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Abstract 

For the nervous system to develop properly, axons must connect neurons into networks 

by navigating to their target destinations.  A large proportion of genes containing 

extracellular Leucine-Rich Repeats (eLRRs) function in neurodevelopment, including in 

axon guidance.  The objective of this thesis is to identify novel eLRR genes in the 

Caenorhabditis elegans’ lron and iglr gene families that function in axon guidance.  

Animals with mutations in these genes were observed with pan-neuronal and pioneer 

markers to identify mutations that induced axon guidance defects.  Six mutants had 

significant axon guidance defects.  In addition, iglr-2 mutants were found to have 

fasciculation defects in the left ventral nerve cord.  lron-11 mutants had the most 

penetrant axon guidance defects.  Therefore, lron-11 animals were further characterized 

with several inter and motor neuron markers and further axon guidance defects were 

identified.  This research suggests that lron-11 and possibly other lron/iglr genes function 

as receptors in axon guidance. 

 

Keywords:  LRON; IGLR; Caenorhabditis elegans; Axon Guidance; Leucine-Rich 

Repeats; Neurodevelopment 
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Chapter 1. Introduction 

1.1. Development of Neural Circuits  

The human brain is the most complex structure in the known universe.  It 

contains approximately 100 billion neurons, which are supported by a comparable 

number of glial cells (Herculano-Houzel, 2009; Hilgetag and Barbas, 2009).  Each 

neuron is connected to other neurons via thousands of synapses (Pakkenberg et al., 

2003; Tang et al., 2001).  The goal of neurodevelopmental research is to understand 

how this vast network is constructed. 

We know that the nervous system originates during embryonic development 

when neural and glial precursor cells differentiate into neurons and glia respectively.  

These cells then migrate to regional positions in the fetal brain.  Next, these neurons 

send out processes, called axons, that travel relatively great distances before synapsing 

with a specific type of neuron, in a specific region of the brain.  Neurons communicate by 

sending electrical signals called action potentials along their axons to synapses at the 

tips of the axon.  At the synapse these action potentials are converted to chemical 

signals that will directly interact with the dendrites of another neuron.  The neural circuits 

created by these interconnected neurons will coordinate an organism’s movement, 

interpret sensory information, and in some animals, they are capable of performing 

incredibly complicated cognitive tasks such as planning and goal driven decision 

making. 

Axons properly connecting these neurons into coherent circuits is vital for the 

performance of these neural networks.  How all of these axons navigate to each of their 

disparate destinations is only beginning to be uncovered.  Scientists have discovered 

receptors on the axon’s surface that bind external molecules to providing directional 

information to the axon.  Some receptors bind diffusive molecular guidance cues, which 

can attract an axon along their concentration gradient or result in the axon being repelled 

from it.  Axonal receptors can also bind guidance cues imbedded in adjacent surfaces.  

Binding these cues can enable an axon to extend along this surface or can prevent an 

axon from extending along a surface that would take it in the wrong direction.  Some 

axon guidance receptors and their guidance cues have been discovered.  However, we 

haven’t identified many of the other proteins that interact with these receptors or 
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guidance cues to facilitate axon guidance.  In the few axon guidance pathways that have 

been well characterized, elucidating the complex interactions between different proteins 

in these pathways has reshaped our understanding of how these axon guidance cues 

and receptors guide axons.  Furthermore, due to the complexity and diversity of the axon 

guidance decisions required to create large neural networks, it is estimated that 

numerous axon guidance genes remain undiscovered (Chisholm et al., 2016). 

1.1.1. Axon guidance 

Neural circuits are often made up of neurons in different parts of the nervous 

system.  To connect with these distant cells, neurons must send axons relatively large 

distances.  At the extending edge of the axon is a growth cone, which must interpret the 

extracellular landscape to correctly navigate towards its target region.  Growth cones 

possess finger-like projections called filopodia, with lamellipodia sheets between the 

filopodia (Figure 1.2).  Growth cones use these projections to navigate through obstacles 

and identify the correct path toward their destination.  The filopodia accomplish this by 

integrating signals from the different guidance cues in their environment, through 

receptors present in their cell membrane.  These receptors become overrepresented on 

the side of the growth cone that faces an axon guidance cue, polarizing the growth cone 

(Bouzigues et al., 2007; Tojima et al., 2011). 
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Figure 1.1 Different types of axon guidance cues 
Axon guidance cues can be diffusible chemotropic cues, or substrate-bound adhesive cues.  
Cues can induce axon extension toward it or induce growth cone repulsion.  (Modified from 
Lowery and Van Vactor, 2009). 

Axon guidance cues can be chemotropic or adhesive (Figure 1.1).  Secreted 

chemotropic cues form gradients which provide directional information to the growth 

cone.  Adhesive cues present on adjacent cell surfaces provide guidance when the 

growth cone directly interacts with this surface.  Attractive adhesive cues can also 

mechanically bind the growth cone to their surface.  Guidance cues can also be bound in 

the extracellular matrix, which includes a fibrous network of collagen IV and laminin that 

supports cells and which axons extend along (Lowery and Van Vactor, 2009; Stoeckli, 

2018). 

Attractive cues induce the growth cone to turn toward them, while repulsive cues 

cause axons to be repelled away from them.  However, the same guidance cue can be 

attractive to some growth cones, and repulsive to others, depending on the receptors 

present in the growth cones membrane.  For example, netrins are secreted guidance 

cues that form a gradient capable of attracting or repelling growth cones (Hedgecock et 

Growth Cone 

Axon 
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al., 1990; Hong et al., 1999; Kennedy et al., 1994; Wadsworth et al., 1996).  This 

gradient can extend a considerable distance from the cells that originally secreted netrin.  

However, netrins can also become immobilized in the extracellular matrix, where they 

can act as a short range adhesion cue to growth cones extending along this substrate 

(Baker et al., 2006; Rajasekharan and Kennedy, 2009; Shekarabi et al., 2005).  It is 

important to note that, over a growth cones journey it may change the receptors on its 

surface.  This allows it to respond to different guidance cues at different times along its 

journey.  This spatiotemporal regulation of receptors can allow growth cones to change 

directions when necessary to reach its destination.  For more information, read this 

review (O’Donnell et al., 2009). 

1.1.2. Growth cone dynamics 

As described previously, growth cones contain filopodia projections with 

lamellipodia between them.  Filopodia are composed of f-actin bundles which are 

constantly being polymerized at the distal end and depolymerized at the proximal end 

(Figure 1.2).  When receptors respond to guidance cues, they induce changes in the rate 

of these two processes allowing for dynamic extension or retraction of filopodia (Figure 

1.3; Bugyi and Carlier, 2010; Okabe and Hirokawa, 1991; Small, 1995; Suter and 

Forscher, 2000).  Lamellipodia are composed of mesh-like networks of branched f-actin.  

Microtubules also extend into the filopodia, where they facilitate trafficking of cellular 

components and interact with actin (Figure 1.2; Cammarata et al., 2016).  However, 

most microtubules end near the base of the growth cone, where they are contained by 

actin-arcs (Figure 1.2).  When the growth cone moves in a direction, these arcs will 

reorient (Lee and Suter, 2008).  This allows the microtubules to advance, consolidating 

the growth cones movements. 
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Figure 1.2 Diagram of the growth cone cytoskeleton 
Filopodia consist of f-actin bundles and pioneer microtubules.  Lamellipodia contain f-actin 
networks.  Most microtubules remain at the base of the growth cone, where they are surrounded 
by f-actin arcs.  (Lowery and Van Vactor, 2009). 
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Figure 1.3 Growth cone cytoskeleton remodeling in response to guidance cues 
In response to axon guidance cues, the cytoskeleton of the growth cone will dynamically remodel 
itself.  F-actin bundles and pioneer microtubules will polymerize on the side of the growth cone 
facing an attractive cue.  F-actin and microtubules will depolymerize or be actively severed in 
response to negative cues, or attractive cues on the other side of the growth cone.  (Vitriol and 
Zheng, 2012). 

Receptors on the surface of the growth cone interact with specific guidance cues.  

These receptors then convert this extracellular signal into an intracellular one.  This 

intracellular signal will remodel the growth cone’s cytoskeleton.  If this signal is an 

attractive one, the cytoskeleton on that side of the growth cone will stabilize (Figure 1.3).  

Furthermore, the cytoskeleton on the far side of the growth cone will collapse (Figure 

1.3).  If the receptor’s intracellular signal is repulsive, the local cytoskeleton will collapse 

(Figure 1.3).  This remodeling is orchestrated by activating complex signaling pathways 

within the growth cone. 

Adhesive cues can also influence the growth cone mechanically, when adhesive 

cues are bound by adhesion receptors on the growth cones surface.  The adhesion 

receptors bridge the cell membrane to couple the extracellular substrate to the growth 
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cone’s intracellular cytoskeleton.  This coupling exerts a traction force on the f-actin 

bundles (Chan and Odde, 2008; Heidemann et al., 1990; Lowery and Van Vactor, 2009).  

In filopodia, the cell membrane has been forced outward, so there is a constant elastic 

force pushing the f-actin bundles inward, increasing their rate of depolymerization (Chan 

and Odde, 2008; Heidemann et al., 1990; Lowery and Van Vactor, 2009).  This traction 

force resists the elastic force, slowing the rate of depolymerization at the base of the f-

actin bundle.  Therefore, f-actin polymerization now outpaces depolymerization, leading 

to the extension of the filopodia in the direction of the adhesive cue. 

Rho-family GTPases such as Cdc42, Rac1 and RhoA, play a pivotal role in 

remodeling the actin cytoskeleton during axon guidance.  Most axon guidance receptors 

signal through them to influence the cytoskeleton (Figure 1.4; Koh, 2006).  While some 

receptors directly interact with Rho-family GTPases, many signal through guanine 

nucleotide exchange factors (GEFs) or GTPase activating proteins (GAPs) (Lowery and 

Van Vactor, 2009; Oinuma et al., 2004).  GEFs activate GTPases, while GAPs inhibit 

them (Koh, 2006).  Once mobilized, these GTPases will activate various downstream 

effectors, resulting in the spatially asymmetrical polymerization or depolymerization of f-

actin. 
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Figure 1.4 Simplified depiction of intracellular signaling pathways that remodel 

the growth cones cytoskeleton during axon guidance 
When axon guidance cues bind their receptors on the growth cone’s surface, this will elicit an 
intracellular signal that will remodel the cytoskeleton.  Different receptors will activate different 
intracellular signaling pathways.  (Lowery and Van Vactor, 2009).   

1.2. Caenorhabditis elegans as a model organism for 
axon guidance 

C. elegans are a species of round worm.  They grow to approximately 1mm in 

length as adults.  Due to their small size and fast generation time of three to four days, 

experiments on hundreds of worms can be prepared and executed quickly.  The nervous 

system of C. elegans is also small, consisting of just 302 neurons, which form about 

7000 synapses (White et al., 1986).  These neurons have been grouped into 118 

classes based on their connections, and their morphology (White et al., 1986).  The 

entire connectome has been discovered through electron microscopy, and it is 

consistent between individuals (White et al., 1986).  This allows for a detailed analysis of 

neural circuits, and errors in neurodevelopment can be more easily identified.  C. 
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elegans are also transparent, so fluorescent labeling can be utilized to visualize subsets 

of neurons (Hutter, 2006).  It is even possible to visualize some neurites as they grow 

(Bao and Murray, 2011; Fan et al., 2019). 

1.2.1. C. elegans ventral nerve cord 

Most neuron cell bodies are part of ganglia in the head or in the tail of the worm.  

C. elegans largest neuropil is the nerve ring, which is located in the head.  Two major 

longitudinal axon bundles traverse the length of the animal, the dorsal nerve cord (DNC), 

and the ventral nerve cord (VNC) (Figure 1.5).  Of these, the VNC is the largest, and is 

located on the ventral side of the animal.  It is the C. elegans equivalent of the spinal 

cord of vertebrates.  Many axons enter the VNC running posteriorly from the head, in 

two parallel tracts.  Most axons will enter the right tract, resulting in an asymmetrical 

VNC.  In total, there are 50 axons in the right tract, and only 4 in the left tract.  Since 

most synapses in C. elegans are made along the length of the axon (en passant) instead 

of at the end, the position of an axon within the VNC will determine its synaptic partners 

(Hall and Russell, 1991; White et al., 1986). 

 
Figure 1.5 Diagram of the C. elegans ventral nerve cord 
This diagram displays some of the neurons that send axons into the VNC.  AVG pioneers the 
right axon tract, extending from just posterior of the nerve ring.  PVPR pioneers the left VNC, 
extending from the tail.  DA, DB, VD and DD motor neurons are located between the two tracts of 
the VNC.  They send neurites into the right tract, and commissures dorsally.  HSN neurons send 
their axons into the VNC near the vulva later in development and extends anteriorly.  AVK 
neurons send their axons into the nerve ring, where they then enter the VNC and extend 
posteriorly.  PVQL and PVQR enter the left and right VNC respectively from the tail.  Command 
interneurons are not depicted here, they would be extending from the head posteriorly down the 
right axon tract.  Reproduced with permission of Development (Steimel et al., 2010). 
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The VNC is pioneered by two neurons, AVG and PVPR (Durbin, 1987).  AVG 

pioneers the right tract, and PVPR pioneers the left (Figure 1.5).  These axons are 

important, because the later extending axons, termed follower axons, will typically utilize 

these pioneer axons to help guide them in the VNC.  This includes the PVQL interneuron 

whose axon will closely follow the PVPR axon as it pioneers the left tract (Durbin, 1987).  

The pioneer growth cones must navigate to their destination without the benefit of an 

established tract, so they must rely on axon guidance cues in their extracellular 

environment to navigate.  Therefore, these are important axons to observe in axon 

guidance research. 

