!
 - ▶ Drunk driver attempted start → Eeeek!



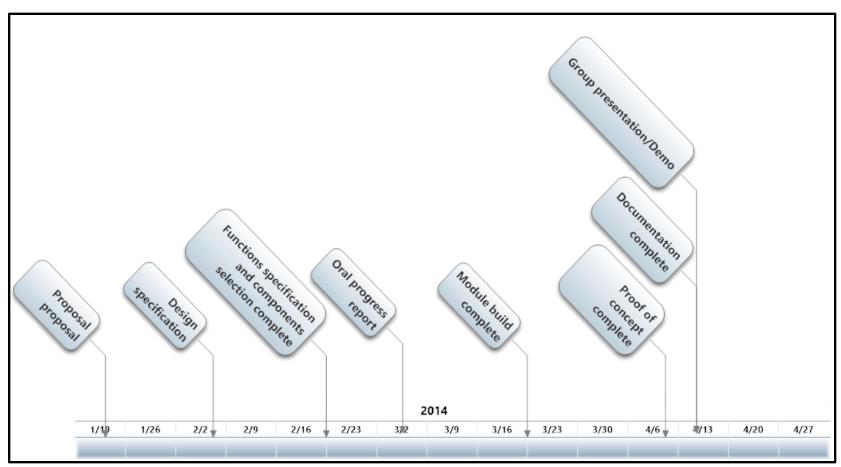
System Limitations

Accuracy of classification algorithm variable

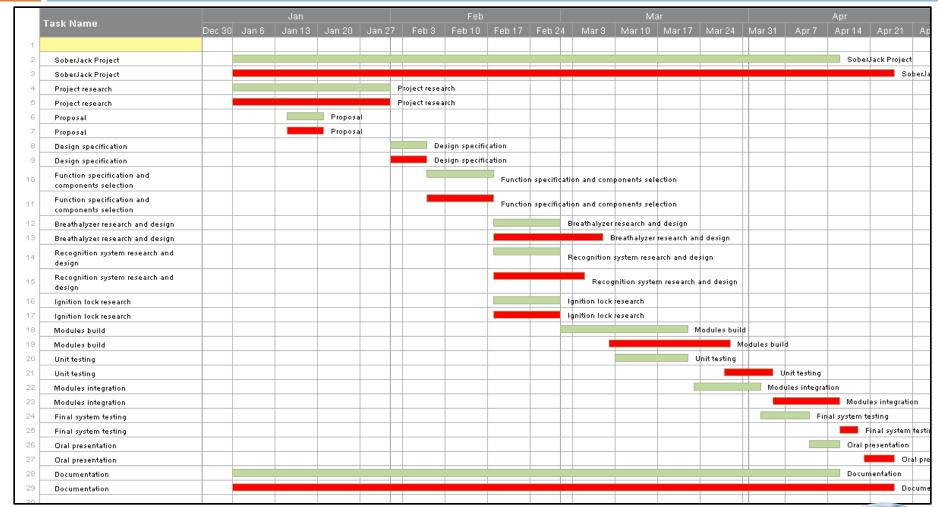
Classification Accuracy

- ➤ Sensitive to lighting conditions → infrared camera
- ➤ Unstable driving conditions → built-in image stabilizers
- ➤ Facial accessories → Request removal

System Limitations


Corner Cases

- Drinking while driving
 - > Frequent tests/Ambient sensor
- Extended T-shape straw for alternate breath samples
 - Breath sample loses pressure
- Twins/Triplets/Clones
 - We're stuck --- Suggestions?



Milestones and Tasks

Timeline – Expected vs. Actual

Budget - Expected

Component	Quantity	Price	
Raspberry Pi 8 GB Microcontroller	1	\$ 44.16	
Raspberry Pi Camera Module	1	\$ 26.00	
Mini 4" PTZ Security Dome Camera Sony CCD	1	\$ 186.49	
Relay	2	\$ 10.00	
Alcomate Premium AL7000 PRO Breathalyzer	1	\$ 129.99	
BacTrack Blue Keychain Breathalyzer	1	\$ 52.79	
BeagleBone (Credit card Sized Portable computer)	1	\$ 89.00	
Blue LED Push Start Ignition Button	1	\$ 19.99	
components failure, Contingency and shipping and handling	1	\$190.00	
Rental car for Demo	1	\$120	TOTAL. \$ 04

TOTAL: \$ 868.42

Budget - Actual

Component	Quantity	Price
Buzzer-Piezo 3-28VDC	2	\$7.86
PWR MOSEFET	1	\$2.00
Gas Sensor	1	\$7.50
LED	4	\$4.00
Others (e.g. antistatic strap, tape, door stops, straws, balloons and etc)	1	\$70.00
Raspberry pi camera module	3	\$135
BacTrack Breathalyzer	1	\$29
LCD Module	1	\$12.99
PVC pipe + paint + Tank Board	1	\$20.92
Electronic Components (Jumper wire, IC and etc)	1	12.69
Car module	1	\$45

