

Air Surveillance Drones

ENSC 305/440 Capstone Project Spring 2014

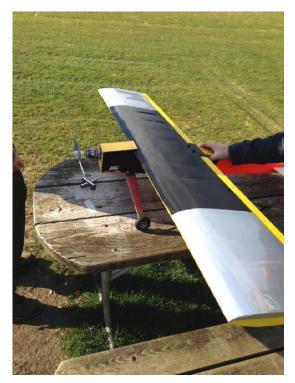
Group Members:

Armin Samadanian
Chief Executive Officer
Juan Carlos Diaz
Lead Technician and Test Pilot
Afshin Nikzat

• Lead Financial Planner and Lead Builder

Introduction

- Drones are mostly used for military applications
- They can be used in many other areas such as search and rescue, fire watch, maritime surveillance, security, aerial photography and most other air surveillance applications


Motivation

• Market

- Need to expand drone's functionality
- Every year people are lost in places such as mountains and forests
 - The cost of using regular helicopters for search and rescue is around \$1800 per hour
 - Mission stops at sunset
 - Solution?

Solution

• Using inexpensive and efficient drones

Competitors

Mostly consist of quad-copters
Much more expensive than our product
More risk involved since quad-copters are very dependent on power and loss of power causes loss of device

Competitors

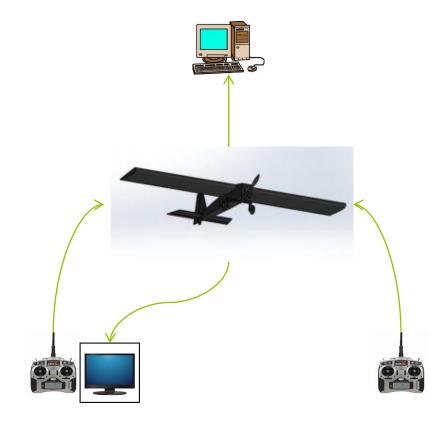
Name	Type of Product	Cost	Special Features	Flight time
Phantom 2	Quadrocopter	\$1,300	-Controllable camera through Android and iOS -Display of footage on smartphone -GPS/ Autopilot -14 Megapixel HD Camera -Internal recording 32GB -Return home fail/safe -Telemetry	25 min
md4-200	Quadrocopter	\$40,000	-GPS waypoint navigation -video goggles -Resistant to rain -Telemetry	35 min
md4-1000	Quadrocopter	\$92,000	-GPS waypoint navigation -Resistant to rain -Telemetry	88 min
Dragon Flyer X4_ES	Quadrocopter	\$9,000	-Internal recording of 32 GB -Gyro stabilizing for camera gimbal -HD camera -Thermo Imaging	15-20 min

Airplane design

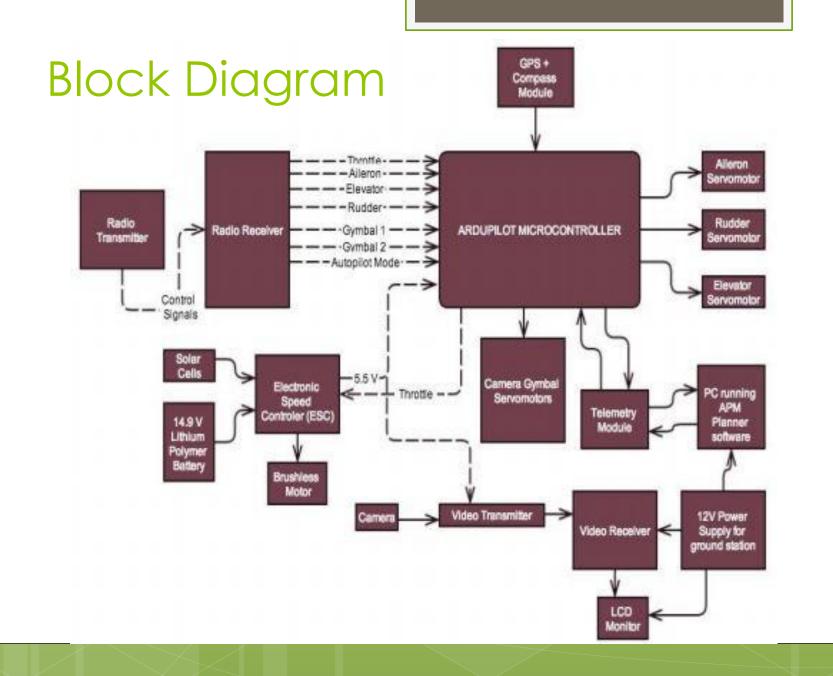
- Ribs are Symmetrical for to have some aerobatic due to capabilities sudden change of direction
- Total area on wing: 4920 cm², Total weight: 3kg
- Wing loading ratio is 0.61 grams/cm²
- Aspect ratio is 16:3
- Aileron ration to wing area is at minimum 10%
- Fuselage is mainly made by ply wood to increase strength
- Wings and other control surfaces are made out of balsa wood

