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Abstract 

Despite the prevalence of atrial fibrillation (AF) and the burden it places on health care 

systems, there remains much that is unknown regarding heritable factors influencing its 

development and progression. In this study, I investigated whole-exome sequencing 

(WES) data from a cohort of patients presenting with early-onset AF to explore the role 

that metabolic dysfunction might play in contributing to disease onset. I curated a 

metabolism-related gene panel and, following in silico prediction of variant pathogenicity, 

performed gene-level burden testing using reference data from the Genome Aggregation 

Database (gnomAD) and the human mitochondrial genome database MITOMAP. I 

further explored genes associating with AF in the UK Biobank data set, and discovered 

associations with several AF comorbidities including diabetes, hypertension, and stroke. 

Keywords:  atrial fibrillation; metabolism; whole-exome sequencing; diabetes; 

hypertension; stroke 
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1. Introduction 

1.1. Atrial fibrillation 

Atrial fibrillation (AF) is a disease of the heart that is defined by the rapid, 

uncoordinated excitation of the atria and associated compromise in mechanical function. 

It is the most common clinically-diagnosed cardiac arrhythmia, with an estimated lifetime 

risk of 25%.1 Its actual prevalence is likely even higher, as it is often transient or 

asymptomatic, and may therefore be under-detected.2–5 Even subclinical AF can 

predispose to risk of morbidity and mortality, and it progresses to persistent AF in up to 

50% of cases through self-propagating electrical and structural remodeling, an evolution 

often described as “AF begets AF.”6, 7 When it does present with noticeable symptoms, it 

does so spanning a wide clinical range. Though it has been estimated that over 50% of 

patients have mild symptoms such as discomfort or impaired exercise capacity, AF is 

also related to a significant decline in quality of life.5, 8, 9 

In addition to an association with myocardial infarction, heart failure, chronic 

kidney disease, and dementia, it has been estimated that AF is causative in one-third of 

strokes in patients over the age of 65.6 In patients under age 65 with undiagnosed AF, 

stroke is the first related clinical symptom identified in 36% of cases.10 In fact, sub-

clinical AF confers a 2.5-fold increase in risk for ischemic stroke or systemic embolism, 

independent of other risk factors.4 Over 30% of first-time strokes do not have an 

identified cause, and it is suspected that subclinical AF could be a factor in these 

cases.11 Ultimately, AF confers almost a two-fold increased risk of mortality.12 

Due to its high prevalence and potentially serious complications, AF represents 

an enormous burden on national health care systems.13 Improvements in detection and 

treatment, as well as increasing incidence, are predicted to see the global AF population 

double by 2050.14 Since the financial impact on health care systems of someone with AF 

is approximately five-fold that of someone without, AF is expected to require an even 

greater proportion of health expenditures as the average age of the population 

increases.15  
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AF has a complex etiology; while it is frequently related to advancing age and 

complicating cardiovascular conditions (e.g. hypertension), the current known clinical 

risk factors fail to explain AF in many cases.16, 17 AF occurring in patients under 60 years 

of age and also in the absence of diabetes, hypertension, and structural cardiac 

irregularities has historically been known as “lone AF” and family studies have since 

shown that the strongest predictor of developing AF is having a direct relative with AF, 

far beyond the predictive capacity of traditional risk factors. It is now widely accepted 

that there is a multifaceted genetic contribution to AF development.18 Dozens of genes 

appear to have involvement in AF, and the underlying physiology of its development 

remains opaque, particularly since known causative mutations display incomplete 

penetrance for reasons not yet understood.19, 20 To complicate matters further, more 

recent evidence suggests that, in addition to rare variants with a strong physiological 

effect, there exists a large collection of common variants that may increase AF in 

independently small, but synergistic, ways.21 

Owing to the complexity involved in regulating the cardiac action potential (AP), 

many of the genes associated with susceptibility to AF code for ion channel proteins, 

and pathogenic variants interfere with the carefully-orchestrated electrical propagation of 

the AP through the cardiac syncytium.22 These variants tend to increase the general 

level of cellular excitability during a vulnerable period in the cardiac cycle through one of 

several mechanisms. Increased current density due to gain of function in a repolarizing 

ion channel, for example, can shorten the atrial AP, reducing cells’ effective refractory 

period (ERP) and increasing their susceptibility to delayed afterdepolarizations (DADs) 

and electrical re-entry loops.23, 24 Conversely, loss of function in these repolarizing 

channels can result in a lengthening of the atrial AP, increasing the probability of early 

afterdepolarizations (EADs) and provide a vulnerable window of arrhythmogenic 

opportunity.25 In agreement with these contrasting phenomena, it has been shown that 

patients are at increased AF risk with both lengthened and shortened corrected QT 

(QTc) interval.26 Over time, persistent AF can drive changes in gene expression which 

contribute to further deterioration, such as decreased expression of L-type Ca2+ 

channels, ultimately resulting in shortened AP duration (APD) and thus ERP.27 

Though the majority of identified causal variants are in ion channel genes, 

variants causing altered electrical dynamics have also been found in other genes, such 

as those coding for gap junction proteins, which may cause impaired conduction velocity 
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(CV).28, 29 The consequences of slowed CV can be similar to those of shortened APD, 

whereby cells that would normally be refractory during the arrival of a potentially re-

entrant depolarization are given extra time to recover and thus can inappropriately 

depolarize in response to the errant AP. 

Tissue remodeling, such as fibrosis, may also act as a substrate for arrhythmia.30 

Since fibrotic tissue is electrically silent, it can not only slow conduction velocity, but also 

create regions of conduction block which interfere with normal waveform propagation. 

When a re-entrant wave encounters such a region, it can divide into numerous smaller 

wavelets which radiate outward in all directions, resulting in the asynchronous electrical 

disorganization characteristic of AF.31 

AF is coincident with many conditions that are themselves associated with 

fibrosis of cardiac tissue, such as both hypertrophic and dilated cardiomyopathy, chronic 

atrial dilation, and aging.32–34 Since fibrosis may result from AF, in addition to being a 

contributor, it facilitates a positive feedback cycle in which AF reinforces its own 

increasing severity over time.35 Because of this progressive nature, early diagnosis and 

intervention is critical. Treatment falls within two categories: rate control and rhythm 

control. Rate control is aimed at mitigating the effect of the increased atrial rate on the 

ventricular rate so as to avoid ventricular tachyarrhythmia and associated pathological 

remodeling, and is accomplished using various anti-arrhythmic drugs (AADs). Rhythm 

control aims to restore sinus rhythm through AADs, cardioversion, or ablation therapy.36  

Irrespective of management method, anticoagulation therapy is typically 

prescribed as a means of reducing risk of thromboembolism.37 Additional treatment 

depends, to some degree, on disease advancement. Paroxysmal AF tends to have less-

progressed fibrosis and ectopic waveforms of lower complexity, and responds more 

favorably to therapies aimed at preventing transmission of ectopic triggers from the 

pulmonary veins, which are critical sites of origin. Radiofrequency or cryoablation, which 

electrically isolate the ectopic regions, have been very successful in controlling 

paroxysmal AF.38 Efficacy of AAD and ablation therapy both appear to be inversely 

related to AF progression, and once it has become persistent or permanent there is a 

decrease in relief following treatment.39, 40 While rhythm control has traditionally been the 

favored approach, rhythm control drugs can have profound side effects, and some (e.g. 

sotalol) appear to actually increase risk of mortality.41 Further, a pharmacological rhythm 



4 

control approach does not appear to offer any morbidity or mortality benefit when 

compared with a rate control strategy.42 

The resistance to treatment, potentially serious complications, and growing 

prevalence make better understanding of the development and progression of AF a 

crucial area of research. While there are many genetic loci associated with AF, it is 

estimated that a large proportion of the heritable component of the disease remains 

unknown, emphasizing the need to investigate novel pathways and mechanisms of 

action.43 

1.2. Metabolic arrhythmogenesis 

A growing body of evidence suggests that a potential area of new insight is the 

link between metabolomics and arrhythmias. Though it includes numerous pathways 

that mainly function in parallel, many catabolic processes eventually converge to support 

synthesis of adenosine triphosphate (ATP), whether directly, through oxidative 

phosphorylation in the mitochondria or substrate level phosphorylation in the cytosol, or 

indirectly, through the production of substrate molecules to facilitate these processes. 

It has long been understood that reperfusion following ischemia can lead to 

arrhythmogenic cellular decompensation and cell death, broadly implicating metabolic 

disturbance as a potential trigger for arrhythmia.44 Both animal model and human studies 

show evidence of reduced atrial perfusion in AF, and rapid atrial pacing is accompanied 

by increased ATP synthase activity, suggesting an imbalance between energy 

production and demand.45–47 An increase in the ratio of adenosine monophosphate 

(AMP) to ATP is indicative of increased energy consumption, and these changes are 

detected by the AMP-activated protein kinase (AMPK) which increases net cellular 

energy generation. AF patients display this increased activation relative to controls, 

further supporting the association between AF and changing energy dynamics.48 

In a pertinent example of a metabolic gene variant causing electrical dysfunction, 

a variant in PRKAG2, which encodes the γ-subunit of AMPK, was observed in a family 

with Wolff-Parkinson-White (WPW) syndrome.49 This same variant was also observed in 

an AF patient, and functional studies confirmed the variant was responsible for the 

aberrant electrical activity.50 Intuitively, the best-understood of these variants tend to be 
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those which are involved earlier in their respective energy pathways, where there is a 

clearer relationship between individual proteins and their direct functional roles, prior to 

convergence at the electron transport chain. Numerous reported variants in ACADVL, for 

instance, result in very long chain acyl CoA dehydrogenase deficiency (VLCAD) which 

compromises β-oxidation of very long chain fatty acids and can result in fatal 

cardiomyopathy and arrhythmia.51 

The literature describes many cases, however, of variants in genes further 

downstream that are related to similar cardiovascular complications, but for which direct 

mechanisms are far more elusive. Variants in mitochondrial complex I (NADH-

ubiquinone oxidoreductase) are frequently associated with mitochondrial complex I 

deficiency, but because so many gene products are involved in the assembly and 

ongoing operation of the holoenzyme, and because many of these do not have a clearly 

understood function, genotype-phenotype relationships are difficult to infer. Despite this, 

associated variants have been observed in many of the subunits, and there is often 

considerable similarity in symptoms.52 Leigh syndrome, and similar clinical 

presentations, are commonly associated with complex I variants, as are various 

cardiomyopathies. A similar trend exists with variants in complex II (succinate 

dehydrogenase) complex III (ubiquinol-cytochrome c reductase) and complex IV 

(cytochrome c oxidase) as well. As with deficiency in complex I, Leigh syndrome is a 

common clinical presentation associated with these variants, but dysfunction in these 

other complexes also exhibit the same puzzling range of symptoms, in terms of both 

severity and kind, which also include various metabolic symptoms such as lactic acidosis 

and disrupted blood glucose regulation, in addition to cardiomyopathies and 

arrhythmias.53–55 Mechanisms for these relationships have rarely been proposed, since 

the specific functions of many of the mitochondrial complex subunits are still unknown. 

