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 Abstract  
This document details the design specifications for the LumenX3 proof-of-concept model. The purpose is 

to give the reader a detailed look at each of the three subsystems from hardware to software. This will 

include design approaches and justifications explaining how our design choices meet the functional 

requirements for our proof-of-concept model (marked with P1) in the functional specification document. 

The LumenX3 proof-of-concept model will meet the following major requirements: 

 Projection of an angle-corrected screen onto the surface on which the device is placed 

 Interaction with the device through single finger taps 

 Seamless integration of all hardware and software, invisible to the end-user 

 All hardware components are enclosed within a rigid shell while keeping overall device size to a 

minimum to maximize portability 

Each of the functional requirements described in the document “Functional Specification – LumenX3: 

Projected Mobile Computer” [1] will be addressed by design specifications in their respective system 

subsections. Hardware choices will be justified by examining a set of specific system performance 

requirements and motivations behind our design choices are explored.  

The final section of the document provides a set of preliminary test procedures to verify the 

functionality of the LumenX3 proof-of-concept model. The test plan consists of sections examining the 

rising mechanism, touch detection, and projection user steps and expected behavior.  
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 Glossary                                 

Bitstream A sequence of digital bits 

Capacitive touchscreen A touchscreen that takes in user input by relying on the 
electrical properties of the human body. 

COM Communication port, a serial port interface on modern 
computers 

Framerate The frequency at which an imaging device produces 
consecutive images. 

HDMI High-Definition Multimedia Interface – a standard for 
connecting high-definition video devices 

Homography The relationship between two images of the same planar 
surface, usually used in computation of camera motions 
in computer vision. 

IEEE Insitute of Electrical and Electronics Engineers, the 
world's largest association of technical professionals 

I/O Input-Output 

IR Light that processes wavelengths ranging from 700nm to 
1mm 

LED Light-emitting diode: a pn-junction diode which emits 
light when activated 

Lumen The SI derived unit of luminous flux 

Microcontroller A small computer on a single integrated circuit containing 
a processor core, memory, and programmable 
input/output peripherals. 

Microsoft Windows 8.1 An operation system made by Microsoft, the most 
popular OS on x86/x64 devices, first reached general 
availability on October 17, 2013 

Multi-threaded program 

 

A program that can serve more than one user at a time 
and to manage multiple simultaneous requests without 
the need to have multiple copies of the programs running 
within the computer. 

Object Oriented design An approach to software design in which the  software is 
design to be a system of interacting objects 

OS Operating System, software that manages computer 
hardware and software resources. 

Perspective correction 

 

The process of correcting a distorted user viewpoint 
through the use of computer software and/or mechanical 
devices. 

PWM Pulse-width modulation, a technique used to encode a 
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message into a pulsing signal 

RAM Random-access memory, a form of computer data 
storage. 

Regression testing  A type of software testing that seeks to uncover 
new software bugs, or regressions, in 
existing functional and non-functional areas of a system. 

SoC System On A Chip, an integrated circuit that integrates all 
components of a computer onto a single chip. 

USB Universal Serial Bus, an input/output interface standard 
for data transmission between electronic devices 

User Interface (UI) The space where interactions between humans and 
machines occur. 

Wi-Fi A wireless networking standard based on radio wave 
communication to provide Internet and local area 
network connections 

x86/x64  32 bit and 64 bit computer architectures. 
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 1.0 Introduction 

The LumenX3 (pronounced "lumen-ex-cubed") is the next addition to everyone's smart device portfolio. 

Designed with portability and collaboration in mind, the device will utilize projection to display a screen 

that is not limited by the size of the device and employ hand tracking techniques to give users a whole 

new interactive experience. Our aim is to create a durable lightweight device that promotes interactivity 

and collaboration among groups by using the surface of the projected screen as a plane to take in touch 

gesture inputs.  

 

This design specification document will outline the following: 

 The LumenX3 product and its modular subsystem design 

 An overview of the proof of concept model and its comprehensive product features 

 Technical details of system design to support the functional requirements 

 A set of detailed test plans to examine proper functionality 

 

       1.1 Scope 

This document describes the design details of the LumenX3 and explains how the design meets the 

functional requirements as described in the Functional Specifications. The design specification includes 

all requirements for a proof-of-concept system and additional stretch goals as time permits. As we are 

focusing on the proof-of-concept system, only design considerations pertaining to the functional 

requirements marked P1 or P2 will be explicitly discussed. These technical details will be used as 

reference throughout the design and implementation phase and will be referred to in future documents. 

 

       1.2 Intended Audience 

The design specification document is intended to be used by all members of ObelXTech. Design 

engineers shall refer to the specifications as overall design guidelines to ensure all requirements are met 

in the final product. Test engineers shall use this document to implement the test plan and to ensure 

correct functionality of the LumenX3.  
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 2.0 System Overview 

The LumenX3 will be composed of three subsystems that include: the Core subsystem, the Projection 

subsystem, and the Touch Gesture Recognition subsystem. The Core subsystem will be responsible for all 

of the device's computing needs and will also be providing system status information to the users. 

Additionally, the Core subsystem will serve as a central hub where all subsystems are connected. The 

Projection subsystem will be responsible for providing the user interface, and the Touch Gesture 

Recognition subsystem will be responsible for retrieving user input in the form of touch gestures. The 

layout of these subsystems within the LumenX3 system is shown in Figure 1. 

 

Figure 1 – Subsystem layout for the LumenX3 system 

The 3 subsystems will operate using the following hardware components: 

 Core subsystem: MeegoPad T01 [2], Arduino Uno [3], and LED’s 

 Projection subsystem: AAXA P3 Pico Projector [4] 

 Touch Gesture subsystem: Leap Motion Controller [5] 

The MeegoPad T01 computer will be outputting a modified video stream that has been compensated for 

angle distortion via the HDMI port to the P3 Pico Projector. The Leap Motion Controller will be delivering 

touch gesture information to the MeegoPad T01 through a USB 2.0 connection. The Arduino Uno will 

drive a set of LEDs and receive instruction from the MeegoPad T01 through a USB Hub that is connected 

to the MeegoPad T01’s USB port. As a result of the limited number of USB ports on our small computing 

unit, the USB Hub will remedy that restriction by providing additional USB ports allowing a keyboard and 

mouse to be connected for debugging use. Finally the MeegoPad T01 will be running Microsoft 

Windows 8.1 [6] which natively supports an on-screen keyboard and a variety of touch gestures.  A 
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detailed block diagram of how we will be connecting these specific hardware components is shown in 

Figure 2. 

 

Figure 2 – Block diagram for the LumenX3 system 
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  3.0 User Experience  

The LumenX3 is designed from the ground up to provide a seamless user experience. By combining the 

best qualities from tablets and notebooks into the LumenX3, users can experience the best of both 

worlds through our careful design and integration of hardware and software. The market has many 

products that focus on great user content consumption experiences for individuals, but very few design 

for sharing content among multiple users while still remains portable. The LumenX3 fills this gap 

perfectly by replacing the traditional displaying unit with its sophisticated projection mechanism.   

