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Abstract 

Since deglaciation, Fraser River through the southern British Columbia (BC) interior has 

undergone episodic aggradation and incision to create a series of distinct stepped 

terraces. This study employed optical dating to date different terrace levels in the Big Bar 

and Watson Bar reaches of Fraser River to calculate the rate of postglacial incision 

through glacial valley fill. This incision rate was developed to explore correlation of 

Fraser River incision with terrace-forming drivers such as climate, local base level 

change, and glacioisostatic adjustment. The oldest age in this study corresponds to the 

outburst flood of glacial Lake Fraser at 11.3 ± 1.5 ka, consistent with other independent 

ages for the event. From this event, Fraser River incised through ~180 m of glacial valley 

fill to reach its present-day level, where it now flows on bedrock. The average incision 

rate during the last ~11 ka was 15 mm/a, though this study speculates that during the 

last ~11 ka, Fraser River incision rates may have varied, roughly following postglacial 

climatic phases imprinted on the paraglacial cycle. For example, fast incision rates (30 

m/a) were present through the cooler and wetter middle Holocene (7-4 ka) due to the 

reduction of upland paraglacial sedimentation and high flow power due to wetter 

conditions. Local aggradation resulted upstream of landslides and large paraglacial fans 

that temporarily increased local base level. Fraser River incised to bedrock sometime in 

the last 4 ka. This is the first detailed chronological study of postglacial Fraser River 

terraces. 

Keywords:  Fraser River; optical dating; river terraces; Holocene; paraglacial 

sedimentation 
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All the rivers run into the sea, yet the sea is not full. 

To the place where the rivers flow, there they flow again. 

Ecclesiastes 1:7 (WEB)
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Chapter 1.  
 
Introduction 

1.1. Introduction 

The landscape in British Columbia (BC) is undergoing adjustment as a result of 

the last glaciation. This interval of adjustment, known as the paraglacial period (Church 

and Ryder 1972), is defined as the time during which landscape response is conditioned 

by glaciation through processes not directly related to it. As the glacial ice disappeared 

sediments that were left in unstable positions, especially in upland regions of valleys, 

were distributed by fluvial and mass wasting processes to valley bottoms causing rivers 

to aggrade, adding sediments to the pre-existing glacial valley fill. As the quantity of 

easily erodible sediment in upland regions decreased and discharge increased from 

changing climate rivers incised through postglacial (paraglacial) and glacial sediments, 

and terraces formed. In many places, prominent alluvial and mudflow fans developed on 

these terraces (Ryder and Church 1986, Lian and Hicock 2001) upon which aeolian 

sediments were deposited (Lian and Huntley 1999).  

Terrace development occurs as a combination of river aggradation and incision. 

Rivers aggrade when sediment supply is greater than the river’s ability to carry the 

sediment, which is a function of competence, the size of material a river is able to entrain 

and transport, and capacity, the total amount of sediment a river can transport. Both 

competence and capacity vary according to discharge and river slope. When sediment 

supply increases to an amount greater than what a river can carry, such as through 

inputs from mass wasting and tributary streams, a river must rework this additional 

sediment and aggradation occurs. Additionally, if base level increases, such as through 

local damming from landslides or the development of glacial lakes from advancing or 

retreating ice, river slope is reduced, reducing the river’s ability to move sediment. Rivers 

incise when the river has enough power to move material in the river bed and transport it 

downstream. Incision can occur when discharge increases, such as during especially 

wet climate periods. It can also be brought on by the lowering of base level through 

glacioisostasy or the drainage of glacial lakes.  
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During the postglacial period in BC, many factors have been involved in this 

complex interplay contributing to aggradation and incision resulting in terrace formation. 

Palaeoecological information (e.g., Mathewes and King 1989) has shown that during 

postglacial time major climate fluctuations occurred in southcentral BC. These 

fluctuations would have resulted in variations of river discharge and sedimentation which 

might be reflected in the current landscape. For example, during wet periods, increased 

sedimentation from tributary streams and valley side mudflows may have increased 

fluvial sediment load, while increased moisture may also have caused higher discharge, 

increasing river capacity. In warmer, drier periods, when sedimentation decreased, rivers 

might incise through their floodplains, albeit with decreased fluvial capacity from reduced 

precipitation.  

Other regional factors could also contribute to terrace formation during the 

postglacial period. Local base level may have changed due to the formation of local 

landslide dams (Ryder and Church 1986, Ryder et al. 1990), causing temporary base 

level rise followed by rapid fall. Glacial lakes also formed during the postglacial period, 

with some of them known to have drained down the present-day Fraser River valley 

(Johnsen and Brennand 2004, Perkins and Brennand 2015, Clague et al. 2021), which 

would have led to fluvial aggradation as sediment-laden water rushed through valleys 

and incision when flow became channelized. Furthermore, glacioisostatic uplift occurred 

rapidly in previously glaciated regions of BC (Clague and James 2002, Shugar et al. 

2014), further decreasing relative base level and encouraging incision. Finally, autogenic 

processes (Muto and Steel 2004) such as periodic armoring of bed surfaces followed by 

subsequent breaching of channel armor (Iseya and Ikeda 1987; Faulkner et al. 2016) 

can also contribute significantly to periods of aggradation and incision that cannot be 

explained by the above-mentioned external (i.e., allogenic) factors. 

On the timescale of thousands to tens of thousands of years, however, climate 

has been regarded as the primary driving factor in river terrace development (Bull 1990, 

Blum and Törnqvist 2000). To further explore the potential impact of postglacial climate 

on terrace formation in British Columbia, terrace formation can be constrained with 

absolute dating methods to potentially correlate known postglacial climate phases with 

river incision. A detailed postglacial fluvial terrace dating study has not yet been 

conducted in British Columbia. 
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A suite of terraces along Fraser River between Big Bar and Watson Bar (Figure 

1.1) was chosen for study. Fraser River is a crucial waterway as it is the longest river in 

BC, draining ~25% of BC’s land area, and it is one of the most productive rivers for 

salmon in the world. The reach between Big Bar and Watson Bar has been investigated 

in previous studies; the underlying valley fill sedimentology has been described (Lian 

and Hicock 2001) and aeolian caps overlying paraglacial fans and fluvial sediments 

resting on terrace surfaces have been investigated in a preliminary optical dating study 

(Lian and Huntley 1999). However, the fluvial sand in the terraces associated with 

postglacial Fraser River activity has only been studied at a cursory level with few limiting 

ages associated with them (Lian and Clague 2009). The Big Bar and Watson Bar area is 

an ideal study site for this work because previous research on the character of the 

postglacial valley fill has been completed, terraces were accessible on both sides of the 

river, the landscape has not been drastically altered by anthropogenic development, and 

preliminary optical dating studies provided confidence that the method is applicable for 

this dating study.  

This study seeks to (i) provide limiting ages for terrace formation in Fraser River 

valley at Big Bar and Watson Bar (Figure 1.1), (ii) determine the rate of incision of Fraser 

River through its valley fill, and (iii) look for correlation between the timing of terrace 

formation, the rate of incision, and existing information on the paraglacial cycle, 

postglacial climate change and changes in local base level.  

The dating information from this study will also provide insight for future 

researchers that will aid in understanding how incision rates, and therefore the rate of 

evacuation of a considerable amount of Fraser River valley fill, near Big Bar and Watson 

Bar might affect downstream sedimentation rates on Fraser River and its tributaries. 

Further, this study provides a baseline for future studies on landslides and slope stability 

along Fraser River associated with the Big Bar landslide and its impact on salmon 

fisheries (Province of British Columbia 2021). Currently, there is a paucity of absolute 

dating information associated with glacial valley fill incision from Fraser River in the BC 

Interior to tie the upriver incision history to the downriver deposition history (Kovanen 

and Slaymaker 2015). This study will provide a piece of that puzzle. The outcomes of 

this study are also important because sediments evacuated by Fraser River and its 

tributaries contributed, and continue to contribute, significantly to the formation of the 
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Fraser delta (Clague et al. 1983, Kovanen and Slaymaker 2015), which is now densely 

populated.  
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Figure 1.1. The study area in southwestern British Columbia. The sites are along a remote stretch of Fraser River, north of 
Lillooet and south of Williams Lake between French Bar Canyon and High Bar Canyon. Two terraced reaches, 
Big Bar and Watson Bar (dashed boxes), are the focus of this study. Glacial Lake Fraser (gLF) (extent from 
Clague et al. 2021) is depicted in (a). Elevation from 2019 TanDEM-X data.
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1.2. Research conception, rationale, and contributions 

The project idea was suggested by Dr. Tracy Brennand and Dr. Olav Lian, from 

observations made by Lian during his PhD research in the area. I, Travis Gingerich, 

collaborated with them to come up with the initial research questions and fieldwork 

strategy. I conducted fieldwork with assistance from Jonathan Cripps. I have processed 

all optical dating samples on my own in the University of the Fraser Valley 

Luminescence Laboratory, with the assistance of laboratory assistants Cassandra 

Shewchuk and Vanessa Brewer. I developed and tested my own optical dating protocols 

and analyzed and interpreted the data myself. Radiocarbon dating was performed by the 

A.E. Lalonde Accelerator Mass Spectrometry (AMS) Laboratory. Justin Song (Simon 

Fraser University) assisted in processing survey data in Excel to construct terrace 

longitudinal profiles.  

1.3. Thesis overview 

This thesis has three chapters. Chapter 1 lays out the basis for the thesis. 

Chapter 2 is written in journal manuscript form. As this chapter is part of a thesis it is 

written in more detail than the anticipated version that will be submitted for publication. 

Moreover, as a stand-alone manuscript there is some necessary repetition with other 

chapters. Chapter 3 assesses the success of the project based on the research 

objectives, outlines changes that could have been made to improve it and provides 

suggestions for future research. Appendices contain supplementary data. 
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Chapter 2.  
 
The nature and timing of postglacial valley fill 
incision, Fraser River, Big Bar to Watson Bar, British 
Columbia 

2.1. Introduction 

The landscape in British Columbia (BC) is undergoing adjustment as a result of 

the last glaciation. This interval of adjustment, known as the paraglacial period (Church 

and Ryder 1972), is defined as the time in which landscape response is conditioned by 

glaciation through processes not directly related to it. As the glacial ice disappeared 

sediments that were left in unstable positions, especially in upland regions of valleys, 

were distributed by fluvial and mass wasting processes to valley bottoms causing rivers 

to aggrade. As the quantity of easily erodible sediment in upland regions decreased and 

discharge increased from changing climate, rivers incised their floodplains and terraces 

formed. In many places, prominent alluvial and mudflow fans developed on these 

terraces (Ryder and Church 1986, Lian and Hicock 2001) upon which aeolian sediments 

were deposited (Lian and Huntley 1999). 

River terrace formation occurs as an interplay between river incision and 

aggradation which are driven by changes in climate and tectonics. On the timescale of 

thousands to tens of thousands of years (in this case, the postglacial period), climate 

has been regarded as the primary driving factor in river terrace development in general 

(Bull 1990, Blum and Törnqvist 2000). Climate can affect river terrace formation by: 

increasing sedimentation and thus aggradation by destabilizing valley walls through 

increased precipitation; increasing incision through higher precipitation resulting in 

greater discharge, or; increasing incision through warming, causing increased rates of 

glacial melt and thus greater discharge. Postglacial climate history in British Columbia is 

relatively well-known (e.g., Hebda 1995).  

Tectonic changes most affect terrace formation on timescales orders of 

magnitude higher than this study focuses on, and thus will not be explored in this study. 

Glacioisostatic adjustment (Clague and James 2002; Shugar et al. 2014), however, may 
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have some effect. Glacioisostatic adjustment can change river slope and thus affect 

base level, with lowering base levels driving incision and rising base levels influencing 

aggradation. The timing of glacioisostatic adjustment is well-constrained along the coast 

of BC (Shugar et al. 2014), although inland it is less conclusive (Clague and James 

2002). 

Fraser River is the longest river within BC at 1375 km long. It originates in the 

east-central part of BC, high in the Rocky Mountains, first running northwest before 

turning and running south through the southern half of BC. It terminates in the Pacific 

Ocean near Vancouver, BC, and has created floodplains and a delta near which most of 

BC’s population now resides. It drains around 25% of BC’s land area, is one of the 

world’s most productive salmon-bearing rivers and, as such, is an important cultural and 

economic hub for BC. A detailed study outlining the timing of postglacial Fraser River 

incision has not yet been performed. A reach was selected for study from within this long 

river system between Big Bar and Watson Bar creeks where terraces are easily 

accessible and previous work had identified sedimentary exposures that could be 

studied. 

This study thus seeks to: (i) date a selection of Fraser River terrace tops using 

optical dating methods, (ii) estimate incision rates of Fraser River over the postglacial 

period using these optical ages, and (iii) correlate these incision rates to the paraglacial 

cycle, known postglacial climate periods and local base level changes. This study 

presents the first detailed chronology of postglacial Fraser River terrace formation and 

incision. 

2.1.1. Study area 

In the Big Bar-Watson Bar area (Figure 2.1), Fraser River has incised through 

the BC interior plateau and subsequent valley fill (~500 m thick, Lian and Hicock 2001). 

The Coast Mountains rise directly to the west with the Camelsfoot Range the closest 

range on the western edge of Fraser River. The Marble Range rises to the east between 

Fraser River and Clinton. Fraser River flows at an elevation of ~270 m asl, with adjacent 

peaks reaching elevations of more than 2000 m asl (Figure 2.1). Major tributaries along 

these reaches are Big Bar Creek, Ward Creek, Indian Creek, and Watson Bar Creek 

(Figure 2.1). Through these reaches, the Fraser River follows the Fraser Fault (Mathews 



9 

and Rouse 1984), navigating bedrock canyons at French Bar Canyon, Chisholm 

Canyon, and High Bar Canyon (Figure 2.1). In wider non-canyonized reaches, it has 

produced a series of stepped terraces during its incision. 

Fraser River between Big Bar and Watson Bar creeks has well-defined river 

terraces that are accessible from both sides of the river via gravel roads and a reaction 

ferry at Big Bar. Past studies in the area have identified fluvial terraces inset into glacial 

valley fill sediments (Lian and Hicock 2001). The terraces contain ancestral Fraser River 

sediments, which are, in turn overlain in places by paraglacial fan and aeolian deposits 

(Lian and Huntley 1999, Lian and Hicock 2001). Optical dating has been used in 

preliminary studies to date aeolian caps (Lian and Huntley 1999) and ancestral Fraser 

River sand (Lian and Clague 2009).  

2.1.2. Glacial retreat and postglacial history 

The valley fill in the study area and its vicinity has been characterized by several 

studies. Lian and Hicock (2001) provide a stratigraphic description of the area between 

Big Bar and Watson Bar that identifies glaciofluvial sand and gravel, glacially-derived 

gravity flow diamicton, and glaciolacustrine silt and sand as the major components of the 

valley fill. Limiting optical ages suggest that deposition of these units occurred during the 

Fraser Glaciation (Lian and Hicock 2001), although older units may exist, based on 

evidence found ~40 km north of the study area (e.g., unit A of Eyles and Clague 1991). 

Further stratigraphic descriptions of the valley fill immediately upstream of the study area 

are provided by Huntley and Broster (1994), who report stratigraphy like that of Lian and 

Hicock (2001) and suggest glacial lake formation in the study areas during both advance 

and retreat stages of the Fraser Glaciation. 
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Figure 2.1. The study area in southwestern British Columbia. The sites are along a remote stretch of Fraser River, north of 
Lillooet and south of Williams Lake between French Bar Canyon and High Bar Canyon. Two terraced reaches, 
Big Bar and Watson Bar (dashed boxes), are the focus of this study. Glacial Lake Fraser (gLF) (extent from 
Clague et al. 2021) is depicted in (a). Elevation from 2019 TanDEM-X data. Figure 2.3 extent is shown with the 
arrow denoting the perspective of the image. 
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During the Fraser Glaciation, the Cordilleran Ice Sheet (CIS) covered most of 

BC, reaching its maximum southern limit in Puget Sound ~16.5 ka ago (Clague 2017) 

(Note: all ages are reported in calendar years, with any radiocarbon [14C] ages from the 

literature calibrated using OxCal 4.4 and denoted “cal ka”). Deglaciation was a 

combination of complex frontal retreat of the ice sheet and stagnation within the BC 

interior (Clague 2017). Margold et al. (2014), using 10Be exposure ages from erratics 

high in the Marble Range adjacent to the study area (Fig. 2.1b), suggest that high-

elevation ice in this locale disappeared 14.5 ± 1.0 ka ago. This is much earlier than 

expected, given the furthest southern extent of the CIS occurred around 18 ka ago 

(Clague 2017). Menounos et al. (2017) further note the complexity of CIS retreat, with 

two readvances recorded in high mountain moraines in northern BC during the Bølling-

Allerød period (14.6 – 12.9 ka) and in both northwestern and southwestern BC during 

the Younger Dryas (12.9-11.7 ka) period. Although retreat was complex and much 

debate continues regarding its timing and nature, consensus is that most areas in the 

BC interior had substantially less ice by 14 ka (Margold et al. 2014; Menounos et al. 

2017), and that all but the major mountain ranges were nearly ice-free by ~11 ka ago 

(Clague 2017).  

During deglaciation, meltwater was trapped in a series of glacial lakes in the BC 

interior; the largest that affected this study was glacial Lake Fraser (gLF). Glacial Lake 

Fraser was in central British Columbia (Figure 2.1a), its extent described in Clague et al. 

