

ENSC 305/440 Capstone Project SmartChef Automated Cooking System December 15, 2015

Christine Huang Wesley Kendall Amandeep Singh Pasang Sherpa

Team Introduction

Christine Huang

• Hardware design: Automated pan motion

Wesley Kendall

- Hardware design: Solid dispenser
- Software design: Arduino programming

Amandeep Singh

• Hardware design: Stirring mechanism

Pasang Sherpa

• Hardware design: Liquid dispenser

Outline

- Background and motivation
- Target market
- System overview and features
- Project design
 - Heating element
 - Solid dispensing
 - Liquid dispensing
 - Stirring mechanism
 - Automated pan motion
 - Microcontroller
- Budget and scheduling
- Future plans

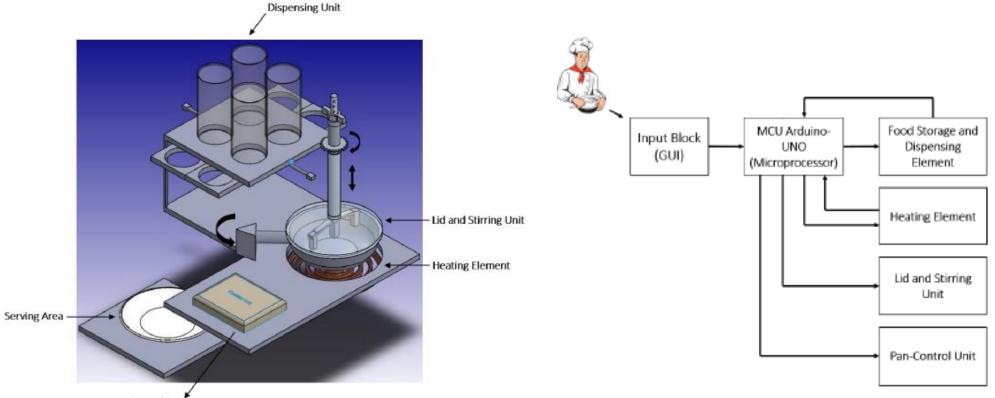
Background and Motivation

• The SmartChef is an automated cooking system with a diverse scope of functionality

The Cooking Problem

- The optimal robot chef must:
 - Clean, chop, and prepare any raw ingredient
 - Heat, broil, fry, sautee, blend, boil, bake, etc.
 - Serve on a plate and clean up afterwards
 - Do all this without burning or damaging anything

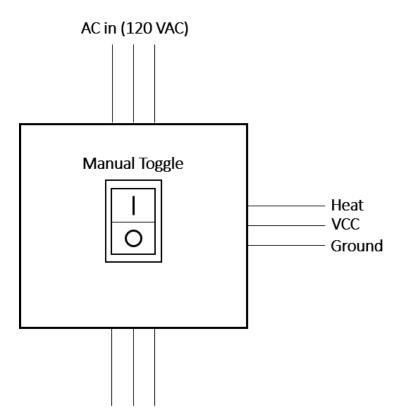
The SmartChef Solution


- Reduce the amount of cooking processes to:
 - Dispensing
 - Heating and stirring
 - Serving on a plate
- A good variety of meals can be made

System Overview and Features

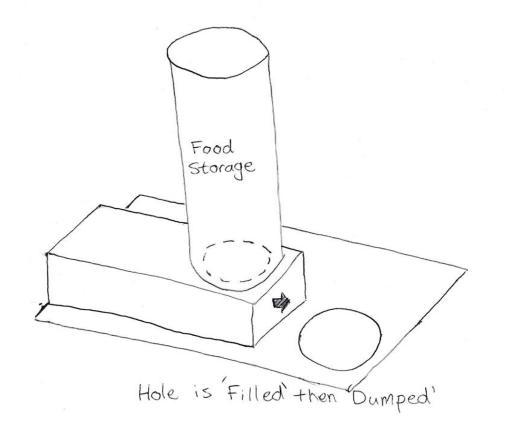
Control Box

Target Market


Marketable audience

- Physically disabled
- Individuals with a busy lifestyle
- Restaurant applications