The casing is designed to be continuous and simplistic to provide the user an effective, smooth and 

intuitive way to operate the device. Underneath the clean, structured appearance is a set of selectively 

chosen components laid out in a specific manner. This ensures LumenX3’s stability for extended usage 

while maintaining a portable size. The same strict design influences extend beyond the unit itself into 

the surroundings as well. Careful placement of the power cable, status light, and side buttons means 

that things are never in the way yet will remain within arm’s reaches. The projected screen is larger than 

most tablets’ screen size for convenient single or multi-user content consumption. Finally, since it does 

not rely on capacitance or pressure to detect touches, users can use the LumenX3 in greater number of 

scenarios. The innovative user experience is visualized in Figure 3. 

 

Figure 3 – First person view of user operating LumenX3 
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 4.0 Product Design 

       4.1 System Design 

4.1.0 Core Subsystem Design 

Computer Design  

The Core Subsystem of the LumenX3 is the heart of the experience for the customer. It must be 
capable of delivering exceptional performance to the end user while also acting as the integration 
center for all other subsystems. On immediate inspection, there are many components capable of 
powering the LumenX3 but the MeegoPad T01 single board computer was chosen for a couple of 
important reasons. Firstly, the MeegoPad T01 is able to deliver the desktop-like utility shown in 
Table 1, while maintaining a super compact form factor. It has a powerful processor with quad 
core performance and low electricity consumption. Secondly, the MeegoPad T01’s processor 
enables the LumenX3 to run a full desktop Microsoft Windows 8.1 OS as required in our functional 
specifications. Other devices running ARM processors may offer higher frequencies and more 
processing cores, however they can only run extremely limited versions of any modern Operating 
System. 
 

Table 1 – MeegoPad T01 Specifications [2] 

Device MeegoPad T01 

SoC Intel Atom Z3735F "Bay Trail" 

Processor Quad Core @ 1.33 GHz (Burst  @ 1.83 GHz) 

Storage 32 GB eMMC + microSD slot up to 64 GB 

Memory 2 GB DDR3L-1333 

Graphics Intel HD Graphics 

Connectivity 802.11 B/G/N Wi-Fi and Bluetooth 4.0 

Power Supply 5V/2A 

Miscellaneous  1x USB 2.0 Port,  
1x micro USB 2.0 port,  
1x HDMI port 

 

We are using a medium-frequency quad core processor over the more common high-frequency 
dual core processor because the LumenX3 is designed for content consumption. The additional 
processing cores allow users to run more programs concurrently without impeding system 
performance and responsiveness. Memory size is also a critical factor for the smooth running of 
Windows 8.1. Since it has 2GB of RAM, users can comfortably work on the LumenX3 without 
experiencing system performance degradation. The MeegoPad T01's SoC has built in high speed 
Wi-Fi and Bluetooth connectivity so users of the LumenX3 can connect with many wireless 
networks. In terms of expansion, the MeegoPad T01 offers a SD card slot that supports up to 64 
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GB. This means that we can add storage to the LumenX3 if the user’s storage requirements ever 
increase. Most importantly, the MeegoPad T01 comes with an integrated HDMI output port and 
support for our specified 720p high-resolution output for our projection subsystem. Finally with 
its built-in USB 2.0 ports, it can facilitate communications between our Arduino Uno status 
indication board, Leap Motion Controller and other end user peripherals. 
 

Status Indication Design  

The System Status Indicator consists of two parts: the first part is a Windows System Level Service 
and the second is a microcontroller. To meet the IEEE Std 1621 -2004 standards [7] we decided to 
implement three individual states each represented by a unique LED color. To achieve our goals, 
we are utilizing an Arduino Uno because it meets our current needs but provides a strong 
foundation to prototype future developments and stretch goals. It contains a good assortment of 
connectivity as shown in Table 2, including a built in serial interface, analog inputs, and digital I/O 
pins and offers a wide array of shield add-ons. Most importantly, 6 of the digital I/O pins have 
PWM capabilities that are fundamental for proper control of internal fans and also required to 
achieve automatic rising and falling for the LumenX3 outlined as a P3 stretch goal. 
 

Table 2 – Arduino Uno specifications [3] 

Device Arduino Uno R3 

Microcontroller ATmega328 

Digital I/O Pins 14 (6 PWM) 

Analog Input Pins 6 

Flash Memory 32 KB 

SRAM 2KB 

EEPROM 1KB 

Clock Speed 16 MHz 

Operating Voltage 5V 

 
On the Core Subsystem, we decided to implement a Windows System Service to communicate 
with the Arduino Uno microcontroller. The service is loaded during the boot phase of the 
MeegoPad T01 and on startup will perform a function to send an instruction over COM port. On 
shutdown, another function is performed which sends a different instruction over COM port. This 
service is virtually invisible to the end user and sufficient protection is set to ensure that it cannot 
be altered or changed in such a way to hurt user experience. 
 
Meanwhile, the Arduino Uno microcontroller will be connected and powered by a USB hub 
provided by the MeegoPad T01. This direct connection allows the interfacing to be carried out 
with minimal design complexity. When the user turns on the MeegoPad T01, it will start up the 
Arduino Uno. The Arduino Uno waits until it receives a command over COM port. As the Windows 
8.1 OS boots up on the MeegoPad T01 it will load the Windows System Service. The Windows 
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System Service opens the same COM port and sends instructions as needed. Two LED’s, one green 
and one red, are attached to the Digital I/O pins of the Arduino Uno. The green LED is triggered by 
the startup function of the Windows Service whereas the red LED is triggered by the shutdown 
function. The Windows System Service is designed to run over the lifetime of the Windows 
session so the LED status indicated should be accurate and reliable.  
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4.1.1 Projection Subsystem Design 

The main hardware device required for the projection is a projector. Since we were severely 
restricted on size, we opted for a small pico projector that would provide enough brightness and a 
high resolution. The AAXA P3 Pico Projector was our projector of choice, boasting more than High-
Definition (HD) 720p resolution and 50 Lumens of brightness, which are rarely found in pico 
projectors given their tiny size. This AAXA P3 Pico Projector is still small enough to fit in the palm 
of one’s hand and also has an HDMI port, which works perfectly with the MeegoPad T01. With its 
set of specifications, as shown in Table 3, the AAXA P3 Pico Projector is a great fit for our proof-of-
concept prototype of the LumenX3. 

Table 3 – AAXA P3 Pico Projector Specifications [4] 

Max Brightness 50 Lumens 

Max Resolution 1024x768 

Contrast Ratio 1000:1 

Projection Lens Manual Focus 

Projection Image Available Size 7 ~ 80 inch 

Lamp Triple RGB LEDs with Vibrant Color Technology 
Life 15,000hrs 

Aspect Ratio Control 16:9 

Battery Life 65+ minute Li-Ion battery life 

Dimensions 4.6" * 2.6" * 1.4" 

Weight 0.8 lbs 

Power Consumption 11.5w 

Power Supply 5V 3.0A 

Video In HDMI  

  

Perspective Correction Driver Design 

The position of the Pico projector will be at a height of 29cm and projecting downward at an angle 

of 60 degrees to produce a screen that is mostly in focus (over 80%) and has a screen large enough 

for a user to comfortably use it – about 10 inches diagonally before perspective correction and 

approximately 8.5 inches diagonally after perspective correction. The higher the projector is 

moved, the larger the screen however the larger the case must be. The lower the projector is 

moved, the smaller the projection angle is in order to keep a larger screen, however the portion of 

the screen that stays in focus becomes smaller very quickly. As well, the Leap Motion Controller 

has a finite range in which the screen must stay within to detect gestures. With screen size and 
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clarity and the Leap Motion Controller range as our most important factors, we decided to place 

the projector in this position, which is also illustrated in Figure 4.   