(2021). It was dammed by the retreating CIS and grew during deglaciation, the ice dam 

being ~20 km south of the city of Williams Lake (Clague et al. 2021), ~100 km upstream 

of the study area. The ice dam failed and gLF drained catastrophically, sending 

hundreds of cubic kilometres of water down the present-day Fraser River drainage path. 

It is possible that a second outburst flood occurred soon after the first event when a 

landslide dam triggered by the first flood temporarily blocked drainage of gLF, then also 

gave way (Clague et al. 2021). The timings of these floods are constrained by terrestrial 

cosmogenic nuclide (TCN) ages from flood-transported boulders within the Fraser River 

valley (Clague et al. 2021) and by 14C ages from silty clay layers in Saanich Inlet 

interpreted to have formed from sediment washed over ancestral Strait of Georgia 

(Blais-Stevens et al. 2003). Clague et al. (2021) reported a median age for the flood of 

11.1 ± 0.6 ka from nine TCN samples, while Blais-Stevens et al. (2003) bracket the 

timing of this event as younger than 12.3 ± 0.3 cal ka (GSC 14C sample 1034E-9H1, 69, 
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Blais-Stevens et al. 2003) and older than 11.9 ± 0.5 cal ka (GSC 14C sample 1033B-

6H4, 110, Blais-Stevens et al. 2003). 

This cataclysmic event would have occurred in the initial stages of paraglacial 

fluvial activity in the study area, with paraglacial fluvial activity commencing after the 

outburst flood of gLF. As glaciers retreated out of valleys, they left large quantities of 

sediment perched on valley sides and within tributary valleys. During the next several 

thousand years, tributary stream sedimentation and mass wasting processes dominated 

the fluvial sedimentary regime as unstable sediment moved downslope, some of it 

developing into alluvial and mudflow fans at positions lower in the valley. These fans 

supplied rivers with high sediment loads, and thus fluvial aggradation occurred (Church 

and Ryder 1972, Clague 1981, Jackson Jr. et al. 1982). Upland paraglacial 

sedimentation peaked as glaciers began their retreat, with sediment supply being 

highest when the landscape was least stable (Church and Ryder 1972, Ballantyne 2002) 

and continued at a high rate for thousands of years afterwards. Aeolian deposition has 

occurred after the stabilization of paraglacial fans (Lian and Huntley 1999), marking the 

reduction of upland sedimentary inputs into the fluvial system. Church and Slaymaker 

(1989) argue that, although paraglacial sedimentation from upland areas may have been 

drastically reduced shortly after deglaciation, this sediment continues to be reworked in 

larger basins, and likely still dominates the sedimentological regime in large rivers.  

2.1.3. Fraser River terraces 

In the Fraser River valley between Big Bar and Watson Bar, the interaction 

between paraglacial processes and fluvial reworking by Fraser River is seen in a series 

of stepped terraces that are situated high above the present-day course of the river. 

During the postglacial period in the region (~12 ka to present), paraglacial processes 

have dominated, adding sediment to the fluvial system and causing Fraser River to 

undergo cyclic processes of aggradation, creating floodplains, and incision, which 

abandons floodplains, creating terraces. In past studies of the region, Holocene gravel 

and sand were observed in many valley side exposures through river terraces indicating 

postglacial Fraser River floodplain development and subsequent incision (Ryder and 

Church 1986; Lian and Hicock 2001). The terraces are in places overlain by paraglacial 

alluvial and debris flow fans (Lian and Hicock 2001) which are, in turn, commonly 

capped by aeolian deposits up to several metres thick (Lian and Huntley 1999). 



13 

In Lillooet, ~60 km south of the study area (Figure 2.1b), Ryder and Church 

(1986) investigated a series of terraces along Fraser River within 100 m elevation from 

the current Fraser River level. In their study, four upper unpaired terraces were 

identified, along with two sets of paired terraces nearer present-day river level. Ryder 

and Church (1986) observed multiple small channel traces and no overbank deposits on 

the four upper terraces. They concluded that these sediments were deposited in a 

braided system, consistent with a proglacial river during deglaciation. Further, they 

argued that, because these upper terraces are unpaired and narrowing with depth into 

the valley, they were formed during a period of sustained incision. The lower terraces 

contain downstream-thickening floodplain sediments, suggesting that floodplain 

aggradation was controlled by backwater processes consistent with potential 

downstream blockages causing upstream aggradation. It is suggested that these 

blockages were a result of landslides initiated from creeks 6 and 17 km downstream 

from Lillooet (Ryder and Church 1986, Ryder et al. 1990). It is possible that terrace 

formation in the study area was affected by similar processes. 

Few chronological controls have been established for the formation of Fraser 

River terraces in the region, so the timing of their formation and river incision is largely 

unknown. At Lillooet, ancestral Fraser River had abandoned a terrace at 103 m above 

present-day Fraser River more than 7.5 ± 0.1 cal ka ago due to the presence of Mazama 

ash (Egan et al. 2015) in the contact between fluvial overbank deposits and an aeolian 

cap (Ryder and Church 1986). Ryder and Church (1986) speculate that downcutting 

began at the end of the Holocene xerothermic interval (HXI), ~7 cal ka ago (Mathewes 

1985, Hebda 1995), but no absolute age controls are provided apart from the Mazama 

ash identified by Ryder and Church (1986) and a single 14C age of 1.1 ± 0.2 cal ka on a 

terrace at 28 m above present-day river level, derived from charcoal overlain by 2 m of 

river gravel. Although the study by Ryder and Church (1986) did much to provide a case 

for why terraces formed at different stages, the paucity of chronological controls makes it 

difficult to tie to other longer time-scale drivers such as climate, glacioisostatic 

adjustment, and local base level changes that may have contributed. 

At Big Bar and Watson Bar, three studies have used optical dating to date 

different sedimentary facies to provide absolute ages where there is a paucity of material 

suitable for radiocarbon dating. Lian and Huntley (1999) use optical dating to date an 

aeolian cap overlying a paraglacial fan ~400 m above Fraser River at Big Bar. A 
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minimum age of 11 ± 1 ka was calculated from near the bottom of the aeolian cap, 

providing a minimum age of paraglacial fan stabilization and the onset of aeolian 

deposition at ~400 m above present-day river level. Lian and Hicock (2001) characterize 

the valley fill at Big Bar and provide limiting optical ages for valley fill deposition, placing 

it as during the Fraser Glaciation. Lian and Clague (2009) provide preliminary ages of 

Fraser River terrace abandonment from three terraces at Big Bar. Their site 76 at 440 m 

asl, 170 m above present-day river level, has a maximum optical age of terrace 

abandonment of 11.6 ± 0.6 ka from fluvial sand and a minimum optical age of 5.0 ± 0.1 

ka from aeolian sediment overlying a thick sequence of paraglacial sediments. Their site 

88 at 330 m asl, 40 m above present-day river level, has a maximum optical age of 

terrace abandonment of 6.3 ± 0.4 ka from fluvial sand. Their site 79 at 290 m asl, 20 m 

above present-day river level has a minimum 14C age of terrace abandonment of 3.69-

4.08 cal ka, based on a bone fragment found at the base of a paraglacial fan and a 

minimum optical age of 3.4 ± 0.1 ka from aeolian sediment overlying the paraglacial fan. 

Optical ages use the central age model (CAM), which may overestimate fluvial sediment 

that has an incomplete bleaching history (Galbraith et al. 1999). Past preliminary optical 

dating studies at Big Bar demonstrate that optical dating can be used to date both fluvial 

and aeolian sediments in the area, though models other than the CAM could be 

employed, where appropriate, to provide more accurate ages. 

2.1.4. Drivers of terrace formation 

The drivers of terrace formation that most likely affected Fraser River are climate, 

glacioisostatic adjustment, and local base level changes. Although extensive placer 

mining has occurred on lower terraces, anthropogenic impacts on terrace formation are 

likely negligible and isolated to terraces <15 m above river level. Postglacial climatic 

fluctuations in British Columbia have been documented using palaeoecology (e.g., 

Mathewes and Heusser 1981; Mathewes 1985; Mathewes and King 1989). These 

studies indicate that different regions in BC experienced changes in climate at slightly 

different times, although regional trends prevail and have been summarized for the last 

~10 cal ka by Hebda (1995). Prior to ~10 cal ka ago, climate for the coast and interior of 

British Columbia was cold and dry before 12 cal ka, then shifted to cool and moist until 

~10.5 cal ka when the HXI began (Mathewes 1985) (Figure 2.2). The HXI is typified by 

warm and dry climate across British Columbia (Mathewes 1985, Hebda 1995), and 
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although the end of this period fluctuated across the province, it was generally thought to 

have ended by ~7 cal ka in the regions upstream and downstream of Fraser River at Big 

Bar and Watson Bar (Figure 2.2). At this time in the middle Holocene, climate began to 

moisten and in regions other than the Southern Interior, cool to temperatures lower than 

those in the HXI (Hebda 1995). Specifically in the Central Interior Plateau and Northern 

BC regions upstream of Big Bar and Watson Bar, climate was wetter than present 

(Figure 2.2). This wetter period lasted until ~4 cal ka ago when climate shifted to near-

modern, which is drier than the middle Holocene, especially when compared to the 

Central Interior Plateau and Northern BC regions (Figure 2.2). The Holocene glacial 

record provides higher resolution climate information (e.g. Menounos et al. 2009), with 

periods of glacial advance occurring between 8.59-8.18, 7.36-6.45, 4.40-3.97, 3.54-2.77, 

1.71-1.30 ka, and during the last thousand years. The age resolution in this study, 

however, is not sufficient to infer drivers of terrace formation from these higher resolution 

recorded advances, especially in the last ~5 ka. 

Glacioisostatic adjustment can lower relative base level as depressed 

landscapes rebound after deglaciation, encouraging incision as rebound progresses. 

Identified in the BC interior using glacial lake shoreline tilt as a proxy (Fulton and Walcott 

1975), Clague and James (2002) report that the BC interior plateaus (immediately 

adjacent to this study area) would have been glacioisostatically depressed by as much 

as 400 m. The amount of glacioisostatic depression is also alluded to by Johnsen and 

Brennand (2004) who report tilts of 1.7-1.9 m km -1 dipping NNW (toward this study area) 

along glacial Lake Thompson shorelines. Although the timing of interior glacioisostatic 

adjustment is poorly constrained, it began while ice was thinning and retreating (Clague 

and James 2002), with most adjustment concluding shortly after deglaciation in a span 

of <2 ka (Clague and James 2002). Glacioisostatic adjustment was also experienced 

along the BC coast during and shortly after deglaciation, causing uplift and lowering 

relative sea level by as much as 200 m at the mouth of Fraser River (Clague and James 

2002; Shugar et al. 2014). 
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Figure 2.2. Postglacial climate in four different regions of British Columbia directly 
upflow or downflow from the study area, modified from Hebda (1995) 
with early Holocene BC climate from Mathewes (1985). Temperature 
and precipitation descriptions are in comparison to modern climate. 
Solid lines denote marked change, while dashed lines denote 
gradual or uncertain change (Hebda 1995). Blocks of time can be 
considered climate states or periods, while arrows associated with 
(T) or (P) infer localized trends for temperature and precipitation, 
respectively. Terrace ages from this study provided in the right hand 
column and discussed in sections 2.3 and 2.4. 

Additionally, local base level can change due to increased paraglacial 

sedimentation from tributary valleys, the formation of local landslide dams, and/or the 

formation and drainage of glacial lakes associated with CIS retreat. Paraglacial 

sedimentation from tributary valleys is well-documented in the Fraser River valley and 

other trunk stream valleys in southwestern British Columbia (Ryder 1971). This 

sediment, experienced peak mobility shortly after deglaciation (Church and Ryder 1972), 

inundating Fraser River, causing local base level increases and excess sediment for 

Fraser River to rework. Downstream of the study area at Lillooet, Ryder and Church 

(1986) suggest that lower terraces in their study were formed from backwater processes 
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associated with landslides at Texas Creek, further described by Ryder et al. (1990). 

Upstream of the study area, gLF was impounded first by ice and then by a landslide dam 

(Clague et al. 2021) which resulted in catastrophic drainages down the Fraser River 

valley, depositing large swaths of sediment as it went. Finally, autocyclic processes 

(Muto and Steel 2004, Faulkner et al. 2016) within a river system can also contribute 

significantly to periods of aggradation and incision that cannot be explained by the 

above-mentioned external (i.e., allogenic) factors. 

2.2. Methods 

2.2.1. Geomorphology 

Terraces in the southern Fraser River region, formed on and in glacial valley fill 

sediments consist of floodplains that were abandoned as Fraser River incised (Ryder 

and Church 1986; Lian and Hicock 2001). These floodplain sediments are commonly 

overlain by paraglacial fans formed by fluvial and debris flow processes that are, in turn, 

capped by aeolian sediments that may be several metres thick (Lian and Hicock, 2001). 

Terraces are mapped around Big Bar and Watson Bar using digital terrain 

models (TanDEM-X elevation data: 12 m grid, >1 m vertical resolution) and field 

checked. These terraces are correlated in space, and the elevations of their floodplain 

surfaces determined using a combination of digital elevation model (DEM) analyses and 

differential global positioning system (dGPS) surveys. Because dGPS surveys were 

conducted on multiple days and no local benchmarks were available, each survey was 

overlapped with those from preceding days using shared points to ensure high accuracy 

and repeatability. Additionally, dGPS surveys included measurements at river level so 

elevations above river level could be calculated and river levels could be correlated 

between dGPS surveys and DEM data. Once gathered, dGPS data were corrected 

using the Canadian Spatial Reference System (CSRS) Precise Point Positioning (PPP) 

tool, which uses precise satellite orbit data from the time of survey to correct floating 

GPS data points to high accuracy and precision (<0.1 m grid, <0.2 m vertical resolution).  

TanDEM-X data use the WGS84 G1150 datum, while dGPS data use the NAD83 

CSRS datum, so a datum transformation was performed on dGPS data to ensure all 

data were in WGS84 G1150 format. The TanDEM-X data is considerably lower 
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resolution than the dGPS data (12 m grid, >1 m vertical vs. <0.2 m grid, <0.2 m vertical, 

respectively) and because of this, horizontal coordinates should be considered at ±10 m 

precision and vertical measurements should be considered ±1 m precision unless 

explicitly stated that they were only derived from dGPS surveys. 

Because many terraces are capped by paraglacial fans emanating from tributary 

valleys, the terrain is steep and gullied, some areas are affected by past placer mining 

activity (Figure 2.3) and the study area is large, it was challenging to precisely verify 

palaeofloodplain elevations throughout the study area. To approximate palaeofloodplain 

elevations beyond dGPS measurements, terrace edge elevation data was extracted 

from the DEM and compared to dGPS elevations. Minimum and mean elevations from 

the terrace edges in each terrace DEM polygon are used to estimate palaeofloodplain 

elevations. Mean DEM elevations are used for terraces with fluvial sediments exposed at 

the surface. Minimum DEM elevations are used in cases where fan sediments occur at 

the surface. Using this method, the elevation estimates of palaeofloodplains were within 

10 m of dGPS elevations in ~80% of cases, the exceptions being where fans were >10 

m thick. These elevations were used to correlate palaeofloodplains downvalley and 

identify potential paired terraces. 

Terraces are correlated in space through analysis of photographs, elevation-

classed DEMs, hillshaded DEM imagery, and the results of the palaeofloodplain 

elevation analysis described previously. Terraces are correlated downvalley by 

identifying elevations of terrace clusters at Big Bar and Watson Bar, then tying them 

together based on palaeoslope of the ancestral Fraser River. It is assumed that the 

slope of the Fraser River has not changed substantially over the time that this study 

covers (~12 ka), and any changes in the slope are likely masked within the 

measurement uncertainty. Composite cross-valley topographic profiles were created for 

Big Bar and Watson Bar using seven and eight DEM-generated individual topographic 

profiles, respectively (Appendix D). The final cross-valley profiles included dGPS-

checked palaeofloodplain elevations. Paired terraces are correlated by palaeofloodplain 

elevations using the composite cross-valley topographic profiles. Once correlated, 

terraces were named from the highest (T01), and presumably oldest investigated in this 

study, to the terraces nearest present-day river level (T12), which are presumed to be 

the youngest. 
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Figure 2.3. Big Bar terraces from the east side of Fraser River. Paraglacial fans 
overlie river sediment on most of these terraces. Gullies and 
slumping complicate terrace mapping and correlation. Past placer 
mining on some T09-T12 terraces, as outlined by the dashed line, 
has removed or disturbed some terrace sediments. Terrace levels 
visible on the west side of Big Bar are annotated and discussed in 
sections 2.3 and 2.4. 

2.2.2. Lithostratigraphy 

Lithostratigraphic analysis was conducted at metre to decimetre scale using 

standard sediment description procedures (e.g., Evans and Benn 2021; Lindholm 1987) 

to differentiate between depositional environments at the study sites, which included 1) 

pre-terrace valley fill, 2) postglacial Fraser River sand and gravel, 3) paraglacial fans, 

and 4) aeolian caps. Unit thicknesses and optical dating sampling depths were 

determined by measuring tape and/or dGPS surveys. Gravel fabrics were determined 

from clast ab-plane dip angle and trend measurements (Appendix B), and these were 

plotted on lower hemisphere equal-area Schmidt projections using Stereonet v. 10.4.2 

(Allmendinger et al. 2011; Cardozo and Allmendinger 2013). Unit numbering reflects 

palaeoenvironmental units and differs from lithostratigraphic units established during 
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past studies of the area. Unit 1, pre-terrace valley fill sediments, has been previously 

described and interpreted in the study area (units I-IV of Lian and Hicock 2001) and in 

adjacent study areas (Eyles and Clague 1991; Huntley and Broster 1994). This study 

focuses on postglacial Fraser River activity thus the underlying valley fill units are not 

described in further detail here. 

