
March 26th, 2021
Dr. Shervin Jennesar, Dr Craig Scratchley, Dr. Andrew Rawicz
School of Engineering Science
Simon Fraser University
Burnaby, V5A 1S6

RE: ENSC 405W/440 Design Specification for Aurorea Lights by Borealis Systems Inc.

Dear Dr. Jennesar, Dr. Scratchley, Dr. Rawicz,

This document represents the design specification for the Aurorea Lights bias lighting kit.
Bias lighting technology emits lights from the back of a monitor to extends the color
luminescence of a video, creating a pleasing atmospheric glow for the user. Currently, there
are no bias lighting kits on the market for desktop users, nor are there any that feature
adjustable light strips for any monitor size. In order to reach a larger bias lighting market,
Aurorea Lights aims to provide customers with a superior option, with adjustable light
spacing and device compatibility in mind. With Aurorea Lights, we plan to build the most
versatile bias lighting kit on the market.

The design specification documentation describes the different design considerations of the
Aurorea Lights bias lighting kit and to meet the corresponding requirements specifications.
Please note that based on additional research and group decisions, the requirement
specification has been revised. Therefore, a summary of the revised requirement
specifications is included in Appendix C is for reference.

Our team hopes that this document provides to you a clear overview of the product. If you
have any additional questions, please feel free to send an email to Justine Kwan,
justinek@sfu.ca, the Chief Communications Officer.

Sincerely,

Justine Kwan
Chief Communications Officer
Borealis Systems Inc.

Design Specifications for

By:

Team:

Ian Carlsen
Justine Kwan

Daiki Miyanabe
Ryan Kiew

Submitted to:
Dr. Andrew Rawicz
Dr. Craig Scratchley
Dr. Shervin Jennesar

School of Engineering Sciences

Simon Fraser University

Issue Date:
March 26th, 2021

i

ABSTRACT
This document outlines the design requirement specifications for Aurorea Lights – a bias lighting kit
designed to fit most display screen sizes. People who are looking to install bias lighting are left to
either buy an entirely new display with bias lighting built into the system, or to build a Do-It Yourself
(DIY) version for themselves. We aim to fill this market by providing a bias lighting kit with separable,
adjustable modules – thereby allowing users to experience bias lighting on any display of their
choice.

The basic system of Aurorea Lights consists of a web server, a Raspberry Pi for video processing, and
the LED modules themselves. The web server is implemented using Node JS and web interface via
browser the primary interface for users. The Raspberry Pi processes the video stream from a HDMI
input using a color averaging algorithm. The LED modules are designed to be easily separable with
the use of screws, while maintaining electrical connectivity between the LEDS. The appendices
describe the user interface and appearance, supporting test plans, revised requirement
specifications, and alternative design options.

ii

CONTENTS
1 Introduction .. 1

1.1 System Overview... 1

1.2 Challenges ... 2

1.3 Document Outline ... 2

2 Hardware/Electrical Design ... 3

2.1 Hardware .. 3

2.1.1 LEDs ... 3

2.1.2 HDMI Splitter .. 3

2.1.3 Raspberry Pi .. 4

2.1.4 Light Diffusion ... 4

2.2 Electrical Design .. 5

2.2.1 Power Design .. 5

2.2.2 Wiring Design .. 6

3 Physical Design and Module Structure ... 7

4 User Interface .. 9

4.1 Web User Interface ... 9

4.1.1 Backend Web Server Software ... 9

4.1.2 Frontend Software .. 10

5 Back-end Software Design .. 11

5.1 Video Processing ... 11

5.1.1 Software Coding Language ... 11

5.1.2 Supported Video Resolution ... 11

5.1.3 Capturing HDMI Input ... 11

5.1.4 Processing Border Colors .. 12

5.2 LED Driver .. 13

5.2.1 LED Driver Library.. 13

5.2.2 LED Refresh Rate ... 13

6 Conclusion ... 13

7 Bibliography .. 14

Appendix A: User Interface and Appearance .. 15

1 Introduction .. 15

2 Designs .. 16

2.1 Software Interface .. 16

iii

2.2 Module Structure .. 16

3 User Analysis ... 19

3.1 Software Set Up .. 19

3.2 Hardware/Electrical Set Up ... 19

4 Technical Analysis.. 19

4.1 Discoverability ... 19

4.2 Feedback ... 19

4.3 Conceptual models ... 20

4.4 Affordances ... 20

4.5 Signifiers .. 20

4.6 Mappings... 21

4.7 Constraints .. 21

5 Engineering Standards .. 22

6 Usability Testing .. 23

6.1 Analytical Usability Testing ... 23

6.1.1 Software .. 23

6.1.2 Modules .. 23

6.1.3 Clamping ... 23

6.2 Empirical Usability Testing .. 23

7 Conclusion ... 24

8 References ... 25

Appendix B: Supporting Test Plans ... 26

1 Physical Appearance and Structure .. 26

2 Hardware/Electrical .. 27

3 User Interface .. 28

5 Back-end Software Design .. 30

Appendix C: Requirement Specifications .. 32

1 General Requirements .. 32

2 Physical Appearance and Structure Requirements ... 32

2.1 General Requirements .. 32

2.2 Module Requirements .. 32

3 Hardware/Electrical Requirements ... 32

4 User Interface .. 33

4.1.1 General Requirements .. 33

iv

4.1.2 Performance Requirements .. 33

5 Video Processing ... 33

5.1.1 General Requirements .. 33

5.1.2 Video Processing Requirements ... 34

5.1.3 Performance Requirements .. 34

6 Sustainability ... 34

7 Safety ... 34

8 Engineering Standards .. 35

9 References ... 35

Appendix D: Alternative Design Options .. 36

1 LEDs: .. 36

2 Securing Modules Together .. 36

3 Electric Connectivity Between Modules: .. 36

4 User Interface Method: ... 37

5 Webserver Software: .. 37

6 Back-end Software Design .. 38

6.1 Video Processing ... 38

6.1.1 Software Coding Language ... 38

6.1.2 Supported Video Resolution ... 38

6.1.3 Capturing HDMI Input ... 38

6.1.4 Processing Border Colors .. 38

6.2 LED Driver .. 39

6.2.1 LED Driver Library.. 39

6.2.2 LED Refresh Rate ... 39

v

LIST OF FIGURES:
Figure 1.1: Hardware System Overview .. 1
Figure 1.2: Software Design Diagram.. 2
Figure 2.1: Adafruit DotStar LED (scale: 1 mm) .. 3
Figure 2.2: HDMI Splitter .. 4
Figure 2.3: Power .. 5
Figure 2.4: Fuses ... 6
Figure 2.5: Wiring Diagram to safely wire the LEDs .. 6
Figure 3.1: Molex connector with pitch of 2.54 mm .. 7
Figure 3.2: Screw ... 7
Figure 3.3: MIT Snap-Fit Design Guide ... 8
Figure 3.4: Internal LED module structure .. 8
Figure 5.1 - Algorithm for processing border colors ... 12
Appendix A
Figure 2.1: Interface Design for Desktop Browser .. 16
Figure 2.2: Interface Design for Mobile Browser .. 16
Figure 2.3: LEDs, spacer, and corner modules .. 17
Figure 2.4: Electrical contact for modules .. 17
Figure 2.5: Clamping mechanism .. 17
Figure 2.6: LED and spacer module ... 17
Figure 2.7: Clamping mechanism .. 18
Figure 2.8: Internal spring mechanism ... 18
Figure 2.9: Attaching the structure to a monitor .. 18
Figure 4.1: Example of Toast Message.. 20
Figure 4.2: Module connector mock-up in all configurations ... 21

LIST OF TABLES:
Table 1.3.1: Design Requirements Document Outline ... 3
Table 1.3.2: Requirement Specification Notation ... 3
Table 2.2.1: Electrical Requirements .. 5
Table 2.2.2: Design Requirements for power and wiring ... 7
Table 2.2.1: Design Requirement for Module Structure... 8
Table 4.1.1: Design Requirement for Web Server Specification ... 9
Table 4.1.2: Design Requirements for the Front-end Software .. 11
Table 5.1.1: Design Requirements for Video Processing .. 12
Table 5.2.1: Design Requirements for the LED Driver .. 13
Appendix A
Table 4.7.1: Engineering standards and best practices interface and appearance design................... 22
Table 6.2.1: General System Requirements Specifications .. 32

vi

GLOSSARY
Term Description

Bias Lighting Lighting on the back of a display screen that illuminates the surface behind.