 

Figure 4 – Sketch of the projector placement and the resulting skewed projection 

Since the projector is projecting at an angle, the resulting screen appears as a trapezoid. 

Consequently, the resulting operating system screen will be skewed, shown in Figure 5 a). In order 

to transform this trapezoidal screen back into its original rectangular form of the same proportions 

but of smaller size, the screen must be corrected by pinching in the screen at the top, as shown in 

Figure 5 b). When testing the MeegoPad T01 computer with the Pico Projector, the only available 

resolution was 1280 x 720, a high definition resolution. Thus the driver will be written to project at 

this resolution. 

 

Figure 5 – Operating System screens before and after ideal perspective correction and their 

resulting trapezoidal projections 

      Operating System Output Screen         Resulting Projection 

 

a) Original computer screen, without perspective correction 

 

b) Perspective corrected computer screen 
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A Windows display driver works by copying over a bitstream of data from the source (the 

Operating System) to a destination, the primary output monitor (Pico Projector). This bitstream 

describes each pixel colour of the entire screen, beginning with the pixel at the top left corner. 

This pixel will be referenced as being in pixel location (0, 0), in which the x-axis describes the width 

of the screen from left to right and the y-axis describes the height of the screen from top to 

bottom. The next pixel described in the bitstream will be the pixel one to the right: pixel (1, 0). 

After a whole row of pixels, the bitstream moves on to describe the next row in the same way, 

starting from the leftmost pixel, and repeats this for the rest of the screen. This is illustrated in 

Figure 6. 

 

Figure 6 – Visualization of the pixel sequence in the bitstream of a 1280x720 display 

Windows driver do not allow the use of floating point values or math computations that result in 

floating point values. Since the computations performed on the bitstream of pixels contribute 

directly to visual lag on the display, the perspective correction process must not be too complex. In 

order to meet these constraints, we will be writing an algorithm outside of the driver that will 

provide a mapping of source (x, y) coordinates to their perspective corrected (x, y) coordinates, 

which will be copied into the destination bitstream. All other pixels in the destination will be set to 

black. This method requires two integer arrays for the (x, y) mapping and one Boolean array to 

determine which pixels to set to black in the destination, thus it will add a few Megabytes of size 

to the driver but will allow us to perform a minimal amount of calculations.   

The algorithm for generating the perspective correction mapping arrays consists of two parts: 

determining the outer coordinates of the perspective corrected screen to maximize rectangular 

size in the projection’s trapezoidal output, then using linear algebra to generate the mapping 

matrices. 

Determining Outer Coordinates  

We want to maximize the size of the corrected screen within the trapezoid to give the user a 

better experience when interacting with the device. Since the trapezoid is wider at the bottom, 

the rectangle should have the same bottom edge, with side edges travelling upward until they 
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intercept the sides of the trapezoid. This is illustrated in Figure 7. This problem of finding the 

largest rectangle in a trapezoid can be solved by finding the intercept of two lines: one line 

representing all possible top corners of the rectangle calculated using the aspect ratio, and the 

other line representing one slanted side of the trapezoid. Where these two lines intersect will be 

the location of one of the rectangle’s bottom corners. The problem set up is shown in Figure 7. 

 

 

Figure 7 – Largest rectangle in a trapezoid problem represented by two lines 

Since the trapezoid and rectangle are symmetric, we will focus on the left hand side of the 

problem to find the bottom left rectangle corner, and then mirror this to find the bottom right 

corner. Since the screen resolution is 1280 x 720 pixels, line 1 has the equation: 

𝑟(𝑥) = 𝑦1 =
720

1280/2
𝑥 = 1.125𝑥                                                                  (1) 

The trapezoid line has the following equation, where 𝑎 is the longer side of the trapezoid, 𝑏 is the 

shorter side of the trapezoid, and ℎ is the height of the trapezoid: 

𝑡(𝑥) = 𝑦2 =
ℎ(𝑥−

𝑎

2
)

𝑏

2
−

𝑎

2

                                                                   (2) 

Since vertical scaling distortion is very small, we will assume it is negligible when mapping this 

coordinate onto the original screen. After solving for the intercept (𝑥′, 𝑦′) of the above two lines, 

the x-coordinate of the screen’s indented bottom left corner is simply equal to 𝑥’. The x-

coordinate of the bottom right coordinate is the width minus 𝑥. Finally, the y-coordinate, 𝑦′, of the 

corrected screen’s top corners on the source screen is calculated by the following equation: 

𝑦′ = 720 ×
(ℎ−𝑦)

ℎ
                                                                        (3) 

We now have the four outer coordinate mappings from the source to perspective corrected 

destination, as shown in Figure 8.  
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Figure 8 – The four corners of the windows screen and their locations after perspective 

correction to maximize post-correction screen size 

Perspective Correction Using Homography Estimation 

Homography estimation is a technique many modern computer vision projects use to perform 
perspective correction. One of the basic methods of homography estimation is the Discrete Linear 
Transform (DLT) algorithm [8]. Letting (x, y) represent a coordinate in the source screen and (u, v) 
represent a coordinate in the destination screen, the mapping of (x, y) to (u, v) can be described 
by the equation: 

𝑐 ( 
𝑢
𝑣
1

 ) = 𝑯 ( 
𝑥
𝑦
1

 ),                                                                    (4) 

where c is any non-zero constant and 𝑯 = (

ℎ1 ℎ2 ℎ3

ℎ4 ℎ5 ℎ6

ℎ7 ℎ8 ℎ9

), a 3-by-3 homography matrix 

describing the DLT. For one point correspondence, the above equations can be simplified into the 

following two equations: 

−ℎ1𝑥 − ℎ2𝑦 − ℎ3 + (ℎ7𝑥 + ℎ8𝑦 + ℎ9)𝑢 = 0                                            (5) 

−ℎ4𝑥 − ℎ5𝑦 − ℎ6 + (ℎ7𝑥 + ℎ8𝑦 + ℎ9)𝑣 = 0                                            (6) 

In matrix form, these equations become: 

𝐴𝑖𝒉 = 𝟎,                                                                             (7) 

where 𝐴𝑖 = (
−𝑥 −𝑦 −1
0 0 0

    
0 0 0

−𝑥 −𝑦 −1
    

𝑢𝑥 𝑢𝑦 𝑢
𝑣𝑥 𝑣𝑦 𝑣) and  

𝒉 = (  ℎ1   ℎ2   ℎ3   ℎ4   ℎ5   ℎ6   ℎ7   ℎ8   ℎ9  )𝑇. Taking our four sets of corresponding corner 

points, we get 4 Ai matrices which can be stacked on top of each other to form an 8x9 matrix, 

which can replace Ai in the above equation and can be used to solve for all the values of the 

homography matrix.   
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Once the homography matrix for our specific DLT has been determined, we can use Equation (4) to 

determine the (u, v) perspective corrected coordinates for every single (x, y) pixel in the 

uncorrected screen. The resulting u-coordinates will be placed in a 720x1280 matrix, where the 

row index is the corresponding x-coordinate and the column index is the corresponding y-

coordinate. Another matrix for the v-coordinates can be created in the same way. Looping through 

every (u, v), we can also create a matrix of Boolean values that are true if a (u, v) exists for that 

row and column index, else they are false, denoting this pixel location on the perspective 

corrected screen must be set to black. Finally, in the driver, each time a call is made to copy display 

data from the Windows 8.1 OS to the hardware, we simply copy each pixel in the source bitstream 

to their perspective-corrected locations in the destination bitstream. Lastly, we set all remaining 

destination pixels to be black by setting all the pixel’s data values to 0. The size of each pixel is 

given by the OS, and is stored in a variable accessible within the driver. 
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4.1.2 Touch Gesture Recognition Subsystem Design 

