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Abstract
Motor-driven intracellular transport of organelles, vesicles, and other molecular cargo is a highly
collective process. An individual cargo is often pulled by a team of transport motors, with numbers
ranging from only a few to several hundred. We explore the behavior of these systems using a
stochastic model for transport of molecular cargo by an arbitrary number N of motors obeying
linear Langevin dynamics, finding analytic solutions for the N-dependence of the velocity,
precision of forward progress, energy flows between different system components, and efficiency.
In two opposing regimes, we show that these properties obey simple scaling laws with N. Finally,
we explore trade-offs between performance metrics as N is varied, providing insight into how
different numbers of motors might be well-matched to distinct contexts where different
performance metrics are prioritized.

1. Introduction

Living organisms are fundamentally out-of-equilibrium physical systems [1] characterized by sustained
spatial inhomogeneities. To maintain this nonequilibrium state, organisms must constantly consume energy
and transport material at several different lengthscales, including within individual cells. Intracellular
transport is achieved using a plethora of different methods including passive and active diffusion, advection,
ion pumps, and motor-driven transport [2]. These transport processes are characterized by unavoidable
stochasticity as well as the overdamped motion inherent to the low-Reynolds-number regime these systems
inhabit [3].

Motor proteins (also referred to as ‘transport motors’ or just ‘motors’) are integral components of
eukaryotic cells, with a wide range of functions including transport of large macromolecular cargo over
significant distances [4]. These motors transduce chemical energy, generally in the form of ATP, into net
mechanical motion in a preferred direction [5]. Indeed, motor proteins can be thought of and modeled as
nanoscale thermodynamic engines, whose behavior is characterized by stochastic mechanical and chemical
dynamics [6]. Individual transport motors can reach speeds as high as ∼8 μm s−1 [7] and make forward
progress while pulling against forces on the order of ∼6 pN [8]. Particularly well-characterized examples
include kinesin and dynein motors pulling vesicles along microtubules [9], and myosin motors pulling on
actin filaments to contract muscle tissue [10].

Motor proteins within cells often work collectively to transport large organelles such as mitochondria
[4, 11], or even chromosomes during mitosis and meiosis [12]. Experimental determination of the number
N of motors attached to a given cargo is generally challenging; nonetheless, recent studies have successfully
measured N by identifying discrete peaks in a distinctly multimodal velocity distribution [13, 14] for small
numbers of motors, or using more complex techniques such as quantitative immunoblots and
immunoelectron microscopy [11]. Experimental investigations both in vivo and in vitro have found widely
varying numbers N of motors coupled to a single cargo. In some cases, only a single motor [15] or a few
motors [13] per cargo is observed, but experiments have observed as many as 200 motors bound to large
organelles [11]. Likewise, in actomyosin filaments in muscle tissue, on the order of 100 motors are attached
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to each actin filament [16]. Collective-transport systems can also be engineered in vitro [17]; in this setting
the number of motors can be controlled more precisely, for example using DNA scaffolds [18, 19].

Simple phenomenological models for transport-motor dynamics (such as the classical linear
force–velocity relationship [15, 20]) has been extended to multiple motors, for example by assuming equal
load-sharing [13, 14]. These models provide a good first approximation to the dynamics of multi-motor
systems, and can be extended to include, for example, motor binding and unbinding kinetics [21, 22].
These types of models assume that the motors pull against a constant force, rather than the stochastic
frictional drag that would occur for a loosely coupled diffusive cargo. However, analysis of transport by
single motors has shown that pulling a diffusing cargo and pulling against a constant force lead to
qualitatively different transport behavior [23, 24]. Researchers have proposed and explored several
dynamical models for transport of diffusive cargo by multiple motors [25–30]. These approaches rely
primarily on numerical simulation, and as such are limited by computational resources to exploring systems
with relatively small numbers of motors.

In studying intracellular transport, an important goal is to understand how systems can be tuned to
improve performance. Relevant performance metrics vary based on the context, but may include cargo
velocity, rate of chemical energy consumption, transport efficiency, and precision [5]. The dependence of
these and other performance metrics on the number of motors is of clear interest, and has not yet been
systematically investigated.

In this article we introduce a simple, thermodynamically consistent, stochastic model for the collective
transport of diffusive molecular cargo by an arbitrary number N of motors. This model has a key advantage
over other recent theoretical and computational approaches: we can solve it analytically for arbitrary N,
allowing us to explore system behavior over many orders of magnitude of motor numbers. We derive
N-dependent expressions for several performance metrics, and explicitly calculate all thermodynamic
energy flows between different system components and thermal and chemical reservoirs. This allows us to
derive simple analytic expressions for efficiency both of the whole system and of individual motors. In two
opposing regimes we identify simple scaling laws that characterize the N-dependence of these properties.
Finally, we derive fundamental trade-offs among these performance metrics, thereby pointing to
design principles for collective motor-driven transport.

2. Model and theory

We consider a diffusive cargo coupled to N identical transport motors, with motion resolved in one
dimension. Each motor interacts only with the cargo via a molecular linker, and is characterized by a
mechanochemical cycle through which it transduces chemical power into directed forward motion. The
cargo undergoes Brownian motion subject to coupling forces from each motor via the respective linker.
Figure 1 illustrates the system.

We focus on the limiting regime in which the time evolution of the system is independent of the initial
conditions, which we call its steady state. Mathematically, the relevant limit is that the time greatly exceeds
the system’s longest relaxation time (t � τ relax). In our general discussion, we assume that this limit exists,
and that in the steady state, system properties such as the velocity, efficiency, energy flows and entropy
production all have well-defined constant average values. The specific model we introduce below satisfies
these assumptions.