However, given the degree of similarity between the different conditions, it may be the 

case that the crucial process in disease onset is not specific to any of the mitochondrial 

complexes, and that disruption of ATP synthesis and overall energy balance as a whole 

is the primary contributor to these diseases. 

As the site of the majority of ATP synthesis in cardiomyocytes, mitochondria 

present an obvious target for the investigation of such a relationship, particularly since 

rapid electrical pacing induces a pathological mitochondrial phenotype.56, 57 Numerous 

studies have established that mitochondria are large contributors to the generation of 
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reactive oxygen species (ROS) within cells, predominantly complex I and complex III.58 

The repercussions of increased activity of these ROS-generating pathways can be seen 

following acute physiological insult. Transient ischemia and subsequent reperfusion, for 

example, leads to a variety of mitochondrial decompensations, such as inappropriate 

Ca2+ flux, and overproduction of ROS with simultaneous depolarization of the 

mitochondrial inner membrane.59 

These same homeostatic disruptions can be triggered experimentally through 

photo-oxidation of a single mitochondrion, and can then lead to further increases in ROS 

production, a phenomenon known as ROS-induced ROS release (RIRR).60,61 This 

process ultimately triggers a self-propagating cycle of mitochondrial damage which can 

then spread to other nearby mitochondria.62 It has been further demonstrated that this 

dysfunction can progress to the point of generating a synchronized, cell-wide oscillation 

in mitochondrial inner membrane potential (ΔΨm) and mitochondrial oxidation state. 

Cardiomyocyte APD also oscillates in phase with ΔΨm and this has been shown to 

directly cause arrhythmias.60, 63 Coincidentally, upset Ca2+ homeostasis with subsequent 

disruption of ΔΨm has also been observed in VLCAD, a common consequence of 

variants in ACADVL.64 While the mechanisms ultimately responsible are not yet 

conclusively determined, computational modeling has suggested that one possibility is 

through ROS activation of CaMKII.65 More broadly, oxidative stress, like fibrosis, also 

generally increases with age, and increased ROS levels have been shown to be a factor 

in both structural and electrical remodeling, perhaps contributing to the well-established 

association between advancing age and AF.66–68 

ROS overproduction is not exclusively the result of experimental intervention or 

severe physiological insult, however, and is also the consequence of pathological 

variants which cause mitochondrial enzyme dysfunction.69, 70 Exploring these 

relationships using conventional methods is challenging, however, since the transfer of 

energy from primary substrate molecules to ATP involves the products of multiple 

hundreds of genes. As such, this is an area that stands to greatly benefit from the 

analytical power of recent genomics techniques. These techniques have already had 

success in identifying rare variants that influence other cardiovascular factors, such as 

blood pressure and plasma cholesterol, and it may be possible to utilize them for 

additional complex conditions which represent the manifestation of numerous, subtle 

contributors, such as AF.71, 72 
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1.3. Gene panel curation 

I assembled a panel of candidate genes that code for proteins with evidence of 

involvement in cellular metabolic function, based on extensive literature review. I 

emphasized genes with more narrowly-defined functions so that a mechanism of any 

association with AF would be more easily intuited. For example, enzymes and subunits 

of multi-protein catalytic complexes are abundant since the downstream effect of a 

dysfunctional enzyme can be conjectured with some degree of confidence. In contrast, 

high-level transcription factors, which are likely to have a broad and less transparent 

influence through the complex interaction of multiple downstream cellular pathways, are 

less well-represented. The candidate gene list was assembled with the invaluable 

feedback of Dr. Roselle Gélinas and is viewable in Appendix A, with associated 

metabolic pathways and molecular functions predominantly annotated via the Human 

Protein Atlas.73 

1.4. Genomics 

Genetic data can be analyzed through a large and growing number of 

approaches which are continuously becoming more sophisticated. Still, the capacity to 

generate sequencing data far surpasses the capacity to actually analyze those data. 

Whole-exome sequencing (WES) is a popular investigative approach, and one that is 

becoming optimized to the point where it is now economically viable to include as a 

regular part of diagnosis and treatment of some diseases. This is possible because WES 

focuses on sequencing only the coding regions of a patient’s DNA (the exome) rather 

than the entire genome. Because the vast majority of genetic diseases are currently 

believed to originate from exome variants, and because the exome represents less than 

2% of the genome, WES combines high relevance of information with comparatively 

lower cost and higher throughput. 

In typical case/control experiments, a group of patients with a phenotype of 

interest (e.g. a disease) is sequenced along with a control group, the members of which 

do not exhibit the phenotype. After identifying the sites at which each participant 

diverges from the human reference genome, the groups are compared to identify 

variants that are enriched in either the patient cohort, suggesting the potential for a 

causative relationship with the disease, or in the control group, suggesting the possibility 
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of some protective effect. These studies are challenging for many reasons, including the 

degree of genetic variation displayed across the human population that is unrelated to 

disease, that some variants appear to be pathogenic in certain human sub-populations 

but not others, and that some variants cause disease only under certain very specific 

conditions, such as the simultaneous presence of several variants, or variants which are 

disease-causing in a heterozygous, but not homozygous, state. 

1.4.1. Population effects 

If a particular variant is believed to be disease-causing, then there is an 

evolutionary selective pressure working against the widespread propagation of that 

variant. By extension, variants that are highly-observed in a population are generally 

regarded as benign or of otherwise having little impact on reproductive fitness. As a 

result, sequencing research has historically focused on rare variants that are defined as 

variants that are observed in a reference population below a semi-arbitrary threshold 

which varies from study to study, e.g. 1% or 0.1%, as these have a greater likelihood of 

imparting a larger functional effect.74, 75 Variants that are thus defined as rare, however, 

may only be rare in particular sub-populations owing to unequal human population 

expansion and lower relative genetic diversity within certain groups combined with 

increased geographic relocation. Since rare variants do tend to be population-specific, 

by analyzing a diverse group of people collectively, variants that are rare in one group 

but more common in another may lead to spurious associations, and so compensating 

for these disparities is necessary to improve reliability of results.76 One straight-forward 

method of accomplishing this is to subdivide an experimental group based on the 

genetic lineage of the subjects and consider each group in isolation of the others, using 

appropriately-matched reference populations for each group. 

Further complicating this process is the fact that someone’s genetic ancestry 

may be distinct from their socially-influenced perception of their identity and lead them 

to, whether unknowingly or deliberately, misclassify themselves. This can add more 

noise to the data if experimental grouping is done on the basis of the self-described 

identity of the participants. Principal component analysis (PCA) is a common tool for 

dimensional reduction in many areas of research, and in genomics can be used to 

mathematically cluster participants based on their overall genetic variation in a more 

objective fashion.77 Each individual’s data are reduced to a single value that represents 
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their overall genetic variation, and then these values are re-arranged in coordinate space 

in such a way as to explain as much variance as possible in the data set. This is typically 

achieved by plotting the first two principal components against each other to visually or 

mathematically assess participant grouping. Often, the greatest source of variation in an 

ethnically diverse population coincides with the genetic lineage of the participants, 

allowing effective stratification and subsequent reduction in unrelated genotype-

phenotype association. 

1.4.2. Assessment of variant pathogenicity 

Even after controlling for population effects, unrelated genotype-phenotype 

association remains a common issue in genomics studies, and it can be difficult to 

establish a causative relationship. Variants may have a legitimate association with a 

phenotype of interest yet not necessarily be disease-causing, or even mechanistically 

related in any fashion, e.g. a variant in linkage disequilibrium (LD) with the true 

pathogenic variant. As such, before causation can be determined, other investigations 

must be done, such as functional evaluation of the variant in vitro, or pedigree studies 

that show clear evidence of genotype-phenotype segregation in family members. 

Validating experiments can be time- and labor-intensive, and expensive, so it is useful in 

exploratory research to narrow the scope of the investigation whenever and however 

possible. 

One such method of focusing on a more manageable number of candidate 

variants is through the application of computational scores which predict whether or not 

a given variant is likely to have a deleterious effect on the resultant protein. Some of 

these algorithms base their assessments on the evolutionary conservation of a given 

site, whereas others attempt to predict how the chemical properties of the substituted 

amino acid would alter protein function. Since various approaches appear to offer 

orthogonal data, there exist algorithms that derive a weighted aggregate from multiple 

other scores, designed to improve upon any of the components in isolation.  

Many tools that attempt to score variants according to their predicted degree of 

deleteriousness are based on similar underlying principles. Because of this, the 

American College of Medical Genetics and Genomics (ACMG) has issued guidelines 

indicating that predicted deleteriousness by multiple scores should be considered one 
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collective piece of evidence as to a variant’s likelihood of pathogenicity.78 However, the 

guidelines also observe that it is nonetheless desirable to use multiple tools, as each 

invokes those underlying principles in unique ways. Thus, the relative strengths and 

weaknesses of each algorithm can be mitigated to some degree by considering their 

output in aggregate. In observation of the ACMG guidelines, I used several predictive 

scores in the evaluation of the deleteriousness of candidate variants, which I selected 

following extensive literature review in order to assemble a diverse panel according to 

the data on which their algorithms are based and weighted, their degree of use and 

validation in the field, and their performance. 