Other notable neurons in the VNC include the command interneurons.  Their cell 

bodies are located in the head and their axons will enter the anterior VNC and travel 

posteriorly along the right tract.  Another type of interneuron is the AVK neurons, whose 

axons must initially navigate anteriorly through the nerve ring before entering the VNC.  

AVKR’s axon enters the left axon tract and AVKL’s axon enters the right one.  

Interestingly, although AVKR extends along the left tract, it doesn’t require the pioneer 

PVPR to navigate along the VNC.  The HSN motor neurons migrate from the tail to just 

posterior of the vulva after embryogenesis.  The HSN axons must make several 

important guidance decisions.  First HSNL and HSNR must send their axons ventrally 

into the VNC, where they then should choose to extend anteriorly along the left and right 

tracts respectively. 

Another important class of neuron in the VNC are the DA, DB, DD and VD motor 

neurons.  These motor neurons cell bodies are located between the two axon tracts, 

spread out along the ventral midline of the VNC (Figure 1.5).  The A- and B-type motor 

neurons DA and DB are cholinergic and the D-type motor neurons DD and VD are 

GABAergic.  These motor neurons send their neurites into the right VNC and send their 

commissures dorsally to the DNC (Figure 1.6).  Each motor neuron will send their 

commissure dorsally up the left side of the animal, or the right side in a consistent 

pattern. 
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Figure 1.6 Depiction of DA/DB and VD/DD motor neurons 
The DA/DB and DD/VD motor neurons all send commissures dorsally where they eventually 
enter the DNC.  They also send neurites into the right VNC.  The DA/DB motor neurons are 
excitatory whereas the DD/VD motor neurons are inhibitory.  Neuromuscular junctions on axons 
are shown as black triangles.  Dendritic synapses are shown as hollow triangles. (Edited from 
https://www.wormatlas.org/neurons/Individual%20Neurons/DDframeset.html). 

1.3. Guidance cues and their receptors 

In recent decades, researchers have discovered various genes functioning in 

axon guidance.  These genes encode some of the guidance cues that provide spatial 

information to growth cones as they navigate through their environment.  They also 

encode receptors that allow growth cones to respond to these extracellular cues.  

Without these receptors, growth cones would be blind to their surroundings and be 

unable to navigate to their target destination.  However, mutations in these known 

guidance cues and receptors typically have partially penetrant axon guidance defects, 

implying there are parallel signaling pathways that haven’t yet been discovered.  

Furthermore, the known axon guidance genes don’t seem to fully account for all the 

guidance decisions axons make.  Therefore, while this section covers most of the major 

known guidance cues and receptors, there are likely other important genes that have yet 

to be discovered. 

1.3.1. UNC-6/netrin and its UNC-40/DCC and UNC-5 receptors 

UNC-6/netrin was the first axon guidance cue to be discovered.  It was named 

after the Sanskrit word Netr, which means ‘guide’.  This discovery was made in C. 

elegans, where researchers uncovered its involvement in dorsal-ventral axon navigation 

(Hedgecock et al., 1990).  Its homolog netrin was later discovered in vertebrates 

(Kennedy et al., 1994).  UNC-6/netrin is a highly conserved secreted protein with 

similarities to laminin, and it is thought to associate with the basement membrane 

(Hedgecock et al., 1990; Ishii et al., 1992).   

https://www.wormatlas.org/neurons/Individual%20Neurons/DDframeset.html
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In C. elegans, it is released by ventral cells to form a dorsal-ventral gradient 

(Wadsworth et al., 1996).  It was originally proposed that growth cones expressing UNC-

40/DCC were attracted to UNC-6, and growth cones expressing UNC-5 were repulsed 

(Hedgecock et al., 1990).  It has since been discovered that UNC-40 also plays a role in 

repulsion from UNC-6, by forming a heterodimer with UNC-5 (Hong et al., 1999).  This 

complex is important for long distance repulsion from UNC-6, where the concentration of 

UNC-6 is low (MacNeil et al., 2009).  More recently, it has been revealed that UNC-5 is 

also involved in ventral axon navigation, toward high concentrations of UNC-6 (Levy-

Strumpf and Culotti, 2014; Limerick et al., 2018).  Furthermore, the UNC-6 gradient is 

used in C. elegans to guide some motor and interneurons along the ventral nerve cord, 

including the pioneer PVPR (Hutter, 2003).  In unc-6 mutants these axons will 

sometimes inappropriately cross the ventral midline into the parallel axon tract (Hutter, 

2003). 

Unlike C. elegans, Drosophila melanogaster and vertebrate genomes contain 

multiple netrins, however, netrin still plays a similar role during development in these 

organisms (Harris et al., 1996; Kennedy et al., 1994).  In Drosophila, netrins are also 

expressed at the ventral midline, where it is an important cue for commissures 

navigating along the dorsoventral axis (Harris et al., 1996).  In rats, it was found that the 

netrin secreting floor plate, the ventral-most part of the spinal cord, would attract 

commissures from the roof plate in vitro (Kennedy et al., 1994).  Thus, it was posited 

that, like in C. elegans, the floor plate expressed netrins diffuse into a dorsal-ventral 

gradient that commissures then used to navigate.  However, more recent in vivo studies 

utilizing genetic manipulation of mice demonstrated that Netrin-1 expression from cells 

along the commissure’s path may be more important to guide the axons along the 

dorsoventral axis, where they act as an adhesive cue instead of a diffusive one 

(Dominici et al., 2017; Varadarajan et al., 2017). 

1.3.2. SLT-1/Slit and SAX-3/Roundabout 

Slit is a repulsive axon guidance cue that was discovered in Drosophila 

(Rothberg et al., 1990, 1988).  In Drosophila, axons travel along parallel tracts in the 

ventral nerve cord, and cross between these tracts at specific points.  The growth cones 

are prevented from crossing between tracts by the secreted repellent cue Slit which is 

released by glia cells in the midline (Kidd et al., 1999).  Robo receptors expressed by 
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growth cones traveling along these axon tracts bind to Slit, resulting in repulsion from the 

midline.  However, when an axon needs to cross the midline, this repulsion is no longer 

beneficial.  Therefore, trafficking of the Robo receptors to the growth cone membrane is 

halted, which allows the growth cone to temporally ignore Slit’s repulsion, and travel 

across the ventral midline (Keleman et al., 2005; Kidd et al., 1999).   

In mice, there are three Slit paralogs, as well three Robos (Dickson and Gilestro, 

2006).  Similar to Drosophila, the Slit proteins repel commissures from the ventral 

midline through interactions with Robo receptors (Brose et al., 1999; Long et al., 2004).  

However, ROBO3’s function has diverged, and it does not directly interact with Slit.  

Instead, one of its isoforms binds to Robo1 to promote Robo1’s binding to Slit, the other 

isoform binds to Robo1 to inhibit this binding (Blockus and Chédotal, 2016; Z. Chen et 

al., 2008). 

Slit’s homolog in C. elegans is SLT-1 (Hao et al., 2001).  SLT-1 is expressed by 

dorsal body wall muscles and promotes ventral navigation through long range repulsion, 

in parallel with UNC-6/UNC-40 ventral attraction (Hao et al., 2001).  UNC-40 also 

interacts with SAX-3, C. elegans’ Robo receptor, to mediate repulsion from SLT-1 (Yu et 

al., 2002).  Unlike its homolog Slit, SLT-1 does not play a major role in preventing 

midline crossovers (Hao et al., 2001; Hutter, 2003).  However, when sax-3 is mutated 

animals exhibit penetrant ventral midline crossing events and nerve ring positioning 

defects that are not observed in slt-1 mutants, suggesting it is involved in an SLT-1 

independent axon guidance pathway (Hao et al., 2001; Hutter, 2003; Zallen et al., 1998).   

SAX-3/Robo likely binds SLT-1/Slit through its Leucine-Rich Repeat (LRR) 

domain since mutations in SLT-1/Slit’s LRR domain result in midline crossing defects 

(Battye et al., 2001; Hao et al., 2001).  Furthermore, in Drosophila this phenotype could 

only be rescued by expression of a Slit protein with an intact LRR domain (Battye et al., 

2001).  Slit has also been shown to bind to Robo in vitro, but only if its LRR domain is 

present (Battye et al., 2001).   

1.3.3. Ephrins 

Ephrins act as anti-adhesion cell surface bound proteins in axon guidance.  

EphrinAs are glycosylphosphatidylinositol (GPI)-linked proteins, and EphrinBs are 
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transmembrane proteins; EphA and EphB receptors bind to the corresponding ephrinA 

and ephrinB families (Chilton, 2006).  Both ephrins and their receptors can transduce 

signals, enabling bidirectional signaling when they interact (Arvanitis and Davy, 2008; 

Holland et al., 1996). 

Crosstalk between ephrin signaling and netrin/Unc-5 signaling has been 

discovered in vertebrate motor axon navigation during limb development (Poliak et al., 

2015).  However, ephrin signalling’s most well characterized role is to guide growth 

cones projecting from the retina to their correct position in the tectum’s topographic map, 

which corresponds to the neuron cell bodies spatial position within the retina (Cang and 

Feldheim, 2013; Hindges et al., 2002; Lemke and Reber, 2005).  ephrinAs are 

expressed in a repulsive gradient along the anterior-posterior axis of the tectum.  

ephrinA concentrations are high at the posterior of the tectum and low on the anterior 

side of the tectum.  Similarly, ephrinBs are expressed in a gradient along the 

dorsoventral axis, with high expression on the dorsal side and low expression on the 

ventral side.  However, this ephrinB gradient is attractive.  Depending on a neuron’s 

position in the retina, its growth cones will express different levels of the ephA and ephB 

receptors, which will allow it to navigate to a specific position in the tectum by interacting 

with these ephrin gradients.  The more ephA receptors a growth cones expresses, the 

more strongly it will be repelled toward the anterior side of the tectum.  The more ephB a 

growth cones expresses, the more it will be attracted toward the dorsal side of the 

tectum. 

C. elegans have four GPI-anchored ephrins, VAB-2/EFN-1, EFN-2, EFN-3, and 

EFN-4, and one ephrin receptor VAB-1 (Chin-Sang et al., 1999; George et al., 1998; 

Wang et al., 1999).  VAB-2, EFN-2, and EFN-3 act redundantly to prevent axons from 

inappropriately crossing the ventral midline of the VNC (Boulin et al., 2006).  They signal 

through the VAB-1 receptor to promote growth cone collapse (Boulin et al., 2006).  EFN-

2, EFN-3, EFN-4, and VAB-1 signaling also plays a role in the proper termination of 

some axons (Mohamed and Chin-Sang, 2006).  VAB-2, in parallel with SAX-3 and UNC-

6, guides amphid axons ventrally (Grossman et al., 2013; Zallen et al., 1999).  

Interestingly, hypoxia induces axon guidance defects through the upregulation of VAB-1 

expression (Pocock and Hobert, 2008).  EFN-4 is the most divergent ephrin in C. 

elegans and signals non-canonically in the dorsal navigation of SDQ axons, and the 
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extension of AIY and D-type motor neurons (Chin-Sang et al., 2002; B. Dong et al., 

2016; Schwieterman et al., 2016). 

1.3.4. Wingless/Wnt and Frizzled receptors 

In Drosophila, Wnt5 signals at the posterior commissure to repel some 

commissures anteriorly via a non-canonical Derailed receptor (Yoshikawa et al., 2003).  

However, this function is not directly conserved in vertebrates, where Wnt signaling 

instead has an attractive effect on commissural guidance in the spinal cord.  Once 

commissures cross the floor plate, they are attracted rostrally by a Wnt gradient and 

repelled by Sonic hedgehog caudal expression (Bourikas et al., 2005; Lyuksyutova et 

al., 2003). 

In C. elegans, there are five Wingless/Wnt genes, MOM-2, ELG-2-, LIN-44, 

CWN-1 and CWN-2, and four frizzled receptors, MOM-5, LIN-17, MIG-1 and CFZ-2 

(Chisholm et al., 2016).  These proteins have diverse functions in C. elegans, however 

their role in axon guidance is diminished in comparison to vertebrates (Sawa and 

Korswagen, 2013; Yam and Charron, 2013).  In C. elegans, Wnts and their receptors 

impact the anterior-posterior outgrowth and navigation of several axons (Kennerdell et 

al., 2009; Maro et al., 2009; Pan et al., 2006; Song et al., 2010).  Wnt signaling has also 

been implicated in determining the anterior-posterior polarity of several neurons (Hilliard 

and Bargmann, 2006; Prasad and Clark, 2006).  Notably, the pioneer AVG exhibits 

polarity defects due to excessive Wnt signaling in plr-1 mutants (Bhat et al., 2015; Moffat 

et al., 2014).  lin-17/frizzled mutants do display highly penetrant PVPR crossover defect, 

and defects in PVQL’s ability to fasciculate to PVPR (Steimel et al., 2010).   

1.3.5. Heparan sulfate and heparan sulfate proteoglycans 

Heparan sulfate is a long polysaccharide chain that can attach to core proteins to 

form heparan sulfate proteoglycans (HSPGs).  Enzymes modify its structure, and the 

differential modification of heparan sulfate in different parts of the developing organism, 

including modification of HSPGs, could act as a code that directs axon and cell 

navigation (Bülow and Hobert, 2004).  In mice unable to synthesize heparan sulfate, the 

optic chiasm retinal axon and forebrain commissure defects observed were similar to 

Slit1/Slit2 double mutants and netrin-1 mutants defects respectively (Inatani et al., 2003).  
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Further work in mice revealed that without heparan sulfate, spinal commissures could 

not respond to netrin, suggesting that heparan sulfate is required for netrin signaling in 

these neurons (Matsumoto et al., 2007).  Research in Drosophila confirmed that heparan 

sulfate functions in the Slit signaling pathway, through the HSPG Syndecan binding both 

Slit and Robo (Johnson et al., 2004; Steigemann et al., 2004).  Syndecan may act as a 

coreceptor that modulates Slit signaling.  Furthermore, severe disruption of heparan 

sulfate synthesis in zebrafish induces defects in retinal axons similar to the ast/Robo2 

mutant, indicating that heparan sulfate is required for Slit signaling in these axons (Lee 

et al., 2004). 