2.1. Model
We model the cargo and motors as overdamped Brownian particles diffusing (with respective diffusivities
Dc and Dm) in a potential landscape. xc and xi describe the positions of the cargo and ith motor. For
mathematical simplicity we treat the cargo as a single point, but our model describes equally well (through
a linear change of variables) motors attached at different points to a rigid cargo. The system is isothermal
and in contact with a thermal reservoir at inverse temperature β ≡ (kBT)−1. We assume that both cargo and
motor dynamics satisfy the fluctuation–dissipation relation: the friction coefficients for the cargo (ζc) and
motors (ζm) are related to their respective diffusivities by βζcDc = 1 = βζmDm.

Each motor is subject to chemical driving due to nonequilibrium environmental concentrations of
molecules, often ATP, ADP, and phosphate, and further experiences an underlying periodic energy
landscape due to interactions with the substrate it walks along. To simplify the analysis, we assume that the
scale of this energy landscape (the heights of the barriers separating meta-stable states) are small compared
to the magnitude of the chemical driving. This leads to the motors experiencing a flat, downward-sloping
energy landscape, which can be thought of as a constant force fchem propelling each motor in a preferred
direction. We further assume tight coupling between chemical-energy consumption and forward motor
motion.
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Figure 1. Collective-transport system comprising a single diffusive cargo coupled to N (here N = 3) motor proteins moving
along a linear substrate. xc indicates the cargo position, and xi the position of the ith motor. Each motor experiences chemical
driving force fchem.

We model each linker coupling one motor to the cargo as a Hookean spring with zero rest length,
dominated by the along-filament displacement, thus with interaction potential Ui(xc, xi) = 1

2κ(xi − xc)2.
This is a common assumption in modeling approaches [24, 28] and experimentally well-supported for
kinesin linkers [31].

This model system dynamically evolves according to N + 1 coupled Langevin equations,

ẋc = βDcκ

N∑
i=1

(xi − xc) + ηc, (1a)

ẋi = βDm

[
fchem − κ(xi − xc)

]
+ ηi, i = 1, . . . , N. (1b)

Here ηc(t) and ηi(t) are independent Gaussian noises with means and variances

〈ηc(t)〉 = 0, (2a)

〈ηi(t)〉 = 0 (2b)

〈ηc(t)ηc(t′)〉 = 2Dcδ(t − t′), (2c)

〈ηi(t)ηj(t′)〉 = 2Dmδijδ(t − t′), (2d)

〈ηc(t)ηi(t′)〉 = 0. (2e)

Here δij is the Kronecker delta function and δ(t − t′) the Dirac delta function.
The single-motor dynamics (1b) produce average motion equivalent to the linear force–velocity relation

typically observed experimentally for kinesin motors under constant forces less than their stall force [15, 20]
(where most of our analysis takes place),

〈v〉 = vmax

(
1 − f

fs

)
, (3)

for stall force fs = fchem, maximum velocity vmax = βDm fchem, and force f = κ〈xi − xc〉 acting on the motor.

2.2. Thermodynamics
Our model is thermodynamically consistent, so we use the tools of stochastic thermodynamics [6] to
analyze the energy flows between various system components. Each subsystem (cargo or motor) exchanges
heat with a thermal reservoir at inverse temperature β, and each motor exchanges chemical energy with
reservoirs characterized by constant chemical potentials. The ith motor exchanges energy with the cargo
through their interaction potential Ui.

The ith motor consumes average chemical power

P→Mi = 〈ẋi ◦ fchem〉 (4)

and transmits average power

PMi→C =

〈
ẋi ◦

∂Ui

∂xi

〉
(5)
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to the cargo through the linker. Equation (4) implicitly assumes each tightly couples its chemical and
mechanical degrees of freedom, consistent with experimental findings for kinesin motors [32, 33]. The
respective average rates of heat flow from the thermal reservoir into the cargo and ith motor are

Q̇→C =

〈
ẋc ◦

N∑
i=1

∂Ui

∂xc

〉
, (6a)

Q̇→Mi =

〈
ẋi ◦

[
∂Ui

∂xi
− fchem

]〉
. (6b)

Here, angled brackets denote ensemble averages over stochastic fluctuations, and the product (indicated by
the symbol ‘◦’) between ẋc or ẋi and other quantities is interpreted using the Stratonovich rule so that the
ensemble averages can be evaluated using the methods outlined in [6]. Transport systems are highly
processive, so we focus on average energy flows, ignoring higher moments that are less salient at long
durations.

At steady state, the average internal energy of each subsystem is constant, giving subsystem-specific first
laws

0 =
N∑

i=1

PMi→C + Q̇→C, (7a)

0 = P→Mi − PMi→C + Q̇→Mi , ∀ i ∈ 1, . . . , N. (7b)

The second law bounds the total entropy production rate Σ̇ (here equaling the total chemical power
Pchem =

∑
i P→Mi ) and hence the heat flows [34]:

0 � Σ̇ = Pchem (8a)

= −Q̇→C −
N∑

i=1

Q̇→Mi . (8b)

3. Results

3.1. Solution
Equation (1) constitute a linear system of coupled Langevin equations, and as such are in general
analytically solvable, with solution a multivariate Gaussian. Thus it suffices to solve for the mean vector
and covariance matrix of the whole system, the components of which satisfy a set of coupled linear ordinary
differential equations [35, section 3.2]. Since the N motors dynamically evolve according to identical
stochastic equation (1b), their marginal position distributions are identical. As a result, there are only two
unique means (〈xi〉 and 〈xc〉) and four unique covariances (Cov(xc, xc), Cov(xc, xi), Cov(xi, xi), and
Cov(xi, xj)), all of which vary with time. This symmetry permits exact solution without specifying N.
Appendix A details the unwieldy analytic expressions.

