Smart Band

By

SMARTTRAK SOLUTIONS

Team 13 - May 10, 2016

Team 13 Members

We are Smart Trak Solutions

Tom Ou Yang (CEO)

Peter Le (CAO)

Ashton Novak-Louie (CTO)

Farah Ferdous Ishita (COO)

Agenda

Introduction

Motivation

System Overview

Market Analysis

Challenges

Conclusion & Questions

Original Scope

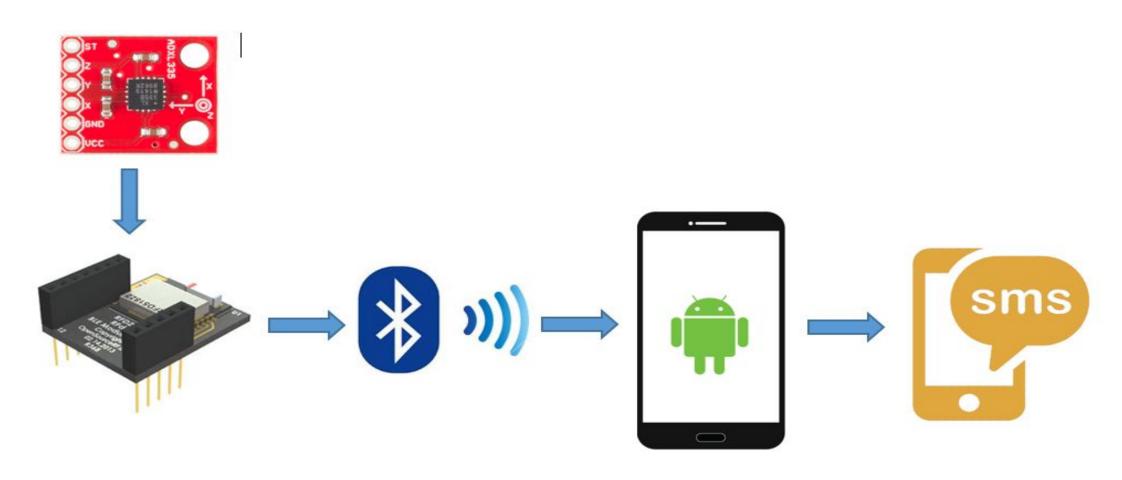
"What can go wrong, will go wrong."

-Murphy's Law

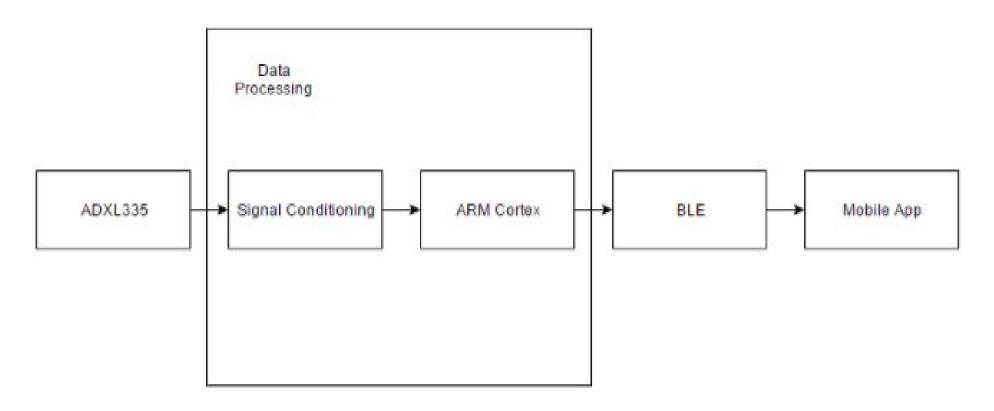
- Original plans: We had originally planned to use a prebuilt wristband and utilize the built-in sensors to develop a mobile safety application, but had to adjust our project scope during April 1
- What changed: Build our own hardware to meet design elements

Motivation - The Problem

- Main problem: If a fall takes place and no one can is nearby
- Each year, between 20-30% of seniors fall each and is the leading cause for injury related hospitalizations among Canadian seniors[5]
- Full time caretaker are very expensive
- Senior citizens want independence
- Family members and friends want a sense of security for their loved ones


