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Abstract

This dissertation reports my research work on three topics in the areas of two-level factorial

designs under the baseline parameterization, space-filling designs, and sub-data selection

for big data. When studying two-level factorial designs, factorial effects are usually given by

the orthogonal parameterization. But if each factor has an intrinsic baseline level, the base-

line parameterization is a more appropriate alternative. We obtain a relationship between

these two types of parameterization, and show that certain design properties are invariant.

The relationship also allows us to construct an attractive class of robust baseline designs.

We then consider two classes of space-filling designs driven by very different considerations:

uniform projection designs and strong orthogonal arrays (SOAs), where the former are ob-

tained by minimizing the uniform projection criterion while the latter are a special kind of

orthogonal arrays. We express the uniform projection criterion in terms of the stratification

characteristics related to an SOA. This new expression is then used to show that certain

SOAs are optimal or nearly optimal under the uniform projection criterion. Finally, we

consider the problem of selecting a representative sub-dataset from a big dataset for the

purpose of statistical analyses without massive computation. Under the nonparametric re-

gression situation, we present a two-phase selection method, which embodies two important

ideas. First, the sub-dataset should be a space-filling subset within the full dataset. Second,

in the area where the response surface is more rugged, more data points should be selected.

Simulations are conducted to demonstrate the usefulness of our method.

Keywords: centered L2-discrepancy; computer experiment; minimum aberration, orthog-

onal array; sub-data selection
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Chapter 1

Introduction

Statistical data analysis and model building play a vital role in almost every field of scien-

tific studies nowadays. Generally speaking, a statistical model contains a dependent vari-

able called the response, and several independent variables called covariates or explanatory

variables. Through probability theory, a statistical model gives a relationship between the

dependent and independent variables. Statisticians use available data to draw inferences re-

lated to the model, and then provide answers to the research questions. But data collection

may be costly, either in terms of time or money, so how to collect the data economically is

critically important in statistics. If the explanatory variables are subject to the researchers’

control, we have an opportunity of designing a study. For different research purposes, there

are different types of designs. This thesis presents my research in three areas of experimental

design. Chapter 2 considers two-level factorial designs under the baseline parameterization,

Chapter 3 examines space-filling designs for computer experiments, and Chapter 4 utilizes

the idea of space-filling designs to investigate the sub-data selection problem for big data.

The following paragraphs provide the synopses of these chapters.

Chapter 2 considers the experiments that involve m factors, each of two levels. Since

there are 2m possible treatment means, there are 2m parameters in a full model. Generally,

a full model is hardly ever considered because it violates the principle of Occam’s razor. The

most often built models are those that contain only a few important parameters represent-

ing the change of the mean response caused by the level changing of factors, called factorial

effects. The definition of factorial effects is commonly given by the orthogonal parameteri-

zation (OP). The baseline parameterization (BP) is a less often used but more appropriate
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alternative in some experimental situations. For example, Yang and Speed [1], Kerr [2], and

Banerjee and Mukerjee [3] considered the cDNA microarray experiments under the BP. In

experimental design literature, most work on two-level factorial designs directly adopts the

OP without explicitly defining the factorial effects, but many results may not apply to the

BP. For example, Mukerjee and Tang [4] investigated minimum aberration designs under

the BP and found that the optimal designs are not the same as, though related to, those

under the OP. We study the relationship between these two types of parameterization, and

examine its applications to design construction. We first show that the factorial effects under

the BP depend on those under the OP in a special way, and vice versa. Then we establish

the equivalence of echelon models under the two parameterizations, which gives rise to the

invariance of some design properties, including the estimability and the D-efficiency. More-

over, we generalize the optimality property of an orthogonal design given by Moriguti [5].

The results of Chapter 2 have been published in Sun and Tang [6], and a further applied

work has been published in Chen, Sun, and Tang [7].

Computer modeling is routinely used in modern scientific investigations. In a computer

experiment, the true model is represented by a computer code, so complex that producing

an output is very time-consuming. Thus, it is often required to build a surrogate model

that is easy to compute, based on the data consisting of the outputs under a chosen set of

input settings. Space-filling designs are suitable for the purpose of selecting input settings.

The basic idea is to spread design points throughout the experimental region in an uniform

fashion. Such a design can be obtained by optimizing a distance or discrepancy criterion.

Popular criteria include the maximin distance criterion [8] and the centered L2-discrepancy

[9]. Optimal designs of this kind may not enjoy uniformity properties when projected into

low dimensions, which is important because among a large number of factors, usually only

a few of them are active. Designs with good projection properties are desirable for factor

screening [see 10, 11]. Orthogonal arrays are a class of designs that are space-filling in low

dimensions. For example, Latin hypercube designs [12] are orthogonal arrays of strength one.

In Chapter 3, we consider uniform projection designs and strong orthogonal arrays (SOAs)

of strength 2+, two classes of space-filling designs that both focus on two-dimensional
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projection properties but are motivated by different considerations. The former, introduced

by Sun, Wang, and Xu [13], are obtained by minimizing the uniform projection criterion,

while the latter, studied by He, Cheng, and Tang [14], are a special kind of orthogonal arrays.

We find that the uniform projection criterion can be written as a weighted sum of squares,

where each square measures one aspect of uniformity of design points. This new expression

provides insights into the uniform projection criterion, and can be used to show that an

SOA of strength 2+ is optimal or nearly optimal under the uniform projection criterion.

The results of Chapter 3 have been written into a paper and submitted to the Journal of

the American Statistical Association, which is now under the second round review after a

moderate revision.

Chapter 4 considers the problem of sub-data selection for big data. Conducting statistical

analysis on a big dataset is challenging, as no matter what kind of model one uses, the volume

of the dataset makes model fitting extremely difficult. One solution is to find a representative

subset of the dataset and fit a model using the sub-dataset. For example, Ma, Mahoney,

and Yu [15] discussed a sampling method under the linear regression, in which the sampling

probabilities are based on the normalized statistical leverage scores. More recently, Wang,

Yang, and Stufken [16] presented a deterministic method that selects the extreme data

points in order to have a good estimation under the linear regression. Instead of a linear

model, we consider in Chapter 4 nonparametric estimation of the unknown mean response.

Utilizing the idea of space-filling designs, we develop an algorithm that selects an orthogonal

array-structured sub-dataset. Based on this algorithm, we then propose a two-phase sub-

data selection method, which allows more data points to be selected in the areas where the

response surface is more rugged. Simulations are carried out to illustrate the usefulness of

our method. A salient feature of our method is that it makes use of the available information

on the response for the first time in the literature.

In each of Chapters 2-4, the main contents start with an introduction and end by a

concluding section. Chapters 2 and 3 have proofs in separate sections. To avoid complex

notation, we only make effort to have consistent notation within each chapter. A summary

of this thesis is given in Chapter 5, where some possible future research is also discussed.
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Chapter 2

Relationship between orthogonal
and baseline parameterizations and
its applications to design
constructions

2.1 Introduction

In many industrial and scientific investigations, the objective is to build a model that can

adequately describe how the response of a system changes when the levels of the input fac-

tors change. The impact on the mean response caused by changing the levels of one or more

factors is called a factorial effect. The most commonly adopted definition of factorial effects

for a 2m factorial, given by Box and Hunter [17], is a set of mutually orthogonal treatment

contrasts, called the orthogonal parameterization (OP). Despite having received less at-

tention, a more appropriate alternative in some situations is the baseline parameterization

(BP). Under the BP, experimenters are more interested in the effects when non-involved

factors are kept at their intrinsic baseline levels.

The BP is relatively underexplored, but is becoming more important. Yang and Speed

[1], Kerr [2], and Banerjee and Mukerjee [3] investigated factorial designs under the BP in the

context of cDNA microarray experiments. More recently, Mukerjee and Tang [4] proposed

a minimum K-aberration criterion to sequentially minimize the bias in the estimation of

main effects caused by non-negligible interactions, in the order of importance given by the

effect hierarchical principle (Wu and Hamada [18], pp.172–3). The construction of minimum
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K-aberration designs is further considered in Li, Miller, and Tang [19], Miller and Tang [20],

and Mukerjee and Tang [21].

Because the factorial effects under the OP and BP are both treatment contrasts, there

must exist a linear relationship between them. What cannot be foreseen is the special way

one set of effects depends on the other. This special pattern in the linear relationship has

some important implications in the construction of baseline designs. We aim to derive this

relationship and explore its applications to design construction under the BP in terms of

estimability, optimality, and robustness.

The rest of this chapter is organized as follows. In Section 2.2, we first provide formal

definitions of factorial effects under the OP and the BP. Then, we derive the linear rela-

tionship between the two types of parameterization and examine its implications. Section

2.3 shows how to use the results in Section 2.2 to find designs under the BP. Here we show

that certain orthogonal arrays continue to be optimal under the BP. General Rechtschaffner

designs are introduced, and are shown to enjoy a robust property under the BP. A numerical

study is given in Section 2.4, and Section 2.5 concludes the chapter. All proofs are given in

Section 2.6.

2.2 Relationship between the OP and BP

Consider a factorial experiment involving m two-level factors F1, F2, . . . , Fm, each at lev-

els zero and one. Let τg denote the mean response at the treatment combination g =

(g1, g2, . . . , gm), with gi = 0 or 1 (i = 1, 2, . . . ,m), and let G be the collection of all 2m

treatment combinations. Because the treatment combination (1, 1, 0, . . . , 0) corresponds

to the subset {1, 2} of S = {1, 2, . . . ,m}, we use τ12 and τ(1,1,0,...,0) interchangeably, de-

pending on which one is more convenient within the context. Under the OP, for a subset

v = {i1, i2, · · · , ik} of S, the k-factor interaction Fi1Fi2 · · ·Fik (the main effect if k = 1) is

given by

βv = 1
2m

∑
g∈G

τg(−1)
∑k

h=1 gih . (2.1)

We let βφ = 2−m
∑
G τg, which is the grand mean. Under the BP, the main effect of Fi is

given by θi = τi− τφ, and the two-factor interaction FiFj is given by θij = τij − τi− τj + τφ.
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More generally, for a subset w = {i1, i2, · · · , ik} of S, the k-factor interaction Fi1Fi2 · · ·Fik

under the BP is given by

θw =
∑
u⊆w

τu(−1)|w|−|u|, (2.2)

where | · | stands for the cardinality of a set.

Both βv and θw measure the impact on τg caused by level changing of the involved fac-

tor(s). However, the former considers an overall effect, whereas the latter focuses on the sit-

uation in which all non-involved factors are set at level zero, the baseline level. For example,

consider v = w = {1} in (2.1) and (2.2). Let G∗ = {(g2, g3, . . . , gm) : gi = 0, 1}. The main ef-

fects of F1 under the OP and the BP can be written as β1 = (1/2m)
∑
g∗∈G∗

(
τ(0,g∗) − τ(1,g∗)

)
and θ1 = τ(1,0,...,0) − τ(0,0,...,0), respectively. Up to a constant, β1 averages out the effects of

F1 conditional on every g∗ ∈ G∗, while θ1 computes only the effect of F1 when all other

factors are set at their baseline levels.

The BP arises naturally when each factor has a null state or a baseline level. For example,

in a toxicological study, each factor is a toxin, and each treatment combination is a mix of

several toxins. The absence and presence of a particular toxin can be represented by levels

zero and one, respectively. In an agricultural experiment, two kinds of fertilizers may be

applicable, serving as the two levels of a factor. Then level zero can stand for the currently

used fertilizer, and level one for the new fertilizer.

By combining (2.1) and (2.2), we obtain a linear relationship between the OP and BP,

as stated in the following theorem.

Theorem 2.1. We have that

(i) βv =
∑
w⊇v awθw, with aw = (−1)|v|2−|w|,

(ii) θw =
∑
v⊇w cvβv, with cv = (−2)|w|.

