

by Tenshi Company

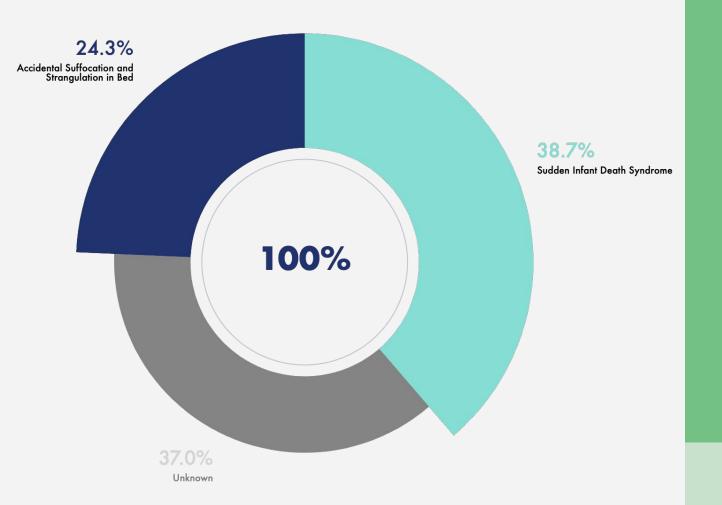
ENSC 405W Proof of Concept Presentation April 22nd, 2021

Introduction

Background & Problem

Many infants each year succumb to sleep related deaths.

One of these causes are when babies suffocate when laying face down [1].



Safe sleep environments are imperative to healthy growth and reduce the chance of Sudden Infant Death Syndrome [3].

Approximately 3500 Sudden Unexpected Infant Deaths per year (USA) [5].

How do we fix this?

Baby monitors are a common solution to check on infants remotely.

User Interviews

"Tedious to bring the monitor around. I would rather have an app."

"Parent fatigue is unlike anything you've experienced before, and you just wanted to make things easier for yourself [...]"

cyber-defender - BBC News" [8]

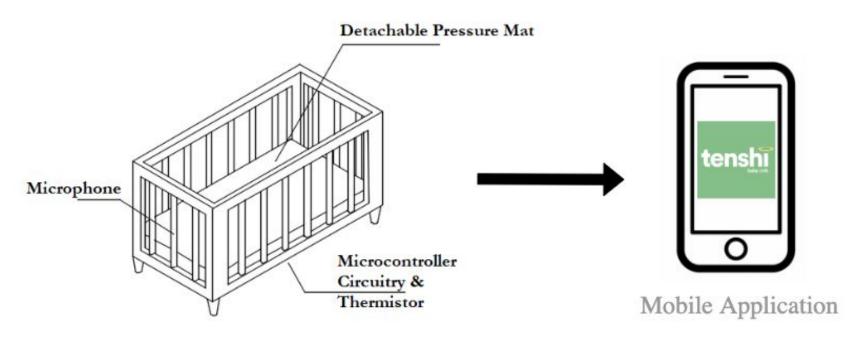
Wearable Technology for Baby Monitoring: A Review [9]

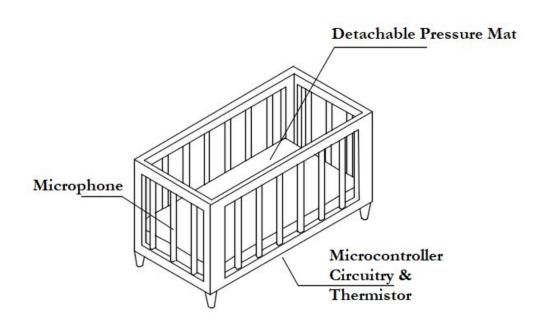
Cameras & Wearables

Intrusive.
Susceptible to security flaws [8].
Impact to routine.

TENSINI baby crib

Product Video




System Overview

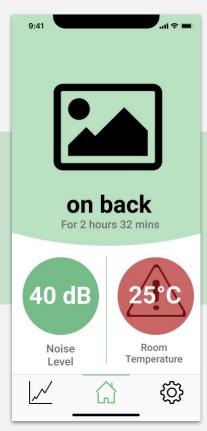
Tenshi Baby Crib

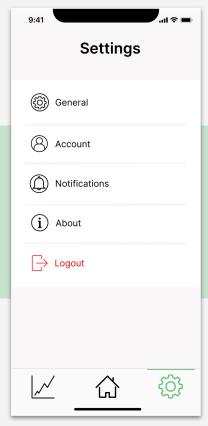
Crib System

Pressure mat detects when baby lays on their front.


