

AlarmSense System

ENSC 305/440W April 15, 2016

Capstone Group 18:

Taylor Robson Gordon Ho Adrian Tanskanen Russell McLellan

Contact Person:

Russell McLellan rmclella@sfu.ca

Contents

- Introduction
 - The Team
 - Business Case
- Implementation
 - System Overview
 - Component Breakdown
- Project Management
 - Budget
 - Timeline
- Conclusion
 - Problems
 - Outcomes
- Questions

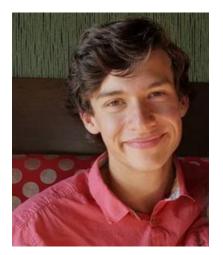
Contents

- Introduction
 - The Team
 - Business Case
- Implementation
 - System Overview
 - Component Breakdown
- Project Management
 - Budget
 - Timeline
- Conclusion
 - Problems
 - Outcomes
- Questions

The Team

Russell McLellan - President

- Document editor
- Wireless transmission



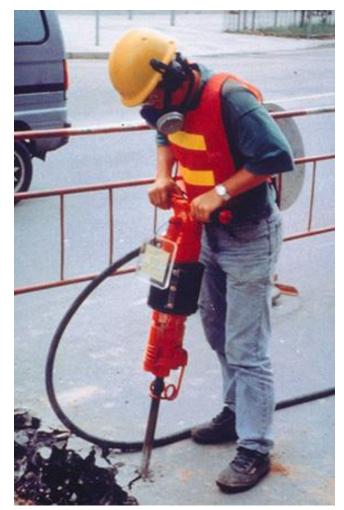
Taylor Robson – CEO

- Market research
- Alarm detection software

The Team

Adrian Tanskanen – Hardware Engineer

- Lead circuit design
- Testing and fabrication



Gordon Ho – Software Engineer

- Mobile application
- 3D CAD imaging

- On industrial worksites, workers wear hearing protection
 - Cannot hear auditory alarms or each other

- Current solutions:
 - Visual alarms
 - Non-verbal communication

Background

- AlarmSense System
 - Noise cancelling headphones
 - Allows alarm frequencies through
 - Wireless communication with other workers

- In Canadian construction, mining, and oil wells in 2013:
 - 65 000 injuries
 - 480 fatalities
 - Average cost is \$40 000 per injury [2]
 - Government and company costs
- Everyday use lowers company operating costs
 - Raise efficiency and effectiveness

Market

- Trade schools
- Government organizations
 - e.g. WorkSafe BC
- Independent businesses
- The system will only function if all workers are wearing it
 - Need to market the system to companies, not workers

Market

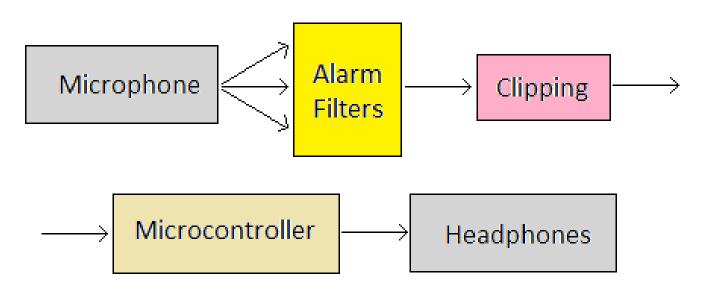
- No direct competition
- Projecting \$500 per unit MSRP
- Compares to \$600 in separate units [3, 4]
 - \$100 high quality passive hearing protection
 - \$300 active noise cancelling
 - \$200 radio
- Workers usually spend \$500-\$1500 on PPE
 - We consulted with industry professionals [5, 6]

Contents

- Introduction
 - The Team
 - Business Case
- Implementation
 - System Overview
 - Component Breakdown
- Project Management
 - Budget
 - Timeline
- Conclusion
 - Problems
 - Outcomes
- Questions