Motivation - Proposed Solution

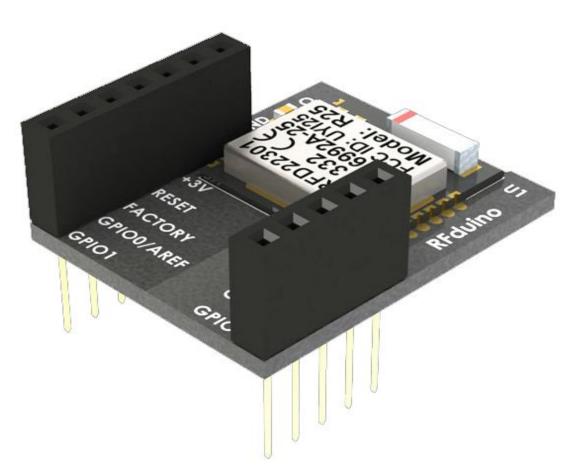
- Create an affordable solution with advanced features
- Functions as a secondary safety device
- Integrate with either a smartphone or a mobile base station
- Ability to detect severe falls
- Automatically sends SMS SOS messages
- GPS Location service


System Overview - High Level Design SMARTTRAK

System Overview - Block Diagram



System Overview - Hardware


Key features:

- Low power consumption
- High accuracy for a MEMs based sensor
- Low cost

System Overview - Hardware

Key features:

- Low power consumption
- Supports the Arduino library
- BLE enabled
- Small & compact
- High degree of customization

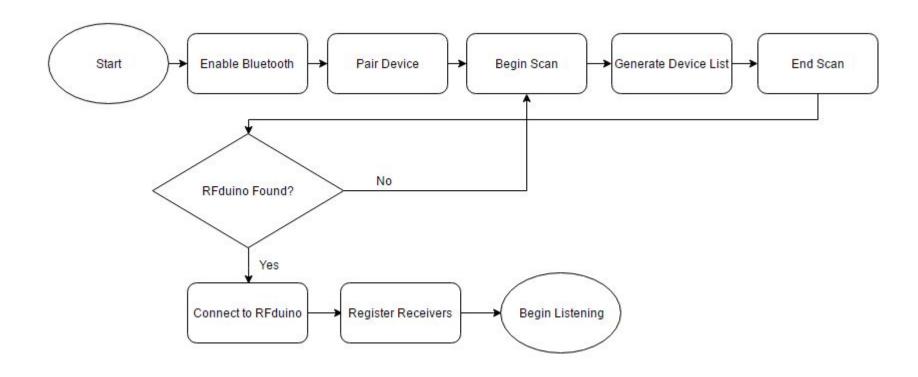
System Overview - Fall Detection

- 1) Free Fall
- 2) Velocity > Threshold value (0.7m/s)
- 3) Impact
- 4) Inactivity (about 5 second)

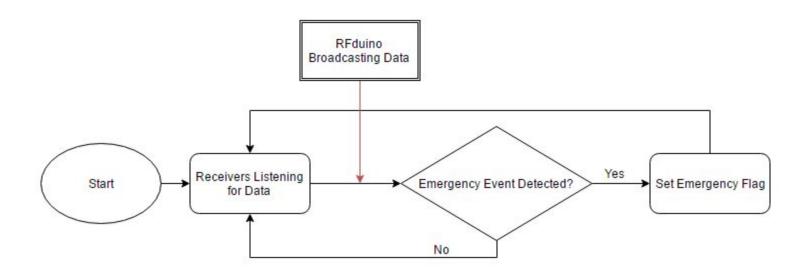
If all these condition are met, the system will assume the user has fallen and cannot get up or has fallen unconscious. If that is the case, the RFduino will transmit a BLE signal