Microphones listens for loud noises, including the baby's cries.

Thermistor continuously monitors the room's temperature.


Microcontroller and circuitry seamlessly integrated into the crib.


Mobile Application

Data Page

Home Page

Settings Page

Sleeping Environment

Monitor room temperature and loud noises, including when the baby starts crying. Reduce the chance of overheating and audibly detect what is bothering the baby.

Sleeping Position

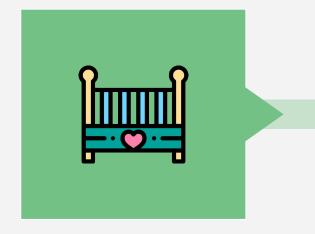
Ensure baby lays on their backside while sleeping, as advised by health organizations [1]. Prevent suffocation in the least intrusive way.

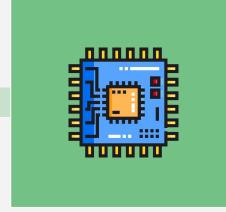
Accessibility & Time Efficiency

Allow parents to utilize baby monitoring solution with little impact to routine. Provide timely alerts for parents to quickly attend to their children.

Technical Case

System Overview





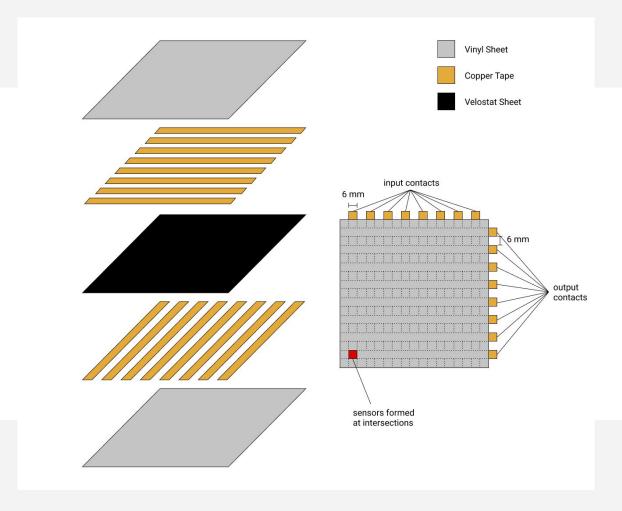
System Overview

Sensor System

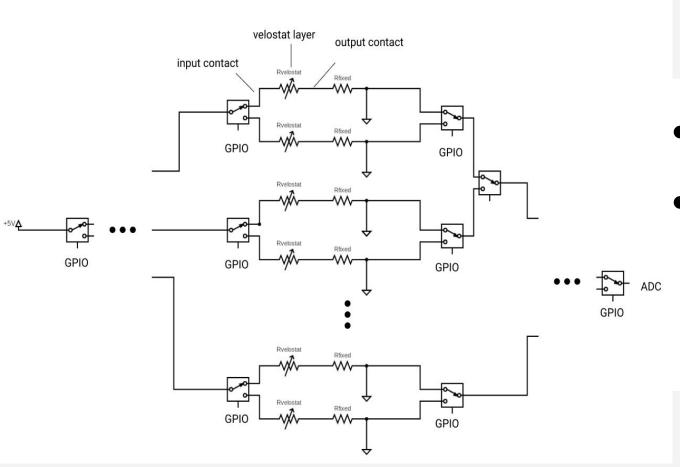
Monitors room temperature, noise levels, and baby position.