In compliance with the requirements of the Touch Gesture Recognition Subsystem, we considered 

many different methods and technologies to track finger movements accurately and reliably. Since 

we are not using a physical screen for user interaction, we need a detection method capable of 

tracking at a distance. We initially proposed three methods to meet the above requirement: 

visible light detection, thermal detection, and infrared detection. Through further investigation of 

all three methods, we determined that the projected screen would interfere with detection by 

means of visible light. In addition, we discovered that accurate thermal detection requires 

expensive instruments beyond our budget. Therefore we adopted infrared detection for the Touch 

Gesture Recognition Subsystem. Infrared detection works well for our purpose since it cannot be 

interrupted by the projection and is relatively inexpensive in comparison to thermal detection. 

Gesture Recognition Sensor Hardware 

We decided to use an infrared (IR) detection device called the Leap Motion Controller to 

accomplish our goals. Instead of building custom IR detection hardware from the ground up, we 

purchased an off-the-shelf product to speed up our development since the Leap Motion Controller 

has a mature and advanced SDK. The Leap Motion Controller has a maximum detection range of 

30cm. From our testing, the detection area on the projection surface is maximized when the Leap 

Motion Controller is at a height of 10cm and is angled to be 45 degrees below the horizontal.  

Multi-touch Software Design  

The Multi-touch Software operates by means of three essential algorithms: 2D Location Tracking, 

Touch Determination, and Windows Touch Injection. In order to develop the necessary algorithms 

using the Leap Motion Controller, we first need to understand how the Leap Motion Controller 

detects hand movements and what type of data it produces. The Leap Motion Controller has an 

array of IR diodes that emit IR light towards objects in front of it and detects those objects using 

two IR cameras. By having a fixed distance between the two cameras, the Leap Motion Controller 

can then calculate a 3D location for the object derived from the small discrepancy in object 

location seen by each IR camera. Figure 9 illustrates how the Leap Motion Controller’s 3D 

coordinate system looks like. 
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Figure 9 – Leap Motion Controller 3D coordinate system 

 

The Leap Motion Controller is able to actively track up to ten fingertips and output a set of 

coordinates for each finger. Using the coordinate data, our algorithms will determine whether or 

not a touch has occurred, as well as the location of each touch in the Windows 8.1 OS screen 

coordinates. 

In order to translate the positional information of the fingertips received by the Leap Motion 

Controller into Windows touch inputs, we will write a Windows 8.1 background application for this 

task. In following Object-Oriented design principles, we will be ensuring maintainability, reliability 

and quality of the background application. This application will consist of three classes: the Leap 

Motion Controller class, the Main class and the Listener class.  

The Leap Motion Controller class is used to establish the connection between the Windows 8.1 OS 

and the Leap Motion Controller and will initialize the state of the Leap Motion Controller. It will 

also give the user a warning if the Leap Motion Controller is not connected to the device. 

The Main class first creates an instance of the controller class and passes in all the necessary flags 

to initialize the states of the controller class. Afterwards it creates an instance of the listener class 

and attaches it to the controller. Once this is done, the application now is able to constantly 

receive data from the Leap Motion Controller, and process and performs actions through the 

execution of instructions inside the listener class. 

The Listener class handles and processes all the data coming from the Leap Motion Controller. All 

functions implemented in this class will be called constantly upon receiving new positional data 

from the Leap Motion Controller. There are three major algorithms implemented in this class: the 

2D Location Tracking Algorithm, the Touch Determination Algorithm, and Windows Touch Injection 

Algorithm. 

2D Location Tracking Algorithm  

The goal of this algorithm is to allow the system to be constantly aware of the real time 2D 

location of multiple fingers on or above the projection surface. This is done through the use of the 

Skeleton Model and the Bounding Box Detection Model provided in the Leap Motion SDK. As 
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shown in Figure 10, when the Leap Motion Controller is placed on a flat surface with detection 

side facing upward, the most sensitive detection range forms a virtual 3D box; we will refer to this 

as the bounding box. Upon receiving the 3D positional values of the fingers, the application 

creates this bounding box and normalizes all the positional values into the range of 0 to 1. It then 

goes through a recalibration process so that the application can adjust the bounding box size and 

renormalize the values according to the required projected screen size. Thus, by multiplying these 

normalized values with our screen dimensions, the application is able to map the position of the 

hand to its corresponding screen pixels in real time. In combining the Bounding Box Detection 

Model and Skeleton Model shown in Figure 11, the application is able to track up to 10 fingers 

simultaneously with very low latency. 

 

Figure 10 – Visualization of the Bounding Box Model in the Leap Motion SDK 
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Figure 11 – Skeleton Model for Real-Time Multi-Finger Tracking 

Given that the Bounding Box Detection Model provided in the Leap Motion SDK was designed to 

function while the Leap Motion Controller is facing vertically upward, the Bounding Box Detection 

Model must be changed in order to work with the Leap Motion Controller facing 45 degrees below 

the horizontal.  With the Leap Motion Controller mounted at the 45-degree configuration with 

axes as shown in Figure 12, when a finger moves along the projection surface from left to right, it 

moves along the x-axis.  When a finger moves up and down along the projection surface, it is 

essentially moving only along the y-axis. This is because there is no need to calculate the height of 

the finger when determining its corresponding 2D coordinates in the Windows 8.1 OS.  

Theoretically, either the y-axis or the z-axis can be used, however after experimenting with the 

Leap Motion Controller it was apparent that the Leap Motion Controller’s z-axis was not as 

sensitive as the y-axis. Thus the y-axis was chosen for our algorithm.  

 

Figure 12 – 3D coordinate system of the Leap Motion Controller 
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In order to determine the exact coordinates of the projected screen, an initial calibration process 

of the Bounding Box Model is necessary. This is done by touching the four corners of the projected 

screen and mapping these to the four bounding corners of the Operating System’s screen. The 

Bounding Box Model will then go through the recalibration process as previously described.  Once 

the Bounding Box is calibrated, the application will be able to extract the hand and finger 

positional values from the Leap Motion Detection Frames by calling upon methods provided in the 

Leap Motion SDK. 