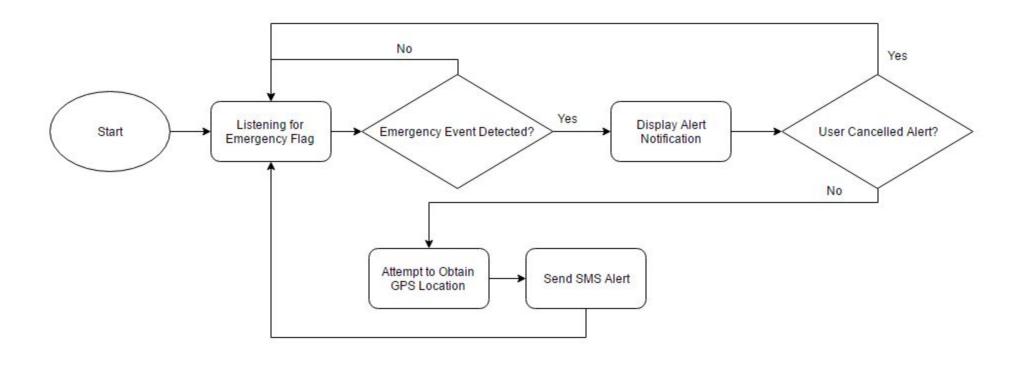
Mobile Application

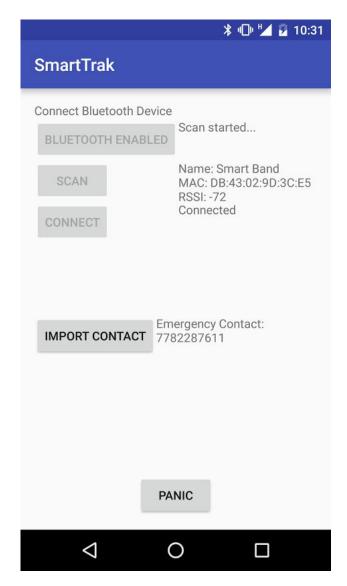
- Simple to use
 - Intuitive UI
- Lightweight
 - Memory usage
 - Battery usage
- Set and forget
 - Runs smoothly in background
- Manual panic button


Mobile Application Technical Details SOLUTIONS

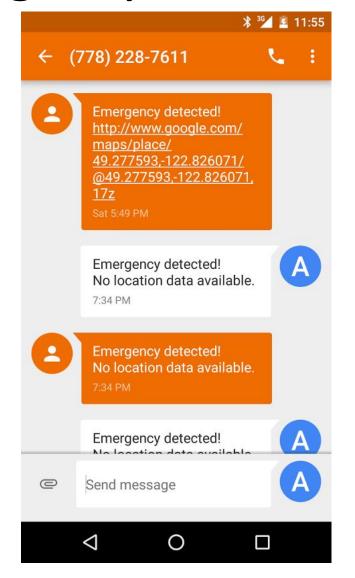
- Android platform
- Minimum Android SDK 18 for RFduino
- Bluetooth Low Energy (BLE)
- Permissions:
 - Bluetooth
 - Bluetooth Admin
 - Send SMS
 - Access Coarse Location
 - Access Fine Location
 - Vibrate
 - Read Contacts

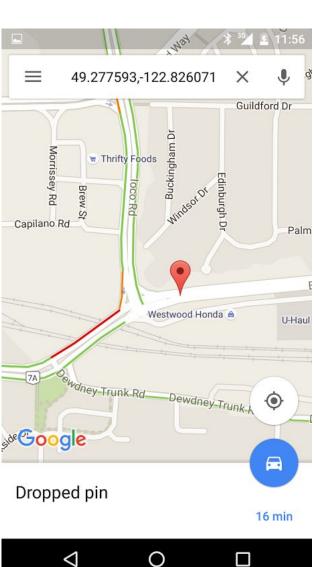

Bluetooth Connection Flow


Bluetooth Data Flow



Emergency Event Flow


User Interface



Emergency Alert

Price & Financing

RFduino Development Kit	\$55.79
ADXL Accelerometer	\$20.86
Lithium Ion Polymer Battery	\$15.35
USB Extension Cables (testing purposes)	\$17.88
Protoboard	\$2.19
Metal Case	\$6.71
Shipping Costs	\$25