Data Analysis System

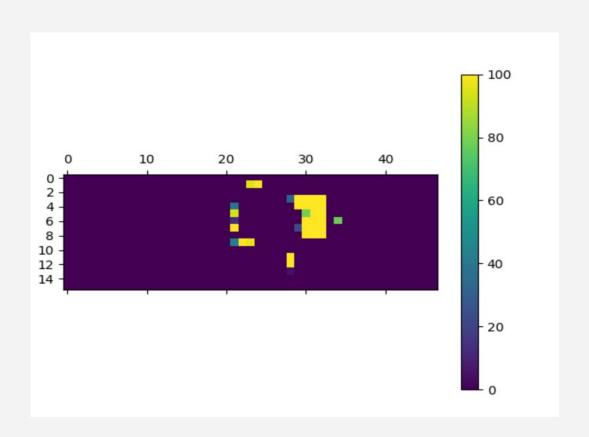
Identifies vulnerable situations. Logs sensor data for visual analysis.

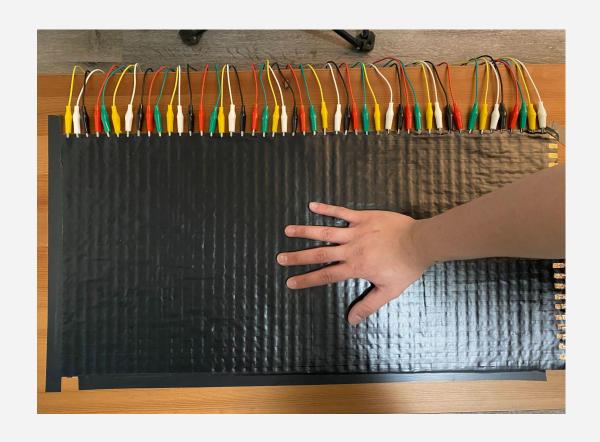

Notification System

Customizable and reliably notifies when baby is vulnerable.

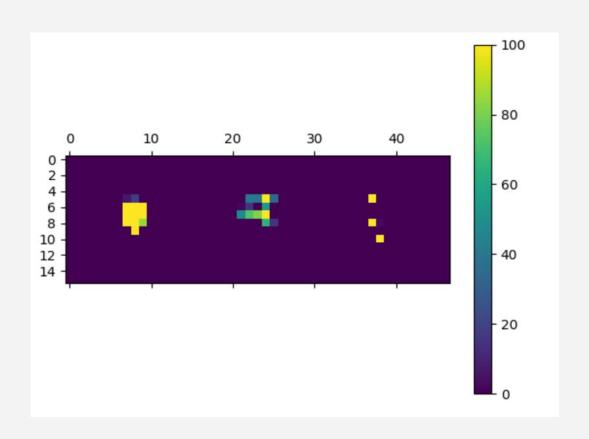

Pressure Mat

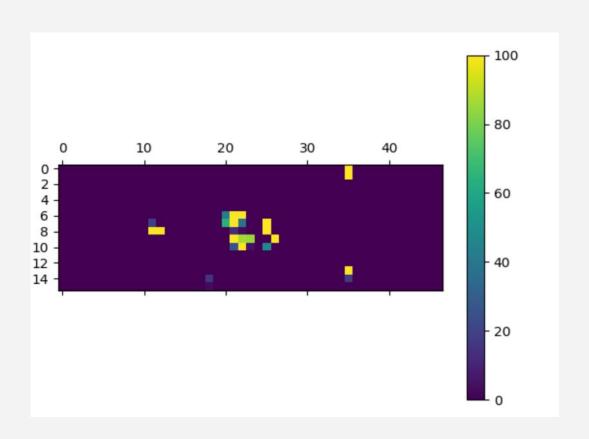
- Source of positional data
- Velostat pressure sensitive material
- Copper tape layered on either side
- Sensors formed at intersection

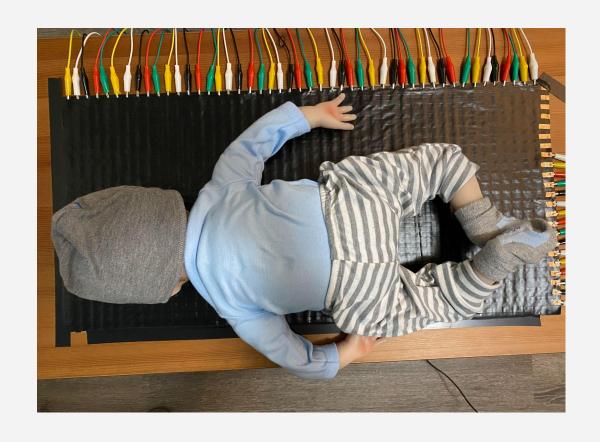

Pressure Data

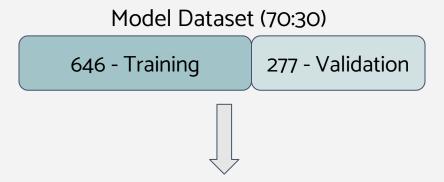


- Sampled data through input and output muxes
- Used PySerial to read data through serial port
 - Matplot to visualize pressure map
 - Generated data to train machine learning model