In Theorem 2.1, the θw’s in the expression of βv are those with w containing v. A similar

phenomenon occurs in the expression of θw in terms of βv. It is this special pattern in the

linear relationship between θw and βv that makes it useful in the construction of baseline

designs, which we examine in Section 2.3. Proposition 2 in Mukerjee and Tang [4], which

states that an orthogonal array is universally optimal for estimating the main effects under
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the BP, is established based on the simple fact that θi = −2βi, for i = 1, 2, . . . ,m, if βv = 0

for all |v| ≥ 2. A more important implication is that the absence of interactions under the

OP yields the same result under the BP, and vice versa. We now consider a situation that

is more general than the absence of interactions. For a collection C of subsets of S, we say

it is echelon if for any s collected by C, all subsets of s are also collected. Then, Theorem

2.1 implies the following result.

Corollary 2.1. Let C be echelon. Then, βv = 0 for all v /∈ C, if and only if θw = 0 for all

w /∈ C. As a special case, the absence of factorial effects of order k or higher is invariant to

the choice of the parameterization.

If a collection of factorial effects, say {βv : v ∈ C} or {θw : w ∈ C}, are believed to be

active, the corresponding models under the OP and BP are, respectively,

τg =
∑
v∈C

βv
∏
k∈v

(1− 2gk) (g ∈ G); (2.3)

τg =
∑
w∈C

θw
∏
k∈w

gk (g ∈ G). (2.4)

We say that models (2.3) and (2.4) are, respectively, the OP and the BP models associated

with C, and are called echelon if C is echelon. Corollary 2.1 states that these two models are

equivalent if C is echelon. The main-effect-only model and the models that contain all of the

main effects, plus some/all of the two-factor interactions, are most often used in practice,

all of which are echelon models. We end this section with two toy examples that illustrate

Theorem 2.1 and Corollary 2.1.

Example 2.1. Consider a three-factor system A, with mean responses given by

System A: (τ000, τ001, τ010, τ011, τ100, τ101, τ110, τ111) = (1, 1, 1, 1, 2, 2, 5, 5).

By equation (2.2), there are only two active factorial effects under the BP: θ1 = 1 and

θ12 = 3. However, by equation (2.1), there are three active factorial effects under the OP:

β1 = −1.25, β2 = −0.75, and β12 = 0.75. The OP model that contains only β1 and β12 fails

to characterize the mean response structure, because C = {φ, {1}, {1, 2}} is not an echelon
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collection. Applying part (i) of Theorem 2.1, β12 = 0.25θ12 + 0.125θ123 = 0.75. One can

compute βv similarly for other v.

Example 2.2. A second system has the following mean responses:

System B: (τ000, τ001, τ010, τ011, τ100, τ101, τ110, τ111) = (1, 1,−1,−1, 2, 2, 3, 3).

Under the BP, (θ1, θ2, θ12) = (1,−2, 3), and all other θw are zero. Because the model is

associated with an echelon collection C = {φ, {1}, {2}, {1, 2}}, by Corollary 2.1, the OP

model that contains only β1, β2, and β12 is true as well. Using equation (2.1) to verify this,

we find that (β1, β2, β12) = (−1.25, 0.25, 0.75), and all other βv are zero.

2.3 Finding baseline designs

2.3.1 Preliminary results

Suppose N experimental runs are allowed in a design D, and let (gi1, gi2, · · · , gim) denote

the ith run (i = 1, 2, . . . , N). Under design D, the OP and BP models associated with C

are, respectively,

E(Yi) =
∑
v∈C

βv
∏
j∈v

(1− 2gij) (i = 1, 2, . . . , N); (2.5)

E(Yi) =
∑
w∈C

θw
∏
j∈w

gij , (i = 1, 2, . . . , N), (2.6)

where Yi is the response of the ith run. Let XC and WC be the model matrices of (2.5) and

(2.6), respectively. A design is said to be able to estimate model (2.5) (respectively, model

(2.6)) if X ′CXC (respectively, W ′CWC) is invertible.

Theorem 2.2. If a design is able to estimate an echelon OP model, it is able to estimate

its counterpart BP model, and vice versa.

Theorem 2.2 allows the estimability of certain BP models to be established with little effort.

One example is that the full kth-order model, the model that contains all factorial effects

of order k or lower, can be estimated under an orthogonal array of strength 2k. Another

interesting application of Theorem 2.2 is given in the next example.
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Example 2.3. Cheng [22] showed that an N -run orthogonal array, if N is not a multiple of

eight, can estimate the full second-order model when projected onto any four factors. This

projection property, by Theorem 2.2, holds regardless of the parameterization.

For a design D and an OP model associated with C, we define its DC-efficiency as

det(X ′CXC), and its AC-efficiency as trace(X ′CXC)−1. We say a design is DC-optimal (re-

spectively, AC-optimal) if it maximizes det(X ′CXC) (respectively, minimizes trace(X ′CXC)−1)

among all competing designs. Similarly, we can define the DC- and AC-optimality criteria

under the BP by replacing XC with WC .

Proposition 2.1. Let C be an echelon collection. If a design is DC-optimal under the OP,

it is DC-optimal under the BP, and vice versa.

Proposition 2.1 is an implication of a more general result given by Proposition 2.2, which

can be derived directly from Theorem 3.1. Note that Propositions 2.1 and 2.2 are both

special cases of Lemma 6 in Stallings and Morgan [23], though stated in a different context.

Proposition 2.2. If C is echelon, then det(X ′CXC) is proportional to det(W ′CWC). The ratio

does not depend on the design, but on C alone.

We conclude this subsection with a corollary. Its implication will be discussed after

Theorem 3 in the next subsection.

Corollary 2.2. Let C be an echelon collection. The DC-efficiency of a design remains

unchanged under level switching of one or more factors, regardless of the parameterization.

2.3.2 Designs from orthogonal arrays

Cheng [24] showed that an orthogonal array is universally optimal under the main-effect-

only model. As another example, a design given by an orthogonal array of strength 2k is A-

and D-optimal under the full kth-order model. These results are all obtained all under the

OP. In this subsection, we generalize a result of Moriguti [5] to baseline designs. We also

comment on generating baseline designs with robust properties.

Consider the OP model associated with C, and let β̂v be the least squares estimator of βv.

We assume, as usual, that all observations are uncorrelated and have a common variance.
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Moriguti [5] proved that a design in which the model matrix XC has mutually orthogonal

columns minimizes Var(β̂v) for each v ∈ C among all competing designs. The next theorem

states that a similar result holds for the BP if C is echelon.

Theorem 2.3. Under an OP model associated with C, a design D minimizes Var(β̂v) for

each v ∈ C among all competing designs if XC is orthogonal. Furthermore, if C is eche-

lon, then under the counterpart BP model, D also minimizes Var(θ̂w) among all competing

designs for every w in C that is not contained by another u in C.

For convenience, we call θw a cap effect if w is not contained by another u in C. Then,

Theorem 3 establishes the optimality for every cap effect under the stated conditions. Cap

effects should be tested first for their significance when seeking a simpler model in the

analysis stage. We consider some useful cases. If the main-effects model is considered with

the inclusion of an intercept, then all the main effects are cap effects. Therefore, Theorem

3 generalizes a result of Mukerjee and Tang [4], who established the optimality for every

main effect. For a model consisting of all main effects and all two-factor interactions, the

two-factor interactions are cap effects. In a model of all main effects plus some two-factor

interactions, these two-factor interactions are cap effects, as are the main effects not involved

in these two-factor interactions.

Because switching the two levels does not affect the orthogonality of XC , Theorem 3

also suggests a simple strategy for generating an efficient baseline design that is robust to

non-negligible effects. While a full investigation of this problem is beyond the scope of this

study, we give an example to illustrate the idea.

Example 2.4. Consider the model associated with C = {φ, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}}

and an eight-run design D, displayed in transposed form below:


0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 1 1 0 1 0 0 1

 .

Design D is a resolution-IV regular design. Because the design has an orthogonal model

matrix XC, it has the optimal properties given in Theorem 3. Let D∗ be the design obtained
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from D by level switching the fourth factor. Then, D∗ has the same optimality properties

as D. To further distinguish one design from the other, we compute the bias caused by

non-negligible effects. Assume θ24 is the only non-negligible effect. Following the idea of the

minimum K-aberration, the design with smaller value of ‖(W ′CWC)−1W ′CW24‖ is preferred,

where WC is the model matrix under the BP, W24 is the Hadarmard product of the sec-

ond and fourth factors in the design matrix, and ‖·‖ denotes the Euclidean norm. Because

‖(W ′CWC)−1W ′CW24‖ is equal to 2 for D and 0.816 for D∗ , D∗ is preferred.

2.3.3 Rechtschaffner designs

Consider the full second-order model associated with the collection C2 = {s ⊆ S : |s| ≤ 2}.

Based on the aforementioned one-to-one correspondence between a subset and a treatment

combination, C2 corresponds to a design consisting of (1 + m + m(m − 1)/2) different

treatment combinations, which is known as the Rechtschaffner design, denoted byDC2 . Using

the same correspondence, we define DC similarly for any C, and still call it a Rechtschaffner

design. Design DC2 was first presented by Rechtschaffner [25], who suggested its use under

the full second-order model. The estimability of DC2 under the OP was later proved by

several authors, with generalizations to echelon models for mixed-level and/or higher-order

situations. We state a result for the two-level situation, which is a special case of Theorem

15.25 in Cheng [26].

Proposition 2.3. For an echelon collection C, the OP model associated with C is estimable

under the Rechtschaffner design DC.

Under the BP, the Rechtschaffner design DC has a stronger property.

Theorem 2.4. For any collection C, the BP model associated with C is estimable under the

Rechtschaffner design DC.

Compared with Proposition 2.3, Theorem 2.4 does not assume that C is echelon. A

special case of Rechtschaffner designs is DC1 with C1 = {s ⊆ S : |s| ≤ 1}. This design, com-

monly known as a one-factor-at-a-time design, was discussed in Mukerjee and Tang [4] for

its following robust property: non-negligible interactions never cause bias in the estimation
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of the main effects under the BP. This property, in fact, holds for any Rechtschaffner design

DC with an echelon C.

Theorem 2.5. Let C be an echelon collection. Then, the Rechtschaffner design DC allows

an unbiased estimation of the BP model associated with C, even if the effects outside the

model are non-negligible.

Example 2.5. Consider the model associated with C = {φ, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}}

and the Rechtschaffner design DC, displayed in transposed form below:


0 1 0 0 0 1 1
0 0 1 0 0 1 0
0 0 0 1 0 0 1
0 0 0 0 1 0 0

 .

If θ24 is a non-negligible effect, the bias it causes can be found using (W ′CWC)−1W ′CW24θ24.

It is clear that W24 is an all-zero vector; hence, θ24 does not cause bias in θ̂w, for all w ∈ C.

The same argument can be made for all other effects outside the model.

Though the Rechtschaffner design DC enjoys a nice property of robustness, it is not

very efficient. We now consider a class of N -run Rechtschaffner designs based on DC , where

C = {s0 = φ, s1, s2, . . . , sp}, by allowing each run in DC to appear multiple times. Let fj

be the number of times the treatment combination corresponding to sj appears in DC , for

j = 0, 1, . . . , p, where N =
∑p
j=0 fj . The next result gives an optimal allocation.

Proposition 2.4. Let C be an echelon collection. An N -run Rechtschaffner design based

on DC is AC-optimal under the BP if fj = Nq
1/2
j /

∑p
j=0 q

1/2
j , for j = 0, 1, . . . , p, where qj is

the number of subsets in C that contain sj.

When the fj ’s are not all integers, which is usually the case, one can simply round up

or down fj = Nq
1/2
j /

∑p
j=0 q

1/2
j under the constraint

∑
j fj = N . In fact, Proposition 2.4

is a special case of Theorem 2 in Stallings and Morgan [23], where the exact AC-optimal

designs among all competing designs are also derived. Their result is more useful since the

optimality given by Proposition 2.4 is only within the class of N -run Rechtschaffner designs.

12



2.4 A numerical study

In this section, we carry out a numerical study to examine the efficiencies of the baseline

designs given by Theorem 2.3 and Proposition 2.4 among all competing designs. This nu-

merical study can help us answer two questions. First, compared with the most efficient

designs, how efficient is a Rechtschaffner design? Second, when a design given by Theorem

2.3 is used for its maximal efficiency on the estimation of cap effects, how much is sacrificed

on the estimation of non-cap effects?