Total Cost \$143.78

Need to apply for Wighton Fund since our ESSEF fund went to MS Band 2

Estimated Costs

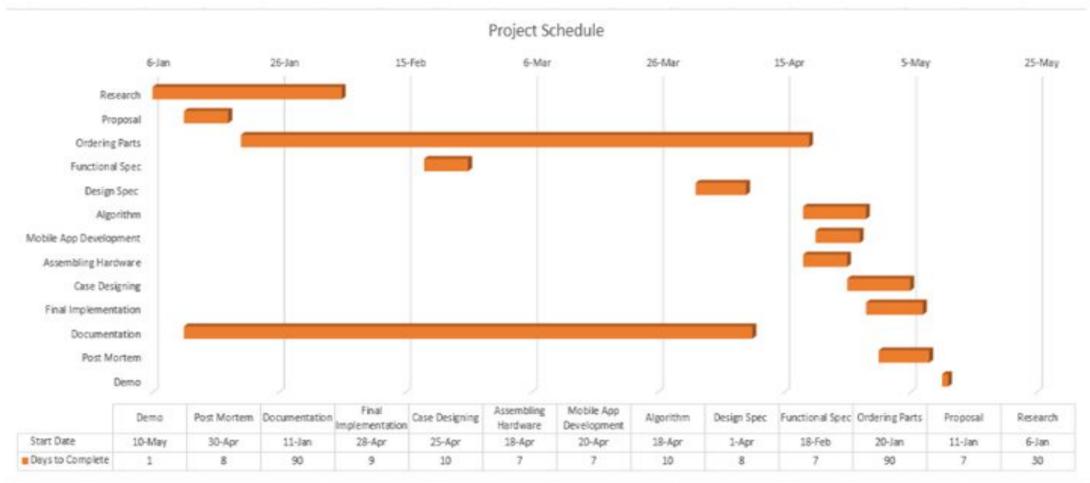
Manufacturing Costs

- Accelerometers & BLE modules \$10/unit * 2
- LED's, resistors, wiring & solder \$5/unit
- PCB boards \$0.50/unit
- Microcontroller \$1/unit
- Manufacturing Labour Costs \$60/unit
- Design Labour Costs (pay us) \$40/unit
- Distribution costs \$10/unit (allow sellers to make \$10 profit)

Total Proposed Market Price \$131.99 USD

Market & Competition

Product Name	Smart Trak	ATS Medical Alert	UnaliWear Kanega	Amulyte
	Solutions Smart	System	Watch	
	Band			
Emergency Panic				
Button	✓	✓		✓
Ability to send GPS				
location	✓		✓	✓
Automatic				
Response to Fall	✓	✓	✓	
Detection				
Worn around/on	Wrist	Neck	Wrist	Neck


Market & Competition

Product Name	Smart Trak Solutions	ATS Medical Alert	UnaliWear Kanega	Amulyte
	Smart Band	System	Watch	
Image			8:54	
Communication	Uses network from	Uses mobile/home	Cellular antenna	Cellular antenna
Method	mobile phone	phone line	built in	built in
Base Price	132 USD	299 USD	299 USD	149 USD
Monthly Fee	0	0	35 USD	29.99 USD

Schedule

Non- Technical Challenges

- Budget
- •Time management
- Lack of one group member
- Team meeting

Technical Challenges

- Adding design components in a short period of time
- Getting familiar with Android Studio
- Not knowing exactly which parts to order
- Assembling hardware components in a very small case
- Soldering really short wires for case designing
- Designing panic button for the wrist band case
- Reassembling hardware the day before demo due date

Future Implementation

- Secure additional funding to implement other features
- E-ink screen display to show the time; function more like a wrist watch
- Reduce hardware size
- Add charging ports to easily recharge the battery (usb or induction charging)
- Add functionality to update firmware wirelessly
- Adjust algorithm to increase robustness
- Add additional algorithm to check for edge cases

Learning Outcomes

- We learned more advanced coding syntax in Java and C++
- Used Calculus II knowledge to implement integral calculus on microcontroller with code
- Learned how to code for boards in the Arduino Family
- Gained experience in writing professional project documents

Outcomes of Goals

- We achieved our goal of creating a wearable smart device that would detect falls.
- Achieved our personal goals of making ourselves more well versed with Java and C++ coding languages
- Achieved our personal goals of applying our electronics and electrical engineering knowledge to create a consumer electronic device

Acknowledgements

Dr Andrew Rawicz

Mr. Steven Whitmore

Dr Ash Parameswaran

Hsiu- Yang Tseng,

Jamal Bahari

Mona Rahbar,

Soroush Haeri

Mahssa Abdollahi

Conclusion

- Implement algorithm on ARM microcontroller
- Designed housing unit before commencing data acquisition
- Re-collected fall data and determined appropriate threshold for fall detection
- Eventually got our prototype working

Questions?

References

- [1] http://www.rfduino.com/product/rfd22102-rfduino-dip/index.html#tab-description
- [1a] http://www.digikey.ca/product-detail/en/rf-digital-corporation/RFD90101/1562-1011-ND/5056358
- [2] https://www.sparkfun.com/datasheets/Components/SMD/adxl335.pdf
- [2a] http://www.digikey.ca/product-detail/en/sparkfun-electronics/SEN-09269/1568-1044-ND/5140809
- [3] https://www.rpelectronics.com/af-258-lithium-ion-polymer-reachargeable-battery-3-7v1200mah.html
- [4] http://imgur.com/yREjv65
- [5] http://www.phac-aspc.gc.ca/seniors-aines/publications/public/injury-blessure/seniors_falls-chutes_aines/index-eng.php