The distributions of {xi(t)}N
i=1 and xc(t) are time-dependent, so we change to a set of N variables,

Δxi(t) = xi(t) − xc(t), that at steady state converge to a time-independent joint distribution, a multivariate
Gaussian with means and covariances

〈Δxi〉 =
fchem

κ

(
1 + N

Dc

Dm

)−1

, (9a)

Cov(Δxi,Δxj) =
1

βκ
δij. (9b)

This time-independent distribution is sufficient to compute many steady-state properties of interest.
For our model we find that the off-diagonal entries of the stationary covariance matrix, Cov(Δxi,Δxj)

for i = j, are zero: fluctuations in the relative position of one motor are uncorrelated with the relative
positions of the other motors. We do not expect this particular result to generalize; for example,
collective-transport models with discrete motor motion [28] have found non-zero off-diagonal covariances
at small N. Regardless, the results presented below depend only on diagonal terms and are independent of
off-diagonal covariances.

The system relaxation time is τrelax = [βκ(Dm + NDc)]−1. Appendix B provides parameter estimates
indicating that this is at most ∼0.02 s for kinesin pulling molecular cargo, and generally at least an order of
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Figure 2. (a) Scaled velocity 〈v〉/vmax (equation (10)) and effective diffusivity Deff/Dc (equation (11)) (equal to the efficiency
η ≡ ηM = ηS (equation (18))) as functions of the number N of motors scaled by the diffusivity ratio Dm/Dc.
(b) Ensemble-averaged energy flows P→Mi (equation (14)), PMi→C (equation (15)), Q̇→Mi (equation (16)), and Q̇→C

(equation (17)) as functions of N scaled by Dc/Dm. All energy flows are scaled by the chemical power consumption
Pmax
→Mi

= fchemvmax of a single motor at maximum velocity. For Q̇→C we use Dc/Dm = 1/10; all other energy flows depend solely
on the quantity NDc/Dm.

magnitude smaller. This corresponds to a distance of at most 40 nm for kinesin motors at maximum
velocity. Given the short distance over which relaxation to steady state occurs, and the high processivity of
motor-driven transport systems (kinesin can travel up to several micrometers before detaching [36]), we
exclusively focus on the steady state.

The dimensionless parameter combination NDc/Dm appears in equation (9a) and in many of the results
shown later on, constituting a key quantity for understanding the system behavior. For intracellular
transport of vesicles or organelles the diffusivity ratio Dc/Dm is typically ∼10−3–100, depending on the size
of the cargo (see appendix B). Since N can range from one to several hundred, we focus our explorations on
the range NDc/Dm ∈ [10−3, 103].

3.2. Scaling behavior

3.2.1. Dynamical properties

At steady state, the cargo and each motor have equal velocity, 〈vc〉 ≡ limt→∞〈xc(t) − xc(0)〉/t = limt→∞
〈xi(t) − xi(0)〉/t ≡ 〈vm〉 ≡ 〈v〉. Evaluating this limit yields a simple expression for the N-dependent mean
system velocity:

〈v〉 = vmax

(
1 +

Dm

NDc

)−1

. (10)

For N � Dm/Dc, the mean velocity grows linearly with N, so adding more motors proportionally increases
the system velocity. As N grows much larger than Dm/Dc, however, the steady-state velocity asymptotically
approaches maximum velocity vmax = βDm fchem (the mean velocity of an uncoupled motor) as
〈v〉 ≈ vmax

[
1 − Dm/(NDc)

]
. Thus no matter how many motors are coupled to the cargo, the mean velocity

of the aggregate motor–cargo system never exceeds that of an unladen motor. This mean velocity (as well as
the maximum velocity) scales linearly with the chemical driving force fchem. Figure 2(a) shows normalized
velocity 〈v〉/vmax as a function of N.

While 〈v〉 gives the average motion, our model (like all transport at the cellular level) is inherently
stochastic. As such, the average velocity is not sufficient to fully describe system behavior, even at steady
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state. The effective cargo diffusivity Deff quantifies the rate at which the variance of forward progress grows
at steady state:

Deff ≡ lim
t→∞

〈x2
c〉 − 〈xc〉2

2t
(11a)

=

(
1

Dc
+

N

Dm

)−1

. (11b)

This expression can be understood by noting that the effective friction coefficient for the system,
ζeff = 1/βDeff , is simply the sum of the friction coefficients for the motors and cargo. This interpretation is
consistent with a recent theoretical study of collective transport of a diffusive cargo using discrete motor
dynamics, which similarly found that the contribution from the motors to the effective friction coefficient
of the system scales linearly with the number N of motors for the small range explored [37]. Previous work
using a simpler phenomenological model also suggested that the effective friction coefficient of a collection
of motors should be proportional to N [38].

Figure 2(a) shows Deff as a function of N. While the velocity increases with the number of motors, the
effective diffusivity decreases, indicating that a larger number of motors tightens the distribution of
cargo-transport distances. Writing the mean velocity as 〈v〉 = βDeff

(
Nfchem

)
reveals that the effective

dynamics of the system are simply those of a single diffusive particle (with diffusivity Deff ) under a constant
driving force Nfchem.

The system stochasticity can alternatively be quantified by the coefficient of variation θ [39] or the Fano
factor φ [24]. The coefficient of variation (CV) of cargo position is

θ ≡
√
〈x2

c〉 − 〈xc〉2

〈xc〉
(12a)

=

√
2

(
1

Dc
+

N

Dm

)
Dc

NDm

1

βfchem
t−1/2. (12b)

For small N � Dm/Dc the coefficient of variation scales as N−1, while for large N � Dm/Dc, θ ∝ N−1/2.
Thus this measure of the variation in forward progress can be made arbitrarily small with sufficiently large
NDc/Dm, but with diminishing returns for larger N.