Original design

Plane Adjustments


• Wing span

- Reinforcement of wing
- Stabilizer
- Ailerons
- Landing gear


After Adjustments

System Overview

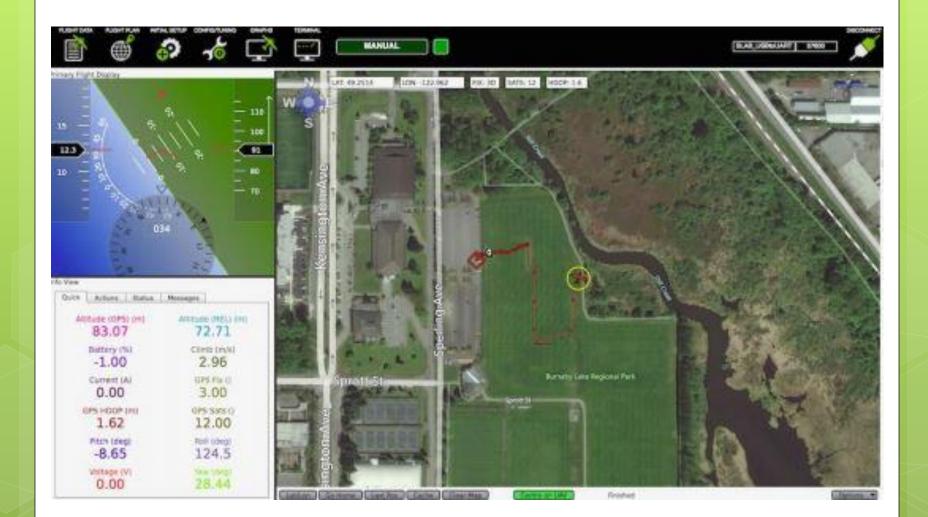
- Two modes:
 - 1) Auto
 - 2) Manual
 - 3) Return to launch
 - 4) Stabilize
- Autopilot is activated by transmitter or computer
- Another transmitter is used to control the camera movements
- Video transmitter sends video to LCD mounted on transmitter
- All location information is sent from airplane to ground station

System Breakdown

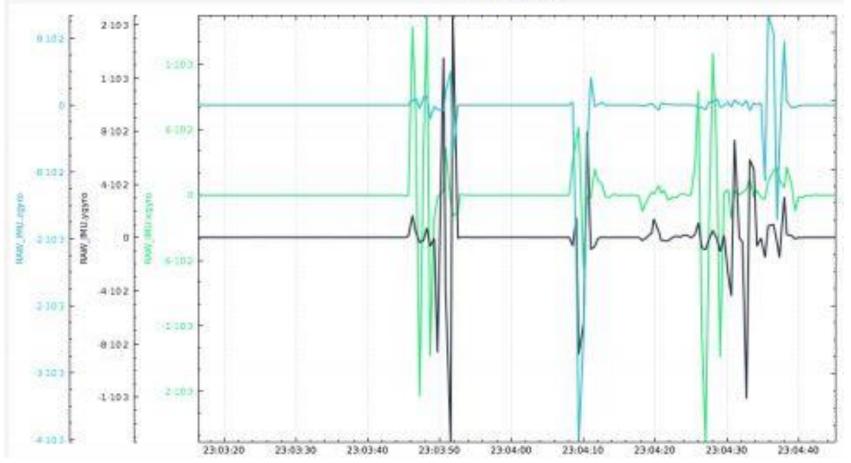
• Composed of 4 subsystems:

- 1) Radio System
- 2) Autopilot System
- 3) Video System
- 4) Power System

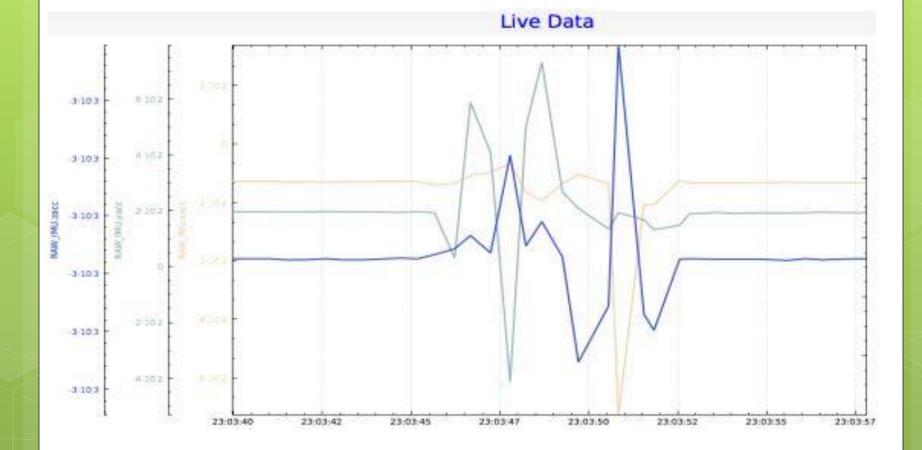
Radio System


- Ideal situation using a 9 channel 72MHz FM radio
- Due to shortage of budget, used 2
 6-channel 2.4GHz FM (DX6i Spektrum) transmitter and receiver

Autopilot



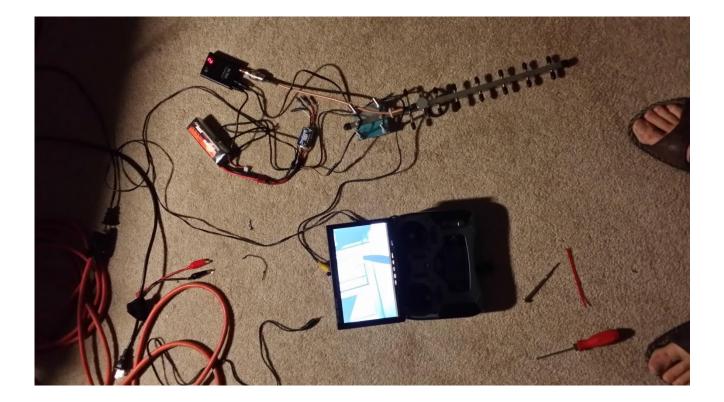
- Using ArduPilot platform
- Includes 3-axis gyroscope, accelerometer and magnetometer
- External addition of GPS and telemetry
- Altitude is approximated by detecting change in atmospheric pressure
- GPS needs to be mounted on the plane so it has direct line of sight to satellites



Gyroscope data

Live Data

Accelerometer


Magnetometer

Video System

- Comprised of video transmitter, receiver, LCD and camera
- Transmitter and receiver were changed from 2.4 GHz to 5.8 GHz to reduce interference
- LCD is connected to the receiver and both are mounted on the transmitter (DX6i)
- Compatible with thermo imaging camera