2.2.3. Dating 

Radiocarbon dating 

Radiocarbon (14C) dating can provide high-precision ages of fossil organic 

materials which, if found in growth position, correspond with depositional ages of 

associated sedimentary layers. If the materials are detrital and not found in growth 

position, radiocarbon dating will typically give maximum ages, but these may 

approximate true ages if sedimentological analysis suggests the detrital material was 

generated at a similar time as deposition. A paucity of organic materials suitable for 

radiocarbon analysis has been observed in past studies of the area (Lian and Huntley 

1999) and fieldwork in 2019 confirmed this. However, at site 1966, charcoal fragments 

were found in several beds, and some of these were collected for radiocarbon analysis. 

Samples were collected with trowels and placed in clean plastic bags. The charcoal was 

kept refrigerated until it could be dried to prevent contamination.  

Samples were dried in an oven at 80°C for ~8 hr, then cleaned with a synthetic 

bristled brush to remove any sand or contaminating modern organic material from their 

surfaces. Samples were sent to the A.E. Lalonde AMS Laboratory to undergo 

processing and analysis. Sample pre-treatment techniques were performed as per 

Crann et al. (2017) and Murseli et al. (2019). Radiocarbon ages were calibrated using 

OxCal v.4.4.2 (Bronk Ramsey 2009) and the IntCal 20 calibration dataset (Reimer et al. 

2020).  

Optical dating 

Organic materials for 14C dating are rare in the study area. Additionally, detrital 

organic materials may not always be chronologically consistent with deposition in fluvial 

sedimentary strata, thus providing age discrepancies (e.g., Blong and Gillespie 1978). 

Due to these concerns, optical dating was employed as the main method to provide age 
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estimates for Fraser River palaeofloodplain development and subsequent incision. 

Optical dating measures the time elapsed since mineral grains, typically quartz and 

feldspar, were last exposed to light, which is usually consistent with stabilization ages of 

sedimentary landforms. Detailed account of the technique can be found in Lian and 

Roberts (2006) and Wintle (2008). 

Sampling 

Optical dating samples were collected from palaeofloodplain sand units and 

aeolian caps (Lian and Huntley 1999; Lian and Hicock 2001). Ancestral Fraser River 

sand units typically overlie fluvial gravel units and are inferred to be overbank sediments 

(Brennand et al. 2014). Optical ages from ancestral Fraser River sand thus provide 

maximum limiting ages for fluvial activity before incision and floodplain abandonment at 

each site. At some sites aeolian samples were collected from the base of aeolian units to 

provide minimum limiting ages of fluvial activity, thus bracketing the timing of floodplain 

abandonment and terrace formation between fluvial maximum ages and aeolian 

minimum ages. Aeolian samples also provide minimum ages for the cessation of 

paraglacial fan formation when overlying fans at associated terraces, and further, they 

provide a test of the optical dating procedure as these samples are expected to have 

received sufficient sunlight exposure prior to burial and they were collected 

stratigraphically below Bridge River tephra (BRT; 2.36 ka; Clague et al. 1995). Samples 

were collected by inserting opaque tubes into cleaned section faces. The tubes ranged 

in size from 3 to 10 cm diameter by 15 to 30 cm length, depending on the thickness and 

texture of the sediments collected. 

Preparation 

Sample tubes were opened in the University of the Fraser Valley luminescence 

dating laboratory under dim orange light conditions and prepared using standard 

procedures (e.g., Wintle 1997). Approximately 5-10 cm of sediment was removed from 

both ends of each tube to prevent light-contaminated sand grains from being 

incorporated into the material to be analyzed for dating, with some of this material 

reserved for water content and radionuclide concentration measurements. Fine sand 

between 180-250 µm diameter was isolated using wet-sieving procedures, then treated 

with HCl acid and H2O2 to remove carbonates and organic material, respectively. Lithium 

metatungstate (LMT) heavy liquid separation was employed to concentrate quartz (2.62-
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2.70 g/cm3) and potassium feldspar (KF; 2.58-2.60 g/cm3). Samples were etched with 

HF acid to remove the α-effected portion of the grain surfaces, followed by an HCl acid 

rinse to remove precipitated fluorides. Quartz samples were treated with a 50% HF 

solution for 40 minutes with a 5-minute HCl rinse and KF samples were treated with a 

10% HF solution for 4 minutes with a 1-minute HCl rinse. The etched sand grains were 

then mounted as aliquots to 10 mm diameter aluminum discs on a circle of silicone spray 

measuring either 1 mm or 3 mm diameter, corresponding to 40 ± 20 or 140 ± 30 grains 

per aliquot, respectively. The aliquot size was dependent on whether evidence of partial 

bleaching was present, which is discussed in the next section. 

Measurement of equivalent dose 

Samples were measured using a Risø TL/OSL DA-20 reader/irradiator equipped 

with a calibrated 90Sr/90Y source delivering β radiation to samples at a rate of ~4.8 

Gy/min. Quartz grains were stimulated with 45 mW/cm2 blue (~470 nm) light and 

ultraviolet (~350 nm) luminescence emissions were detected using a 9235QA 

photomultiplier tube (PMT) fitted with a 7.5 mm thick Hoya U-340 optical filter to absorb 

reflected and scattered light from the stimulation beam. KF grains were stimulated with 

130 mW/cm2 infrared (IR) light (~880 nm) and violet (~400 nm) luminescence emissions 

were detected using the same PMT fitted with Schott BG-39 and Corning 7-59 optical 

filters. The BG-39 filter absorbs reflected and scattered IR light from the stimulation 

beam and the 7-59 filter absorbs yellow-green light (~570 nm) emitted by plagioclase 

feldspars. 

This study employed the single-aliquot regenerative dose (SAR) method to 

determine equivalent dose (De) on quartz (Murray and Wintle 2000) and KF (Wallinga et 

al. 2000). The generalized procedure can be found in Table 2.1. Several parameters 

inherent to the SAR protocol were adjusted through pilot experiments to find the SAR 

protocol best suited for the minerals specific to the study area.  

When mineral grains are dosed in the environment, only some traps will reliably 

store electrons over timescales of interest. These traps are known as thermally stable or 

‘deep’ traps, and they must be isolated from thermally unstable or ‘shallow’ traps in the 

SAR procedure as they are filled by exposure to laboratory radiation but remain empty in 

the environment. This is done by employing a preheat to empty any thermally unstable 

traps and it is performed both on the naturally dosed aliquots and after subsequent 
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laboratory doses (Table 2.1). Preheat procedures can vary based on the local 

mineralogy of a sample, and thus a preheat plateau test is performed. The goal of this 

test is to find a temperature and heating duration that sufficiently empties thermally 

unstable traps while not significantly emptying the thermally stable traps that are of 

interest for dating. Preheat plateau tests on quartz and KF were performed using 

guidelines laid out by Neudorf et al. (2015) using a range of preheat temperatures that 

ranged from 140-260°C at 20 C° increments for 10 seconds. From these tests, it was 

determined that a 220°C preheat and a 160°C preheat was most suitable for quartz and 

KF, respectively. The efficacy of the chosen preheat temperature and duration is further 

tested by dose-recovery experiments. 

Table 2.1. SAR procedure for KF used for this study. Each aliquot receives this 
treatment, starting with the preheat and stimulation of the sample 
without a laboratory dose to measure its natural signal. After the 
natural signal is measured, the aliquot is given various doses of 
laboratory radiation and stimulated each time to generate data 
points to construct a dose response curve. The test dose is used to 
correct for sensitivity change from repeated dose and stimulation 
cycles, and a test dose of ~2.4 Gy was chosen to provide a 
luminescence signal significantly greater (>3x) than the background 
signal to minimize the influence of instrument error. 

Step Procedure Measurement 

1 Laboratory dose (omitted during first run: sample already dosed with 
natural dose) 

 

2 Preheat: 160°C, 10 s  

3 Stimulation: IR, 50°C, 100 s Ln, then Lx 

4 Test dose: ~2.4 Gy  

5 Preheat: 160°C, 10 s  

6 Test dose stimulation: IR, 50°C, 100 s Tn, then Tx 

7 Repeat steps 1-6  

Ln: Luminescence signal of the natural dose 
Lx: Luminescence signal of subsequent laboratory doses 
Tn: Luminescence signal of the test dose associated with the natural dose 
Tx: Luminescence signal of the test doses associated with subsequent laboratory doses  

Quartz from sample 1951-TG-01 was tested to assess the viability of quartz as a 

chronometer in the study area. The first tests of quartz used linearly-modulated-optically-

stimulated-luminescence (LM-OSL, Bulur 1996) to assess the presence of a so-called 

‘fast component’ of the luminescence signal which is thermally stable and is quickly reset 

(bleached) in daylight and is thus desired for use in optical dating of quartz. These 
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measurements are also used to assess the magnitude of unwanted slowly-bleached 

and/or thermally-unstable medium and slow components of the signal (Singarayer and 

Bailey 2003) as these may interfere with (contaminate) the fast component. Initial LM-

OSL curves indicated that few aliquots possessed an obvious fast component (Appendix 

C, Figure C.14), and this made the use of quartz impractical. Quartz was thus 

abandoned, and the focus was turned to KF. 

Pilot SAR experiments on KF using a few aliquots were completed to provide a 

preliminary assessment of the protocol. To this end dose recovery tests were performed. 

Dose recovery tests use known laboratory doses as an estimate of the natural dose and 

a SAR run is conducted to assess the reliability of recovering the known dose as the De. 

Subsamples of prepared KF were first bleached in natural daylight for ~3 hr, then SAR 

tests were performed, each using a single laboratory dose value, ranging from ~1-20 Gy. 

Dose recovery tests yielded given dose to recovered dose ratios of 1.02 ± 0.01 when the 

laboratory dose was 8-20 Gy (Appendix C, Table C.1). Laboratory doses of 1 Gy yielded 

given-to-recovered dose ratios of 1.31 ± 0.03 and tended to overestimate the recovered 

dose (Appendix C, Table C.1). As most samples in this study are expected to have De 

values >5 Gy, the results from the 8-20 Gy dose recovery tests showed that the chosen 

SAR protocol could be used successfully to date the samples. Samples with De values in 

the 1 Gy range had independent age control which could be used to assess optical 

ages. With the dose recovery test confirming that the SAR procedure was suitable for KF 

in the study region, full SAR runs were constructed to estimate the De of each sample.  

Internal quality-control tests inherent to the SAR method, namely recycling ratio 

and recuperation tests were used to determine whether individual aliquot data could be 

used in final age calculations. The recycling ratio test, which assesses the effectiveness 

of the chosen test dose, is performed by repeating one of the laboratory doses in a SAR 

sequence. The measured luminescence after each dose is then compared. The common 

acceptance criterion for the recycling ratio is 1.0 ± 0.1, or no more than 10% from unity 

(Murray and Wintle 2000, Wintle and Murray 2006), which is what was used in this 

study. Recuperation values are assessed by measuring the aliquot at the end of a SAR 

cycle without dosing it beforehand; this is known as the zero-dose point. The amount of 

luminescence measured after a zero dose is due to thermal transfer, and it is acceptable 

if it is 5% or lower than the natural signal (Murray and Wintle 2000; Wintle and Murray 

2006). Only aliquots that pass these two criteria are used for De calculations. 
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 For each sample 24 or 48 aliquots were measured and those that passed the 

SAR quality control tests were used to determine De values. The De values form a 

distribution which is then plotted on radial or abanico plots (Dietze et al. 2016), and then 

analyzed to estimate a representative De for that sample which is used for the age 

calculation. The first step in analysis is measuring the De distribution’s overdispersion 

value. Overdispersion (OD) describes the amount of variance in individual De values 

from the same sample that cannot be explained by analytical uncertainties (Galbraith et 

al. 2005, Galbraith and Roberts 2012). In general terms, the smaller the OD value, the 

more certain one is that all the De values belong to a single population, with 10% OD 

being nearly the lowest achievable value with a fully bleached aeolian sample using an 

aliquot size of ~200 grains (Cunningham et al. 2011). OD values are considered 

alongside visual analysis of De distributions on radial or abanico plots (Dietze et al. 

2016); the latter are used here. An abanico plot includes a radial plot which provides a 

visual representation of the De distribution and the analytical uncertainty associated with 

each aliquot from a sample. Unlike a simple radial plot, it also includes a kernel density 

curve (Figure 2.4b). The abanico plot provides insight into whether the De distribution is 

normal, skewed, or multimodal. Considering both the OD value and the abanico plot, 

statistical models are chosen to best estimate the representative De value to be used to 

calculate the sample’s optical age. 

For a well-bleached sample with a low (<20%) OD, the central age model (CAM) 

is appropriate for determining a representative De value for the age calculation (Galbraith 

and Roberts 2012). This method provides a weighted average of all aliquots and 

considers the precision of each aliquot’s De value. In a well-bleached sample, use of the 

CAM is likely reasonable as it is expected that each sand grain was adequately 

bleached before deposition. Aeolian deposits (and some littoral sediments) are most 

appropriate for this model, as grains comprising them are typically well beached before 

deposition and burial in a landform.  

The CAM is an inappropriate model in cases where samples include enough 

partially bleached grains that retain residual signals from a past burial period(s) 

(Galbraith et al. 1999). The application of the CAM to such samples leads to an 

averaging of fully bleached signals and incompletely bleached signals, thus providing 

Des that are higher than they should be. The minimum age model (MAM; Galbraith et al. 

1999) is more appropriate for incompletely bleached samples. It assigns a higher weight 
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to aliquots with lower De values, thus providing a representative De that is skewed 

toward the lower end of the De distribution. To operate effectively, the MAM algorithm 

requires an estimate of the idealized spread of data value (σb), which is the amount of 

variance, associated with OD, expected in a sample if it had been fully bleached 

(Cunningham et al. 2011). A higher σb value will make the impact of the MAM lower and 

increase the error, while a lower σb value will provide a younger-skewed age which may 

end up being an underestimate of the De associated with the true burial age 

 

Figure 2.4. Optical dating summary for sample 1951-TG-02. a) A shinedown curve 
of the natural signal from an aliquot. Vertical lines indicate which 
portion of the shinedown curve was used for the signal (red lines) 
and background (green lines) measurements. Inset is a dose-
response curve for the same aliquot with the normalized (Lx/Tx) 
“natural” luminescence interpolated onto its dose-repsonse curve 
(red line), its De  value being read from the x-axis. b) An abanico plot 
of De  values from all accepted aliquots for the sample. Abanico 
plots include a radial plot on the left and a kernel density curve on 
the right. The positions of the points are plotted based on their value 
and uncertainty; those with lower uncertainty plot further to the right 
on the radial plot. Radial plots are read by drawing a line from the 
origin at the left y-axis through each point and onto the y-axis to the 
left of the kernel density curve. Two sigma error values can be 
measured on the graph by drawing a straight line from each of the 
“2” and “-2” standardised estimate dashes on the left y-axis, 
through the point, and onto the axis to the left of the kernel density 
curve. The kernel density curve provides a visual representation of 
the spread of data. In this case, the data are skewed slightly to the 
bottom and are weakly bimodal. The representative De for this 
sample is found here using the central age model (CAM); 
overdispersion (OD) for the sample is also provided. c) A 
representative fading plot from one aliquot of the sample. Delay time 
on the logarithmic x-axis denotes the time between laboratory 
irradiation and stimulation, with longer delay times resulting in lower 
luminescence values as a result of anomalous fading. Additional 
summary figures can be found in Appendix C. 
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To choose the σb value, OD values from aeolian samples in the study were used 

as a starting point as they are considered to be fully bleached, thus they contained the 

lowest variance that could be expected for the sample area. These ranged between 14 ± 

2% and 15 ± 2%, thus the σb value chosen for MAM calculation was 15%. Using the 

20% OD threshold, the CAM was used for samples with OD values under 20%, and the 

MAM was used for samples with OD values over 20%. The modelled De s were then 

divided by an estimate of the environmental dose rate to produce optical ages 

(uncorrected for anomalous fading) for each sample. 

Environmental dose rate 

The environmental dose rate (commonly referred to as just ‘dose rate’), is the 

rate at which the optical dating samples absorb ionizing radiation while in situ in the 

environment. This radiation comes from radionuclides (mainly U, Th, 40K, and Rb) in the 

surrounding sediments, from within the minerals in the samples, and from cosmic rays. 

Ideally, most of the radioisotope concentrations are measured in situ at the time of 

sample collection using a portable gamma-ray spectrometer which measures gamma 

rays from the surroundings up to ~50 cm away. However, a gamma-ray spectrometer 

was not available for this study. Instead, radionuclide concentrations were determined by 

neutron activation analysis (NAA) at a commercial laboratory (Bureau Veritas 

Laboratories, Mississauga, Ontario) from a dried and milled subsample of the bulk sand 

matrix from which the KF grains were separated (Appendix C, Table C.2). This approach 

assumes that the dose received by the sample from bounding sediments is like that at 

the sample site, which was probably the case, or nearly so, at the sites sampled during 

this study. Samples were collected as far away from bounding strata as possible to 

reduce their effect (Appendix C, Table C.3). 

Cosmic rays also contribute to the dose rate, but this contribution diminished 

quickly with depth. The contribution of cosmic rays to the total dose rate was calculated 

using present-day burial depths, elevation, and latitude (Appendix C, Table C.4) and the 

relationship of Prescott and Hutton (1994, their Appendix).  