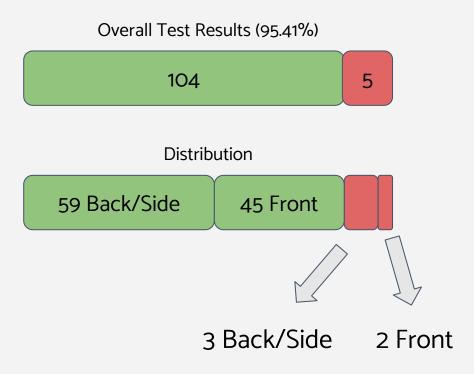

Hand


Baby on Back



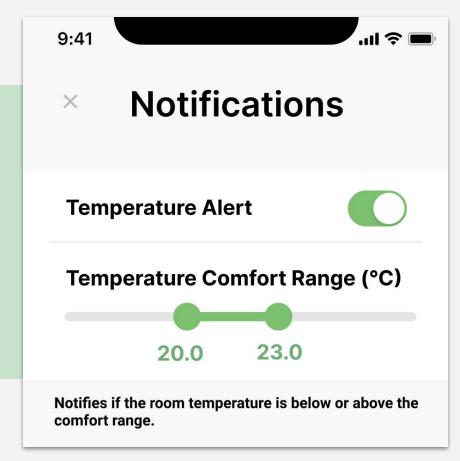

Baby on Front

Machine Learning Dataset


16x47 Normalized Matrix Values Varying weight distribution in different positions.

Position Model

Convolutional Neural Network

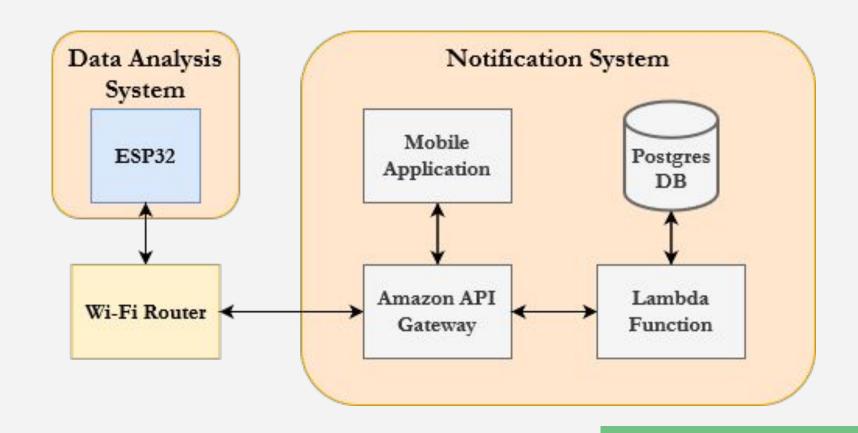

- Able to identify low and high level features with increasing layers.
- Implemented with **Tensorflow**, an open source machine learning platform.
- Tensorflow Lite enables deployment to microcontrollers.
- In training our model, we found minimal overfitting.

Temperature Monitoring

- Accurately measures ambient room temperature in degrees celsius (°C)
- Sends notification when temperature exceeds comfort threshold (20°C- 23°C)

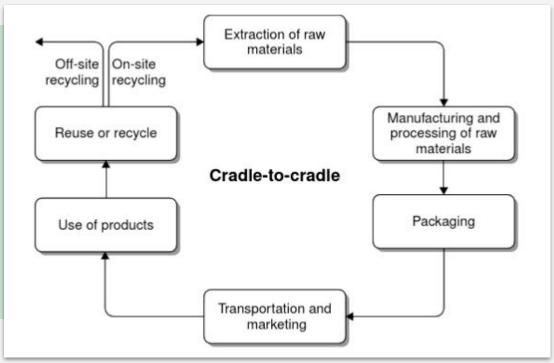
Sound Monitoring

- Uses an analog sensor
- Detects frequency of sample in hertz
 (Hz)
- Detects sound level pressure in room in decibels (dB)
- Sounds a notification when dB exceeds 80 dB || Hz > 300Hz



