

APRIL 16, 2015

OUR TEAM

- Nick PizzacallaChief Executive Officer
- Bonnie HaChief Operating Officer
- Scott BeaupreChief Science Officer
- Alexandra HauserChief Technology Officer

OUTLINE

- I. Introduction:
 - Problem, Solution, C.A.R.E., Market and Motivation, Cost-Benefit Analysis
- 2. Technical Design:
 - Background, System Diagram, Results, Reliability
- 3. Project Specifics:
 - Schedule, Roles, Materials, Finances
- 4. Conclusion:
 - Summary, Future Work, Lessons Learned, Acknowledgements

INTRODUCTION

PROBLEM, SOLUTION, C.A.R.E., MARKET AND MOTIVATION, COST-BENEFIT ANALYSIS

THE PROBLEM

- A stroke occurs every 10 minutes
- 3rd cause of death in Canada
- 80% caused by blood clots from plaque in carotid artery
- Lack of accessibility to early detection

Carotid artery (CA) Ultrasound probe placed on patient's neck Sound waveform of flowing blood Color ultrasound image

http://www.daviddarling.info/images/carotid_ultrasound.jpg

http://upload.wikimedia.org/wikipedia/commons/4/48/Carotid_Plaque.jpg

SOLUTION?

- Already exists!
- So what are we doing?
- We want it to be convenient, affordable, reliable, and portable

INTRODUCING C.A.R.E.

- Carotid Artery Real-Time Echo by Cardiowave
- Portable Ultrasound Device
- Detects Plaque in Carotid Artery
- Integrates with existing IT infrastructure
- Video demonstration

CURRENT VERSION

PROTOTYPE VERSION

DESIRED GOALS FOR PRODUCT

- Convenient
- Affordable/Cost-Effective
- Reliable
- Portable

MARKET AND MOTIVATION

- Market is underutilized on the low-cost end
 - Mobisante: \$10,000
- Reduces accessibility
- Prices for end-user/patient are high

http://www.mobisante.com/products/product-overview/

COST-BENEFIT ANALYSIS

	C.A.R.E.	Competitors
Price Point	\$1,500	\$10,00-\$25,000
Use	Quick clinic visit	Long waiting times
Appointments	Affordable	+\$500

- Benefit: Early detection of plaque to save countless lives and prevent family tragedies.
- Can you really put a number value to that?

TECHNICAL DESIGN

BACKGROUND, SYSTEM DIAGRAM, RESULTS, RELIABILITY

BACKGROUND: ULTRASOUND

- A non-invasive imaging modality
- Utilizes high frequency sound waves to produce an image in real time
- Captures reflections of internal structures in the body

BACKGROUND

- A-mode
- B-mode

BACKGROUND

Colour Doppler

BACKGROUND

M-mode

SYSTEM DIAGRAM

Current state of our product:

HARDWARE:TRANSMITTER

Issues	Resolution		
Transducer did not excite with high frequency oscillator	Applied short, high voltage pulses		
Voltage booster did not boost voltage enough	High voltage DC-to-DC used with Arduino-controlled BJT switch		

HARDWARE: RECEIVER

Issues	Resolution	
Breadboard added too much capacitance to amplifier circuit (high frequency noise)	Utilize prototype board	
Operational amplifier suited for high frequency	Purchased a 200MHz high speed opamp	
DC offset	Applied a Vreg = Vcc (9 V) with a variable resistor	
ADC shipping issue	Used oscilloscope as ADC + DSP	

SOFTWARE: GUI

- Reads data from the oscilloscope and displays using MATLAB
- Processes data and produces M-Mode Scan

Issues

Updates every 7 seconds

Crashes randomly due to too much processing

RESULTS

- Major challenge:
 - One of the transducers broke!
- Due to all the challenges, we did not progress through the proof of concept stage
- Currently:
 - Transmitter circuit outputs high voltage and excites the transducer
 - Receiving circuit amplifies reflected signal
 - Software displays A-mode and M-mode scan

RELIABILITY

- Reliability R_n probability that the system will still be operational after n demands.
- $R_n = e^{-np}$ where p is the probability of of failure in single demand.
- Redundancy: High level redundancy

$$R_{HL} = 2 R_a R_b R_c - (R_a R_b R_c)^2$$

RELIABILITY TESTING

- Sampling and destructive testing: Electronic components such as BJTs, resistors, capacitors
- Advance Stress-Testing: Also done on electronic components using more power than is anticipated
- Transducer Testing: Had to rely on historical data

PROJECT SPECIFICS

TIMELINE, ROLES, MATERIALS, FINANCES

SCHEDULE

Estimated and actual timeline

ROLES

- Technical:
 - Nick implemented the transmitting circuit
 - Bonnie and Scott developed the receiving circuit
 - Alex programmed the software GUI
- Managerial:
 - Nick managed finances and administrative tasks
 - Bonnie was responsible for meeting minutes and documentation
 - Scott and Alex researched technical components