Pore water in the sediment matrix attenuates radiation, and this must be 

considered in the dose rate calculations. As the samples were collected in a semi-arid 

environment that is assumed to have changed little over the time of burial (Lian and 

Huntley 1999), and since samples were collected from well-drained sand units overlying 
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gravel, as-collected water content values were used. Water content analysis was 

performed by extracting a bulk subsample in a water-permeable container, fully 

saturating the sample over the course of 3-20 days, then fully drying over the course of 

~1 week, while weighing the sample at various times (Appendix C, Table C.4).  

For each sample the contributions of , , and  radiation to the total dose rate 

were calculated using the measured radioisotope concentrations, the dose-rate 

conversion factors of Guérin et al. (2011), the attenuation and absorption factors of 

Brennan (2003), and standard dose-rate equations (e.g., Berger 1988; Lian et al. 1995). 

In each case an internal 40K concentration of 12.5 ± 0.5% was assumed (Huntley and 

Baril 1997), and an estimate of the fraction of the  dose rate arising from Rb inside the 

KF grains was made using the estimate of 11% Rb from Huntley and Hancock (2001). 

For each sample the contribution of  radiation from inside K-feldspar grains was 

assumed to be 0.09 Gy/ka (Ollerhead et al. 1994). In practice, dose rate calculations 

were done using the Dose Rate and Age Calculator (DRAC, Durcan et al. 2015), which 

also allows for the input of CAM- and MAM-modelled SAR Des to produce optical ages 

(uncorrected for anomalous fading) for each sample. 

Correction for anomalous fading 

K-Feldspars are susceptible to a phenomenon known as anomalous fading 

(Wintle 1973), wherein the IR-stimulated (violet) signal due to laboratory irradiation fades 

over time due to quantum-mechanical tunneling of electrons from thermally stable 

electron traps to those that are thermally unstable (Huntley and Lamothe 2001). This 

results in age underestimation unless anomalous fading is dealt with. Various methods 

for dealing with anomalous fading have been proposed and they can be categorized by 

either circumvention or correction. Circumvention of the problem of anomalous fading is 

done by assessing traps that do not fade, such as those measured using the post-IRIR 

technique (Thomsen et al., 2008). These traps, however, require far more time to bleach 

sufficiently in the environment (Colarossi et al., 2015). In turbid waters, such as those 

expected in the ancestral Fraser River, it is unlikely that these traps can reliably be 

bleached sufficiently for post-IRIR techniques to work well. Moreover, it has been found 

that in many cases the post-IRIR signal also fades (Jain et al. 2015), albeit usually at a 

lower rate than the IR-stimulated signal traditionally used for dating, and thus still 

requires correction. 
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For this study, therefore, the correction method of Huntley and Lamothe (2001) 

was chosen. A modified SAR procedure (Auclair et al. 2003) was used to determine 

fading rates (g values) for each sample (Table 2.2). After samples were dated, 12 

aliquots from each sample were tested for anomalous fading. They each received a 

dose of ~14 Gy, similar to the median De of all samples, then delays of 1-10 hr were built 

into the sequence. To increase the storage time while allowing the Riso reader to be 

used for other experiments, the aliquots were given a dose of laboratory radiation at the 

end of the sequence and removed from the machine for 3-30 days. Once returned to the 

machine, the samples were stimulated and the signal that had faded over time was 

plotted. This created a fading plot (Figure 2.4c) from which the fading rate was 

determined from the slope of the lined fitted to the data. Acceptance criteria for individual 

aliquots’ fading plots were an adequate fit of a line to the data points (χ2 < 1.00) and 

evidence of minimal grain loss determined by similarity of Tx/Tn values before and after 

the multi-day resting period. 

The fading rates determined from accepted fading plots (Figure 2.4c) (n = 5-11, 

depending on the sample) were then analyzed using the CAM to provide an averaged 

fading rate for each sample. This method is efficient and has been found to produce 

ages within error of those determined from aliquots that had their De values corrected for 

fading using their own fading rates (Neudorf et al. 2015). An important criterion for 

applying the correction method of Huntley and Lamothe (2001) is that the sample’s De 

must fall within the linear portion of its dose-response curve, and this was the case for all 

the samples in this study. The fading rate was then used to correct each age using the 

method of Huntley and Lamothe (2001) and the R program written by Kreutzer (2020). 

Incision rate calculation 

Optical dating ages were correlated with height above river level, then correlated 

using ordinary least squares regression on each fluvial data point without accounting for 

error. This was deemed acceptable as the precision of the incision rate is low given the 

relatively limited number of data points in the study. The incision rate is thus an 

estimation, considered reliable within one order of magnitude. The incision rate was 

further broken down into three time periods, discussed in Section 2.4.3. 
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Table 2.2. SAR procedure used for constructing fading plots. Each aliquot 
receives this treatment, allowing for pauses between some steps to 
provide storage time in which to assess the rate of fading. Aliquots 
are removed from the instrument for the longer (>100 hr) storage 
times and then are returned to it for measurement. The test dose is 
used to correct for sensitivity change from repeated dose and 
stimulation cycles, and ~2.4 Gy was chosen to provide a 
luminescence signal significantly greater (>3x) than the background 
signal to minimize instrumental error. 

Step Procedure Measurement 

1 Dose: ~14 Gy  

2 Preheat: 160°C, 10 s  

3 Pause: 1 to >100 hr  

4 Stimulation: IR, 50°C, 100 s (Measures faded signal) Lx 

5 Test dose: ~2.4 Gy  

6 Preheat: 160°C, 10 s  

7 Test dose stimulation: IR, 50°C, 100 s Tx 

8 Dose: ~14 Gy  

9 Preheat: 160°C, 10 s  

10 Stimulation: IR, 50°C, 100 s (Prompt signal) Lx 

11 Test dose: ~2.4 Gy  

12 Preheat: 160°C, 10 s  

13 Test dose stimulation: IR, 50°C, 100 s Tx 

14 Repeat steps 1-13  

Ln: Luminescence signal of the natural dose 
Lx: Luminescence signal of subsequent laboratory doses 
Tn: Luminescence signal of the test dose associated with the natural dose 
Tx: Luminescence signal of the test doses associated with subsequent laboratory doses 

2.3. Results 

2.3.1. Geomorphology 

Terraces occur in wider reaches directly downstream of bedrock canyons, 

namely French Bar Canyon and Chisholm Canyon for Big Bar and Watson Bar, 

respectively (Figure 2.5). Fraser River has incised to bedrock throughout the study area. 

Paraglacial fans emanate from steep tributary valleys, commonly capping terraces. 

Around Watson Bar, there is a prominent streamlined bedrock landform (Figure 2.5, 2.6) 

on the east side of the river measuring ~1.4 km long and ~0.3 km wide, ~220 m above 

present-day river level and ~20 m higher than the highest terrace, with its long axis 

aligned with that of Chisholm Canyon. 
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Clearly identifiable terraces are found at elevations from ~450 m asl to river level 

at ~260-270 m asl. The highest terraces in this study are ~190 m above present-day 

river level. Based on clearly identifiable terraces, twelve distinct floodplain stages (T01 – 

T12) are identified for the Fraser River in the study area. All twelve are depicted in a 

map (Figure 2.5), illustrated in composite cross-sections (Figure 2.7), and shown on a 

longitudinal profile (Figure 2.8). There are eight instances of paired terraces (T01, T04, 

T06, T07 T08, T09, T10, and T11) and six terraces could be correlated in the 

downstream direction (T04, T05, T08, T10, T11, and T12; Table 2.3). Many of the 

terraces <50 m above present-day river level have been extensively excavated for placer 

mining. More subtle terraces exist but were not mappable at the scale of this study. 

Around Big Bar, nearly all terraces are fan-covered. On the west side, all but the 

lowest terrace (T11, ~10 m above present day river level, Figures 2.5, 2.7) are fan 

covered. This is likely due to the proximity of these terraces to steep tributary valleys 

which have had debris flows and alluvial sediments emanating from them. On the east 

side of the river at Big Bar, few terraces were found without fan coverings, and those 

that lack fans include the terrace at site 1951 (T09, ~35 m above present day river level, 

Figures 2.5, 2.7) and terraces T11 and T12 closer to present-day river level and not 

directly adjacent to Big Bar Creek confluence. Near Big Bar Creek on the east side of 

Fraser River, T09 and T10 terraces are fan-covered, indicating that Big Bar Creek has 

contributed to the sedimentation on these terraces through debris flows and fluvial 

processes.  

Around Watson Bar, all terraces on the west side are fan-covered due to the 

influence of both Ward Creek and Watson Bar Creek (Figure 2.5). These two high-

volume creeks have deposited both debris flow and alluvial sediments, and recent debris 

flow sediments were even observed while measuring dGPS during the 2019 field season 

(Figure 2.9). On the east side of Fraser River at Watson Bar, fans are not typically 

present atop terraces due to the absence of tributary streams in those localities. At the 

north end of Watson Bar east, a large fan emanates from the valley wall along Indian 

Creek (Figure 2.5). This fan did not appear to reach the edges of terraces that were 

studied in the field, but on analysis of the DEM, it looks to have been truncated by the 

ancestral Fraser River during the T04 floodplain formation stage (Figure 2.5).  
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The valley downstream of Watson Bar was preliminarily analyzed for landslide 

scars that may have contributed to Fraser River blockage and subsequent fluvial 

aggradation. In the reach ~20 km downstream of Watson Bar, at least 5 landslide scars 

were identified (Figure 2.10), including one at High Bar Canyon ~5 km downstream of 

Watson Bar. The deposit at High Bar Canyon is associated with a meander in Fraser 

River and the top of the deposit measures ~100 m above present-day river level (Figure 

2.10). 
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Figure 2.5. Terraces mapped at Big Bar and Watson Bar. Twelve terrace levels are indentified. Sample sites and optical 
ages are noted by star symbols on the map. Paraglacial fans with no observable underlying Fraser River 
sedimentsare delineated, as is a streamlined bedrock landform associated with site 1960 at Watson Bar. Plots 
of gravel a-b plane fabrics for sites 1951, 1938, 1954, and 1956 are plotted on lower hemisphere equal-area 
Schmidt projections. All palaeoflows from inferred ancestral Fraser River gravel are consistent with present-
day river flow direction. Figure 2.6 extent is shown with the arrow denoting the perspective of the image. 
Figure 2.12a picture location at Big Bar is noted. 
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Figure 2.6. Oblique 3D view derived from DEM of Watson Bar terraces looking north, upstream toward Chisholm Canyon. 
Streamlined bedrock landform upstream from Site 1960 is delineated with a red dotted line. Extent of this 
figure shown on map in Figure 2.5.
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Figure 2.7. Composite cross-sections of terraces at Big Bar and Watson Bar. 
These cross-sections are developed from 7 and 10 individual DEM 
cross-sections at Big Bar and Watson Bar, respectively (Appendix 
D) and verified through DEM analysis, dGPS surveys, and 
photographic analysis. Exposed fluvial and valley fill contact 
elevations are from dGPS survey data. T09 on the west side of FR at 
Big Bar, T07 and T08 on the west side of FR at Watson Bar, and T10, 
T11, and T12 on the east side of FR at Watson Bar were observed 
through DEM analysis and visual confirmation in the field, but not 
dGPS surveyed due to access challenges. Bold text on each cross-
section refers to the site where optical dating samples were 
collected (Figure 2.10, Table 2.3). 
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Figure 2.8. Downstream profile of Fraser River and ancestral Fraser River terraces 
between Big Bar and Watson Bar. Terraces are colour coded to 
correlate with mapped and numbered terraces (Figure 2.5). Faded 
dots behind solid lines are extracted elevations from DEM analysis. 
Solid lines are best-inferred elevations for each terrace level using 
dGPS points (hexagonal symbols) which are the highest precision 
indicators of past floodplain levels. Especially high T02 and T08 
DEM elevations at Big Bar are anomalous due to the presence of 
thick fans, but their lateral continuity can be visually traced in the 
field and correspond best to the dGPS elevations provided above. 
Similarly, low T01 and T06 DEM elevations at Watson Bar are 
anomalous due to gullying and erosion of terrace edges, but their 
lateral continuity viewed in the field with adjacent dGPS-checked 
terraces places them at those respective terrace levels. Note that 
Watson Bar terrace correlation to T03 at Big Bar only appears higher 
downstream because Watson Bar T03 elevation is uncertain, based 
on DEM extraction only due to access restrictions, and these 
terraces are buried under thick fans. 

  



37 

Table 2.3. Terrace correlation summary. Terraces are considered paired if there 
were terraces at the same hieght above Fraser River on both sides 
of the same reach. Terraces are correlated downstream if there were 
terraces at Watson Bar that were similar height above present-day 
Fraser River level as at Big Bar. Confidence intervals are inferred 
based on thicknesses of observed fans. Question marks indicate 
possible, but not field verified, correlation. 

Terrace 
ID 

Height 
above 
river (m) 

Optical 
dating site 

BBE BBW WBE WBW Paired Downstream 
correlation 

T01 180 ± 10 1960 n n y y y n 

T02 160 ± 10 1954 n y n n n n 

T03 120 ± 10 1938 y n ? ? ? ? 

T04 100 ± 5 1958 y n y y y y 

T05 85 ± 5 
 

y n y n n y 

T06 75 ± 5 1961, 1956 n n y y y n 

T07 55 ± 5 1962 n n y y y n 

T08 45 ± 5 
 

n y y y y y 

T09 35 ± 2 1951 y y n n y n 

T10 15 ± 2 
 

y y y y y y 

T11 10 ± 2 1966 y y y y y y 

T12 5 ± 2 
 

y n y n n y 

BBE: Big Bar East; BBW; Big Bar West; WBE: Watson Bar East; WBW: Watson Bar West 

 

Figure 2.9. Debris flow at Watson Bar that occurred during the 2019 field season. 
This, together with evidence of many other recent mass wasting 
events is affirmation that the landscape is still undergoing 
paraglacial adjustment. 
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Figure 2.10. Landslide scars (scarps identified by black arrows) downstream of 
the study area. The toe of the landslide at High Bar Canyon is ~100 
m above present-day river level. 
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2.3.2. Lithostratigraphy 

The underlying stratigraphy of Fraser River terraces in the Big Bar and Watson 

Bar area can be generally subdivided into four palaeoenvironmental units (Figure 2.11, 

2.12), each typically composed of similar lithofacies. Because terraces have formed by 

similar processes at different times, the sediment units that form them (unit 2, below) are 

often diachronous. 

Unit 1: Pre-terrace valley fill 

Unit 1 (Figure 2.11, 2.12) is pre-terrace valley fill and has been previously 

described in the study area by Lian and Hicock (2001), their units I-IV, and in adjacent 

study areas by Eyles and Clague (1991), and Huntley and Broster (1994). It consists 

mainly of glaciofluvial sand and gravel, glaciolacustrine silt and sand, and glacigenic 

diamicton (largely reworked till), deposited during the last (Fraser) glaciation. There is 

some evidence of sediments predating the Fraser Glaciation near the base of the valley 

fill to the north of the study area (Eyles and Clague 1991). Unit 1 forms the sediment in 

which ancestral Fraser River incised, formed terraces, and on which associated fluvial 

sediments were deposited. 

Unit 2: Ancestral Fraser River floodplain sediments 

Unit 2 contains three subunits (Figure 2.11). Unit 2a is found only at site 1960 

(Figure 2.13), located on the southwest (downvalley) end of a streamlined bedrock 

landform near Watson Bar immediately downstream of Chisholm Canyon (Figure 2.5, 

2.6). The site is on the highest terrace investigated in this study, standing ~180 m above 

present-day river level. At this site, Unit 2a is ~17 m thick and consists of clinoforms 

composed of poorly-sorted cobble to boulder gravel in a matrix of silty fine sand to 

granules with openwork pebble lenses that rest above a sharp, erosive contact with unit 

1 (Figure 2.13). The clinoforms have an apparent dip of ~10-15° southward (downvalley) 

(Figure 2.13a). Diamicton intraclasts up to ~1m in diameter (b-axis) occur within the 

clinoforms (Figure 2.13b).  
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Figure 2.11. Stratigraphic logs from all optical dating sample sites. Unit numbers correspond to palaeoenvironmental units 
described in the text. Optical dating sample names have been shortened for the sake of space, their full 
notation being ([Site #]-TG-[# on stratigraphic log]). Gravel palaeoflows correspond to plots on Figure 2.5.
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Figure 2.12. a) Fraser River valley fill stratigraphy in the study area typically 
consists of four palaeoenvironmental units, shown here on a T04 
terrace at Big Bar upstream of Chisholm Canyon (location shown in 
Figure 2.5): unit 1: pre-terrace valley fill; unit 2: ancestral Fraser 
River sediments (here, unit 2b is 9 m thick); unit 3: paraglacial fan 
sediment, and; unit 4: aeolian cap. b) Transition from Fraser River 
sediments (unit 2) to paraglacial fan sediments at site 1938. Optical 
dating sample 1938-TG-01 was collected from unit 2c. C) Top of 
terrace at site 1951. Unit 3 is not present at this site. Optical dating 
samples 1951-TG-01 and 02 were collected from unit 2c and unit 4, 
respectively. Bridge River Tephra (BRT) (Clague et al. 1995) is 
clearly visible in unit 4. 

