Audolij Kor

Presented by eLOK Systems For ENSC 305w/440 December 16 2015

Outline

- Motivation Video Clip
- Introduction
- Market Analysis
- Our Approach
- System Overview
- Overall System Design
- Design Systems
- Finances
- Technical Skills
- Challenges
- Future Plan
- Conclusion
- Acknowledgments
- References
- Questions

Motivation: Short Video

https://www.youtube.com/watch?v=WpTSBhOVP 08

Introduction

- eLOK Systems Goal
 - To eliminate challenges faced by physically challenged individuals
- Team
 - Lexi Chor CEO Electronics Engineer
 - Ellson Dai CTO Electronics Engineer
 - Chi Zhang CFO Electronics Engineer
 - Christy Tao CIO Computer Engineer

Market Analysis

Product Name	Lockitron	August	Goji	Audolok
Send eKeys	\checkmark	\checkmark	\checkmark	~
Remote Locking and Unlocking	~	×	×	~
No Need to Replace Current Lock	\checkmark	\checkmark	×	~
Automatically Open/Close	×	×	×	\checkmark
Mobile Application	~	~	~	\checkmark
Power Outage Functionality	V	\checkmark	V	\checkmark
			eL	É i j K 💴 🙆 🕕

Market Analysis

Automatic Swing Door

Automatic Sliding Door

AudoLOK

- New Technologies and Innovations
 - Lock/Unlock using mobile application
 - Automatically open/close door
 - Electronic shareable keys
- Target Group
 - People with physical limitations
 - Remote access

System Overview

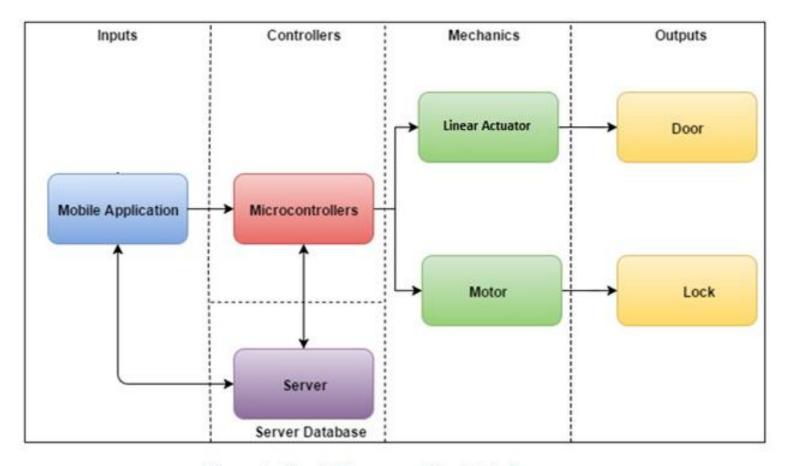
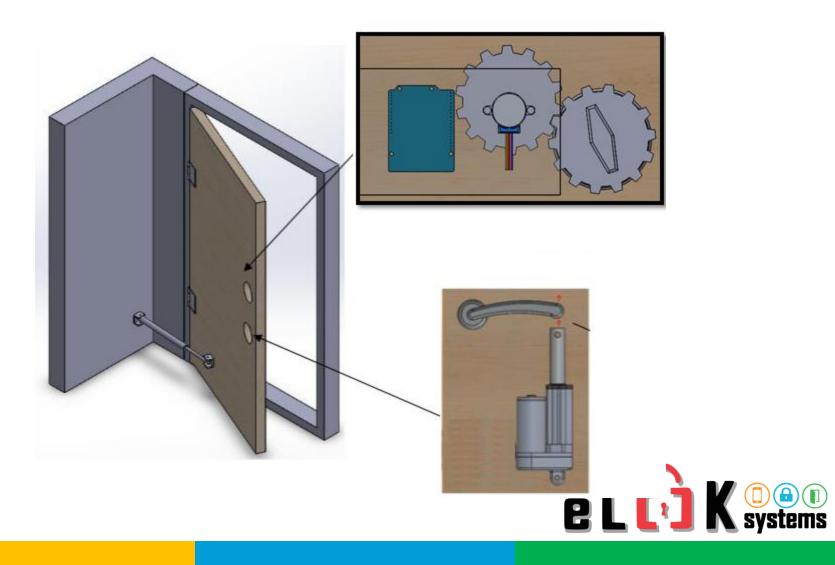