For each touch event, an (𝑥, 𝑦) coordinate value is retrieved from the Leap Motion Controller. Let 

the Leap Motion Controller be h cm above ground, these values must then be corrected to 

account for the 45-degree tilt, resulting in a new positional (𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 , 𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) value: 

𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑥                                                                 (8) 

𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑦 ∗ cos (
𝜋

4
) +

ℎ

tan(
𝜋

4
)
                                              (9) 

The four coordinates of the projected screen will be represented as follows: Let (TLx, TLy) 

represent the top left corner coordinate, let (TRx, TRy) be the top right corner coordinate, let (BLx, 

BLy) be the bottom left corner coordinate, and let (BRx, BRy) be the bottom right corner 

coordinate.  The mapped x and y coordinates (Mx, My) for the new orientation can then be 

calculated by taking the previously corrected x and y values, which have values between 0 and 1, 

and scaling them based on the four corner coordinates: 

𝑀𝑥 =
(𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑−𝑇𝐿𝑥)

𝑇𝑅𝑥−𝑇𝐿𝑥
                                                         (10) 

𝑀𝑦 =
(𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑−𝑇𝐿𝑦)

𝐵𝐿𝑦−𝑇𝐿𝑦
                                                         (11) 

Finally the algorithm will feed the constant stream of (Mx, My) into the operating system during a 

touch event. 

Touch Determination Algorithm 

The primary function of the Touch Determination algorithm is to differentiate whether a finger is 

touching the surface. Since the Leap Motion Controller is mounted at an angle of 45 degrees 

below horizontal, the controller’s 3D coordinate system is also offset by 45 degrees in respect to 

the surface. As a result we cannot determine a touch solely on whether the fingertip crosses a 

specific coordinate along the z-axis. Nevertheless we figured the projection surface can be 

represented by a 3D plane, such that the touch action can be recognized by checking if the finger 

location satisfies the constructed plane equation. An illustration of how we can construct a plane 

is shown in Figure 13. 



 

19 
 

 

Figure 13 – Cross product illustration 

This algorithm operates on the same set of positional values used by the 2D location tracking 

algorithm, but instead makes use of the coordinates in all three dimensions. Using three points 

along the projection surface, a plane equation is generated by means of the following equations: 

Let 𝒑𝟏̇, 𝒑𝟐̇ and 𝒑𝟑̇ be the 3D positional values of the three points along the projection surface and 

𝒗𝟏̇, 𝒗𝟐̇ be the vectors formed by the three points, such that: 

𝒗𝟏̇ = 𝒑𝟏̇ − 𝒑𝟐̇                                                             (12) 

𝒗𝟐̇ = 𝒑𝟏̇ − 𝒑𝟑̇                                                             (13) 

The normal vector, 𝒏̇, of the corresponding plane can be calculated by taking the cross product of 

𝒗𝟏̇ and 𝒗𝟐̇: 

𝒏̇ = 𝒗𝟏̇  ×  𝒗𝟐̇,                                                            (14) 

Using the normal vector, the plane equation can be constructed by taking the dot product: 

𝒏̇ ⋅ (𝒑̇ −  𝒑𝟏̇) = 0,                                                        (15) 

where 𝑝 =  (𝑥, 𝑦, 𝑧). 

Once the plane equation is generated, continuous input of the fingertip’s x, y, and z coordinates 

will produce a resulting product. Depending on the value of the product, the algorithm will 

determine whether the fingertip is below the plane, on the plane, or above the plane. As a result, 

we can accurately and reliably determine if a touch has occurred. Once a finger touch is 

determined, the function will call the Windows Touch Injection Function with the mapped x and y 

coordinates (Mx, My) and trigger a Windows touch event. 

Windows Touch Injection Algorithm 

This algorithm takes in the real-time mapped coordinates (Mx, My) as arguments once a finger 

touch is determined and multiplies them by the screen width, screen height, and pixel density to 

get the corresponding pixel area in the Windows OS. It then calls the touch injection API from the 
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Windows library to trigger a touch event. The touch injection API can set the touch strength, 

affected area of the event, number of touch, as well as the event type. Based on the functions 

provided with the API, we will implement the following touch gestures in our proof-of-concept 

model: single tap, double tap, tap and hold, and drag.  

The single tap and double tap gestures can be implemented simply by calling the 

InjectTouchInput() method. The number of taps is equal to number of touches the application 

detects in a very short time interval, the default value being one second for our prototype. 

The tap and hold gesture can be implemented through the usage of a timer object. When the 

position of the finger satisfies the plane equation for more than two seconds, the application will 

issue a tap and hold event flag. This flag tells the touch injection API to change into hold mode 

which blocks out any tap gestures until the finger is lifted. The application can then keep calling 

the InjectTouchInput() method in a loop until the finger is lifted up from the projection surface. 

Based on the occurrence of a tap and hold event, the drag gesture can be implemented by 

constantly grabbing the positional values from the Leap Motion Controller and updating the real-

time mapped coordinates (Mx, My) inside the loop. 
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   4.2 Physical Design 

  4.2.0 General Device Design 

The physical design comprises of the mechanical case and the electrical components of the 

LumenX3. In order to demonstrate our innovative screen projection and touch gesture recognition 

product features as part of a mobile computing device, we aim to make our physical design both 

functional and aesthetically pleasing. The physical design will have to integrate the various 

subsystems and components, provide a robust structural enclosure and most importantly, realize 

the height and placement requirements of our Pico Projector and Leap Motion Controller.  

In our original vision for the LumenX3, the entire device was meant to resemble a compact and 

seamless cube. The user would be able to use the device anywhere a flat surface can be found and 

conveniently transport it much more securely than a similar computing device with a glass screen. 

However, as we investigated the physical and technological constraints behind projection and 

touch gesture detection, the proof-of-concept design evolved to accommodate the height, 

positioning, logistic and opening requirements of our system. In our proof-of-concept model, the 

foremost priority is to demonstrate functionality; the miniaturization of the device will follow in 

subsequent prototypes and market ready versions.  

In order to preserve functionality, the physical placement and spacing of our hardware 

components is critical. As explained previously, the Pico Projector must be at a height of 29 cm 

and projecting downward at an angle of 60 degrees to produce a useable screen of 8.5 inches 

diagonally and 80% viewable area in focus. In addition, the Leap Motion Controller has a 

maximum detection range of 30cm in which the screen must stay within to detect gestures.  

Through our testing, we figured the optimal detection angle to be 45 degrees below horizontal in 

combination with a height of 10cm. This configuration maximizes the detection area of the 

projected screen, guarantees detection accuracy and prevents interference between either 

component. 

In accordance with the General Device Requirements 4.2.0, Mechanical Case Design 4.2.1 and 

Electrical Design 4.2.2 from our functional specifications, our physical design incorporates the 

following considerations. First and foremost, the mechanical case serves as the exterior point of 

contact with users. It has to enclose and secure all components in each of our subsystems as we 

are developing with off-the-shelf parts. The case will take the shape of a rectangular prism, based 

off on our original design, for strong structural integrity and ease of component placement.  

Furthermore, to accommodate the angle and height at which the Pico Projector needs to project a 

suitable screen, the case must support or be compatible with a rising mechanism that can achieve 

the required height. The internal spacing of the device must be large enough to successfully 

position all components for proper functioning. Physical connections between the various 

hardware components as well as electrical cables for power will need to fit. In addition, the case 

must have openings through which the projection and hand tracking can physically occur through 

the case of the device.  
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Finally, the portability and aesthetics concerns of the physical design greatly influences design 

aspects like the dimensions of the device, the case material, and the operational interface 

presented to the user. We will be using the rapid prototyping technique of 3D printing to realize a 

durable and functional case with the aesthetics of a professionally produced consumer product.  