LED Light Emitted Diodes

FPGA Fully Programmable Gate Array

REVISION HISTORY
Version Implemented

by
Revision

Date
Approved

by
Approval

Date
Reason

1.0 Daiki, Ian,
Justine

03/21/21 Justine 03/21/21 Initial User Interface and
Appearance Appendix Draft

1.1 Daiki, Ian,
Justine, Ryan

03/26/21 Justine 03/26/21 Initial Design Specification
Draft

Revised User Interface and
Appearance Appendix

PRODUCT DESIGN SPECIFICATION APPROVAL
Signature: Date: March 26th 2021

Print Name: Justine Kwan

Title: Chief communications officer

Role: Project overseer

1

1 INTRODUCTION
Aurorea Lights is a bias lighting kit that can fit a wide variety of display sizes and devices including
computer monitors, laptops, and televisions. This product will process video data and use that data
to project different colors of light that will match up with the localized border color of the video.
Currently, there are no bias lighting kits on the market for desktop users, nor are there any that
feature adjustable light strips for arbitrary monitor size or orientations. Therefore, to reach a large
bias lighting market, Aurorea Lights aims to increase options for compatibility with adjustable light
spacing and device compatibility. With Aurorea Lights, we plan to build the most versatile bias
lighting kit.

1.1 SYSTEM OVERVIEW
The software component of the kit requires the ability to analyse the video signal and a user
interface. The hardware component connects the unit’s sub-devices, electrical requirements as well
as incorporates the appearance design. To allow the user to fit the product around any monitor size,
the hardware and appearance of the LEDs was given modular design which allows the user to choose
their lighting arrangement for the monitor.

Figure 1.1 represents an overview of the hardware system as well as the connected sub-devices. The
sub-components are a power source, a HDMI splitter, a Raspberry Pi, and the LEDs. The HDMI
splitter takes the video source and outputs it to the Raspberry Pi as well as to the user’s monitor.
The Raspberry Pi will analyse the video signal and send information to the LEDs.

Figure 1.1: Hardware System Overview

The Aurorea Lights kit is made up of three main software components as shown in
Figure 1.2. The first software component is the web server user interface, from which the user will
be able to access the settings for the device. The second software component is responsible for
capturing the video stream from the HDMI source and processing the border colors for the LEDs. The
third software component is the LED driver, which awaits input and changes the colors of the LEDs.

The user interface is a web-based program that can be opened from browsers of computer or
mobile device. End users can change various settings such as brightness and color saturation of the
LEDs, and mode of the lights from the user interface. The web-based program consists of web server
and frontend program. The webserver runs on the Raspberry Pi and works as a bridge between the

2

primary software component and user’s browser. Moreover, the frontend program is a web page
that runs on user’s web browser.

The user’s video signal will be processed by a frame-by-frame basis, using an algorithm that first
compresses the image, then splits the image into squares depending on the number of LEDs being
used, and finally averaging the color of each of the squares. The LEDs are then updated to match
their corresponding colors.

Figure 1.2: Software Design Diagram

1.2 CHALLENGES
For the proof-of-concept, the main challenges for each category is as follows: electrical challenges
include maintaining wiring connectivity and ensuring that the system has adequate power
throughout. Module design challenges include checking if everything fits together and if the design is
compact. Software challenges include matching the video speed with the LED speed such that
processing time is the primary concern.

1.3 DOCUMENT OUTLINE
The design specification document goes over the designs to fulfill the requirement specifications.
Additional references are included in the appendix, which has four sections. Appendix A: User
Interface and Appearance Design describe the software user interface and module structure designs.
Appendix B: Supporting Test Plans lists testing procedures to test the design. Appendix C:
Requirement Specifications provides updated requirement specification tables for reference.
Appendix D contains explicit details on the alternative design choices considered.

 Design specifications in this paper will be labelled using the following arrangement:

Des {Section Number}.{Subsection}.{Requirement Number}.{Development Stage}

Section Number Heading

1 General

2 Hardware/Electrical

3 Physical Design and Module Structure

4 User Interface

5 Video Processing

3

6 Sustainability

7 Safety

Table 1.3.1: Design Requirements Document Outline

Development Stage Description

C Proof-of-concept prototype

E Engineering prototype

F Final Product

Table 1.3.2: Requirement Specification Notation

2 HARDWARE/ELECTRICAL DESIGN

2.1 HARDWARE

2.1.1 LEDs
To satisfy [Req 3.2.C], individually addressable LEDs from Adafruit are chosen. To satisfy [Req 2.2.3]
and to keep it compact, the 3.5x3.5 mm NeoPixels and the 5x5 mm DotStar was considered, but the
5x5 mm DotStar was chosen ultimately chosen because the solder points is large enough in case it
needs to be soldered by hand. The LEDs comes on a strip of PCBs with spacing options of 30 LEDs per
meter, 60 LEDs per meter and 144 LEDs per meter. The 60 LEDs per meter option was chosen
because it was compact but still large enough to solder with. The dimensioning of the LED is shown
in Figure 2.1. The pitch between the pins of the LED is 2.54 mm when scaled.

Figure 2.1: Adafruit DotStar LED (scale: 1 mm)

2.1.2 HDMI Splitter
A HDMI Splitter will be used to split the video HDMI signal into two outputs. The first output signal
will be sent to the user’s monitor to display the video. The second output signal will be sent to the
Raspberry Pi for video processing.

4

Figure 2.2: HDMI Splitter

2.1.3 Raspberry Pi
The Raspberry Pi will be used for processing the video and driving the LEDs. In previous iterations,
the ESP32 microcontroller [1] was used, however it was not fast enough to process video signals at
the required rate. This would cause a desynchronization issue which fails to comply with [Req
5.3.2.E]. An FPGA was also considered, but it would significantly increase the cost, making it unviable
for commercial marketing.

2.1.4 Light Diffusion
Lights should be diffused as a safety requirement, to reduce the illuminance of the LEDs and prevent
blinding. A light diffusion cover was considered, however, videos demonstrating how to encase LEDs
into epoxy resin is done as cheaper do-it-yourself approach [2]. As a result, we decided to use this
option instead.

Design Choice Summary

Design ID Description
Corresponding
requirement/design
specifications(s)

Supplement
Material

Des 2.1.1.C Adafruit 5050 Dotstar LED will be used [Req 3.2.C] N/A

Des 2.1.2.C
HDMI Splitter will be used to split the
HDMI signal

N/A Figure 2.2

Des 2.1.3.C
Raspberry Pi will be used to process the
video [Req 1.1.C] N/A

Des 2.1.4.F Light diffusion will be done by resin [Req 8.3.F] N/A

5

2.2 ELECTRICAL DESIGN

2.2.1 Power Design
To satisfy [Req 1.3.C] and [Req 3.1.C], a power supply is needed to power all of the sub-devices.
Table 2.2.1 shows the electrical requirements for each sub-device and Figure 2.4 shows the wiring
diagram for the power supply. The ATX-12V power supply can be paired with ATX breakout board
interface to supply 5V of power to each device. The breakout board can allow a current draw of up
to 24A. For safety reasons, 30 A fuses will be placed as a safety requirement as shown in Figure 2.4.

