PARKOLITE Ltd

ENSC 440W & ENSC 305W

INTRO

2

- THE TEAM
- BACKGROUND
- PROBLEM AT HAND
- ECONOMICS
- FINANCING
- COMPETITION
- SCHEDULING

- SOFTWARE DESIGN
- ELECTRICAL DESIGN
- MECHANICAL DESIGN
- SYSTEM OVERVIEW
- FUTURE PROSPECTS
- CONCLUDING REMARKS
- QUESTIONS

THE TEAM

Chief Executive Officer - RAJ SIDHU, Systems Engineering

Chief Operations Officer - OLIVER KRAJCI, Electronics Engineering

Chief Technology Officer - MUBAARAK SANDHU, Electronics Engineering

Chief Financial Officer - SOUDEH MOUSAVI, Electronics Engineering

Chief Marketing Officer - AZIN NAVAH, Biomedical Engineering

BACKGROUND

4

GRID 5 Apartments 618 5th Ave SW Calgary, Alberta Canada June 12th 2015

THE PROBLEM

- Parking bylaws can be very difficult to understand, especially while under time pressure!
- In correct parking can lead fines or even being towed

ECONOMICS

- Monthly Parking:
 - Calgary \$456.75
 - Toronto \$316.40
 - Vancouver \$277.82
- Vancouver
 - \$65 million parking revenue
- Surrey
 - \$2.65 million parking revenue

ECONOMICS

- 25,000 vehicles towed every year in Vancouver
- City of Vancouver in 2015
 - Revenue in Q2 \$15.9 million
 - Earnings \$53.2 million
- City of Toronto
 - Revenue in 2014 \$105.00 million
 - Revenue In 2013 \$89.83 million
- We can conclude that the parking payment and ticket revenues of both Vancouver and Toronto combined is approximately a **\$175.00 million** market

FINANCING

- ENSC440W/ENSC305W
 - Estimated cost
 - ESSEF funding
 - Actual Cost
 - Percentage Used
 - Electronics
 - Mechanical

Source: http://tbmassociates.ca/financingoptions.html

- Production Ready Prototype
- Mass production

\$2000.00 \$350.00 - \$500.00

\$1,236.00

\$585.00

\$492.96

57.11%

27.16%

84%

COMPETITION

- Currently in the market there is no major competitor that supplies the kind of service that Parkolite has proposed
- Companies with ideas that aid in parking are:
 - Adrriot Technologies
 - Inrix Use probability methods

Source: http://inrix.com/products/

SCHEDULING

- THE GANTT CHART seen here is what was considered at the beginning of the semester
- There were some scope changes at the beginning of the semester
- The electrical scope had remained the same all throughout with some variations in sensor choices
- There were no major time delays

	2015														2016					
	September			October				November				December			er	January				
Purchase/order required parts for prototype development	WK1	WK2	WK3	WK4	WK1	WK2	WK3	WK4	WK1	WK2	WK3	WK4	WK1	WK2	WK3	WK4	WK1	WK2	WK3 \	<u>//K4</u>
Design Mechanical housing for electronics in SolidWorks																				
Build induction sensor according to design specifications limited by casing or use alternatives																				
Implement sensor with Arduino and LEDs																				
Debug Arduino scripts to ensure quality and finalize dimensions																				
Reengineer mechanical housing to match electronics dimensions																				
Conduct final tests and verify electrical equipment is working																				
Place order to have Mechanical Housing injection moulded																				
Assemble project with circuitry into mechanical housing																				
Create prototype base and stand for demonstration purposes																				
Conduct last test demonstration and presentation																				
Final demonstration																				
Incorporate company based up meetings with city planning officials																				

SCHEDULING

- Near mid November 2015 Parkolite decided to develop an app for the API
- This idea was something that was thought of in more depth near the end of October and was decided that it would be a "nice to have" addition

if time permitted

- The last two weeks of the November were dedicated to bringing the app online and connecting it to our electric circuit unfortunately we were unable to create a connection that give us the feedback that we had expected
- It should be noted that application development and integration were not a part of the original scope of work. The original SOW was dedicated to creating the API only
- Reliability testing was done on the API as the project progressed stage by stage thereby avoiding "bioaccumulation" with regards to bugs and other issues

SOFTWARE

Wi-Fi Module - ESP8266

Source: https://learn.adafruit.com/adafruit-huzzahesp8266-breakout/using-arduino-ide

- A Wi-Fi module is used to pass the parking state (RGB state) to a cloud, where it can be accessed via a mobile app
- The Wi-Fi module is programmed once with Arduino IDE, and then operates freely
- The module uses GPIO pins to read the state of the RGB LEDs
- The RGB state is transmitted to a cloud, where it becomes available on the internet
- The module is FCC approved which means its can be used in final production

SOFTWARE

Application programming

Source: http://opendatakosovo.org/training/androiddevelopment-with-restful-web-services/

- The app communicates with the Wi-Fi module
- It takes the RGB state from the Wi-Fi module as an input and outputs the colour on the application screen
- Alternatively, the app also gives you push notifications on your phone when the light changes colours
- This allows the user to be aware of his/her parking situation at all times
- The user receives real-time feedback