System Overview

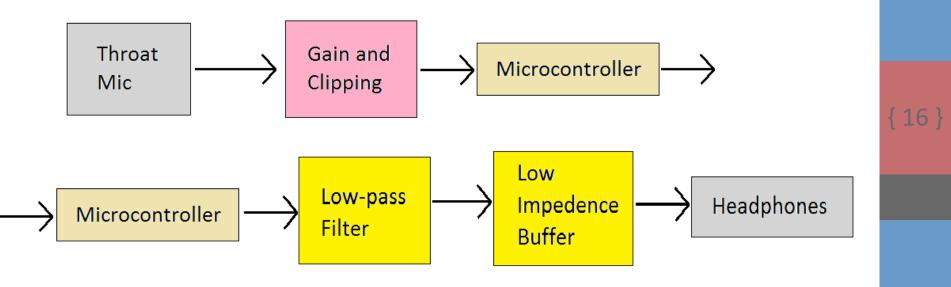
12 }

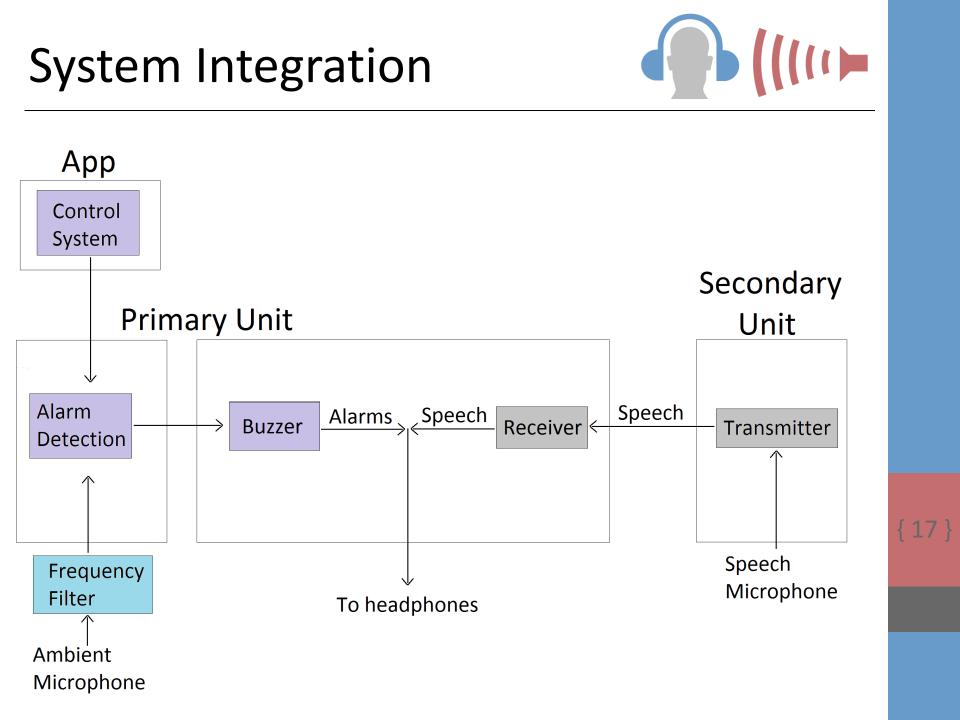


• See video

- Combination of hardware filters and software detection
 - Can be tuned to one of three alarm frequencies
 - Future work would include arbitrary frequencies
- Works through industrial noise

Mobile Application


Headphone Control Center :						
SITE	1	SITE 2	S	SITE 3		
	Unit 1 2 3	Connection .al .al	Battery	Frequency Updated? Yes Yes Yes		
	4 5 6 7 8	ता जा जा जा		Yes Yes Yes Yes		
	9 10 11 12	.× al al al		No Yes Yes Yes		
ALAR	VI 1	ALA	RM 2	AL	ARM 3	
0000					G	
DETECT FREQUENCY						
DISCO	СТ		CLEAR AL	ARMS		
		(С	<		


- System control
 - Sends alarm frequencies to the unit
 - Full system would include monitoring
- Can set different alarm priorities
- Measures the frequency of incoming sound

Wireless transmission

- Allows all workers to communicate in industrial noise
 - Uses throat microphone
 - Bypasses hearing protection

Contents

- Introduction
 - The Team
 - Business Case
- Implementation
 - System Overview
 - Component Breakdown
- Project Management
 - Budget
 - Timeline
- Conclusion
 - Problems
 - Outcomes
- Questions

Budget

19

	Planned		Actual		
Component	Part	Cost	Part	Cost	
Primary microcontroller	1x Intel Galileo Gen 2	\$100	1x Genuino Uno 1x Genuino Zero	\$101	
Noise cancelling headphones	1x Sony 10RNC Noise Cancelling Headphones	\$220	1x Bose QuietComfort 25 Headphones	\$300	
Noise cancelling microphone	1x Motorola Noise Cancelling Microphone	\$200	1x Throat Microphone	\$56	
Proximity sensor	2x Ultrasonic Transducers	\$10			
Secondary microprocessor	1x Genuino Uno	\$25	1x Genuino Uno	\$32	
Receiver/ transmitter pair	1x Wenshing Wireless Receiver/Transmitter	\$10	4x nRFL01+ Receiver/Transmitter	\$60	
Misc.		\$200	Protoboards, batteries, Bluetooth module, trimpots	\$402	
Wasted		N/A	Genuino Due, Genuino Zero, Noise cancelling microphone	\$214	
Total Cost		\$765		\$1165	