Product Current Capacity (A) Voltage requirements (V)

Raspberry Pi 4 Model B 3.00 5

HDMI Splitter 1.00 5

LEDs 0.06 per LED 5

Table 2.2.1: Electrical Requirements

Figure 2.3: Power

6

Figure 2.4: Fuses

2.2.2 Wiring Design
Adafruit provides the recommended wiring configurations for the NeoPixels and the DotStars LEDs.
They recommend a 1000 𝜇F capacitor before the 5V terminal and a 470 𝛺 resistor before the
Data-In pin to protect the LEDs from current spikes [3]. This diagram is shown in Figure 2.5.

Figure 2.5: Wiring Diagram to safely wire the LEDs

7

Design Choice Summary

Design ID Description
Corresponding
Requirement/Design
specifications(s)

Supplement
Material

Des 2.2.1.C
The ATX power supply will be able to
power all the components and turn the
device on and off.

Req 1.3.C
Req 3.1.C

N/A

Des 2.2.3.F
Enclosed wires will connect between the
LEDs and the Raspberry Pi

Req 2.2.1.C
Req 3.3.C
Req 3.4.C

Figure 2.5

Table 2.2.2: Design Requirements for power and wiring

3 PHYSICAL DESIGN AND MODULE STRUCTURE
Modules will be modeled in AutoCAD and 3D printed to a specific sizing, to keep the design small
and compact. To connect the modules as per [Req 2.2.1.C], compression connectors were
considered due to their compact design. The 3D printed housing will then need to be carefully sized.
However, for the proof-of-concept, a Molex 2.54 mm header will be used to demonstrate
functionality.

Figure 3.1: Molex connector with pitch of 2.54 mm

To satisfy [Req 2.2.2.C] and further secure modules together, the two methods considered was snap-
fit design and screw-in designs. We would like to implement snap-fit using guide as shown in Figure
3.3, however snap-fit design require precision with 3D printing. Therefore, for the proof-of-concept
screws are chosen as reliable securing method. M3 x 3mm screws are chosen for due to their small
size. Heat sink threads are chosen for the 3D printed modules because they can be directly
embedded in the plastic for ease of use, thus satisfying [Req 2.1.2.C].

Figure 3.2: Screw

8

Figure 3.3: MIT Snap-Fit Design Guide [4]

The internal structure of the modules is shown in Figure 3.4. The wires are bent inwards into the
modules to provide enough wire for wiring ease while maintaining compactness to satisfy [Req
2.2.1.C]. To make sure the wires do not cross, position of the connectors will be offset.

Figure 3.4: Internal LED module structure

Further analysis regarding the module design described in depth in Appendix A: User Interface and
Appearance designs.

Design Choice Summary

Design ID Description
Corresponding
requirement/design
specifications(s)

Supplement
Material

Des 3.1.C
Modules will be modeled in AutoCAD
and 3D printed

[Req 2.1.3.E]
[Req 2.2.3.E]

N/A

Des 3.2.C
Internal wires will ensure connectivity
between the LEDs

[Req 2.2.1.E] N/A

Des 3.3.F
A clip-on device taken from a selfie stick
will secure the modules onto a monitor

[Req 2.1.1.C]
Figure 2.7
Figure 2.8

Des 3.4.C
System will use common connection
methods (e.g. screws, plug-in, snap-in)

[Req 2.1.2.C] N/A

Des 3.5.C
Screws will secure modules together
with heat-set insert threads

[Req 2.2.2.E] N/A

Table 2.2.1: Design Requirement for Module Structure

9

4 USER INTERFACE

4.1 WEB USER INTERFACE
The user interface for the Aurorea Lights is a web-based interface that can be accessed from a web
browser of a user’s computer or mobile device. To achieve this, the product requires the use of a
web server software that can process the requests from the client’s device and display a user-
friendly front-end web design.

We have considered multiple options for the user interface such as having a small touch screen that
can be attached to the monitor or TV and control the settings and using a Bluetooth connection to
control from the mobile device or computer. However, we realized that with the touchscreen
method, the user will have difficulties changing device settings if the monitor or TV is mounted to a
wall or TV, which is otherwise unreachable to the user. Additionally, utilizing the Bluetooth method
requires an application to be installed onto the user’s computer or mobile device and that needs to
be paired with, every time the user wants to change the settings. On the other hand, a web user
interface can be accessed from anywhere as long as the device is connected to the same Wi-Fi
network, and doesn’t require the user to install the application to their computer or mobile device.
For these reasons, therefore it was chosen as our new user interface method.

4.1.1 Backend Web Server Software
Web server software is the bridge between the main program which controls the LEDs and the front-
end software. The server backend will process the requests from the client’s frontend and then
update the corresponding settings such as brightness of the light and as well as different lighting
display modes. The server backend also replies to the front-end program with any information that
is requested.

To communicate between the web server and the frontend program, we have decided to use
WebSocket over HTTP because of its fast reaction time. Rapid response time is required to update
the setting for the LEDs quickly and to let the user see the result of the selected setting. For the web
server software, we have considered Apache, Nginx as well as Node.js and decided to utilize Node.js
due to its compatibility with the WebSocket.

Design Choice Summary

Design ID Design Specification Requirements
Corresponding
requirement/design
specifications(s)

Supplement
Material

Des 4.1.1.1.C
Web server shall communicate with the
main program to get or change the setting
for the lights.

[Req 4.1.2.C]
[Req 4.1.3.C]
[Req 5.1.3.E]

N/A

Des 4.1.1.2.C
Web server shall communicate with front-
end program via Wi-fi network.

N/A N/A

Des 4.1.1.3.C Node JS will be used for web server. N/A
Appendix B:
Webserver
Software

Des 4.1.1.4.C
WebSocket will be used to communicate
with the frontend software.

N/A N/A

Table 4.1.1: Design Requirement for Web Server Specification

10

4.1.2 Frontend Software
To comply with [Req 4.1.1.C], a web-based frontend software will be running on the user’s browser
to control some setting for the Aurorea Lights such as brightness of the LEDs and mode of the lights.

It is essential that the user will have the ability to control different settings from the user interface
such as brightness, color saturation and the lighting mode are essential for the user to control from
the user interface also specified by the Requirement Specification. Other functionalities such as
mode where LEDs changes color over time and detailed customization can be added in future
software revisions. The frontend user interface components are designed using the “Seven
Elements of UI Interaction” from Don Norman’s “The design of Everyday Things.” For detailed visual
user interface design, see the Appendix A: User Interface and Appearance document.

Design Choice Summary

Design ID Design Specification Requirements
Corresponding
requirement/design
specifications(s)

Supplement
Material

Des 4.1.2.1.C
Application shall display the status of the
LEDs. (On/Off)

N/A
Appendix A
Figure 4.1

Des 4.1.2.2.C
Application shall be able to change the
status of the LEDs. (On/Off)

[Req 4.1.2.C]
Appendix A
Figure 4.2

Des 4.1.2.2.C
Application shall display the brightness
setting of the LEDs.

N/A
Appendix A
Figure 4.3

Des 4.1.2.3.C
Application shall be able to have
component to change the brightness
setting of the LEDs.

[Req 4.1.2.C]
Appendix A
Figure 4.4

Des 4.1.2.4.E
Application shall display the color
saturation of the LEDs.