Consider a two-level factorial involving three factors. Suppose sixteen experimental runs

are allowed. As usual, we assume all observations are uncorrelated and have a common

variance σ2. Let f0, f1, f2, f3, f4, f5, f6, and f7 be the numbers of times the level combinations

(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), and (1, 1, 1) appear in a design,

respectively. Under the BP model associated with C2, we can take fj = 2 for all j to obtain

a design given by Theorem 2.3, which we denote by Dcap. An design given by Proposition

2.4 is (f0, . . . , f7) = (4, 3, 3, 3, 1, 1, 1, 0), denoted by DRech. By a complete computer search,

the design (f0, . . . , f7) = (3, 2, 2, 2, 2, 2, 2, 1) is AC2-optimal among all competing designs,

denoted by DA. And if we want the best efficiency only for the estimation of main effects,

then (f0, . . . , f7) = (4, 2, 3, 3, 1, 1, 1, 1) can minimize Var(θ̂1) + Var(θ̂2) + Var(θ̂3) among all

competing designs, denote by Dmain.

Table 2.1 lists down all the variances of the least square estimators of the parameters

in the model under these designs with σ2 = 1. The AC2-efficiency criterion and Var(θ̂1) +

Var(θ̂2) + Var(θ̂3) are also computed. We can see that in terms of AC-optimality, DRech is

worse than the other three, with relative efficiency being around 70% of the other three,

although under DRech the main effects can be estimated almost as efficient as Dmain. It can

be also noticed that Dcap is similar to DA in terms AC-optimality, with relative efficiency

being 5.50/5.69 ≈ 97%. Even in terms of Var(θ̂i) (i = 1, 2, 3), Dcap is still not far from DA,

as we can find the relative efficiency is 0.673/0.750 ≈ 90%. If we compare Dcap with Dmain,

the relative efficiency is 1.69/2.25 ≈ 75%. More or less, this numerical study illustrates the

general performance of the baseline designs given by Theorem 2.3 and Proposition 2.4.
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Table 2.1: The variances of the least square estimators under four designs.

Dcap DRech DA Dmain

Var(θ̂φ) 0.438 0.250 0.308 0.238
Var(θ̂1) 0.750 0.583 0.673 0.521
Var(θ̂2) 0.750 0.583 0.673 0.521
Var(θ̂3) 0.750 0.583 0.673 0.646
Var(θ̂12) 1.000 1.917 1.058 1.238
Var(θ̂13) 1.000 1.917 1.058 1.282
Var(θ̂23) 1.000 1.917 1.058 1.282

AC2-efficiency criterion 5.69 7.75 5.50 5.73
Var(θ̂1) + Var(θ̂2) + Var(θ̂3) 2.25 1.75 2.02 1.69

In fact, Dcap, DRech, and DA are all balanced arrays, the class of designs in which the

number of appearance of a level combination g only depends on the number of ones g has.

Balanced arrays were firstly introduced by Chakravarti [27], who used the name "partially

balanced arrays". The simpler term "balanced array", which is more often used today, was

later coined by Srivastava and Chopra [28]. As discussed in Stallings and Morgan [23],

though out of the scope of this chapter, there is some evidence that balanced arrays will

be highly efficient for estimating baseline effects. We refer readers to Morgan, Ghosh, and

Dean [29] for an excellent review of balanced arrays.

2.5 Conclusion

We have derived a linear relationship between the OP and the BP. From its special pattern,

we conclude that an echelon model has the same form under the two types of parameteri-

zation. We further discuss its implications for the estimability, optimality, and robustness

of baseline designs. In particular, we show that certain orthogonal arrays continue to be

optimal under the BP. We introduce general Rechtschaffner designs, showing they enjoy a

robust property that is only available under the BP.

There are two possible future research directions. The first is illustrated by Example 2.5,

in which we find the level permutations that minimize the bias caused by non-negligible

effects. Under the main-effect-only model, this has been investigated by Mukerjee and Tang

[4] and Li, Miller, and Tang [19]. However, it would be useful to obtain results for more

14



general echelon models. The second is to consider a compromise between robust and opti-

mal designs, which can be done by adding runs to a Rechtschaffner design. The compromise

designs are expected to enjoy in-between performance in terms of both efficiency and ro-

bustness, as demonstrated for the main-effect model of Karunanayaka and Tang [30].

2.6 Proofs

Proof of Theorem 2.1. Let τ be a column vector with componenets τφ, τ1, τ2, τ12, . . . , τ12···m

in Yates order. Vectors θ and β are similarly defined. Let Hm be the m-fold Kronecker

product of H and Lm the m-fold Kronecker product of L, where

H =

 1/2 1/2

1/2 −1/2

 and L =

 1 0

1 1

 .

We then have β = Hmτ and τ = Lmθ. Therefore β = HmLmθ and θ = (HmLm)−1β.

Theorem 1 follows by noting that HmLm is the m-fold Kronecker product of HL and

(HmLm)−1 is the m-fold Kronecker product of (HL)−1 and the special forms of HL and

(HL)−1 as given by

HL =

 1 1/2

0 −1/2

 and (HL)−1 =

 1 1

0 −2

 .

Proof of Theorem 2.2. This result follows immediately from Proposition 2.2.

Proof of Corollary 2.2. For a design D, let Dπ be the design obtained from D by level

switching one or more factors. We use W and Wπ to denote the model matrices under

D and Dπ for the BP, respectively. Matrices X and Xπ are defined similarly for the OP.

By Proposition 2.2, the ratio (det(X ′X)/det(W ′W )) = (det(X ′πXπ)/det(W ′πWπ)) is a con-

stant which only depends on the model. Since det(X ′X) = det(X ′πXπ), we conclude that

det(W ′W ) = det(W ′πWπ).
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Proof of Theorem 2.3. Due to a result by Moriguti [5], Var(β̂v) attains its minimal value

for each v ∈ C if XC is orthogonal. If C is echelon, by Theorem 2.1 and Corollary 2.1, we

have that θw =
∑
v⊇w,v∈C cvβv. If w is not contained by another u in C, then θw = cwβw.

Thus, Var(θ̂w) = c2
wVar(β̂w) is minimized.

Proof of Theorem 2.4. Consider the matrix Wm = Lm in the proof of Theorem 2.1, which

is the model matrix of the full model. Let W ∗m be the N × N submatrix of Wm, obtained

by deleting all rows and columns except for the j1-, j2-,..., jN -th rows and columns. It is

sufficient to show that W ∗m is non-singular. Note that j1 = 1 since a Rechtschaffner design

always contains x = (0, . . . , 0) and the model always contains the intercept. The non-

singularity of W ∗m is easily seen since Wm is a lower triangular matrix with all diagonals

being one, which the case is because Wm = Wm−1 ⊗W1 and W1 has the same pattern.

Proof of Theorem 2.5. Let C = {ζ0 = φ, ζ1, ζ2, . . . , ζp}. Without loss of generality, let the

i-th run xi = (xi1, . . . , xim) correspond to ζi, i = 0, 1, . . . , p. The fitted model can be

written as E(Y ) = WCθC , where E(Y ) = (τζ0 , τζ1 , . . . , τζp)′ and θC = (θφ, θζ1 , . . . , θζp)′.

Since there may exist some non-negligible effects θw with w /∈ C, we let the true model be

E(Y ) = WCθC +
∑
w/∈CWwθw, where Ww is a (p+ 1)× 1 column vector with the i-th entry

equal to
∏
j∈w gij .

Let θ̂C be the least square estimator from the fitted model. Then, E(θ̂C) = (W ′CWC)−1W ′CE(Y ) =

θC+
∑
w/∈C(W ′CWC)−1W ′CWwθw. Thus, if we can show that for each w /∈ C,Ww is an all-zeros

column vector, then the proof is completed. This is evident because
∏
j∈w xij is one if si

contains w as a subset, and zero otherwise. However, due to the fact that C is echelon, no

si can contain w as a subset.

Proof of Proposition 2.4. Let model (2.6) under the Rechtschaffner design DC (i.e., fj =

1 for j = 0, 1, . . . , p.) be E(Y ) = WCθC , where E(Y ) = (τζ0 , τζ1 , . . . , τζp)′ and θC =

(θφ, θζ1 , . . . , θζp)′. Consider an N -run Rechtschaffner design and let E be the (p+1)×(p+1)

identity matrix. The model matrix can be written as AWC , where A is an N×(p+1) matrix.

The first f0 rows of A are the first row of E, the following f1 rows are the second row of E,
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and so on. The AC-efficiency is

tr
(
(AWC)′(AWC)

)−1 = tr
(
W−1
C (A′A)−1(W ′C)−1

)
= tr

(
(A′A)−1(W ′C)−1(WC)−1

)

It is evident that (A′A)−1 = diag(f−1
0 , f−1

1 , . . . , f−1
p ), so the AC-efficiency is

∑p
j=0 qjf

−1
j ,

where qj is the (j, j)-th element of (W ′C)−1(WC)−1, for j = 0, 1, . . . , p. By Cauchy-Schwarz

inequality, subject to
∑p
j=0 fj = N ,

∑p
j=0 qjf

−1
j is minimized if fj = N

(
qj

0.5/
∑p
j=0 qj

0.5
)
,

so the proof can be completed by showing qj is the number of subsets in C that contain ζj .

By definition (2.2), for any w ∈ C, θw =
∑
u⊆w τu(−1)|w|−|u|, which is equal to

∑
u∈C,u⊆w τu(−1)|w|−|u|

since C is echelon. It is then implied that θC = W−1
C E(Y ) gives the definition back, and

thus the j-th column of W−1
C is

(
(−1)|ζ0|−|ζj |I(ζ0 ⊇ ζj), (−1)|ζ1|−|ζj |I(ζ1 ⊇ ζj), . . . , (−1)|ζp|−|ζj |I(ζp ⊇ ζj)

)′
,

where I(ζi ⊇ ζj) = 1 if ζi contains ζj as a subsets, and 0 otherwise. Now we can find that

the (j, j)th element of (W ′C)−1(WC)−1, which is the squared length of the jth column vector

of W−1
C , is

∑p
i=0{(−1)|ζi|−|ζj |I(ζi ⊇ ζj)}2 =

∑p
i=0 I(ζi ⊇ ζj) (j = 0, . . . , p).
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Chapter 3

Uniform projection designs and
strong orthogonal arrays

3.1 Introduction

Computer experiments are routinely used in scientific and engineering research nowadays.

In a computer experiment, as the true model is usually characterized by highly complex

differential equations, the experimenter needs to build a surrogate model that is easy to

compute, based on the experimental data from running the computer code that represents

the true model. To capture the overall pattern of the true model, the design points should be

spread out as uniformly as possible throughout the experimental region. This space-filling

idea has appeared early in Box and Draper [31] and later in Sacks and Ylvisaker [32], who

indicated that uniformly spreading design points can minimize the bias of the fitted model.

In the context of computer experiments, the rationale for using space-filling designs

is intuitive as one would like to have information in every portion of the design region

when the true model as represented by a computer code is very complex. As shown by

Vazquez and Bect [33], space-filling designs can also be theoretically justified in terms of

their performances in the mean squared prediction error. We refer to Chapter 5 of Santner,

Williams, Notz, and Williams [34] for a full discussion on the need for space-filling designs.

When a computer model involves a large number of factors, it is sensible to first conduct a

sensitivity analysis to identify the important factors and then build a surrogate statistical

model based on these important factors. In such circumstances, more relevant are the designs

that are space-filling in low dimensional projections. Broadly speaking, finding space-filling
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designs can be done either via computational algorithms or by theoretical construction. The

focus of this chapter is on theoretical construction.