The steady-state Fano factor is

φ ≡ 〈x2
c 〉 − 〈xc〉2

〈xc〉
=

2

Nβfchem
. (13)

Similarly to Deff , φ decreases (and hence the precision increases) with the number of motors, scaling as
φ ∝ N−1. Here adding motors decreases the variance of forward progress while increasing the velocity,
leading to a Fano factor that decreases with N. For N = 1 motor, equation (13) recovers the Fano factor
previously calculated in the limit of low cargo diffusivity [24] for a single motor.

The addition of motors can be thought of as having an ‘averaging’ effect on the dynamics. The precision
(as quantified by θ or φ) also increases with the chemical driving force fchem on each motor. Figure C1 in
appendix C shows the three stochasticity metrics.

3.2.2. Thermodynamic properties
We also exactly calculate steady-state ensemble averages of all energy flows into and out of each subsystem.
The mean chemical power (4) to each motor is

βP→Mi = NDc

(
1 + N

Dc

Dm

)−1(
βfchem

)2
(14a)

= βfchem〈v〉. (14b)

We multiply the energy flows by the inverse temperature β so that quantities have units of s−1. In keeping
with our assumption of tight mechanochemical coupling, the power consumption is simply the chemical
driving force multiplied by the motor velocity. Since the motors are identical, the total chemical power
consumption is simply Pchem = NP→Mi . Likewise, the average rate of work performed on the cargo by each
motor is

βPMi→C = NDc

(
1 + N

Dc

Dm

)−2(
βfchem

)2
(15a)

=
〈v〉2

NDc
. (15b)
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The total power
∑

i PMi→C = 〈v〉2/Dc transferred from the motors to the cargo increases monotonically
with N and reaches a finite maximum value. PMi→C for a single motor is non-monotonic in N, as shown in
figure 2(b). In particular, PMi→C ∝ N for N � Dm/Dc and ∝N−1 for N � Dm/Dc. This is because for large
N, when the cargo reaches maximum velocity and thus a constant rate of heat dissipation, the sum∑

i PMi→C = −Q̇→C must reach a constant value as well. Dividing this nearly constant total power among an
increasing number of motors means that PMi→C decreases. Thus the power flow from each individual motor
to the cargo is maximized at an intermediate N∗ = Dm/Dc.

The average heat flow into each motor is

βQ̇→Mi = −N2 D2
c

Dm

(
1 + N

Dc

Dm

)−2(
βfchem

)2
(16a)

= −〈v〉2

Dm
, (16b)

and the heat flow into the cargo is

βQ̇→C = −N2Dc

(
1 + N

Dc

Dm

)−2(
βfchem

)2
(17a)

= −〈v〉2

Dc
. (17b)

The subsystem-specific heat flows are, on average, given by the friction coefficient (e.g. ζc = 1/βDc for the
cargo) multiplied by the mean velocity squared, the result we would expect for the frictional energy
dissipation of an overdamped particle moving at constant velocity 〈v〉. The sum of the heat flows over all
N + 1 subsystems represents the total energy dissipation of the system at steady state. As indicated by
equation (8), all of the chemical energy consumed by the motors is either dissipated directly by the motors
as heat (due to loose coupling to the cargo) or transduced into mechanical work on the cargo which is then
dissipated by the cargo as heat.

Figure 2(b) shows how these four steady-state energy flows depend on the number N of motors,
manifesting two regimes. For N � Dm/Dc, the heats −Q̇→Mi and −Q̇→C scale as N2, while the chemical
power P→Mi to each motor and the power PMi→C from each motor to the cargo scale linearly with N. For
N � Dm/Dc, the chemical power to each motor as well as the two heats asymptotically approach constants.
For sufficiently large N, each motor’s heat roughly equals its chemical power consumption, as the power per
motor transferred through the coupling decays as N−1.

All energy flows display the same quadratic dependence on the chemical driving force. This is
reminiscent of linear irreversible thermodynamics, where rates of entropy production (and thus heat
dissipation) are quadratic in the thermodynamic driving forces [40]. This is true for our system on average
due to the linearity of equations (1a) and (1b), even with the inherent stochasticity.

The steady-state energy flows (14)–(17) are all independent of the coupling strength κ, despite the
steady-state distributions for the separation distances Δxi depending strongly on κ. To understand this
surprising result, consider the average force an individual motor pulls against, κ〈Δxi〉, for separation
distance Δxi ≡ xi − xc. Equation (9a) shows that 〈Δxi〉 ∝ 1/κ, so the mean force on the motor is
independent of the coupling strength. Since the motor velocity is also independent of the coupling strength,
the mean power output of each motor (roughly the mean velocity multiplied by the mean opposing force)
is independent as well. The power consumption P→Mi is likewise independent of κ for the same reason.
From the first law (7) the system only has three independent energy flows, so the other energy flows must
thus also be independent of κ.

We consider several different metrics of steady-state energetic efficiency. Thermodynamic efficiency is
the ratio of output power to input power. Since the system does not perform any thermodynamic work as
output, and the input power Pchem is always positive, the full system’s thermodynamic efficiency is zero;
however, the thermodynamic efficiency ηM ≡ PMi→C/P→Mi of each motor subsystem is positive.

The Stokes efficiency ηS ≡ ζc〈v〉2/Pchem evaluates systems whose only functional output is directed
motion against viscous friction [41]. We consider only the frictional drag on the cargo (with drag coefficient
ζc), assuming that directed cargo motion is ultimately the main purpose of the system. This system has
equal Stokes efficiency and motor efficiency:

ηM = ηS =

(
1 + N

Dc

Dm

)−1

. (18)
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Table 1. Performance metrics’ asymptotic scaling with N.