1.4.3. Statistical analyses 

I expected the statistical analyses in this project to have relatively poor power, 

owing to the small sample size in the patient cohort, and thus took several approaches in 

an attempt to increase the likelihood of uncovering an association. First, I restricted my 

investigation to variants in a panel of specific candidate genes rather than the entire 

exome. Genome-wide and, to a lesser extent, exome-wide association studies 

undoubtedly overlook relevant variants that do not achieve statistical significance 

because of the multiple test corrections performed to account for the sheer number of 

variants that are considered. By narrowing the focus to genes that may have some direct 

involvement in metabolic processes, I greatly reduced the number of statistical tests 

performed. Second, as mentioned earlier, I only evaluated rare variants, as those are 

more likely to result in an overt change in protein function and thus have a higher 

propensity to be disease causing than more common variants when considered on an 

individual basis. Third, rather than assessing variants on an individual basis, I collapsed 

them to the gene level and performed burden testing on the summed variants. 

Looking exclusively at rare variants in a small cohort makes it less likely that a 

given variant will be observed in multiple participants, and because of that it may not be 

evident if the variant truly associates with the disease. By pooling the variants in a gene 

and considering them collectively, it may then be more readily observed that variation in 

that gene as a whole may have a pathological effect, albeit without the ability to identify 

which of the variants are specifically responsible.79 
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2. Study goals 

With this project I aimed to develop and employ an analysis pipeline to 

investigate the possible relationship between the development of early-onset AF and the 

presence of predicted-deleterious variants in metabolism-associated genes. If these 

variants lead to dysfunctional gene products which disrupt regular metabolic processes 

and destabilize mitochondrial or cellular energy dynamics, and if the result of this is 

overproduction of ROS and compromised ROS homeostasis, then accumulation of ROS 

could follow, which is an arrhythmogenic substrate. I thus hypothesize that this early-

onset AF population will be enriched for deleterious variants relative to the general 

population in a panel of such metabolic genes. 
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3. Methods 

3.1. Participant cohorts 

Prior to this study, a cohort of patients was established with inclusion criteria of 

an AF diagnosis prior to 60 years of age, and without evidence of typical clinical risk 

factors, such as hypertension, diabetes, valvular heart disease, heart failure, obstructive 

sleep apnea, and coronary artery disease. An array of patient data was collected, 

examples of which include blood samples for whole-exome sequencing, 12-lead ECG 

results, anti-arrhythmic drug (AAD) prescription status, and family history of AF and 

other disorders. General demographic data are collected in Table 1.  

Table 1. Early-onset AF participant demographic data 

Population Participants (n) Enrolled age (years) BMI 

Total 211 50.7 26.7 
Male 175 50.3 24.2 
Female 36 52.8 24.4 
White 174 50.9 27.0 
Asian 32 52.0 25.5 
Hispanic 3 45.9 24.9 
First Nations 2 24.8 26.6 

Number of total participants as well as divided by sex and self-identified ethnicity. Included are the mean age for the 
group’s clinical enrolment and mean BMI following pruning of missing values. 

Since this patient group underwent WES as part of their diagnostic and treatment 

program, a matched control group was unavailable, and I instead used data from the 

Genome Aggregation Database (gnomAD) 2.1 release as a comparator.74 It is the 

largest publicly accessible WES data set and includes well-defined sub-populations, and 

it provided the allele counts for the control side of many of the case/control statistical 

analyses performed. For mitochondrial variants, I retrieved frequency data from 

Mitomap, a large and diverse database of mitochondrial variation.80 

I utilized data from the March 2019 release of the UK Biobank (UKB) to act as a 

more rigorously-matched case/control set in an attempt to validate any findings from the 

patient group in a larger population.81 The initial release contains WES and extensive 

clinical data for 50,000 participants. After data pruning, the effective size of the data set 

used for this study was 49,901 people, including 27,230 women and 22,671 men. 
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3.2. Exome sequencing 

As part of their clinical assessment and treatment, blood samples were collected 

from participants and whole-exome sequencing was performed by Génome Québec 

(Montréal, QC) using the NovaSeq 6000 sequencer (Illumina, San Diego, CA). Coding 

regions were enriched using the SeqCap EZ Human Exome Capture v.3.0 probes 

(Roche NimbleGen, Pleasanton, CA). 

Post-sequencing processing used the GenPipes DNA-Seq pipeline, which is an 

implementation based on the BROAD Institute Genome Analysis Toolkit (GATK) Best 

Practices.82, 83 To summarize, primer sequences were trimmed from the raw reads which 

were then mapped to the human reference genome using the Burrows Wheeler Aligner 

bwa-mem tool.84 Base qualities were adjusted near indels by GATK indels realignment 

and base recalibration in order to account for the decreased reliability of reference 

alignment surrounding indels relative to SNVs. Picard markduplicates was used to 

identify and flag reads likely to be duplicate sequences generated by the exome 

enrichment PCR amplification rather than legitimate sequencing output, and SNPs and 

indels were identified using GATK haplotype caller. 

3.3. Quality control measurement 

I filtered participant VCFs based on several quality control metrics before further 

analysis. First, I merged the variants of the entire patient cohort into one large file for 

aggregate analysis and quality filtering using bcftools, and then split multiallelic sites and 

left-aligned variants.85 Because some quality metrics require different filtering thresholds 

for SNVs and indels, I analyzed these variant types separately. 

I imported all variants into R and then visualized them across several quality 

metrics.86 As per GATK germline variant hard filtering recommendations, I made an 

effort to tailor the filtering thresholds to this data set in order to strike a balance between 

retaining true positives and eliminating false positives. As GATK’s filtering thresholds are 

deliberately very lenient, I filtered variants according to the more stringent visually-

determined cut-offs using GATK’s VariantFiltration feature, and then recombined 

passing SNVs and indels for further analysis. 
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3.4. Variant annotation and filtering 

I annotated variants with the Ensembl Variant Effect Predictor (VEP) using 

initially broad settings (e.g. annotations for all available transcripts in which a variant 

appears) in order to capture as much information as possible for downstream 

processes.87 To later focus these data, I then performed several filtering steps. First, I 

restricted variants to those falling within the candidate gene panel. I retrieved gene 

border coordinates from the University of California Santa Cruz (UCSC) Genome 

Browser, and iteratively compared the end coordinates from all available transcripts for 

each gene until the pair of highest and lowest coordinates were identified.88 After 

determining the widest possible base range for each gene, I then used these 

coordinates with bcftools to subset the relevant genes from the overall data. Using 

VEP’s filter_vep functionality, I then excluded variants less likely to have an impact on 

protein function (e.g. intronic variants), as well as those with a global allele frequency 

observed in greater than 1% of the gnomAD population. Mitochondrial variants were 

evaluated similarly, instead using frequencies from the Mitomap reference data. 

Not all deleteriousness predictors score all available transcripts, and different 

transcripts can have different scores, so I made an effort to determine the most 

reasonable transcript to use for assessment. In many cases this was the canonical 

transcript, but I accessed tissue-specific expression data via the Genotype Tissue 

Expression Project (GTEx) and, where possible, I utilized the transcript most prevalent in 

atrial appendage samples.89 

Using bcftools, I measured the transition/transversion ratio (Ti/Tv) of SNVs and 

the insertion/deletion ratio of indels after various filtering steps in order to compare them 

to expected values from the literature as an additional means of assessing variant calling 

accuracy. 

3.5. Deleteriousness scoring 

Variant deleteriousness scores were included in the initial VEP annotation using 

both the native VEP cache as well as the dbNSFP and dbscSNV plugins.90–92 In several 

cases multiple scores may have been provided for a given variant according to the 

number of transcripts considered. I accessed the most recent release of each tool’s 
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score database and, wherever possible, cross-referenced all variants with these updated 

tools to remove ambiguity and revise their assessment to reflect the most recent data 

available. To demarcate possibly damaging from benign variants I relied on the scores 

suggested by the respective authors of each tool. 

I assessed putative loss-of-function (LOF) variants according to their phred-

scaled CADD scores, since certain variant types (e.g. frameshift variants) are not scored 

by all tools.93 In addition to CADD scores, in my analysis of splice site variants I also 

considered their Ada and RF scores from dbscSNV, which estimate whether or not a 

given substitution is likely to alter splicing at that location. I excluded any LOF variants 

that were flagged as low confidence by the Loss-Of-Function Transcript Effect Estimator 

(LOFTEE) plugin for VEP.74 Whereas LOF variants with sufficient CADD score were 

included based on that score alone, I scored nuclear missense variants with CADD, 

PROVEAN, REVEL, SIFT, and VEST4, and only considered variants further if there was 

unanimity in the predictions.93–97 Mitochondrial variants I instead evaluated using 

APOGEE, Mtoolbox, and CAROL.98–100 Again, I included variants for downstream 

analysis only if all three scores agreed that a variant was likely to have a deleterious 

impact on the protein.  

3.6. Sub-population clustering 

Both the early-onset AF cohort and the UKB participant group included self-

identified ethnicity among their demographic data. In addition to partitioning on the basis 

of this self-identified ethnicity, I explored the patient cohort sub-populations using 

principal component analysis to examine if that changed the grouping of any subjects, 

and what effect that ultimately had on candidate gene evaluation. 

A cohort-wide VCF of all variants that passed initial quality filters, as described in 

section 3.3, was converted to BED format using Plink.101 I used the indep-pairwise 

function to remove rare variants in the dataset (MAF < 0.01) and then to identify and 

remove those pairs of variants in linkage disequilibrium (LD). This was done using a 

sliding window of 50 bases, incrementing 5 bases per step. If a pair of variants within the 

window had a squared correlation (r2) of greater than 0.2 at each step, variants were 

pruned until there were no longer any such pairs remaining. Following this, I employed 

Plink’s pca function to calculate the eigenvalues and eigenvectors for the dataset, which 
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I then imported into R. I iteratively plotted combinations of the first 20 principal 

components against each other for visual estimation of population grouping, which I then 

validated using R’s kmeans function. With consideration of the relatively small number of 

participants from the other groups, I primarily emphasized distinguishing between white 

and non-white subjects. 