The various design decisions taken into consideration and subsequent implementations for the 

proof-of-concept device are detailed in the following sections. All of our design and modelling are 

done in CAD SketchUp [9] in preparation for 3D printing, where the units of measurements are in 

millimeters (mm). 

  



 

23 
 

  4.2.1 Mechanical Case Design 

Overview 

From our developmental testing and experiments with the Pico Projector and Leap Motion 

Controller, we found operational requirements that optimize the projected screen size, detection 

accuracy and sensor range. From the component placement and case design point of view, the 

requirements simplify to the following: the bottom-most of the Pico Projector must be at a height 

of 29 cm above the surface, and the Leap Motion Controller must be separated from the Pico 

Projector by 5 cm. In order to reconcile these requirements with the dimensions of the 

components themselves and the desire for minimization of dimensions, we implement a two-shell 

design that uses the case itself as the rising support for the Pico Projector.  

The case is separated into two shells, where the inner shell can be raised up to our desired height 

interpedently from the outer shell. Therefore two states are possible with our device: a portable, 

Compact Mode with half the height of the higher Projection Mode. The user will be able to switch 

to the Compact Mode when the device is not being used for maximum portability. These two 

functional modes are illustrated in the following images. 

 

Figure 14 – Mechanical Case in Projection Mode 
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Figure 15 – Mechanical Case in Compact Mode 

As seen from the models, our device is anticipated to have dimensions: width of 14.6 cm, length of 

20.2 cm, and a height of 23.8 cm in its portable state and 44.6 cm in its projection mode. The 

entire case will be printed as three separate pieces for easier construction: the outer shell, the 

inner shell and the base. In addition, stands for the Pico Projector and the Leap Motion Controller, 

the handle on top and the locking mechanism will be printed separately and attached at the end. 

A render of the case with the out shell moved to the side and compared with the inner shell is 

shown in Figure 16. The shells each have a wall thickness of 3 mm for optimized 3D printing 

stability and strength.  
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Figure 16 – Comparison of two shells 

Component Placement 

With the capability of the CAD software we are able to model our components to their exact 

specifications and have incorporated their placements within the device with our models. We 

have also considered the addition of cables and USB connections to and from the hardware 

components. This is represented as rectangular prisms connecting to the main bodies of the 

components. The isometric view, as shown in Figure 17, gives a broad view of all the major 

components including the Pico Projector, the Leap Motion Controller, the MeegoPad T01 and the 

Arduino Uno. All components are shown in the portable state of the device, allowing room for the 

interconnections of USB’s and cables, as well as electrical adapters and the USB hub.  
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Figure 17 – Isometric view of internal component placement 

The interior component placement also satisfies the requirement of the 5 cm spacing between the 

Pico Projector and the Leap Motion Controller, as seen in the parallel projection right rendering 

following, as well as the 29 cm height requirement of the projector, seen in the following Figures 

18 and 19.  

 

Figure 18 – Realization of 5 cm separation between Leap Motion Controller and Pico Projector 
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Figure 19 – Realization of 29 cm height requirement of Pico Projector 

The Leap Motion Controller will be attached to a stand to the base via a triangular cylindrical 

stand, offering the 45 degrees and 10 cm height requirements for the Controller’s positioning. 

Similarly, the Pico Projector is anchored to another triangular attachment from the top of the 

inner shell, providing a 60 degrees tilt. This attachment will also contain openings for access to the 

power button of the projector.  

The Pico Projector, the Leap Motion Controller, and the Arduino Uno will all be attached to the 

inner wall of the inner shell at the top, and move with the height changes initiated by the user. 

The power adapters, extension power bard, USB hub and additional wiring and cables will remain 

at the bottom of the case, securely attached to the base. An opening for the electrical outlet cord 

and plug is at the back of the device. These placements are seen in Figure 20 below. 
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Figure 20 – Internal placement of components in Projection Mode 

Case Function Realization 

To facilitate the capability to change height as required by the case design, the two shells will be 

separated by a minimum distance allowing the inner shell to slide up and down. The user can use 

the handle on top of the inner shell to pull it up. In order for the case to remain stable in either of 

its two states, a locking mechanism comprised of a spring-loaded button is available for the user 

to activate at the bottom and top of the device. The buttons are the rectangular protrusions seen 

on the bottom right and left sides of the case, seen in Figure 21. 

 

Figure 21 – Bottom view of inner shell with corner springs and button 
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From the Compact Mode, the user pushes in the two buttons into the device, past the outer shell, 

causing the inner shell to pop up due to additionally loaded springs on the bottom four corners. 

The springs initiate the rising mechanism without user intervention. The buttons will no longer 

protrude from the openings in the outer wall, and instead move along the inner shell as the inner 

shell becomes free to move. A handle attachment on the top of the inner shell provides and 

physical extension by which the user can lift the inner shell. The handle is designed to 

accommodate most user hand sizes and attaches to middle for stable rising actuation. Once the 

user reaches the height of the Projection Mode, the aligned button will pop out again from the 

openings at the top of the out shell, locking the two shells together once more.  

The locking mechanism was designed with stability and ease of use in mind. With a width of 6 cm 

and height of 1 cm, the button is meant to act as a physical bar preventing rotation and pivoting of 

the two shells, especially in the projection mode. The spring-loaded push operation improves user 

experience by presenting an intuitive and familiar operation found in everyday life. Compared with 

other methods, the push button operation reduces the number of user steps as well as securely 

stabilizes the mechanical locking. Close up views of the button and the well that it sits in, with 

resting and pushed-in state, are shown below, respectively. 

 

Figure 22 – Button in extended configuration 
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Figure 23 – Button in compressed configuration 

The user can interact with the casing and rising mechanism by pushing in the two buttons as 

depicted in Figure 24, then pulling up the inner shell as in Figure 25. 

 

Figure 24 – Visualization of button press by user 
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Figure 25 – Visualization of user pulling up the inner shell 

 

Due to the nature of optical projection and infrared sensing, openings have to be made on the 

case for the projection and detection to occur without blockage. The two-shell design maximizes 

the area of exposure in the projection mode, while minimizing the openings in the portable state. 

In additional, in order to provide the user with USB ports, two openings are present near the 

bottom of the device The frontal view of the device giving the dimensions of the openings in the 

projected state are shown next. 
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Figure 26 – Front view of openings in Projection Mode 

Additionally, openings for access to internal components and openings for System Status Indicator 

LED’s are present near the top left of the inner shell. The user requires access to the power 

buttons of the Pico Projector and the MeegoPad T01, which will be facilitated through a physical 

extension to the outside of the top of the case. The two circular openings seen behind the handle 

serves as the access points. The LED openings are located on the top left corner on the front side 

of the inner shell and provide through-holes for the light indication of system status. A close-up of 

the top inner shell is shown below.  