One way to measure the uniformity of the design points is to use a distance or a dis-

crepancy criterion, which can be then optimized, sometimes analytically but most often via

computational algorithms. For example, by maximizing the minimum distance between de-

sign points, maximin distance designs are obtained, and such designs enjoy an asymptotic

optimality property as shown in Johnson, Moore, and Ylvisaker [8]. As for the discrep-

ancy criteria, the centered L2-discrepancy proposed by Hickernell [9] seems to be the most

popular one. Recently, Sun, Wang, and Xu [13] proposed and investigated a new criterion,

called the uniform projection criterion, which computes the centered L2-discrepancy for

every two-dimensional projection of a design and then takes the average. Their empirical

study indicates that by minimizing the uniform projection criterion, the resulting designs

are robust under different criteria and different types of model, making this new criterion

attractive to experimenters.

An alternative approach does not compute a numerical measure, and is related to or-

thogonal arrays. Work along this line goes back to the well-known Latin hypercube designs

proposed by McKay, Beckman, and Conover [12], which are orthogonal arrays of strength

one. Latin hypercube designs promise stratification in all univariate projections, and their

usefulness for computer experiments has been widely recognized. Later, using orthogonal

arrays of strength t ≥ 2, Owen [35] and Tang [36] independently gave constructions of space-

filling designs that achieve stratification in all t and lower dimensional projections. He and

Tang [37] proposed strong orthogonal arrays, a class of designs that are more space-filling

than comparable ordinary orthogonal arrays. Focusing on two dimensional projections, He,

Cheng, and Tang [14] introduced strong orthogonal arrays of strength 2+ and presented

construction results for such designs.

In this chapter, we explore the connections between uniform projection designs as pro-

posed in Sun, Wang, and Xu [13] and strong orthogonal arrays of strength 2+ as introduced

in He, Cheng, and Tang [14]. Both of these classes of designs are space-filling in two di-

mensional projections but are motivated from very different angles. A key finding in our
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studies is a decomposition of the centered L2-discrepancy for a two-factor design into a

sum of squares where each square measures one aspect of uniformity of design points. This

leads to a decomposition of the uniform projection criterion into two terms, with one term

measuring the discrepancy between a given design and a strong orthogonal array of 2+ and

the other term representing the residual discrepancy. We then show through a number of

results that strong orthogonal arrays of strength 2+ are optimal or nearly optimal under

the uniform projection criterion.

The chapter is organized as follows. Section 3.2 introduces the notation and background.

Section 3.3 gives a new expression of the centered L2-discrepancy for two-factor designs,

which leads to a useful decomposition of the uniform projection criterion. In Section 3.4,

we utilize the decomposition to study the performance of strong orthogonal arrays of 2+

under the uniform projection criterion. The chapter is summarized by Section 3.5, and all

proofs are given in Section 3.6.

3.2 Notation and background

An orthogonal array of strength t, denoted by OA(N,m, s1×· · ·×sm, t), is an N×m matrix

in which the jth column has sj levels from {0, 1, . . . , sj−1} such that, for any t columns, all

possible level-combinations appear equally often. If s1 = · · · = sm = s, the array becomes

symmetric and is denoted by OA(N,m, s, t). A general s-level factorial design of N runs and

m factors is represented by an N ×m matrix D = [xij ], where xij ∈ Zs = {0, 1, . . . , s− 1},

and each row corresponds to an experimental run and each column to a factor. Design D

is called balanced if it is an OA(N,m, s, 1). Note that a balanced orthogonal array is not a

"balanced array" we introduced earlier in the previous chapter. We use Di to denote the ith

column of D and let Dij = (Di, Dj). Therefore, Di and Dij are one- and two-dimensional

projection designs of D, respectively. For a non-trivial divisor α of s, let bDi/αc be the

column obtained by collapsing the s levels of Di into s/α levels via the mapping x→ bx/αc,

where bxc is the integer part of x.
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Definition 3.1. Let s = αs′. An N×m matrix D with entries from Zs is a strong orthogonal

array of strength 2+, denoted by SOAα(N,m, s, 2+), if for any i 6= j, (bDi/αc, Dj) is an

OA(N, 2, s′ × s, 2).

Clearly, an SOAα(N,m, s, 2+) is a design that stratifies on the s × s′ and s′ × s grids in

every two-dimensional projection, and thus N = λss′ for some integer λ. We call λ the

index of the array. An example of SOA2(16, 10, 4, 2+) is given below, which is presented in

the transposed form:



2 2 2 2 0 0 0 0 1 1 1 1 3 3 3 3
2 2 0 0 2 2 0 0 1 1 3 3 1 1 3 3
2 0 2 0 2 0 2 0 1 3 1 3 1 3 1 3
2 2 0 0 1 1 3 3 2 2 0 0 1 1 3 3
2 0 2 0 1 3 1 3 2 0 2 0 1 3 1 3
2 0 1 3 2 0 1 3 2 0 1 3 2 0 1 3
0 1 2 3 2 3 0 1 2 3 0 1 0 1 2 3
0 2 1 3 2 0 3 1 2 0 3 1 0 2 1 3
0 2 2 0 1 3 3 1 2 0 0 2 3 1 1 3
0 2 2 0 2 0 0 2 1 3 3 1 3 1 1 3


. (3.1)

It can be verified that, for example, (bD1/2c, D2) is an OA(16, 2, 2×4, 2), meaning that D12

stratifies on the 2×4 grid, where each cell of the grid contains λ = 2 points. One advantage

of strong orthogonal arrays over ordinary orthogonal arrays with the same number of levels

is the larger number of factors the former can accommodate. Suppose sixteen experimental

runs are allowed. An OA(16,m, 4, 2) achieves stratification on the 4 × 4 grid in every two

dimensions, but it only allows us to study at most five factors as an OA(16, 5, 4, 2) exists but

an OA(16, 6, 4, 2) does not. In contrast, an SOA2(16,m, 4, 2+) promises the stratification on

the 4× 2 and 2× 4 grids in every two dimensions, and allows us to study up to ten factors,

which is twice more. Another advantage is the run size flexibility. To have an OA(N,m, 4, 2),

N needs to be a multiple of 16, but there exists SOA2(N,m, 4, 2+) with N = 8 or 24. For

more details on strong orthogonal arrays of strength 2+, we refer to He, Cheng, and Tang

[14].

The centered L2-discrepancy proposed by Hickernell [9] is a popular criterion to measure

the uniformity of a design. For an s-level N ×m design D = [xij ], its (squared) centered
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L2-discrepancy can be evaluated as below:

CD(D) = − 2
N

N∑
i=1

m∏
k=1

(
1 + 1

2 |zik| −
1
2 |zik|

2
)

+ 1
N2

N∑
i=1

N∑
j=1

m∏
k=1

(
1 + 1

2 |zik|+
1
2 |zjk| −

1
2 |zik − zjk|

)
+
(13

12

)m
,

(3.2)

where zik = (2xik + 1− s)/(2s). Designs having lower CD(D) values are more space-filling,

since CD(D) measures the discrepancy between the empirical distribution of the design

points and the uniform distribution. If we apply CD(·) to every two-dimensional projection

of D and take the average, the uniform projection criterion [see 13] is obtained. That is,

φ(D) = 2
m(m− 1)

∑
i<j

CD(Dij). (3.3)

A design minimizes φ(D) among all balanced competing designs is called a uniform projec-

tion design. The uniform projection criterion only considers the two-dimensional projections,

since the uniformity in low dimensions is usually considered more important than that in

high dimensions. Interestingly, an empirical study in Sun, Wang, and Xu [13] indicates that

even when projected onto a t-dimensional space for any t > 2, a uniform projection design

performs well under several different criteria, including the maximin distance, orthogonality,

and the maximum projection criterion [see 11].

We conclude this section with Proposition 3.1, which states that an orthogonal arrays

of strength two is a uniform projection design, and gives a lower bound on the uniform

projection criterion. We point out here that Proposition 3.1 can be easily obtained by

combining Theorems 1 and 2 in Ma, Fang, and Lin [38].

Proposition 3.1. For any balanced s-level N ×m design D, we have that φ(D) ≥ Os and

that the equality holds if and only if D is an OA(N,m, s, 2), where

Os =
{

13/(72s2)− 1/(144s4) when s is odd,
13/(72s2) + 7/(288s4) when s is even.
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Finally, we point out that, in the context of computer experiments, the number s of levels

needs to be of at least moderate size in order to fit response surfaces that have multiple

extrema.

3.3 A decomposition of uniform projection criterion

In this section, we derive a new expression of the centered L2-discrepancy for two-factor

designs. This expression not only offers an insight into the centered L2-discrepancy in (3.2)

but also leads to a decomposition of the uniform projection criterion φ(D) in (3.3). The

decomposition provides an important link of the uniform projection criterion with strong

orthogonal arrays of strength 2+, and the usefulness of which will be further explored in

the next section. For i, j ∈ Zs, we define

bi = 1
2

∣∣∣∣2i+ 1− s
2s

∣∣∣∣− 1
2

∣∣∣∣2i+ 1− s
2s

∣∣∣∣2 ,
aij = 1

2

∣∣∣∣2i+ 1− s
2s

∣∣∣∣+ 1
2

∣∣∣∣2j + 1− s
2s

∣∣∣∣− 1
2

∣∣∣∣ i− js
∣∣∣∣ . (3.4)

Let Ωs = Zs × Zs. For a level combination x = (x1, x2) ∈ Ωs, define Bx = bx1bx2 . For a

pair of level combinations x = (x1, x2) and y = (y1, y2) both in Ωs, not necessarily distinct,

define Axy = ax1y1ax2y2 . The following proposition is implied by the results of Ma, Fang,

and Lin [38], and can also be easily verified directly using the definition of CD(D) in (3.2)

for m = 2 in conjunction with the definitions of Bx and Axy through the bis and aijs in

(3.4).

Proposition 3.2. Let D be a balanced s-level N × 2 design. For a level combination x =

(x1, x2) ∈ Ωs, let fx be the number of times x appears in D. We have that

CD(D) = − 2
N

∑
x∈Ωs

fxBx + 1
N2

∑
x∈Ωs

∑
y∈Ωs

fxfyAxy + Cs, (3.5)

where Cs is a constant determined by s.

Based on Proposition 3.2, we prove Theorem 3.1, which plays a key role in most of our

theoretical results.
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Theorem 3.1. Let D be a balanced s-level N × 2 design and define vx = fx −N/s2. For a

positive integer s > 2, let s1 = bs/2c − 1 and s2 = ds/2e, where dxe stands for the smallest

integer not less than x. We have that

CD(D) = Os + 1
N2

∑
x∈Ωs

∑
y∈Ωs

vxvyAxy

= Os + 1
(Ns)2


s1∑
i=0

s1∑
j=0

δij

 ∑
x1≤i,x2≤j

vx

2

+
s−1∑
i=s2

s1∑
j=0

δij

 ∑
x1≥i,x2≤j

vx

2

+
s1∑
i=0

s−1∑
j=s2

δij

 ∑
x1≤i,x2≥j

vx

2

+
s−1∑
i=s2

s−1∑
j=s2

δij

 ∑
x1≥i,x2≥j

vx

2
 ,

(3.6)

where Os is given in Proposition 3.1 and δij is defined as follows. If s is odd, then δij ≡ 1.

If s is even, then

δij =



1/4 if i, j ∈ {s1, s2};

1/2 if only one of i and j ∈ {s1, s2};

1 if i, j /∈ {s1, s2}.

Theorem 3.1 may look a bit complicated but actually has a very intuitive interpretation.

