RexoGrip

AN ACTIVE HAND REHABILITATION DEVICE

The Rexos Team

Anton Khomutskiy (Chief Financial Officer)

Conceptual Hardware Design

Joshua Law (Chief Operations Officer)

Documentation and Electronics

SeungJun(John) Lee (Chief Risk Officer)

Conceptual Hardware Design

Tony Lee (Chief Executive Officer)

• Documentation, Software, and Electronics

Doug Tao (Chief Technology Officer)

Prototype Hardware Design

Outline

Motivation

- Teammate's parent experienced a stroke
- Post-stroke symptoms include weakness in hand
- Design a device to help with grip strength

Market Target

- Worldwide rehabilitation robot market size at \$43.3 million is expected grow dramatically to reach \$1.8 billion by 2020. Market growth is a result of the effectiveness of robotic treatment of muscle difficulty. [1]
- Rehabilitation treatment for all patients with injuries or physical function damage
- Assist with this task in multiple ways by using hands
- Move more freely in each finger directions problem for stroke and nerve damage patient

Competition and Existing Solutions

SAEBOGLOVE [2]

Passive device

Hand therapy

Applies tension to the hand as client closes hand

Competition and Existing Solutions cont'd

FESTO EXOHAND [3]

Hand force amplification

Pneumatic actuators

Non-Commercial product

Complex design

Competition and Existing Solutions cont'd

EMG-DRIVEN EXOSKELETON HAND [4]

The Hong Kong Polytechnic University, Hong Kong, China

Electromyography (EMG)

Linear actuators

Competition and Existing Solutions cont'd

BILATERAL THERAPEUTIC HAND DEVICE [5]

University of Technology, Sydney, Australia

Requires control glove

Flex sensors in control glove

Bulky linear actuators

Conceptual Design

- Average grip force per finger is around 4N [6]
- Servo motor provides sufficient force to grip
- One motor per finger, the force is applied to the middle joint

REXS

Electronics: Overview

Electronics: Microcontroller

Arduino Uno R3

12 Digital Pins

Pin	Purpose	Pin	Purpose
2,4	Middle Sensor	3	Index Motor
5,6	Ring Sensor	10	Middle Motor
7,8	Pinky Sensor	11	Ring Motor
12,13	Index Sensor	12	Pinky Motor

Electronics: Power Supply

Arduino

On/Off Switch

9V battery

Motors and Sensors

On/Off Switch

6V from four AA batteries

Software

Start-up Sequence

• Default Motor Positions

Finger Sensors

- Push Switches
- Individually Controlled

Financials

Category	Budgeted Cost	Actual Cost	Change
Microcontroller			
Motor			
Material			
Power			
Switches			
3D Printing			
Total			

Financials

Category	Budgeted Cost	Actual Cost	Change
Microcontroller	\$ 85.00		
Motor	\$ 425.00		
Material	\$ 100.00		
Power	\$ 140.00		
Sensors	\$ 10.00		
3D Printing	\$ 300.00		
Total	\$ 1,060.00		

Financials cont'd

Category	Budgeted Cost	Actual Cost	Change
Microcontroller	\$ 85.00	\$ 79.98	
Motor	\$ 425.00	\$ 446.22	
Material	\$ 100.00	\$ 144.01	
Power	\$ 140.00	\$ 47.26	
Sensors	\$ 10.00	\$ 4.14	
3D Printing	\$ 300.00	\$ 50.00	
Total	\$ 1,060.00	\$ 771.62	

Financials cont'd

Category	Budgeted Cost	Actual Cost	Change
Microcontroller	\$ 85.00	\$ 79.98	\$ 5.02
Motor	\$ 425.00	\$ 446.22	-\$ 21.22
Material	\$ 100.00	\$ 144.01	-\$ 44.01
Power	\$ 140.00	\$ 47.26	\$ 92.74
Sensors	\$ 10.00	\$ 4.14	\$ 5.86
3D Printing	\$ 300.00	\$ 50.00	\$ 250.00
Total	\$ 1,060.00	\$ 771.62	\$ 288.38

Financials cont'd

Category	Approximate Cost	
Microcontroller	\$ 45.00	
Motor	\$ 200.00	
Material	\$ 105.00	
Power	\$ 15.00	
Sensors	\$ 5.00	
3D Printing	\$ 50.00	
Total	\$ 420.00	

REXS

26

REX

REX

Future Plans

Prototype design

• 3D printing

Production Materials

- Cobalt Alloys: Stellite, Vitallium
- Ceramics: Boron Carbide
- Polymers: Polycarbonate, Polypropylene, Polysulfone

Reduced size of the enclosure

Lower profile

Pressure sensor

Acknowledgements

Many Thanks to:

- Instructors:
 - Dr. Andrew Rawicz
 - Steve Whitmore
- TAs:
 - Lukas-Karim Merhi
 - Hsui-Yang Tseng
 - Jamal Bahari
 - Mohammad Naghshineh
 - Mona Rahbar
 - Maryam Dehghani-Estarki
- Lab 1 Staff
- Todd Ablett (Gladstone Secondary School Technology Dept. Head)

Questions?

References

- [1] Report stack Research, [Online] Available: http://rehabrobotics.umich.edu/news/rehabilitation-robots-market-size-to-reach-1-8-billion-by-2020says-reportstack-research/
- [2] SaeboGlove, [Online] Available: http://www.saebo.com/products/saeboglove/
- [3] Festo Exohand, [Online] Available: http://www.festo.com/cms/en_corp/12713_12717.htm
- [4] EMG-Driven Exoskeleton, [Online] Available: http://products.iisartonline.org/products/81/papers/[Important]2011%20An%20EMGdriven%20exoskeleton%20hand%20robotic%20training%20device%20on%20chronic%20stroke%20subjects.pdf
- [5] Bilateral Therapeutic Hand, [Online] Available: http://www.intechopen.com/books/international_journal_of_advanced_robotic_systems/designand-development-of-a-bilateral-therapeutic-hand-device-for-stroke-rehabilitation
- [6] "External finger forces in submaximal five-finger static pinch prehension", [Online] Available: http://eadc.engr.wisc.edu/Web_Documents/external%20finger%20forces%20in%20submx.pdf
- [7] Tactile Push Switch, [Online] Available: http://www.rpelectronics.com/krs0612-5-push-button-tactile-switch-spst-off-on-0-05a-pcb-pins.html
- [8] Arduino Uno R3, [Online] Available: http://arduino.cc/en/main/arduinoBoardUno
- [9] HS 5085MG Servo Motor, [Online] Available: https://www.servocity.com/html/hs-5085mg_servo.html#.VS9opvnF8Z9