3.7. Statistical analyses 

I performed statistical analyses in R. After all previous variant filtering steps were 

completed, I summed individual variant counts to collapse results to the gene level for 

burden testing. I compared the total number of observed variants in each gene in the 

patient cohort with the sum of those same variants observed in the gnomAD or Mitomap 

reference data and calculated odds ratios (ORs) with 95% confidence intervals (CIs) and 

p values using Fisher’s exact test, which I then adjusted to constrain the false discovery 

rate (FDR) to 5%. In gnomAD, the total allele number is inconsistent between variants as 

a result of differing numbers of participants whose base calls passed or failed at a 

particular locus. To account for this when variants are considered at the gene level 

rather than the variant level, I used the maximum possible number of observations in a 

given gnomAD population (e.g. 133,770 for non-Finnish Europeans) in these 

calculations. 

3.8. Positive control analysis 

A prior study used similar early-onset AF exome data to investigate the 

relationship between AF and LOF variants and copy number variants (CNV) in 

cardiomyopathy genes and identified several LOF variants in the gene TTN.102 As a 

positive control, I applied the variant filtering and evaluation methods described earlier in 

this thesis to TTN variants in this patient exome data, to assess whether this analysis 

pipeline would also recognize an association between TTN variants and AF. With the 

exception of the gene coordinates used to select the region of interest, all procedures 

were performed identically to those previously discussed. 
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3.9. Validation of statistical associations 

Based on the results of the prior statistical analyses, I further investigated 

promising genes that associated with AF in the UKB data set in an attempt to validate 

my findings in a more rigorous case-control comparison. First, variants from selected 

genes that were used in the previous burden testing were converted to GRCh38 

coordinates using the NCBI Genome Remapping Service.103 Variant data for UKB 

participants were then retrieved and analyzed. Any participants that had later withdrawn 

consent from UKG were excluded from analysis, as well as those with a missing 

genotype measurement batch or a mismatch between reported and genetically-

determined sex. I greatly appreciate the efforts of Mark Trinder and Kate Huang in 

accessing and merging the relevant genotype and phenotype data from the UKB data 

set, and without their assistance none of the UKB investigation would have been 

possible. 

First, I excluded non-white participants in order to better match the group from 

which the tested variants originated. I then classified UKB participants among the AF 

group if any of the following applied: 1. self-reported atrial fibrillation or flutter during their 

intake interview at time of program enrolment, 2. automated diagnosis of either condition 

from resting ECG data during a UKB assessment, or 3. associated hospital in-patient 

admission at any point with ICD-10 code I48, the category code for atrial fibrillation and 

flutter. There were 2,964 such individuals. To more specifically identify participants as 

part of an early-onset subset of this AF population, I applied exclusionary criteria that 

were as similar as possible to those for the original early-onset AF patient cohort: 

diagnosis before 60 years of age (n=622), and without recorded evidence of other 

pathologies: hypertension, heart failure, valvular diseases, cardiomyopathy, diabetes, 

COPD, sleep apnea, and hyperthyroidism (n=320). As described previously, I counted 

variants in the UKB early-onset AF group and the UKB non-AF group (n=43,593) and 

compared using Fisher’s exact test with FDR-correction, and calculated ORs and 95% 

CIs. I then performed a secondary analysis without the age restriction, and/or without 

comorbidities, to investigate if there was any broader AF association as well. 
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3.10. Atrial fibrillation comorbidity association 

Since AF is a multifaceted disease that interacts with numerous conditions, it is 

possible that variants that appear to associate with AF are actually associated with one 

or more of its comorbidities, even if that comorbidity exists at a subclinical level and has 

not yet been diagnosed. To investigate this possibility, I divided the UKB data set into 

several other case/control groups for hypertrophic cardiomyopathy (HCM), diabetes 

(both types I and II, as well as those for which the type was unspecified in the UKB 

data), hypertension, and stroke. I summed variants as before in both cases and controls 

and compared using the aforementioned statistical tests. 
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4. Results 

4.1. Quality control measurement 

A representative example of the visual evaluation of quality control metrics 

described in section 3.3 is displayed in Figure 1. 

 

Figure 1. Density plot of variants by QD value 

A. SNVs and indels are individually plotted according to variant quality by depth (QD) value. The 
dashed line is placed at the GATK recommended threshold for both SNVs and indels (2). B. 
Zoomed view of the region where the cutoffs are located. The colored lines correspond to the 
visually determined filter cut offs, red for indels (3.7) and blue for SNVs (5). 

Tailoring the thresholds to these data yielded filtering cut offs that were more 

stringent than the GATK default recommendations, and resulted in a larger number of 

removed variants, shown in Table 2. Note that columns do not sum to the total number 

of variants removed under each set of filtering conditions, as a single variant can fail 

multiple criteria. 
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Table 2. Number of variants removed by each quality filter 

 SNV INDEL 

GATK Graph GATK Graph 

QD < 66,765 2.0 262,506 5.0 39,302 2.0 71,224 3.7 
FS > 1,786 60 139,477 5.0 50 300 30,901 5.0 
MQ < 269,260 40 324,369 41     
MQRS < 416 -12.5 53,729 -2.5     
RPRS < 16 -8.0 65 -6.0 0 -20 180 -6.25 
SOR > 72,854 3.0 72,854 3.0 16,876 10 67,588 3.0 

The number of variants removed by a given filtering threshold is shown, along with the direction of removal. 
E.g. using the GATK default value of filtering out variants with a QD lower than 2.0, 66,785 variants are removed. 
In contrast, using the 5.0 threshold derived visually from the density plots, 262,506 variants were removed. 
QD: QualByDepth, FS: FisherStrand, MQ: RMSMappingQuality, MQRS: MappingQualityRankSumTest, 
RPRS: ReadPosRankSumTest, SOR: StrandOddsRatio. 

I applied both filter sets independently in order to quantify the total number of 

variants that were retained in each case, and these results are shown in Table 3. 

Observing the less forgiving filtering criteria removed an additional 8% of variants. 

Table 3. Comparison between filtering thresholds 

 Unfiltered GATK % Graph % 

SNV 4,198,663 3,821,624 91.02 3,498,380 83.32 
Indel 794,364 755,029 95.05 671,383 84.52 
Total 4,993,027 4,576,653 91.66 4,169,763 83.51 

The number and proportion of variants retained after applying the collection of GATK default values or the graph-
derived values to the collection of cohort-wide variants. 

The expected transition/transversion ratios for exon-located synonymous and 

non-synonymous SNVs are 4.9 and 2.1 respectively, for an overall exonic SNV Ti/Tv of 

2.8. Initially, the cohort-wide Ti/Tv was 1.68, but this improved after discarding variants 

from outside exon boundaries. These values increased further after the application of 

quality filters to slightly higher than the expected values. and may be evidence of data 

bias due to artifacting introduced during the sequencing or variant calling processes. 
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Table 4. Transition/transversion ratios following data processing steps 

 Ti/Tv ratio 

Data processing step sSNV nsSNV Combined 

Initial variants   1.68 
Exon restriction 4.69 2.06 2.78 
Quality filtering 5.09 2.22 2.98 

Transition/transversion ratio is given for synonymous SNVs (sSNV) non-synonymous SNVs (nsSNV) and both types 
collectively (Combined). 

4.2. Principal component analysis 

Population comparison used iterative combinations of the first 20 principal 

components. The first principal component provided the best capacity to distinguish 

between populations, and the point at which to separate the white and non-white 

participants was visually estimated at a PC1 value of 0. 

 

Figure 2. Principal component analysis and population clustering 

Populations are colored according to self-identified ethnicity. The vertical line at 0 represents the 
visual estimation of the point of division between the white and non-white populations. 



22 

Based on this division, nine self-identified Asian participants were grouped within 

the white population, as well as one Hispanic participant. Conversely, six patients who 

identified as white were excluded from that group. I validated group demarcation using k-

means clustering, and found that three clusters were ideal for isolating the white 

participants, shown in Figure 3. Examples of other explored k-means values can be 

viewed in Appendix D. 

 

Figure 3. Computational determination of population clustering using k-means 

Population distribution was computationally explored to validate the visual estimation using k-
means clustering. Three clusters were ideal for separating the white and non-white subjects, and 
coincided with the visual estimation. 

The PCA recategorization resulted in an increase in the white population by four 

members, and an overall change in its participant composition by approximately ten 

percent. Because of the magnitude of these changes, I ran a revised statistical analysis 

to evaluate the potential change in identified AF-associating genes. 
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4.3. Early-onset burden testing 

4.3.1. Cohort-wide analysis 

Of 87 nuclear genes that were candidates for burden testing, 53 had evidence of 

a positive association with AF (FDR-adjusted p<0.05, 95% CI lower bound > 1), with 

three of seven mitochondrial genes showing similar results. Acyl-CoA dehydrogenases 

were highly represented, including ACAD9 (p=0.016), ACADS (p=0.0014), and ACADVL 

(p=0.0014). along with several other genes related to acyl-CoA or acetyl-CoA. A large 

number of genes that contribute products to mitochondrial complexes I through V also 

had evidence of an association. A small selection of tested genes is shown in Table 5. 

Due to the large number of genes with an apparent association, I investigated further to 

ensure these results were not influenced by population effects. 

Table 5. Selected results from full-cohort burden testing 

Gene OR 95% CI P Gene OR 95% CI P 

ACACB 2.2 1.1 - 4.0 0.049 ATP5F1A 10.6 2.86 - 27.8 0.005 
ACAD9 199 3.8 - 2648 0.016 MT-ATP8 4.3 1.16 - 11.4 0.031 
ACADS 240 22.7 - 1448 0.001 MT-CYB 244 17.64 - 3568 0.002 
ACADVL 20.2 5.4 - 53.5 0.001 MT-ND5 12.5 2.49 - 38.8 0.007 
ACSM4 149 3.0 - 1544 0.018 PC 13.5 4.32 - 32.3 0.001 
ACSS2 19.0 2.2 - 71.8 0.014 PRKAB2   0.006 
AGL 7.59 1.55 - 22.6 0.018 SLC22A5 7.5 2.40 - 17.7 0.005 

Odds ratios (OR) are shown with 95% confidence intervals (95% CI) and FDR-corrected p values (P). The PRKAB2 
variant did not exist in gnomAD, and as such no OR could be calculated. 