Metric N � Dm/Dc N � Dm/Dc

〈v〉 ∝N ≈vmax

[
1 − Dm/(NDc)

]

θ ∝N−1 ∝N−1/2

Pchem ∝N2 ∝N
ηS/M ≈1 − NDc/Dm ∝N−1

Figure 2(a) shows efficiency as a function of N: for small NDc/Dm, the efficiency is ≈1 − NDc/Dm, while
for NDc/Dm � 1 the efficiency scales as N−1. For a given diffusivity ratio Dc/Dm, the efficiency for any N is

upper bounded by ηmax =
(
1 + Dc/Dm

)−1
since N is lower bounded by unity. Thus, for example, a system

with Dc = Dm can achieve at most 50% efficiency. This efficiency can be re-written in terms of the system’s
effective diffusivity as

ηM = ηS =
Deff

Dc
, (19)

which exactly saturates an upper bound proven for the Stokes efficiency of transport by a single motor [42].
Table 1 summarizes the scaling with N of our key performance metrics in the two limiting regimes.

3.3. Performance trade-offs
The previous section outlined the separate N-dependence of different performance metrics; however, these
quantities are not independent, instead posing trade-offs parameterized by N. We examine the trade-offs
between all pairs of dynamical and thermodynamic properties from table 1, and find that several pairs of
desirable properties cannot be simultaneously attained.

The mean transport velocity and the total chemical power consumption of the motors are related by

Pchem

Pmax
→Mi

=
Dm

Dc

(
〈v〉/vmax

)2

1 − 〈v〉/vmax
. (20)

Figure 3(a) illustrates this trade-off as N is varied, for several different diffusivity ratios. For N � Dm/Dc,
the total chemical input power scales as the square of the average velocity 〈v〉. At N = Dm/Dc the velocity is
half its maximum; beyond this velocity the required chemical power skyrockets, scaling as

Pchem ∝
(
vmax − 〈v〉

)−1
for N � Dm/Dc.

The total power consumption and coefficient of variation (12) are inversely related,

Pchem = (2/t)θ−2, (21)

for all N and Dc/Dm. Figure 3(b) illustrates this trade-off, which features scaling behavior consistent across
the regimes of large and small N. Arbitrarily high precision (low θ) can be achieved in this
collective-transport system, but at the cost of power consumption that increases without bound.

Comparing (10) and (18), the efficiency and scaled velocity obey a simple relation:

ηS/M +
〈v〉
vmax

= 1, (22)

where ηS/M can be either the Stokes or motor efficiency, since they are equal for this system. Figure 3(c)
shows this trade-off. Our collective-transport system cannot simultaneously achieve high efficiency and
near-maximum velocity. Further, depending on the diffusivity ratio only certain efficiencies are achievable:

those with ηS/M � ηmax =
(
1 + Dc/Dm

)−1
. Notably, 50% efficiency and half-maximal velocity can always be

achieved at N = Dm/Dc.
Finally we consider the trade-off between efficiency and precision (quantified by coefficient of

variation θ),

θ vmax

√
t

2Dc
=

√
ηS/M

1 − ηS/M
. (23)

Figure 3(d) shows that high efficiency and high precision (low CV) are not simultaneously achievable. This
suggests that to maximize efficiency systems must exploit thermal fluctuations, leading to a decrease in
precision. Note that the transition from near-zero to near-unit efficiency occurs over a small range of CVs
around N = Dm/Dc.

Insets in figures 3(a), (b) and (d) show that scaling the power consumption and coefficient of variation
by factors of the diffusivity ratio Dc/Dm collapses the separate curves for distinct Dc/Dm onto single master

8



New J. Phys. 24 (2022) 013009 M P Leighton and D A Sivak

Figure 3. Trade-offs between (a) scaled chemical power consumption Pchem/Pmax
→Mi

and scaled mean velocity 〈v〉/vmax,

(b) Pchem/Pmax
→Mi

and scaled coefficient of variation θ∗ = θvmax

√
t/Dc, (c) efficiency ηS = ηM and 〈v〉/vmax, and (d) ηS = ηM and

θ∗, as the number N of motors is varied, for different diffusivity ratios Dc/Dm. Stars: N = Dm/Dc. Circles: maximum efficiencies
for respective diffusivity ratios, ηmax =

(
1 + Dc/Dm

)−1
, realized for N = 1. Insets in (a), (b) and (d) show that scaling the power

consumption and coefficient of variation by factors of Dc/Dm collapses the curves for different diffusivity ratios onto single
master curves. Numbers in parentheses indicate coordinates of black stars (where NDc/Dm = 1). All curves terminate at points
where N = 1, so that we always show real numbers of motors.

curves. Thus the qualitative nature of the trade-offs described here are independent of the relative
diffusivities of the motors and cargo.

These performance trade-offs suggest that collective-transport systems where different performance
metrics are prioritized should have different numbers of motors if N can be adjusted to tune performance.
For systems in which maximum velocity and high precision are preferred, optimization would drive systems
towards the N � Dm/Dc regime. This would however come with the cost of high power consumption and
decreased efficiency. If instead highly efficient directed transport on a small power budget is favored, then
optimal systems would have N � Dm/Dc at the cost of slow and imprecise transport.

3.4. Generalization
Many of our results extend to more general models of motor dynamics. As an example, we relax the
assumption that the chemical driving force is much larger than the scale of the motor’s energy landscape,
and add a periodic sinusoidal potential-energy landscape to each motor (see appendix D for details). This
continuous model, inspired by similar models of other molecular machines [23, 43], produces motor
dynamics qualitatively similar to commonly used discrete-step models [26, 28].

Figure D1 shows for this more complex model the scaling with N of the mean velocity 〈v〉, chemical
power consumption Pchem, and Stokes efficiency ηS, for a variety of barrier heights. (Calculating the
coefficient of variation for large N is computationally intractable.) The scaling laws in the limiting regimes
of large and small N (outlined in table 1) still accurately reflect the limiting scaling behavior for this
generalization. As a direct result of the scaling laws generalizing, the performance trade-offs [figures 3(a)
and (c)] also apply more generally, at least qualitatively: even under more general motor dynamics,
desirable pairs of properties such as high velocity and high efficiency or high velocity and low power
consumption remain mutually exclusive.