In C. elegans, heparan sulfate has been implicated in axon guidance as well.  

The three heparan sulfate modifying enzymes and the HSPG SDN-1/Syndecan have 

been found to have nuanced roles in axon guidance (Rhiner et al., 2005).  Mutations in 

SDN-1/Syndecan and the different modifying enzymes cause various inter and motor 

neurons axons to aberrantly cross the midline and result in motor neuron commissures 

defects (Bülow and Hobert, 2004; Rhiner et al., 2005).  However, while sometimes these 

genes work together to guide an axon, the profile of axon guidance defects across 

different neurons in these mutants is unique.  Like in other organisms, SDN-1/Syndecan 

was found to interact with SLT-1/Slit in the guidance of the AVM axon (Blanchette et al., 

2015).  The HSPG LON-2/glypican was also discovered to function in axon guidance 

(Blanchette et al., 2015; Bülow et al., 2008; Gysi et al., 2013).  LON-2/glypican 

associates with UNC-40/DCC and was required for UNC-6/netrin signaling during AVM 

and inhibitory motor neuron neurite guidance (Blanchette et al., 2015; Gysi et al., 2013).  

However, this function did not require LON-2/glypican’s heparan sulfate chain.  Minor 

axon guidance defects have also been observed in the HSPGs UNC-52/Perlecan and 

CLE-1/collagen XVIII (Chisholm et al., 2016).  Interestingly, while null mutations in vital 

heparan sulfate elongating enzymes are lethal, partial loss of function mutations in these 

enzyme that greatly reduce the amount of heparan sulfate in the embryo have highly 

penetrant axon guidance defects in many neurons, including PVQ, AVM, HSN, DD/VD 

and DA/DB motor neurons (Blanchette et al., 2017).  This suggests that heparan sulfate 

might play a larger role in C. elegans axon guidance than was previously thought. 
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1.4. Adhesion receptors in axon guidance 

1.4.1. Cadherins 

Cadherins are a family of cell adhesion proteins that function in tissue formation 

and nervous system patterning during development (Gumbiner, 1996; Takeichi, 1995).  

Calcium binds to adjacent cadherins, resulting in the formation of a rigid rod structure 

and homophilic binding (Hill et al., 2001; S. D. Patel et al., 2003).  Classical cadherins 

have a conserved intracellular domain that allows them to interact with catenins, which 

can link the receptor to the actin cytoskeleton (Pettitt, 2005; Ranscht, 1994; Stepniak et 

al., 2009).  Classical cadherins also function as sensors that signal through catenins 

which participate in developmental signaling pathways such as the Wnt pathway 

(Clevers, 2006; Grigoryan et al., 2008; Stepniak et al., 2009).  Classical cadherins have 

also been implicated in the outgrowth of retinal axons (Riehl et al., 1996).  The C. 

elegans genome contains 12 cadherin genes, which encode 13 cadherin proteins, but 

only hmr-1 is a classical cadherin (Cox et al., 2004; Hill et al., 2001).  One of its splice 

variants, HMR-1B, plays a modest role in D-type motor neuron commissure guidance 

and AS motor neuron axon fasciculation, probably as a link between the growth cone 

and its substrate (Broadbent and Pettitt, 2002). 

However, other C. elegans cadherins have been implicated in axon guidance, 

such as the Fat-like cadherin CDH-4.  It contains the conserved 34 cadherin repeats 

characteristic of Fat cadherins and is expressed in most neurons (Tanoue and Takeichi, 

2005).  cdh-4 mutations result in the disorganization of the VNC and DNC axon bundles, 

but axons that navigate individually were unaffected (Schmitz et al., 2008).  This 

suggests CDH-4 may function in axon fasciculation.  However, axon outgrowth polarity is 

affected in some interneurons and motor neurons in cdh-4 mutants, suggesting it may 

also have a non-adhesive function (Schmitz et al., 2008).  Another cadherin implicated in 

axon guidance is FMI-1 (Flamingo)/Starry night, which is a seven-pass transmembrane 

cadherin that functions in the planar cell polarity signaling pathway in Drosophila (Usui et 

al., 1999).  In C. elegans, fmi-1 mutations cause defects in synapse development and in 

axon guidance (Najarro et al., 2012; Steimel et al., 2010).  D-type motor neurons send 

errant commissures into the left VNC and motor neurons often send commissures up the 

wrong side of the animal in fmi-1 mutants (Steimel et al., 2010).  fmi-1 mutations also 

induce interneuron midline crossing defects in the VNC, including in the pioneer axon, 
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PVPR (Steimel et al., 2010).  However, unlike in most other genes that are involved in 

PVPR guidance, fmi-1 mutants also display pioneer/follower fasciculation defects 

between PVQL and the pioneer PVPR (Steimel et al., 2010). 

1.4.2. IgCAMs 

IgCAMs are a family of cell surface proteins consisting of immunoglobulin 

domains and sometimes containing additional fibronectin III repeats.  They can mediate 

both homophilic and heterophilic adhesion (Cox et al., 2004).  Furthermore, members of 

this family, which includes previously described UNC-40/DCC and SAX-3/Robo, act as 

receptors for secreted guidance cues (Dickson, 2002).  In mice, IgCAMs have been 

shown to function in the development of its retinal axon pathways.  Nr-CAM signals to 

reverse the semaphorin/plexin repulsion pathway to promote retinal axon adhesion 

(Kuwajima et al., 2012).  DSCAM (Down syndrome cell adhesion molecule) also 

promotes the outgrowth and fasciculation of retinal axons (Bruce et al., 2017). 

The C. elegans genome contains 17 IgCAMs, several of which function in axon 

guidance (Hutter et al., 2000; Teichmann and Chothia, 2000).  Mutations in lad-2/L1CAM 

produce axon misdirection or extension defects in SMD, PLN, and SPQ neurons (X. 

Wang et al., 2008).  LAD-2 has been shown to function as a non-canonical ephrin 

receptor, interacting with EFN-4 to mediate SPQ axon guidance (B. Dong et al., 2016).  

RIG-6/Connectin acts in the extension PLM and ALM axons and plays a minor role in D-

type motor neuron axon guidance (Katidou et al., 2013).  It also acts redundantly with 

RIG-1, RIG-3, and RIG-5 to prevent midline crossing of interneurons in the VNC 

(Schwarz et al., 2009).  wrk-1 mutants also display midline crossing defects in 

interneurons in the VNC, including in PVPR (Boulin et al., 2006; Schwarz et al., 2009).  

WRK-1 is capable of interacting with VAB-1 and VAB-2, and wrk-1 mutants have similar 

midline crossing defects to vab-1 worms (Boulin et al., 2006).  Since WRK-1 is 

expressed by motor neurons along the ventral midline, it has been hypothesized that it 

repels VAB-1 expressing growth cones (Boulin et al., 2006).   
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1.5. The leucine-rich repeat motif 

1.5.1. Leucine-rich repeat proteins 

Although the Leucine-Rich Repeat (LRR) protein SLT-1/Slit is an important axon 

guidance cue, many other LRR proteins have not been well studied in the context of 

axon guidance.  However, the LRR domain’s ability to bind disparate proteins and the 

prevalence of the characterized LRR proteins in neurodevelopmental functions makes 

LRR proteins good candidates when looking for novel axon guidance genes (Bando et 

al., 2005; Dolan et al., 2007).  The LRR motif is a common protein motif and is present 

throughout the three domains of life: eukaryotes, prokaryotes and archaea.  It was first 

recognized in the leucine-rich α2-glycoprotein in 1985 (Bella et al., 2008; Takahashi et 

al., 1985).  LRRs are 20-30 amino acids long and contain the following sequence: 

LxxLxLxxNxL; L is leucine, N is asparagine and x can be any amino acid (Kobe and 

Kajava, 2001).  However, other hydrophobic amino acids can sometimes replace leucine 

and asparagine.  A single LRR consists of a β sheet and a α helix.  Multiple LRRs 

domains together form a larger, concave β sheet that facilitates protein-protein 

interactions (Kobe and Deisenhofer, 1994).  However, the general structure of LRR 

proteins can vary greatly, allowing them to bind to diverse ligands (Figure 1.7).  LRR’s 

have also been shown to dimerize in some cases (Kajander et al., 2011; Scott et al., 

2006, 2004).  

 
Figure 1.7 Depiction of the structure of various LRR proteins 
LRR repeats together form a concave β sheet that is used for protein-protein interactions.  The 
variance in shape of LRR proteins is displayed in this figure.  The LRR domain is in blue, the 
flanking regions that are important for the LRR’s function are in gray, and other domains are 
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depicted in pink.  These proteins are  a) RI (PDB code 2BNH), b) rna1p (PDB code 
1YRG), c) U2A′–U2B″ (PDB code 1A9N), d) TAP (PDB code 1FO1), e) RabGGT (PDB code 
1DCE), f) dynein LC1 (PDB code 1DS9), g) InlB (PDB code 1D0B), h) Skp2–Skp1 (PDB code 
1FQV) and i) YopM (PDB code 1G9U).  (Modified from Kobe and Kajava, 2001). 

The majority of LRR proteins are involved in signal transduction pathways (Kobe 

and Deisenhofer, 1994).  As a common protein type, LRR proteins are involved in many 

processes including adhesion, extracellular matrix formation, RNA processing, immune 

response, apoptosis, modulation of voltage gated channels, memory, and neural 

development (Bando et al., 2005; Bella et al., 2008; Ma et al., 2006; Peltola et al., 2011).  

Extracellular LRR (eLRR) proteins in particular have been discovered to function in 

many neural processes, including in synapse formation, synapse plasticity, 

dendrite/axon guidance, and fasciculation (Bando et al., 2005; Dolan et al., 2007). 

The LRR TransMembrane neuronal (LRRTMs) proteins are a family of single-

pass transmembrane proteins that contain only LRRs on their extracellular domain 

(Figure 1.8c, 1.8f; de Wit and Ghosh, 2014).  This family is expressed on the 

postsynaptic membrane and is involved in excitatory synapse differentiation.  The most 

well characterized member of this family, LRRTM2, functions in postsynaptic 

differentiation by recruiting synaptic proteins, such as the important scaffolding protein 

PSD-95 (via its PDZ binding motif), as well as glutamate receptor subunits (de Wit et al., 

2009; Linhoff et al., 2009).  LRRTM1 and LRRTM2 also promote presynaptic 

differentiation by transynaptically binding to the influential presynaptic organizer neurexin 

with their LRR domains (Ko et al., 2009; Yamagata et al., 2018).  LRRTM4 induces 

presynaptic differentiation through a different mechanism, by binding glypicans, a 

heparan sulfate proteoglycan (de Wit et al., 2013). 
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Figure 1.8 Illustration of prominent eLRR proteins involved in the nervous 

system 
eLRR proteins function in many neuronal signaling pathways.  This figure depicts some of the 
influential eLRR proteins that are involved in a) Axon guidance, b) neurite target selection, c) 
synapse formation, d) Myelination, e) Plasticity, and eLRRs that are implicated in f) Nervous 
System disorders.  Modified from de Wit et al., 2011). 

LRRTMs also play a role in mature synapses.  If LRRTM1 or LRRTM2 are 

mutated in CA1 mouse hippocampal neurons, long-term potentiation (LTP) is blocked 

(Soler-Llavina et al., 2013).  This can only be rescued through re-expression of their 

extracellular domain.  LRRTM1 and LRRTM2 stabilize AMPA receptors in mature 

synapses, and therefore their loss prevents the increase in AMPA receptors that occurs 

during LTP (Bhouri et al., 2018).  No known invertebrate homologs exist for this 

extracellular LRR (eLRR) family, however C. elegans do possess a group of proteins 
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(LRON proteins) with similar domain structure, which have been largely uncharacterized 

(de Wit et al., 2011). 

Many other eLRR proteins have functions in the nervous system.  The Slitrks, 

synaptic adhesion-like molecules (SALM), fibronectin leucine-rich repeat transmembrane 

protein (FLRT) and Netrin G ligands (NGLs) families all function in synaptogenesis 

and/or synaptic transmission (Figure 1.8; (de Wit and Ghosh, 2014).  Other eLRR’s such 

as the eLRR protein Caps and Toll receptors function in axon and dendrite target 

selection, where neural processes choose which neurons to synapse with (Figure 1.8b; 

de Wit et al., 2011; Rose et al., 1997).  Importantly, a number of these eLRR genes have 

also been discovered to function in axon guidance. 

1.5.2. Leucine-rich repeat proteins in axon guidance 

As previously described, the secreted eLRR SLT-1/Slit has a well characterized 

role in axon guidance.  More recently, other eLRR proteins have also been found to act 

in axon guidance pathways.  In mouse thalamic neurons, FLRT3 actually functions in the 

Slit pathway in mice.  FLRT3 is a transmembrane eLRR protein that also contains a 

fibronectin domain.  In mice, it is a coreceptor to Robo1, and in the presence of Slit1, it 

promotes attraction to netrin by upregulating the DCC receptor (Leyva-Díaz et al., 2014).  

Intriguingly, FLRT2 and FLRT3 have also been shown to shed their extracellular 

domains and bind to Unc-5B and Unc-5D receptors as an inhibitory cue for mouse 

cortical axons (Yamagishi et al., 2011). 