N/A
Appendix A
Figure 4.5

Des 4.1.2.5.E
Application shall be able to have
component to change the color saturation
of the LEDs.

[Req 4.1.3.E]
Appendix A
Figure 4.6

Des 4.1.2.6.C
Application shall display current mode for
the LEDs.

N/A
Appendix A
Figure 4.7

Des 4.1.2.7.C

Application shall be able to change the
modes for lighting from the following:
-Bias Lighting: LEDs match the colors on
the screen
-Uniform Lighting: LEDs set to a single
color

N/A
Appendix A
Figure 4.8

Des 4.1.2.8.C
When the application is in uniform
lighting, the application shall display color
picker to change the color of the LEDs.

N/A N/A

Des 4.1.2.9.C
Application shall notify user with toast
message when user changes any
configuration.

N/A
Appendix A
Figure 4.9

11

Des 4.1.2.10.C
Application shall notify user with toast
message when there is an error.

[Req 4.1.5.C]
Appendix A
Figure 4.10

Des 4.1.2.11.C
User interface will be accessed from web
browser.

N/A N/A

Table 4.1.2: Design Requirements for the Front-end Software

5 BACK-END SOFTWARE DESIGN

5.1 VIDEO PROCESSING

5.1.1 Software Coding Language
Python was chosen as the primary coding language for video processing as it is a simple, high-level,
object-oriented programming language that is relatively fast and is suitable for data analysis. Python
is well-known for its syntax simplicity, which makes code written in Python easy to follow. It has a
large assortment of libraries that we can be use, and a library called “Python Imaging Library” [5]
(which will be discussed later) has functions that do exactly what we need for this project.
Additionally, Python is touted as the preferred language for programming Raspberry Pi’s [6], which
means that help is readily available online if we ever get into any issues while programming for the
Raspberry Pi.

5.1.2 Supported Video Resolution
Aurorea Lights will support an input resolution of up to 3840x2160@30Hz, but the software will only
be processing the video at 1920x1080@30Hz. This is due to the hardware limitation of our HDMI
video capture card. It is possible to process video of higher resolutions by implementing an on-board
HDMI decoder. However, decoding and processing this higher quality video would increase the
processing time exponentially, for a minimal improvement in results. The faster option is chosen to
keep the LEDs synchronized with the video [Req 5.3.3.E].

5.1.3 Capturing HDMI Input
For capturing HDMI input, the Python Imaging Library [5] was chosen because it contains functions
that significantly ease data analysis from the HDMI input. The function imageGrab.grab() [7] allows
the conversion of a single frame of a video stream into an image, which is needed in the analysis of
the display. This is required in accordance to [Req 5.1.2.C] – the software must be able to determine
the colors of the LEDs depending on the display. Furthermore, there is also the function
img.thumbnail() [8], which is a fast and efficient method of compressing an image. We need this
speed to achieve Req 5.3.3.E – the software must change the colours of the LEDs synchronously with
the display. Both OpenCV [9] and FFmpeg [10] are great libraries for video processing, but for a
simple task of capturing and compressing a HDMI input, Pillow provides better performance.

12

5.1.4 Processing Border Colors
 The algorithm we have chosen to process bias lighting colors is to average the colors over
predetermined squares of an image. The image is first divided into squares depending on the
number of LEDs being used. The LED colors are then determined by the average color of the
corresponding border square. For example, Error! Reference source not found. displays the boxes
that the video processing software will average if the user decides to use 20 LEDs on the top and
bottom of the display, and 10 LEDs on the sides. This design choice satisfies [Req 5.2.3.C] – the
software must use color averaging algorithms to determine the colors of the LEDs. It also performs
faster than color extrapolation, which is essential to sync the colors of the LED to the display [Req
5.3.3.E]. Although color determination based on a relative pixel is faster, it lacks the averaging
process, and thus the colors of the LEDs may be inconsistent with the display.

Design Choice Summary

Design ID Design Specification Requirements
Corresponding
requirement/design
specifications(s)

Supplement
Material

Des 5.1.1.C
The video processing software will be coded
using Python.

N/A N/A

Des 5.1.2.C

The maximum supported input resolution is
3840x2160@30Hz, while the video
processing software will process videos of
up to 1920x1080@30Hz.

[Req 5.3.3.E] N/A

Des 5.1.3.C
The video processing software will use
Python Imaging Library (Pillow) to capture
HDMI video input.

[Req 5.1.2.C] N/A

Des 5.1.4.C
The video processing software will average
colors over squares to process border
colors.

[Req 5.2.3.C]
[Req 5.3.3.E]

Figure 4.1

Table 5.1.1: Design Requirements for Video Processing

Figure 5.1 - Algorithm for processing border colors

13

5.2 LED DRIVER

5.2.1 LED Driver Library
The FastLED library was chosen to drive the LEDs because due to its supports with the APA102 LED
strip that we are using for the Aurorea Lights bias lighting kit. The proper driving of LEDs are required
to satisfy [Req 5.3.2E] & [Req 5.4.4.E]. The Adafruit DotStar library may also be used, but FastLED
supports almost all commercially available LEDs, while the Adafruit DotStar library only supports
Adafruit’s DotStar line of LEDs. This versatility would make it easy to change the syntax to work with
different LEDs, in the case that we need to change LEDs in the future.

5.2.2 LED Refresh Rate
Although the device can only process videos at a1920x1080@30Hz, it can still process videos at a
higher refresh rate but at a smaller resolution. To take this framerate into account [Req 5.2.4.F], the
LEDs will be updated 60 times a second. Going any higher than 60 would simply increase processing
time with minimal improvement. Going lower would cause an obvious discrepancy between video
and LED output, which we would like to avoid [Req 5.3.4.E].

Design Choice Summary

Design ID Design Specification Requirements
Corresponding
requirement/design
specifications(s)

Supplement
Material

Des 5.2.1.C
The LEDs will be driven using the FastLED
library.

[Req 5.3.2.E]
[Req 5.4.4.E]

N/A

Des 5.2.2.C
The LEDs will be updated 60 times per
second.

[Req 5.2.4.F]
[Req 5.3.4.E]

N/A

Table 5.2.1: Design Requirements for the LED Driver

6 CONCLUSION
The chosen hardware design will utilize an HDMI splitter to send the video signal into the Raspberry
Pi that will then send the color signal to the LEDs. The system will be powered by an ATX power
supply with the ATX breakout board.

The system will use a modular structure. Screws will be used to connect the modules together and
the 2.54 mm header connector will be used for connections between modules. A clamping
mechanism will be used to secure the module structure onto the monitor.

The user interface is hosted by a webserver that can be accessed from a web browser on the same
network as the Raspberry Pi. The user interface will provide status information as well as allow the
user to adjust the brightness and saturation of the lights. The HDMI video input will be processed
using the Python Image Library, and the LEDs will be driven using the FastLED library, updating at a
rate of 60 times per second.

For the proof-of-concept, the power supply will generate power to the devices. The basic software
functionalities that will be demonstrated is the color averaging for the LEDs, and the basic user
interface. Module structures will be 3D printed with the LEDs, connectors, screws and wiring in
place. To refine the product after the proof of concept, some methods may be swapped out for
more refined methods. This includes snap-fit connectors and compression connectors.

14

7 BIBLIOGRAPHY

[1] "ESP32," Espressif, [Online]. Available: https://www.espressif.com/en/products/socs/esp32.
[Accessed 23 03 2021].

[2] "Embedding LED Strip Lights in Epoxy Resin," [Online]. Available: https://do-daddy.com/how-
to-embed-led-strip-lights-in-epoxy-resin/. [Accessed 26 03 2021].

