

Smart Garden Inc.

Auto Watering System

Outline

- Team members
- ♦ Video
- ♦ Introduction
- ♦ Schedule
- ♦ Finance
- ♦ Overview of system
- ♦ Hardware design
- ♦ Firmware design
- Encloser design
- ♦ Web design
- ◆ Future plan
- ♦ Conclusion

Team Members

Kwok Sum Yue, Timmy (CEO)

Weidi Zhai

Bo Sun

Siyan Chen

Tianguang Zhang

Duling Lai

Video

Why do we have to do that??

Wake up in the morning for a plant???

Video (2)

Let's do it~~! Save your Time

Introduction

Where are we?

An area for Industry 4.0

Contemporary automation Data exchange Manufacturing technologies

Introduction(Continuous)

Typical Products for Today

• Google glass

• Amazon Prime Air

Intelligent + Customaries = Today

Introduction(Continuous)

Project idea: aimed to bring the best convenience to maintaining garden

- ✓ Solving a housework problem
- ✓ Internet of Things
- ✓ Data exchange (future plan)

Introduction(Continuous)

- E-Garden components:
- Software
 - User owned Database
 - Web app
- Microcontroller
 - Raspberry Pi (future plan)
- Hardware
 - Sensors (Moisture and Temperature)
 - Servo Motor

Marketing

Features	Standard Controller	Our E-garden controller
Control irrigation system with reporting from anywhere worldwide	8	\checkmark
wireless enable	?	\checkmark
Save water (when Rainning)	?	\checkmark
Simple to install with no extra hardware required	8	\checkmark
No smart phone required	8	\checkmark

Schedule

Task	Initial schedule date	Actual schedule date
Research-Watering	September 26, 2015	September 30, 2015
Project proposal report	September 28, 2015	September 28, 2015
Functional specification report	October 20, 2015	October 20, 2015
Ordering and have all Materials	October 31, 2015	October 23, 2015
Application programming	October 31, 2015	October 31, 2015
Oral Progress presentation	October 27, 2015	October 27, 2015
Design Specification Report	November 18, 2015	November 15, 2015
Hardware Design and Development	November 20, 2015	November 20, 2015
Firmware Design and Development	November 20, 2015	November 20, 2015
Testing & Combining all parts	November 31, 2015	December 11,2015
Written progress	November 29, 2015	November 29, 2015

Finance

Item	Estimated Cost	Actual Cost	Difference
Raspberry Pi 2	65.99	\$123.14	-\$57.15
Soil moisture sensor	\$14x2	\$7.5	+\$20.5
Temperature sensor	\$4.99x2	\$7.5	+\$2.5
LCD display	\$23.99x2	-	+\$47.98
Micro Servo Motor	\$14.99x2	\$14.99	+\$14.99
Plant water Sprinkler	\$5x4	-	+\$20
Small water pump	\$21.45x2	-	+\$42.9

Finance (Continuous)

Wi-Fi USB A	Adapter	\$9.99	\$7.99	+\$2
SD car	rd	\$9.99	-	+\$9.99
Amazon web	Sever fee	\$0	\$10	-\$10
Ardui	no	-	\$33x2	-\$66
Bluetoo	oth	-	\$35x3	-\$105
3D-Printing	Encloser	-	\$36	-\$36
Batter	° y	-	\$10	-\$18
Other Cost		\$60	\$20	+\$30
Shipping		\$50	-	+\$50
Totals		\$374.83	\$408.12	-\$41.29

Watering System

In order to complete the entire irragation system, an approprate Watering system is definitely needed.

The ideal watering system should be efficient, low cost, smart.

Servo Motor

MG 995 servo motor

Operating voltage :3.0Volt -7.2 Volt

Torque: 3.5Volt - 6.405 kg-cm

Speed: 0.36sec/60degree

How to design the watering system?

How to connect servo motor with the valves?

How to make the watering system efficient?

How to use servo motor to control the valves in garden?

Servo Motor Valve

- Connect the servo motor with the values switch. Servo's rotation will trurn on/off the values.
- Water amount will depend on humudity level of the environment.
- The relationship between time and water amount is critical.
- Once the servo motor recieve the signal, it will make a 90 degree rotation and the rotation affect the valves.

According to the data we collected and by using the valves in our video(Radius=2.51cm), water amount will be(shown below). Therefore, in our video, with the high humudity level(after raining), it only need to irragate 10 second.