"How Loud Can Your Baby Cry?" [11]

Notification System


- ESP32 connects to WiFi and communicates an API
- API communicates with Mobile app and Database

Cradle to Cradle Cycle

- Sustainable system considers environmental, economic and social interconnected components
- Design for longevity
 - Physical crib is standard-approved and can be reused.

"Sustainable Industrial Design and Waste Management: Cradle-to-Cradle for Sustainable Development" [12]

Engineering Standards

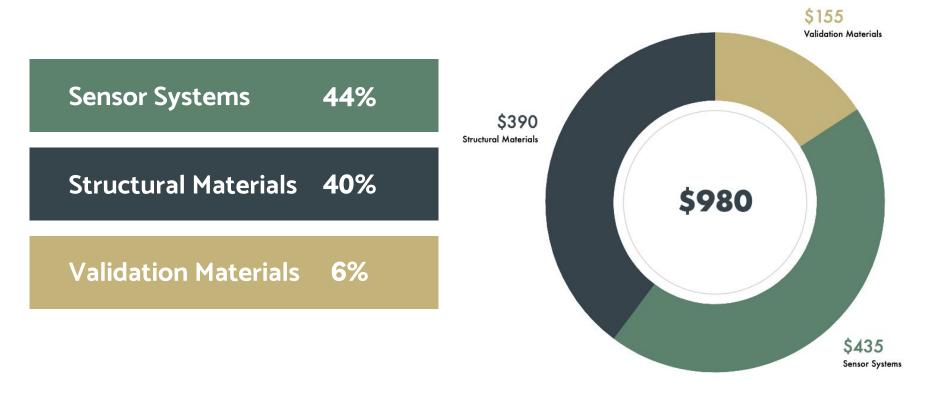
Electronics	Software	Safety & Sustainability	
IEC 61508-1:2010 Programmable Electronics	ISO/IEC 12207-2017 Software Life Cycle	SOR/2016-152	
UL 2595 Battery Powered Appliances	ISO 9241-161:2016 Visual User Interfaces	Cribs, Cradles, Bassinets	
IEC 62047-33:2019 Piezoresistive Devices	Apple & Android	CAN/CSA-ISO/TR 14062-03 Environmental Design & Development	
IEEE 802.11 Wireless Communication	User Interface Guidelines		

[13-22]

Proof of Concept Status

Acceptance Test	Result
Pressure mat is able to visualize pressure distribution	Baby positions and pressure distribution visualized.
Pressure mat value accuracy. Minimal outliers.	Values were normalized for 2.5kg - 4.5kg (4lb - 10lb) and used for training the model.
Baby position identification	95.4% accurate, classifying front and not front.
Temperature accuracy	Temperature circuit implemented and tested - yet to test against reliable measurement tool.
Noise accuracy	Sound circuit is currently being debugged - yet to test against accuracy measurements

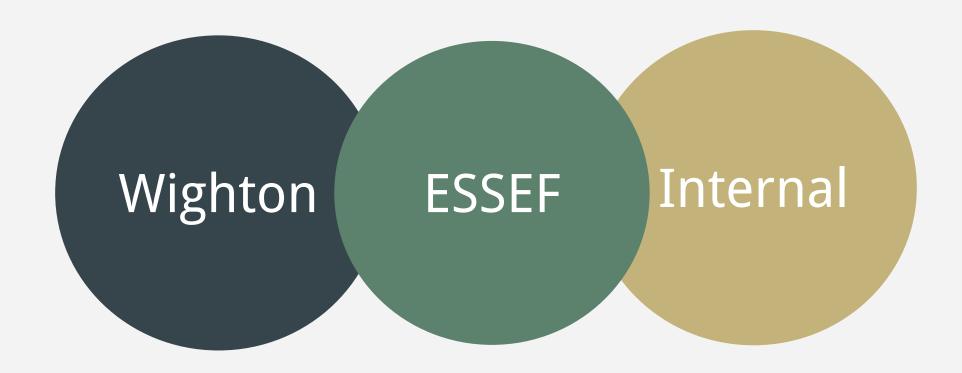
Market & Costs



Market & Ideal Customers

- Observed trends in family working patterns
- Observed trends in technology use in parent-age individuals
- → Assumption about the market and ideal customers:
 - First-time working parents who are dealing with anxiety of caring for a baby
 - First-time parents whose daily activities include technology