[3] "Powering NeoPixels," [Online]. Available: https://learn.adafruit.com/adafruit-neopixel-
uberguide/powering-neopixels. [Accessed 4 04 2021].

[4] "Snap-Fit Joints for Plastics," [Online]. Available:
http://fab.cba.mit.edu/classes/S62.12/people/vernelle.noel/Plastic_Snap_fit_design.pdf.
[Accessed 21 03 2021].

[5] "Pillow," Alez Clark and Contributors, [Online]. Available:
https://pillow.readthedocs.io/en/stable/#. [Accessed 23 03 2021].

[6] "Raspberry Pi FAQs," Raspberry Pi Foundation, [Online]. Available:
https://www.raspberrypi.org/documentation/faqs/. [Accessed 23 03 2021].

[7] "ImageGrab Module," Pillow, [Online]. Available:
https://pillow.readthedocs.io/en/stable/reference/ImageGrab.html. [Accessed 23 03 2021].

[8] "Image Module," Pillow, [Online]. Available:
https://pillow.readthedocs.io/en/stable/reference/Image.html. [Accessed 23 03 2021].

[9] "OpenCV," [Online]. Available: https://opencv.org/. [Accessed 23 03 2021].

[10] "FFmpeg," [Online]. Available: https://www.ffmpeg.org/. [Accessed 23 03 2021].

15

APPENDIX A: USER INTERFACE AND APPEARANCE

1 INTRODUCTION
This document outlines the user interface and appearance design of Aurorea Lights bias lighting kit
by Borealis System Inc. The scope includes the software interface as well as the hardware structure
of the bias lighting.

The software interface of the device allows for the user to directly control the lights. Users can
change the settings of the lights by accessing a web browser through their wireless network. It
features the ability to change the brightness, saturation, and the ability to select between the bias
lighting or static lighting modes.

The hardware interface is integrated with the shape and appearance of the product. The kit’s
electrical components will be arranged and slotted together by the user using common mechanics
(e.g., snap-in, screw-in, plug-in). Once the product is fully configured to the individual monitor size,
the main hardware interface is the power button.

Technical analysis of the design shown, references the concepts described in The Design of Everyday
Things by Donald Norman [2].

16

2 DESIGNS

2.1 SOFTWARE INTERFACE
Figure 2.1 and Figure 2.2 shows the interface designs for both desktop and mobile users. These
interfaces can be accessed from a web browser and is used to control brightness, the color
saturation of the lights, as well as the different modes of the product. The two modes are uniform
lighting and bias lighting: uniform lighting has all the LEDs set to a single color, while bias lighting has
the LEDs match the colors on the screen. The sliders for brightness and the color saturation allow
the users to have intuitive control of both parameters with the icons on the sides that display the
effect of the sliders. The same interface blocks are used between the desktop and mobile versions of
the software so the user can use both interfaces interchangeably without confusion.

Figure 2.1: Interface Design for Desktop Browser Figure 2.2: Interface Design for Mobile
Browser

2.2 MODULE STRUCTURE
The considerations of the module structure include the arrangement of the modules, fitting of the
modules, the connectivity of power to the LEDs, and methods to attach it to a monitor. Figure 2.3
shows the arrangement of the LED, spacer, and corner modules. The LED module will house the
lights. The spacer modules will evenly space the structure and will have different sizing options to
increase spacing combinations. The corner module will create the orthogonal bend at the corners.
There are two proposed methods of implementing the corner modules: one method uses an angled
spacer to create the corner bend, while the other method uses a dedicated corner LED module. The
optimal corner module style has not been decided yet. When fully connected, the modules will make
a rectangular structure. Figure 2.4 shows the electrical connectivity between modules and Figure 2.5
shows the clamping mechanism to attach it to the back of a monitor.

17

 Figure 2.3: LEDs, spacer,
and corner modules

Figure 2.4: Electrical contact
for modules

Figure 2.5: Clamping mechanism

Figure 2.6 shows the proposed design for an indivdual LED and spacer module. For the LED module,
a plastic enclosure made of plastic will encase the LEDs and the PCB board. Wires will be soldered to
internally connect the PCB board to the external plug-in connectors to ensure electrical connectivity
as shown in Figure 2.4.

The proposed method to connect the modules together is with screws. The shape of the connection
side has orthogonal edges to provide alignment. The screws on both sides provide a strong, balanced
connection, and prevents the electric connectors from being loosened. The holes for the screws will
have threaded nuts embedded into the plastic by heat, reducing the number of parts for the user to
potentially mishandle or lose.

For the proof-of-concept, the proposed design for securing the modules is with screws since they are
reliable. However, another design consideration is using the torsion snap-fit implementation, which
would make assembly faster. Torsion snap-fit is recommended for parts that may be disassembled
and reassembled frequently [2]. However, concerns regarding the snap-fit approach include: finding
the optimal way to keep the snap-fit design compact, avoiding strain on the plastic enclosure when
connected, and keeping it durable and flexible for reattachability. If proven to be reliable, a snap-fit
design will be shown in the final product.

Figure 2.6: LED and spacer module

To attach the structure to the monitor, the kit will use a clamping mechanism. This is the same
clamping method that holds phones in selfies sticks, which are cheap and easy to disassemble. The
clamping mechanism is made by two sliding components as shown in Figure 2.7. The mechanism is
extendable, but an internal spring pushes the two components together as shown in Figure 2.8.

18

There is also a rubber component that will contact monitor so that it can be held up by friction. The
clamps will be attached to both sides of the monitor to hold up the structure.

Figure 2.7: Clamping mechanism Figure 2.8: Internal spring mechanism

Figure 2.9 shows the full structure and how it will attach to the back of a monitor.

Figure 2.9: Attaching the structure to a monitor

19

3 USER ANALYSIS
This product is aimed towards an average consumer such that the technical knowledge required is
minimized. The complexity is on par with the set-up of other common household appliances.

3.1 SOFTWARE SET UP
The user needs to know how to connect their computer or mobile device to the Wi-Fi, access the
configuration page of the device and how to connect the Raspberry Pi to their Wi-Fi.

3.2 HARDWARE/ELECTRICAL SET UP
The user is required to know how to use a screwdriver, and can follow snap-in, plug-in and clamping
instructions.

4 TECHNICAL ANALYSIS

4.1 DISCOVERABILITY
Norman describes good discoverability as “it is possible to determine what actions are possible and
the current state of the device” [1].

Within the software interface, actions that the user can take include turning the lights on and off,
adjust the brightness and color saturation of the lights. These actions are represented as switches,
sliders, and dropdown menus, and are highlighted in vivid blue to make it standout from the
background.

The module structure features many visual signifiers that indicate to the user how things can be
connected. All the components are uniquely shaped for its purpose and will be packaged in a way
that they will be easily identifiable.

4.2 FEEDBACK
Feedback is used to notify the user of any changes that have occurred to the system or device.

The software interface gives feedback to users by showing a small toast message at the bottom of
the screen explaining what changes have been made and disappears after few seconds. Figure 4.1
shows the example of the toast message that appears when a user changes the brightness using the
slider.

20

Figure 4.1: Example of Toast Message

For the module structure, indicators of whether it is correctly assembled include: if the screws are
fully embedded to secure the modules, and if the snap-fit and clamping mechanisms snaps to its
default position. When the user powers the lights for the first time, a quick visual test will show if
the lighting works.

4.3 CONCEPTUAL MODELS
The software interface uses different icons such as the icon of the sun and the palette to show the
user which direction leads to brighter setting and a higher saturation for the two sliders. These are
common symbols used in other interface products and is expected that they will be intuitive for the
user.