Time (s)	Amount of water (mL)
1	98.7
2	191.4
3	296.2
4	398.3
5	501.8

Sensors

Soil Moisture

YL-69 Sensor

DHT11 Sensor

DHT11 Sensor

- Measure Range: 0°C ~50°C
- Input Voltage: 3.3V (DC)
- Input Curremt: 1mA (DC) Vcc
- NC: no connection

Digital Signal

8 bit integral data + 8 bit decimal data + check sum data

http://www.greenhousesensation.co.uk/click-drip-for-waterbutt.html

About YL-69

Comparator Chip

About YL-69

Input Voltage: 3.3V

Input Current: 35mA

Two output pins:

- Digital Output Pin
- Analog Output Pin

The Analog Output is more accurate!

from:<u>http://smart-prototyping.com/Soil-Hygrometer-Detection-Module-Soil-Moisture-</u>Sensor-For-Arduino.html

Pins of YL-69

Moisture Sensor Value:1012 Moisture Sensor Value:1009 Moisture Sensor Value:1011 Moisture Sensor Value:1023 Moisture Sensor Value:278 Moisture Sensor Value:209 Moisture Sensor Value:210 Moisture Sensor Value:211 Moisture Sensor Value:212 Moisture Sensor Value:212 Moisture Sensor Value:213 Moisture Sensor Value:215 Moisture Sensor Value:217 Moisture Sensor Value:220 Moisture Sensor Value:223

Reading without probes

reading with probes in the water

/ Défilement automatique

(1023-reading)/10 = the real humidity in %

input voltage: 7~12V

DC current for 3.3V pin: 50mA

Bluetooth Module

HC-05 Bluetooth Module

3.5V ~5V with 35mA

SPP (Serial Port Profile): no format limit

Lower Power Consumption:

sending data at the rate of 75 bytes per second over Wi-Fi requires approximately 80 milliwatts of electrical power. Sending data at the same rate over Bluetooth consumes only 2 milliwatts.

Raspberry pi will be the bridge to communicate with other device and webserver

WiFi - CanaKit regular Wi Fi receiver which able to connect to the internet(come with the raspberry pi)

```
Bluetooth - HC-05/HM-10
HME-0 is not able to
connect(Frequencyproblem)
HC-05 is able to use it on Arduino
Distance: 9 meters
Availabe to receive number value
5V to 3.3V Regulator power
```


Raspberry Pi

- Power has to keep on when the system is on
- A communication bridge between device and webserver
- Operation System (Windows and Linux)
- Easy to setup Wi-Fi and Bluetooth adapter

Wi-Fi adapter

CanaKit regular Wi Fi receiver which able to connect to the internet(come with the raspberry pi) Stable and do not have to spend extra money

Bluetooth - HC-05/ HM-10 HM-10 is not able to connect to Arduino Board (Frequency problem) HC-05 is able to use it on Arduino Distance: 9 meters Available to receive and send out number value 5V to 3.3V Regulator power

CSR V4.0

Bluetooth receiver adapter for raspberry pi Able to setup in Raspberry Pi in terminal Bluetooth Version is V4.0 able to receive data that lower than 4.0 Bluetooth Wireless Range is 20m and 0.024kg Highest version for Bluetooth Receiver

We have use python on the raspberry pi and C code for the Arduino Python is able to code to connect MySQL database and receive Bluetooth Data

Receive a string data from Arduino Board

Change string into float number on the code in order to write if code

Encloser Design

Encloser Design - Part 1

Encloser Design - Part 2

* 440-2 (Default<>Default>_Di
 # History
 # Sensors
 # Sensors
 # Material <not specified>
 * Front Plane
 * Top Plane
 * Right Plane
 + Origin
 * Boss-Extrude1
 * Boss-Extrude2
 * Fill

7-

 4 44 - 2. (Default < Default > Di = History = Sensors = Sensors = Material - not specifiel> = Front Plane = Right Plane = Right Plane = Congin = Bloss-Extrude1 = Bloss-Extrude2 = Frude1 = Cute Extrude1

Web Application

AWS Data Analysis **Elastic Beanstalk Capacity Provision** Load Scaling App health monitor RDS (EC2) MySQL database

amazon webservices

E-Garden >	eGarden-env (Environment I	D: e-gvzr73	pcpi, URL: egarden-ensc.elasticbe	Actions -
Dashboard Configuration	Overview			€ Refresh
Logs	Health		Running Version	
Health NEW	Green		ensc440_V3	php
Monitoring	Causes		Upload and Deploy	
Alarms				Configuration
Events				64bit Amazon Linux 2015.09 v2.0.4 running PHP 5.6
Tags				Change
	Recent Events	Туре	Details	Show All
	2015-12-16 13:32:14 UTC-0800	INFO	Environment update cor	npleted successfully.
	2015-12-16 13:32:14 UTC-0800	INFO	New application version instances.	was deployed to running EC2
	2015-12-16 13:31:59 UTC-0800	INFO	Deploying new version t	to instance(s).
	2015-12-16 13:31:55 UTC-0800	INFO	Environment update is s	starting.
	2015-12-16 11:27:40 UTC-0800	INFO	Environment health has	transitioned from YELLOW to GREEN

Future Plan

Data Analysis

Plant Community

Plant Library

Demo

FullSizeRender.mov