4.3.2. Sub-populations analyses 

I repeated burden testing on the self-identified white participants (n=174) and 

self-identified Asian participants (n=32) separately and a comparison of all analyses is 

given in Table 6. Of the white cohort, 33 of 66 nuclear genes retained a positive AF 

association, whereas none of the five tested mitochondrial genes did. The Asian cohort 

had 51 nuclear genes and six mitochondrial genes tested, with 43 and five respectively 

statistically associating with AF, suggesting that the Asian subpopulation was a powerful 

contributor to the collective results. When comparing the results from the white 

participants with those of the entire cohort, three genes gained an association from 

analyzing the white population independently, whereas the genes that lost an 
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association numbered 16. Thirty genes were associated in both cases. It was further 

revealed that the ethnicity coding in the patient data allowed no way to distinguish 

between genetically distinct groups that might all describe themselves as Asian, a 

situation not unlikely given the presence of large numbers of both South Asian and East 

Asian residents in the geographic region from which the patient cohort was recruited, 

and one which would result in population-reference mismatch and inflation of results. 

4.3.3. Population adjustment 

Following the discovery of the ambiguous nature of the ethnicity coding, I 

performed principal component analysis and repeated gene burden testing with the 

revised participant categorization. 21 associated genes were shared between the PCA-

defined white participants and the self-identified white participants, whereas association 

was lost for seven genes, but gained for one other. In total, 30 of 77 nuclear genes and 

one of two tested mitochondrial genes achieved an association. The associated genes 

and specific variants are collected in Appendix B. 

Table 6. Comparison of population-specific gene burden testing results 

Population Genes tested Genes associating % 

All participants 94 56 59.6 
Asian (self-identified) 57 48 87.7 
White (self-identified)) 71 33 46.5 
White (PCA-defined) 80 30 39.2 

The total number of genes tested for each cohort are compared with the proportion which had FDR-adjusted p<0.05 
and an OR 95% CI that did not include 1.  

4.4. Replication of Titin association 

Across the entire patient group there were 191 variants in TTN which passed 

initial quality filtering. These comprise one frameshift deletion, three in-frame deletions, 

one splice acceptor variant, four stop gained variants, and 182 missense variants. The 

splice acceptor variant was discarded after being flagged by LOFTEE due to the 

presence of a rescue acceptor sequence several bases away. Only 35 SNVs remained 

after deleteriousness scoring. While the majority were observed in only a single 

participant, there was one missense variant that was found in four people, two that were 

found in three people, and four variants with two observations, one of which was a 
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homozygous substitution. Of the five LOF variants, two were observed in the white 

population and two in the Asian population following PCA-adjustment. One was in an 

individual who did not definitively cluster with either group, but who identified as white. 

Following burden testing of the white participants, this analytical protocol did 

identify TTN as having an association with AF with an odds ratio of 11.8 (95% CI 8.16 – 

16.64), and p=1.70*10-26. 

4.5. UK Biobank burden testing 

Despite the strength of the associations discovered in the smaller data set, none 

of the genes selected for UKB comparison yielded similar results in the larger data set. 

Many of the selected variants were not observed at all in the UKB case groups, and 

there was no observed association for any of diagnosis under 60 years of age, either 

with or without comorbidities, or diagnosis at any age, again with or without 

comorbidities. Results from UKB subset with early diagnosis and no comorbidities are 

shown in Table 7, and are representative of the results from the other comparisons. 

Table 7. Comparison of burden testing results between data sets 

Gene Variants (AF) Variants (UKB) Hits (AF) Hits (UKB) P (AF) P (UKB) 

ACADL 2 1 3 6 0.224 1 
ACSM5 2 1 2 6 0.092 1 
EHHADH 2 3 2 5 0.012 1 
FBP2 2 2 11 7 0.070 1 
GYS1 3 1 3 1 0.016 1 
H6PD 2 1 5 2 0.079 1 
HK3 2 2 4 3 0.180 1 
PC 4 1 4 1 0.0005 1 
PYGM 5 1 5 2 0.035 1 
SLC22A5 5 2 5 6 0.024 1 
SUCLG2 1 1 1 6 0.162 1 

The variants columns (2 and 3) show the number of unique variants within each gene that contributed to the burden 
testing results. The hits columns (4 and 5) illustrate the total number of variants counted in each gene, including those 
that were observed multiple times. The AF columns (2, 4, 6) are data from the early-onset AF patient cohort, and the 
UKB columns (3, 5, 7) are data from the UKB data set. P values are FDR-corrected. Genes without any observed 
variants in the UKB data set are not included in this table. 
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4.6. Comorbidity association 

Several genes associated with AF comorbidities. While there were none found 

with either the specific type I or type II diabetes groups, ACSS2 was positively 

associated with the group of participants with an unspecified diabetes type (OR 2.24, 

95% CI 1.27-3.71, p = 0.043). ACSS2 (OR 1.56, 95% CI 1.16-2.08, p=0.023), and 

COX15 (OR 1.71, 95% CI 1.21-2.38, p=0.028) were both associated with hypertension, 

and EHHADH was also found to associate with stroke (OR 2.76, 95% CI 1.61-4.44, 

p=0.002). 
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5. Discussion 

This project involved the development of an analytical pipeline for the evaluation 

of rare variants and the subsequent association between the metabolism-related genes 

harboring those deleterious variants and atrial fibrillation. I successfully validated this 

pipeline by replicating a previously published association between variants in the gene 

TTN and early-onset AF in the same data set, and then applied the protocol to uncover a 

number of possible associations between AF and genes contributing to cellular 

metabolic function. While I was not able to replicate any of these associations in the 

larger UKB data set, in further exploring the data I uncovered associations between 

several of these genes and other diseases that are comorbid with AF, including 

diabetes, hypertension, and stroke.  

5.1. Pipeline validation 

The authors of the previous study pooled the patient population used in this 

project with a second of similar clinical presentation, giving them an experimental group 

of 195 after PCA and restriction to white patients, whereas this study had only the 178 

from one clinical group.102 While this difference in population introduces some degree of 

uncertainty when comparing the results of the TTN validation, the patient pool utilized for 

this project does represent the majority of that larger combined group, so results should 

generalize reasonably well. Additionally, the control group used for allele frequency data 

by Lazarte et al. was drawn from the 1000 Genomes Project (1KG) data, whereas I 

utilized gnomAD.104 Since gnomAD is a much larger database, and has itself absorbed 

the 1KG data set, it is possible that differences in number of allele observations between 

the two could influence significance of results. However, given its size and participant 

diversity, gnomAD likely offers a more accurate representation of overall allele 

frequency, particularly for rare variants which may be less reliably quantified in smaller 

samples. Though there are several discrepancies between our relative approaches, the 

goal of demonstrating that this variant assessment pipeline was capable of reproducing 

an association between AF and TTN variants was successful. 
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5.2. Early-onset cohort gene association 

Among the genes that appeared to associate with an increased risk of AF, there 

were several functional clusters. Eight are relevant to processes involving coenzyme A 

(CoA), including acyl-CoA dehydrogenases which catalyze the initial and rate-limiting 

step of fatty acid β oxidation (ACAD9, ACADS, ACADVL), acyl-CoA synthetases which 

produce acetyl-CoA to fuel the tricarboxylic acid (TCA) cycle among other destinations 

(ACSM4, ACSM5, ACSS2, ACSS3), and a pantothenate kinase, which catalyzes the first 

and rate-limiting step of CoA synthesis (PANK1). There was also one gene which codes 

a TCA enzyme (MDH2). Four other genes are also involved with β oxidation, one in the 

mitochondria (HADHB) and three in peroxisomes (DECR2, EHHADH, HSD17B4). Nine 

genes contribute to ATP synthesis through the electron transport chain, and are 

distributed between complex I (NDUFS1, NDUFV1, NDUFV3), complex III (MT-CYB), 

complex IV (COA3, COX10, COX15), and ATP synthase (ATP5F1A, ATP5F1C). 

ACAD9, mentioned prior, also acts as an assembly factor for complex I. Six genes are 

involved in carbohydrate metabolism via glycolysis (PKM), gluconeogenesis (PC), 

glycogenolysis (PYGB, PYGM), and glycogen synthesis (AGL, GYS1). The remaining 

two have functions in ketogenesis (HMGCL) and carnitine transport (SLC22A5). Under 

normal physiological conditions, the majority of the mature heart’s energy demands are 

met through oxidative phosphorylation, with β oxidation of fatty acids the primary 

contributor.105 As such, the number of associated genes that are involved with lipid 

metabolism in some fashion is interesting, and particularly the number which code for 

crucial enzymes involved in the rate-limiting steps of their respective pathways. 

Metabolism represents the complicated intersection of many energy pathways 

and even more regulatory networks and as such, dysfunction in these semi-independent 

systems has substantial overlap with respect to disease presentation.106, 107 Intuitively, 

compromised energy pathways tend to manifest most obviously in tissues which are 

highly metabolically active, and arrhythmias, cardiomyopathies, and optic neuropathies 

are common, but there exists a remarkable range of presentations, even between 

patients harboring the same variant. In fact, it is not uncommon to see a given variant 

appear to be responsible in one case for widespread multi-organ failure, whereas in 

another case only a single tissue is impacted.108, 109 Many individuals with one of these 

conditions tend to be diagnosed early in life due to the severity of their symptoms, and 
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often die very young, often within a number of years, if not weeks or even days. 

However, age of onset is variable, and some individuals do not become symptomatic 

until years or decades later in life, and tend to have a much better prognosis.110, 111 

Perhaps unsurprisingly, disease severity is equally unpredictable with some disease-

associated variants appearing somewhat frequently in healthy populations, suggesting a 

more complex interaction with some combination of other genetic, or perhaps 

environmental, factors.112 

Many of the genes, and even specific variants, found here to be associated with 

AF have also been identified in other research as imparting greater risk for, or even in 

some cases causing, some of these potentially serious diseases, yet the patients in this 

study cohort do not display such symptoms. There is some evidence that disease 

severity can depend upon the amount of retained protein function, but that too is 

unpredictable and even individuals with variants known to be-pathogenic have been 

found to be asymptomatic.112–114 As one might expect, severe complications are often 

the result of homozygous variants, but heterozygous associations are not uncommon 

and there is not often a detectable genotype-phenotype correlation.106 This could be due 

to interactions with other variants in the gene, a compounding effect with variants in 

genes that are responsible for downstream processes, or perhaps modulating effects of 

variants in promoter regions. 