The geomorphic context of site 1960 aids in the interpretation of unit 2a. At site 

1960, the streamlined bedrock landform (Figure 2.6) acted as a resistant obstacle that 

impeded river flow causing lee side flow separation and deposition Southward dipping 

gravel clinoforms are consistent with lee side deposition, forming as flow overtopped the 
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bedrock obstacle and lost energy. The preservation of diamicton intraclasts in unit 2a 

indicate short transport distances, fast dissipation of water energy, and rapid deposition 

and burial. Unit 2a is consistent with a short-lived, high discharge event, perhaps even a 

megaflood based on the observed clinoforms and intraclasts (Carling 2013). 

Unit 2b is 1–18 m thick and rests sharply on unit 1 in all cases except site 1960 

where it conformably overlies unit 2a gravel. Unit 2b consists mainly of horizontally 

bedded clast-supported cobble to pebble gravel (Figure 2.12b). Clasts are subrounded 

to well-rounded with rounded being most dominant. The matrix ranges from medium 

sand to granules and openwork lenses of pebbles are commonly present. Trough cross-

bedding occurs at site 1951. Clast fabrics collected from sites 1954, 1938, 1956, and 

1951 indicate palaeoflows parallel to valley axis (Figure 2.5). The majority of clasts are 

found with a-axis transverse to flow (Appendix B), indicating rolling in a fluvial 

environment. Unit 2b is observed near the top of each terrace in the study except at site 

1966. 

Unit 2b is interpreted to be ancestral Fraser River floodplain sediment due to the 

rounded nature of clasts, clast fabrics that are consistent with the flow direction and 

nature of present-day Fraser River, and the position of unit 2b, stratigraphically above 

glacial valley fill and near the top of each terrace. It is correlated to unit VII of Lian and 

Hicock (2001). 

Unit 2c is commonly <1m thick. However, at site 1958 it is 3.5 m thick and at site 

1966 it is ~6 m thick. Unit 2c rests conformably on unit 2b where observed; at site 1966 

no lower contact was observed. Unit 2c consists of bedded granules to fine sand with 

medium sand being dominant. Structures in unit 2c include ripple cross lamination in 

medium and fine sand indicating palaeoflows parallel to valley axis and consistent with 

present-day Fraser River flow direction. Trough cross bedding is present at sites 1954 

and 1962 with single grain thick pebble beds armoring coarse sand beds. Interbedding 

occurs between unit 2c and unit 2b at site 1956.  

Unit 2c is interpreted to be more distal floodplain overbank sediment deposited 

during flood stages of ancestral Fraser River due to its grain size and unit thickness 

(typically <1 m), and the position of unit 2c overlying the fluvial gravel of unit 2b. The 

interbedding that occurs between unit 2c and 2b is attributed to periodic flood events 
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which left behind pockets of sand near flow obstacles or tributary confluences before 

either a higher flood event or channel migration occurred to deposit a gravel bed over 

sand. All terrace fluvial optical dating samples were collected from unit 2c and site to site 

differences in sedimentology are noted in Appendix B (Table B.4). 

 

Figure 2.13. Stratigraphy around site 1960. Photos in (a) and (b) are from ~100m 
south of site 1960 in the same terrace. a) Unit 2a clinoforms 
(highlighted by black dashed lines) containing diamicton intraclasts 
(dotted outlines) overlying unit 1. Unit 2a is ~20 m thick here. b) 
Diamicton intraclasts (dotted outline) in unit 2a. Contact between 
unit 1 and 2a is sharp and erosive. Trowel handle in bottom left ~10 
cm. c) Optical dating samples 1960-TG-01, 02, and 03 were collected 
from unit 2c. Samples 1960-TG-02 and 03 were collected to ensure 
enough material was available and not processed as sufficient sand 
was collected from 1960-TG-01. Stadia rod is numbered in dm. 
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Site 1966, located on the west side of Fraser River at Big Bar, presents a 6 m 

thick exposure of unit 2c sand (Figure 2.14). It is at the downstream end of a T11 terrace 

that stands 11-13 m (based on DEM elevations) above present-day river level (Figure 

2.5). Here, 10-30 cm thick rhythmites of fine sand and silt grade inversely into medium 

sand (Figure 2.14b), then each rhythmite is topped with a thin (5 mm) bed of silt. 

Contacts between rhythmites range from sharp to diffuse. Ripple cross laminations are 

visible in medium sand beds with thin brecciated silt beds visible at some contacts 

(Figure 2.14b). A modern analogue for the thin silt beds was observed in slopewash 

deposits on an active sand bar within 100 m of site 1966 (Figure 2.15). Four beds of fine 

sand containing charcoal and rounded clasts with angular breakages up to pebble size 

occur within the rhythmites (Figure 2.14c). These beds are located 2-4.5 m from the 

base of the exposure, with the uppermost beds 1.5 m from the surface (Figure 2.11). 14C 

samples were collected from the lowest two beds, 2 m from the base of the exposure 

and 4 m from the surface (Figure 2.11, 2.14). All clasts observed were volcanic and 

typically have one or two rounded sides and several jagged surfaces. The upper 40 cm 

of the exposure has been bioturbated by modern root activity and contains a weakly 

developed modern soil. 

The rhythmites of unit 2c at site 1966 are interpreted to be sequential overbank 

sediments deposited during high water stages of present-day Fraser River. Thin silt beds 

capping medium sand were observed along modern-day sand bars (Figure 2.15) and 

may be related to slope wash from rain events armoring sand beds prior to subsequent 

flood events or settling out from overbank ponds. Ripple cross laminations in medium 

sands indicate slightly higher flow velocities, consistent with shallow water in overbank 

flood environments. The rounded clasts with angular breakages associated with the 

charcoal beds are interpreted to be fluvially rounded stones that have been 

subsequently fire-cracked. The fine sand, charcoal beds, and fire-cracked stones are 

likely derived from debris flows from the valley sides, associated with wildfire events 

which destabilized the slopes. 

Unit 3: Paraglacial fan sediment 

Unit 3 exists at sites 1960, 1954, 1938, 1958, and 1956 (Figure 2.11). It consists 

of beds of diamicton and clast-supported angular to rounded gravel 1–20 m thick, and 

forms fan-shaped landforms resting on unit 2. Diamicton is matrix-supported with coarse 
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sand to silt matrix; clasts are cobble to pebble sized, angular to subrounded, and are 

generally of more local lithology than clasts in unit 2. Gravel beds are typically poorly 

sorted with clasts ranging from cobble to pebble size. Beds range in thickness from ~10 

cm to up to 2 m, thinning toward valley axis. Lower beds within unit 3 typically contain 

more rounded clasts, and angularity increases with height above the lower contact. Unit 

3 is interbedded with unit 2c at sites 1960, 1958, and 1956. 

 

Figure 2.14. Site 1966 stratigraphy. a) Site 1966 is composed of sand-silt 
rhythmites (unit 2c) associated with present-day (<0.5 ka) flood 
events. White dashed lines indicate four beds of charcoal and fire-
cracked rock within the rhythmite sequence. All charcoal beds (CH1-
CH4) were sampled for 14C dating although only CH1 and CH2 were 
dated for this study. b) Inverse grading of a rhythmite with fine sand 
and silt grading into medium sand (bounded by dashed lines). A thin 
discontinuous bed of silt rests on top of medium sand at the top of 
the rhythmite (arrow). c) Charcoal bed where 14C sample CH2 was 
collected. Fire cracked rocks are circled. d) Optical dating samples 
1966-TG-02 and 03 were collected from unit 2c rhythmites below and 
above 14C sample CH2, respectively.  
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Figure 2.15. Modern sand bar showing a thin silt bed overlying medium sand, in 
this case drying out and becoming discontinuous. This silt bed 
issued from the mouth of an ephemeral stream active during recent 
rain events. Similar beds were found in the stratigraphy of site 1966, 
potentially marking the cessation of periodic flood events. 

Unit 3 is interpreted to be paraglacial fan sediment due to the thinning of beds 

toward the valley axis suggesting that unit 3 was formed from sediments sourced from 

the valley sides and the prevalence of angular clasts of local lithology suggesting 

deposition near the source material (Ryder 1971). The poorly sorted nature of the 

diamicton and gravel beds suggest they were deposited mainly as debris flows with 

some ephemeral fluvial reworking after Fraser River incision and floodplain 

abandonment. Unit 3 is correlated to Unit VI in Lian and Hicock (2001). Interbedding of 

units 2c and 3 suggests periodic Fraser River flood events and slope derived debris flow 

sedimentation at sites 1960, 1958, and 1956 (Figure 8, #4, Ryder 1971).  

Unit 4: Aeolian cap 

Unit 4 is up to 6 m thick and caps some of the terrace-top sequences; it was not 

found at sites 1961,1962, or 1966 (Figure 2.11). It consists of well-sorted nearly massive 

fine sand to silt with minor granules. It rests on a typically sharp lower contact, though 
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unit 4 is interbedded with unit 3 at site 1956. At two sites, 1956 and 1951, a 2 cm thick 

white tephra bed consisting of grains up to ~1 mm in diameter was found near the top of 

unit 4 (Figure 2.12c).  

Unit 4 is interpreted to as aeolian sand and silt due to its massive character, high 

degree of sorting, and its stratigraphic position overlying units 2 and 3. It is correlated to 

unit 51-2 in Lian and Huntley (1999). The white tephra bed is assumed to be Bridge 

River Tephra (BRT), as it was previously identified in the study area at this stratigraphic 

position by Lian and Huntley (1999). BRT has a known age of 2.36 ka (Clague et al. 

1995). All aeolian optical dating samples were collected from Unit 4. Interbedding of 

units 3 and 4 suggests that aeolian deposition occurred contemporaneously with 

paraglacial fan processes at site 1956. 

2.3.3. Dating 

Radiocarbon dating 

Two charcoal samples from site 1966, CH1 and CH2 (Figure 2.11, 2.14), were 

dated using AMS 14C techniques which provided ranges with associated probabilities. 

Sample CH1 (UOC-11654, Figure 2.16a) has an uncalibrated 14C age of 0.323 ± 0.022 

ka, and when calibrated has a 95.4% probability of being in the range 0.457– 0.310 ka 

BP, with peaks in the probability distribution at ~0.425, ~0.380, and ~ 0.320 ka.  

Sample CH2 (UOC-11655, Figure 2.16b) has an uncalibrated 14C age of 0.171 ± 

0.023 ka, and when calibrated it has a 95% probability of being in the range of 0.288 ka 

BP to modern. Peaks in the probability distribution occur at ~0.270, ~0.220-0.170, 

~0.150 and ~0.020 ka, with 69.0% of the probability distribution between 0.288-0.137 ka. 

A 20.3% probability is associated with the age range of 0.035 ka to present. Given this 

age, the upper 4 m of the sequence at site 1966 was deposited sometime in the last 300 

years. 
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Figure 2.16. Calibration curves for 14C samples CH1 and CH2. Ages were 
calibrated using OxCal v. 4.4.2 (Bronk Ramsey 2020) and the IntCal 
20 calibration curve of Reimer et al. (2020). The red distributions 
denote radiocarbon ages with associated error, which are projected 
onto the blue calibration curves to produce the gray distributions 
which denote the probability distributions of the calibrated ages. 
Square brackets under gray curves denote each probability 
distribution of a range of ages denoted in text at the top right of 
each chart. 

Optical dating 

The SAR protocol was used to obtain equivalent doses for 180 – 250 µm KF 

sand grains from 13 samples (Table 2.4). Eleven samples were from fluvial sediments 

(unit 2c) and two were from aeolian caps (unit 4). Overdispersion values ranged from 14 

± 2 to 69 ± 7% and were divided along the conventional 20% mark to justify use of the 

MAM or the CAM for final equivalent dose calculations. MAM ages were calculated using 

15% as the σb value as the best-bleached samples from the study area, namely the two 

aeolian samples 1951-TG-02 and 1956-TG-03 returned OD values of 14 ± 2 % and 15 ± 

2%, respectively.  

For all but the youngest optical dating samples (1966-TG-02, 1966-TG-03, and 

BBL19), aliquots were rejected when the recycling ratio and recuperation values were 

outside of conventional tolerances of 1.0 ± 0.1 and 5%, respectively (Murray and Wintle 

2000; Wintle and Murray 2006). For the two samples, 1966-TG-02 and 1966-TG-03, that 

were younger than 1 ka, recuperation values up to 15% were allowed, as even a small 

amount of thermal transfer resulted in the signal from the zero-dose point being more 

than 5% of the relatively low natural signal. This has the potential to underestimate the 

De (Murray and Wintle 2000), which may underestimate ages. For the modern sample, 

BBL-19, no restrictions on recuperation values were used and they ranged from 8-39 %, 
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as expected for a modern sample; recycling ratio limits for this sample remained at 

within the 1.0 ± 0.1 tolerance.  

Equivalent dose values ranged between 22.5 ± 2.4 Gy (1960-TG-01) and 0.36 ± 

0.04 Gy (BBL-19). Dose rates were calculated for each sample using radionuclide 

concentrations, present burial depths, as-collected water content, altitude, and latitude 

as variables, each of which is summarized in Appendix C. Dose rates ranged between 

2.43 ± 0.15 Gy/ka (1956-TG-02) and 3.30 ± 0.16 Gy/ka (1966-TG-03), with the highest 

dose rates associated with samples collected from site 1966. Fading rates ranged 

between 2.51 ± 0.64 %/decade (1961-TG-01) and 4.16 ± 0.26 %/decade (1958-TG-01). 

Optical ages are presented in Table 2.4 and ages are plotted by height above river level 

in Figure 2.17. 

2.4. Discussion 

2.4.1. Optical dating age reliability and terrace ages 

Optical dating age reliability for the youngest samples was explored using 

analysis of residual signal. A residual signal is present if sand grains are not completely 

bleached before burial. Due to the turbidity of the present-day Fraser River, it is likely 

that the ancestral Fraser River was at least similarly turbid and therefore it is possible 

samples were not completely bleached prior to burial. To test the level of bleaching in 

modern-day Fraser River sand, a modern-day sample, BBL19, was collected from a 

depositional environment like that from which the older samples were collected. The 

minimum age from BBL19 is 0.155 ± 0.017 ka, which means that optical ages for other 

samples may be ~150 years younger than reported. For most samples, this is more than 

an order of magnitude smaller than their ages and lies within analytical uncertainties. 

Site 1966 (T11) contains an apparent age reversal within the stratigraphic 

sequence (Figure 2.11, 2.14d). Sample 1966-TG-02 gave an age of 0.375 ± 0.040 ka 

and was collected 1.5 m lower than sample 1966-TG-03, which yielded an age of 0.411 

± 0.059 ka (Table 2.4). These ages are, however, within error of one another and thus 

this discrepancy does not pose a serious issue to the accuracy of the ages in this study.  
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Table 2.4. Optical ages from this study. Samples are arranged from highest above river level to nearest river level. 

Sample T# Height 
above 
river (m) 

n for 
dating 

OD (%) Model De (Gy) Dose Rate 
(Gy/ka) 

Uncorrected 
Age (ka) 

g value 
(%/decade) 

n for 
fading 

Corrected 
Age (ka) 

1960-TG-01 T01 179 47/48 69 ± 7 MAM 22.5 ± 2.4 2.72 ± 0.15 8.27 ± 1.00 3.11 ± 0.29 4/12 11.3 ± 1.5 

1954-TG-01 T02 161 45/48 66 ± 7 MAM 17.3 ± 1.9 2.58 ± 0.15 6.71 ± 0.85 3.24 ± 0.21 10/12 9.27 ± 1.17 

1938-TG-01 T03 123 24/24 16 ± 2 CAM 16.7 ± 0.6 2.65 ± 0.15 6.28 ± 0.42 2.89 ± 0.19 10/12 8.32 ± 0.54 

1958-TG-01 T04 102 22/24 19 ± 3 CAM 13.1 ± 0.5 2.57 ± 0.15 5.09 ± 0.37 4.16 ± 0.26 8/12 6.23 ± 0.48 

1961-TG-01 T06 75 21/24 24 ± 4 MAM 10.6 ± 1.1 2.48 ± 0.15 4.29 ± 0.52 2.51 ± 0.64 7/12 5.42 ± 0.80 

1956-TG-03* T06 79 23/24 15 ± 2 CAM 6.86 ± 0.22 2.72 ± 0.15 2.53 ± 0.16 3.67 ± 0.41 11/12 3.65 ± 0.31 

1956-TG-02 T06 73 24/24 27 ± 4 MAM 11.2 ± 1.0 2.43 ± 0.15 4.59 ± 0.50 3.53 ± 0.48 5/12 6.51 ± 0.87 

1962-TG-02 T07 57 24/24 16 ± 2 CAM 9.06 ± 0.31 2.53 ± 0.15 3.58 ± 0.25 2.58 ± 0.35 11/12 4.54 ± 0.40 

1951-TG-02* T09 38 24/24 14 ± 2 CAM 5.70 ± 0.17 2.62 ± 0.15 2.18 ± 0.14 3.63 ± 0.26 8/12 3.11 ± 0.23 

1951-TG-01 T09 37 24/24 19 ± 3 CAM 7.91 ± 0.30 2.41 ± 0.15 3.28 ± 0.24 2.77 ± 0.31 7/12 4.21 ± 0.32 

1966-TG-03 T11 10 29/48 58 ± 8 MAM 1.07 ± 0.14 3.30 ± 0.16 0.324 ± 0.045 2.95 ± 0.43 7/12 0.411 ± 0.059 

1966-TG-02 T11 9 37/48 63 ± 7 MAM 0.88 ± 0.10 2.93 ± 0.15 0.300 ± 0.031 2.79 ± 0.33 5/12 0.375 ± 0.040 

BBL19 T12 2 22/48 41 ± 6 MAM 0.36 ± 0.04 2.88 ± 0.15 0.125 ± 0.015 2.87 ± 0.38+ 12/24+ 0.155 ± 0.017 

n for dating/fading: number of aliquots used per number of aliquots tested; OD: Overdispersion; MAM: Minimum age model; CAM: Central Age Model; De: Equivalent dose;  

g value: fading rate 

* Aeolian sample (unit 4); all others are fluvial samples (unit 2c) 

+ Fading rate calculated using g-values from samples 1966-TG-02 and 1966-TG-03 
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Figure 2.17. Optical ages vs height above river level. Error bars are 1 σ. Also shown are generalized climate intervals from 
Hebda (1995) with climate >10 ka from Mathewes (1985). Pre-modern climate descriptors are in relation to 
modern climate. The average incision rate over the postglacial period as well as a speculative changing rate 
discussed in Section 2.4.3 are provided. Three terrace-building stages, T01-T03, T04-T08, and T09-T12 roughly 
follow the climate data trends. Refer to section 2.4.3 for discussion. HXI: Holocene xerothermic interval.  
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Compared to the 14C ages collected from adjacent strata (Figure 2.11, 2.14), the 

optical ages at site 1966 pose a discrepancy. Sample CH1, collected below optical 

dating sample 1966-TG-02 (0.375 ± 0.040 ka), has a 95.4% probability age range of 

0.457-0.310 cal ka BP, with which there are no issues. Sample CH2, which was 

collected from a charcoal unit between optical dating samples 1966-TG-02 (0.375 ± 

0.040 ka) and 1966-TG-03 (0.411 ± 0.059 ka), has a 95.4% probability age range of 

0.288-0 cal ka BP, which is younger than the overlying optical age for 1966-TG-03. 