Estimated Project Costs


Tenshi Crib Costs

Crib System: \$600

- Crib (\$200)
- Mattress (\$100)
- Smart system (\$300)

Funding

Competitors

Main competitors are leading products that monitor similar features and/or focus on passive monitoring with a mobile application.

Leading competitors

- **Camera:** Cubo AI (\$340)

Wearable: Owlet Smart Sock (\$400)

- Motion Pads: Babysense7 (\$200)

Our Advantage

Non intrusive

- No wearable items
- No cameras

Seamless Integration

- No obvious technology within view
- Easy setup

All in one

Several features, one crib, one mobile application

Risk Management

Physical Damages

 If the internal wiring of the electronics and sensors are tampered with, it may be rendered unusable

Crib in non-temperate climates

- Target market is North American regions
- Average temperature ranges from 16°C 23°C

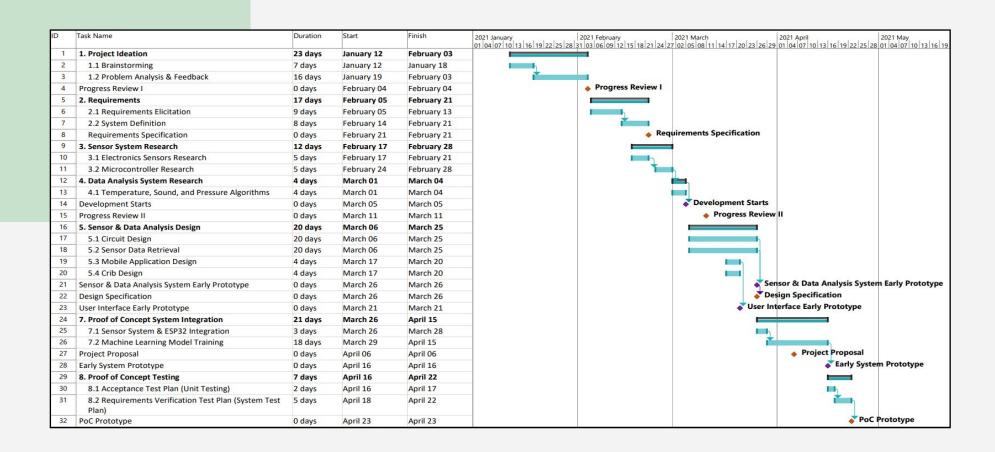
Electronics and Crib Design

Electronic Safety, Crib Safety standards.

