PINNACLE BIOMETRICS

presents

Floe

The Athletic Balance Monitoring System for Skiers

Using technology to help athletes meet their true potential

Our Team

Kurtis Bohlen

Hardware Developer

Clara Tsang

Software Developer (Front-End)

Eric Raposo

Firmware Developer

Louis Roux

Software Developer (Back-End)

Outline

- I. Motivations / Project Background
- II. Floe Overview
- III. Project Overview
- IV. Business Case
- V. Conclusions
- VI. Demo/Questions

I. MOTIVATION / PROJECT BACKGROUND

Motivations

We wanted:

- → Something that would give us each a different focus
 - → Something that's **new**
 - → Something that's cool

The Problem

What are we trying to solve?

→ Limitations of exclusively qualitative feedback

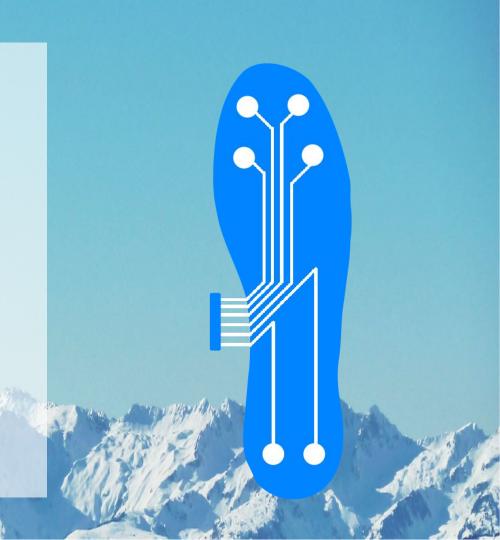
- → Lack of products in the market offering real-time performance feedback
- → Lack of products in the market offering balance metrics in an athletic environment

Solution Design

implementing existing technologies to provide athletes with quantitative augmented feedback to help them more effectively further their skills

II. Floe OVERVIEW

Fric

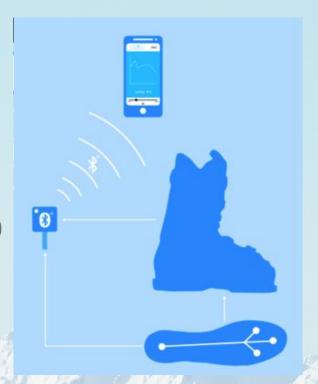

System Breakdown

- Pressure-sensing
 Insoles
- II. Boot MountedHardware (BMH)
- III. User Interface
 (Mobile Device App)
 (HUD)

- → To be slipped into ski boots for simple retrofitting
- → Sense distribution of force applied by user's weight

BMH

- → To be attached onto ski boots for simple retrofitting
- Receive sensor data
 through wired
 connection and send
 wirelessly to mobile
 device


Mobile App

- → To be easily accessed through user's existing mobile device
- → Display centre of pressure information in intuitive, useful manner
- Give predictive feedback to user in RT

Proof-of-Concept Scope

- → Insoles
 - 4 Sensors
 - Signal conditioning circuitry
- → BMH
 - ♦ BLE wireless transmission
 - RT data transmission (10 samples/sec)
 - Start/Stop data transmission
- → Mobile Application
 - ◆ Record events
 - Display recorded events
 - Display RT visual feedback

III. PROJECT OVERVIEW

Kurtis

Projected Schedule		Actual Schedule	
Jan 18	Research commences	Jan 18 Research commences	
Feb 1	Parts arrive, development starts	Feb 1	Parts arrive, development starts
Feb 28	Single BMH and mobile app	Feb 19	BLE transmission of 1 sensor
Mar 13	Second BMH and HUD	Mar 20	App database; signal conditioning
Mar 28	Full prototype, testing starts	Apr 6	Physical housing
Apr	Project Deadline	Apr 8	Both insoles; app UI
		Apr 10	BLE transmission of all sensors
A11 17 18		Apr 12	Insoles connected to BMH; app BLE
1		Apr 13	BMH and app integration
A VA		Apr 15	App works with 2 boots, testing
CA BE		Apr 19	Project Presentation

Reasoning for delay

- → Lack of funding
- → System redesign
- → Time constraint

Project Scope Changes

- → Heads-up-Display removal
- → Force range of the FSRs
 - Signal conditioning circuitry
- → Custom BLE Service
- → Predictive feedback
- → Physical housing

Materials / Costs

Funding	Projected Costs		Final Expenditure	
Funding	Item	Cost	Item	Cost
ESSEF: \$513.00	2 x BLE SoC nRF52 Dev-kit	\$230.00	2 x BLE SoC nRF52 Dev-kit	\$171.31
	16 x Flexiforce A201 FSR	\$340.00	8 x Flexiforce A201 FSR	\$165.27
	Recon Instruments Snow2	\$580.00	9 x Interlink 402 FSR	\$65.00
	Power & Signal Electronics	\$80.00	Power & Signal Electronics	\$42.17
	Physical Housing	\$10.00	Physical Housing	\$0.00
	20% Contingency	\$248.00	Tax and Shipping	\$80.71
The Control	Total:	\$1488.00	Total:	\$524.46