As the heart depends on β-oxidation for supplying much of its considerable 

energy requirements, it comes as no surprise that dysfunction in the acyl-CoA 

dehydrogenases can be devastating. ACAD9 dysfunction, for example, is a common 

cause of complex I deficiency which often manifests as cardiomyopathy that proves fatal 

within several years, though as mentioned before the range of severity of presentation is 

wide.115 ACADVL variants have been observed in patients with atrial and ventricular 

ectopics, and fibroblast-derived human induced pluripotent stem cells differentiated into 

cardiomyocytes (hiPSC-CMs) from these individuals displayed multiple substrates for 

arrhythmia compared with control cells: shorter action potentials, increased frequency of 

delayed afterdepolarizations, and higher cytosolic Ca2+ concentrations which persisted 

through both systole and diastole.116 In addition to this Ca2+ dysregulation, ACADVL 

variants also appear to be responsible for increased ROS production and destabilization 

of the mitochondrial membrane potential, also triggers for arrhythmia.64, 117 The 

c.1700G>A variant found in this cohort has published evidence of decreasing levels of 
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protein expression while leaving the patient clinically asymptomatic, which implies a 

potential subtle threshold effect wherein they may initially experience a subclinical 

reduction in oxidative phosphorylation throughput but gradually progress to something 

that manifests later in life, as can be the case in acyl-CoA dehydrogenase dysfunction. 

Also important for the process of β-oxidation is the carnitine transporter OCTN2, 

the product of SLC22A5, which transfers long-chain fatty acids into the mitochondrial 

matrix so they can be processed. Primary carnitine deficiency (PCD) is an autosomal 

recessive disease, though in some diagnosed patients only a single heterozygous risk 

allele is identifiable. The functional impact of variants in this gene have a tremendous 

range, from complete abolition of transporter activity to an observed 50% gain of 

function.118, 119 Three cohort variants have been previously identified in individuals with 

PCD, c.34G>A, c.136C>T, and c.1451G>T.120 C.34G>A has been observed alongside 

both mild symptoms, such as intolerance to fasting or increased fatigability, and severe 

outcomes, such as cardiac arrest.119 The most commonly observed variant in PCD 

patients is the c.136C>T substitution, which reduces but does not completely eradicate 

transport. 

Ultimately, the majority of the reducing equivalents produced through β-oxidation 

and other metabolic processes contribute electrons to complex I of the ETC and, as 

such, reduced function in many of the related ETC proteins can have profoundly harmful 

effects. Variants in the complex I genes such as NDUFS1, like ACAD9, can lead to 

complex I deficiency, through either reduced presence or reduced activity of the 

holoenzyme. These variants can also see a compromised mitochondrial membrane 

potential and increased susceptibility to oxidative damage.121, 122 ROS hypersensitivity 

was demonstrated with NDUFV1 variants as well, reinforcing the relationship between 

energy pathway dysfunction and ROS intolerance as a mechanism for arrhythmia.123 

COX10 and COX15 are both instrumental in complex IV assembly and function 

through their contributions to heme A synthesis.124 One of the COX15 variants found in 

this patient cohort, c.520G>A, has been described in prior research in a heterozygous 

state in an individual with arrhythmogenic right ventricular cardiomyopathy, though it did 

not segregate with the phenotype within family members as expected.125 Like some of 

the previous discrepancies discussed, perhaps this is because it is not sufficient to 

cause disease, or perhaps it is due to incomplete penetrance owing to a more complex 
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genotype-phenotype relationship. Another cohort variant, c.452C>G, forms a premature 

stop codon (p.S151X) in exon 4. The child of a healthy father heterozygous for this 

variant, and a healthy mother heterozygous for a different variant, was born with severe 

lactic acidosis and HCM.126 It was also observed that the effects were far more severe in 

the heart than in skeletal muscle, emphasizing the continuum of presentation and, 

perhaps in milder cases, the potential for tissue specificity to mask symptoms that would 

otherwise lead to a diagnosis. 

5.3. UK Biobank validation 

There are a number of reasons that associated findings may not have been 

reproducible in the UKB cohort. The initial investigation, even after PCA adjustment of 

ethnicity, still treated all white subjects as genetically equivalent, which is not reliably 

assumed. The gnomAD data are divided into Finnish and non-Finnish groups for allele 

frequency reporting purposes, but the latter can be just as easily expanded to a number 

of well-defined sub-populations, e.g. Swedish, southern European, north-western 

European.74 This semi-arbitrary grouping, particularly when done inconsistently between 

case and control populations, can lead to uncontrolled population effects. Similarly, while 

participants in gnomAD are self-certified as healthy, AF is a condition that is rarely 

observed earlier in life. As such, gnomAD participants who carry risk alleles for AF and 

will eventually develop it later in life have no way of knowing that at their time of 

participation, so the use of large public databases as healthy control populations is 

dubious in some cases, particularly for conditions like AF which are relatively common, 

and where symptoms can take decades to manifest. 

There are also obvious weaknesses in comparing data generated using two 

distinct sequencing and processing pipelines. Each will have its own biases and sources 

of sequencing artifact, and this mismatch between the two will exaggerate these effects 

further. This will continue to be emphasized as downstream filtering processes are 

further removed from each other and may be reflected in the number of variants in the 

AF cohort that are not observed in gnomAD. Being processed collectively, the UKB data 

minimizes these effects, and so it is possible that despite the quality control efforts in 

which I engaged, some of the variants contributing to the AF associations in the patient 

cohort were erroneous. 
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Even in a best-case scenario from a technical standpoint, the patient cohort was 

quite small for a rare variant study. If, by coincidence, a given variant was observed in 

even two people instead of one, it could appear far more common in the AF cohort than 

it actually is in that population, which could inflate statistical comparisons relative to a 

much larger and more representative data set. 

5.4. Comorbidity investigation 

The product of ACSS2 is the enzyme acyl-CoA synthetase short chain family 

member 2. Consuming acetate and CoA as substrates it produces acetyl-CoA, which 

has many physiological applications including fueling the TCA cycle and fatty acid 

synthesis, both of which are processes dysregulated in diabetes. Current research is 

incomplete, but both acetate and acetyl-CoA seem to be involved in aspects of 

metabolic regulation, and ACSS2 appears to play an important role. In diabetic patients, 

for example, plasma acetate levels are increased.127 Studies using both rat and mouse 

models have also indicated that reduced expression is correlated with increased plasma 

concentrations of both triglycerides and glucose and also with decreased glucose 

tolerance.128, 129 Interestingly, supplemental acetate lowers plasma glucose and insulin in 

a mouse model of diabetes.130 Diabetes is a complex phenotype and research into the 

contribution that ACSS2 has is preliminary, as well as whether it participates in the 

progression to a diabetic state, or its modulated expression is exclusively part of a 

compensatory response. 

As a crucial factor in complex IV assembly and function, variation in cytochrome 

c oxidase assembly homolog, the product of COX15, has implications in disruption of 

ATP generation via the ETC and subsequent overproduction of ROS. Although 

investigations of specific mechanisms have not yielded a great degree of enlightenment, 

it is clear that oxidative stress is a powerful contributor to the onset and progression of 

hypertension, and that hypertension also contributes to worsening mitochondrial 

dysfunction and ROS dysregulation.131 

EHHADH codes for enoyl-CoA hydratase and 3-hydroxyacyl-CoA 

dehydrogenase, which are components of the peroxisomal trifunctional enzyme and are 

enzymes involved in the peroxisomal fatty acid oxidation pathway. While there is little 

research in how this gene might interact with stroke, there is considerable research 
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available on upstream genes, such as PPARA, which codes for the peroxisome 

proliferator activated receptor-alpha and is a powerful regulator of peroxisomal lipid 

metabolism. This receptor is activated by fatty acids and a mouse knockout model 

displayed a similar phenotype to that of humans who have pathogenic variants in fatty 

acid oxidation genes.132, 133 Prophylactic treatment through exogenous activation of the 

receptor in mice decreased both incidence and severity of stroke, an effect which was 

lost when the receptor agonist was applied to mice not expressing the protein.134 

Although upstream of EHHADH and having additional physiological influences, PPARA 

does regulate peroxisomal beta oxidation, and as such it is possible that dysfunction in 

this gene could have some degree of symptomatic overlap with dysfunction in EHHADH. 
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6. Conclusion 

In this project I developed an exome rare variant analysis pipeline that I used to 

successfully replicate an association with variants in TTN in an early-onset AF patient 

cohort. I then applied the analytical protocol to this same clinical population to 

investigate genes involved in cellular metabolic processes, yielding a number of strong 

associations. Although I was then equally successful at being unable to validate any of 

the most promising candidates in the UKB data set, I found further secondary 

associations with diabetes, hypertension, and stroke, all risk factors for, or complications 

due to, the presence of AF. While none of the specific variants which contributed to the 

associations between these genes and their respective afflictions appeared in any 

publications supporting the associations at the time of this writing, several of them did 

appear in the literature implicated for other diseases, both cardiovascular and otherwise, 

establishing at least some degree of general pathological capacity. Given the 

complicated and bidirectional regulatory relationships between genes, tissues, and 

energy systems, it appears entirely possible that a pathogenic variant which disrupts one 

aspect of metabolism could induce a multitude of other effects, both deleterious and 

ameliorating, the delicate balance of which ultimately determines the onset of 

physiological decompensation and disease. While much more research is needed due to 

the scope and complexity of the underlying pathophysiology in the numerous 

interconnected systems, this project does contribute several new interesting directions 

for further investigation. 
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Appendix A. 
 