Project Design: Heating Element

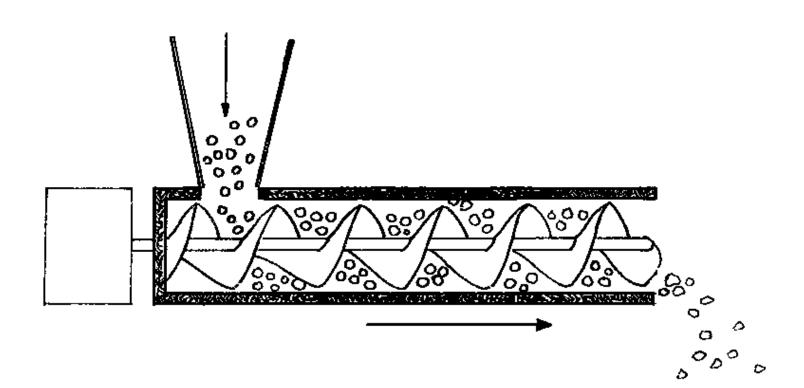

Dispensing: Examples of Common Ingredients

Ingredient	Quantization	Viscosity	Refrigeration				
Eggs	1 egg	Slow fluid	Yes				
Rice	½ cup	Solid	Yes				
Beans	½ cup	Solid	Yes				
Chopped Peppers	½ cup	Solid	Yes				
Cooking Oil	1 tbsp	Liquid	No				
Water	1 tbsp	Liquid	No				
Flour	¼ cup	Powder	No				
Chopped Whitefish	¼ cup	Solid/Liquid	Yes				
Chopped Chicken	¼ cup	Solid/Liquid	Yes				
Tofu	¼ cup	Solid/Liquid	Yes				
Spices	1 tsp	Powder	No				
Chopped Tomato	Chopped Tomato ½ cup		Yes				

Project Design: Solid Dispensing Design

- Different foods require different dispensers
- We must take into account the quantity and material properties of the food being dispensed

Sold Dispensing: 'Fill and Dump' Diagram



Solid Dispensing: 'Fill and Dump' Mechanism

- Delivers a discrete amount
- Allows food to be dispensed directly from storage
- 1 actuator required
- Requires cleaning

Solid Dispensing: Rejected Designs

• Auger Dispenser

Solid Dispensing: Issues

- Food jams where parts meet
- Not watertight
- Can be solved with better machining

Project Design: Liquid Dispensing

• First stage design ideas

Valves

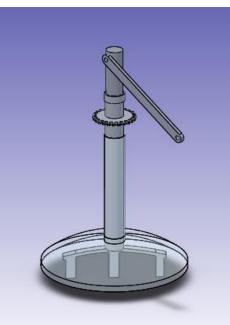
Submersible Water Pump

- Valves didn't meet SmartChef's fail-safe functional specification
- Submersible pump adds high marginal cost for the total system

Project Design: Liquid Dispensing

• Mini water pump design with lint shredder

Design Concept

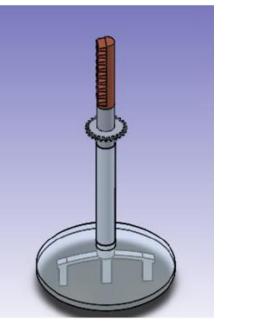

- 6V DC motor, relay, water capture and water outlet design
- Low cost and water force approximately equal to submersible pump

Project Design: Stirring Mechanism

- Closes the lid to prevent food from falling out
- Thoroughly mixes the ingredients
- Lifted up and down with the lid so that the cooking pan can be moved

Stirring Mechanism: Design

- Moves up and down smoothly
- Closes the lid when lowered onto the pan
- Uses a ball bearing in the middle to spin the bottom part while keeping the upper part fixed