For the module structure, the user manual will aid in the user’s conceptual understanding of how to
fit the components together. It will follow conventional mechanics such as the insertion of screws
and the clamping structure already found in selfie sticks allowing the user to have an intuitive
understanding of how the structure is fitted. The shape of the module structure mimics the
rectangular frame of the monitor for an intuitive approach of how to evenly distribute the LEDs.

4.4 AFFORDANCES
Affordances are the perceived actions and properties of an object that help determine its operation.

The switch, sliders, and dropdown menu in the software interface shows the users that they can
interact with these components by either clicking or dragging them.

Clues for how to assemble the module structure are visually implied based on the shape of the
components. When two pieces easily fit, it is conveyed that they are intended to be arranged in that
manner. The screw threads indicate where to insert the screws.

4.5 SIGNIFIERS
For software, labels for brightness and saturation icons clarify the actions that can be done with the
corresponding slider.

21

For the modules structure, signifiers for how to connect the parts are implied by the shape of the
connectors. Signifiers of a complete and correct connection are whether it fits properly and if it
holds the structure properly.

4.6 MAPPINGS
By using conventional switch and sliders, users can intuitively understand how to interact and
change the settings, which includes the direction of the slider. As a result, the user can move the
cursor to the right to get the maximum value, which is conventional for most software interfaces.

To assemble, an assembly manual will include illustrative diagrams that clearly indicate how they are
mapped together. Visual mapping is also indicated by the shape, clearly identifying what is the
corresponding connection piece.

4.7 CONSTRAINTS
In the software interface, the current dashboard design is very simple with interactive controls to
change the common settings for the bias lighting. The more involved settings will be in the settings
page and can be accessed by clicking on the “Settings” link. This method prevents the user from
being overloaded with extra information and allows the user to focus on the core features of the
product.

When connecting the modules together, the unique interlocking shape only allows it to be fitted one
way. Figure 4.2 shows the cardboard mock-up for how to the connect modules together, of which
only one configuration fits. The modules, plug-in connectors, and clamping mechanisms all have
unique connector styles, allowing the user to only connect them in the way intended.

Figure 4.2: Module connector mock-up in all configurations

22

5 ENGINEERING STANDARDS
Below describes the relevant standards for networking and Wi-Fi from IEEE. Additional sources for
best practices are described in Material Design, a website for software interface. An online guide of
how to create snap-fit joint for plastics is also referenced.

IEEE 802.11 Wireless LAN Working Group [3]

CCNC.2004.1286913 Consumer electronics industry standards for in-home entertainment
networking and device connectivity [4]

Material Design Material is an adaptable system of guidelines, components, and tools
that support the best practices of user interface design [5]

Bayer Material Science Snap-Fit Joints for Plastics [6]

Table 4.7.1: Engineering standards and best practices interface and appearance design

23

6 USABILITY TESTING
This section details the analytical and empirical tests that will provide feedback to check if the
system is working properly. Software feedback is primarily visual. Testing for the module structure
involves whether the components fit and hold their structure well. Critical care should be taken to
ensure connectivity throughout the structure to make sure the lights will turn on. The tolerance and
the shape of the module may need to go through several design iterations to improve its reliability.
For 3D printing, a tolerance of 0.3mm is recommended for the print settings [7]. For fitted parts, a
0.08mm gap is recommended between each wall [8].

6.1 ANALYTICAL USABILITY TESTING

6.1.1 Software
 Connect the Raspberry Pi to the Wi-Fi
 Open the dashboard page from a computer or mobile device, which is connected to the

same Wi-Fi network as the Raspberry Pi
 Turn the lights on and off from the user interface

o Check that the toast message appears
o Verify that the lights turn on and off

 Adjust the brightness using the slider
o Check that the toast message appears
o Verify that the brightness of the lights will change according to the input given

 Adjust the color saturation using the slider
o Check that the toast message appears
o Verify that the color saturation of the lights change according to the input given

6.1.2 Modules
 Check if the LEDs light up with a brief light sequence when powered on
 Check the current to verify connectivity between modules
 Align the structure with a straight edge to check alignment
 Check to verify that wires are not exposed
 Check to ensure there are no sharp plastic edges

6.1.3 Clamping
 Check if the clamp can be fully extended and easily reverts to its neutral position

6.2 EMPIRICAL USABILITY TESTING
For the software, the empirical usability tests are similar to the analytical usability tests but requires
additional feedback from the users. This includes measurements such as the time to complete a step
and taking note of the bugs found.

The following tests to be done are:

 Connect the Raspberry Pi to the Wi-Fi
 Open the dashboard page from a computer or mobile device, which is connected to the

same Wi-Fi network as the Raspberry Pi
 Turn the lights on and off from the user interface
 Adjust the brightness using the slider

24

 Adjust the color saturation using the slider

An empirical check for the module structure includes, whether the parts fit together easily, if the
LEDs turn on, and if the clamps sufficiently hold it onto the monitor.

7 CONCLUSION
The core concept of this bias lighting kit is to keep the assembly and usability easy and flexible such
that an average consumer can use it with minimal technical expertise. With this idea in mind, the
core software interface is simple and intuitive, and the module structure uses connection methods
that are familiar to an average user.

The current state of the interface and appearance design is a developed interface of the core
software features and an overview of the module structure design. A prototype of these core
features will be shown in the proof-of-concept. This will include basic interactivity demonstrated
through the software interface. Module demonstration for the proof-of-concept include showing a
few samples of the different printed modules, how it connects with screws, lights that will turn on
based on user input from software, as well as how it will attach to a monitor.

For the final project, future work will largely include; refining the features based on new
considerations, testing the effectiveness of the current design methods described, and adding more
settings to improve customization features.

25

8 REFERENCES

[1] D. Norman, The Design of Everyday Things, Philadelphia: Basic Books, 2013.

[2] "How to connect two parts with 3D printed joints and snap fits," [Online]. Available:
https://www.sculpteo.com/blog/2018/04/25/how-to-connect-two-parts-with-3d-printed-joints-
and-snap-fits/. [Accessed 18 03 2021].

[3] "IEEE 802.11-2020 - IEEE Standard for Information Technology--Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks--Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (," IEEE,
[Online]. Available: https://standards.ieee.org/standard/802_11-2020.html. [Accessed 21 03 2021].

[4] "Consumer electronics industry standards for in-home entertainment networking and device
connectivity," IEEE, 5 Jan. 2004. [Online]. Available: https://ieeexplore-ieee-
org.proxy.lib.sfu.ca/document/1286913/metrics#metrics. [Accessed 21 03 2021].

[5] "Material Design," Google, [Online]. Available: https://material.io/design. [Accessed 21 03
2021].

[6] "Snap-Fit Joints for Plastics," [Online]. Available:
http://fab.cba.mit.edu/classes/S62.12/people/vernelle.noel/Plastic_Snap_fit_design.pdf. [Accessed
21 03 2021].

[7] "How to design snap-fit joints for 3D printing," [Online]. Available:
https://www.3dhubs.com/knowledge-base/how-design-snap-fit-joints-3d-printing/. [Accessed 15
03 2021].

[8] M. Forged, "3D Printed Joinery: Simplifying Assembly," [Online]. Available:
https://markforged.com/resources/blog/joinery-onyx. [Accessed 21 03 2021].

26

APPENDIX B: SUPPORTING TEST PLANS

1 PHYSICAL APPEARANCE AND STRUCTURE
Test Name: Module Fitting

Description: Test if modules can be fitted together

Passing Criteria: Modules structure is not loose when fully attached

Comments:

Time/Date: Tester: Result: Pass Fail

Test Name: Module Alignment

Description: Test if modules alignment is straight when chained together.