It shows that the centered L2-discrepancy for a two-factor s-level balanced design can be

written as a constant Os plus a weighted sum of squares, where each square of form (
∑
x vx)2

corresponds to a rectangle area with one vertex being one of the four corners in the s × s

grid. These square terms are all equal to 0 if vx = 0 for all x which happens if and only

fx is a constant, which amounts to that the design points are uniformly distributed on the

s× s grid and the design is an OA(N, 2, s, 2). Each term of form (
∑
x vx)2 in Theorem 3.1,

therefore, provides a measure of uniformity of the design within a rectangle region formed

using one of four corners in the s× s grid as a vertex. Two illustrative examples are given

below.
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Example 3.1. Take s = 4 in Theorem 3.1. Then s1 = 1 and s2 = 2. If we define

V2×2 =
(
v(0,0) + v(0,1) + v(1,0) + v(1,1)

)2
+
(
v(0,2) + v(0,3) + v(1,2) + v(1,3)

)2

+
(
v(2,0) + v(2,1) + v(3,0) + v(3,1)

)2
+
(
v(2,2) + v(2,3) + v(3,2) + v(3,3)

)2
,

V1×2 =
(
v(0,0) + v(0,1)

)2
+
(
v(0,2) + v(0,3)

)2
+
(
v(3,0) + v(3,1)

)2
+
(
v(3,2) + v(3,3)

)2
,

V2×1 =
(
v(0,0) + v(1,0)

)2
+
(
v(0,3) + v(1,3)

)2
+
(
v(2,0) + v(3,0)

)2
+
(
v(2,3) + v(3,3)

)2
,

V1×1 =v2
(0,0) + v2

(0,3) + v2
(3,0) + v2

(3,3),

then we have that CD(D) = O4 + (4N)−2 (4−1V2×2 + 2−1V2×1 + 2−1V1×2 + V1×1
)
. Note

that each Vk×l collects four square terms, corresponding to four k × l sub-grids of the 4× 4

grid with each sub-grid starting from one of the four corners of the 4 × 4 grid. If D is an

OA(N, 2, 4, 2), then V2×2 = V2×1 = V1×2 = V1×1 = 0 as vx = 0 for all x. Now suppose

that D is an SOA2(N, 2, 4, 2+), then we can easily see that V2×2 = V2×1 = V1×2 = 0 as an

SOA2(N, 2, 4, 2+) achieve stratifications on 2× 2, 4× 2 and 2× 4 grids. We therefore have

that CD(D) = O4 + ψ(D) + ε(D), where ψ(D) + ε(D) represents a total discrepancy of the

design from an OA(N, 2, 4, 2), ψ(D) = (4N)−2 (4−1V2×2 + 2−1V2×1 + 2−1V1×2
)
measures

the discrepancy of the design from an SOA2(N, 2, 4, 2+) and ε(D) = (4N)−2V1×1 is the

residual discrepancy of the design from an OA(N, 2, 4, 2). This decomposition is analogous

to the decomposition of the total sum of squares into a regression sum of square plus a

residual sum of squares in regression analysis.

Example 3.2. Let s = 9 in Theorem 3.1. Then we have s1 = 3 and s2 = 5. Similar to

Example 3.1, we can define Vk×l for k, l = 1, 2, 3, 4, where each Vk×l collects four square

terms, corresponding to four k × l sub-grids starting from the four corners. For example,

V4×2 =

 ∑
x1≤3,x2≤1

vx

2

+

 ∑
x1≥5,x2≤1

vx

2

+

 ∑
x1≤3,x2≥7

vx

2

+

 ∑
x1≥5,x2≥7

vx

2

.

In this case, (3.6) can be written as

CD(D) = O9 + (9N)−2
4∑

k=1

4∑
l=1

Vk×l.
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Let ψ(D) = (9N)−2∑
(k,l)∈S1 Vk×l and ε(D) = (9N)−2∑

(k,l)∈S2 Vk×l, where S1 = {(k, l) :

at least one k or l is a multiple of 3} and S2 = {(k, l) : neither k nor l is a multiple of 3}.

Then, CD(D) = O9 +ψ(D)+ε(D), where ψ(D) ≥ 0 represents the discrepancy of the design

from an SOA3(N, 2, 9, 2+) and is equal to 0 if D is an SOA3(N, 2, 9, 2+), and ε(D) ≥ 0 is

the residual discrepancy of design D from an OA(N, 2, 9, 2).

In general, let s = αs′ and D be a balanced s-level N ×m design. Consider a projection

design Dij given by the ith and jth columns of D. Following the same ideas in Examples

3.1 and 3.2, we define Vk×l for k, l = 1, . . . , s1 + 1, which is a sum of four squares in (3.6),

each corresponding to a k× l sub-grid from a corner. More precisely, for k, l = 1, . . . , s1 + 1,

define

Vk×l =

 k−1∑
x1=0

l−1∑
x2=0

vx

2

+

 k−1∑
x1=0

s−1∑
x2=s−l

vx

2

+

 s−1∑
x1=s−k

l−1∑
x2=0

vx

2

+

 s−1∑
x1=s−k

s−1∑
x2=s−l

vx

2

.

We then obtain

CD(Dij) = Os + (sN)−2
s1+1∑
k=1

s1+1∑
l=1

qklVk×l, (3.7)

where qkl is a δij in Theorem 3.1, taking on one of the three values: 1/4, 1/2, or 1. De-

compose the double summation above into two parts, denoted by ψ(Dij) and ε(Dij), where

(sN)−2qklVk×l belongs to ψ(Dij) if at least one of k and l is a multiple of α, and be-

longs to ε(Dij) otherwise. Then we have that CD(Dij) = Os + ψ(Dij) + ε(Dij). Define

Ψ(D) = 2/{m(m − 1)}
∑
i<j ψ(Dij) and E(D) = 2/{m(m − 1)}

∑
i<j ε(Dij). Theorem 3.2

below is obtained.

Theorem 3.2. Let s = αs′. For a balanced s-level N ×m design D, we have

φ(D) = Os + Ψ(D) + E(D),

where φ(D)−Os = Ψ(D)+E(D) is a total discrepancy of design D from an OA(N,m, s, 2),

Ψ(D) ≥ 0 is a discrepancy of D from an SOAα(N,m, s, 2+), and E(D) ≥ 0 is the residual

discrepancy of D from an OA(N,m, s, 2). Moreover, Ψ(D) = 0 if and only if D is an

SOAα(N,m, s, 2+) and Ψ(D) = E(D) = 0 if and only if D is an OA(N,m, s, 2).
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Theorems 3.1 and 3.2 provide insights into the uniform projection criterion. Theorem

3.2 also provides a big-picture justification for strong orthogonal arrays of strength 2+.

More specific results on the performance of strong orthogonal arrays of strength 2+ under

the uniform projection criterion are presented in the next section.

3.4 Optimality or near optimality of strong orthogonal ar-
rays of strength 2+

Proposition 3.1 says that an OA(N,m, s, 2) is a uniform projection design. However, an

OA(N,m, s, 2) may not exist; and even if it exists, the run size N may be too large for the

experimenter to afford. In such situations, SOAα(N,m, s, 2+)s provide an attractive class of

alternatives. Theorem 3.2 shows that an SOAα(N,m, s, 2+) minimizes a component of the

uniform projection criterion. In this section, we will show that, under the uniform projection

criterion, an SOAα(N,m, s, 2+) is nearly optimal in general and is optimal for a special case.

Theorem 3.3. Consider the decomposition in Theorem 3.2. If D is an SOAα(N,m, s, 2+),

then Ψ(D) = 0 and E(D) ≤ kα/s
4 for a constant kα determined only by α. Therefore,

φ(D) ≤ Os + kα/s
4.

Most useful are SOAα(N,m, s, 2+)s with small α values due to their economical run

sizes. For α = 2, 3 and 4, we have found that kα is equal to 1/4, 10/9, and 13/4, respectively.

More discussion on the meaning and value of kα will be provided in Section 3.5. For a

balanced s-level N ×m designs D, we define its φ-efficiency as φeff(D) = Os/φ(D), which is

a simple measure of the goodness of D under φ(D). If φeff(D) is close to 1, then D performs

well under φ(D). Corollary 3.1 immediately follows from Theorem 3.3.

Corollary 3.1. If D is an SOAα(N,m, s, 2+), then φeff(D) ≥ Os/(Os + kα/s
4).

The expression of Os in Proposition 3.1 shows that Os = O(1/s2), which implies that

the lower bound on the φ-efficiency Os/(Os+kα/s4) converges to 1 as s→∞. Corollary 3.1,

therefore, establishes near optimality of SOAα(N,m, s, 2+)s under the uniform projection

criterion.

The lower bound in Corollary 3.1 is calculated and the results are given in Table 3.1

under the heading of ‘any λ’ for α = 2 and 3 and s ≤ 18. We see that all entries except one
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in Table 3.1 are greater than 90%. Those entries under ‘λ = 1’ are obtained from improved

lower bounds on φeff(D) to be presented in the next two results. The first of these establishes

optimality of an SOA2(N,m, s, 2+) with index λ = 1 under φ(D).

Theorem 3.4. An SOA2(s2/2,m, s, 2+) minimizes φ(D) among all balanced competing

designs of s levels, N = s2/2 runs and m factors.

It is worth investigating that whether φ(D) is minimized only by an SOA2(s2/2,m, s, 2+),

but we will leave this question to our research work in the future. The construction of

SOA2(s2/2,m, s, 2+)s can be found in He, Cheng, and Tang [14]. Some examples are an

SOA2(18, 4, 6, 2+), an SOA2(32, 5, 8, 2+), and an SOA2(50, 6, 10, 2+). The basic idea in the

proof of Theorem 3.4, which is given in the Appendix, is to derive and use a better lower

bound on φ(D) than Os in combination with Theorem 3.3. A similar argument also leads to

a better lower bound on φ(D) than Os when α = 3 and λ = 1, which results in an improved

lower bound on the φeff. This is presented in the following result.

Theorem 3.5. If D is an SOA3(s2/3,m, s, 2+), then φeff(D) ≥ {Os + 4/(9s4)}/{Os +

10/(9s4)}.

Though an optimality property like Theorem 3.4 cannot be obtained, it can be seen in

Table 3.1 that SOA3(s2/3,m, s, 2+)s perform well under φ(D). He, Cheng, and Tang [14]

constructed an SOA3(27, 6, 9, 2+), an SOA3(48, 5, 12, 2+), and an SOA3(75, 6, 15, 2+), and

all these designs have φeff values larger than 95%.

When s is small and m/N is large, the φ-efficiency defined by LB/φ(D) in Sun, Wang,

and Xu [13] may be preferred, where

LB = 5m(4s4 + 2(13N − 17)s2 −N + 5)− (N − 1)(8s4 + 150s2 − 33)
720(m− 1)(N − 1)s4 + 1 + (−1)s

64s4 .

For example, by Theorem 3.3, we have that φeff(D) ≥ LB/(O4 + 1/1024) = 95.3%, for any

D being an SOA2(16, 10, 4, 2+), which improves the result shown in Table 3.1. In fact, the

SOA2(16, 10, 4, 2+) given in (3.1) actually has a φ-efficiency 97.9%.
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Table 3.1: The lower bounds of the φ-efficiency for SOAs(2+) with α = 2 and 3.

α = 2 α = 3
s any λ λ = 1 s any λ λ = 1
4 92.1% 100% 6 85.4% 91.3%
6 96.3% 100% 9 92.9% 95.8%
8 97.9% 100% 12 95.9% 97.5%
10 98.6% 100% 15 97.3% 98.4%
12 99.0% 100% 18 98.1% 98.9%

3.5 Concluding remarks

A brief summary of this chapter is as follows. We first derive a new expression for the cen-

tered L2-discrepancy for two-factor designs, which shows that the centered L2-discrepancy

can be written as a sum of squares with each square measuring how closely a design resem-

bles an OA(N, 2, s, 2) within a rectangle area from a corner in the s× s grid. Besides being

insightful, this expression leads to a decomposition of the uniform projection criterion as

given by φ(D) = Os + Ψ(D) +E(D), where Os can be interpreted as the base discrepancy,

Ψ(D) represents a discrepancy of design D from an SOAα(N,m, s, 2+), and E(D) is the

residual discrepancy from an OA(N,m, s, 2). This decomposition then allows us to establish

that SOAα(N,m, s, 2+)s are nearly optimal in general and optimal in a special case, under

the uniform projection criterion φ(D).

Let Fα be a design that maximizes the centered L2-discrepancy among all balanced

α-level α × 2 designs. As detailed in the proof of Theorem 3.3 in the Appendix, the kα in

Theorem 3.3 can be obtained by kα = α4 (CD(Fα)−Oα). We conjecture that for any α,

the design consisting of {(0, 0), (1, 1), . . . , (α−1, α−1)} is an Fα, which we have verified for

α = 2, . . . , 7. Though not of much value to the theme of this chapter, settling the conjecture

would be an interesting pursuit for an inquiring mind.