MATERIALS

Parts used in our final design

Transmitter Circuit	Receiver Circuit	Accessories
Transducer	Transducer	Ultrasound Gel
BNC to Microdot	BNC to Microdot	Proto-board
Breakout to BNC	200MHz Op-Amp	Battery Holder
Arduino	BNC Connector to PCB Mount	
DC-to-DC Converter	Coaxial BNC-BNC	
ВЈТ		
Transistor - 2N5550G		

FINANCES: REVENUE

Estimated Revenue			
Item	Total		
ESSEF Funding	\$ 500.00		
Wighton Fund	\$ 500.00		
Personal Funding	\$ 352.70		
Total: \$ 1,352			

Actual Revenue			
ltem	Total		
ESSEF Funding	\$ 700.00		
Nick Pizzacalla	\$ 200.00		
Bonnie Ha	\$ 200.00		
Scott Beaupre	\$ 200.00		
Alex Hauser	\$ 200.00		
Total:	\$1,500.00		

FINANCES: EXPENSES

Over budget by \$706.48

Estimated Expenses			
ltem	Item Total		
Transducer	\$	800.00	
Transceiver	\$	120.00	
Digital to Analog Converter	\$	30.00	
Ultrasound Gel	\$	27.25	
Wires & Electronic			
Components	\$	100.00	
Administrative Expenses	\$	50.00	
Contingency (20%)	\$	225.45	
Total:		1,352.70	

Actual Expenses		
ltem	Total	
Locker Lock	\$	8.91
Olympus Transducers	\$	1,369.76
BNC to Microdot Cable	\$	111.37
Ultrasound Gel	\$	9.24
ADC & Breakout to BNC	\$	60.74
200 MHz Op-Amp	\$	25.92
Printed Circuit Board	\$	6.05
DC-to-DC	\$	312.02
Transistor 2N5550G	\$	2.24
Coaxial BNC-BNC	\$	6.70
BNC Connector to PCB Mount	\$	8.74
Battery Holder 9V	\$	3.36
Unused Parts in Final Design	\$	145.91
Total	\$2	2,059.18

FINANCES: ACTUAL

Current standings: \$(559.18)

Actual Revenue			
ltem	Total		
ESSEF Funding	\$ 700.00		
Nick Pizzacalla	\$ 200.00		
Bonnie Ha	\$ 200.00		
Scott Beaupre	\$ 200.00		
Alex Hauser	\$ 200.00		
Total:	\$1,500.00		

Actual Expenses		
Item 7		Total
Locker Lock	\$	8.91
Olympus Transducers	\$	1,369.76
BNC to Microdot Cable	\$	111.37
Ultrasound Gel	\$	9.24
ADC & Breakout to BNC	\$	60.74
200 MHz Op-Amp	\$	25.92
Printed Circuit Board	\$	6.05
DC-to-DC	\$	312.02
Transistor 2N5550G	\$	2.24
Coaxial BNC-BNC	\$	6.70
BNC Connector to PCB Mount	\$	8.74
Battery Holder 9V	\$	3.36
Unused Parts in Final Design	\$	145.91
Total	\$	2,059.18

CONCLUSION

SUMMARY, FUTURE WORK, LESSONS LEARNED

SUMMARY

- CARE is cost-effective, reliable, and portable
- Early detection is increasingly necessary with an ever-aging population
- Clinics and elderly homes are main customer focus

FUTURE WORK

- Implement a transducer array
- Convert proto-type board to PCB (Printed Circuit Board)
- Enable Bluetooth capabilities
- Smartphone/computer application
- Use of one power source
- We want to continue working on the project this summer

LESSONS LEARNED

- Challenging full-time project
- Read the datasheets correctly
- Share information with team
- Have a Plan-B
- Technically:
 - Ultrasound technology
 - High-frequency amplifiers
 - Circuit building and testing

ACKNOWLEDGMENTS

- Thank you for all your knowledge, assistance, and support throughout this project!
 - Andrew Rawicz, SFU
 - Lukas-Karim Merhi, SFU
 - Ash Parameswaran, SFU
 - Arash Taheri, SFU
 - Lucky One, SFU
 - Kaiser Foundation for Higher Learning

- Pavel Haintz, Think Sensor
- Graham Wiens, Olympus NDT
- Ken Rutledge, CSA
- Kelly, EMCO
- On-Time Service
- ESSS
- Friends and Family

QUESTIONS?

THE FLOOR IS OPEN FOR QUESTIONS!

APPENDIX: TRANSMITTING CIRCUIT

APPENDIX: AMPLIFIER CIRCUIT DIAGRAM