TOTAL: \$ 346.96

Business Plan - Ignition Interlock Program

Program component	Competitor Costs
Installation of the ignition interlock device	\$1 <i>5</i> 0
Rental fee for the device per month	\$105
Application fee (does not include Registry Agent Fee)	\$63
"Planning Ahead" driver program	\$250
"IMPACT" driver program	\$800
Removal of the ignition interlock device	\$50
Total for 1 month	\$1418

Source: Alberta Transportation: Centre of Impaired Driving 2014

Ignition Interlock Program

- Who is required to complete the program: Drivers who have been convicted for impaired driving under sections 253, 254, or 255 of the Criminal Code (Canada)
- How to Apply:
 - all reinstatement conditions and road test
 - payment of the reinstatement fee and the outstanding IIP condition.
- First time offender => "Planning Ahead" Driver Program before applying
- Repeat offender, => "IMPACT" Driver Program before applying
- If cheated or bypassed the ignition interlock device:
 - licence suspended or cancelled
 - Charged with any driving-related Criminal Code (Canada) offence
 - May be immediately removed from the program
 - Also result in an extension on the Ignition Interlock Program

Product Selling Point

- Fool proof system cannot be cheated like current systems
- Marketed as a voluntary add-on
- Marketed to government, and law enforcement agencies for mandatory purposes
- Competitive pricing in current market

Preliminary Finances

- Development costs
 - Components: \$350
 - Employee Salaries (4 months):
 - > \$20 per hour per head
 - > 20 hours working time per head per week
 - > 5 team members
 - \triangleright Total expense: \$32000 x 3 = \$96000 per annum
- Future projections for mass production
 - > Advanced model selling price: Approx. \$850
 - Market first year: 1000 units
 - Total revenue: \$850,000

Future Developments - Current Design

- Implement a notification scheme to the local authorities upon detection of drunk driving.
 - Wireless transmission of the driver image and car information.
- Perform BAC checks for further restriction of the system to prevent drinking while driving.

Future Development - Production

- Environmental Requirements
 - Operate in minimum and maximum temperature + humidity level
 - Cradle to Cradle design
- Reliability and Durability Requirements
 - Withstand all normal skills, e.g. turns, U-turns
 - Technical support user manual, call centre, road side assistance
- Safety Requirements
 - Not cause bodily harm to the user while driving
 - > Electronic components shall not cause interference with others

Final Market Product

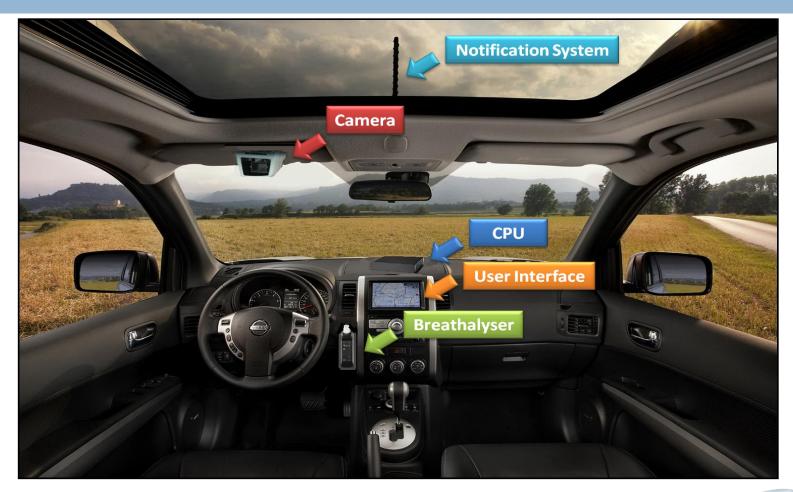
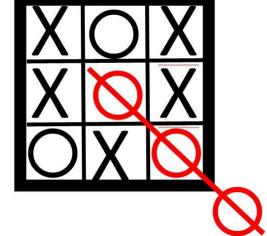


Figure 4: Envision of the final product integrated into the vehicle design

Team Dynamics

- 1. Forming: Pretending to get on or get along with others.
- 2. Storming: Letting down politeness barrier and trying to get down to the issues even if tempers flare up.
- 3. Norming: Getting used to each other and developing trust and productivity among each other.
- 4. Performing: working to a common goal on highly efficient and cooperative basis.


