

ENSC 305W/440W Final Demo

Your connections, Will change your direction

smartConnect

Gurjot Singh AtwalCEO & Software Developer

Kevin Chang
CFO & Hardware Designer

Sukhreet Kaur

Rajdeep Kaur *Ul Designer & Documentation Manager*

Masih Amiri CTO & Software Developer

Outline

- > Background
- > Introduction
- > System Overview
- > Hardware + Software
- Business Case
- Budget
- > Scheduling
- Work allocation
- > Challenges
- > Learning Outcomes
- > Future scope
- > Acknowledgements & Conclusion
- > References

Background

Networking Events:

Why people go to these events?

Business men: To grow their business Entrepreneurs: To showcase their Project Students and Job Seekers: To look for job opportunities

Different Reasons But One Motive: TO BUILD REAL CONNECTIONS

Background

➤ How People Do It:

Talk to One Another Share Business Cards

Limitation In This Conventional System:

Small Scope

Introduction

How does smartBand work?

System Overview

System Overview

Hardware

Firmware - NFC Interface (Tag + Reader)

Firmware – Bluetooth Interface

Bluetooth communication script → Bluez library

Firmware

> Microprocessor interface

Reading User ID from NFC tag →

SPI protocol

nxppy open source

>3- axis Accelerometer (MMA7455) interface

Reading data from register and calculating to detect hand shake

Reading from data register → I2C protocol

Reading MMA7455 value from register → smbus

➤ Vibration Sensor (SW-420) interface

Detecting the general vibration → GPIO pin

Software — Application Class Diagram

Software — Design Elements

Software Application

- Interactive User Interface
- Functional Features
 - o Profile Creation
 - Work
 - About
 - Company
 - Job Posting
 - Showcase Project
 - Interest Matching
 - Skillset Matching
 - Expected Skillset match
 - o Save Profile
 - Event Alerts
 - Request Contact info

- Architecture
 - Classes
 - o Data Base (SQL)
- Tools
 - o Android Development Studio
 - o Java SDK
 - Nexus 4 Simulator

Software — UI Design

Setting up profile

Showcasing yourself

Filling up background

Software — UI Design

Profile View

Editing profile

Add Experience

SPRINT 🕏	6:40 PM	¾ 40%
	Add Experience	Sa
Title		
Company		
Location		
Duration		
From	То	
Description		
About Compa	ny	

Team allocation

	Gurjot Singh Atwal	Kevin Chang	Masih Amiri	Rajdeep Kaur	Sukhreet Kaur
Documentation	XX	х	xx	xxx	XX
Research	xxx	XXX	xxx	XXX	XXX
Electronics		xxx			XXX
Firmware	x	XXX			XX
Android Application	xxx		xxx	xxx	
Financial budgeting	XXX	xxx			
Communication	xx	x	x	x	XX

Business Case- BMC

KEY PARTNERS

Networking Event hosts

KEY ACTIVITIES

- Customer Survey
- Product
- Development
- Marketing

KEY RESOURCES

- •Team Members
- Epitome
 Tochnologi

VALUE PROPOSITION

<u>Features</u>

- Job Posting
- Showcase Project (etc.)
- Interest Matching
- Skill set Matching
- Expected Skill set match
- Save Profile
- Event Alerts
- Request more info

Gain Creators

- Connecting People
- Ice Breaker
- ●Entrepreneurs will be able to share their showcase to wider range of people
- Hosts in networking events can conduct a survey and know how they performed

CUSTOMER RELATION SHIPS

- 24/7 Support
- Video Tutorial

CHANNELS

- Trade Shows
- University Launch
- Website
- Business Directories (YP, Yelp, etc)

CUSTOMERS SEGMENTS

Segments

- Entrepreneurs
- Business man
- Young generation(Students, Employees, Job Seekers)
- Shy People

Pains

- It is hard for many people to start a conversation in any event
- Entrepreneurs cannot make full use of Networking events
- Employers don't know the full extent of potential employee's skill set in networking events

Business Case – BMC

COST STRUCTURE

Fixed Costs:

Software Development Hardware manufacturing Marketing (B2C)

Estimated Manufacturing Cost:

Final cost of product= Hardware cost *+ Software development cost**

= \$4000000 +\$ 78000=\$4078000

Hardware cost = manufacturing cost per band*(# bands sold per year)

Software development cost = (# of weeks) * (hours / week);

Where,

```
Hourly rate = $40/hours,
# Team members = 5,
# Weeks = 13,
# Hours per week = 30
```

REVENUE STREAMS

Method:

Subscription Model to networking events (Leasing per year)
Product Sales
Money from Advertisements

Service Charge:

All-Inclusive (Premium) Add-on (Basic)

Estimated Revenue:

Sell averagely 200,000 products per year Cost of each band \$45 CAD Revenue: 9 million revenue per year for first 5 years of the sales

Budget

Components (Initial Phase)	Unit Cost
2 X Raspberry Pi-B Model	\$60
2 X Bluetooth Module	\$16
2 X Wi-fi Module	\$18
2 X Micro SD Card	\$13.2
2 X NFC Controller Board	\$55
2 X Adafruit Assembled Pi Cobbler Breakout + cable of Raspberry Pi	\$6.5
2 X NFC Bracelet	\$3
Hidden Cost	\$100
Expected Cost	\$445.3

Components (Working prototype)	Unit Cost
Raspberry Pi-B Model	\$59.99
Bluetooth Module	\$15.95
Sensor Components	\$47.52
Micro SD Card	\$13.19
NFC Controller Board	\$32.25
Jumper Wire	\$28.91
NFC tag	\$12.99
HDMI to VGA adapter	\$45.00
Application server	\$650
Actual Cost	\$905.8

Scheduling

Estimated Schedule Actual Schedule

Challenges

- > I2C bus acting low after rebooting Raspberry Pi
 - Used another 3-axis accelerometer(MPU6050)
 - Tried different Raspberry Pi
- Server(Raspberry Pi) did not get acknowledgement from client(application)
 - · Researched socket level programming
 - Researched server communicate with client
 - Understood each function provided by bluez
- Reading two different IDs in small duration of time
- Exporting information from LinkedIn to application

Learning outcomes

- Things will go wrong Keep trying
- >Technical Research
 - >Java
 - **>**Photoshop
- ➤ Hardware Integration
 - ➤ Learnt Component assembly
 - **>**Python
 - Socket communication programming
- ➤ Design Changes

Future plans

- > Future Sources
 - Epitome Technologies and Stara Enterprise
- >Future development
 - Design own CPU: Performance as Cortex- A7 and better power efficiency
 - Replace the USB hub by a Lithium Polymer battery
 - Design NFC board using UCODE 7 chip
 - Build Inductance Rectangular Planar Spiral Inductor
 - Employing BLE4.2 technologies instead of pluggable Bluetooth 4.0 adapter

Conclusion

Achieved working prototype

Benefits

Increasing scope in Networking events

Expanding professional network

Replacing conventional info exchange methods

Efficient way to follow up

> Beneficiaries

Entrepreneurs

Businessmen

Job seekers or Employers

Acknowledgements

ENSC 305/440, SFU Burnaby

Dr. Andrew Rawicz

Professor, Steve Whitmore

Jamal Bahari

Soroush Haeri

Mahssa Abdollahi

Mona Rahbar

Hsiu Yang Tseng

- > Epitome Technology, Vancouver
- ➤ Prof. Michael Schmitt (Psychology Department, SFU Burnaby)
- Schneider Electric, Burnaby

PEng. Peter Angus

Senior Hardware Engineer: K. Deigo

References

Page 6 Video source [1] Shake-on B.V. (2016, April 18). Shake-on [Online]. Available: http://www.shake-on.com/

Page 20 Business Case [2] B. Dolan. (2015, May 7). Fitbit files for IPO, sold nearly 11 million fitness devices in 2014 [Online]. Available: http://mobihealthnews.com/43412/fitbit-files-for-ipo-sold-nearly-11-million-fitness-devices-in-2014