Implementing Video System

Complete video system

Power System

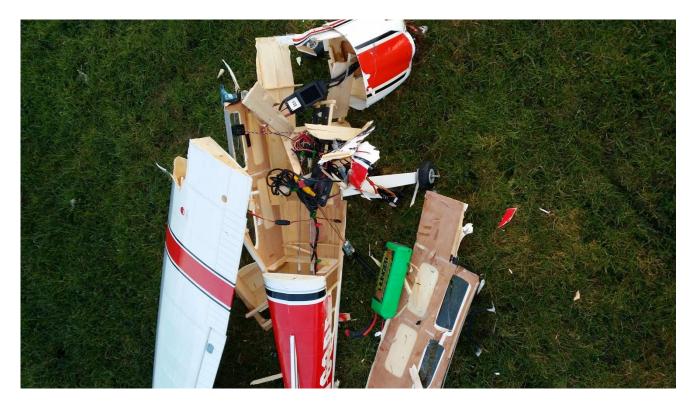
- Consists of a 4 cell Li-Po (Lithium Polymer) battery, a 3 cell Li-Po for the video transmitter and camera, and solar cells on the plane
- The ground station has an 11.1 V battery to power our video receiver and LCD screen

Solar Cells

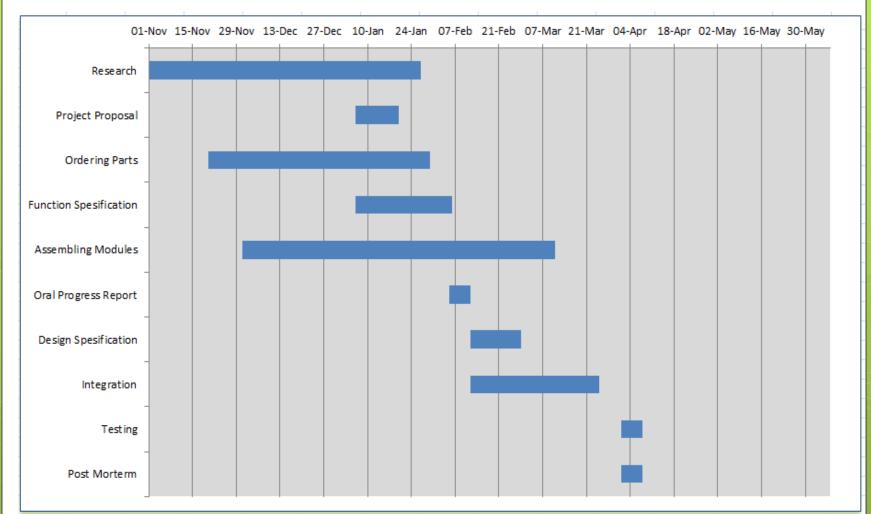
- First set was too fragile and was damaged during test and mount on the plane plus the manufacturers specifications did not match the output of the panel
- Second set was successful
- Aerodynamics of plane are not affected
- Due to shortage of budget, could not buy enough solar cells
 - Need at least 3 times more solar cells that we have
 - Potentially could make it up to 15.5 volts

Testing:

First test plane


End of first test plane

Second Test Plane



End of second test plane

Successful Test

Timeline estimation

Timeline

Milestone	Projected Milestone Date	Realized Milestone Date
Project Planning/Proposal	January 19	January 19
Design	March 1	March 1
Development, and Unit Test	April 3	March 23
Integration and Assembly Test	April 10	March 29
Project Closure	April 15	March 29