Passing Criteria: Check if from the straight edge of the first module to the final module does not
diverge by 5° per meter

Comments:

Time/Date: Tester: Result: Pass Fail

Test Name: Check securing methods

Description: Check if the snap-in, clamp-in and plug-in mechanisms are working

Passing Criteria: Check if the screws can be fully screwed into the heat-set inserts

Check if the clamp can be fully extended and easily reverts to its neutral position

Comments:

Time/Date: Tester: Result: Pass Fail

27

Test Name: Safety of Modules

Description: Check if the modules do not pose a hazard

Passing Criteria: Verify modules do not have sharp edges

Verify wires are not exposed

Comments:

Time/Date: Tester: Result: Pass Fail

Test Name: Clip-On Attachment

Description: Test if module structure will attach onto a monitor

Passing Criteria: Module structure attaches onto a monitor

Comments:

Time/Date: Tester: Result: Pass Fail

2 HARDWARE/ELECTRICAL
Test Name: Power On

Description: System must turn on

Passing Criteria: Raspberry Pi turns on

HDMI Splitter’s lights turn on indicating that it is powered

All LEDs turn on

Comments:

Time/Date: Tester: Result: Pass Fail

28

Test Name: Check connectivity between LED Modules

Description: Check the current between modules

Passing Criteria: Sufficient current is flowing through the modules

Comments:

Time/Date: Tester: Result: Pass Fail

3 USER INTERFACE
Test Name: Accessing the user interface from web browser

Description: Test if user interface is accessible from web browser on a computer in same
network

Passing Criteria: Web page loads with user interface displayed on browser

Comments:

Time/Date: Tester: Result: Pass Fail

Test Name: Turning On/Off LEDs

Description: Test if the switch for the LEDs works.

Passing Criteria: When the switch is turned on, LEDs would be turned on. Also, when turned off,
LEDs would be turned off.

Comments:

Time/Date: Tester: Result: Pass Fail

29

Test Name: Adjust brightness of LEDs

Description: Test if the brightness control of the LEDs works

Passing Criteria: When the brightness control in the UI is increased, the brightness of the LEDs
increase. Also, when brightness control is decreased, the brightness of the LEDs
decreases.

Comments:

Time/Date: Tester: Result: Pass Fail

Test Name: Analytical Usability Testing

Description: Test if all user interface works as expected.

Follow the procedure in Analytical Usability Testing in Appendix A.

Passing Criteria: Meets expected results in Analytical Usability Testing in Appendix A.

Comments:

Time/Date: Tester: Result: Pass Fail

30

5 BACK-END SOFTWARE DESIGN
Test Name: Video Input Detection

Description: Test if video input is detected

Passing Criteria: Video input is detected by the software

Comments on

Time/Date: Tester: Result: Pass Fail

Test Name: LED colors are changing

Description: Test if LED colors are changing

Passing Criteria: LED colors are changing

Comments:

Time/Date: Tester: Result: Pass Fail

Test Name: LED colors match video input

Description: Test if LED colors match the HDMI video input

Passing Criteria: LED colors match the border colors of the HDMI video input

Comments:

Time/Date: Tester: Result: Pass Fail

31

Test Name: Number of LEDs match

Description: Test if the LEDs display the appropriate colors when differing the number of LEDs
used

Passing Criteria: LED colors match the border colors of the HDMI video input even when using the
minimum and maximum LEDs supported

Comments:

Time/Date: Tester: Result: Pass Fail

32

APPENDIX C: REQUIREMENT SPECIFICATIONS

1 GENERAL REQUIREMENTS

Requirement ID Requirement Description

Req 1.1.C System must utilize a hardware device to analyse the video signal

Req 1.2.C System must have variable LED spacing

Req 1.3.C System must be able to provide power to all the sub-components
Table 6.2.1: General System Requirements Specifications

2 PHYSICAL APPEARANCE AND STRUCTURE REQUIREMENTS

2.1 GENERAL REQUIREMENTS
Requirement ID Requirement Description

Req 2.1.1.C Structure must be able to clip onto different monitors

Req 2.1.2.C Device must be easy to set up

Req 2.1.3.E The device must have a module structure for variable spacing
Table 2.1.1: General Physical Appearance and Structure Requirements Specifications

2.2 MODULE REQUIREMENTS
Requirement ID Requirement Description

2.2.1.C Must have electric connectivity between modules

2.2.2.C Modules must be durably connected to each other

2.2.3.E Module design must be compact
Table 2.2.1: Module Requirements Specifications

3 HARDWARE/ELECTRICAL REQUIREMENTS

Requirement ID Requirement Description

Req 3.1.C The device must have an on/off switch

Req 3.2.C The LED strips must have individually accessible RGB/RGBW LED’s

Req 3.3.C The device must be able to connect to devices interface connectors

Req 3.4.C LEDs from the modules must be controllable by the front-end software
Table 2.2.1: Hardware/Electrical Requirements Specifications

33

4 USER INTERFACE

4.1.1 General Requirements
Requirement ID Requirement Description

Req 4.1.1.C The application must have a user interface

Req 4.1.2.C The application must include an option to adjust brightness of the LEDs

Req 4.1.3.E The application must include option to adjust color saturation of the LEDs

Req 4.1.4.C The application must display whether it is connected to the device

Req 4.1.5.C
The application must be able to display any error messages transmitted from
the device

Req 4.1.6.E
The application must provide the user an interface to enter aspect ratio
information of the monitor, and send that information to the device

Table 2.2.1: General Front-End Software Requirements Specifications

4.1.2 Performance Requirements
Requirement ID Requirement Description

Req 4.2.1.E The application must have a start-up time of less than 10 seconds

Req 4.2.2.E
The application must not take longer than 30 seconds to connect to the
controller

Req 4.2.3.E
The application must not take longer than 5 seconds to send commands to
the device

Table 2.2.2: Front-End Software Performance Requirements Specifications

5 VIDEO PROCESSING

5.1.1 General Requirements
Requirement ID Requirement Description

Req 5.1.1.C The software should run with a Raspberry Pi 4

Req 5.1.2.C
The software must be able to determine the colors of the LEDs depending on
the display

Req 5.1.3.E
The software must be able to receive and transmit data from and to the
application

Req 5.1.4.E The software must ensure that the system never results in an undefined state

Req 5.1.5.E The software must ensure connectivity between devices

Req 5.1.6.E
The software must be able to adjust the brightness of the LEDs according to
the settings on the front-end software

Req 5.1.7.E The software should not turn on the LEDs if no input is detected

Req 5.1.8.E
The software must be able to receive information regarding the aspect ratio
of the monitor from the application, and change the colors of the LEDs
accordingly

34

Req 5.1.9.E
The software should adjust the brightness of the LEDs depending on the
display

Req 5.1.10.E The software should send appropriate error and warning messages
Table 2.2.1: General Back-End Software Requirements Specifications

5.1.2 Video Processing Requirements
Requirement ID Requirement Description

Req 5.2.1.C The software must be able to detect video input

Req 5.2.2.C
The software must be able to interpret and process video data from the input
source

Req 5.2.3.C
The software must use color averaging algorithms to determine the colors of
the LEDs

Req 5.2.4.F
The software should consider the frames per second of the source and adjust
the LEDs accordingly

Table 2.2.2: Software Video Processing Requirements Specifications

5.1.3 Performance Requirements
Requirement ID Requirement Description

Req 5.3.1.E The software must have a start-up time of less than 5 seconds

Req 5.3.2.E
The software must change the colours of the LEDs synchronously with the
display