Wireless Notifications Risk

Communication Standards & Reliable Failsafes

Schedule


Current & Future Plans

ENSC 405W Schedule

ENSC 440 Schedule

D	Task Name	Duration	Start	Finish	2021 May
1	9. Crib Integration	7 days	April 26	May 02	
2	9.1 Sensor Placement	1 day	April 26	April 26	III,
3	9.2 Regression Testing	6 days	April 27	May 02	
4	Crib Prototype Built	0 days	May 03	May 03	♦ Crib Prototype Built
5	10. Notification System Bringup	14 days	May 03	May 16	
6	10.1 Amazon API Gateway	8 days	May 03	May 10	
7	10.2 Mobile Application UI Skeleton	8 days	May 03	May 10	
8	10.3 ESP32 Wi-Fi Notifications	6 days	May 11	May 16	
9	11. Position Identification Optimization	21 days	May 10	May 30	
10	11.1 Purchase Multiple Baby Dolls + Weights	4 days	May 10	May 13	
11	11.2 Machine Learning Model Training	14 days	May 14	May 27	
12	11.3 Edge Case Testing	7 days	May 24	May 30	
13	Baby Position Identification (2.5kg - 4.5kg)	0 days	May 31	May 31	▼ Baby Position Identification (2.5kg - 4.5kg)
14	12. Front End Development	21 days?	June 01	June 21	
15	12.1 Icon Elements	2 days	June 01	June 02	
16	12.2 Text Elements	5 days	June 03	June 07	<u>*</u>
17	12.3 Placeholder Graphs & Timescale Views	9 days	June 06	June 14	
18	12.4 Coloured Elements	7 days	June 15	June 21	
19	Front End User Interface Built	0 days	June 22	June 22	Front End User Interface Built
20	13. Back End Development	21 days	June 22	July 12	
21	13.1 Database Connectivity	14 days	June 22	July 05	
22	13.2 Customized Notification Settings	14 days	June 29	July 12	
23	Mobile Application Prototype Built	0 days	July 14	July 14	Mobile Application Prototype Built
24	14. Prototype Testing	18 days	July 15	August 01	
25	14.1 System Test Plan	7 days	July 15	July 21	
26	14.2 Empirical Usability Testing	10 days	July 19	July 28	
27	14.3 Optimization	14 days	July 19	August 01	
28	Product Prototype	0 days	August 02	August 02	₹ Product Prototype

ENSC 440 Planning

Crib Integration and User Interface

Embedding the electronics into the crib. Researching methods to easily connect pressure mat.

Optimizing the Position Detection Model

Capture a larger variety of body positions and weights. Consider material used.

Mobile Application and Database Architecture

Start early and delegate accordingly. The team has mobile application development experience.

Tenshi Company 🗡

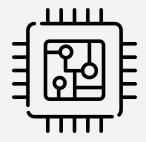
Team Roles & Reflection

Team Members and Roles

Dexter Bigueta
Chief Design
Officer

Izyl CanonicatoChief Marketing Officer

Alvin David
Chief Exec. Officer
Chief Comm. Officer


Denyse TranChief Financial Officer

Matthew Thomas
Chief Technical
Officer

ENSC 405W Key Takeaways

Applying ENSC Curriculum

Electric Circuits
Signal Processing
Embedded Systems
Business & Ethics

Documentation

Purpose
Audience - PANE+E
Technical Writing
Persuasive Writing

Group Work

Project Management
Risk Analysis
Expertise
Importance of Meetings

Challenges & Moving Forward

Challenges	Actions for ENSC 440
Clearly defining our product purpose and capabilities.	Continue to consider feedback from the Instructional Team.
Thinking ahead for implementing our solution.	Very early research and prototyping.
Identifying project bottlenecks.	Clearly describe progress and roadblocks for more effective meetings.
Collaborative writing.	Analyze requirements as a group and consider purpose and audience.

Conclusion

- Our baby monitoring solution enables parents to mitigate the risk of SIDS and suffocation.
- The Tenshi Baby Crib system design adds no additional tasks to one's routine by utilizing an already essential crib, and a mobile device.
- In the market, we have an advantage with a non intrusive system.
- Development along the way has met challenges, but optimizations and a fully realized crib and application prototype are underway.