SOFTWARE

ATMEGA 328P

Source: http://www.nkcelectronics.com/arduino-uno-readyavr-atmega328p-microcontrol328.html

- The brain of the whole system ATMEGA328P, which was programmed the Arduino IDE using the Arduino UNO board for rapid prototyping There is one sensor input (AMR sensor)
- There are three sets of outputs:
 - Three PWM outputs for controlling the RGB LEDs
 - One output for degaussing, or resetting, the sensor
 - Three outputs for setting a digital potentiometer to calibrate the sensor

5

Honeywell AMR Sensors

Source: http://www51.honeywell.com/aero/common/documents/myaerospacecatalogdocuments/Missiles-Munitions/HMC_1001-1002-1021-1022_Data_Sheet.pdf

SENSORS

- Some considered sensor types:
 - AMR/Hall effect, Ultrasonic, Infrared, Radar, Loop induction, Inductive
- Why did we choose AMR?
 - Ultrasonic/Infrared would be blocked by the plastic enclosure
 - Radar was too bulky
 - Loop-induction was relatively expensive and complex
 - Inductive was very expensive
 - AMR is a simple, cheap solution with little supporting circuitry

16

Full Electronic Circuit (Schematic on next slide)

- The electronic circuit consists of four primary modules:
 - Sensor and supporting circuitry
 - Sensor
 - Signal amplification
 - Threshold detection
 - Degaussing charge pump circuit
 - Digital potentiometer
 - Power circuitry
 - Regulators
 - Pass transistors
 - Microcontroller
 - Wi-Fi module
 - Level-shifting circuitry

Full Schematic

- The electronic circuit consists of four primary modules:
 - Sensor and supporting circuitry
 - Sensor
 - Signal amplification
 - Threshold detection
 - Degaussing charge pump circuit
 - Digital potentiometer
 - Power circuitry
 - Regulators
 - Pass transistors
 - Microcontroller
 - Wi-Fi module
 - Level-shifting circuitry

ENSC 305W/440W - Capstone Engineering Project

Power

- Long term, power will come from the city infrastructure's 120VAC
- We are currently powering this system using Li-ion 18650 batteries
 - Why?

19

- Over the span of 4 months the project was changed mechanically after realizing the original design flaws
 - The first design proposed the following as it can be seen from the illustration below:

20

- It can be noted that now we have decided to implement an upright design as opposed to a flat design
- Therefore the new design would appear something like the representation seen here:

 Instead of a flat design where the indicator latched onto the curb we decided to pursue a more cylindrical up right design as seen here:

Internal Core

Outer Shell

API Lid

Production Design

PARKOLITE

ENSC 305W/440W - Capstone Engineering Project

2015-02-12

- From the original design Parkolite decided to pursue a cylindrical design
- There were more pros then cons when pursuing the new design for example:
 - There is greater visibility
 - You don't risk severe equipment damage if the car parks incorrectly
 - New design requires less road space
 - There are less weather deterrents for example snow and hail
 - The design is more modular and can be easily accessed for maintenance and part replacement
 - Creating a production ready product is more feasible due to readily available parts
 - It is easier to make it waterproof so internal electronics stay dry and short circuit free

- A More simplified version of the final design was created
 - Proof of concept API is 95% plastic
 - The outer shell is clear acrylic plastic
 - Internal/external fittings are ABS plastic.
- Outer shell for prototype API went through:
 - Sanding twice
 - Frost coating two layers
 - White spray coating one layer
- The internal pipes and fittings are readily available
- They are typical ABS plumbing pipes
- These pipes were used because of size constraints

SYSTEM OVERVIEW

24

FUTURE

- City of Surrey has expressed interest
 - Active correspondence
- End users
- Mobile application
- Integration with payment systems
- Database/cloud system
- Neural network

Source: http://www.extremetech.com/computing/167179facebook-is-working-on-deep-learning-neural-networks-to-learneven-more-about-your-personal-life

FUTURE

- By creating a neural network, parking will effectively be considered "on demand"
- Real time updates through App
 - This will only be achievable by creating city wide infrastructure for parking through the use of API's
- Work with existing payment infrastructure to alert users on usage
- API a multi-faceted product
- Future expansions may also include the addition of bike racks on strategically selected API's

CONCLUSION

- What did we learn from this experience?
- How we could have done the project differently?
- Project Summary
- Thank You Steve Whitmore and Dr. Andrew Rawicz
- Thank you Lukas for update meeting
- Thank you ESSEF for funding the idea

Ś

THANK YOU

REFERENCES

- [1]http://tbmassociates.ca/financing-options.html
- [2]http://inrix.com/products/
- [3]https://learn.adafruit.com/adafruit-huzzah-esp8266-breakout/using-arduino-ide
- [4]http://opendatakosovo.org/training/android-development-with-restful-webservices/
- [5]http://www.nkcelectronics.com/arduino-uno-ready-avr-atmega328pmicrocontrol328.html
- [6]http://www51.honeywell.com/aero/common/documents/myaerospacecatalogdocuments/Missiles-Munitions/HMC_1001-1002-1021-1022_Data_Sheet.pdf
- [7]http://www.extremetech.com/computing/167179-facebook-is-working-on-deeplearning-neural-networks-to-learn-even-more-about-your-personal-life