Req 5.3.3.E
The software should automatically turn off after 5 minutes if no video data is
being transmitted

Req 5.3.4.E
The colors of the LEDs must be visually indistinguishable from the colors of
the display

Table 2.2.3: Software Performance Requirements Specifications

6 SUSTAINABILITY

Requirement ID Requirement Description

Req 6.1.F The device must be durable enough to handle movement to multiple devices

Req 6.2.F The variable spacers for the LEDs should not generate excessive waste
Table 2.2.1: Sustainability Requirements Specifications

7 SAFETY

Requirement ID Requirement Description

Req 7.1.F The LEDs must come with a light diffuser cover to prevent blinding

Req 7.2.F
The LEDs must comply with the recommendation outlined by IEEE Std 1789-
2015

Req 7.3.F
The LEDs must comply with the recommendations outlined by ST 196:2003
and RP 51:1995

35

Req 7.4.F
The system fully assembled should be completely enclosed and not pose an
electrical hazard

Req 7.5.F
The packaging of variable spacers and LEDs should display warnings for
choking hazard

Req 7.6.F The device should not have sharp edges
Table 2.2.1: Safety Requirements Specifications

8 ENGINEERING STANDARDS

Standard Description

IEEE Std 1789-2015
IEEE Recommended Practices for Modulating Current in High-Brightness
LEDs for Mitigating Health Risks to Viewers [1]

ST 196:2003
SMPTE Standard - For Motion-Picture Film — Indoor Theater and
Review Room Projection — Screen Luminance and Viewing Conditions
[2]

RP 51:1995

SMPTE Recommended Practice - Screen Luminance and Viewing
Conditions for 8-mm Review Rooms [3]

9 REFERENCES

[1] "IEEE Recommended Practices for Modulating Current in High-Brightness LEDs for Mitigating
Health Risks to Viewers," IEEE Std 1789-2015, Vols. 1-80, 5 June 2015.

[2] "ST 196:2003 - SMPTE Standard - For Motion-Picture Film — Indoor Theater and Review Room
Projection — Screen Luminance and Viewing Conditions," ST 196:2003, pp. 1-4, 20 Oct 2003.

[3] "RP 51:1995 - SMPTE Recommended Practice - Screen Luminance and Viewing Conditions for 8-
mm Review Rooms," RP 51:1995, pp. 1-2, 1 Jan 1995.

36

APPENDIX D: ALTERNATIVE DESIGN OPTIONS

1 LEDS:

Design Option Description

Adafruit NeoPixels 3.5 x 3.5 mm LEDs that are individually addressable

Adafruit DotStars
strips, 60 LED per
meter (Design
Choice)

5 x 5 mm LEDs that are individually addressable

2 SECURING MODULES TOGETHER

Design Option Description

Snap Fit Snap-fit design is a faster connection method

Screws (Design
Choice)

Screws is a reliable and common securing method

3 ELECTRIC CONNECTIVITY BETWEEN MODULES:

Design Option Description

Molex Compression
Connectors

Molex compression connectors is compact but alignment between the pads is
necessary

Molex 2.54 mm
connector Header
(Design Choice)

Header connectors common and easy to solder in connection

37

4 USER INTERFACE METHOD:

Design Option Description

Web Interface

Using webserver hosted in Raspberry Pi and Wi-fi connection to the local network,
user can access the UI by accessing the webserver from any browser that is
connected in the same local network.
Advantage:

 Able to control the settings such as brightness from anywhere, even the
display is attached on the wall and it is out of reach.

 Does not need Application to be installed onto computer or mobile device
to control.

Disadvantage:
 Only able to control when there is a Wi-fi connection.

Touchscreen
Monitor

Attaching a small screen (around 3.5in size screen) onto the Raspberry Pi, and
display settings and buttons to configure the system.
Advantage:

 The small screen is always there and easy to use.
Disadvantage:

 Cannot change the setting when the TV is mounted high on the wall and
the screen out of reach.

Mobile App via
Bluetooth

Using an application installed in mobile device or computer to control the device
via Bluetooth connection.
Advantage:

 Able to control the settings such as brightness from anywhere, even the
display is attached on the wall and it is out of reach.

Disadvantage:
 Require user to install the application onto mobile device or computer.
 Only device with Bluetooth capability can pair.
 Need to pair the device every time with mobile device or computer.

5 WEBSERVER SOFTWARE:

Design Option Description

Apache HTTP Server Suitable for small setup with a smaller number of requests

Nginx Suitable for processing large number of queries

Node.js Suitable for small number of requests, easier compatibility with WebSocket.

38

6 BACK-END SOFTWARE DESIGN

6.1 VIDEO PROCESSING

6.1.1 Software Coding Language

Design Options Description

Python (Design Choice)
Preferred language for Raspberry Pi’s. Supports a huge set of libraries.
Simple to understand. High-level. Object-oriented.

C++
Fast compiling programming language. Limited number of library
support. Relatively low-level in comparison. Object-oriented.

Java
Fast compiling programming language. Supports more libraries than C++
but less than Python. Code is convoluted. High-level. Object-oriented.

Arduino
Preferred language for Arduino boards and ESP32. Derived from
Processing. Simple to understand. Supports a smaller set of libraries
compared to Python.

6.1.2 Supported Video Resolution

Design Options Description

3840x2160@30Hz input,
1920x1080@30Hz processing
(Design Choice)

Hardware limitation of HDMI Capture Card. Good balance of processing
time and LED color quality.

3840x2160@30Hz input,
3840x2160@30Hz processing

Achievable by using an on-board HDMI decoder. Significantly increases
the video processing time.

6.1.3 Capturing HDMI Input

Design Options Description

Python Imaging Library
(Pillow) (Design Choice)

Friendly fork of PIL – a free and open-source library for Python that
supports opening, manipulating, and saving many different image file
formats.

Open Source Computer Vision
Library (OpenCV)

Library of programming functions that vary from video processing to real-
time computer vision.

Fast Forward MPEG (FFmpeg)
Free and open-source library for handling video, audio, and other
multimedia files and streams. Designed for command-line-based
processing of video and audio files.

6.1.4 Processing Border Colors
Design Options Description

Color averaging over squares
(Design choice)

The image is divided into squares depending on the number of LEDs
being used. The LED colors are determined by the average color of their
corresponding border square.

Color extrapolation The current frame and previous frames of the video are analyzed using a
motion compensation algorithm, and the next frame of the video is

39

predicted. The LED colors are determined by the average color of the
predicted frame.

Color based on a relative pixel
The image is divided according to the number of LEDs. The colors of the
LEDs are determined by the color of the pixel assigned to the LED.

6.2 LED DRIVER

6.2.1 LED Driver Library
Design Options Specifications

FastLED (Design choice)
Fast, efficient, easy-to-use library that supports the programming of
popular addressable LED strip including Neopixel, WS2801, WS2811,
WS2812B, LPD8806, TM1809, and more.

Adafruit DotStar

Adafruit's DotStar library, allowing a broad range of microcontroller
boards (most AVR boards, many ARM devices, ESP8266 and ESP32,
among others) to control Adafruit DotStars and compatible devices –
APA102, etc.

Pololu APA102-Arduino

C++ library that helps control addressable RGB LED strips and panels
based on the SK9822/APA102/APA102C RGB LED controller ICs. Provides
full access to the 24-bit color register and 5-bit brightness register of
each LED.

6.2.2 LED Refresh Rate
Design Options Specifications

60 times a second (Design
choice)

Able to cover lower resolutions at 60 Hz if needed.

30 times a second
Less processing required, but there will be significant loss in quality in
LED output if a 60 Hz input is used.