However, if the residual optical age of sample BBL19 (0.155 ± 0.017 ka) is subtracted 

from both optical ages, it brings the corrected optical age of 1966-TG-03 to 0.256 ± 

0.076 ka, which is within error of sample CH2, thus explaining any apparent age 

reversals in the stratigraphy. However, additional modern samples from similar 

depositional environments should be analyzed to see if the residual age for sample 

BBL19 is representative. 

One other apparent age reversal is found at site 1956 (T06) where sample 1956-

TG-02 (6.51 ± 0.87 ka) has an apparently older optical age than 1961-TG-01 (T06, 5.42 

± 0.80 ka) and 1958-TG-01 (T04, 6.23 ± 0.48 ka) which were collected 2.4 m and 28.7 m 

higher than sample 1956-TG-02, respectively (Figure 2.11). Sample 1956-TG-02 has a 

higher OD value than either sample 1961-TG-01 or 1958-TG-01 (Table 2.4), which may 

indicate incomplete bleaching during deposition. This could increase the apparent age of 

this sample. However, all three of these ages falls within error of each other at less than 

1, thus the apparent age reversal may not be real. Due to the lower OD values of 1961-

TG-01 and 1958-TG-01, however, it is likely that their two ages, 5.42 ± 0.80 and 6.23 ± 

0.48 ka, are more reliable for their respective elevations at terraces T04 and T06, 

respectively. 

Aeolian cap ages provide minimum limiting ages of floodplain abandonment for 

sites 1956 (T06) and 1951 (T09). Aeolian sample 1956-TG-03 was collected from unit 4, 

3 m above fluvial sample 1956-TG-02 and 60 cm below BRT (Figure 2.11). The optical 

age of 1956-TG-03 is 3.65 ± 0.31 ka and is 2.86 ka younger than the fluvial age of 6.51 

± 0.87 ka and is older than the age of BRT, which is ~2.4 ka (Clague et al. 1995). 

Aeolian sample 1951-TG-02 was collected from unit 4, 70 cm above fluvial sample 1951-

TG-01 and 70 cm below BRT (Figure 2.11, 2.12c). The aeolian age of 3.11 ± 0.23 ka is 

1.10 ka younger than the fluvial age of 4.21 ± 0.32 ka and is older than the BRT age of 
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~2.4 ka. That these optical ages are slightly older than overlying BRT provides further 

evidence that the optical dating protocol employed in this study is sufficient for the KF 

found in the study area. This means that the floodplain at site 1956, 70 m above present-

day river level, must have been abandoned by 3.65 ± 0.31 ka ago. Additionally, the 

aeolian cap at site 1956 (Figure 2.11), indicates that paraglacial fan sedimentation at site 

1956 ceased before 3.65 ± 0.31 ka. The floodplain at site 1951, 35 m above present-day 

river level (T09), must have been abandoned by 3.11 ± 0.23 ka ago. 

This study demonstrates that the SAR protocol used here can be used 

successfully to date all but the youngest (<1 ka) Holocene river sand along Fraser River. 

However, by increasing the recuperation ratio threshold from 5 to 15%, age estimates for 

<1 ka samples can also be achieved. As seen by the modern sample BBL-19, further 

experimentation could be done to provide age estimates within the constraints of 

recycling ratio and recuperation value thresholds. Future optical dating studies on fluvial 

sediments in the area should include a hot wash step in the procedure to reduce 

recuperation (Murray and Wintle 2003; Murray and Wintle 2006). The MAM technique for 

samples with high (>20%) OD is effective in calculating reliable ages for fluvial samples 

that likely suffer from incomplete bleaching. Independent ages calculated using 14C for 

site 1966 confirm that the optical dating ages from 1966-TG-02 and 1966-TG-03 are 

consistent within error, considering the residual signal as measured with a modern 

sample.  

Optical dating ages from this study provide ages of fluvial activity at each terrace 

level which thus are maximum ages of fluvial incision and floodplain abandonment. This 

study therefore provides absolute ages of postglacial fluvial activity at different levels 

during the incision of Fraser River to its present-day position.  

Site 1960: dating the outburst flood of glacial Lake Fraser 

Unit 2a sediments found at site 1960 (Figure 2.13) are consistent with other 

sediments described by Clague et al. (2021) along the Fraser River further south of this 

study area that indicate a fast, short-lived, sediment-laden flow of water from the north 

that followed the course of the present-day Fraser River. For example, they are 

consistent with gravel deposited behind anchoring bedrock spurs like those described by 

Clague et al. (2021) but the landform at site 1960 is more likely a leeside bar as 
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described by Carling (2013) than an expansion bar like that described by Clague et al. 

(2021). 

An optical age from sample 1960-TG-01 in T01 terrace, combined with the 

sedimentology of unit 2a at site 1960 suggests that this high energy leeside bar was 

likely deposited at 11.3 ± 1.5 ka. Two previous studies employing different dating 

methods have also inferred that a catastrophic flood event occurred at this time. Blais-

Stevens et al. (2003) record clay beds within a sedimentary core taken from the Saanich 

Inlet on Vancouver Island that are indicative of a BC Interior-derived glacial lake outburst 

flood (GLOF). 14C ages of shell material surrounding a distinct layer of GLOF sediment 

indicate that this event occurred after 12.3 ± 0.3 cal ka (GSC 14C sample 1034E-6H1, 

69, Blais-Stevens et al. 2003) and before 11.9 ± 0.5 cal ka (GSC 14C sample 1033B-

6H4, 110, Blais-Stevens et al. 2003). Clague et al. (2021) have also provided a 

stratigraphic and sedimentological case for the drainage of glacial Lake Fraser 

southward through Fraser Valley. 10Be ages calculated from nine fluvially-transported 

boulders interpreted to have been associated with the GLOF event provide a median 

age of 11.1 ± 0.6 ka (Clague et al. 2021). The optical age from this study agrees with the 

ages proposed in both studies and provides support for the interpretation that the 

sediments at site 1960 were deposited by with the outburst flood of glacial Lake Fraser.  

Site 1966: near-modern flood record 

Unit 2c at site 1966 (T11, Figure 2.11, 2.14) provides insight into periodic flood 

events occurring in modern (<0.5 ka) times. Optical and 14C ages agree that this site has 

been active within the last 0.5 ka. The sand rhythmites suggest similar flood events 

occurred periodically. The top of the terrace in which this exposure is located is 11-13 m 

above present-day river level. When the terrace height is compared to estimated 

maximum river levels and flood frequencies (Appendix A) it shows that the river will 

overtop this landform every 25-50 years, or 2-4 times per century. This is consistent with 

the ~11 flood sand sequences overlying optical dating and radiocarbon samples (Figure 

2.11), which were deposited in the last 300 years. This also shows that at Big Bar, 

terraces at 10 m above Fraser River low water levels are still overtopped at a decadal 

scale.  

Given the decadal overtopping of T11 terraces at site 1966, it must be 

considered that other, higher terraces were regularly overtopped by flood waters after 
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initial incision and thus not immediately abandoned. This is unlikely for several reasons. 

First, as Fraser River is now flowing on bedrock, flood stages must increase river depth 

rather than increase bed erosion which in turn causes river height at flood stage to be 

more extreme in the present day. This is further exacerbated by the narrow course that 

Fraser River now runs in, which likely causes drastically increased river heights during 

flood stage compared to the heights associated with floods when Fraser River ran in a 

wider floodplain even at T08-T10 phases. There are no substantial rhythmic facies of 

sand suggesting periodic overtopping of terrace surfaces in any higher terraces in the 

study area. For these reasons, it is likely that fluvial sand deposits capping terraces 

above T11 were indeed deposited close to the time of incision and abandonment of each 

associated floodplain, thus T01-T09 fluvial sand ages, although maxima, likely are 

reasonable estimates for the timing of floodplain incision and abandonment. 

2.4.2. Terrace formation and timing of incision 

Terrace formation 

T01 terraces (180 ± 10 m above river level) are paired and only observed in the 

Watson Bar reach of the study area (Table 2.3, Figures 2.7, 2.8). T01 contains unit 2a 

sediments at site 1960 (Figure 2.11, 2.14), which record the GLOF of glacial Lake Fraser 

at 11.3 ± 1.5 ka ago. The paired nature of the T01 terrace stage is indicative of an event 

that spanned the valley, depositing sediment quickly before beginning an incision phase. 

T02 (160 ± 5 m above present-day river level) terraces are unpaired and only 

definitively observed in the Big Bar reach (Table 2.3, Figures 2.7, 2.8). T03 (120 ± 5 m 

above present-day river level) terraces may be correlated downstream and cross-valley 

(Table 2.3), but correlations are uncertain due to thick fan sediments and poor access 

precluded dGPS surveying of potential Watson Bar T03 terraces. The unpaired nature of 

these terrace stages suggests that they may have been formed during a period of 

sustained incision wherein the main trunk of ancestral Fraser River switched back and 

forth between valley sides, abandoning its floodplain as it migrated laterally. Paraglacial 

fan sediment (unit 3, Figure 2.11) is present at both site 1954 and 1938, suggesting that 

paraglacial fan activity from tributary streams may have had some impact on lateral 

migration of Fraser River. The maximum ages for T02 and T03 terrace formation are 

9.27 ± 1.17 ka and 8.32 ± 0.54 ka, respectively (Table 2.4). 
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T04 (100 ± 5 m above present-day river level) to T08 (45 ± 5 m above present-

day river level) terraces are all found in the Watson Bar reach, while T04, T05, and T08 

are also found in the Big Bar reach. They are commonly paired with the exceptions of 

terraces T05 and T07. Due to their prevalence around Watson Bar, they may have been 

influenced by increased sediment input from Ward Creek and Watson Bar creek, 

encouraging rapid aggradation. The interbedding of unit 3 paraglacial fan sediment with 

unit 2 fluvial sediments at sites 1958 and 1956 further show that paraglacial 

sedimentation influenced Fraser River activity on terraces T04 and T06. Additionally, the 

paraglacial fan issuing from Indian Creek on the east side of the valley would provide a 

sediment source for downstream aggradation, evidenced by the truncation of this fan 

above terrace T04 (Figure 2.5). The maximum ages for terrace abandonment for this 

group are 6.23 ± 0.48 ka (1958-TG-01) for T04, 5.42 ± 0.80 ka (1961-TG-01) and 6.51 ± 

0.87 ka (1956-TG-02) for T06, although T06 abandonment must be more recent than 

T04 as T06 terraces are positioned lower than and adjacent to T04 terraces, so 5.42 ± 

0.80 ka is a more likely T06 age, and 4.54 ± 0.32 ka (1962-TG-02) for T07. 

Alternatively, the T04-T08 terraces at Watson Bar may be associated with 

downstream landslide activity. Church and Ryder (1986) suggest that some Fraser River 

floodplains around Lillooet were developed during landslide damming events at 

downstream Texas Creek, which was further corroborated by Ryder et al. (1990). At 

least 5 landslide scars were identified within ~20 km downstream of Watson Bar, 

including one at High Bar Canyon, ~5 km downstream of Watson Bar (Figure 2.10). The 

surface of the toe of the High Bar Canyon landslide is at ~100 m above present-day river 

level, consistent with the elevation of T04 terraces at Watson Bar. As landslides can 

quickly raise local base level for a short period of time, it is possible that this event 

and/or other landslides downstream of Watson Bar caused backwater effects at Watson 

Bar and significant floodplain aggradation before a breach in the dam would have 

resulted in rapid incision, creating paired terraces. 

T09 (35 ± 2 m above present-day river level) to T12 (5 ± 2 m above present-day 

river level) terraces are mainly paired other than T12 terraces, the latter being unpaired 

and found in both the Big Bar and Watson Bar reaches of the study area. An exception 

is terrace T09, present only in the Big Bar reach of the study area and the highest 

terrace in this group. T09 was an active floodplain as recently as 4.21 ± 0.32 ka (1951-

TG-01), with unit 2c fluvial sands directly overlain by unit 4 aeolian cap sediments that 
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provide an age of 3.11 ± 0.23 ka (1951-TG-02). This suggests that between ~3-4 ka ago, 

fluvial activity ceased on T09 terraces ~35 m above present-day river level and the river 

incised to another, lower floodplain. T09 terraces are paired upstream of the Big Bar 

Creek confluence and include an incised fan at the confluence as well. The T09 

floodplain formation stage may have been caused by increased sedimentation from Big 

Bar Creek causing backwater effects, like that inferred for the Watson Bar T04-T08 

terrace group. 

Past placer mining activity limits observations of undisturbed fluvial sediments 

between T09 and T11 terraces so further explanation of terrace formation mechanisms 

for the lower terraces are not attempted. T11 is still active at 25-50 year flood stages, 

while T12 terrace may be active during most freshets. 

Postglacial incision rate 

Fluvial terrace ages are positively correlated with height above river level (Figure 

2.17) and show a pattern of sustained incision through the postglacial period. After the 

glacial Lake Fraser GLOF along the Fraser River valley at 11.3 ± 1.5 ka, Fraser River 

incised through at least 180 m of glacial valley fill to reach its present-day elevation. The 

average incision rate over this time is 15 mm/a (Figure 2.17, rate A). This incision rate is 

comparable to those estimated downstream in Lillooet, which range from 9-26 mm/14C a 

(Ryder and Church 1986). Ryder and Church (1986) suggested, however, that there 

may be different rates of incision at Lillooet throughout the postglacial period. We 

explore this possibility for Big Bar and Watson Bar below, hypothesizing that postglacial 

climate variation was a key driver for Fraser River incision. 

2.4.3. Climate correlation  

 Terrace formation is a complex interplay between fluvial aggradation and 

incision involving shifts in stream power, base level, and sediment supply which are, in 

turn, driven by a variety of factors including climate, tectonics, isostasy, and 

autocyclicity. It is impossible to completely disentangle these factors from one another, 

but with the ages obtained in this study from optical dating and what is known about the 

climate and geomorphology of the area, speculations can be made about Fraser River 

terrace formation and its correlation to postglacial climate shifts. Below, we distill terrace 

formation to two variables (sediment input and stream power) and correlate terrace ages 
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to major shifts in paraglacial sedimentation (Church and Ryder 1972, Church and 

Slaymaker 1989) and postglacial climate that have been elucidated from the 

palaeoecological record for regions of BC upstream and adjacent to the study area. 

Glacioisostatic adjustment likely did not play a changing role in early Fraser River 

terrace formation even though the interior landscape was depressed by up to 400 m 

during glaciation (Clague and James 2002). Clague and James (2002) state that 

glacioisostatic adjustment (uplift) in the BC interior occurred over a relatively short period 

of time (<2 ka) as the ice sheet was thinning. The timing of adjustment is corroborated 

by relative sea level curves along the BC coast (Shugar et al. 2014), that show most 

glacioisostatic adjustment occurring over ~1 ka around 14 – 13 ka ago. Ice had also 

significantly thinned in the BC interior by ~14 ka (Margold et al. 2014; Menounos et al. 

2017), at which point glacioisostatic adjustment would have already been in progress. 

With the interior being nearly ice-free by ~12 ka (Clague 2017), glacioisostatic 

adjustment would have been complete at or near this time. So, for the purposes of this 

discussion we assume that glacioisostatically induced river slope changes are not a 

significant changing variable impacting terrace formation.  

An average incision rate over the postglacial period may not fully explain the 

incision history of Fraser River, thus we speculate that there may have been changes in 

the incision rate over time which may be explained, at least partially, by postglacial 

climatic variation. The first incision phase captured by our data (T01-T03) starts at 11.3 ± 

1.5 ka (T01, 180 ± 10 m above present-day river level) after the GLOF of glacial Lake 

Fraser and ends after 8.32 ± 0.54 ka (T03, 120 ± 5 m above present-day river level). 