The TRK receptors, part of the cell-surface receptor tyrosine kinase (RTK) family, 

consist of a smaller LRR domain, with two immunoglobulin (IG) domains on its 

extracellular surface (Figure 1.8a).  They also have an intracellular tyrosine kinase 

domain.  Trk’s are important neurotrophin receptors that function in neuron survival and 

synapse development (Barbacid, 1994; Huang and Reichardt, 2001).  Their IG domain is 

important for binding neurotrophins, while their LRR domain modulates this ligand 

interaction (Ultsch et al., 1999; Windisch et al., 1995).  Trk’s have been shown to 

function in axon guidance through binding neurotrophins (de Wit et al., 2011; Segal, 

2003).  in vitro, TrkA is capable of turning growth cones toward a neurotrophin source 

(Gallo et al., 1997). in vivo TrkA is necessary for the segregation of axons into ocular 

dominance columns in cats (Cabelli et al., 1997).  TrkA is also necessary for the 
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innervation of the skin by nociceptor sensory neurons in mice (Patel et al., 2000).  

Additionally, TrkA signaling functions in axon guidance within the mouse spinal cord, 

keeping nociceptor axons out of deep layers of the spinal cord (Guo et al., 2011).  

Furthermore, in TrkC mutants proprioceptor axons did not reach the spinal cord or their 

target muscles (T. D. Patel et al., 2003).  Mouse mechanosensory neurons require TrkB 

for most of their axons to reach their correct hair follicle targets (Perez-Pinera et al., 

2008).  More generally, TrkB signaling is important for axonal branching (Gonzalez et al., 

2016). 

The eLRR Linx (also known as ISLR-2), has a similar ectodomain to the Trk’s, 

though it has an atypical fibronectin domain and only one IG domain (Figure 1.8a; 

Homma et al., 2009).  Linx interacts with TrkA to modulate its activity during axon 

guidance (Mandai et al., 2009).  Linx can also act independently of neurotrophin 

receptors in thalamocortical axon navigation.  Without Linx, many mouse thalamocortical 

axons do not properly navigate to their target destination and Linx expression in both 

guidepost cells and adjacent axons is important for guiding these axons (Abudureyimu et 

al., 2018; Mandai et al., 2014).  Linx is also involved in retinal axon navigation through 

the optic chiasm of zebrafish (Panza et al., 2015).  Multiple retinal axon guidance defects 

where observed in Linx mutants, including axons entering the opposite optic nerve and 

extending back toward the retina.  

The NGLs play a role in circuit development, in both synapse formation and axon 

guidance.  They are structurally similar to LRRTM’s, but with an additional IG domain 

and a atypical fibronectin domain (Figure 1.8c; Homma et al., 2009).  NGL-1 and NGL-2 

bind to netrin-G1 and netrin-G2 respectively, and seem to function in axon guidance as 

well as synapse formation (Kim et al., 2006).  The netrin-G family is structurally related 

to the axon guidance cue netrin, however they are GPI-anchored proteins.  There is 

modest evidence that NGL-1/2 might be involved in axon guidance.  In cultured thalamic 

neurons, NGL-1/netrin-G1 binding induced axons to grow across the NGL-1 containing 

substrate (Lin et al., 2003).  More recently, NGL-2 has been found to be expressed in 

growth cones of a subset of neurons, horizontal cells, in the retina (Soto et al., 2013).  In 

ngl-2 mutant mice, these axons would extend aberrantly into the outer nuclear layer and 

would have overelaborate branches with less synapses.  This seems to indicate a role 

for NGL-2 in inhibiting horizontal cell axons, likely after binding netrin-G2, which is 

present in the outer nuclear layer. 
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While studying axon regeneration after injury in rodents, other eLRR receptors 

were found to function in axon guidance.  The Nogo Receptor 1 (NGR1; also called the 

Nogo-66 receptor) is a GPI-linked eLRR protein with only LRR motifs on its extracellular 

domain.  NGR1 binds to Nogo (Nogo-66), a component of myelin, and it inhibits axon 

extension by inducing growth cone collapse (Fournier et al., 2001; Yamashita et al., 

2005).  Through its coreceptors P75 and Lingo-1, NGR1 binding to Nogo induces growth 

cone collapse through the Rho GTPase pathway (Filbin, 2003; Mi et al., 2004).  The 

transmembrane coreceptor Lingo-1 is an eLRR protein as well, with a single IG domain.  

In later in vitro research, NGR1 was implicated in guiding axons through the mouse optic 

chiasm, likely through interactions with Nogo expressing radial glia (Schwab, 2010; J. 

Wang et al., 2008; Yu et al., 2020).  Axons crossing the chiasm downregulate NGR1 to 

cross the midline.  NGR1/Nogo signaling has also been demonstrated to be a repulsive 

adhesion cue in cultured neurons, as knocking it out increased axon fasciculation 

(Petrinovic et al., 2010). 

Later, another transmembrane coreceptor for NGR1 was found, Amigo-3 

(Amphoterin-induced gene and open reading frame 3), which also functions in the myelin 

induced growth cone inhibition pathway (Ahmed et al., 2013).  The Amigo family of 

genes are also eLRRs, each containing 6 LRR domains and an IG domain.  Another 

Amigo gene, Amigo-1, has been implicated in the homophilic fasciculation of axons in 

the zebrafish brain (Kuja-Panula et al., 2003; Zhao et al., 2014).  In vitro experiments 

also showed that Amigo-1’s presence on a substrate induced neurites to extend along it 

(Kuja-Panula et al., 2003).  Thus, it also might also act as an attractive adhesive cue. 

1.6. The extracellular-Leucine Rich Repeat-Only gene 
family 

The extracellular-Leucine Rich Repeat-Only (LRON) family in C. elegans 

consists of 16 genes.  These lron genes are characterized by only having LRRs on their 

extracellular domain (Figure 1.9).  Most of these are single pass transmembrane 

proteins, but some are GPI-linked or secreted.  While these genes share a general 

domain structure, due to rapid divergence during evolution most of them do not show 

much similarity at the sequence level, with each other or with comparable genes in other 

species (Dolan et al., 2007).  However, the LRON family does share a similar protein 

structure with the LRRTM family in humans. 
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Figure 1.9 Domain organization of the LRON and IGLR families 
This figure depicts the domain organization of the LRON and IGLR family proteins.  LRR domains 
are depicted by orange chevrons, LRRNT caps are yellow chevrons, and LRRCT caps are red 
chevrons.  IG domains are represented as green ovals.  Transmembrane domains are in black, 
the signal peptides are purple, and GPI-anchors are red.  These protein’s domain organization 
was determined by consulting SMART, Interpro and Phobius domain predictions.  For the LRR 
domains, I also comparing these results to the LRR domains predicted by LRRscan (Dolan et al., 
2007). 

Although there is evidence that some members of the lron family are expressed 

in neurons, most lron genes have not been studied (Liu and Shen, 2011; Packer et al., 

2019).  The exception is dma-1, which has been found to play an important role in 

dendrite guidance and branching in the PVD neuron (Figure 1.10).  The PVD dendrites 

contain a thick primary dendritic branch running longitudinally across the animal.  

Secondary dendrite branches extend perpendicularly from this larger branch before 

themselves branching into 3’ dendrites that run laterally, parallel to the primary dendrite.  

Finally, 4’ dendrites branch outward at a 90-degree angle from the 3’ dendrites to create 

a menorah shape.  In PVD’s dendrites, DMA-1 forms an adhesion complex with SAX-

7/L1CAM and MNR-1 which are expressed in the adjacent hypodermis (Dong et al., 

2013; X. Dong et al., 2016).  This adhesion complex is important for the guidance of the 

primary and 3’ dendrites along their longitudinal paths. 
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Figure 1.10 Dendrites of the PVD neuron in wildtype and dma-1(wy686) mutants 
a) Wildtype PVD dendrites have four stages of dendritic branching events, eventually creating the 
menorah shape at its 4’ branches.  b) The PVD dendrites in a dma-1(wy686) mutant.  The 
secondary dendrites are not able to properly form and few 3’ dendrites are seen.  (Modified from 
Liu and Shen, 2011). 

Since DMA-1 promotes adhesion of the primary dendrites and the 3’ dendrites to 

their longitudinal path, overexpression of DMA-1 actually results in a similar phenotype 

to dma-1 mutants, because 2’ dendrites are unable to escape the adhesive substrate (X. 

Dong et al., 2016).  KPC-1/Furin is essential to temporally downregulate DMA-1 

expression to allow extension of dendrites away from the adhesive SAX-7/MNR-1 

substrate (X. Dong et al., 2016; Salzberg et al., 2014).  It binds to DMA-1’s extracellular 

domain and directs it into a late endosome for degradation.   

Further research has revealed that DMA-1 signals via two, somewhat redundant 

pathways.  DMA-1 signals intracellularly through its intracellular PDZ domain to form a 

complex with the Rac1 GEF TIAM-1 and ACT-4/actin (Tang et al., 2019; Zou et al., 

2018).  This complex links the DMA-1 adhesion complex with the actin cytoskeleton and 

is essential for the formation of 4’ branches.  It is possible that this interaction allows the 

adhesion complex to divert some of the force that is generated by the polymerizing f-

actin pushing against the distal cell membrane.  This would decrease the rate of 

depolymerization of f-actin, allowing it to extend the cell membrane along the adhesive 

substrate.  Another possibility is that the strong binding of TIAM-1 to ACT-4 allows it to 

localize more ACT-4 distally when it is associated with DMA-1.  Additionally, DMA-1 also 

signals through its extracellular domain binding HPO-30 which then recruits the WVE-

1/Wave Regulatory Complex (WRC; Tang et al., 2019; Zou et al., 2018).  The DMA-

1/HPO-30 interaction is also important for the formation of 3’ and 4’ branches.  Genetic 
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interactions indicate that this signaling pathway is parallel to the DMA-1/TIAM-1 

pathway. 

1.7. The iglr gene family 

Another eLRR gene family in C. elegans that has not been studied in axon 

guidance is the ImmunoGlobulin and LRR domains (IGLR) family.  The iglr family 

consists of three genes, which contain LRRs on their extracellular domain as well an IG-

like motif.  IG domains consist of two β-sheets, one on top of the other, and they 

facilitate protein-protein binding (Horstkorte and Fuss, 2012; Williams and Barclay, 

1988).  IGLR genes have a similar domain structure to some of the mammalian LRR and 

IG domain containing proteins, particularly the Amigos, though they have no known 

homologs (Homma et al., 2009).  Both IGLR-1 and IGLR-2 expression has been 

observed in neurons (Kuo et al., 2020; Liu and Shen, 2011).  Only IGLR-2 has been 

studied, and it has been discovered to act as a sensor of membrane fluidity in C. 

elegans (Devkota et al., 2021; Svensk et al., 2016).  When the membrane becomes less 

rigid due to fatty acid saturation or cold temperature, it acts with PAQR/AdipoR1/2 to 

promote desaturation of fatty acids to return the membrane to homeostasis.  IGLR-2 has 

also been implicated in C. elegans immune response, as well as being involved in 

pathogen avoidance behavior (Kuo et al., 2020).  IGLR-1 knockdown has also been 

found in an RNAi screen to extend worms lifespan by 20%, though further study is 

required to establish why this occurs (Sutphin et al., 2017). 

1.8. Thesis objective 

The objective of this thesis is to determine if lron and iglr genes play a role in 

axon guidance.  I focused on the VNC, where I could observe many different subsets of 

neurons with various fluorescent markers.  I primarily used a pan-neuronal marker, and 

a marker that highlighted the PVPR and AVG pioneers.  This allowed me to identify 

mutants with misguided axons within the VNC.  I found several genes (lron-3, lron-5, 

lron-8, lron-11, lron-14, iglr-1 and iglr-2) that, when mutated, had significant axon 

guidance defects.  For most genes, the primary axon guidance defects observed were 

crossover defects, where axons inappropriately crossed from one VNC tract into the 

other.  The exception was iglr-2 where I observed penetrant defasciculation of the left 
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VNC.  This occurs when the left tract axon bundle splits instead of remaining tightly 

fasciculated. 

Of the genes I studied, lron-11 had the highest penetrance of crossover defects.  

Therefore, I characterized lron-11 further by utilizing command interneuron, AVK, HSN, 

DD/VD and DA/DB motor neuron markers.  lron-11 mutants had significant defects in 

many of these neuron subtypes, such as DD/VD neurites crossing into the left tract, and 

both DD/VD and DA/DB commissures navigating up the wrong side of the animal.  

Finally, I also looked for interaction between lron-11 and other lron genes with significant 

axon guidance defects by creating the lron-11; lron-14 and lron-11; lron-3 double 

mutants.  These results were inconclusive for the lron-11; lron-14 double mutant as I 

only observed an additive increase in pan-neuronal axon guidance defects in the lron-

11; lron-14 double mutant, but not in the pioneer marker.  The lron-11; lron-3 double 

mutant displayed defects with similar penetrance to the lron-11 mutant. 

This research demonstrates that lron-11 functions in the guidance of different 

types of axons in the C. elegans VNC.  It also provides preliminary evidence for the 

involvement of other lron and iglr genes in axon guidance, particularly iglr-2. 
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Chapter 2. Materials and methods 

2.1. Maintenance and strains 

I grew worms on Easiest Worm Media (EWM) plates seeded with OP50 

Escherichia coli.  The EWM mix is made up of 55g Tris-HCl, 24g Tris-OH, 310g Bacto 

Peptone, 800mg Cholesterol, and 200g NaCl.  5.9g of this mix was added to 18g agar 

and then H2O was added up to 1L’s of total volume.  Strains were typically grown and 

maintained at 20°C or 15°C, following standard procedures (Brenner, 1974). 

I used these fluorescent markers to observe axons: hdIs26[odr-2::CFP, sra-

6::DsRed2] III, hdIs28[odr-2::CFP, sra-6::DsRed2], hdIs29[odr-2::CFP, sra-6::DsRed2], 

evIs111[rgef-1::GFP] V, oxIs12[unc-47:GFPNTX;lin-15(+)] X, rhIs4[glr-1::GFP, dpy-

20(+)] III, zdIs13[tph-1::gfp], hdIs25[unc-129::CFP, unc-47::DsRed2], hdIs54[flp-1::GFP], 

evIs82A[unc-129::GFP] II. 