4. Discussion

In this article we introduced a simple model for collective intracellular transport by an arbitrary number of
transport motors. This model is stochastic, thermodynamically consistent, and can be solved analytically for
arbitrary motor number N. Using this model we derived analytic expressions for several steady-state
properties, including dynamic properties such as mean velocity, effective diffusivity, and precision, as well as
thermodynamic quantities such as power, heat, and efficiency. We found qualitatively different
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N-dependence for these quantities in the two opposing regimes of high and low N (compared to the
motor–cargo diffusivity ratio Dm/Dc), summarized by simple scaling laws (table 1). Our model should best
reflect the physics of motors whose energy-landscape features are smaller in scale than the magnitude of
their chemical driving, however our numerical explorations in appendix D suggest that many of our results
generalize well beyond this regime.

We also examined trade-offs between several performance metrics that are expected to be generally
important for real transport systems: many pairs of desirable properties, for example high velocity and high
efficiency, are mutually exclusive in these systems. The trade-off between efficiency and velocity (figure 3(c))
has also been explored theoretically in other types of molecular machines [44, 45]. The incompatibility of
high velocity and high efficiency seems to be a general feature of these types of systems, and has also been
seen experimentally for myosin motors [7]. These findings are reminiscent of the thermodynamic
uncertainty relation [46], which lower bounds the product of uncertainty and entropy production. At
steady state our system saturates this bound, which may be a universal feature of linear systems with only
one driving force [47] or systems described by Gaussian probability distributions [48]. This suggests that
the performance trade-offs (especially figure 3(b)) may in fact be Pareto frontiers [49] for more general
collective-transport systems.

Few experiments have measured exact numbers of motors in collective transport systems; nonetheless,
motor numbers have indeed been measured, for example by identifying discrete peaks in a distinctly
multimodal velocity distribution. Using this technique to study transport of beads by kinesin motors
[13, 14], found a mean velocity roughly proportional to the number of motors, consistent with our
predictions for the small-N regime; the bead diameter and solution viscosity indicate that these experiments
had N < Dc/Dm. Similar experimental investigations have also found velocity to be a concave function of
N, qualitatively consistent with our predictions [50]. Other experiments have varied the concentration of
motor proteins in solution, a rough proxy for the number of motors per cargo. Kinesin motors attached to a
substrate while transporting long microtubules [51, 52] produce velocity that is a concave function of
motor concentration, as we predict; similar results have been found for myosin motors pulling actin
filaments [16].

Using models similar to ours, but with discrete steps rather than continuous motor dynamics [25, 28],
found a similar monotonic and concave functional dependence of the mean velocity 〈v〉 on motor number
N, although their findings are restricted to relatively small N. Likewise, [28] also found Deff ∝ 1/N for the
greatest N they investigated. Another recent study [29] found that the total load capacity, or effective stall
force, is N times the stall force for a single motor. We can easily incorporate into our model a constant
external force fext pulling the cargo in the opposite direction of the chemical force driving the motors. To do
this we simply add a term −βDc fext to the left side of (1a), preserving analytic solubility of the dynamical
equations. The mean velocity in this case is

〈v〉fext = 〈v〉0

(
1 − fext

Nfchem

)
, (24)

where 〈v〉0 is the mean velocity for fext = 0 given by equation (10). From this we identify the stall force
fs = Nfchem which scales linearly with the number of motors, independent of the diffusivity ratio.

Throughout this article we treated the number N of active motors per cargo as fixed, despite the fact that
in real transport systems motor proteins are constantly binding and unbinding to both the cargo and the
substrate. Our estimate τ relax < 0.02 s of our system’s relaxation time (section 3.1) is much shorter than
estimates of 0.2–1 s for the motor binding and unbinding timescales of kinesin on microtubules [21]. Due
to this timescale separation, we can treat the system as always in dynamical steady state at fixed N even
when motors bind and unbind over longer timescales. Thus our steady-state results should still hold for
temporally varying N. The convexity of these properties with respect to N determines the sign of the error
resulting from computing steady-state quantities at a single average motor number 〈N〉 instead of
considering a full distribution P(N). For example, mean velocity is a concave function of N, so when N
varies

〈
v
(
〈N〉

)〉
overestimates the mean velocity 〈v(N)〉. By contrast, the total power consumption is

convex, so 〈Pchem(N)〉 � Pchem

(
〈N〉

)
. In appendix E we use a simple stochastic dynamical model of motor

binding/unbinding to estimate that the error due to treating N as constant is small, especially when N is far
from Dm/Dc.

Our model also ignores other possibly relevant effects such as motor–motor interactions and
discretization of motor steps. Depending on the time- and lengthscales of resolution, motor proteins like
kinesin can be thought of as taking discrete steps [53], in contrast to the continuous motion we assumed
here. Nevertheless, treating the motor dynamics as continuous should be valid as long as the relaxation
timescale for the motors is sufficiently separated from that of the cargo (either much larger or much
smaller) so that the steady-state separation distance distribution (9) converges to the resulting equilibrium
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distributions. This assumption is valid for both N � Dm/Dc and N � Dm/Dc, but may break down for
N ≈ Dm/Dc, where system behavior may be more sensitive to the exact motor dynamics.

Interactions between motors may become relevant under certain conditions. Computational studies
indicate the possibility of long-range cooperative interactions between kinesin motors through
microtubules [54] as well as crowding effects such as traffic jams when large numbers of motors are present
[55]. While we have not incorporated these effects into our model at present, generalizing our results using
model-agnostic considerations from the theory of stochastic thermodynamics is a promising future
direction.