Materials / Costs

Funding	Projected Costs	Final Expenditure
\$513.00	\$1488.00	\$524.46

- → No Recon Snow2
- → Reduced amount of sensors
- → 2 types of FSRs
- → Extra circuit components
- → Recycled physical housing

IV. BUSINESS CASE

Louis

Market

- → 6.5 million skiers visits
 - → Less than 5% of people ski

- → Force-sensing products
 - → More sensors, less portable
- → Rise of the (performance) Trackers

Competition

Flaik

- GPS

Trace

- GPS
- 9-axis
- Tricks

Piq

- GPS
- 9-axis
- Tricks & Turn

Financing/Pricing

- → Revenue Streams
 - → Private investment
 - → Crowd-funding
 - → Device sales
- → Pricing
 - → \$220 price range
 - → PCB, bulk orders

Carv: A Midway Awakening

"Carv analyses your skiing technique in real-time providing feedback on the slopes and detailed analysis between runs"

- → Kickstarter launched 10 February 2016 Raised \$275,000
- → 2 years of development

V. CONCLUSIONS

Clara

Project Summary

Proof-of-Concept Model

- → Scope revisions
- → Completed implementation final revised model and operating as expected
- → Physical design could be improved

Personal Learning

Kurtis Bohlen

- → HW system design
- → PCB fabrication
- → Signal conditioning
- → Eagle/PCB layout
- → FSRs

Clara Tsang

- → Android API
- → Java
- → UI development
- → Multi-threaded programming

Eric Raposc

- → BLE protocol
- → SoC firmware development
- → Nordic nRF SDK
- → ADC timer PPI peripherals
- → Android API

Louis Roux

- → Android API
- → Java
- → Multi-threaded programming
- → Asynchronous callbacks

Future Plans

Possible Revisions (Prototype)

- → Performance optimization
- → Aesthetic improvement
- → Physical improvement
- → Additional sensor information

Possible Revisions (Final Version)

- → Gyroscope/ accelerometer integration
 - Stance sensing
 - Movement analysis
- → HUD
- → Predictive feedback

Consensus:

SCRAP

→ Carv

Acknowledgements

Special thanks to

Gabriela Pawlowski

Ben Soer

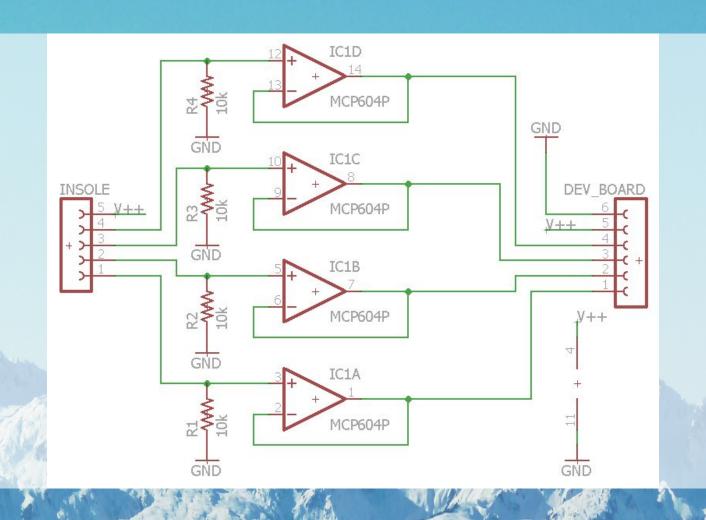
Tanner Frison

Dr. Andrew Rawicz

Steve Whitmore

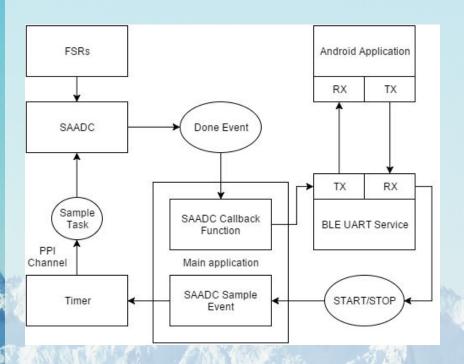
Jamal Bahari

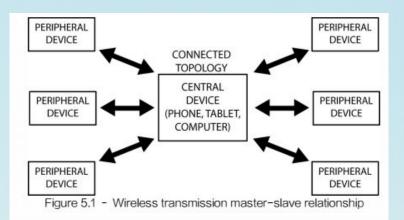
Nordic Semiconductor


References

- → Prevention by Design. (2006, May 3). Evaluation Methods [Online]. Available: http://socrates. berkeley.edu/~pbd/pdfs/Evaluation Methods.pdf
- D. Millsgale. (2005, May 4). The Effects of Augmented Feedback on Skill Learning [Online]. Available: http://www.d.umn.edu/~dmillsla/courses/motorlearning/documents/chapter14.pdf
- ActiveReplay. (2016, January 25). TRACE The Most Advanced Activity Monitor for Action Sports [Online]. Available: https://www.kickstarter.com/projects/activereplay/trace-the-most-advanced-activity-monitor-for-actio/description
- C.C. Weiss. (2014, April 14). Yeti Leaps Out in the Open to Track Skiing and Snowboarding [Online]. Available: http://www.gizmag.com/delazify-yeti-tracks-ski-snowboard/30926/
- → Flaik. (2016, January 25). Flaik [Online]. Available: http://www.flaik.com/
- → Piq. (2016, January 25). Ski | Piq [Online]. Available: http://www.piq.com/pages/ski
- MotionMetrics. (2016, March 15) CARV: The world's first wearable that helps you ski better! [Online]. Available: https://www.kickstarter.com/projects/333155164/carv-the-worlds-first-wearable-that-helps-you-ski

VI. DEMO / QUESTIONS




BMH

BMH Firmware

Table 5.2 -	Transmission data	packet breakdown
-------------	-------------------	------------------

Byte #	0	1 - 8	9
Content	Header	FSR Data	Unused
Left BMH	0x 4C	0x AA AA BB BB CC CC DD DD	0x 00
Right BMH	0x 52	0x AA AA BB BB CC CC DD DD	0x 00

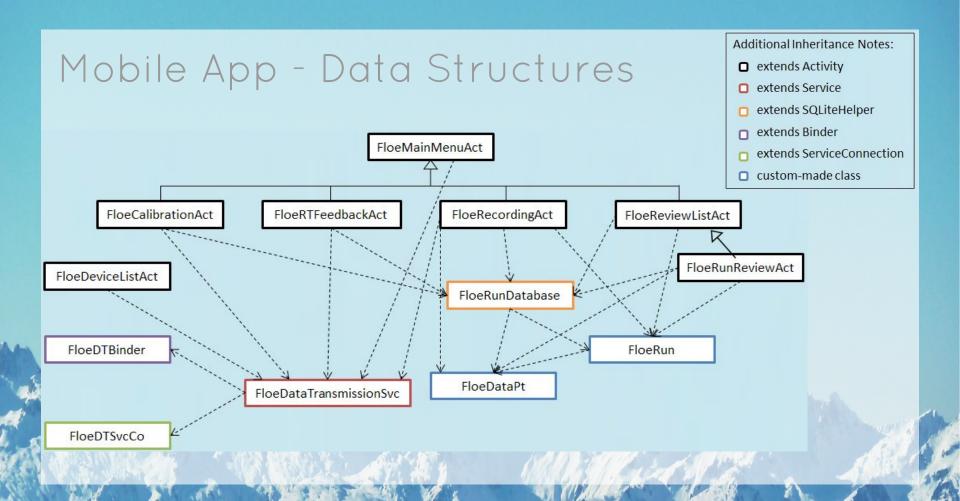
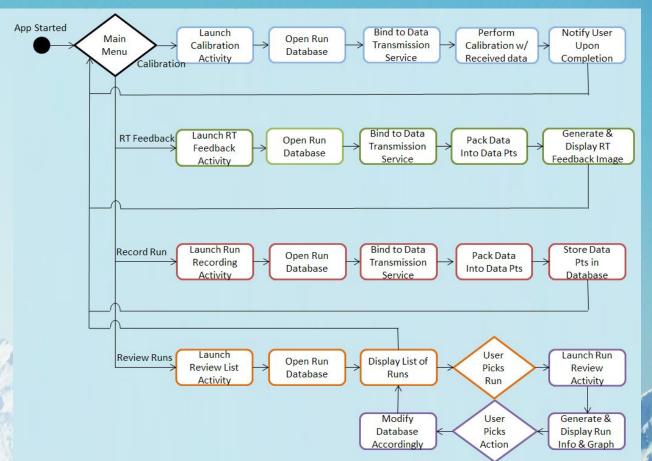

^{*} A = Sensor 1 Data, B = Sensor 2 Data, C = Sensor 3 Data, D = Sensor 4 Data

Table 5.3 - Receive data packet breakdown


Byte #	0	3	4 - 9
Content	Header	Command	Unused
Left BMH	0x 4C	ENABLE 0x45 DISABLE 0x44	0x 00 00 00 00 00 00
Right BMH	0x 52		

^{*} ENABLE = enable SAADC sampling, DISABLE = disable SAADC sampling

Mobile App Activity Diagram

THANK YOU

QUESTIONS?