References

- [1] American Academy of Pediatrics. "Safe Sleep: Recommendations." aap.org. Accessed: Apr. 16, 2021. [Online]. Available: https://www.aap.org/en-us/advocacy-and-policy/aap-health-initiatives/safe-sleep/Pages/Safe-Sleep-Recommendations.aspx
- [2] faldo. "How Long Do Newborn Babies Sleep." Newborn baby. newborn-babies-sleep.html (2) faldo. "How Long Do Newborn Babies Sleep." Newborn-baby. newborn-babies-sleep.html
- [3] "Humidity and Temperature for Sleeping Babies and Children: Heartistic Birthing Doula," Nourish Birth + Postpartum, Jul. 2020. Accessed: Feb. 21, 2021. [Online]. Available: https://nourishbirthpostpartum.com/humidity-and-temperature-for-sleeping-babies-and-children/
- [4] Modsy. "9 Trendy Nursery Design Ideas We Can't Stop Thinking About." blog.modsy.com. Accessed: Apr. 16, 2021. [Online]. Available: https://blog.modsy.com/style-ideas/decor-inspiration/nursery-design-gender-neutral-ideas/
- [5] Centers for Disease Control and Prevention. "Sudden Unexpected Infant Death and Sudden Infant Death Syndrome." cdc.gov. Accessed: Apr. 16, 2021. [Online]. Available: https://www.cdc.gov/sids/data.htm
- [6] S. Kovac, N. J. Courtney. "The Best Video Baby Monitors Of 2021." reviewed.com. Accessed: Apr. 16 2021. [Online]. Available: https://www.reviewed.com/smarthome/best-right-now/best-video-baby-monitors
- [7] H. Sawyers. "The Best Baby Monitors." nytimes.com. Accessed: Apr. 16, 2021. [Online]. Available: https://www.nytimes.com/wirecutter/reviews/best-baby-monitor/
- [8] G. Corera. "Smart camera and baby monitor warning given by UK's cyber-defender." bbc.com. Accessed: Apr. 16, 2021. [Online]. Available: https://www.bbc.com/news/technology-51706631
- [9] M. N. Hasan. "Wearable Technology for Baby Monitoring: A Review" ResearchGate. Jul. 2020, doi:10.15406/jteft.2020.06.00239
- [10] Flaticon. "The largest database of free icons available in PNG, SVG, EPS, PSD and BASE 64 formats." flaticon.com. Accessed: Apr. 18, 2021. [Online]. Available: https://www.flaticon.com/
- [11] Laser Mom. "How Loud Can Your Baby Cry?" lasermom.wordpress.com. Accessed: Apr. 19, 2021. [Online]. Available: https://lasermom.wordpress.com/2012/01/08/crying/
- [12]S. E Haggar, "Sustainable Industrial Design and Waste Management: Cradle-to-Cradle for Sustainable Development". Amsterdam, Netherlands: Elsevier Science & Technology, 2007. Accessed: Feb. 16, 2021. [Online]. Available: https://ebookcentral-proquest-com.proxy.lib.sfu.ca/lib/sfu-ebooks/reader.action?docID=307125&ppg=37.

References (cont'd)

- [13] Functional safety of electrical/electronic/programmable electronic safety-related systems Part 1: General requirements, IEC 61508-1:2010, Apr. 2010. Accessed: Mar. 18, 2021. [Online]. Available: https://webstore.iec.ch/publication/5515
- [14] General requirements for battery-powered appliances, UL 2595, Sep. 2015. Accessed: Mar. 18, 2021. [Online]. Available: https://standardscatalog.ul.com/ProductDetail.aspx?productId=UL2595
- [15] Semiconductor devices Micro-electromechanical devices Part 33: MEMS piezoresistive pressure-sensitive device, IEC 62047-33:2019, Apr. 2019. Accessed: Mar. 18, 2021. [Online]. Available: https://webstore.iec.ch/publication/31615
- [16] IEEE 802.11-2012 IEEE Standard for Information technology—Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE 802.11, Mar. 2012. Accessed: Apr. 16, 2021. [Online]. Available: https://standards.ieee.org/standard/802_11-2012.html
- [17] Systems and software engineering Software life cycle processes, ISO/IEC/IEEE 12207-2017, Nov. 2017. Accessed: Mar. 18, 2021. [Online]. Available: https://www.iso.org/standard/63712.html
- [18] Ergonomics of human-system interaction Part 161: Guidance on visual user-interface elements, ISO 9421-161:2016, Feb. 2016. Accessed: Mar. 18, 2021. [Online]. Available: https://www.iso.org/standard/60476.html
- [19] Apple Inc. "Human Interface Guidelines." Apple.com. Accessed: Mar. 20, 2021. [Online]. Available: https://developer.apple.com/design/human-interface-guidelines
- [20] Google Developers. "Core app quality." Android.com. Accessed: Mar. 20, 2021. [Online]. Available: https://developer.android.com/docs/quality-guidelines/core-app-quality
- [21] Cribs, Cradles and Bassinets Regulations, SOR/2016-152, Dec. 2016. Accessed: Mar. 18, 2021. [Online]. Available: https://laws-lois.justice.gc.ca/eng/regulations/SOR-2016-152
- [22] Environmental Management Integrating Environmental Aspects into Product Design and Development, ISO/TR 14062, 2002.

Any Questions?