 

Figure 27 – Top view of inner shell showing openings to power controls and LED’s  
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Other Designs 

Various other designs that satisfy the height and placement requirements of our device also exist 

in terms of the rising support, the locking mechanism and the case material. To facilitate a height 

increase, support poles connecting the Pico Projector can be attached to a base. This approach 

may offer a more stable height increase without the need for locking, but does not completely 

enclose the internal components and exposes wiring or cables. Locking mechanisms using a pull-

out hook can be easier to implement. However, as we found out in our cardboard mock-up, a 

single pivot point does not guarantee the stability required for projection. A scissor lifting 

mechanism offers the best accuracy and stability, but relies on separate moving parts and takes up 

critical internal spacing needed by other components. In terms of case material, we have also 

considered using cardboard, paper mache and modelling plywood should 3D printing prove to be 

too difficult, impractical or expansive to use. However, as 3D printing most commonly use plastic 

as its printing material, the strength and rigidity achieved with plastic combined with the accuracy 

afforded by 3D printing makes it an ideal rapid prototyping process. 

  4.2.2 Electrical Design 
The electrical design for our proof-of-concept device mainly concerns the powering of each of our 

subsystems and hardware components. The main priority is to interconnect the Pico Projector, the 

Leap Motion Controller, the MeegoPad T01 and the Arduino Uno within the confines of our case 

and power the entire system using a single unified power bar.  

Both the Pico Projector and the MeegoPad T01 requires its own specific AC-DC adapter for power. 

These will be plugged into a mini extension power bar with a single cable outlet. The user can then 

use the single extension cord to plug-in the device, fulfilling the requirements for using the North 

American standard off wall 100-240V at 50-60 Hz AC.  The USB hub used to provide additional USB 

ports will provide power in addition to facilitating communication for the Arduino Uno. The LED’s 

required for the System Status Indicator will directly obtain its power from the Arduino Uno 5V 

and GND ports.   
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 5.0 Test Plan 

    General Testing 

      The following are a list of tests we will be running on the LumenX3 device to ensure proper 

functionality and compliance with all IEEE standards we are following ( [7], [10], [11], and [12]). 

 

Test Case 01 – Lifting the Mechanical Case from Compact Mode to Projection Mode 

Actions/Steps Expected Result Test Result (Pass/Fail) 

1. With the LumenX3 on 

a flat and stable surface, 

push the buttons on the 

left and right sides of 

the box simultaneously 

- Inner box rises slightly 

- Side buttons do not pop back out 

 

2. Pull the handle at the 

top of the LumenX3 

upwards 

- Inner box slides upward with little effort and 

does not tilt in any direction 

 

3. Continue raising the 

handle until the device 

locks into its taller 

Projection Mode 

- Inner box slides upward until at the Projection 

Mode height (projector should be 29cm above 

the surface) 

- Once at Projection Mode height, the side 

buttons automatically pop out from the upper 

holes 

 

4.  Push or pull the 

handle upwards or 

downwards 

- Device should not move at all and should be 

stable 

- Inner box should not slide 

- Side buttons should not pop inward  

 

 

Test Case 02 – Compressing the Mechanical Case from Projection to Compact Mode 

Actions/Steps Expected Result Test Result (Pass/Fail) 

1. With the LumenX3 on 

a flat and stable surface, 

push the buttons on the 

left and right sides of 

the box simultaneously 

- Inner box slides down gracefully, but does not 

reach Compact Mode height 

- Side buttons do not pop back out of the case  

 

2. Push the handle at 

the top of the box down 

until the device locks 

into Compact Mode 

- Inner box slides downward until at Compact 

Mode height, some resistance felt but still quite 

easy to lock into place 

- Once at Compact Mode height, the side 

buttons automatically pop out from the lower 

holes 
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3.  Push or pull the 

handle upwards or 

downwards 

- Device should not move at all and should be 

stable 

- Inner box should not slide 

- Side buttons should not pop inward 

 

 

 

Test Case 03 – Powering on the LumenX3 

Actions/Steps Expected Result Test Result (Pass/Fail) 

1. Plug the power plug 

of the LumenX3 into a 

power source   

- LED light on LumenX3 turns on, and shines a 

red colour, indicating the computer is off 

 

2. Raise the device to 

Projection Mode  

- Device locks into projection mode (similar to 

Test Case 01 results) 

 

3. Press the projector’s 

power button on the 

top of the LumenX3 

- Projector turns on and a blank projection is 

seen on the tabletop surface  

 

4. Press the computer’s 

power button on the 

top of the LumenX3 

- LED light on LumenX3 turns from red to green 

light 

- MeegoPad T01 computer turns on, and the 

Windows Operating System screen is seen in the 

projection 

 

 

 

Test Case 04 – Powering off the LumenX3 (Method 1 – Software Shut Down) 

Actions/Steps Expected Result Test Result (Pass/Fail) 

1. With the LumenX3 

powered on and in its 

Projection Mode, turn 

off the computer from 

within the Operating 

System software 

- LED light on LumenX3 turns from green to red 

light, indicating the computer is off 

- Projection shows Windows 8.1 OS shutting 

down, and eventually becomes a blank 

projection screen 

 

2. Press the projector’s 

power button on the 

top of the LumenX3 

- Projection turns off completely  

3. Transform the 

LumenX3 from 

Projection Mode to 

Compact Mode 

- Device locks into Compact Mode (similar to 

Test Case 02 results) 

 

4. Unplug the power 

cord from the power 

source 

- LED light turns off, no light emitted from the 

LumenX3 
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Test Case 05 – Powering off the LumenX3 (Method 2 – Force Shut Down] 

Actions/Steps Expected Result Test Result (Pass/Fail) 

1. With the LumenX3 

powered on and in its 

Projection Mode, press 

and hold the 

computer’s power 

button on the top of the 

LumenX3 for 8 seconds 

- LED light on LumenX3 turns from green to red 

light after 8 seconds, indicating the computer is 

off 

- Projection immediately changes from 

projecting Windows to a blank projection after 8 

seconds 

 

2. Press the projector’s 

power button on the 

top of the LumenX3 

- Projection turns off completely  

3. Transform the 

LumenX3 from 

Projection Mode to 

Compact Mode 

- Device locks into Compact Mode (similar to 

Test Case 02 results) 

 

4. Unplug the power 

cord from the power 

source 

- LED light turns off, no light emitted from the 

LumenX3 

 

 

Test Case 06 – Case Stability 

Actions/Steps Expected Result Test Result (Pass/Fail) 

1. Plug the power plug 

of the LumenX3 into a 

power source   

- LED light on LumenX3 turns on, and shines a 

red colour, indicating the computer is off 

 

2. Tilt the LumenX3 from 

side to side 

- All inner components should remain in their 

place and all connections should remain intact  

- Inner case and buttons should remain in their 

same positions  

 

3. Raise the device to 

Projection Mode  

- Device locks into projection mode (results as in 

Test Case 01) 

- Inside the case, all inner components are still 

in their original locations 

 

4. Press the projector’s 

power button on the 

top of the LumenX3 

- Projector turns on and a blank projection is 

seen on the tabletop surface  

 

5. Press the computer’s 

power button on the 

top of the LumenX3 

- LED light on LumenX3 turns from red to green 

light 

- MeegoPad T01 computer turns on, and the 

Windows Operating System screen is seen in  

the projection 
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6. Tilt the LumenX3 from 

side to side 

- All components should remain in their place 

- Inner and outer case should not move 

respective to each other 

- Buttons remain locked in the upper holes 

 

7. Use the LumenX3 like 

a typical content 

consumer 

- Verify that every component has remained the 

same 

- Projection has not have moved or tilted and is 

still projecting the computer screen in correct 

proportions 

- Touch remains as accurate as it was before 

tilting the device 

- Windows 8.1 OS continues to be fully 

functional 

 

8. Turn off the 

computer from within 

the Operating System 

software 

- LED light on LumenX3 turns from green to red 

light, indicating the computer is off 

- Projection shows Windows 8.1 OS shutting 

down, and eventually becomes a blank 

projection screen 

 

9. Press the projector’s 

power button on the 

top of the LumenX3 

- Projection turns off completely  

10. Transform the 

LumenX3 from 

Projection Mode to 

Compact Mode 

- Device locks into Compact Mode with the 

same amount of ease as in Test Case 02 results 

- No cables or components have displaced, 

interfering with the compression of the case 

 

11. Unplug the power 

cord from the power 

source 

- LED light turns off, no light emitted from the 

LumenX3 
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In the following Projection and Touch Test Plans, each set of tests will assume that the other   

subsystems have passed their own tests and are working as intended. 