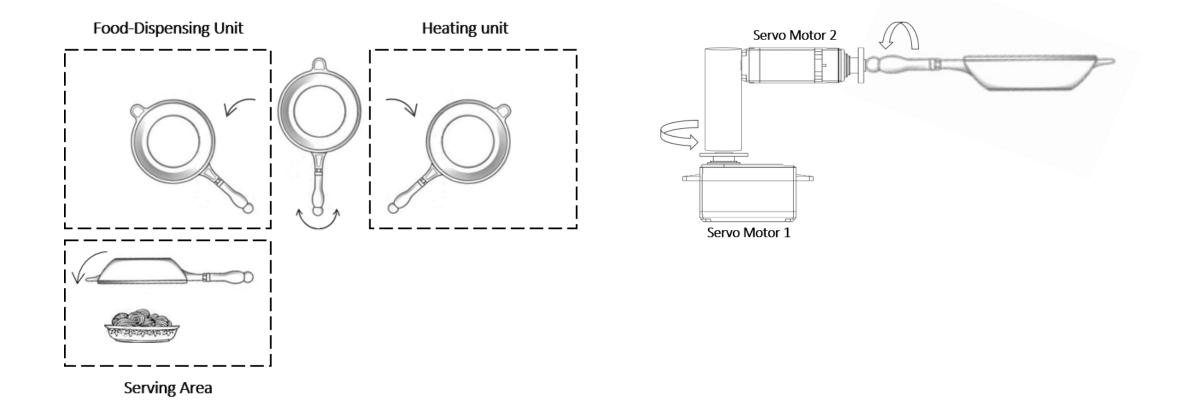


Stirring Mechanism: Issues

- Pins were not mixing the food properly
- Turning the power off causes the stirring mechanism to occasionally fall due to its weight

Stirring Mechanism: Rejected Designs

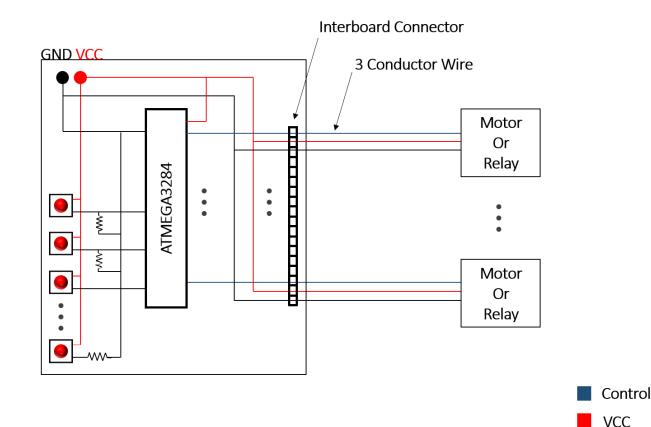
- The first design was not able to hold the weight of the mechanism
- The second design takes too long to lift up and down