Below is a table of all the LRON and IGLR alleles I phenotyped (Table 2.1). 

Table 2.1 List of alleles and strains 

Gene chr allele strain Mutation Type 
lron-1 X gk5081 VC4008 ~3.5kb deletion of all exons + a 

~5kb insertion* 
lron-3 X ok2614 RB1980 ~2kb deletion of the final exon, 

including the C terminus 
X gk5319 VC4233 ~4kb deletion of exons 5-8 and part 

of exon 9 + ~5kb insertion* 
lron-4 II gk5099 VC4026 ~2kb deletion of exons 3-8 and part 

of exon 9 + a ~5kb insertion* 
lron-5 III gk959442 VC41011 A point mutation that induces a 

premature stop codon in exon 7, 
lacks its transmembrane domain 

lron-6 I gk736335 VC40637 A point mutation that induces a 
premature stop codon in exon 10, 
lacks its transmembrane domain 

lron-7 X gk5353 VC4270 ~2kb deletion of exons 4-10 and 
part of exons 3 and 11 + a ~5kb 

insertion* 
lron-8 I gk5317 VC4231 ~5kb deletion of all exons + a ~5kb 

insertion* 
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Gene chr allele strain Mutation Type 
lron-10 III gk5064 VC3992 ~2kb deletion of part of the exon 1, 

exon 2 and part of exon 3 + a ~5kb 
insertion* 

lron-11 I gk5321 VC4235 ~ 3kb deletion of exon 3-5 and part 
of exon 6 + a ~5kb insertion* 

I ok2333 VH2839 ~1kb deletion of most of the last 
exon, including the transmembrane 

domain 
lron-12 III gk187625 VC20146 A point mutation that induces a 

premature stop codon in exon 5, 
lacks its transmembrane domain 

lron-13 III gkDf31 VC3229 ~800bp deletion of exon 5, 
frameshift mutation^ 

lron-14 IV gk401715 VC20783 A point mutation that induces a 
premature stop codon in exon 6, 
lacks its transmembrane domain 

lron-15 II gk918201 VC40994 A point mutation that induces a 
premature stop codon in exon 5 

dma-1 I wy686 TV1624 ~5kb deletion of all exons 
iglr-1 X gk687851 VC40547 A point mutation that induces a 

premature stop codon in exon 6, 
lacks its transmembrane domain 

iglr-2 III et34 QC136 A point mutation that induces a 
premature stop codon in exon 2, 
lacks its transmembrane domain 

lron-2, lron-9 and iglr-3 were not studied because mutations in these genes are lethal.  *This insertion includes a myo-
2::GFP marker, which is expressed in the pharynx and allows for the easy identification of the presence of this allele in 
an animal.  ^This mutation was larger than predicted at Wormbase.org, which states that gkDf31 is a 466bp deletion. 
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2.2. Crossing 

 
Figure 2.1 Strategy for crossing fluorescent markers into mutants strains 
At the F1 stage, 5 fluorescent L4’s were picked onto new plates.  F3’s were selected for by 
picking worms homozygous for the fluorescent marker.  I then subcloned 20 worms from F3 plate 
that were homozygous for the marker.  These F4’s would then be genotyped to identify the 
homozygous mutant plates.  Markers and alleles of interest were always present on different 
chromosomes. 
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Figure 2.2 Crossing scheme example for creating double mutants 
When creating double mutants, I started with one strain that contained a mutant allele and a 
marker allele, and another strain that contained a different mutant allele.  One of these mutant 
alleles always contained a fluorescent pharyngeal marker (green mutation in the example).  After 
crossing the strain with the marker with wildtype males, I would pick males to cross with the other 
mutant allele.  I then picked 10 L4’s from the F1 that had both fluorescent alleles.  Next, I picked 
15 worms that were homozygous for one of the fluorescent alleles from F2 plates with no males.  
After confirming which F3 plates were homozygous for one fluorescent allele, I then selected 30 
worms, homozygous for the other fluorescent allele.  Double homozygous F4 plates were 
subcloned from, up to a total of 80 plates.  These plates were then genotyped for the 
nonfluorescent mutant allele.  All alleles in these crosses were on different chromosomes. 

2.3. Genotyping 

Worms were collected by pipetting 40μl of M9 buffer (3 g KH2PO4, 6 g 

Na2HPO4, 5 g NaCl, 1 ml 1 M MgSO4, H2O to 1 litre) onto the plate, and transferring 

20μl into a microcentrifuge tube.  20μl of 2X lysis buffer (containing 100ug/ml Proteinase 

K) was then added, and the solution was mixed with the pipette.  The solution was 

frozen at -80°C for at least 15 minutes.  A thermocycler was then used to run this 
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protocol: 1) 65°C for 90 minutes. 2) 95°C for 30 minutes. 3) 4°C pause.  The lysate was 

stored at 4°C. 

PCR was commonly used to identify plates that contain animals homozygous for 

the mutant allele.  If the allele involves a deletion, I amplified the DNA with two primer 

pairs; one primer pair would flank the deletion, whereas the other would contain one 

primer inside the deletion.  Typically, I used this protocol for each sample: 14.8μl water, 

2.5μl TBA buffer (10X), 2.5μl dNTPs (2mM), 2.0μl MgCl2 (25mM), 1.0μl for the forward 

and reverse primer (10mM), 0.2μl self made-Taq, and 1.0 μl of template DNA (obtained 

from the lysis).  The thermocycler protocol was thus: 1) 95°C for 5 minutes.  2) 95°C for 

40 seconds.  3) Usually 55-60°C for 40 seconds.  4) 72°C for 90 seconds per 1kb being 

amplified.  Steps 2, 3, and 4 were repeated 35 times.  5) 72°C for 10 minutes. 6) 4°C 

Pause.  The PCR product was then stored at 4°C.  Mutant alleles that were point 

mutation needed to be sent for sequencing.  I sent all my sequencing samples premixed 

to Genewiz, following their sample preparation protocol.  Table C1 contains all of the 

primers I used to genotype the various mutations analyzed in this study. 

PCR products were run on agarose gels to discriminate the results.  1-1.5% 

agrose gels were made by adding agarose to TBE buffer (89mM Tris-Borate and 2mM 

EDTA) containing 0.5μg/ml of ethidium bromide.  This mix was heated for 2 minutes, 

before being poured into a gel tray.  After at least 45 minutes, the PCR products (mixed 

at a 2:1 ratio with DNA loading dye) was added to the wells and assessed via gel 

electrophoresis.  For sequencing samples, 5μl of PCR product was run on the gel to 

verify that the PCR worked. 

Some CRISPR generated mutations contained an insertion of GFP downstream 

of the myo-2 promoter.  The bright GFP fluorescence from these mutant animal’s 

pharynx allowed for visual confirmation of the presence of this mutant allele.  The 

presence of the mutation was usually confirmed via PCR as described previously. 

2.4. Phenotyping 

First, 5-10 L4s (depending on the strain) were picked onto each plate, and were 

grown for 5 days at 20°C.  Then, I washed worms off these plates into microcentrifuge 

tubes with 2% 20mM sodium azide (diluted with M9).  These were left for one hour to 
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induce paralysis.  I mounted these worms on 3-4% agar pads.  Fluorescent markers 

allowed visualization of subsets of axons with the Zeiss Axioscope using the 40X 

magnification objective.  Axon guidance defects were only assessed in young adult and 

adult worms.  ~100 worms were scored for each mutant allele with the pan-neuronal 

(evIs111) and pioneer markers (hdIs26, hdIs28, or hdIs29).  These results were 

compared to data collected from the marker strain using the χ2 test for a 2x2 

contingency table with the Yates correction, to determine if the mutant’s axon guidance 

defects were significantly different from the marker strain.  If a mutant allele displayed 

penetrant axon guidance defects, I would also phenotype that allele in additional 

interneuron and motor neuron subtypes, visualized with other fluorescent markers. 

I took confocal images of C. elegans strains using a Zeiss Axioplan II microscope 

(Carl-Zeiss AG, Germany) connected to a Quorum WaveFX spinning disc system 

(Quorum Technologies, Canada). Stacks of confocal images with 0.2 to 0.5 μm distance 

between focal planes were recorded. Image acquisition and analysis was carried out by 

using Volocity software (Quorum Technologies, Canada), and were modified in Microsoft 

Powerpoint. 

2.5. Expression construct 

I used PCR to amplify the putative lron-11 promoter region (3kb upstream of the 

start codon) and GFP from the pPD95.75 linearized plasmid.  These primer pairs had 

overlapping tails.  I ran a second PCR with nested primers to fuse these PCR products 

together.  I ran this new PCR product on a gel, cut out the largest band and gel purified it 

with a Thermoscientific gel purification kit.  This purified PCR product was injected into 

gravid hermaphrodites and their progeny were screened for GFP.  GFP positive animals 

were observed using our confocal microscope to identify cells expressing GFP. 
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Chapter 3. Results 

3.1. Axon guidance defects in the ventral nerve cord of 
lron and iglr mutants 

I used two fluorescent markers to observe mutants in the LRON and IGLR 

families for axon guidance defects.  First, I used a pan-neuronal marker because it 

enables me to identify defects in any neuron subtype within the VNC or DNC.  The 

second marker I used is a pioneer marker that lets me observe the important PVPR and 

AVG axons, which pioneer the left and right VNC tracts respectively.  I observed the 

VNC of lron and iglr mutants with a pan-neuronal and pioneer marker and quantified the 

axon guidance defects I observed (Table 3.1).  Null mutations in the lron-2, lron-9 and 

iglr-3 genes are lethal, so these genes were not phenotyped.  Preliminary data collected 

by Saru Sandhu and Skyla Witt indicated that lron-11 and lron-3 mutants had significant 

VNC axon guidance defects.  Therefore these mutant alleles were outcrossed before I 

phenotyped them. 

Overall, I found significant axon guidance defects in several genes.  lron-11 has 

the most penetrant axon guidance defects (Table 3.1).  iglr-2(et34) also had penetrant 

fasciculation defects in the left VNC.  lron-3(gk5319), lron-5(gk959442), lron-8(gk5317), 

and lron-14(gk401715) also had significant axon guidance defects (Table 3.1).  In the 

other lron and iglr genes I did not observe significant axon guidance defects (Appendix 

B). 
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Table 3.1 lron and iglr genes axon guidance defects summary 

lron and 
iglr Genes 

Pan-
neuronal 

VNC 
Defects 

Pan-
neuronal 
Marker 

Defects4 

PVPR 
Defects 

Pioneer 
Marker 
PVPR 

Defects 

AVG 
Defects 

Created 
with 

CRISPR/ 
Cas9^ 

Out-
crossed 

lron-
1(gk5081) 4% 5% 4% 6%1 0% Yes  

lron-
3(gk5319) 11%* 5% 17% 10%2 2% Yes Yes 

lron-
3(ok2614) 10% 5% 9% 6%1 0%  Yes 

lron-
4(gk5099) 1% 5% 7% 6%1 0% Yes  

lron-
5(gk959442) 8% 5% 23%*** 7%3 1%   

lron-
6(gk736335) 3% 5% 3% 7%3 1%   

lron-
7(gk5353) 8% 5% 9% 10%2 2% Yes  

lron-
8(gk5317) 13%** 5% 4% 7%3 0% Yes  

lron-
10(gk5064) 6% 5% 11% 7%3 2% Yes  

lron-
11(ok2333) 29%*** 5% 15%* 6%1 4%**  Yes 

lron-
11(gk5321) 28%*** 5% 19%*** 6%1 1% Yes  

lron-12 
(gk187625) 10% 5% 4% 7%3 0%   

lron-
13(gkDf31) 7% 5% 7% 7%3 0%   

lron-14 
(gk401715) 17%*** 5% 15% 10%2 0%   

lron-15 
(gk918201) 7% 5% 5% 6%1 0%   

dma-
1(wy686) 5% 5% 3% 6%1 0%   

iglr-
1(gk687851) 11%* 5% 2% 6%1 0%   

iglr-
2(et34)^^ 6% 5% 4% 7%3 0%  Yes 

***p<0.001; **p<0.01; *p<0.05 (χ2 test).  The data in this table does not include defasciculation defects.  For pan-
neuronal scoring, all genes were observed with the evIs111 allele.  The evIs111 allele had an average of 5.1% pan-
neuronal VNC defects in 787 worms.  The hdIs26 allele had an average of 6.4% PVPR defects in 294 worms.  The 
hdIs28 allele had an average of 9.8% PVPR defects in 163 animals.  The hdIs29 allele had an average of 6.9% PVPR 
defects in 159 animals.   ^Mutant strains generated with CRISPR/Cas9 should not contain off target mutations.  
Therefore, these strains were usually not outcrossed (Au et al., 2019).   ^^While iglr-2(et34) mutants did not have 
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significant penetrance for the axon guidance defects scored in this table, in the pan-neuronal marker these mutants did 
display significant fasciculation and early separation axon guidance defects (Table 3.38).  1 The pioneer marker used 
was hdIs26.  2 The pioneer marker used was hdIs28.  3 The pioneer marker used was hdIs29.  4 The marker used was 
evIs111. 

3.1.1. lron-11 pan-neuronal and pioneer axon guidance phenotypes 

In wildtype C. elegans, the VNC is composed of two parallel axon tracts (Figure 

3.1a).  Axons should not cross between these tracts.  There is an exception at the very 

anterior end of the VNC where some axons from the head cross into the left tract, and at 

the posterior end where PVPR and PVQL cross from the right tract into the left tract.  

Otherwise, when an axon crosses over into the opposite tract this is classified as a 

crossover defect.  If this occurs anterior or posterior to the vulva, it will be termed an 

anterior or posterior crossover. 

