

FEDS (Fall Emergency Detection System)

Presentation & Demo

Janet Mardjuki (Chief Product Officer)

Daniel Lei (Chief Marketing Officer)

Cyrus Chan (Chief Executive Officer)

Benjamin Sia (Chief Operating Officer)

The Team

Yuvin Ng (Chief Technology Officer)

Welson Yim (Chief Financial Officer)

Outline

Problem and Solution

- System overview
- Physical components and software design
- Assembly and mounting
- Design challenges
- Experienced gained
- Budget (Estimated vs Actual)
- Timeline
- Future Considerations
- Conclusion

Social Problem

- Falling big issue for elderly
- People prone to seizures, heart attacks, etc.

Possible Solutions

- Living with family
- Hire a caretaker
- Exercising

Our Solution

- Fall Emergency Distress System (FEDS)
- Device senses for a fall and will notify operator
- Device automated -> user won't feel like a liability
- Cheaper than caretaker

Outline

- Problem and Solution
- System overview
- Physical components and software design
- Assembly and mounting
- Design challenges
- Experienced gained
- Budget (Estimated vs Actual)
- Timeline
- Future Considerations
- Conclusion

System Overview

Outline

- Problem and Solution
- System overview
- Physical components and software design
- Assembly and mounting
- Design challenges
- Experienced gained
- Budget (Estimated vs Actual)
- Timeline
- Future Considerations
- Conclusion

Components

- Raspberry Pi 2
- Accelerometer (ADXL-345)
- GPS (Adafruit Ultimate GPS)
- Buttons
- Buzzer
- LED
- PCB
- Case

Fall detection (Accelerometer)

- Acceleration magnitude threshold
- Angle detection

$$Acceleration = \sqrt{{a_x}^2 + {a_y}^2 + {a_z}^2} < threshold$$

Protoboard and PCB

- Integration of hardware
- Soldered circuit board as a two layer board

Operator Application Quick demo (Link)

FEDS Operator Application (Link)

http://feds4life.com/public/index.html

Outline

- Problem and Solution
- System overview
- Physical components and software design
- Assembly and mounting
- Design obstacles
- Experienced gained
- Budget (Estimated vs Actual)
- Timeline
- Future Considerations
- Conclusion

Assembly (Casing)

- 3D Printed using ABS
- Hole placement for straps
- LED and button placement
- Groves for Raspberry/PCB support

Battery & Battery Holder

- 9000mAh external battery
 - FEDS runs at roughly 650mA/h
 - o Runs for around 9000/650 ≈ 14 hours
- Built modularly from the case
 - o Can use other batteries if required
- Straps on beside FEDS

Wearing the device

- 2 Straps
 - Around the neck
 - Around the chest
- Held together with velcro for various sizes
- Battery goes along the one of the straps

Outline

- Problem and Solution
- System overview
- Physical components and software design
- Assembly and mounting
- Design challenges
- Experienced gained
- Budget (Estimated vs Actual)
- Timeline
- Future Considerations
- Conclusion

Design Challenges

- Accelerometer X,Y,Z individual thresholds
- Magnitude of acceleration calculation wasn't enough
- Outdated tutorial for the UART to be used with the GPS
- GPS cannot get location inside a building
- Getting location from wifi tend to be unreliable
- Soldering and desoldering components
- Buzzer does not work properly

Experience Gained/Learned

- Project Management
- Linux based environment
- Good modular design for embedded applications
- Coding with different modules (ie. accelerometer, buttons, LEDS, etc.)
- Eagle PCB design
- Scheduling
- Simple tasks generally take a lot longer than expected (debugging)
- Importance of planning ahead for meetings

Budget

Components	Estimated	Actual	Notes
Raspberry Pi 2 Model B kit	\$90	\$89.95	
3-Axis Accelerometer	\$30	\$17.66	GY-80 (accelerometer, gyroscope, barometer)
Wires	\$40	\$41.25	
Printed Circuit Board	\$60	\$86.81	Solution and drill bits can be used again
Safety Equipment	\$40	N/A	
Li-po Battery	\$40	N/A	
Shock Sensor	\$15	N/A	
Heart Pulse Sensor	\$30	\$6.69	
GPS	\$90	\$55.75	
Speaker	\$20	\$1.32	Buzzer
Button	\$45	\$6.17	
Website domain name and Hosting Server	\$100	\$1.97	
Misc.	\$100	\$85.37	Includes <u>velcro</u> , elastic, switch, etc.
Shipping	\$50	N/A	
3-D Printed Case	N/A	\$47.35	
	\$750	\$392.94	4Life