Figure 1: Block Diagram of Audolok Systems

Overall System Design

Design Systems

- Mechanical System
- Hardware System
- Software System

Mechanical Design

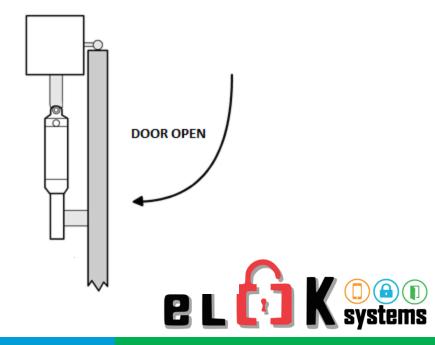
- Lock System
 - Used to rotate the deadbolt lock
- Components
 - Gears
 - Container lids and timing belts
 - Motor
 - Continuous Servo Motor (LS-3600)
 - 6 Kg.cm Torque

Mechanical Design

- Handle System
 - Linear Actuator 4 Inch Stroke

Open/Close System
Linear Actuator – 6 Inch Stroke

Fully Extended Length: 4.13 + Stroke + Stroke Fully Retracted Length: 4.13 + Stroke


Motor Driver – L298 Dual H-Bridge

Mechanical Design

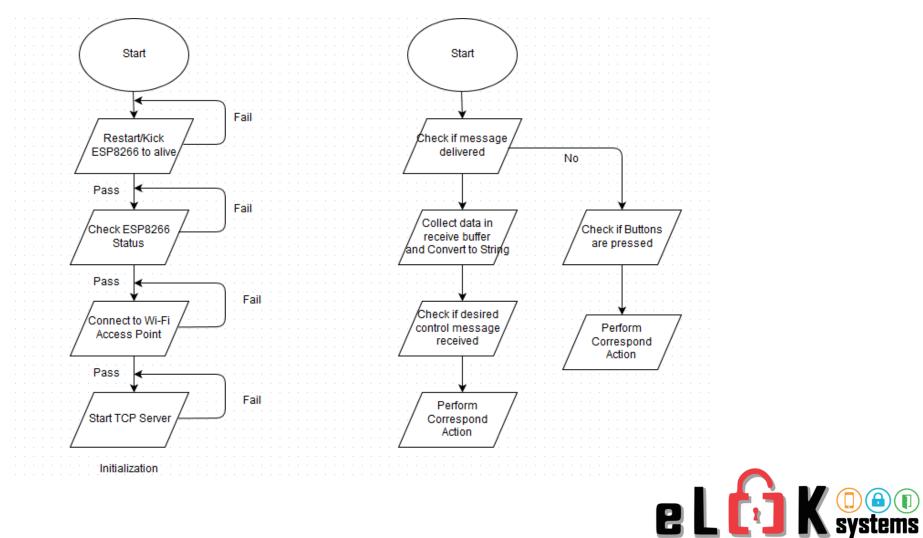
CLOSED DOOR BRACKET

- Closed Door
- Linear Actuator Fully Extended

- Opened Door
- Linear Actuator Fully Retracted

Hardware Design

- Arduino Mega 2560
- Wee ESP8266 Xbee Compatible Module
- Xbee Shield-Pin Interface and Logic Shifter
- Motor Driver Module


Communication System Overview

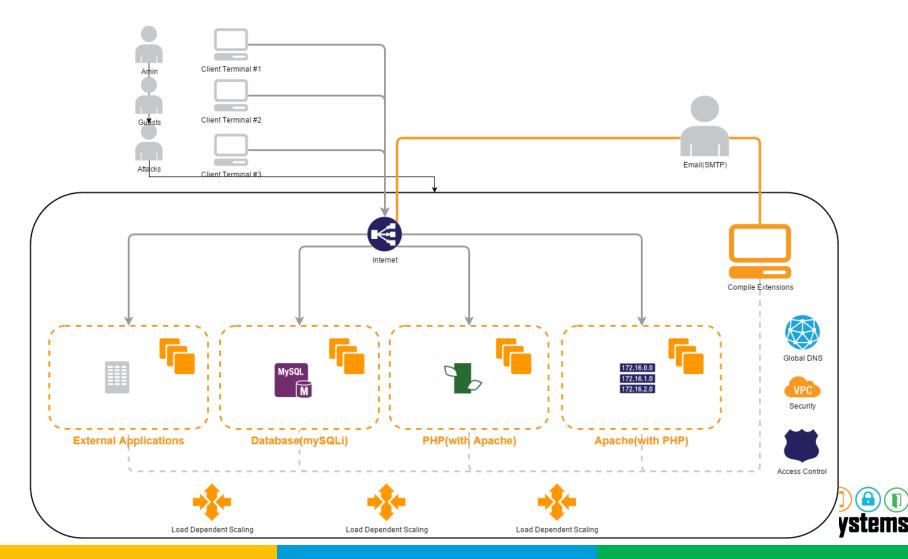
- ESP8266 in to-station mode
- ESP8266 will support physical layers for TCP server
- The message delivery is achieved by HTTP GET by support of TCP server

15

Firmware Architecture

Software Structural (Plan A)