This incision phase coincides with two climate phases that may have resulted in different 

energy and sediment supply conditions, yet a similar net incision rate of 16 mm/a (Figure 

2.17, rate B). The following explanation is based on three optical dating ages and 

additional data is required to more confidently constrain and/or differentiate incision rates 

in this period. The T01-T03 phase begins during the late deglacial cool and wet period 

(~12.0 to 10.5 cal ka, Mathewes 1985; Figures 2.2, 2.17). High precipitation likely 

resulted in high flow power and a competent river able to erode and transport a 

substantial amount of sediment. However, the late deglacial was also a time of high 

paraglacial sedimentation from the uplands into the Fraser River valley (Church and 

Ryder 1972; Church and Slaymaker 1989). This increased sediment supply and load 

likely moderated fluvial incision rates through the late deglacial period.  
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The second part of the first incision phase coincides with the HXI (10.5 to 7.0 cal 

ka, Figure 2.17) (Mathewes 1985; Hebda 1995), a warm, dry climate. Less precipitation 

during the HXI likely reduced flow power, and although warm temperatures likely 

increased alpine glacier melt, this may have been insufficient to offset the reduction in 

precipitation. Greater forest fire activity (Mathewes 1985; Hallett et al. 2003) could have 

destabilized slopes and periodically increased sediment inputs, although no charcoal 

was found in T01-T03 floodplain sediments in the study area. A moderate incision rate 

(16 mm/a, Figure 2.17, rate B) throughout the HXI may be attributed to reduced flow 

power compared to the late deglacial period. Unpaired terraces T02 and potentially T03 

(pairing is unverified for T03) are indicative of moderate but sustained lateral incision 

(Bull 1990) due to less valley constraint and a wider floodplain.  

The second incision phase (T04-T08) begins at 6.23 ± 0.48 ka (T04, 100 ± 5 m 

above present-day river level) and ends after 4.54 ± 0.32 ka (T07, 55 ± 2 m above 

present-day river level), coinciding with the cooler than HXI and wetter than present day 

middle Holocene (7-4 ka, Hebda 1995; Figure 2.17). This phase, typified by prominent 

terraces at Watson Bar, is a time of relatively fast incision at a rate of 30 mm/a (Figure 

2.17, rate B). This rate is similar to that reported for the last 1.2 ka for Fraser River at 

Lillooet (22-26 mm/a, Ryder and Church 1986). It is likely that during the middle 

Holocene, upland paraglacial sedimentation was dwindling (Church and Ryder 1972) 

and valley fill reworking or secondary remobilization was becoming dominant (Church 

and Slaymaker 1989), which would account for increased incision as upland paraglacial 

sediment inputs dwindled and flow power increased.  However, local floodplain 

aggradation also occurred during this rapid incision phase due to local base level 

changes (cf. Ryder et al. 1990). Landslides downstream of Watson Bar, like those at 

High Bar Canyon (Figure 2.10), likely caused localized fluvial aggradation, which, when 

the landslide dam was breached, resulted in rapid fluvial incision and paired terrace 

(T04, T06, T07, T08, Figure 2.7) formation (Bull 1990). Prograding paraglacial fans may 

have similarly acted as temporary hydraulic dams. The wetter conditions and high 

incision rates during this phase created prime conditions for mass wasting events. This 

is corroborated by the increase in earthflow activity in BC during the middle Holocene 

(Bovis and Jones 1992).  

The final incision phase (T09-T12) spans from 4.21 ± 0.32 ka (T09, 35 ± 2 m 

above present-day river level) to present. The incision rate during this phase is 
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apparently much lower at 9 mm/a (Figure 2.17, rate B) and coincides with Fraser River’s 

incision to bedrock. Thus the 9 mm/a rate likely underestimates the incision rate prior to 

bedrock contact. T09 ages at site 1951 provide a bracketed terrace abandonment age 

between 4.21 ± 0.32 ka and 3.11 ± 0.23 ka. The occurrence of paired T09 terraces 

upstream of Big Bar Creek (Figure 2.5) could be explained by backwater effects 

resulting from increased sedimentation from Big Bar Creek at the end of the middle 

Holocene, causing temporary floodplain aggradation before the river quickly incised 

through valley fill sediments to reach bedrock; similar processes to those invoked for the 

middle Holocene. More ages during the last 4 ka (and thus the last 35 m of local Fraser 

River valley fill incision) are needed to constrain the timing of incision to bedrock and any 

changes in incision rates over this period. This could be conducted using TCN dating on 

bedrock surfaces near present-day river level or optical dating of fluvial sand on terraces 

15-30 m above present-day river level if suitable sand can be found. 

Optical ages at site 1966 show that the floodplain ~10 m above present-day river 

level was active around 0.411 ± 0.059 ka. Our CH2 14C sample has an age probability as 

low as zero (modern), suggesting that the T11 terraces may still be active at present, 

which is corroborated by flood frequency analysis showing that T11 terraces are 

inundated perhaps as regularly as 2-4 times per century (Appendix A). Site 1966 ages 

are also associated with charcoal layers, suggesting that fires may have contributed, and 

may still contribute, to slope destabilization and sediment supply during the last ~0.5 ka, 

a process reported to have also occurred during postglacial time in southwestern BC 

(Lian and Hickin 1996). Both flood (Curry et al. 2019) and fire frequency (Wotton et al. 

2010) may be affected by further climate warming. 

Incision rates discussed in this section are based on a small number of optical 

dating ages from terraces found over a short reach of Fraser River. Incision rates in the 

middle Holocene are best constrained by our optical ages. More ages are needed from 

around the study area to better constrain incision rates and bedrock contact in the late 

deglacial, HXI and late Holocene, and at other sites in the Fraser River drainage basin to 

better understand the role of regional and local drivers of terrace formation in this 

system. 
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2.5. Conclusions 

1. This is the first study to provide absolute ages for post-glacial incision and 

terrace formation of Fraser River, a major river draining regions covered by 

the Cordilleran Ice Sheet. This information can be used as a starting point for 

more detailed studies of the character and timing of incision and terrace 

formation along the Fraser River and its tributaries. 

2. Optical ages agree with age information from other studies on the timing of 

the catastrophic drainage of glacial Lake Fraser. With the results of this 

study, there are now three studies that agree on the timing of this event; one 

can now be more confident that the flood occurred around 11.3 ka ago, but 

the identification and optical dating of more gLF outburst flood deposits 

beyond the study area would help reinforce it. 

3. The average postglacial incision rate of Fraser River at Big Bar and Watson 

Bar reaches, from 440 m asl to its present position on bedrock at Watson Bar 

of 280 m asl is 15 mm/a. It is likely, however, that the incision rate varied 

through postglacial time, and the data presented here suggest that this was 

the case. This study, however, can only speculate on what this variation may 

have been, given the sparseness of data points (optical ages). Additional 

dating studies could better resolve variations in incision rate, especially in the 

early Holocene and in the late Holocene when Fraser River incised to 

bedrock. 

4. Climate phases that have been recognized from previous palaeoecology 

studies could explain apparent changes in the timing of fluvial incision rates 

and terrace formation phases.  For example, during the middle Holocene 

(T04-T08 phase;~8-4 ka), a relatively high (30 mm/a) average incision rate 

occurred due to increased flow power during this wetter climatic period and 

the transition from high rates of upland paraglacial sedimentation to the 

reworking of valley fill during secondary remobilization of paraglacial 

sediments. Landslide dams and paraglacial fan sedimentation caused 

localized floodplain aggradation and resulted in paired terrace formation 

around Watson Bar. . Fraser River incised to bedrock sometime in the last 4 
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ka and presently flows on bedrock and overtops terraces ~10 m above river 

level 2-4 times per century. 
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Chapter 3.  
 
Concluding remarks 

The aim of this thesis was to (i) provide limiting ages for postglacial terrace 

formation in Fraser River valley between Big Bar and Watson Bar (Figure 1.1), (ii) 

determine the rate of incision of Fraser River through its glacial valley fill, and (iii) look for 

correlation between the timing of terrace formation and existing information on the 

paraglacial cycle, postglacial climate change and changes in local base level. Each 

objective and its relative success are discussed below, ending with suggestions for 

future work. 

3.1. Dating of Fraser River terraces 

The objective of this thesis was to provide limiting ages for Fraser River terrace 

formation. Thirteen optical ages were determined from ten different sites, providing a 

record of Fraser River activity spanning the last ~11.3 ka. Fluvial sand resting on 

terraces (unit 2c) was dated to provide maximum ages of fluvial incision and terrace 

abandonment. Unit 4 aeolian caps on terraces at two sites (1956 and 1951) were dated 

to bracket the timing of terrace abandonment. Further, fluvial sediments at two sites 

(1960 and 1966) and aeolian sediments at two sites (1951 and 1956) had independent 

age controls to provide support for the accuracy of the optical ages. Site 1960 provides 

an optical dating age of 11.3 ± 1.5 ka to support radiocarbon and cosmogenic ages from 

other locations that date the GLOF of glacial Lake Fraser during the early postglacial 

period. Site 1966 uses optical dating and radiocarbon ages to constrain the timing of 

recent (<0.5 ka) Fraser River flood events on a terrace ~10 m above present-day river 

level.  

3.2. Postglacial Fraser River incision rates 

Using optical dating ages, postglacial Fraser River incision rates were explored. 

An average incision rate of 15.0 mm/a was calculated, which spans the study’s 

timeframe of 11.3 ± 1.5 ka to present. During this time, Fraser River incised through 
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~180 m of glacial and paraglacial valley fill to reach bedrock. This rate fits well with other 

incision rates that were derived at Lillooet (Ryder and Church 1986).  

3.3. Correlating incision rates to postglacial climate 

Stepping past an average incision rate, a speculative model of varied incision 

rates was introduced to explain how Fraser River terrace formation may have been 

influenced by postglacial climate variation interacting with the paraglacial cycle. During 

the T01-T03 stage, roughly associated with the late deglacial period and HXI (12 – 7 ka), 

climate changed from moist between 12.0 and 10.5 ka, then dried through the HXI from 

10.5 to 7.0 ka, increasing and decreasing Fraser River discharge and thus stream 

power, respectively. Upland paraglacial sedimentation was likely high throughout of the 

T01-T03 stage, countering and moderating increased stream power from high 

precipitation in the late deglacial period and increased glacial melt during the HXI. The 

transition to valley fill reworking and secondary mobilization of paraglacial sediment 

(Church and Slaymaker 1989) likely occurred during the middle Holocene, 7 – 4 ka ago, 

which is the best-constrained period in this study. Additionally, the cool and wet mid-

Holocene likely promoted both increased sedimentation from paraglacial fans and high 

rates of incision from increased discharge, while valley-filling landslides may have 

occurred downstream of Watson Bar, resulting in floodplain aggradation and rapid 

incision. Rapid incision likely continued into the late Holocene, 4 ka to present, until 

Fraser River incised to bedrock, although there is a paucity of ages from this study to 

constrain when this occurred. The late Holocene marks a time of apparent slow incision 

which is likely due to Fraser River now running on bedrock through Big Bar and Watson 

Bar, inhibiting high incision rates. 

3.4. Suggestions for future work 

This work forms the basis for a more detailed dating campaign in the study area. 

Future studies should attempt to find additional material suitable for dating at similar 

terrace elevations to provide a more robust dataset for calculating incision rates and for 

constraining varying rates of incision that were speculated on in this study. Furthermore, 

this study should be extended to other regions along Fraser River and its tributaries to 

assess the degree of correlation between terrace ages from this area and those in other 
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areas. This would help our understanding of how major rivers in BC adjusted following 

the demise of the Cordilleran Ice Sheet.  

Future optical dating work could explore the use of smaller aliquots and even 

single grains in order to utilize more robust statistical models (i.e., finite mixture model, 

etc.) to assess the level of bleaching that had occurred in ancient Fraser River 

sediments, and to look for age populations. Additionally, very young (<1 ka) samples 

would likely benefit from a hot wash being incorporated into the optical dating protocol to 

reduce recuperation values. Further work on dating the youngest terraces, such as those 

that are periodically overtopped during extreme floods (e.g., site 1966 in this study), 

along Fraser River and its tributaries would gain insight into how sediment is stored and 

moved out of the system and perhaps extend flood frequency graphs beyond historic 

data. Finally, this study did not constrain the timing of Fraser River reaching bedrock in 

the study area, and thus future dating studies could incorporate TCN on bedrock near 

valley bottom to elucidate this age and thus discern when valley fill was fully incised. 
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Appendix A. 
 
River level and flood frequency analysis 

Data used for river level and flood frequency was downloaded from the Water 

Survey of Canada for Fraser River at Big Bar (station 08MD013) and Fraser River at 

Texas Creek (station 08MF040). Gauge station data was used to determine peak annual 

flows and flood frequencies for Fraser River at Big Bar. Big Bar daily discharge data was 

available from 1935 - 1973 and July 2019 - May 2021, while Texas Creek discharge data 

was available from 1951 – May 2021. Big Bar discharge data were derived from Texas 

Creek discharge data for the missing years between 1973 and 2019 using equations 

derived from linear correlation of the overlapping date ranges (Appendix A.1). When this 

was checked against the Big Bar data from 1951 - 1972, peak flows appeared to be 

underestimated in the derived data (Appendix A.2). Peak annual flows were thus 

extracted from each dataset and Big Bar peak annual flow values were derived from 

Texas Creek peak annual flows for the missing years (Appendix A.3), which provide a 

better fit though some overestimation and underestimation persists. Flood frequencies 

were calculated using the date range from 1935 - 2020, with peak annual flows derived 

from Texas Creek discharge data between 1973 and 2019. Both log Pearson III (LP3) 

and Generalized Extreme Values (GEV) probability distributions are commonly used in 

flood frequency analysis (Zhang et al. 2020), so both distributions are presented 

(Appendix A.4, A.5), though GEV is the preferred distribution to use in Canada (Zhang et 

al. 2020). Finally, maximum annual river stage was estimated using the historical and 

derived discharge data since 1935 using correlation between discharge and stage at Big 

Bar from the period when both measures were available, from July 2019 – May 2021 

(Appendix A.6).  
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Figure A.1 Correlation between Fraser River discharge values at Big Bar and 
Texas Creek stations. Data taken from 1951-1972 and 2019-2020 
when both stations had data available. Correlation equation was 
used to estimate discharge for missing flow data at Big Bar from 
1972-2019 (Appendix A.2). 
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Figure A.2. Big Bar historical discharge (top) versus derived Big Bar discharge from Texas Creek data (bottom). Correlation 
equation from Appendix A.1 consistently underestimates peak flow values 1951-1972.  
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Figure A.3. Peak annual discharge for Fraser River at Big Bar station. Orange boxes are from historical data and blue dots 
are from correlation equation derived solely from peak annual discharge values.  
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Figure A.4.  Flood frequency for Fraser River at Big Bar station using log Pearson III (LP3) probability distribution.  
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Figure A.5. Flood frequency for Fraser River at Big Bar station using Generalized Extreme Value (GEV) probability 
distribution. 
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Figure A.6. Estimated maximum annual river stage for Fraser River at Big Bar gauging station. Winter low-water levels are 
around 4 m, so annual range is ~4-13 m. As of May 2021, the Big Bar station datum is an assumed datum with 
no publicly-available benchmark.  
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Appendix B. 
 