Funding

- ESSEF
 - \$517 given based on our proposed budget
- Ourselves
 - Expected \$248 total
 - Actual \$648

Timeline

21 }

Planned Functional specification Actual Design specification Canceling all ambient noise Alarm sound bypass system Wireless speech transmission Proximity sensor for speech Demonstration and post-mortem Mobile app - send data to system Mobile app - measuring alarms 40°. Mar. Politics . , 20. , 20. Nat.

Work Breakdown

22

	Russell	Adrian	Taylor	Gordon
Task	McLellan	Tanskanen	Robson	Но
Report Writing	XX	XX	Х	X
Microphone Circuits	XX	XX	XX	
Alarm Detection Hardware	Х	XX	XX	
Alarm Detection Software		Х	XX	X
Wireless Transmission	XX	ХХ	Х	
Hardware				
3D CAD Modeling				XX
Wireless Transmission	XX	Х		
Software				
Mobile App Design				XX
Material Acquisition			XX	XX
Physical Enclosure				xx

Contents

- Introduction
 - The Team
 - Business Case
- Implementation
 - System Overview
 - Component Breakdown
- Project Management
 - Budget
 - Timeline
- Conclusion
 - Problems
 - Outcomes
- Questions

Problems encountered

- Logistical
 - Wasted money
 - Intel Galileo, Genuino Due, microphone
 - Caused by insufficient research
 - Frying components
- Team dynamics
 - Irritating loud noises for testing
 - Bought earplugs

Problems encountered

- Circuits
 - Feedback
 - Caused false positives on alarm detection
 - Added buffers
- Wireless
 - Inconsistent connectivity
 - Compensating capacitors
- Mobile App
 - Bluetooth connectivity
 - Many minor issues

- Split up work so everyone has an equal opportunity
- Theoretical vs actual hardware implementation
- RF transmitting and signal processing
 - Digital to analog conversion
- Mobile application development
- Working as a team

Conclusion

- Proof of concept developed
 Showcases almost all functionality
- Not pursuing the project further
 - Due to diverging interests
 - Lack of investment

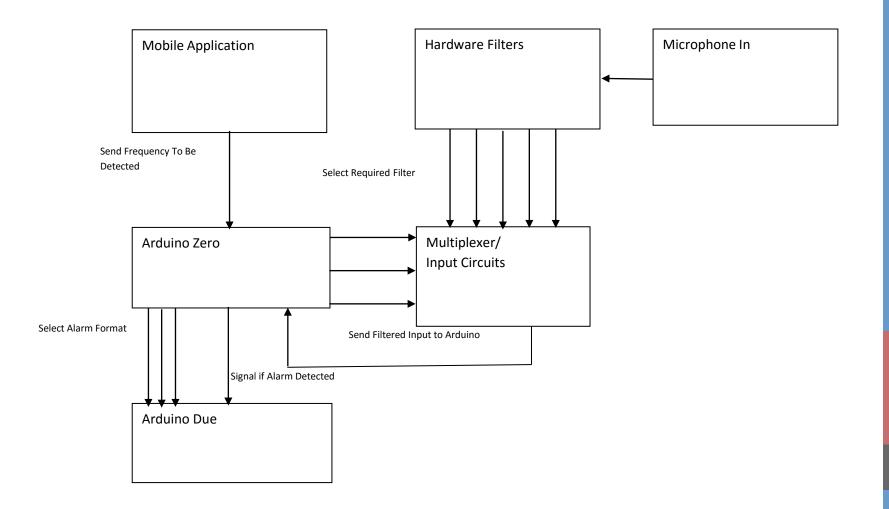
Acknowledgements

- Hsiu-Yang Tseng

 Technical suggestions
- Jamal Bahari
 - Initial high level guidance
- Steve Whitmore, BCPID
 - User interfacing guidance
- Dr. Andrew Rawicz, P. Eng
 - Abstract analysis
- The ESSEF
 - Funding for the prototype

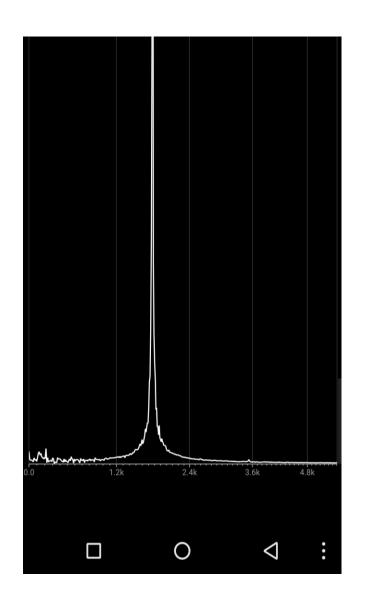
Questions?