What We Learned - Central

- Programming in Python
- SPI Communication Protocol
- Rasbperry Pi Module
- Soldering skills and technique
- > Teamwork and organization
- Commitment and sharing information
- Deadlines and short term vs. long term goals

What We Learned - Portable

- Unexpected problems occurs often
 - Budget and timeline
 - Technical: do not fully trust retail products to work as expected
 - Life problems
- Time management other courses
- ➤ Think outside of the box →
- Attention to details
- Plan B
- Proper tools and material for measurement

Acknowledgments

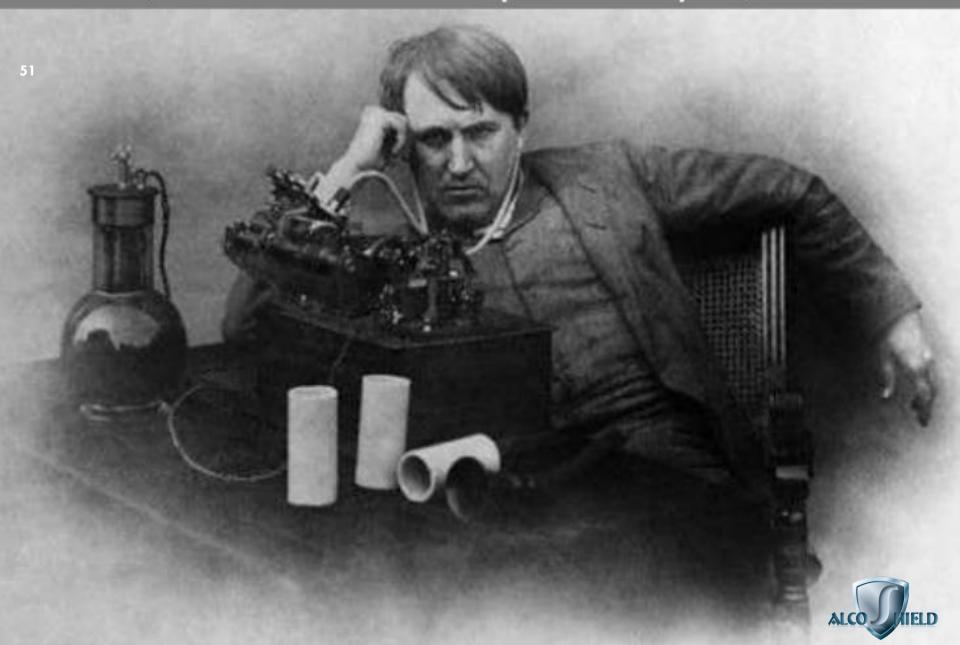
Thanks to:

- > ENSC 305/440 Instructors and TAs:
 - Dr. Andrew Rawicz, Steve Whitmore, Lukas-Karim Mehri, Jamal Bahari, Alireza & Mona Rahbar, Prerna Batta
- Lee's Electronics, Vancouver, BC
- RP Electornics Rupert, Vancouver, BC
- Engineering Science Student Endowment Fund (ESSEF) for funding portion of the project

Reference

- [1] The National Transportation Safety Board Of USA, [Online], Available at: http://www.ntsb.gov/doclib/reports/2013/SR1301.pdf. [April 12,2014]
- [2] Public Health Agency of Canada, [Online], Available at:

 http://www.parachutecanada.org/downloads/research/reports/lnjurylnReview2012 EN.pdf. [April 14,2014]
- [3] Volvo Cars Alcoguard, [Online], Available at: https://www.media.volvocars.com/global/en-gb/media/pressreleases/12151. [April 14,2014]
- [4] Raspberry Pi Camera Board, [Online], Available at: https://www.modmypi.com/raspberry-pi-camera-board. [March 28, 2014]
- [5] Stephen G.A. Pitel and Robert Solomon, "Estimating The Number And Cost of Impairment – Related Traffic Crashes in Canada: 1999 TO 2010", Western University, April 2013


Reference

- [6] R. Brunelli and T. Poggio, "Face Recognition: Features versus Templates", IEEE Trans. on PAMI, 1993, (15)10:1042-1052
- [7] Voas, R. B., Marques, P. R., Tippetts, A. S., & Beirness, D. J. (1999). The Alberta Interlock Program: The Evaluation of a Province-wide Program on DWI Recidivism. Addiction 94(12), 1849–1859.
- [8] Transportation, Impaired Driving, Ignition Interlock Program Available at : http://www.transportation.alberta.ca/iip.htm
- [9] Road Safety, Mobility and Transport, European Commission Available at:

 http://ec.europa.eu/transport/road-safety/specialist/knowledge/esave/esafety-effects/alcolocks.htm

Thomas Edison, when asked why he had a team of twenty-one assistants, "If I could solve all the problems myself, I would."

Questions