I observed axons in strains with two lron-11 alleles, lron-11(ok2333) and lron-

11(gk5321).  The lron-11(ok2333) strain has been outcrossed four times, and lron-

11(gk5321) was created via CRISPR, so probably does not contain off target mutations 

(Au et al., 2019).  In both lron-11(ok2333) and lron-11(gk5321) mutant worms with the 

pan-neuronal marker, there is almost a 30% penetrance of axon guidance defects 

(Figure 3.1b) (Table 3.2).  Most of the defects observed were crossover defects.  These 

crossovers occurred in both the anterior and posterior halves of the VNC.  In contrast, 

the marker strain only had 5% crossover defects.  Both lron-11 alleles are predicted null 

mutants, involving deletions of at least the final exon which includes the transmembrane 

domain.  As expected, both alleles displayed similar defect penetrance.  For both lron-11 

alleles, ~5% of mutants displayed dorsal nerve cord defasciculation, though only the 

lron-11(gk5321) defects were significant (Figure 3.1c, 3.1d; Table 3.3). 
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Figure 3.1 lron-11 pan-neuronal axon guidance defects 
a) This is the VNC of a wildtype animal, visualized with the evIs111 pan-neuronal marker.  The 
right VNC is the thick green horizontal band with the motor neuron cell bodies adjacent to it.  The 
left VNC tract is the faint green line that is just above the right tract, running parallel to it.  b) This 
is the VNC of a lron-11 mutant animal.  It displays a crossover defect where some of the axons in 
the left tract cross into the right tract (red arrow).  In this image, these axons then appear to return 
to the left tract (white arrow).  c) The wildtype DNC tract is a tightly fasciculated axon tract.  d) 
This lron-11(gk5321) animal has a DNC with a major defasciculation event (red arrow).  The 
anterior side of the worm is towards the left of the image, the left side of the worm is toward the 
top of the image.  Scale bars = 25μm.  Marker used: evIs111[rgef-1::GFP] V. 

There were also two other types of axon guidance defects observed, at a low 

frequency.  Near the posterior end of the VNC, the left tract is formed when the PVPR 

pioneer axon leaves the right tract.  In adults, the exact location PVPR leaves the right 

tract is slightly variable, however it should be close to the posterior end of the VNC 

(Figure 3.2a).  A ‘late separation’ defect is adjudged when the PVPR axon leaves the 

right tract after extending at least halfway down the posterior half of the VNC in the right 

tract (Figure 3.2b).  I saw under 5% penetrance of late separation in both lron-11 alleles 

(Table 3.2).  Finally, if an axon leaves the VNC entirely, this is considered a ‘leave VNC’ 

event.  With the lron-11 mutant alleles, I saw only one leave VNC event in each strain 

(Table 3.2). 
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Table 3.2 lron-11 pan-neuronal VNC axon guidance defects 

Ventral Nerve Cord Marker Strain^ 
N = 787 

lron-11(ok2333) 
N = 96 

lron-11(gk5321) 
N = 96 

No Defect 95% 71%*** 72%*** 
Anterior Crossover 2% 15%*** 19%*** 
Posterior Crossover 3% 19%*** 13%*** 
Late Separation 0% 4%*** 2% 
Leave VNC 0% 1% 1% 

***p<0.001; **p<0.01; *p<0.05 (χ2 test).  ^The marker used was evIs111[rgef-1::GFP]. 

Table 3.3 lron-11 DNC axon guidance defects 

Dorsal Nerve Cord Marker Strain^ 
N = 245 

lron-11(ok2333) 
N = 100 

lron-11(gk5321) 
N = 98 

No Defect 99% 96% 92%** 
Defasciculation 1% 4% 8%** 

***p<0.001; **p<0.01; *p<0.05 (χ2 test).  ^The marker used was evIs111[rgef-1::GFP]. 

In wildtype C. elegans, the PVPR axon pioneers the left tract of the VNC and the 

AVG axon pioneers the right tract (Figure 3.2a).  As mentioned previously, the PVPR 

axon starts in the tail of the animal, then extends anteriorly.  PVPR then pioneers the left 

tract, throughout the length of the VNC.  In ~12% of lron-11 animals, PVPR crosses over 

the ventral midline into the right tract (Figure 3.2b; Table 3.4).  When this occurs it 

usually will cross back into the left tract.  Similar to the pan-neuronal marker, I also 

observed ~5% late separation events in lron-11 mutants (Table 3.4).  Again, both lron-11 

alleles displayed similar defect penetrance. 

The AVG cell body is in VNC, near the head of the animal.  Its axon extends 

posteriorly, pioneering the right VNC tract.  This axon will extend the length of the VNC, 

always in the right tract.  In lron-11 mutants AVG crosses into the left tract in less than 

5% of animals (Figure 3.2e; Table 3.1). 
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Figure 3.2 lron-11 pioneer axon guidance defects 
a) The pioneer axons of the ventral nerve cord in a wildtype animal.  PVPR is the fainter axon in 
the left tract.  AVG is the brighter axon below it, in the right tract.  b) A PVPR crossover (red 
arrow) in an lron-11(ok2333) animal.  The axon later crosses back into the left tract (white arrow).  
c) The posterior end of the VNC in a wildtype animal.  PVPR quickly separates from the right tract 
to form the left tract.  d) An lron-11(ok2333) mutant with a late separation defect in PVPR (red 
arrow).  PVPR only separates in this animal when it has almost reached the vulva.  The white 
arrow shows approximately where PVPR should have separated.  e) The AVG axon crossing into 
the left tract in a lron-11(ok2333) mutant.  The anterior side of the worm is towards the left of the 
image, the left side of the worm is toward the top of the image.  Scale bars = 25μm.  Marker used: 
hdIs26[odr-2::CFP & sra-6::DsRed2] III. 
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Table 3.4 lron-11 PVPR defects 

PVPR Marker Strain^ 
N = 294 

lron-11(gk5321)^^ 
N = 102 

lron-11(ok2333) 
N = 110 

No Defect 94% 81%*** 85%* 

Crossovers 6% 13% 10% 

Late Separation 1% 5%* 3% 

***p<0.001; **p<0.01; *p<0.05 (χ2 test).  ^The marker used was hdIs26[odr-2::CFP, sra-6::DsRed2].  ^^The lron-
11(gk5321) data is actually from PVQL, which closely follows PVPR (Table B26; Durbin, 1987).  This was used as a 
stand in for PVPR in this case because the microscope’s optic fiber cable was damaged when collecting this data, 
making PVPR too faint to observe. 

3.1.2. lron-11 HSN phenotypes 

Since I found penetrant axon guidance defects in lron-11 mutants with the pan-

neuronal marker, I wanted to investigate what other types of neurons were affected by 

lron-11 mutations.  Therefore, I also observed lron-11 animals with AVK, command 

interneuron, HSN and DD/VD, DA/DB motor neuron markers.  Both mutant alleles 

displayed similar phenotypes in the pan-neuronal and pioneer markers, so I only 

observed the lron-11(ok2333) in these neurons. 

There are two HSN neurons in C. elegans, HSNL and HSNR.  Both reside 

dorsally above the VNC, just posterior of the vulva.  HSNL is on the left side, HSNR is on 

the right.  In wildtype animals, their axons travel ventrally into the left (HSNL) or right 

(HSNR) VNC tract (Figure 3.3a).  Their axons then extend anteriorly along their 

respective tracts into the head of the animal. 

 
Figure 3.3 lron-11(ok2333) HSN defects 
a) HSNL’s axon entering the VNC in a wildtype animal.  The white arrow points to the HSNL cell 
body.  b) The HSNL axon crossing into the right tract of a lron-11(ok2333) worm.  The anterior 
side of the worm is towards the left of the image, the left side of the worm is toward the top of the 
image.  Scale bars = 25μm.  Marker used: zdls13[tph-1::gfp]. 

A B 
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In 17% of lron-11(ok2333) animals the HSNL axon crosses into the right tract 

(Figure 3.3b; Table 3.5).  However, this was not significant from the marker strain.  Also, 

in lron-11(ok2333) animals both HSNL and HSNR had a penetrance of pre-VNC 

deviation above 5% (Table 3.5).  Pre-VNC defects were counted if the axon initially 

extended dorsally/posteriorly.  Additionally, some axons would extend too far anteriorly 

before they turned ventrally to enter the VNC, which caused them to enter the VNC after 

the vulva.  This was also considered a pre-VNC defect.  These may be the result of axon 

guidance or axon outgrowth errors. Though these pre-VNC defects were not observed in 

the marker strain, these defects were not found to be significant. 

Table 3.5 lron-11(ok2333) HSN defects 

 HSNL HSNR 

 Marker Strain^ 
N = 32 

lron-11(ok2333) 
N = 104 

Marker Strain^ 
N = 64 

lron-11(ok2333) 
N = 105 

No Defect 91% 78% 95% 90% 

Crossover 9% 17% 5% 1% 

Leave VNC 0% 1% 0% 0% 

Pre-VNC deviations 0% 6% 0% 8% 

The number of animals counted for HSNL and HSNR is different because the HSN cell bodies are located laterally of 
the VNC and it was difficult to observe both at once.  Therefore, they were often counted separately.  ^The marker 
used was zdIs13[tph-1::gfp]. 

3.1.3. lron-11 AVK axon guidance phenotypes 

The AVKL and AVKR neurons are located near the anterior end of the VNC 

(Figure 3.4a).  They send their axons anteriorly into the head.  The axons grow into the 

nerve ring before entering the VNC and extending posteriorly.  AVKL enters the right 

axon tract, AVKR enters the left tract.  Their axons terminate near the posterior end of 

the VNC.  In a small proportion of lron-11(ok2333) animals, under 10%, the AVKL and/or 

AVKR axon(s) leave the nerve ring and never enter the VNC (Figure 3.4b; Table 3.6).  

The axon will still travel posteriorly, but it otherwise appears to lack direction (Figure 

3.4c).  This phenotype was never observed in the marker strain but it is not statistically 

significant. 



43 

  

  

  
Figure 3.4 lron-11(ok2333) AVK axon guidance defects 
a) In a wildtype animal the AVK axons first extend anteriorly into the nerve ring, before extending 
posteriorly in the VNC.  The white arrow points to the AVK cell bodies.  b) This is a lron-
11(ok2333) animal where one of the AVK axons has left the nerve ring prematurely (red arrow).  
c) A lron-11(ok2333) mutant where the AVKL axon prematurely left the nerve ring and extended 
posteriorly outside of the VNC (red arrow).  The white arrow points to the AVKR axon in the VNC.  
The anterior side of the worm is towards the left of the image, the left side of the worm is toward 
the top of the image.  Scale bars = 25μm.  Marker used: hdIs54[flp-1::GFP]. 
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Table 3.6 lron-11(ok2333) AVK axon guidance defects 

 AVKL AVKR 

 Marker Strain^ 
N = 53 

lron-11(ok2333) 
N = 115 

Marker Strain^ 
N = 53 

lron-11(ok2333) 
N = 115 

No Defect 100% 94% 100% 92% 

Crossover 0% 1% 0% 1% 

Leave Nerve Ring 0% 4% 0% 5% 

Leave VNC 0% 1%  0% 1% 

^The marker used was hdIs54[flp-1::GFP]. 

3.1.4. lron-11 command interneuron axon guidance phenotypes 

Command interneurons enter the left or right VNC tract from the head, and travel 

posteriorly down its length (Figure 3.5a).  The axons that enter the left tract will quickly 

crossover into the right tract at the very beginning of the VNC.  This occurs anterior to 

the AVG cell body.  In lron-11(ok2333) mutants I saw axons cross into the left tract in 5% 

of animals (Table 3.7).  Additionally, in 11% of mutant animals, some axons in the left 

tract were late to cross into the right tract; crossing only after passing the AVG cell body 

(Figure 3.5b; Table 3.7).  This phenotype was statistically significant and was not 

observed in the marker strain. 

 

 
Figure 3.5 lron-11(ok2333) command interneuron axon guidance defects 
a) In the marker strain, command interneurons in the left tract immediately cross into the right 
tract (white arrow).  b) In lron-11(ok2333) animals, a subset of command interneurons in the left 
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tract would sometimes cross late, after the AVG cell body (red arrow).  The white arrow points at 
the AVG cell body.  The anterior side of the worm is towards the left of the image, the left side of 
the worm is toward the top of the image.  Scale bars = 25μm.  Marker used: rhIs4[glr-1::GFP, 
dpy-20(+)] III. 

Table 3.7 lron-11(ok2333) command interneuron axon guidance defects 

Command 
interneurons 

Marker Strain^ 
N = 50 

lron-11(ok2333) 
N = 97 

No Defect 100% 82%** 

Crossover 0% 5% 

Late Crossover to 
Right Tract 0% 11%* 

Leave VNC 0% 1% 

***p<0.001; **p<0.01; *p<0.05 (χ2 test).  ^The marker used was rhIs4[glr-1::GFP, dpy-20(+)]. 

3.1.5. lron-11 DD/VD motor neuron phenotypes 

In wildtype C. elegans, motor neurons send commissures dorsally to the DNC 

(Figure 3.6a).  When motor neuron commissures begin to travel dorsally toward the 

dorsal nerve cord, they travel up either the left or the right side of the animal.  Each 

neurons choice is consistent across wildtype animals.  Almost all DD/VD commissures 

travel up the right side of the animal.  In 55% of lron-11(ok2333) mutants, at least one 

commissure went up the wrong side (Figure 3.6b, 3.6d; Table 3.9).  This was statistically 

significant, though I also saw penetrant defects in the marker strain, where 34% of the 

animals had at least one DD/VD commissure on the wrong side.  Finally, lron-

11(ok2333) and the marker strain had similar commissures guidance defects in dorsally 

extending DD/VD commissures (Table 3.8).  These defects included premature 

termination and extending parallel to the VNC. 
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Figure 3.6 lron-11(ok2333) DD/VD VNC defects 
a) Wildtype DD/VD motor neurons sending commissures up the right side of the animal.  b) A 
commissure going up the wrong side of the worm in a lron-11(ok2333) mutant (red arrow).  c) 
Errant neurite extending into the left tract in a lron-11(ok2333) animal (red arrows).  d) Errant 
neurites extending into the left tract and errant commissures extending up the wrong side of this 
lron-11(ok2333) mutant (red arrows).  The anterior side of the worm is towards the left of the 
image, the left side of the worm is toward the top of the image.  Scale bars = 25μm.  Marker used: 
oxIs12[unc-47:GFPNTX;lin-15(+)] X. 