°	
T -4 C	
Contact Information	
Email or Phone	
Start & Expiration	
-	
Administrator Level	
Admin?	
INVITE	
LOCK LOGS USERS SUPPORT	



Software Design

- Units
 - Database, register/login system, lock state page, invitation through Gmail API, UI/UX
- Challenges
 - Unit testing and integration testing
 - Bugs after integration
 - Internal conflicts
 - Storyboard xib

Software Structural (Plan B)

Software Design

- Units
 - PHP+Apache+mySQL, server/client setup, SMTP, TCP connection, Ajax and jQuery, UI, CSS, etc.
- Challenges
 - TCP connection between two ports under the same LAN
 - Communication and integration
 - Limited time

20

Finance

Component Name	Estimated Cost (\$)	Actual Cost (\$)	Difference (\$)
Arduino Uno R3	35	30	+5
Arduino Mega 2560	50	40	+10
ESP8266 Wi-Fi Module	60	40	+20
Xbee Shield	38	20	+18
Motor	20	16	+4
Dead Bolt Lock	15	10	+5
Door Structure	50	25	+25
3D print and PCB print	50	N/A	+50
Basic Components	30	50	-20
Tax and Mailing Fee	30	80	-50
Contingencies	100	140 (2xLinear Actuator) 100 (miscellaneous)	-40 -100
Subtotal	478	551	-73

Schedule

1	Tasks	Sep		Oct			Nov				Dec						
- 1		Sep 13	Sep 20	Sep	27	Oct 4	Oct 11	Oct 18	Oct 25	Nov 1	Nov 8	Nov 15	Nov 22	Nov 29	Dec 6	Dec 13	Dec 20
1	Research								1					Res	earch		
2	Proposal			F F	ropo	sal											
з	Order Parts				Or	der Parts											
4	Functional Specifications							Funct	ional Specifi	cations							
5	Receive Parts					Re Re	ceive Parts										
6	Motor Implementation											Mo	tor Implement	ation			
7	Linear Actuator Implementation													Linea	r Actuator In		
8	Application Implementation															Api Imp	olication entation
9	Database													Datab	ase		
10	Communication														Comm	unication	
11	Design Specification										Desig	n Specificat	ion				
12	Integration and Testing											1					ntegration nd Testing
13	Modifications										1	1	1	1		N	odifications
14	Demo															📕 De	mo

Technical Skills

- MCU programming
- Soldering
- Components Selection
- Mechanical Structures
- Hand tools

23

Challenges

- Self-learning
- Trouble shooting and Debugging
- Communication between MCU and App
- Software Application
- Mechanical Integration
- Structural Design and Building

Future Plan

- Better enclosure box
- Implement of mobile application
- Solve the problem of linear actuator when power is off
- Fixed the problem on firmware integration on both button and Wi-Fi control
- Better mechanical organization

25

Conclusion

- Idea to proof-of-concept and prototype
- Possible future development
- We learned and gained a lot of experience during this project, both technical and non-technical

26

Acknowledgements

- TA's: Lukas, Jamal, Shaun, Zahra
- Professors: Steve Whitmore, Andrew Rawicz
- Lab Technician: Gary Shum
- Structural Help: Greg Chor

References

- [1] Fall Prevention Center of Excellence, "Home Modifications" [Online]. Available: http://www.homemods.org/resources/doable-home/adaptability.shtml [Accessed 10 October 2015]
- [2] eLOK Systems. "Functional Specifications for Audolok" [Online]. Available: <u>http://www2.ensc.sfu.ca/~whitmore/courses/ensc305/projects/2015/vfunc.pdf</u> [Accessed 5 November 2015]
- [3] Tiger Direct. "<u>LS-3006 Servo Motor</u>" [Online]. Available: <u>http://www.tigerdirect.com/applications/SearchTools/item-details.asp?EdpNo=4368546</u> [Accessed 1 November 2015]
- [4] Osepp. "Datasheet for LS-3006 Servo Motor" [Online]. Available: <u>http://osepp.com/wp-content/uploads/2012/09/LS-3006_datasheet.pdf</u> [Accessed November 1 2015]
- [5] <u>ModMyPi. "What's the Difference between Stepper and Servo Motors?"[Online].</u> <u>Available:http://www.modmypi.com/blog/whats-the-difference-between-dc-servo-stepper-motors</u> [Accessed November 6 2015]
- [6] Aimagin. "Stepper Motor(28BYJ-48)" [Online]. Available: <u>https://www.aimagin.com/stepper-motor-28byj-48-5v.html</u> [Accessed November 3 2015]
- [7] Progressive Automation. "PA-14 Linear Actuator" [Online]. Available: http://www.progressiveautomations.com/images/pdf/Mini_Linear_Actuator_PA-14.pdf [Accessed November 8 2015]

Questions?