First Design

Second Design

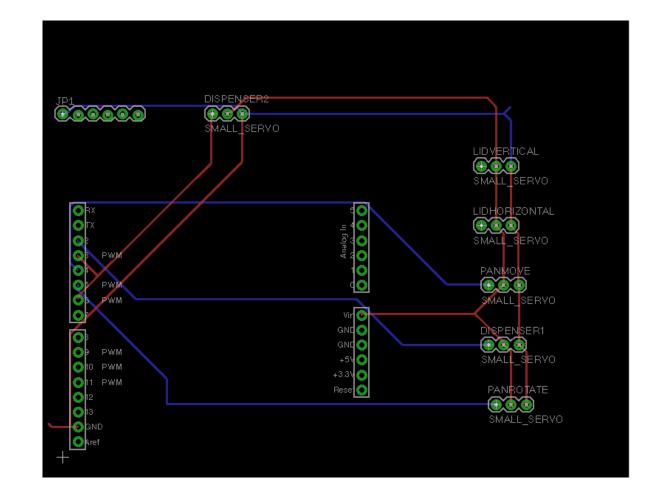
Project Design: Automated Pan Motion



Project Design: Microcontroller

🥺 noodleCook Arduino 1.6.5	- 🗆	×	💿 noodleCook Arduino 1.6.5 — 🛛
le Edit Sketch Tools Help			File Edit Sketch Tools Help
		1	
noodleCook			noodleCook
<pre>void heatOn() { heat_state = heat_stateON; digitalWrite(heat_pin, heat_state); delay(500); } void heatOff() { heat_state = heat_stateOFF; digitalWrite(heat_pin, heat_state); delay(500); }</pre>		^	<pre>void movePan(int new_pos) { if (new_pos == SERVE_AREA) { moveServo(span_move,pan_angle,PAN_SERVE_ANGLE); pan_angle = PAN_SERVE_ANGLE; moveServo(span_serve,PAN_FLAT_ANGLE,PAN_TILT_ANGLE); delay(3000); moveServo(span_serve,PAN_TILT_ANGLE,PAN_FLAT_ANGLE); } if (new_pos == DISPENSE_AREA) { </pre>
<pre>void waterOn() { digitalWrite(water_pin, 0); delay(500); } void waterOff() { digitalWrite(water_pin, 1); delay(500); }</pre>			<pre>moveServo(span_move,pan_angle,PAN_DISPENSE_ANGLE); pan_angle = PAN_DISPENSE_ANGLE; } if (new_pos == HEAT_AREA) { moveServo(span_move,pan_angle,PAN_HEAT_ANGLE); pan_angle = PAN_HEAT_ANGLE;</pre>
<pre>delay(500); }</pre>		~	<pre>pun_ungic = ran_ninar_anobit; }</pre>
<		>	

23


Project Design: Microprocessor Board

24

Ground

Project Design: PCB Layout

Budget

- Total Expected budget
 - \$900
- Final Product Cost
 - \$389.16
- Funding Sources
 - ESSEF: \$250
 - Scrapped kitchen appliances

Scheduling

• Original schedule

ID	Task Name	September					Oct	ober			Nove	embe	r	December				
U	Task Name	6	13	20	27	4	11	18	25	8	15	22	28	6	13	20	27	
1	Research	-			-													
2	Proposal		-	_	-													
3	Functionality				-			-										
4	Design Schematics			-	_	_	_	-										
5	Ordering Parts					-	_	-										
	Implementation of																	
6	Scheme/Build							-	-	-	-	-						
	Prototype																	
7	Testing/Modifications											-					-	
8	Documentation		_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	
9	Final Write-up													-	_	_	-	
10	Prototype Demo													•	_			

Scheduling continued

• Final schedule

П	Task Nama	September					Oct	ober			Nov	embe	er	December			
ID	Task Name	6	13	20	27	4	11	18	25	8	15	22	28	6	13	20	27
1	Research		_	_	_	_	_	_	_	_	_	_	_	_	-		
2	Ordering Parts							-		•							
3	Implementation of Subsystems							-					•				
4	Testing/Modifications												-	_	-		
5	Documentation					_	_			_				_			
6	Final Product Ready												-	_	-		

Future Plans: Improvements to Make

- Redesign chassis and mechanical parts using plastic
- Reduce size of subsystems
- Use linear actuators instead of rotation
- Consolidate electronics to single PCB

Future Plans: Not Yet Attempted

- Refrigeration
- Temperature feedback
- Dispensers for liquid containing solids (ex. tomatoes)
- Interchangeable stirring devices, skillets, pots
- Adjustable temperature ranges
- Recipe interpretation (ie: an adjustable list of commands that can be parsed to cook food)

Summary

- The prototype meets many of the project goals
- The SmartChef is aimed to improve the lifestyle of the physically disabled
 - Marketability can be extended to other demographics
- Further work can be done to improve the features of the system

Acknowledgements

Andrew Rawicz

• Professor, School of Engineering Science, SFU

Steve Whitmore

• Senior Lecturer, School of Engineering Science, SFU

Jamal Bahari

• Senior Design Engineer, SFU

Lukas-Karim Merhi

• Consulting Design Engineer, SFU

Gary Houghton

• Lab Engineer, SFU

Fred Heep

• Lab Technician, SFU

Questions?