Table 3.8 lron-11(ok2333) DD/VD commissure guidance defects 

DD/VD Motor Neurons Marker Strain^ 
N = 51 

lron-11(ok2333) 
N = 95 

No Defect 86% 87% 

Premature Termination 12% 6% 

Parallel to VNC 6% 6% 
^The marker used was oxIs12[unc-47:GFPNTX;lin-15(+)]. 
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Table 3.9 lron-11(ok2333) commissure polarity defects 

DD/VD Motor Neurons Marker Strain^ 
N = 58 

lron-11(ok2333) 
N = 101 

No Defect 66% 45%* 

Single Commissure error 26% 36% 

Two or Three Commissures 
errors 7% 20% 

***p<0.001; **p<0.01; *p<0.05 (χ2 test).  ^The marker used was oxIs12[unc-47:GFPNTX;lin-15(+)]. 

Motor neurons send neurites exclusively into the right VNC in wildtype animals 

(Figure 3.6a).  However, in 22% of lron-11(ok2333) mutants, I observed neurites enter 

the left tract (Figure 3.6c, 3.6d; Table 3.10).  If a neurite was in the left tract for more 

than two cell body lengths, I counted it as a defect. 

Table 3.10 lron-11(ok2333) DD/VD motor neuron neurites in the left tract defect 

DD/VD Motor Neurons Marker Strain^ 
N = 58 

lron-11(ok2333) 
N = 101 

No Defect 97% 78%** 

Neurite(s) in the Left Tract 3% 22%** 

***p<0.001; **p<0.01; *p<0.05 (χ2 test).  ^The marker used was oxIs12[unc-47:GFPNTX;lin-15(+)]. 

I also often saw gaps in DNC in lron-11(ok2333) animals (Figure 3.7b, 3.7c; 

Table 3.11).  The DD/VD commissures in the dorsal nerve cord of wildtype animals 

together form a continuous tract (Figure 3.7a).  In 23% of lron-11(ok2333) mutants there 

is at least one gap in the DNC (Table 3.11).  However, this was not significant when 

compared to the marker strain. 
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Figure 3.7 lron-11(ok2333) DD/VD motor neuron DNC defects 
a) Wildtype animals have a continuous DNC.  b-c) lron-11(ok2333) mutants with one or more 
gaps in their DNC.  The anterior side of the worm is towards the left of the image, the left side of 
the worm is toward the top of the image.  Scale bars = 25μm.  Marker used: oxIs12[unc-
47:GFPNTX;lin-15(+)] X. 

Table 3.11 lron-11(ok2333) DD/VD DNC defects 

DD/VD Motor Neurons Marker Strain^ 
N = 54 

lron-11(ok2333) 
N = 97 

No Defect 91% 77% 

One gap in the dorsal 
nerve cord 7% 18% 

Multiple gaps in the 
dorsal nerve cord 2% 5% 

^The marker used was oxIs12[unc-47:GFPNTX;lin-15(+)]. 

3.1.6. lron-11 DA/DB motor neuron phenotypes 

Just like the DD/VD motor neurons, DA/DB motor neurons send their 

commissures dorsally up either side of the animal, in a set pattern (Figure 3.8a).  The 

marker strain was close to wildtype; commissures traveling up the wrong side of the 

worm was only 6% penetrant in these animals (Table 3.12).  However, lron-11(ok2333) 

mutants displayed a 75% penetrance of this commissure polarity defect (Figure 3.8b; 

Table 3.12). 

The DB6 and DA6 motor neuron cell bodies are adjacent to each other and they 

send their commissure in opposite directions.  While scoring the lron-11 mutant I 

observed that their cell body positions were sometimes not quite right.  I also noticed a 

surprisingly high frequency of both neurons seeming to send their commissure the 
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wrong way in the same animal.  Based on the small percentage of animals with only one 

of these commissures going the wrong way, I would expect a much smaller percentage 

of animals where both commissures happened to make the wrong decision, assuming 

these events are independent.  This is likely the result of a cell migration defect that 

results in the cell bodies of DB6 and DA6 swapping position.  Therefore, most 

occurrences with DB6 and DA6 commissure polarity defects coinciding in the same 

animal were counted as cell migration defects, not commissure polarity defects (Table 

3.12).  The penetrance of this defect was ~11% (Table 3.12). 

I also observed extra neuron cell bodies in the VNC of three mutant animals 

(Figure 3.8c).  This seems to be another cell migration defect caused by neurons from 

the head migrating posteriorly.  Alternatively, this could be caused by additional cells 

expressing the fluorescent marker, which would be a cell identity defect. 
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Figure 3.8 lron-11(ok2333) DA/DB motor neuron defects 
All of these images contain the neurons DB3, DA2, DA3, DB4 in order, from left to right.  a) 
Wildtype DA/DB motor neurons sending their commissures up the correct side of the animal.  The 
left arrow points to the DB3/DA2 commissures traveling up the right side of the animal.  The right 
arrow points to DB4’s commissure traveling up the left side of the animal.  b) In this lron-
11(ok2333) mutant, the DB3/DA2 commissures (left arrow) and the DB4 commissure (right arrow) 
travel up the wrong side of the animal.  c) In this lron-11(ok2333) worm, an extra cell body is 
illuminated in the VNC, and the DB3/DA2 commissures are traveling up the wrong side of the 
animal.  The anterior side of the worm is towards the left of the image, the left side of the worm is 
toward the top of the image.  Scale bars = 25μm.  Marker used: evIs82A[unc-129::GFP] II. 
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Table 3.12 lron-11(ok2333) DA/DB motor neuron defects 

  Raw Data 
Data Corrected for 
DB6/DA6 Cell Body 

Swap 

DA/DB Motor Neurons Marker Strain^ 
N = 50 

lron-11(ok2333) 
N = 101 

lron-11(ok2333) 
N = 101 

No Defect 94% 22%*** ~24%*** 

Single Commissure 4% 32%*** ~34%*** 

Two or Three 
Commissures 2% 36%*** ~35%*** 

Four or More 
Commissures 0% 10% ~7% 

Neurites in Left Tract 0% 1% 1% 

Neuron from Head 0% 3% 3% 

DB6/DA6 cell body 
swap 0% N/A ~11%* 

***p<0.001; **p<0.01; *p<0.05 (χ2 test).  This table includes two columns that both describe the same lron-11(ok2333) 
mutant dataset.  The data in the ‘Data Without Considering DB6/DA6 Cell Body Swap’ column does not take into 
account any possible cell positioning defects between DB6 and DA6.  The ‘Data Corrected for DB6/DA6 Cell Body 
Swap’ column does correct for the likelihood of the DB6/DA6 cell bodies swapping positions, which results in slightly 
fewer commissure polarity defects being counted.  The ‘Neuron from Head’ and ‘DB6/DA6 cell body swap’ defects are 
not factored into calculating the percentage of animals with ‘No Defect’.  ‘No Defect’ means there are no neurite 
guidance defects.  ^The marker used was evIs82A[unc-129::GFP]. 

The individual motor neurons have a variable penetrance of commissure polarity 

defects.  The DA4 neuron had the highest penetrance at 48%, which means it was 

essentially random which side of the animal this neuron’s commissure extended up 

(Table 3.13).  If a commissure extended into the VNC before extending up the wrong 

side, I considered this an axon guidance error.  If the commissure extended immediately 

up the wrong side, directly from the cell body, this was considered an axon outgrowth 

error.  Overall, these types of error each accounted for a similar number of commissure 

polarity defects.  However, individual motor neurons usually made mostly axon 

outgrowth, or mostly axon guidance errors (Table 3.13). 
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Table 3.13 lron-11(ok2333) individual DA/DB motor neuron defects 

lron-11 
(ok2333) DB3 DA2 DA3 DB4 DA4 DB5 DA5 DB6* DA6* DB7 

Wrong Side 13% 13% 25% 17% 48% 5% 6% 4% 10% 8% 

Axon 
guidance 
error 

0% 0% 21% 4% 38% 1% 5% 0% 4% 1% 

Axon 
outgrowth 
error 

13% 13% 4% 13% 10% 4% 1% 3% 5% 7% 

The most common type of error by each individual motor neuron is in bold.  *This data has been corrected for the 
‘DB6/DA6 cell body swap’ defect. 

3.1.7. lron-11 expression construct 

To determine where lron-11 is expressed, I used a PCR fusion strategy to 

combine the putative promoter region of lron-11 with GFP cDNA.  Transgenic strains 

expressing this construct only showed faint GFP expression in a band of muscle cells 

and in a pair of sensory neurons in the head (data not shown). Further experiments 

using a CRISPR strategy to directly add GFP to the lron-11 locus are underway to 

determine the cellular expression of lron-11. 

3.1.8. lron-14 pan-neuronal and pioneer axon guidance phenotypes 

In lron-14(gk401715) mutants, I observed significant defects with the pan-

neuronal marker (Table 3.14).  I observed 12% crossovers penetrance in these mutants 

(Table 3.14).  As well as 3% late separation defect penetrance, I also saw axons 

inappropriately leave the left VNC in 2% of these animals (Figure 3.9; Table 3.14).  I did 

not see significant DNC defects in this mutant (Table 3.15).  In the pioneer marker, lron-

14(gk401715) animals overall PVPR axon guidance were not significant from the marker 

strain (Table 3.16).  However, I also saw PVPR leave the VNC with 2% penetrance in 

these animals, this is consistent with the pan-neuronal observations (Table 3.16). 
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Figure 3.9 Axons in the left tract leaving the VNC in an lron-14(gk401715) 

mutant with the pan-neuronal marker 
In this lron-14(gk401715) mutant, the axons in the left tract leave the VNC (red arrow) by traveling 
dorsally up the right side of the worm.  Interestingly, the axons later manage to return to the left 
track (white arrow).  The anterior side of the worm is towards the left of the image, the left side of 
the worm is toward the top of the image.  Scale bar = 25μm.  Marker used evIs111[rgef-1::GFP] 
V. 

Table 3.14 lron-14(gk401715) pan-neuronal VNC axon guidance defects 

Ventral Nerve Cord Marker Strain^ 
N = 787 

lron-14(gk401715) 
N = 88 

No Defect 95% 83%*** 

Anterior Crossover 2% 6%* 

Posterior Crossover 3% 10%** 

Late Separation 0% 0% 

Leave VNC 0% 2%** 
***p<0.001; **p<0.01; *p<0.05 (χ2 test).  ^The marker used was evIs111[rgef-1::GFP]. 

Table 3.15 lron-14(gk401715) DNC axon guidance defects 

Dorsal Nerve Cord Marker Strain^ 
N = 245 

lron-14(gk401715) 
N = 95 

No Defect 99% 98% 

Defasciculation 1% 2% 

^The marker used was evIs111[rgef-1::GFP]. 



54 

Table 3.16 lron-14(gk401715) PVPR axon guidance defects 

PVPR Marker Strain^ 
N = 163 

lron-14(gk401715) 
N = 101 

No Defect 90% 85% 

Crossover 10% 11% 

Late Separation 0% 2% 

Leave VNC 0% 2% 

^The marker used was hdIs28[odr-2::CFP, sra-6::DsRed2]. 

3.1.9. lron-3 pan-neuronal and pioneer axon guidance phenotypes 

I phenotyped two mutant alleles for lron-3, with a pan-neuronal marker and a 

pioneer marker.  Both of these mutant strains were 4X outcrossed before phenotyping.  

While both mutant alleles were predicted to be null alleles, lron-3(gk5319) mutants 

displayed significant axon guidance defects in the pan-neuronal marker, but lron-

3(ok2614) animals did not display significant defects in the pan-neuronal marker or the 

pioneer marker (Table 3.1, 3.17, 3.19, 3.20, 3.21).  However, the penetrance of pan-

neuronal defects in both of these markers was very similar. 

Table 3.17 lron-3(gk5319) pan-neuronal VNC axon guidance defects 

Ventral Nerve Cord Marker Strain^ 
N = 787 

lron-3(gk5319) 
N = 102 

No Defect 95% 89%* 
Anterior Crossover 2% 2% 
Posterior Crossover 3% 8%* 
Late Separation 0% 1% 

***p<0.001; **p<0.01; *p<0.05 (χ2 test).  ^The marker used was evIs111[rgef-1::GFP]. 

Table 3.18 lron-3 DNC axon guidance defects 

Dorsal Nerve Cord Marker Strain^ 
N = 245 

lron-3(ok2614) 
N = 100 

lron-3(gk5319) 
N = 51 

No Defect 99% 97% 100% 
Defasciculation 1% 3% 0% 

^The marker used was evIs111[rgef-1::GFP]. 
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Table 3.19 lron-3(gk5319) PVPR axon guidance defects 

PVPR Marker Strain^ 
N = 163 

lron-3(gk5319)  
N = 96 

No Defect 90% 83% 

Crossover 10% 15% 

Late Separation 0% 1% 
^The marker used was hdIs28[odr-2::CFP, sra-6::DsRed2]. 

Table 3.20 lron-3(ok2614) pan-neuronal VNC axon guidance defects 

Ventral Nerve Cord Marker Strain^ 
N = 787 

lron-3(ok2614) 
N = 105 

No Defect 95% 90% 
Anterior Crossover 2% 2% 
Posterior Crossover 3% 6% 
Late Separation 0% 2% 

^The marker used was evIs111[rgef-1::GFP]. 