 

     Projection Testing: 

Test Case 07 – General Projection Functionality Test 

Actions/Steps Expected Result Test Result (Pass/Fail) 

1. With the LumenX3 

powered on and in its 

Projection Mode, use 

the LumenX3 as if the 

projection was a 

capacitative 

touchscreen of a 

Windows 8.1 computer 

- The projected computer screen is always 

proportionate, with the rest of the projection 

always a black colour 

- No part of the computer screen is cut off in the 

projection 

- Corrected computer screen within the 

projection is a constant rectangle of size 

18.53cm by 10.10cm 

- Projected Windows 8.1 OS screen has 

extremely minimal delay never rising beyond 0.1 

seconds 

 

 

Test Case 08 – Projection Resolution Test 

Actions/Steps Expected Result Test Result (Pass/Fail) 

1. With the LumenX3 

powered on and in its 

Projection Mode, open 

the Screen Resolution 

page in the Control 

Panel of the Windows 

8.1 OS and view 

available resolutions 

- Only 1280 x 720 is shown as the sole available 

resolution, in Landscape Orientation, on Display: 

1. MStar Projector 

 

 

Test Case 09 – Projection Clarity Test 

Actions/Steps Expected Result Test Result (Pass/Fail) 

1. With the LumenX3 

powered on and in its 

Projection Mode, open 

a text editor and display 

words of size 9, 10, and 

11 font 

- Size 9 font words and larger are easily readable 

without straining the eyes 
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Test Case 10 – Projection Accuracy Test 

Actions/Steps Expected Result Test Result (Pass/Fail) 

1. With the LumenX3 

powered on and in its 

Projection Mode, open 

a text editor, bring up 

the on-screen keyboard 

and type words at 

20wpm 

- All letters tapped by the user are accurately 

shown to be typed onto the screen in the 

correct order 

 

 

Test Case 11 – Projection Stress Test 

Actions/Steps Expected Result Test Result (Pass/Fail) 

1. With the LumenX3 

powered on and in its 

Projection Mode, open 

a text editor, bring up 

the on-screen keyboard 

and type words at 

20wpm 

- All letters tapped by the user are accurately 

shown to be typed onto the screen in the 

correct order 
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    Touch Test Plan 

Test Case 12 – Touch Performance Test 

Actions/Steps Expected Result Test Result (Pass/Fail) 

1. With the LumenX3 

powered on and in its 

Projection Mode, tap on 

a large Windows 

desktop icon 

- Large Windows desktop icon is easily pressed 

without much precise effort by the user 

 

2. Tap on a large 

Windows taskbar 

program 

- Large Windows taskbar program is easily 

pressed without much precise effort by the user 

 

3. Open a text editor, 

bring up the on-screen 

keyboard and type 

words at 20wpm 

- No characters are dropped, all letters correctly 

tapped by the user are accurately shown on the 

screen in their correct order 

 

 

Test Case 13 – Tap Gesture Test 

Actions/Steps Expected Result Test Result (Pass/Fail) 

1. With the LumenX3 

powered on and in its 

Projection Mode, tap 

the centre of the screen 

- Tap gesture visibly seen in the centre of the 

Windows 8.1 OS screen in the projection, and 

the OS reacts to the tap event 

 

2. Tap each of the four 

corners of the 

projection 

- All four tap gestures visibly seen at their 

respective corners of the Windows 8.1 OS 

screen in the projection and the OS reacts to 

each tap event 

 

 

 

Test Case 14 – Double Tap Gesture Test 

Actions/Steps Expected Result Test Result (Pass/Fail) 

1. With the LumenX3 

powered on and in its 

Projection Mode, 

double tap the centre of 

the screen 

- Double tap gesture visibly seen in the centre of 

the Windows 8.1 OS screen in the projection, 

and the OS reacts to the tap event 

 

2. Double tap each of 

the four corners of the 

projection 

- All four double tap gestures visibly seen at 

their respective corners of the Windows 8.1 OS 

screen in the projection and the OS reacts to 

each double tap event 
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Test Case 15 – Tap and Hold Gesture Test 

Actions/Steps Expected Result Test Result (Pass/Fail) 

1. With the LumenX3 

powered on and in its 

Projection Mode, tap 

and hold the centre of 

the screen 

- Tap and hold gesture visibly seen in the centre 

of the Windows 8.1 OS screen in the projection 

- OS reacts to the tap and hold event by 

registering it as a right click 

 

2. Double tap each of 

the four corners of the 

projection 

- All four tap and hold gestures visibly seen at 

their respective corners of the Windows 8.1 OS 

screen in the projection  

- OS reacts to each double tap event as right 

click events 

 

 

 

Test Case 16 – Drag Gesture Test 

Actions/Steps Expected Result Test Result (Pass/Fail) 

1. With the LumenX3 

powered on and in its 

Projection Mode, drag a 

finger across the screen 

- Drag gesture visibly seen on the Windows 8.1 

OS screen in the projection 

- OS reacts to the drag event 

 

2. Drag a Windows 

desktop icon to the 

right side of the screen 

and continue dragging 

finger into the black 

projection border 

- Drag gesture registered by OS and Windows 

desktop icon moves to the right, letting go once 

the finger has reached the border of the screen 

 

3. Drag a finger from 

outside the right side of 

the screen in toward 

the centre of the screen 

- OS begins registering the drag gesture once 

the finger reaches the border of the screen 

- Windows 8.1 OS reacts to this gesture by 

displaying the Charms Bar on the right side of 

the screen 
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 6.0 Conclusion 
The LumenX3 is a new addition to a consumer’s smart device portfolio. It is designed with collaboration 

and portability in mind by utilizing projection instead of having a physical screen. Consequently, we must 

also employ a fingertip tracking method by means of infrared cameras. As a result of all these innovative 

approaches to redefine how a user can interact with a smart device, more hardware space is now 

available for greater computing power meanwhile keeping the LumenX3 as a portable device one can 

bring anywhere. 

The design specification clearly defines solutions to meet the functional specification of the LumenX3.  

Development of the device has taken place in two distinct phases, modular development and system 

integration. To ensure the product quality, a testing procedure will be employed in multiple stages in 

compliance with the IEEE testing standard. The development of the proof-of-concept model is in the 

integration stages while complying with all proof-of-concept requirements outlined in the functional 

specification document (marked with P1). The anticipated delivery date of the proof of concept model 

will be the end of April 2015. 
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