Sun, Wang, and Xu [13] showed that L1-equidistant designs are uniform projection de-

signs. As equidistant designs are maximin distance designs, given the connections between

strong orthogonal arrays and uniform projection designs, one would expect that strong

orthogonal arrays also perform well under some distance-based criterion. It would be inter-

esting to conduct some investigation along this direction.
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The results in this chapter are concerned with the space-filling properties in two dimen-

sional projections. It would be of great interest to obtain some similar results for designs

that are space-filling in t ≥ 3 dimensional projections. A uniform projection criterion for t

dimensions can be easily defined by taking average of the centered L2-discrepancies of all

t dimensional projection designs. Orthogonal arrays of strength t are space-filling in all t

dimensions. Strong orthogonal arrays of strength t are as space-filling as comparable or-

thogonal arrays of strength t in all t dimensions but more space-filling than the latter in all

g dimensions where g < t. For t ≥ 4, orthogonal arrays of strength t require large run sizes

and strong orthogonal arrays of strength t are even more expensive. But for t = 3, the run

sizes of both types of arrays are reasonable. This is the case we will focus on in our future

studies.

3.6 Proofs

Proof of Theorem 3.1. An unlabeled result in Ma, Fang, and Lin [38] which is given right

before their equation (3.7) implies the following identities:

∑
y∈Ωs

Axy = s2Bx if s is odd;

∑
y∈Ωs

Axy = s2Bx + 1
8(bx1 + bx2) + 1

64s
2 if s is even.

(3.8)

By Proposition 3.2 plus the fact that aij = aji and Axy = Ayx, it’s easy to see that

CD(D) = − 2
N

∑
x∈Ωs

(
vx + N

s2

)
Bx + 1

N2

∑
x∈Ωs

∑
y∈Ωs

(
vx + N

s2

)(
vy + N

s2

)
Axy + Cs

= − 2
N

∑
x∈Ωs

vxBx + 2
N2

∑
x∈Ωs

∑
y∈Ωs

vx

(
N

s2

)
Axy + 1

N2

∑
x∈Ωs

∑
y∈Ωs

vxvyAxy + constant.

If s is odd, the first two terms in the last equation cancel each other out because of the first

assertion in (3.8). Thus, we obtain

CD(D) = 1
N2

∑
x∈Ωs

∑
y∈Ωs

vxvyAxy + constant.
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If s is even, the equation above still holds, since
∑
x∈Ωs

vxbx1 =
∑
x1∈Zs

∑
x2∈Zs

vxbx1 =

0 and
∑
x∈Ωs

vxbx2 =
∑
x2∈Zs

∑
x1∈Zs

vxbx2 = 0, which hold because D is balanced and∑
x2∈Zs

vx =
∑
x1∈Zs

vx = 0. The last step is to find the constant. We can simply take

vx = 0 for all x, or equivalently, fx = N/s2 for all x. Then, Proposition 3.1 says that the

constant must be Os, which proves the first equality of (3.6).

To prove the second equality, let Qs = {(x1, x2) ∈ Ωs : x1, x2 ≤ s1}. In (3.4), if we allow

i and j to be any real number in [0, s− 1], then as a function on [0, s− 1]× [0, s− 1], Axy

is symmetric about x = (s − 1)/2 and about y = (s − 1)/2. Thus, it suffices to show the

equations below.

(i) If s is odd, then

s2 ∑
x∈Qs

∑
y∈Qs

vxvyAxy =
s1∑
i=0

s1∑
j=0

 ∑
x1≤i,x2≤j

vx

2

.

(ii) If s is even, then

s2 ∑
x∈Qs

∑
y∈Qs

vxvyAxy =1
4

 ∑
x1,x2≤s1

vx

2

+ 1
2

s1−1∑
j=0


 ∑
x1≤j,x2≤s1

vx

2

+

 ∑
x1≤s1,x2≤j

vx

2


+
s1−1∑
i=0

s1−1∑
j=0

 ∑
x1≤i,x2≤j

vx

2

.

We first consider (i). For x = x∗ = (x∗1, x∗2), y = y∗ = (y∗1, y∗2) ∈ Qs , the term vx∗vy∗

will appear in the expansion of (
∑
x1≤i,x2≤j vx)2, if and only if i ≥ max(x∗1, y∗1) and j ≥

max(x∗2, y∗2). Thus, the coefficient of vx∗vy∗ on the right-hand-side is 2(s1 −m1 + 1)(s1 −

m2 + 1), where m1 = max(x∗1, y∗1) and m2 = max(x∗2, y∗2). The proof can be completed

if we can show that 2s2Ax∗y∗ = 2(s1 − m1 + 1)(s1 − m2 + 1). By (3.4), it is easy to

verify that aij = aji = aii if i ≤ j < (s − 1)/2, so we have s2Ax∗y∗ = s2am1m1am2m2 =

4−1 |2m1 + 1− s| |2m2 + 1− s| = (s1−m1 +1)(s1−m2 +1), which proves (i). To prove (ii),

the coefficient of vx∗vy∗ on the right-hand-side is 2{4−1 + 2−1(s1 −m1) + 2−1(s1 −m2) +

(s1−m1)(s1−m2)} = 2(s1−m1 + 0.5)(s1−m2 + 0.5). Simple algebra shows that it’s equal

to 2s2Ax∗y∗ .
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We use two lemmas to provide some structure to the proof of Theorem 3.3.

Lemma 3.1. Let Fs be a design that maximizes CD(·) among all balanced s-level s × 2

designs. Then, CD(Fs) ≥ CD(D) for any balanced s-level two-factor design D.

Proof. Consider (3.5). Under a fixed N , CD(·) can be seen as a linear function plus a

quadratic function of fx’s. We denote this function by CDN (f), where f =
(
f(0,0), . . . , f(s−1,s−1)

)
.

We call f the frequency vector, which can fully characterize a design. Two facts are needed.

First, CDN (f) is a convex function of f , since Ma, Fang, and Lin [38] have shown that the

quadratic part of CDN (f) is positive-definite. Second, it is easy to verify that CDN (f) =

CDkN (kf) for any positive real numbers N , k, and f ∈ Rs2 satisfying
∑
x fx = N . Let D

an arbitrary s-level N × 2 balanced with N = rs. Denote the frequency vectors of Fs and

D by fs and g, respectively. We prove by induction of r. When r = 2, there exist g′ and g′′

such that g = g′ + g′′ and both g′ and g′′ are balanced s-level s× 2 designs. Thus,

CDs(fs) = 1
2CDs(fs) + 1

2CDs(fs) ≥
1
2CDs(g′) + 1

2CDs(g′′)

≥ CDs

(1
2g
′ + 1

2g
′′
)

= CDs

(1
2g
)

= CD2s(g).

When r = 3, there exist an s-run design h′ and 2s-run design h′′ such that, g = h′+h′′ and

h′ and h′′ are both balanced. Then,

CDs(fs) = 1
3CDs(fs) + 2

3CDs(fs) ≥
1
3CDs(h′) + 2

3CD2s(h′′)

= 1
3CD2s(2h′) + 2

3CD2s(h′′) ≥ CD2s

(1
3(2h′) + 2

3(h′′)
)

= CD2s

(2
3g
)

= CD3s(g).

For r ≥ 4, the argument is similar. Therefore, we conclude that CDs(fs) ≥ CDrs(g) for any

balanced (rs)× 2 design g, no matter r = 1, 2, 3, . . ..

Let D be an SOAα(N, 2, s, 2+) with index λ. Consider the s × s grid. Partition it into

(s′)2 disjoint α × α sub-grids, and call a sub-grid an α-component of D. If treated as an

α-level and two-factor design, an α-component must be balanced and contains λα points.
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Let G be an α-component of D. By Theorem 3.1, we can write CD(G) = Oα+α−4λ−2K(G),

where K(G) =
∑
x

∑
y vxvyAxy.

Lemma 3.2. Let D be an SOAα(N, 2, s, 2+) and Gi be its ith α-component, i = 1, 2, . . . , (s′)2.

We have that E(D) = (sN)−2{K(G1) + · · ·+K(G(s′)2)}.

Proof. We consider two special cases. First, let s = 4 and α = 2. By Example 3.1 we see

that E(D) = (4N)−2(v2
(0,0) +v2

(0,3) +v2
(3,0) +v2

(3,3)). Since v
2
(0,0) = v2

(0,1) = v2
(1,0) = v2

(1,1) when

D is an SOA2(N, 2, 4, 2+), we have v2
(0,0) = 4−1(v2

(0,0) + v2
(0,1) + v2

(1,0) + v2
(1,1)) = K(G1).

Similar argument can be made for G2, G3, and G4, so we prove this special case.

Another case is given by s = 9 and α = 3. If D is an SOA3(N, 2, 9, 2+), similar argument

and some simple algebra show that V4×4 = K(G5),
∑3
k=1 Vk,4+

∑3
l=1 V4,l = K(G2)+K(G4)+

K(G6) + K(G8) , and
∑3
k=1

∑3
l=1 Vk×l = K(G1) + K(G3) + K(G7) + K(G9), which leads

to E(D) = (9N)−2{K(G1) + · · ·+K(G9)}.

The general proof uses the same idea but requires more complex notation and involves

some tedious calculations, so we omit it.

Proof of Theorem 3.3. We only need to prove E(D) ≤ kα/s
4 since Ψ(D) = 0 is asserted

by Theorem 3.2. Since φ(D) takes the average of CD(Dij), it suffices to prove this the-

orem for two-factor designs. Let D be an SOAα(N, 2, s, 2+). By Lemma 3.2, E(D) =

(sN)−2{K(G1) + · · · + K(G(s′)2)}. Lemma 3.1 says that K(Gi) = (CD(Gi) − Oα)α4λ2 ≤

(CD(Fα) − Oα)α4λ2. Simple algebra shows that E(D) ≤ kα/s
4 with kα = (CD(Fα) −

Oα)α4.

Proof of Theorem 3.4. Let s = 2s′ and N = ss′. It suffices to show that for any bal-

anced s-level N × 2 design D, E(D) ≥ 1/(4s4). Consider (3.7). We know that E(D) =

(sN)−2∑ qklVk×l, where the sum is taken over all odd k and l, called odd terms for con-

venience. Since (
∑
x vx)2 ≥ 1/4 if the sum is taken over an odd number of different x’s,

we have E(D) ≥ (sN)−2∑ qkl. We first assume s′ is even. In this case, among all (s′/2)2

odd terms, qkl ≡ 1, which implies E(D) ≥ (sN)−2(s′/2)2 = 1/(4s4). If s′ is odd, among all

{(s′ + 1)/2}2 odd terms, qkl = 1/4 happens once, and qkl = 1/2 happens (s′ − 1) times,
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and qkl = 1 happens {(s′ − 1)/2}2 times. Simple algebra leads to E(D) ≥ 1/(4s4), and we

complete the proof.

Proof of Theorem 3.5. Let s = 3s′ and N = ss′. It suffices to show that for any bal-

anced s-level N × 2 design D, E(D) ≥ 4/(9s4). Consider (3.7). We know that E(D) =

(sN)−2∑ qklVk×l, where the sum is taken over all k and l that are not multiples of 3.

Since (
∑
x vx)2 ≥ 1/9 if the sum is not taken over exactly 3k different x’s, we have

E(D) ≥ (sN)−2∑ 4qkl/9. Like the proof of Theorem 3.4, a discussion based on whether s′

is even or not and some simple algebra can show that E(D) ≥ 4/(9s4).
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Chapter 4

A two-phase space-filling sub-data
selection method for big data

4.1 Introduction

Modern statistics has been developed for over one century, but not until the last two decades

have statisticians encountered the problem caused by big data volume. Big data is om-

nipresent nowadays because datum can be cheaply and routinely collected due to the rapid

development of technologies and the popularity of the Internet. With a big dataset, even a

basic analysis, such as the ordinary linear regression, may not be computationally affordable

to everyone. As a result, data reduction becomes necessary.