Our model does break down under certain limiting conditions. Our analysis yields a mean velocity
proportional to the chemical driving force acting on each motor. For kinesin motors hydrolyzing ATP, this
is consistent with experimental findings at lower ATP concentrations, but not at high ATP concentrations
where motor velocity saturates, with a cross-over at ATP concentrations on the order of 0.1 mM [32]
(depending on the load the motor is pulling against). This discrepancy arises because we do not explicitly
model the motor’s mechanochemical cycle, implicitly treating the binding of ATP as the rate-limiting step.
Reaction steps not dependent on the free-energy consumption should become rate-limiting at high ATP
concentrations [56] leading to a saturating velocity. Our main results (the N-dependence and trade-offs of
key performance metrics) are all independent of the magnitude of fchem. Nonetheless, we expect our model
to best capture the dynamics of real systems at lower ATP concentrations, in the linear-velocity regime. For
systems with very large chemical driving forces, we expect the true maximum velocity of a single uncoupled
motor to saturate, unlike our predicted vmax = βDm fchem.

The performance trade-offs we derived in section 3.3 point to insights about optimization in
collective-transport systems, as adjusting the number of motors per cargo can tune performance. This could
be achieved, for example, by manipulating the motor concentration [57], adjusting the number of possible
binding sites on the cargo [58], or using extra structural assemblies such as DNA scaffolds [18]. Depending
on the regime the system inhabits, as determined by the dimensionless quantity NDc/Dm, systems can
either achieve fast and precise but energetically costly transport (N � Dm/Dc), or efficient but slow and
imprecise transport (N � Dm/Dc). Ultimately, real systems have likely evolved to optimize complex
combinations of the performance metrics we have considered here and others we have not, however
estimating NDc/Dm for in vivo systems may provide insight into which performance metrics are most
important in specific systems.
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Appendix A. Analytic expressions for means and covariances

As detailed in section 3.1, the coupled Langevin equations (equations (1a) and (1b)) that describe the
dynamics of our system are analytically solvable, and the solution for the probability distribution of the
respective positions xc and {xi}N

i=1 of the cargo and motors is a multivariate Gaussian. Starting from initial
conditions xc = xi = 0 at t = 0, at steady state (t � τ relax) the mean cargo position and motor positions are

〈xc〉 = 〈v〉t − Nfchem

κ

D2
eff

DmDc
, (A1a)

〈xi〉 = 〈v〉t + fchem

κ

(
Deff

Dc

)2

, (A1b)
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and the covariances are

Cov(xc, xc) = 2Defft +
N

βκ

(
Deff

Dm

)2

, (A2a)

Cov(xc, xi) = 2Defft −
1

βκ

D2
eff

DmDc
, (A2b)

Cov(xi, xj) = 2Defft +
1

βκ

[
δij −

D2
eff

Dm

(
N

Dm
+

2

Dc

)]
, (A2c)

for Kronecker delta function δij. Different initial conditions would produce different time-independent
constant terms in (A1) and (A2); however for large times (in the steady-state limit) the constant terms are
negligible compared to the terms linear in t. Regardless of initial conditions, the difference between the
constant terms in (A1a) and (A1b) will always be the mean value of the separation distance, 〈Δxi〉.

Appendix B. Parameter estimates

In this appendix we discuss relevant experimental measurements of the parameters in our model, namely
the linker spring constant κ, the chemical driving force fchem, and the respective motor and cargo
diffusivities Dm and Dc.

Experimentally, kinesin linkers are well-approximated as Hookean springs with a zero rest length and a
spring constant ∼0.5 pN nm−1 [31]. Similar behavior has been observed for the linkers of myosin V
motors, which have an estimated spring constant of 0.2–0.4 pN nm−1 [59].

We estimate the chemical driving force fchem in two ways. By noting the equivalence in equation (3) of
fchem with the single-motor stall force, we use experimental estimates of single-motor stall forces to estimate
the chemical driving force. Kinesin motors have stall forces on the order of 5–8 pN [33], while
myosin motors stall at forces as high as 15 pN [60]. (Note that the stall force monotonically increases with
cellular ATP concentration.)

Likewise, due to tight coupling between chemical energy consumption and mechanical motion [32, 33],
fchem can also be thought of as a free-energy dissipation per unit distance. Kinesin, for example, hydrolyzes
one molecule of ATP (a reaction with a free-energy change ΔμATP ≈ 15–30kBT [61]) for every forward step
(d ≈ 8 nm). At 298 K, 1kBT = 4.114 pN nm, resulting in a chemical driving force
f chem = ΔμATP/d ≈ 8–15 pN, in line with our previous estimate.

We estimate the motor diffusivity using vmax = βfsDm. For kinesin-1 the maximum velocity is
vmax ≈ 1–2 μm s−1 and the stall force is f s ≈ 6–8 pN [8], while for myosin V, vmax ≈ 8 nm s−1 [7] and
f s ≈ 10–15 pN [16]. This suggests that in both cases Dm = O(10−3) μm2 s−1. Alternatively, using
experimental estimates of rate constants for forward and reverse steps yields an estimate for kinesin-1
motor diffusivity of Dm ≈ 4 × 10−3 μm2 s−1 [62].

Cargo diffusivity can vary by orders of magnitude depending on the type of molecular cargo. As one
example, diffusivity of vesicles (with radii on the order of 300 nm) in neurons is estimated to be of order
10−3 μm2 s−1 [63]. Other measurements of vesicles and vesicle-sized beads in cytoplasm have found
diffusivities on the order of 10−4 –10−2 μm2 s−1 [64]. Larger cargo such as organelles, for example
mitochondria which have diameters as large as 2 μm, will have even smaller diffusivities. Thus for
intracellular transport of vesicles and organelles we expect Dc/Dm ∈ [10−3, 1].