Gene panel 

Gene symbol Metabolic pathway Molecular function 1 2 3 4 

ABCD1 Lipid degradation Translocase     
ACAA2 Fatty acid metabolism Transferase     
ACACB Fatty acid biosynthesis Ligase     
ACAD10 Fatty acid metabolism Oxidoreductase     
ACAD8 Fatty acid metabolism Oxidoreductase     
ACAD9 Fatty acid metabolism Oxidoreductase     
ACADL Fatty acid metabolism Oxidoreductase     
ACADM Fatty acid metabolism Oxidoreductase     
ACADS Fatty acid metabolism Oxidoreductase     
ACADSB Fatty acid metabolism Oxidoreductase     
ACADVL Fatty acid metabolism Oxidoreductase     
ACAT1 Fatty acid metabolism Transferase     
ACO2 Tricarboxylic acid cycle Lyase     
ACOX1 Fatty acid metabolism Oxidoreductase     
ACSL1 Fatty acid metabolism Ligase     
ACSL4 Fatty acid metabolism Ligase     
ACSL5 Fatty acid metabolism Ligase     
ACSL6 Fatty acid metabolism Ligase     
ACSM1 Fatty acid metabolism Ligase     
ACSM3 Fatty acid metabolism Ligase     
ACSM4 Fatty acid metabolism Ligase     
ACSM5 Fatty acid metabolism Ligase     
ACSS1 Acyl-CoA synthesis Ligase     
ACSS2 Acyl-CoA synthesis Ligase     
ACSS3 Acyl-CoA synthesis Ligase     
AGL Glycogen biosynthesis Glycosidase     
ALDH9A1 Carnitine synthesis/transport Oxidoreductase     
ALDOA Glycolysis Lyase     
ALDOB Glycolysis Lyase     
ALDOC Glycolysis Lyase     
ATP5F1A ATP synthesis Structural     
ATP5F1B ATP synthesis Translocase     
ATP5F1C ATP synthesis Structural     
ATP5F1D ATP synthesis Structural     
ATP5F1E ATP synthesis Hydrolase     
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Gene symbol Metabolic pathway Molecular function 1 2 3 4 

ATP5IF1 ATP synthesis Structural     
ATP5MC1 ATP synthesis Structural     
ATP5MC2 ATP synthesis Structural     
ATP5MC3 ATP synthesis Structural     
ATP5MD ATP synthesis Structural     
ATP5ME ATP synthesis Structural     
ATP5MF ATP synthesis Structural     
ATP5MG ATP synthesis Structural     
ATP5MGL ATP synthesis Structural     
ATP5MPL ATP synthesis Structural     
ATP5PB ATP synthesis Structural     
ATP5PD ATP synthesis Structural     
ATP5PF ATP synthesis Structural     
ATP5PO ATP synthesis Structural     
ATP5S ATP synthesis Structural     
ATPAF1 ATP synthesis Chaperone     
ATPAF2 ATP synthesis Chaperone     
BCS1L Electron transport chain Chaperone     
BDH1 Lipid metabolism Oxidoreductase     
BDH2 Lipid metabolism Oxidoreductase     
BPGM Glycolysis Hydrolase     
CKB Creatine-phosphate synthesis Kinase     
CKM Creatine-phosphate synthesis Kinase     
CKMT2 Creatine-phosphate synthesis Kinase     
COA1 Electron transport chain Assembly factor     
COA3 Electron transport chain Assembly factor     
COA6 Electron transport chain Assembly factor     
COX10 Electron transport chain Transferase     
COX11 Electron transport chain Assembly factor     
COX14 Electron transport chain Assembly factor     
COX15 Electron transport chain Assembly factor     
COX16 Electron transport chain Assembly factor     
COX17 Electron transport chain Chaperone     
COX18 Electron transport chain Assembly factor     
COX20 Electron transport chain Assembly factor     
COX4I1 Electron transport chain Oxidoreductase     
COX4I2 Electron transport chain Oxidoreductase     
COX5A Electron transport chain Assembly factor     
COX5B Electron transport chain Assembly factor     
COX6A2 Electron transport chain Oxidoreductase     
COX6B1 Electron transport chain Assembly factor     



45 

Gene symbol Metabolic pathway Molecular function 1 2 3 4 

COX6C Electron transport chain Assembly factor     
COX7A1 Electron transport chain Oxidoreductase     
COX7A2 Electron transport chain Assembly factor     
COX7B Electron transport chain Assembly factor     
COX7C Electron transport chain Assembly factor     
COX8A Electron transport chain Assembly factor     
COX8C Electron transport chain Assembly factor     
CPT1B Fatty acid metabolism Acyltransferase     
CRLS1 Lipid synthesis Transferase     
CS Tricarboxylic acid cycle Transferase     
CYBA Electron transport chain Oxidoreductase     
CYBB Electron transport chain Oxidoreductase     
CYC1 Electron transport chain Translocase     
DAGLA Lipid degradation Hydrolase     
DAGLB Lipid degradation Hydrolase     
DECR1 Fatty acid metabolism Oxidoreductase     
DECR2 Fatty acid metabolism Oxidoreductase     
DLAT Carbohydrate metabolism Transferase     
DLD Tricarboxylic acid cycle Oxidoreductase     
DLST Tricarboxylic acid cycle Transferase     
ECH1 Fatty acid metabolism Isomerase     
ECHDC1 Fatty acid metabolism Lyase     
ECHDC2 Fatty acid metabolism Lyase     
ECHDC3 Fatty acid metabolism Lyase     
ECHS1 Fatty acid metabolism Lyase     
ECI1 Fatty acid metabolism Isomerase     
ECI2 Fatty acid metabolism Isomerase     
ECSIT Electron transport chain Assembly factor     
EHHADH Fatty acid metabolism Isomerase     
ENO3 Glycolysis Lyase     
ETFA Lipid degradation Transferase     
ETFB Lipid degradation Transferase     
ETFDH Lipid degradation Oxidoreductase     
FBP2 Carbohydrate metabolism Hydrolase     
FH Tricarboxylic acid cycle Lyase     
FLAD1 FAD synthesis Transferase     
G6PC3 Gluconeogenesis Hydrolase     
GAPDH Glycolysis Oxidoreductase     
GBE1 Glycogen biosynthesis Transferase     
GCK Glycolysis Kinase     
GK Glycerol metabolism Kinase     
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Gene symbol Metabolic pathway Molecular function 1 2 3 4 

GOT1 Amino-acid biosynthesis Transferase     
GOT2 Lipid transport Transferase     
GPI Glycolysis Isomerase     
GPT Nitrogen metabolism Transferase     
GPX3 Antioxidant Oxidoreductase     
GPX7 Antioxidant Oxidoreductase     
GPX8 Antioxidant Oxidoreductase     
GYG1 Glycogen biosynthesis Transferase     
GYS1 Glycogen biosynthesis Transferase     
GYS2 Glycogen biosynthesis Transferase     
H6PD Carbohydrate metabolism Hydrolase     
HADH Fatty acid metabolism Oxidoreductase     
HADHA Fatty acid metabolism Lyase     
HADHB Fatty acid metabolism Transferase     
HK1 Glycolysis Kinase     
HK2 Glycolysis Kinase     
HK3 Glycolysis Kinase     
HMGCL Ketogenesis Lyase     
HMGCLL1 Ketogenesis Lyase     
HMGCS2 Cholesterol biosynthesis Transferase     
HSD17B12 Lipid biosynthesis Oxidoreductase     
HSD17B14 Lipid metabolism Oxidoreductase     
HSD17B4 Fatty acid metabolism Isomerase     
IDH2 Tricarboxylic acid cycle Oxidoreductase     
LDHA Glycolysis Oxidoreductase     
LDHB Glycolysis Oxidoreductase     
LIAS Lipoic acid synthesis Transferase     
LIPE Cholesterol metabolism Hydrolase     
LPL Lipid degradation Hydrolase     
MB Oxygen transport Muscle protein     
MDH1 Tricarboxylic acid cycle Oxidoreductase     
MDH2 Tricarboxylic acid cycle Oxidoreductase     
MECR Fatty acid biosynthesis Oxidoreductase     
MGAM Starch digestion Glycosidase     
MPI D-mannose synthesis Isomerase     
MT-ATP6 ATP synthesis Accessory subunit     
MT-ATP8 ATP synthesis Accessory subunit     
MT-CO1 Electron transport chain Translocase     
MT-CO2 Electron transport chain Translocase     
MT-CO3 Electron transport chain Translocase     
MT-CYB Electron transport chain Translocase     
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Gene symbol Metabolic pathway Molecular function 1 2 3 4 

MT-ND1 Electron transport chain Translocase     
MT-ND2 Electron transport chain Translocase     
MT-ND3 Electron transport chain Translocase     
MT-ND4 Electron transport chain Translocase     
MT-ND4L Electron transport chain Translocase     
MT-ND5 Electron transport chain Translocase     
MT-ND6 Electron transport chain Translocase     
MUT Lipid degradation Isomerase     
MVD Cholesterol biosynthesis Lyase     
NCF1 Superoxide synthesis Oxidase     
NCF2 Superoxide synthesis Oxidase     
NCF4 Superoxide synthesis Oxidase     
NDUFA1 Electron transport chain Accessory subunit     
NDUFA10 Electron transport chain Accessory subunit     
NDUFA11 Electron transport chain Accessory subunit     
NDUFA12 Electron transport chain Accessory subunit     
NDUFA13 Electron transport chain Accessory subunit     
NDUFA2 Electron transport chain Accessory subunit     
NDUFA3 Electron transport chain Accessory subunit     
NDUFA4 Electron transport chain Accessory subunit     
NDUFA5 Electron transport chain Accessory subunit     
NDUFA6 Electron transport chain Accessory subunit     
NDUFA7 Electron transport chain Accessory subunit     
NDUFA8 Electron transport chain Accessory subunit     
NDUFA9 Electron transport chain Accessory subunit     
NDUFAB1 Electron transport chain Accessory subunit     
NDUFAF1 Electron transport chain Chaperone     
NDUFAF2 Electron transport chain Chaperone     
NDUFAF3 Electron transport chain Chaperone     
NDUFAF4 Electron transport chain Transferase     
NDUFB1 Electron transport chain Accessory subunit     
NDUFB10 Electron transport chain Accessory subunit     
NDUFB11 Electron transport chain Accessory subunit     
NDUFB2 Electron transport chain Accessory subunit     
NDUFB3 Electron transport chain Accessory subunit     
NDUFB4 Electron transport chain Accessory subunit     
NDUFB5 Electron transport chain Accessory subunit     
NDUFB6 Electron transport chain Accessory subunit     
NDUFB7 Electron transport chain Accessory subunit     
NDUFB8 Electron transport chain Accessory subunit     
NDUFB9 Electron transport chain Accessory subunit     
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Gene symbol Metabolic pathway Molecular function 1 2 3 4 