We consider in this chapter a big dataset that has a very large number N of observations,

while the number p of covariates is moderate. One solution to deal with big data volume

is to conduct a statistical analysis using a small subset of the dataset. If the sub-dataset

is well chosen, the statistical inferences based on it will be similar to those based on the

full dataset. The most straightforward method is the simple random sampling (SRS); see

Drineas, Mahoney, Muthukrishnan, and Sarlós [39], for example. Work on nonuniform sam-

pling methods includes but is not limited to Drineas, Mahoney, and Muthukrishnan [40],

Drineas, Mahoney, Muthukrishnan, and Sarlós [39], Drineas, Magdon-Ismail, Mahoney, and

Woodruff [41], Ma, Mahoney, and Yu [15], and Ma and Sun [42], most of which focus on a

leverage-based sampling, and/or a fast way to approximate the leverage scores.

Recently, motivated by the idea of optimal design of Kiefer [43], Wang, Yang, and Stufken

[16] developed a deterministic method called information-based optimal sub-data selection
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(IBOSS), which aims to select a sub-dataset that maximizes the information matrix. The

sub-dataset obtained by the IBOSS method is similar to a D-optimal design, which consists

of extreme points for better estimation under a linear model. Wang, Yang, and Stufken

[16] showed that the variance of the IBOSS estimator converges to zero as the size of the

full dataset N goes to infinity, even if the size of the sub-dataset is fixed. This feature is

unavailable for a subsampling method.

Except for the SRS, all the aforementioned sub-data selection methods are model-

dependent, with the main focus on the first-order linear model. However, the true model

may actually contain some second-order terms or may not be even linear. Shi and Tang [44]

utilized the idea of space-filling designs and proposed a model-independent method that

selects a space-filling sub-dataset within the data region. They showed by simulations that

a space-filling sub-dataset enjoys some robust properties.

In this chapter, we consider a non-parametric setting that the mean response is given

by an unknown function f(x). Intuitively, a space-filling sub-dataset can better capture the

overall pattern of f(x), because the selected points are uniformly distributed throughout the

data region. Unlike Shi and Tang [44], who used the maximin criterion to select a space-filling

sub-dataset, we present an alternative method that selects an orthogonal array-structured

sub-dataset. More importantly, we propose a two-phase sub-data selection method that

utilizes the information of response. In the existing methods, the response is ignored in the

sub-data selection process. In fact, it is anything but clear how the response can play a

role under a linear model or a parametric setting. In our case, since f(x) may be smooth

in some region but rugged in the other, it is reasonable to select more data points in the

region where f(x) is more rugged. Clearly, to identify the rugged areas, the information of

response must be taken into account.

The remainder of this section introduces some notation. Consider a dataset consisting of

N data points (x1, y1), . . . , (xN , yN ), where xi = (xi1, . . . , xip) is a p-dimensional covariate

vector corresponding to the response variable yi. The number p of covariates is assumed

moderate and N � p. We let E(yi|xi) = f(xi) (i = 1, . . . , N), where f(x) is unknown. We

want to select a sub-dataset containing n points (xk1 , yk1), . . . , (xkn , ykn) and then construct
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a nonparametric estimate of f(x) using the selected sub-dataset. In Section 4.2, we present

an algorithm for selecting a sub-dataset that has an orthogonal array (OA) structure, thus

forming a space-filling subset in the data region. In Section 4.3, we develop a two-phase sub-

data selection method that uses our OA-based algorithm in the first phase, and then selects

additional data points in the regions where f(x) is rugged in the second phase. Simulation

studies are given in Section 4.4.

4.2 An OA-based sub-data selection method

The idea of selecting a space-filling sub-dataset has been used in Shi and Tang [44], who

selected a sub-dataset that maximizes the minimum distance between data points. As shown

in Shi and Tang [44], a space-filling sub-dataset is advantageous. For example, when a first-

order linear model is fitted but the true model actually contains some second-order terms,

their method has a smaller prediction mean squared error than the IBOSS method.

We present a space-filling sub-data selection method based on OAs. Recall that an s-

level OA of strength t, denoted by OA(n, p, s, t), is an n × p matrix in which each column

has s levels from Zs = {0, 1, . . . , s − 1} such that, for any t columns, all possible level-

combinations appear equally often. As discussed in Chapter 3, OAs are one kind of space-

filling designs that achieves uniformity in low dimensions, which is important and useful in

many situations. For example, under an additive model E(yi|xi) = β0+f1(xi1)+· · ·+fp(xip),

if a sub-dataset forms an OA of strength one, it can better capture each fj(·) because of its

uniformity in every one dimension.

To obtain an OA-structured sub-dataset of size n, we start with an OA of size n × p,

denoted by M = [mij ] (mij ∈ Zs). We next do some preprocessing on the full dataset

X = (xT1 , . . . , xTN )T . Let R(xij) = 1 if xij is the smallest element of the jth column of X,

R(xij) = 2 if xij is the second smallest element of the jth column of X, and so on. If there

are ties, say for example, both x1j and x2j are smallest elements in the jth column of X,

then they will be randomly ranked as if they are distinct. Hence, for a fixed j, R(xij)’s must

be a permutation of 1, . . . , N . Assume N is a multiple of s and N = rs. We construct a

matrix X∗ = [x∗ij ] by letting x∗ij = b(R(xij) − 1)/rc, where b·c stands for the integer part
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of a number. Clearly, X∗ is a balanced design matrix of s levels, which means that within

each column of X∗, each element of Zs appears equally often. If N is not a multiple of s, we

can still take r = N/s and x∗ij = b(R(xij)− 1)/rc, and the resulting X∗ is nearly balanced.

We use x∗k to denote the kth row of X∗ and mi the ith row of M . Our OA-based method

is given as follows.

Algorithm 4.1. Start with S = φ and i = 1.

1. Among {x1, . . . , xN} r S, randomly select one xk, denoted by xki
, among those xk’s

with x∗k having the smallest L1-distance to mi, where the L1-distance is d1(x∗k,mi) =∑p
j=1 |x∗kj −mij |.

2. Set S = S ∪ {xki
}. If i = n, the algorithm stops and S = {xk1 , . . . , xkn} is the sub-

dataset we obtain. Otherwise, go back to step 1 with i = i+ 1.

One can use any distance other than the L1-distance in step 1. To obtain xki
, we need

to compute (N − i + 1)n distances (i = 1, . . . , n), so the complexity of Algorithm 4.1 is

O(Nn2), which is essentially O(N) as N � n.

A similar algorithm that doesn’t need to construct X∗ is as follows. First, rescale X

and M into a unit hypercube [0, 1]p. Then, for i = 1, . . . , n, find the xk, denoted by xki
,

that has the smallest d1(xk,mi) value. This alternative algorithm may be more natural than

Algorithm 4.1, but it actually ignores the distribution of the data points. To see this, suppose

that p = 1 andM is [0, 1, 2]T , a one-column and three-level OA. Then, Algorithm 4.1 selects

as xk2 an xk from those in the mid-third group given by x(i) with N/3 < i ≤ 2N/3, while

the alternative algorithm selects an xk that is closest to max(xk)/2. These two quantities

can be very different if the distribution of x1, . . . , xN is highly skewed.

In Algorithm 4.1, if one uses an M that is an OA of strength t, then the obtained sub-

dataset is space-filling in every d-dimension with d ≤ t. Thus, an M of a higher strength

is preferred. But using such an M is expensive, so we will focus on using an OA(n,m, s, t)

with a small t and large s. For instance, in Example 4.1, an OA(16, 5, 4, 2) is considered,

and in Section 4.4.2, we use an OA(900, 2, 30, 2) in the simulation.
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In step 1 of Algorithm 4.1, as there are many xk with x∗k having the smallest L1-distance

tomi, we can do a further optimization to make the sub-dataset more space-filling. First, for

each column of X, we find s equally-spaced percentiles. For example, if s = 3, find the 0th,

50th, and 100th percentiles; if s = 4, find the 0th, 33th, 67th, and the 100th percentiles,

where the 0th and 100th percentiles are the minimum and maximum, respectively. Let

qj,0, . . . , qj,s−1 denote such s percentiles of the jth column of X. Now, for an xk, we define

ξ(xk) =
∑p
j=1 |xkj − qj,mij |. When several xk’s can be chosen in step 1, we choose the one

that has the smallest ξ(xk) value. For example, if m1 = (0, . . . , 0) and there are several xk

with d1(x∗k,m1) = 0. Among these xk’s, the smaller the value of ξ(xk) =
∑p
j=1 |xij − qj,0|

is, the closer an xk is to the point (q1,0, . . . , qp,0), and the one that has the smallest ξ(xk)

value can best represent m1. The next algorithm summarizes this modification.

Algorithm 4.2. Obtain a sub-dataset by Algorithm 4.1, but replace step 1 by step 1’ below.

1’. Among {x1, . . . , xN}r S, consider those xk’s with x∗k having the smallest d1(x∗k,mi).

Among these xk’s, choose the one that has the smallest ξ(xk) value, and denote this

xk by xki
.

We end this section by an illustrative example.

Example 4.1. We generate x1, . . . , xN with p = 5 under four different scenarios: (i) N =

500 and the xi’s are independent and have a multivariate uniform distribution on the unit

cube (0, 1)p, (ii) xi’s are generated in the same way as in (i) but with N = 5000, (iii)

N = 500 and the xi’s are independent and have a standard multivariate normal distribution,

and (iv) the same as in (iii) but with N = 5000. We take M to be an OA(16, 5, 4, 2), and use

Algorithm 4.1 to select a sub-dataset of size n = 16. The pairwise scatter plots under each

scenario are given in the left columns of Figure 4.1. In these plots, the gray dots are all the

data points and the black triangles are the selected ones. The results from using Algorithm

4.2 are given in the right columns of Figure 4.1. The difference between Algorithms 4.1 and

4.2 is most noticeable in Figures 4.1c and 4.1d.
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(a) Scenario (i) with Algorithm 4.1. (b) Scenario (i) with Algorithm 4.2.

(c) Scenario (ii) with Algorithm 4.1. (d) Scenario (ii) with Algorithm 4.2.

(e) Scenario (iii) with Algorithm 4.1. (f) Scenario (iii) with Algorithm 4.2.

(g) Scenario (iv) with Algorithm 4.1. (h) Scenario (iv) with Algorithm 4.2.

Figure 4.1: The pairwise scatter plots under each scenario.
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4.3 A two-phase method using response information

In this section, we develop a sub-data selection method that utilizes the information on yi.

Existing methods such as a leverage-based subsampling or the IBOSS method mainly focus

on the estimation under a linear model and do not allow yi to play a role in the process.

The basic idea of our method is as follows. In the area where f(x) has a rugged surface,

more data points should be selected. In contrast, in the area where f(x) is smooth, we

should select less points. To be more specific, our method contains two phases. In the first

phase, we select n1 points that spread uniformly throughout the data region. Among these

n1 points, we identify those points at which f(x) has large curvature, called rugged points

for convenience. Then, we uniformly select another n2 points from the neighbor points of

the rugged points in the second phase.

The way we identify the rugged points is as follows. For a point xi selected in the first

phase, find all the points in its δ-neighborhood. Use xi and all its neighbor points to fit

a first-order linear model, and then find the residuals. We use the average of the squared

residuals, denoted by Ri, to measure the degree of f(x) deviating from a plane in a local

area around xi. If Ri is large, then f(x) is rugged around xi.

We summarize our method in an algorithm below.

Algorithm 4.3. We obtain a sub-dataset as follows.

1. Among all data points, select n1 points using Algorithm 4.2.

2. For each xi selected in step 1, fit a first-order linear model within its δ-neighborhood.

Find the average of the squared residuals and denote it by Ri.

3. Identify the xi’s having the n∗ largest Ri values. Without loss of generality, let these

points be x1, . . . , xn∗

4. Let U collect all points, minus the n1 points in step 1, in the δ-neighborhoods of

x1, . . . , xn∗. Using Algorithm 4.2, select n2 points out of U . These n2 points together

with the n1 points then form a sub-dataset containing n = n1 + n2 points.
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Remark 4.1. In steps 1 and 4, Algorithm 4.2 can be replaced by Algorithm 4.1, simple

random sampling (SRS), or other methods.