Budget Estimation

Equipment List	Estimated Cost
Model Plane Building Materials	\$350
1 x Boscam Video Receiver (RC 305 5.8 GHZ)	\$50
1 x Boscam Video Transmitter (TS 353 5.8 GHZ 400mW)	\$60
1 x Fat Shark FPV goggles	\$200
1 x HD night vision FPV camera	\$75
1 x 9CH FM Radio/Receiver	\$275
2 x Batteries	\$100
1 x Solar Cells	\$130
1 x Engine (Turnigy G46 brushless outrunner 550kv)	\$50
1 x Autopilot (F-TEK 31AP)	\$140
1 x UBEK	\$30
5 x Servos	\$100
1 x Antennas	\$40
1 x Cam mount (RC 5.8 GHZ FPV anti-vibration PTZ)	\$50
Total Cost	\$1650

Cost breakdown

Equipment List	Estimated Cost
Model Plane Building Materials	\$450
1 x Boscam Video Receiver (RC 305 5.8 GHZ)	\$50
1 x Boscam Video Transmitter (TS 353 5.8 GHZ 400mW)	\$60
1 x 7" LCD Monitor	\$60
1 x HD night vision FPV camera	\$75
2 x 6CH Radio/Receiver(Borrowed)	\$0
2 x Batteries	\$35
1 x Solar Cells	\$130
1 x Engine (Turnigy G46 brushless outrunner 550kv)	\$50
1 x Autopilot (F-TEK 31AP)	\$96
1 x UBEK	\$30
5 x Servos	\$50
1 x Antennas	\$40
1 x Cam mount (RC 5.8 GHZ FPV anti-vibration PTZ)	\$50
Total Cost	\$1176

What we learned

- Acute awareness of the importance of planning and time management.
- How to better communicate our thought processes and ideas in a group Dynamic
- Be persistent and never give up no matter how many times you fail
- Expand our ability to interconnect different systems

Future Work

- Adding a thermo-imaging camera for easier missions
- Integrate camera control for one person operation
- An increased range of signals and flight time
- Making an android application

Conclusion

- Drones can be used in other applications other than military
- They are a solution to expensive air surveillance
- Require less personnel to operate

References

 Am Cho; Jihoon Kim; Sanghyo Lee; Sujin Choi; Boram Lee; Bosung Kim; Noha Park; Dongkeon Kim; Changdon Kee. (2007 Oct.). "Fully automatic taxiing, takeoff and landing of a UAV using a single- antenna GPS receiver only," Control, Automation and Systems, 2007. ICCAS '07. International Conference on. [Online], vol., no., pp.821-825, 17-20 doi: 10.1109/ICCAS.2007.4407014 Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4407014&isnumber=4406493

• Gibbons Media & Research LLC. (2012, July). Drones to the rescue!. Retrieved from <u>http://www.insidegnss.com/node/3122</u> (Gibbons Media & Research LLC, 2012)

- CBCnews. (2013, September 7). Search and rescue drones tested in b.c.. Retrieved from http://www.cbc.ca/news/canada/british-columbia/search-and-rescue-drones-tested-in-b-c-1.1703609
- Draganfly Innovations Inc. (2014). Innovative uav aircraft & aerial video systems. Retrieved from <u>http://www.draganfly.com/uav-helicopter/draganflyer-x4es/</u>
- microdrones GmbH. (2014). Key information for md4-200. Retrieved from <u>http://www.microdrones.com/products/md4-200/md4-200-key-information.php</u>
- microdrones GmbH. (2014). Key information for md4-1000. Retrieved from http://microdrones.com/products/md4-1000. Retrieved from http://microdrones.com/products/md4-1000. Retrieved from <a href="http://microdrones.com/products
- B & H Foto & Electronics Corp. (2014). Dji phantom 2 vision. Retrieved from http://www.bhphotovideo.com/bnh/controller/home?O=&sku=999838&Q=&is=REG&A=details
- Daflos, P. (2013, September 7). Drones evaluated for use by b.c. search and rescue read more: <u>http://bc.ctvnews.ca/drones-evaluated-for-use-by-b-c-search-and-rescue-1.1445059</u>

Acknowledgments:

Special thanks to:

Andrew Rawicz Steve Whitmore

THANK YOU FOR YOUR TIME

QUESTIONS?