Market considerations

• Selling price: \$100

• Profit: \$100 - \$40 = \$60

• Expected production time per unit: 5 hours

• Main market: elderly, people prone to fainting, hospitalized patients

• Region : Canada

Competition	FEDS	Philips Lifeline	LifeFone
Device	1 device	home base + device	2 device (indoor and outdoor)
Monthly Service Fee	\$45	\$85	\$50

Components (for 100+ units)	USD
ADXL345	\$1.34
GPS	\$15
Active Buzzer	\$0.09
SMD LED	\$0.025
Push Button	\$0.085
PCB	\$3
Raspberry Pi Zero	\$5
Casing	\$3
Battery	\$5
around	\$30 +\$10 markup ²²

Timeline

Future Considerations

Improvements

- Smaller microcontroller (Arduino mini Pro, Raspberry Pi Zero)
- Custom Lithium polymer battery (to fit in case)
- Better fall detection algorithm (with accelerometer only)
- Login page for each operator
- Safer and smaller casing to fall on
- Display of connectivity to the server (for the user)

Additional Features

- Heart rate detector
- Gyroscope (combine with accelerometer: Kalman filter)
- GSM module (Arduino GSM Shield)

Conclusion

- FEDS is a fall detection system
- What we learned:
 - Writing technical documentations
 - Various sensor coding
 - Server design
 - Hardware design
- We experienced anxiety, frustration, anger, rejection, sadness, despair, depression, BUT...
- WE HAD FUN! (Up to the point Welson had a seizure)

Acknowledgements

- Dr. Andrew Rawicz (Helped us come up with the idea)
- Mr. Steve Whitmore
- Mr. Jamal Bahari
- Mr. Lukas-Karim Merhi
- Mr. Omar Aziz
- Mr. Mike Henrey
- Mr. Gary Shum
- Engineering Student Society (For the ESSEF)

References

- [1] Finding Balance, "Campaign Toolkit", 2015. [Online]. Available: http://findingbalancebc.ca/home/campaign-toolkit/. [Accessed: 8-Dec2015].
- [2] phac-aspc.gc.ca, "If you fall or witness a fall, do you know what to do?", 2015. [Online]. Available: http://www.phac-aspc.gc.ca/seniors-aines/alt-formats/pdf/publications/public/injury-blessure/falls-chutes/falls-chutes-e.pdf/. [Accessed: 8-Dec2015].
- [3] NCHPAD blog, "Thinking[1]", 2015. [Online]. Availabe: http://blog.ncpad.org/2013/01/31/raising-a-new-generation-of-ability-thinkers/thinking1/. [Accessed: 9-Dec2015].
- [4] raspberrypi.org, "Raspberry pi 2 on sale now", 2015. [Online]. Available: https://www.raspberrypi.org/blog/raspberry-pi-2-on-sale/. [Accessed: 10-Dec2015].
- [5] selfbuilt, "GY-80 Multi Sensor Board...", 2015. [Online]. Available: http://selfbuilt.net/shop/gy-80-inertial-management-unit/. [Accessed: 10-Dec2015].
- [6] RobotShop, "Adafruit Ultimate GPS Breakout 66 Channel MTK3339", 2015. [Online]. Available: http://www.robotshop.com/en/adafruit-ultimate-gps-breakout-66-channel-mtk3339.html/. [Accessed: 10-Dec2015].

References Continued.

[7] Riechtron embedded solutions, "Tactile Button Assortment", 2015. [Online]. Available: https://www.riecktron.co.za/en/product/149/. [Accessed: 10-Dec2015].

[8] Futurlec, "PCB Mount Buzzer", 2015. [Online]. Available: http://www.futurlec.com/Buzzers.shtml/. [Accessed: 10-Dec2015].

[9] aeenw.wordpress.com, "Early bird registration deadline extended to May 2nd!", 2015. [Online]. Available: https://aeenw.wordpress.com/2014/04/23/early-bird-registration-deadline-extended-to-may-2nd/. [Accessed: 14-Dec2015].

[10] english channel Teacher Cristina, "What Are Tag Questions?", 2015. [Online]. Available: http://tx.english-ch. com/teacher/cristina/kids-b/what-are-tag-questions/. [Accessed: 14-Dec2015].

Questions