Palaeoflow data 

Palaeoflow data was measured on cobbles in a 1 m2 area of an exposure within 

unit 2b. Columns are arranged as follows: 

• Dip: Dip angle of the ab-plane 

• Trend: Azimuth of the ab-plane dip (measured with a compass oriented to 

true north) 

• Corrected: Trend azimuth corrected to magnetic declination 

• POT: Orientation of the a-axis based on perceived flow direction: P = parallel; 

O = oblique; T = transverse 

• Angularity: WR = well rounded; R = rounded; SR = sub-rounded; SA = sub-

angular; A = angular 

• Lithology: V = volcanic; V’ = veined volcanic (local lithology); P = plutonic; M 

= metamorphic; S = sedimentary 

• a, b, c = Length (mm) of each clast’s a, b, and c axes 
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Table B.1. Clast fabric for site 1938 

Clast # Dip Trend Corrected POT Angularity Lithology a b c 

1 25 275 291 P WR V 130 110 28 

2 24 275 291 P WR V 165 110 35 

3 24 240 256 O R V 110 95 35 

4 30 280 296 O SR V 145 130 40 

5 32 235 251 O R V 230 150 70 

6 15 90 106 T R P 160 120 60 

7 15 350 6 T R V 150 110 40 

8 28 285 301 T SR V 130 90 27 

9 33 290 306 P SR P 100 70 30 

10 2 40 56 O WR V 100 95 45 

11 25 200 216 T SR V 195 135 90 

12 16 285 301 T R V 150 130 60 

13 26 200 216 T R V 165 110 70 

14 35 245 261 P SR P 135 80 35 

15 23 220 236 O SR V 160 110 25 

16 26 210 226 P R V 250 140 70 

17 30 220 236 O SR M 190 150 90 

18 32 200 216 P SR V 140 95 50 

19 41 285 301 O SR V 235 125 45 

20 17 300 316 T R V 155 105 30 
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Table B.2. Clast fabric for site 1951 

Clast # Dip Trend Corrected POT Angularity Lithology a b c 

1 19 355 11 O R P 70 60 40 

2 60 310 326 T SR V' 115 60 45 

3 32 315 331 T R V 190 100 50 

4 26 335 351 T R M 90 60 40 

5 27 355 11 P SR V' 140 100 40 

6 45 295 311 T R M 130 80 40 

7 10 345 1 O R S 180 170 80 

8 3 335 351 T SR V 140 120 50 

9 5 295 311 O SR V 170 160 85 

10 10 325 341 T SR M 220 150 100 

11 21 290 306 O SR P 130 100 55 

12 14 340 356 T R V 140 110 60 

13 10 325 341 T WR M 150 140 70 

14 40 260 276 O SR V' 90 90 40 

15 32 345 1 T SR V' 160 125 50 

16 21 350 6 P R P 115 95 55 

17 28 290 306 P R M 175 140 90 

18 25 330 346 O WR V 115 105 40 

19 34 305 321 T WR V 100 80 45 

20 15 315 331 P SR M 165 120 65 

21 32 295 311 T R V 135 110 60 

22 15 320 336 O SR V' 150 100 35 

23 34 310 326 T SR V 125 50 45 

24 14 315 331 O SR V 80 70 40 

25 37 295 311 O SR V' 80 70 20 

26 27 325 341 O WR M 70 60 25 

27 30 275 291 T SR V' 140 120 60 

28 22 270 286 O SR V 130 75 60 

29 46 250 266 T R V 105 80 50 

30 32 260 276 T SR V 190 150 100 
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Table B.3. Clast fabric for site 1954 

Clast # Dip Trend Corrected POT Angularity Lithology a b c 

1 4 110 126 P WR V 100 75 25 

2 39 215 231 T SR V 220 135 85 

3 15 295 311 T WR V 100 80 20 

4 38 305 321 O WR V 140 120 60 

5 19 240 256 T WR V 110 80 40 

6 75 345 1 T WR V 130 100 30 

7 3 325 341 P SR V 120 95 50 

8 14 305 321 O R V 85 80 50 

9 19 275 291 T SR V 180 120 80 

10 9 165 181 P WR V 120 75 20 

11 24 135 151 T R M 110 85 30 

12 42 185 201 P WR V 100 90 40 

13 58 230 246 T SR V 140 110 60 

14 39 275 291 T SR V 230 145 60 

15 35 195 211 T SR V 135 80 50 

16 11 335 351 P WR P 110 85 15 

17 21 295 311 T SR V 165 130 90 

18 25 205 221 T R V 160 120 40 

19 36 210 226 T SR V' 70 130 40 

20 19 260 276 T R V 130 100 50 

21 36 210 226 T SR V' 180 110 70 

22 17 325 341 T SR V' 140 120 60 

23 27 285 301 O SR V 160 140 70 

24 24 210 226 O SA V 160 160 30 

25 22 345 1 P WR V 120 90 30 

26 45 280 296 T R M 110 70 40 

27 13 30 46 O SR V 140 140 30 

28 29 290 306 T R V 270 130 70 

29 35 310 326 T R M 200 110 80 

30 56 225 241 T SR V' 200 140 100 
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Table B.4. Clast fabric for site 1956 

Clast # Dip Trend Corrected POT Angularity Lithology a b c 

1 14 310 326 P R V 160 115 40 

2 29 320 336 O WR V 215 120 30 

3 40 335 351 T SR V 115 90 65 

4 36 255 271 T WR V 130 100 45 

5 32 205 221 O SR M 125 120 115 

6 45 200 216 O R V 130 145 50 

7 31 320 336 T WR V 165 130 50 

8 24 340 356 P R V 135 75 35 

9 16 325 341 T WR V 215 160 70 

10 26 340 356 T WR V 180 145 55 

11 24 80 96 O SR V 165 160 35 

12 25 290 306 O R V 160 140 60 

13 56 350 6 T SR V 175 135 35 

14 40 0 16 O WR V 130 115 20 

15 6 285 301 T WR V 160 135 30 

16 22 305 321 T WR V 130 100 35 

17 12 345 1 T WR V 135 105 40 

18 34 35 51 P R P 322 125 75 

19 29 330 346 T WR V 160 115 35 

20 18 300 316 T SR V 250 180 40 

21 20 265 281 T WR V 190 135 30 

22 29 300 316 T R V 120 95 45 

23 26 360 16 T R V 130 110 55 

24 30 310 326 O R V 125 130 60 

25 26 290 306 P SR V 165 100 85 

26 37 5 21 T WR V 130 95 40 

27 22 275 291 T R V 155 115 80 

28 14 10 26 P SA V 155 130 60 

29 32 335 351 T WR V 195 170 55 

30 25 305 321 T SR V 170 130 75 
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Appendix C. 
 
Additional optical dating data 

Table C.1. Dose recovery test results.  

Sample Aliquots 
used 

Mask size 
(mm) 

Given dose 
(Gy) 

De (Gy) OD (%) Dose 
Recovery 
Ratio 

1951-TG-01 24/24 3 8.08 ± 0.15 8.51 ± 0.07 1.11 ± 1.63 1.05 ± 0.01 

1966-TG-02 14/24 1 0.962 ± 0.018 1.22 ± 0.05 9.93 ± 3.59 1.27 ± 0.04 

1966-TG-02 24/24 3 0.962 ± 0.018 1.29 ± 0.03 10.47 ± 1.84 1.35 ± 0.02 

1966-TG-02 24/24 3 8.02 ± 0.15 8.19 ± 0.05 <0.01 1.02 ± 0.01 

1960-TG-01 23/24 1 20.0 ± 0.4 20.0 ± 0.2 0.46 ± 4.58 1.00 ± 0.01 

1956-TG-02 23/24 3 13.6 ± 0.3 13.7 ± 0.1 <0.01 1.01 ± 0.01 

1958-TG-01 23/24 3 12.8 ± 0.2 13.1 ± 0.1 <0.01 1.02 ± 0.01 

De = equivalent dose; OD = overdispersion. 

Table C.2. Radionuclide concentrations for optical dating samples. 
Concentrations were provided by Bureau Veritas Laboratories using 
neutron activation analysis (NAA) techniques. 

Sample U (ppm) Th (ppm) K (%) Rb (ppm) 

1938-TG-01 1.47 ± 0.14 5.93 ± 0.32 1.13 ± 0.07 31.0 ± 5.6 

1951-TG-01 0.82 ± 0.11 3.22 ± 0.18 1.10 ± 0.07 35.0 ± 5.6 

1951-TG-02 1.11 ± 0.15 4.86 ± 0.27 1.17 ± 0.04 35.0 ± 5.7 

1954-TG-01 1.00 ± 0.13 2.77 ± 0.17 1.31 ± 0.08 36.0 ± 5.5 

1956-TG-02 1.03 ± 0.15 4.22 ± 0.24 1.15 ± 0.08 41.0 ± 6.4 

1956-TG-03 1.38 ± 0.15 5.55 ± 0.30 1.12 ± 0.07 34.0 ± 5.4 

1958-TG-01 1.31 ± 0.15 6.06 ± 0.32 1.05 ± 0.07 33.0 ± 5.5 

1960-TG-01 1.29 ± 0.15 3.32 ± 0.19 1.33 ± 0.08 37.0 ± 5.5 

1961-TG-01 1.05 ± 0.13 2.64 ± 0.16 1.14 ± 0.07 39.0 ± 5.7 

1962-TG-02 1.39 ± 0.14 4.04 ± 0.22 1.02 ± 0.07 35.0 ± 5.3 

1966-TG-02 1.78 ± 0.16 7.48 ± 0.39 1.21 ± 0.07 32.0 ± 5.0 

1966-TG-03 1.81 ± 0.17 8.66 ± 0.45 1.52 ± 0.09 51.0 ± 5.5 

BBL19 1.76 ± 0.14 6.38 ± 1.20 1.34 ± 1.06 33.1 ± 2.8 
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Table C.3. Optical dating sample notes. Sand thicknesses and depth of sample 
collection are provided to assess the distance from bounding strata 
which may affect dosimetry. 

Sample Sediment 
Type 

(Unit #) 

Unit 
thickness 
(cm) 

Depth in 
unit of 
sample 
(cm) 

Description 

1960-TG-01 Fluvial (2c) 15 10 medium sand to granules overlying cobble lag: 
many heavy minerals 

1954-TG-01 Fluvial (2c) 50 15 trough cross-bedded medium to coarse sand, 
single grain thick pebble beds throughout 

1938-TG-01 Fluvial (2c) 30 5 medium sand overlying cobble gravel 

1958-TG-01 Fluvial (2c) 350 100 well-sorted beds of silty fine sand to granules; 
ripple cross laminations present in fine to 
medium sand beds 

1961-TG-01 Fluvial (2c) 50 20 trough cross-bedded medium sand to granules 
with single grain thick pebble beds 

1956-TG-03 Aeolian (4) 120 100 massive deposition with tephra layer overlying 
optical dating sample location 

1956-TG-02 Fluvial (2c) 20 10 ripple cross-laminated fine to medium sand; 
bed found at interbedding interface with Unit 3 

1962-TG-02 Fluvial (2c) 50 35 medium sand with flames and ripple cross 
laminae 

1951-TG-02 Aeolian (4) 120 100 massive deposition with tephra layer overlying 
optical dating sample location 

1951-TG-01 Fluvial (2c) 100 50 well-sorted beds of fine to coarse sand; ripple 
cross laminations present 

1966-TG-03 Fluvial (2c) 30 15 medium sand in a downward-fining sequence of 
medium sand to silty fine sand 

1966-TG-02 Fluvial (2c) 85 40 medium sand in a downward-fining sequence of 
medium sand to silty fine sand 

BBL19 Fluvial (2c) >100 50 sand bar at surface of present day river bank 
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Table C.4. Additional information required for optical dating dose rate 
calculations. 

Sample As-Collected 
Water Content 

Saturated Water 
Content 

Depth (m) Elevation 
(m asl) 

Latitude 
(°N) 
 

Longitude 
(°W) 

1938-TG-01 0.0177 ± 0.0018 0.337 ± 0.034 10 ± 1 389 51 122 

1951-TG-01 0.0118 ± 0.0012 0.296 ± 0.030 1.9 ± 0.1 324 51 122 

1951-TG-02 0.0352 ± 0.0035 0.354 ± 0.035 1.2 ± 0.1 324 51 122 

1954-TG-01 0.0126 ± 0.0013 0.248 ± 0.025 4 ± 0.1 442 51 122 

1956-TG-02 0.0673 ± 0.0067 0.317 ± 0.032 4 ± 0.1 353 51 122 

1956-TG-03 0.0158 ± 0.0016 0.315 ± 0.032 1.2 ± 0.1 353 51 122 

1958-TG-01 0.0262 ± 0.0026 0.307 ± 0.031 6 ± 0.1 380 51 122 

1960-TG-01 0.0163 ± 0.0016 0.292 ± 0.029 2.5 ± 0.1 451 51 122 

1961-TG-01 0.0262 ± 0.0026 0.249 ± 0.025 0.6 ± 0.1 331 51 122 

1962-TG-02 0.0160 ± 0.0016 0.288 ± 0.029 0.8 ± 0.1 321 51 122 

1966-TG-02 0.0291 ± 0.0029 0.344 ± 0.034 4 ± 0.1 296 51 122 

1966-TG-03 0.0410 ± 0.0041 0.406 ± 0.041 2.5 ± 0.1 296 51 122 

BBL19 0.105 ± 0.011 0.367 ± 0.037 0.65 ± 0.1 290 51 122 
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Optical dating summary figures 

Luminescence decay and dose-response curves, abanico plots, and anomalous 

fading decay plots for representative aliquots for the samples dated. For each sample, 

(a) provides a plot of a luminescence decay (shinedown) curve of the natural signal. 

Vertical lines indicate which portion of the shinedown curve was used for the signal (red 

lines) and background (green lines) measurements; the inset is a dose-response curve 

with the natural signal's brightness interpolated on the dose-response curve to determine 

an equivalent dose off the x-axis. b) An abanico plot showing all accepted aliquots for 

the sample. Abanico plots (Dietze et al. 2016) include a radial plot on the left and a 

kernel density curve on the right. Points are plotted based on their value and analytical 

error, with lower error (more precise) points plotting further to the right on the radial plot. 

Radial plots are read by drawing a line from the origin at the left through each point and 

onto the axis to the left of the kernel density curve. Two sigma error values can be 

measured on the graph by drawing a straight line from each of the “2” and “-2” dashes 

on the standardized estimate axis, through the point, and onto the axis to the left of the 

kernel density curve. The kernel density curve provides a visual representation of the 

spread of data CAM De = equivalent dose of the sample using the Central Age Model; 

MAM De = equivalent dose of the sample using the Minimum Age Model (when 

applicable); OD = overdispersion. c) A representative fading plot from one aliquot of the 

sample. Delay time on the logarithmic x-axis denotes the time between laboratory 

irradiation and stimulation, with longer delay times resulting in less luminescence being 

measured because of anomalous fading. 

 

Figure C.1. 1938-TG-01 



89 

 

Figure C.2. 1951-TG-01 

 

Figure C.3. 1951-TG-02 

 

Figure C.4. 1954-TG-01 
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Figure C.5. 1956-TG-02 

 

Figure C.6. 1956-TG-03 

 

Figure C.7. 1958-TG-01 
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Figure C.8. 1960-TG-01 

 

Figure C.9. 1961-TG-01 

 

Figure C.10. 1962-TG-02 



92 

 

Figure C.11. 1966-TG-02 

 

Figure C.12. 1966-TG-03 

 

Figure C.13. BBL19. A fading test was not performed for this sample. 
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LM-OSL test 

Linearly-modulated OSL (LM-OSL, Bulur 1996) was performed on quartz of 

1951-TG-01 to determine if a thermally stable fast component, which is quickly reset 

(bleached) in daylight and thus makes quartz suitable for optical dating, was present. 

Five aliquots were tested with a 220° C preheat, with only one of the aliquots possessing 

a sufficient fast component (Figure C.14b). Quartz was thus abandoned and KF was 

used for dating in this study.  

 

Figure C.14. LM-OSL results from 5 aliquots of sample 1951-TG-01. Only aliquot b 
possesses a fast component that is rapidly bleached in the first 20 s 
of stimulation.  
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Appendix D. 
 
Valley cross-section data 

Composite valley cross-sections for Big Bar and Watson Bar were compiled from 

seven and eight DEM-derived cross sections, respectively. Cross sections were derived 

in ArcGIS, then overlaid in Illustrator, using Fraser River as the base elevation. Cross-

sections were selected to ensure as many terrace elevations as possible were visually 

represented in each cross-section. DEM-derived cross-sections are shown in the 

following figures. 
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Figure D.1 Cross-sections from Big Bar used to create composite cross-section. X and Y axes are in metres, with X axis 
being ground distance and Y axis being height above river. 
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Figure D.1 Cross-sections from Watson Bar used to create composite cross-section. X and Y axes are in metres, with X axis 
being ground distance and Y axis being height above river. 
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Appendix E. 
 
Optical dating sample collection photos 

 

Figure E.1. Optical dating sample 1938-TG-01 was collected from unit 2c, 5 cm below the contact with unit 3 diamicton. 
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Figure E.2. Optical dating sample 1951-TG-01 was collected from unit 2b, 50 cm 
below the contact with unit 4. Optical dating sample 1951-TG-02 was 
collected from unit 4, 1 m below surface. Bridge River Tephra (BRT) 
(Clague et al. 1995) is clearly visible in unit 4 above 1951-TG-02. 
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Figure E.3. Optical dating sample 1954-TG-01 was collected from unit 2c, 15 cm 
below the contact with unit 3.  
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Figure E.4. Optical dating sample 1956-TG-02 was collected from unit 2c, which is interbedded with unit 3. It was collected 
from the centre of a 20 cm thick sand bed. Optical dating sample 1956-TG-01 was not used for dating in this 
study, but was collected in unit 2c, 10 cm above unit 2b and ~4.5 m from the surface. 
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Figure E.5. Optical dating sample 1956-TG-03 was collected from unit 4, 1.2 m 
below the surface. Bridge River Tephra (BRT) (Clague et al. 1995) is 
faintly visible above 1956-TG-03. 
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Figure E.6. Optical dating sample 1958-TG-01 was collected from unit 2c (3.5 m 
thick), 1 m below the contact with unit 3.  
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Figure E.7. Optical dating samples 1960-TG-01, 02, and 03 were collected from a 
15 cm thick bed of unit 2c, 10 cm below the contact with unit 3. Only 
1960-TG-01 was used for this study, with 1960-TG-02 and 03 
collected to ensure there was sufficient material to date. 
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Figure E.8. Optical dating sample 1961-TG-01 was collected from a coarse sand 
and granule bed of unit 2c, 60 cm below the land surface.  
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Figure E.9. Optical dating sample 1962-TG-01 was collected from unit 2c medium 
sand directly above a bed of pebble gravel and 2.5 m below the land 
surface. 1962-TG-01 was not dated in this study. 
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Figure E.10. Optical dating sample 1962-TG-02 was collected from a 50 cm thick 
sand bed in unit 2c, 80 cm below the land surface. 
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Figure E.11. Optical dating sample 1966-TG-01 was collected from a sand 
rhythmite in unit 2c, 4 m below the land surface. Charcoal lens and 
bed associated with radiocarbon samples CH1 and CH2, 
respectively, are denoted by white dashed lines. This sample was 
not used for dating. 
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Figure E.12. Optical dating sample 1966-TG-02 was collected from a sand rhythmite in unit 2c below radiocarbon sample 
CH2 and stratigraphically above radiocarbon sample CH1 (not pictured, to left of frame). Optical dating 
sample 1966-TG-03 was collected from a sand rhythmite in unit 2c above radiocarbon sample CH2 and below 
all other charcoal beds. 