We use these parameter ranges to estimate the relaxation time τrelax = [βκ(Dm + NDc)]−1 in
section 3.1. Based on the ranges and estimates above, we get a maximum value of about 0.02 s (taking
κ = 0.2 pN nm−1, T = 298 K, Dm = 10−3 μm2 s−1, Dc = 10−4 μm2 s−1, and N = 1). Using more typical
values of these parameters (for example κ = 0.5 pN nm−1, Dm = 4 × 10−3 μm2 s−1, Dc = 10−3 μm2 s−1,
and N = 10) gives a much smaller estimate τ relax ≈ 5 × 10−4 s.

Appendix C. Stochasticity metrics

Figure C1 shows the N-dependence of the three stochasticity metrics we introduced in section 3.2.1: the
effective diffusivity Deff (equation (11)), the coefficient of variation θ (equation (12)), and the Fano factor φ
(equation (13)).
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Figure C1. N-dependence of the performance metrics used to quantify stochasticity: the effective diffusivity Deff/Dc, the
coefficient of variation θ∗ = θβfchem

√
t/Dc, and the Fano factor φ∗ = βfchem(Dm/Dc)φ; all in dimensionless units.

Appendix D. Simulations for motors with significant energy barriers

We add to each motor a periodic potential-energy landscape of the form V(xi) = E‡ cos
(
xi/�

)
, where 2E‡ is

the height of the energy barriers between successive meta-stable states (local energy minima), and 2π� is the
period. Each motor’s dynamics satisfy

ẋi = βDm

[
fchem − κ(xi − xc) − fmax sin(xi/�)

]
+ ηi, (D1)

where fmax = E‡/� is the maximum conservative force arising from the periodic potential. (The cargo
motion still obeys equation (1a).) While these new equations of motion cannot be solved analytically, we
can numerically simulate the dynamics of this system, by integrating the N + 1 Langevin equations for a
given value of N. Obtaining full time-dependent probability distributions through simulation is
computationally intractable for large N, so we compute only properties that depend solely on the average
system dynamics.

Figures D1(a)–(c) shows how three important performance metrics, the mean velocity 〈v〉, the Stokes
efficiency ηS, and the chemical power consumption Pchem, scale with the number N of motors, for varying
ratios fmax/fchem between the maximum conservative force and the chemical driving force on each motor. In
the limit as fmax/fchem → 0, this system is identical to the analytically tractable system (described by
equation (1)) that we have focused on in this paper. In the large- and small-N regimes, the scaling of the
three performance metrics with N is consistent with the scaling laws from table 1, shown in black dashed
and dotted lines.

Appendix E. Motor binding/unbinding

As discussed in section 4, we investigate the effects of dynamically changing motor number using a simple
stochastic model for motor binding/unbinding based on [21]. The motor number N undergoes a random
walk, with rates

N → N + 1: k+N = k+0 (Nmax − N), (E1a)

N → N − 1: k−N = k−0 N. (E1b)

Here k+0 and k−0 are base rates of binding and unbinding, and Nmax is the maximum number of motors that
can bind a given cargo. The distribution P(N) satisfies the master equation

∂

∂t
P(N) = k−N+1P(N + 1) + k+N−1P(N − 1) − (k+N + k−N )P(N), (E2)

with reflecting boundaries at N = 1 and N = Nmax. (We set a reflecting boundary at N = 1 rather than
N = 0 because we are interested only in the behavior of the system when there are motors attached.)
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Figure D1. Scaling of the scaled mean velocity 〈v〉/vmax, the Stokes efficiency ηS, and the scaled chemical power consumption
Pchem/Pmax

→Mi
, as a function of the motor number N scaled by the diffusivity ratio Dm/Dc. We simulate N ∈ [1, 2, 3, . . . , 1000] for

several different ratios fmax/fchem of the maximum conservative force to the chemical driving force. For fmax/fchem = 0 (solid blue)
we recover our analytically tractable model. Black curves indicate the scaling laws from table 1 in the small-N (dotted) and
large-N (dashed) limits. Parameters: fchem = 10, κ = 1, Dc = 0.03Dm; in dimensionless units chosen so that Dm = κ = � = 1.

The master equation (E2) with these boundary conditions has a time-independent steady-state solution.
To simplify the analysis we take the limit Nmax →∞ and k+0 → 0 such that Nmax k+0 /k−0 = λ is fixed. The
steady-state solution is then

P(N) =
λN

N!(eλ − 1)
, (E3)

defined for N � 1. This is a zero-truncated Poisson distribution [65], with mean

〈N〉 = λ

1 − e−λ
. (E4)

We can then use this distribution to calculate mean values of different steady-state properties of the
transport system, averaged over P(N). In particular, we estimate the error involved in assuming the system
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Figure E1. Error (E5) in mean velocity between fluctuating (described by equation (E3)) and constant motor number, both with
equal mean motor number 〈N〉, as a function of 〈N〉Dc/Dm. Vertical gray dotted line indicates 〈N〉Dc/Dm = 1.

is well described by a constant (rather than fluctuating) number of motors. We use the mean velocity as an
example.

For a given average number 〈N〉 of motors, we compare the mean velocity (10) evaluated at fixed
N = 〈N〉 to the velocity instead averaged over the distribution P(N) with the parameter λ chosen so that∑∞

N=1 NP(N) = 〈N〉. The error in mean velocity incurred by assuming fixed N is

ε ≡
〈
v
(
〈N〉P(N)

)〉
ss
− 〈〈v(N)〉ss〉P(N)

〈〈v(N)〉ss〉P(N)

, (E5)

where 〈·〉ss denotes an ensemble average over the system dynamics at fixed N, and 〈·〉P(N ) denotes an average
over the probability distribution P(N).

Figure E1 shows this error over a range of different values of 〈N〉 and Dc/Dm. The error resulting from
assuming a fixed number of motors is less than 7%, and we find similar magnitudes of error for other
quantities. Note that the error is maximized for small 〈N〉, and for 〈N〉Dc/Dm ≈ 1.
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