{ 29 }


References

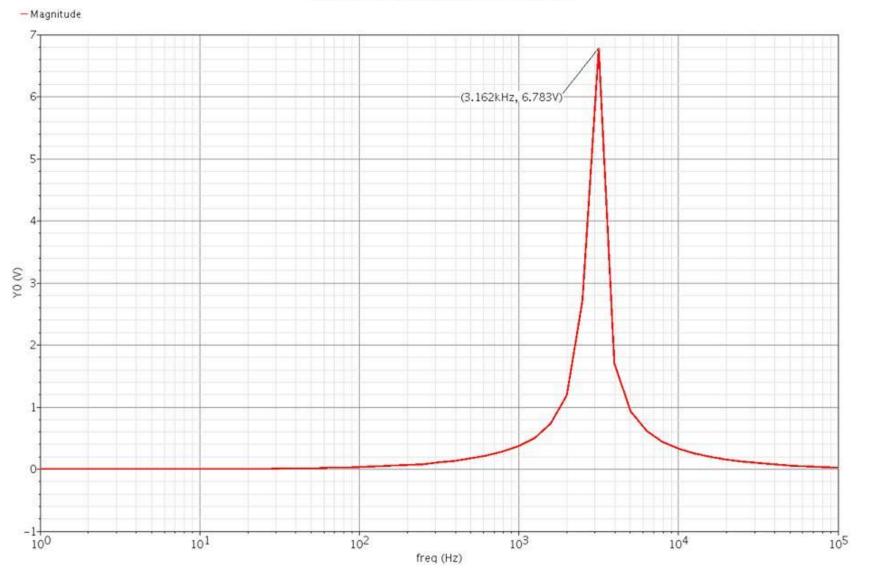
- [1] Epd.gov.hk, "Noise Management Noise Control Ordinance", 2016.
 [Online]. Available: http://www.epd.gov.hk/epd/noise_education/web/ENG_EPD_HTML/m3 /ordinance_7.html. [Accessed: 14- Apr- 2016].
- [2] Association of Workers' Compensation Boards of Canada (2015). Detailed Key Statistical Measures Report [Online]. Available FTP. http://awcbc.org/?page_id=9759. [Accessed: 30-Jan-2016]
- [3] Earplugstore.com, "3M Peltor MT53H7A4600-NA LiteCom BRS Two-Way Radio Ear Muffs Headset (NRR 26)", 2016. [Online]. Available: http://www.earplugstore.com/3m-peltor-litecom-brs2-way-radioheadset.html. [Accessed: 12-Feb-2016]
- [4] Srstactical.ca, "3M PELTOR LITECOM PLUS 2 WAY RADIO HEARING PROTECTION HEADSET HEADSET", 2016. [Online]. http://srstactical.ca/featured/3m-peltor-litecom-plus-2-way-radiohearing-protection-headset.html. [Accessed: 12-Feb-2016]
- [5] E. Bikadi, personal communication, Jan 2016.
- [6] D. Burns, personal communication, Jan 2016.

Circuits


{ 31 }

Mobile App

{ 32 }


Headphone Control Center						
SITE 1		SITE 2		SITE 3		
	1 2 3 4 5 6 7 8	al al al al al al al al al al	Battery	Frequency Updated? Yes Yes Yes Yes Yes Yes Yes Yes Yes		
ALARM	9 10 11 12 1	ALA	RM 2	No Yes Yes Yes	ARM 3	
0000 Q DETECT FREQUENCY						
DISCON	INEC.	Г		CLEAR AL	ARMS	
C		(С	<	1 :	

Narrowband Filter

Magnitude Frequency Response NarrowBand Filter

Alarm Detection

- During the noise, we are playing alarm tones
 - Taylor will signal when an alarm tone begins to play
- Volunteer, please gives a thumbs up when you hear the alarm
- We are testing all three alarms

Mobile Application

{ 36 }

Voice Transmission

{ 37 }

Raise your right hand

38 }

Hold up three fingers

[39 }

Stand up

{ 40 }