NDUFC1 Electron transport chain Accessory subunit     
NDUFC2 Electron transport chain Accessory subunit     
NDUFS1 Electron transport chain Oxidoreductase     
NDUFS2 Electron transport chain Oxidoreductase     
NDUFS3 Electron transport chain Oxidoreductase     
NDUFS4 Electron transport chain Accessory subunit     
NDUFS5 Electron transport chain Accessory subunit     
NDUFS6 Electron transport chain Accessory subunit     
NDUFS7 Electron transport chain Oxidoreductase     
NDUFS8 Electron transport chain Oxidoreductase     
NDUFV1 Electron transport chain Oxidoreductase     
NDUFV2 Electron transport chain Oxidoreductase     
NDUFV3 Electron transport chain Accessory subunit     
NMNAT1 NAD biosynthesis Transferase     
NMNAT2 NAD biosynthesis Transferase     
NMNAT3 NAD biosynthesis Transferase     
NOX4 Superoxide synthesis Oxidoreductase     
OGDH Glycolysis Oxidoreductase     
OXSM Fatty acid biosynthesis Transferase     
PANK1 Coenzyme A biosynthesis Kinase     
PANK4 Coenzyme A biosynthesis Hydrolase     
PC Gluconeogenesis Ligase     
PCK1 Gluconeogenesis Decarboxylase     
PDHA1 Tricarboxylic acid cycle Oxidoreductase     
PDHB Tricarboxylic acid cycle Oxidoreductase     
PFKM Glycolysis Kinase     
PFKP Glycolysis Kinase     
PGAM1 Glycolysis Hydrolase     
PGK1 Glycolysis Kinase     
PGM1 Glycolysis Isomerase     
PKM Glycolysis Kinase     
PMVK Cholesterol biosynthesis Kinase     
PNPLA2 Lipid degradation Hydrolase     
PNPLA4 Lipid degradation Hydrolase     
PNPLA8 Lipid degradation Hydrolase     
PPARA Transcription Activator     
PPARD Transcription Activator     
PPARG Transcription Activator     
PPARGC1A Transcription Activator     
PRKAA2 Fatty acid biosynthesis Kinase     
PRKAB2 Fatty acid biosynthesis Regulatory subunit     
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Gene symbol Metabolic pathway Molecular function 1 2 3 4 

PRKAG1 Fatty acid biosynthesis Regulatory subunit     
PRKAG2 Fatty acid biosynthesis Regulatory subunit     
PRKAG3 Fatty acid biosynthesis Regulatory subunit     
PYGB Carbohydrate metabolism Transferase     
PYGM Carbohydrate metabolism Transferase     
RFK FAD synthesis Kinase     
RPE Carbohydrate metabolism Isomerase     
RPIA Pentose phosphate pathway Isomerase     
SCO1 Electron transport chain Chaperone     
SCO2 Electron transport chain Chaperone     
SDHA Electron transport chain Oxidoreductase     
SDHB Electron transport chain Oxidoreductase     
SDHC Electron transport chain Structural     
SDHD Electron transport chain Structural     
SIRT2 Regulation Transferase     
SIRT3 Regulation Transferase     
SLC22A5 Carnitine synthesis/transport Translocase     
SLC25A20 Carnitine synthesis/transport Translocase     
SLC25A4 ADP/ATP transport Translocase     
SLC27A1 Fatty acid metabolism Translocase     
SLC27A6 Fatty acid metabolism Translocase     
SLC2A4 Carbohydrate metabolism Translocase     
SLC7A4 Amino-acid transport Translocase     
SOD1 Antioxidant Oxidoreductase     
SOD2 Antioxidant Oxidoreductase     
SOD2 Antioxidant Oxidoreductase     
SOD3 Antioxidant Oxidoreductase     
SUCLA2 Tricarboxylic acid cycle Ligase     
SUCLG1 Tricarboxylic acid cycle Ligase     
SUCLG2 Tricarboxylic acid cycle Ligase     
SURF1 Electron transport chain Assembly factor     
TECR Fatty acid biosynthesis Oxidoreductase     
TECRL Fatty acid biosynthesis Oxidoreductase     
TKTL1 Pentose phosphate pathway Transferase     
TMLHE Carnitine synthesis/transport Dioxygenase     
TPI1 Gluconeogenesis Isomerase     
TPK1 Thiamine pyrophosphate synthesis Kinase     
TSPO Lipid transport Receptor     
UQCR10 Electron transport chain Accessory subunit     
UQCR11 Electron transport chain Accessory subunit     
UQCRB Electron transport chain Accessory subunit     
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Gene symbol Metabolic pathway Molecular function 1 2 3 4 

UQCRC1 Electron transport chain Accessory subunit     
UQCRC2 Electron transport chain Accessory subunit     
UQCRFS1 Electron transport chain Translocase     
UQCRH Electron transport chain Accessory subunit     
UQCRQ Electron transport chain Accessory subunit     
VPS9D1 Electron transport chain Assembly factor     

Gene symbols, metabolic pathways, and molecular functions of genes in the candidate panel. Highlighted cells in the 
numbered columns show which genes were found to have an association in the early-onset AF patient group in each of 
the analyses, the entire cohort (1), self-identified Asian participants (2), self-identified white participants (3), and PCA-
identified white participants (4). 
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Appendix B. 
 
Genes associated with AF 

Gene Product OR 95%CI P 

ACAD9 Acyl-CoA dehydrogenase family member 9 1256 2.4 - 1522 0.035 
ACADS Acyl-CoA dehydrogenase short chain 151 14 - 934 0.004 
ACADVL Acyl-CoA dehydrogenase very long chain 9.7 2.0 - 29 0.023 
ACSM4 Acyl-CoA synthetase medium chain family member 4 94.2 1.9 - 981 0.039 
ACSM5 Acyl-CoA synthetase medium chain family member 5 84.1 8.8 - 404 0.005 
ACSS2 Acyl-CoA synthetase short chain family member 2 12.0 1.4 - 46 0.039 
ACSS3 Acyl-CoA synthetase short chain family member 3 374 4.8 - 16384 0.024 
AGL Amylo-alpha-1, 6-glucosidase, 4-alpha-

glucanotransferase 
50.3 5.6 - 219 0.010 

ATP5F1A ATP synthase F1 subunit alpha 374 4.8 - 16384 0.024 
ATP5F1C ATP synthase F1 subunit gamma   0.016 
COA3 Cytochrome c oxidase assembly factor 3 126 2.4 - 522 0.035 
COX10 COX10, heme A:farnesyltransferase cytochrome c 

oxidase assembly factor 
188 3.2 - 3850 0.031 

COX15 COX15, cytochrome c oxidase assembly homolog 10.1 1.2 - 38 0.048 
DECR2 2,4-dienoyl-CoA reductase 2 4.1 1.3 - 9.8 0.031 
EHHADH Enoyl-CoA hydratase and 3-hydroxyacyl CoA 

dehydrogenase 
42.0 4.7 - 177 0.012 

GYS1 Glycogen synthase 1 11.4 2.3 - 34 0.016 
HADHB Hydroxyacyl-CoA dehydrogenase trifunctional 

multienzyme complex subunit beta 
  0.016 

HMGCL 3-hydroxymethyl-3-methylglutaryl-CoA lyase 75.3 1.6 - 689 0.043 
HSD17B4 Hydroxysteroid 17-beta dehydrogenase 4 151 14 - 934 0.004 
MDH2 Malate dehydrogenase 2 126 12 - 705 0.004 
MPI Mannose phosphate isomerase   0.016 
MT-CYB Mitochondrially encoded cytochrome b 195 10 - 10399 0.005 
NDUFS1 NADH:ubiquinone oxidoreductase core subunit S1   0.016 
NDUFV1 NADH:ubiquinone oxidoreductase core subunit V1 188 3.2 - 3850 0.031 
NDUFV3 NADH:ubiquinone oxidoreductase subunit V3 75.3 1.6 - 689 0.043 
PANK1 Pantothenate kinase 1 94.2 1.9 - 981 0.039 
PC Pyruvate carboxylase 38.0 9.8 - 106 0.001 
PKM Pyruvate kinase M1/2 188 3.2 - 3850 0.031 
PYGB Glycogen phosphorylase B 16.2 3.3 - 50 0.010 
PYGM Glycogen phosphorylase, muscle associated 4.0 1.3 - 9.4 0.035 
SLC22A5 Solute carrier family 22 member 5 4.7 1.5 - 11 0.024 

Genes that associated with AF in the PCA cohort. Some variants did not appear in gnomAD precluding OR calculation. 
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Appendix C. 
 
Technical references 

Reference data 

Human reference genome: 1000 Genomes Project GRCh 37 

Genome Aggregation Database (gnomAD) v2.1 (exomes only) 

Genotype Tissue Expression Project (GTEx) Median gene-level TPM by tissue v1.19 

Mitomap Retrieved Aug.13 2020 (unversioned) 

UK Biobank Mar 2019 release of 50,000 WES data 

Gene border coordinates 

University of California Santa Cruz (UCSC) Table Browser 

Nuclear deleteriousness scoring 

Combined Annotation Dependent Depletion (CADD) v1.6 

Protein Variation Effect Analyzer (PROVEAN) v1.1.3 

Rare Exome Variant Ensemble Learner (REVEL) retrieved Mar 5 2020 (unversioned) 

Sorting Intolerant From Tolerant (SIFT) included with PROVEAN 

Variant Effect Scoring Tool (VEST) v4 

Mitochondrial deleteriousness scoring 

MitImpact v3.0.1 includes the following: 

Pathogenicity Prediction Through Logistic Model Tree (APOGEE) 

Combined Annotation Scoring Tool (CAROL) 

MToolBox 

Software 

Ubuntu v18.04.4 LTS 

Genome Analysis Toolkit (GATK) v4.1.7.0 (Docker) 

Variant Effect Predictor (VEP) v100 (Docker) 

BCFtools v1.7 with htslib v1.9 

VCF2bed v2.4.26 

R v3.6.3 with Rstudio v1.2.5033 
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Appendix D. 
 
K-means clustering 

 
The k-means grouping of the early-onset AF cohort was compared using A. two clusters, B. three 
clusters, and C. four clusters. 