The δ-neighborhood can be defined using any distance, and we use the symmetric nearest

neighborhood, as introduced below. We first consider p = 1. In this case, x1, . . . , xN are all

real numbers. Let R(xi) be the rank of xi within x1, . . . , xN . For a point xi, we define its

symmetric nearest neighborhood of width ω as B(xi, ω) = {xk : |R(xk) − R(xi)| ≤ ω}. If

p ≥ 2, we deal with one dimension at a time, and obtain a neighborhood for each dimension.

Then B(xi, ω) is defined as the intersection of all these neighborhoods.

We illustrate Algorithm 4.3 by an example.

Example 4.2. Consider a function f(x) defined on (−4π, 6π), where

f(x) =



0.2x if x ∈ (−4π, 0];

sin(3x) if x ∈ (0, 2π];

0.2(x− 2π) if x ∈ (2π, 6π).

We generate a dataset of size N = 10, 000 as follows: x1, . . . , xN are i.i.d. uniform U(−4π, 6π),

and yi = f(xi) + εi, where εi are i.i.d. normal N(µ = 0, σ2 = 0.252). To implement Algo-

rithm 4.3, in step 1, we set n1 = 50 and use Algorithm 4.2 with M being [0, . . . , 49]T , an

one-column OA. In step 2, the δ-neighborhood is B(xi, 250). In step 3, we set n∗ = 10. In

step 4, the δ-neighborhood is again B(xi, 250), and the n2 = 50 points are similarly selected

as in step 1.

In Figure 4.2a, the gray dots stand for all the data points, black triangles for the n1

points selected in step 1, and circles for the n2 points selected in step 4. The projection

points of the circles and triangles are also drawn. In Figure 4.2b, we can see the Ri values

of the triangle points, which indicate that the n∗ = 10 points in step 3 must fall in the

interval (0, 2π), and thus U approximately consists of all the points within (0, 2π).
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(a) Scatter plots of all/selected points and their projection.

(b) The Ri values of the n1 = 50 triangle points.

Figure 4.2: Scatter plot of the data points and the Ri values.

4.4 Simulation studies

4.4.1 A one-dimensional case

In this subsection, a simulation with p = 1 is carried out. To fit the unknown function f(x),

we consider Gaussian kernel estimation. Without loss of generality, let S = {x1, . . . , xn} be

the selected sub-dataset. Under S, the fitted value of f(x) is given by

f̂(x) =
∑n
i=1 gh(xi − x)yi∑n
i=1 gh(xi − x) , (4.1)

where gh(x) is the density function of a normal distribution N(0, h2). In our simulation,

the bandwidth h is determined by the function "npreg" of an R package called "np", with
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default settings. This package also provides several different kernel smoothing methods, but

we will only illustrate Gaussian kernel estimation.

Consider the f(x) and dataset given in Example 4.2. We compare four different sub-data

selection methods with sub-data size n = 100: (i) the SRS, (ii) Algorithm 4.2 with M being

[0, . . . , 99]T , an one-column OA, (iii) the method used in Example 4.2, and (iv) the same as

(iii) except for that in steps 1 and 4, Algorithm 4.2 is replaced by SRS. Note that methods

(ii) and (iii) are deterministic. Let S2 and S3 be the sub-dataset obtained by (ii) and (iii),

respectively. We repeat the following procedure 500 times.

1. Use methods (i) and (iv) to select sub-datum S1 and S4, respectively.

2. Use S1, S2, S3, and S4 to fit f(x) by equation (4.1).

3. For each method, calculate the sum of the squared errors SSE =
∑N
i=1(f̂(xi)−f(xi))2.

4. For a more detailed comparison, we also calculate SSEsin =
∑
xi∈(0,2π)(f̂(xi)−f(xi))2

and SSEline =
∑
xi /∈(0,2π)(f̂(xi)− f(xi))2.

5. Re-generate ε1, . . . , εN , which are i.i.d. N(0, 0.252).

We use f̂i(x) to denote the estimate of f(x) based on Si, i = 1, 2, 3, 4,. Figure 4.3 presents

the results from the first repetition, where f(x) is also drawn by a dotted line. The box

plots of SSE, SSEsin, and SSEline from the four methods are given in Figures 4.4a, 4.4b,

and 4.4c, respectively.

Recall that U is the union of the δ-neighborhoods of the n1 points selected in the first

phase. For methods (iii) and (iv), we make a small modification when computing f̂(x). If

x /∈ U , f̂(x) is obtained using only the points outside U . Otherwise, f̂(x) is obtained by

equation (4.1) using all 100 points. The basic idea here is to allow two bandwidths, one for

U and the other for UC , since the R package "np" uses the same bandwidth for the entire

range.

Some comments on the results in Figures 4.3 and 4.4 are given below.

A space-filling sub-dataset can lead to a better fitting of f(x), as can be seen by noting

that method (ii) is better than (i) in terms of SSEline and that (iii) is better than (iv) in
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terms of SSE, SSEsin, and SSEline. Worth noting is that both methods (ii) and (iii) can

avoid extremely large SSE, SSEsin, or SSEline, which happens in methods (i) and (iv).

Selecting more points in the area where f(x) is rugged can improve the overall fitting,

since in terms of SSE, method (iii) is better than (ii), and (iv) is better than (i). The

success of method (iii) and (iv) is due to their much smaller SSEsin values, at a price of

slightly larger SSEline.

Selecting more points in the rugged area is more important than selecting a space-filling

sub-dataset. Note that S2 consists of data points that are uniformly distributed throughout

the entire data region, but method (ii) is the worst in terms of SSE. The reason is that

f̂2(x) almost always misses the sine function in (0, 2π), so its SSE mostly comes from the

bias of f̂2(xi) within (0, 2π).
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(a) S1 and f̂1(x).

(b) S2 and f̂2(x).

(c) S3 and f̂3(x).

(d) S4 and f̂4(x).

Figure 4.3: The scatter plots and fitted the lines under methods (i)-(iv).
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(a) Box plots of SSE.

(b) Box plots of SSEsin.

(c) Box plots of SSEline.

Figure 4.4: The box plots of the sum of squared errors (500 times repetition).
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4.4.2 A two-dimensional case

In this subsection, a simulation with p = 2 is carried out, and the notation defined in the

previous subsection will be used similarly. We still consider the Gaussian kernel estimation.

Without loss of generality, let S = {x1, . . . , xn} be the selected sub-dataset, where xi =

(xi1, xi2). As before, let E(yi|xi) = f(xi). The fitted value of f(x) at a point t = (t1, t2) is

f̂(t) =
∑n
i=1 gh1(xi1 − t1)gh2(xi2 − t2)yi∑n
i=1 gh1(xi1 − t1)gh2(xi2 − t2) . (4.2)

In our simulation, the bandwidth (h1, h2) is determined by the R package "np".

Let µ1 = (0, 1), µ2 = (0,−1), µ3 = (1, 0), µ4 = (−1, 0), and let Ip denote the identity

matrix of order p. Consider a function f(t) defined as

f(t) = f(t1, t2) = −0.5(t1 + t2) + 3 (G(t;µ1) +G(t;µ2) +G(t;µ3) +G(t;µ4)) ,

where G(t;µ) is the density of a bivariate normal distribution N(µ, 0.5I2). We generate a

dataset of size N = 10, 000 as follows: x1, . . . , xN are i.i.d. bivariate uniform U(−3, 3)2,

and yi = f(xi) + εi, where εi are i.i.d. normal N(0, 0.22). We compare four different sub-

data selection methods with n = 900, where the first three are as follows: (i) the SRS, (ii)

Algorithm 4.2 with M being an OA(900, 2, 30, 2), and (iii) Algorithm 4.3 with details given

as follows. In step 1, we use Algorithm 4.2 with M being an OA(576, 2, 24, 2), and thus

n1 = 576. In step 2, the δ-neighborhood is B(xi, 2000). In step 3, we set n∗ = 200. In step 4,

the δ-neighborhood is B(xi, 500), and the n2 = 324 points are similarly selected as in step 1

with M being an OA(324, 2, 18, 2). Method (iv) is similar to (iii) except for that in steps 1

and 4, Algorithm 4.2 is replaced by the SRS. We repeat the following procedure 500 times.

1. Use methods (i) and (iv) to select sub-datum S1 and S4, respectively.

2. Use S1, S2, S3 and S4 to fit f(x) by equation (4.2).

3. For each method, calculate SSE =
∑N
i=1(f̂(xi)− f(xi))2.

4. Calculate SSEhill =
∑
xi∈H(f̂(xi) − f(xi))2 and SSEflat =

∑
xi /∈H(f̂(xi) − f(xi))2,

where the set H is defined in the next paragraph.
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5. Re-generate ε1, . . . , εN , which are i.i.d. N(0, 0.22).

For each xi (i = 1, . . . , N), we find the Ri defined in step 2 of Algorithm 4.3 with the

δ-neighborhood being B(xi, 500), which is calculated under the situation εi = 0 for all i.

Rank x1, . . . , xN by their Ri values in descending order. The first 4000 xi’s belong to H,

and the last 6000 to its complement.

We plot S1, . . . , S4 in Figure 4.5 and the corresponding f̂1, . . . , f̂4 in Figure 4.6. The

surface of f(x) is drawn in Figure 4.7. In Figure 4.5, the gray dots are all the data points,

and black dots are the selected ones. A black dot is circled if it is in H. The box plots of

SSE, SSEhill, and SSEflat are given in Figures 4.8a, 4.8b, and 4.8c, respectively.

Let U be the union of the symmetric nearest neighborhoods of width 1000 of the n1

points. Similar to the previous subsection, for methods (iii) and (iv), f̂(x) is obtained using

only the points outside U if x /∈ U .

Both methods (ii) and (iii) are far better than method (i) and (iv). Method (ii) performs

the best in terms of SSEflat, and method (iii) is the best in terms of SSE and SSEhill.

Method (iii) does not show a clear advantage over method (ii). This is likely because our

choice of a relatively large n gives enough points in the hilly region even for method (ii).

49



(a) S1 (b) S2

(c) S3 (d) S4

Figure 4.5: Scatter plots of S1-S4.
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(a) f̂1(x) (b) f̂2(x)

(c) f̂3(x) (d) f̂4(x)

Figure 4.6: Fitted surfaces under S1-S4.

Figure 4.7: The surface of f(x).

51



(a) Box plots of SSE.

(b) Box plots of SSEhill.

(c) Box plots of SSEflat.

Figure 4.8: The box plots of the sum of squared errors (500 times repetition).
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Chapter 5

Summary and future work

This dissertation investigates three research problems. The first problem centers on the

relationship between the OP and BP. We derive a linear relation between the two sets of

factorial effects, and based on it obtain some useful results on design construction. The

second one is to examine the performance of SOAs under the uniform projection criterion.

We find a new and insightful expression of the centered L2-discrepancy, and show that

SOAs are optimal or nearly optimal uniform projection designs. The third is on the sub-

data selection for big data. We present a sub-data selection method in which the sub-data

points form a space-filling subset and more data points are selected in the area where the

response surface is rugged. Simulations show that our method leads to a smaller prediction

mean square error, as compared to the simple random sampling.

One possible future work from Chapter 2 is to build a complete catalog of OAs of

small run sizes that includes all possible arrays under the baseline isomorphism [see 4].

This catalog is useful for finding optimal OAs under the BP, no matter what criterion or

model one considers. The catalog is also useful for theoretical investigations as it allows

easy testing of a potential theoretical result one is attempting to formulate.

Chapter 3 focuses on space-filling designs that enjoy good two-dimensional projection

properties. It is natural to ask whether or not similar results can be obtained if we con-

sider three or higher dimensional projections. The uniform projection criterion as in (3.3)

can be easily generalized to three dimensions. We expect that the SOAs of strength three

constructed by Shi and Tang [45] will perform well under this criterion.
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The work of Chapter 4 will need more comprehensive simulations that consider more

settings and perhaps also higher dimensional cases. It will need a real-data example as well.

It would be also interesting to compare our OA-based sub-data selection method with the

IBOSS method of Wang, Yang, and Stufken [16] and the maximin method of Shi and Tang

[44] under the first and second order models.
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