Table 3.21 lron-3(ok2614) PVPR axon guidance defects 

PVPR 
Marker Strain^ 

N = 294 
lron-3(ok2614) 

N = 100 
No Defect 94% 91% 
Crossover 6% 8% 
Late Separation 1% 1% 

^The marker used was hdIs26[odr-2::CFP, sra-6::DsRed2]. 

3.1.10.  lron-5 pan-neuronal and pioneer axon guidance 

In the pan-neuronal marker, lron-5(gk959442) had no significant axon guidance 

defects (Table 3.22, 3.23).  However, with the pioneer marker, I observed significant 

defects in PVPR axon guidance in this mutant (Table 3.24).  The penetrance of defects 

was close to 25%.  Crossovers were the most common defect, although I also saw 

PVPR leave the VNC four times (Table 3.24).  Furthermore, I also saw 5% penetrance 

for PVPR ‘no separation’ defects, where the PVPR axon never separates from the right 

tract (Table 3.24).  I only rarely see this defect in the marker strains. 
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Table 3.22 lron-5(gk959442) pan-neuronal VNC axon guidance defects 

Ventral Nerve Cord Marker Strain^ 
N = 787 

lron-5(gk959442) 
N = 89 

No Defect 95% 92% 
Crossover 5% 6% 
Late Separation 0% 1% 
Leave VNC 0% 1% 

^The marker used was evIs111[rgef-1::GFP]. 

Table 3.23 lron-5(gk959442) DNC axon guidance defects 

Ventral Nerve Cord Marker Strain^ 
N = 245 

lron-5(gk959442) 
N = 89 

No Defect 99% 100% 
Defasciculation 1% 0% 

^The marker used was evIs111[rgef-1::GFP]. 

Table 3.24 lron-5(gk959442) PVPR axon guidance defects 

PVPR 
Marker Strain^ 

N = 159 
lron-5(gk959442) 

N = 94 
No Defect 93% 77%*** 
Crossover 6% 13% 
Late Separation 1% 1% 
Leave 0% 4%* 
No Separation 0% 5%* 

***p<0.001; **p<0.01; *p<0.05 (χ2 test).  ^The marker used was hdIs29[odr-2::CFP, sra-6::DsRed2]. 

3.1.11. lron-8 and iglr-1 pan-neuronal and pioneer axon guidance 
phenotypes 

lron-8(gk5317) and iglr-1(gk687851) mutants displayed significant crossover 

defects in the pan-neuronal marker (Table 3.25, 3.28).  Most of these defects were 

crossovers.  However, they did not have significant defects in pioneer neurons, when 

compared to the marker strains (Table 3.27, 3.29).  These mutants also did not display 

any DNC defects (Table 3.26). 
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Table 3.25 lron-8(gk5317) pan-neuronal VNC axon guidance defects 

Ventral Nerve Cord Marker Strain^ 
N = 787 

lron-8(gk5317) 
N = 100 

No Defect 95% 87%** 

Anterior Crossover 2% 5% 

Posterior Crossover 3% 7% 

Late Separation 0% 2% 

***p<0.001; **p<0.01; *p<0.05 (χ2 test).  ^The marker used was evIs111[rgef-1::GFP]. 

Table 3.26 lron-8(gk5317) and iglr-1(gk687851) DNC defects 

Dorsal Nerve Cord Marker Strain^ 
N = 245 

lron-8(gk5317) 
N = 65 

iglr-1 
(gk687851) 

N = 80 

No Defect 99% 100% 100% 

Defasciculation 1% 0% 0% 

^The marker used was evIs111[rgef-1::GFP]. 

Table 3.27 lron-8(gk5317) PVPR axon guidance defects 

PVPR 
Marker Strain^ 

N = 159 
lron-8  

(gk5317)  
N = 81 

No Defect 93% 96% 

Crossover 6% 1% 

Late Separation 1% 1% 

Leave VNC 0% 0% 

^The marker used was hdIs29[odr-2::CFP, sra-6::DsRed2]. 
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Table 3.28 iglr-1(gk687851) pan-neuronal VNC axon guidance defects 

Ventral Nerve Cord Marker Strain^ 
N = 787 

iglr-1(gk687851) 
N = 100 

No Defect 95% 89%* 
Anterior Crossover 2% 3% 
Posterior 
Crossover 3% 6% 

Late Separation 0% 1% 
***p<0.001; **p<0.01; *p<0.05 (χ2 test).  ^The marker used was evIs111[rgef-1::GFP]. 

Table 3.29 iglr-1(gk687851) PVPR axon guidance defects 

PVPR 
Marker Strain^ 

N = 294 
iglr-1(gk687851) 

N = 100 
No Defect 94% 98% 
Crossover 6% 0% 
Late Separation 1% 2% 

^The marker used was hdIs26[odr-2::CFP, sra-6::DsRed2]. 

3.1.12. lron-11; lron-3 double mutant axon guidance phenotypes 

I created double mutants of lron-11(ok2333) and lron-3(gk5319) with either pan-

neuron or pioneer markers.  In the pan-neuronal marker double mutant I observed ~30% 

VNC axon guidance defects, consisting mostly of crossover defects (Table 3.30).  This is 

similar to the lron-11(ok2333) single mutant.  I also observed 7% DNC defasciculation, 

which is also not significantly different from the lron-11(ok2333) single mutant (Table 

3.31). 

With the pioneer marker I observed I observed 16% penetrance PVPR defects in 

the double mutant, 15% were crossovers (Table 3.32).  This was not significantly 

different from either of the single mutants.  These results indicate that if lron-3 functions 

in axon guidance, it functions in the same pathway as lron-11. 
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Table 3.30 lron-11(ok2333); lron-3(gk5319) pan-neuronal VNC axon guidance 
defects 

Ventral Nerve 
Cord 

Marker Strain^ 
N = 787 

lron-3(gk5319) 
N = 102 

lron-11(ok2333) 
N = 96 

lron-11(ok2333); 
lron-3(gk5319) 

N = 102 

No Defect 95% 89% 71% 74% 

Anterior 
Crossover 2% 2% 15% 19% 

Posterior 
Crossover 3% 8% 19% 13% 

Late Separation 0% 1% 4% 1% 
The χ2 test was only used to compare the lron-11(ok2333); lron-3(gk5319) double mutant, with the lron-11(ok2333) 
single mutant.  ^The marker used was evIs111[rgef-1::GFP]. 

Table 3.31 lron-11(ok2333); lron-3(gk5319) DNC axon guidance defects 

Dorsal Nerve 
Cord 

Marker Strain^ 
N = 245 

lron-11  
(ok2333)  
N = 100 

lron-3 
(gk5319) 
N = 51 

lron-11(ok2333); 
lron-3(gk5319) 

N = 98 
No Defect 99% 96% 100% 93% 
Defasciculation 1% 4% 0% 7% 

The χ2 test was only used to compare the lron-11(ok2333); lron-3(gk5319) double mutant, with the lron-11(ok2333) 
single mutant.  ^The marker used was evIs111[rgef-1::GFP]. 

Table 3.32 lron-11(ok2333); lron-3(gk5319) PVPR axon guidance defects 

PVPR 
Marker Strain^ 

N = 294 
lron-3(gk5319)  

N = 96 
lron-11(ok2333) 

N = 103 

lron-3(gk5319); 
lron-11(ok2333) 

N = 100 

No Defect 94% 83% 81% 84% 

Crossover 6% 15% 15% 15% 

Late Separation 1% 1% 4% 1% 

AVG Crossover 0% 2% 4% 5% 

The χ2 test was only used to compare the lron-11(ok2333); lron-3(gk5319) double mutant, with the lron-11(ok2333) 
single mutant.  The ‘AVG Crossover’ row was not included when calculating in the percentage of ‘Wildtype’ animals.  
The ‘Wildtype’ row only refers to the PVPR axon.  ^The marker in this table was hdIs26[odr-2::CFP, sra-6::DsRed2].  
However, lron-3(gk5319) was scored with hdIs28[odr-2::CFP, sra-6::DsRed2]. 
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3.1.13. lron-11; lron-14 double mutant axon guidance phenotypes 

I found 44% penetrance of axon guidance defects in the VNC of lron-11(gk5321); 

lron-14(gk401715) double mutants, viewed with a pan-neuronal marker (Table 3.33).  

The most common defects were crossovers and late separation defects.  The double 

mutant’s defect penetrance was significantly higher than either of the single mutants 

(Figure 3.10).  I also saw a significant increase in DNC defects in the double mutant 

(Table 3.34).  These results indicate that lron-11 and lron-14 function in separate axon 

guidance pathways. 

In the pioneer marker, I found a 27% penetrance for PVPR defects in the double 

mutant (Table 3.35).  This was mostly crossover defects.  The double mutant’s PVPR 

defect penetrance was not significant when compared to the lron-11(gk5321) single 

mutant (Figure 3.11).  This suggests that lron-14 might function in the same axon 

guidance pathway as lron-11 in PVPR axon guidance or that lron-14 might not function 

in PVPR axon guidance at all. 

Table 3.33 lron-11(gk5321); lron-14(gk401715) pan-neuronal VNC axon 
guidance defects 

Ventral Nerve 
Cord 

Marker Strain^ 
N = 787 

lron-14(gk401715) 
N = 88 

lron-11(gk5321) 
N = 96 

lron-11(gk5321); 
lron-14(gk401715) 

N = 90 

No Defect 95% 83% 72% 56%* 

Anterior 
Crossover 2% 6% 19% 18% 

Posterior 
Crossover 3% 9% 13% 18% 

Late Separation 0% 3% 2% 13%** 

Leave VNC 0% 2% 1% 0% 
***p<0.001; **p<0.01; *p<0.05 (χ2 test).  The χ2 test was only used to compare the lron-11(gk5321); lron-14(gk401715) 
double mutant, with the lron-11(gk5321) single mutant.  ^The marker used was evIs111[rgef-1::GFP]. 
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Figure 3.10 lron-11(gk5321); lron-14(gk401715) pan-neuronal VNC axon 

guidance defects 
Both the lron-11(gk5321) and lron-14(gk401715) mutants have significantly more pan-neuronal axon guidance defects 
than the evIs111 marker strain.  The lron-11(gk5321); lron-14(gk401715) double mutant has significantly more defects 
than either single mutant, or the marker strain.  ***p<0.001; **p<0.01; *p<0.05 (χ2 test). 

Table 3.34 lron-11(gk5321); lron-14(gk401715) DNC axon guidance defects 

Dorsal Nerve 
Cord 

Marker Strain^ 
N = 245 

lron-14(gk401715) 
N = 95 

lron-11(gk5321) 
N = 98 

lron-11(gk5321); 
lron-14 

(gk401715) 
N = 100 

No Defect 99% 98% 92% 81%* 

Defasiculation 1% 2% 7% 12% 

DNC off track 0% 0% 1% 7% 

***p<0.001; **p<0.01; *p<0.05 (χ2 test).  The χ2 test was only used to compare the lron-11(gk5321); lron-14(gk401715) 
double mutant, with the lron-11(gk5321) single mutant.  ^The marker used was evIs111[rgef-1::GFP]. 
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Table 3.35 lron-11(gk5321); lron-14(gk401715) PVPR axon guidance defects 

PVPR 

Marker Strain^ 
N = 294 

lron-14 
(gk401715) 

N = 101 

lron-11(gk5321) 
PVQL 

N = 102 

lron-11(gk5321); 
lron-14 

(gk401715) 
N = 106 

No Defect 94% 85% 82% 73% 

PVPR Crossovers 6% 11% 13% 22% 

Late Separation 1% 2% 5% 3% 

Leave VNC 0% 2% 0% 2% 

AVG Crossovers 0% 0% 1% 4% 

The χ2 test was only used to compare the lron-11(gk5321); lron-14(gk401715) double mutant, with the lron-11(gk5321) 
single mutant.  The lron-11(gk5321) data was collected from observations of PVQL instead of PVPR.  ^The marker 
used was hdIs26[odr-2::CFP, sra-6::DsRed2].  However, lron-14(gk401715) was scored with hdIs28[odr-2::CFP, sra-
6::DsRed2]. 

 
Figure 3.11 lron-11(gk5321); lron-14(gk401715) PVPR axon guidance defects 
The lron-11(gk5321) mutant has significantly more PVPR (PVQL was counted in place of PVPR, 
see the table note for Table 3.4. for an explanation) axon guidance defects than the marker strain 
(hdIs26).  lron-14(gk401715)’s PVPR defects are not significant from either the marker strain, or 
the lron-11 single mutant.  The lron-11(gk5321); lron-14(gk401715) double mutant did not have 
significantly more PVPR defects than the lron-11(gk5321) single mutant.  ***p<0.001; **p<0.01; 
*p<0.05 (χ2 test). 
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3.1.14. iglr-2 pan-neuronal and pioneer axon guidance phenotypes 

Observed with the pan-neuronal marker, iglr-2(et34) animals do not have 

significant crossover defects or DNC defects (Table 3.36, Table 3.37).  However, iglr-

2(et34) worms did have highly penetrant defasciculation of the left VNC (Figure 3.12b, 

3.12c; Table 3.38).  I counted a split of the left VNC to be a defasciculation event.  

Importantly, I ignored defasciculation occurred only at the very anterior end of the VNC, 

anterior of the AVG cell body, and at the vulva bulge in the middle of the VNC.  This is 

because occasional defasciculation in these locations in the marker strain did occur.  I 

also observed significant early separation defects.  Unlike late separation, early 

separation occurs when the left tract separates from the right tract before the cluster of 

3-4 motor neuron cell bodies near the end of the VNC where it would normally diverge 

(Figure 3.13b).  Defasciculation and early separation defects are separated into their 

own table, so that iglr-2(et34) mutant’s other defects in Table 3.36 can be compared with 

data collected from other strains.  I did not collect quantitative data on defasciculation or 

early separation in most other mutant strains, since they only displayed these defects 

infrequently, at frequencies that seemed similar to the marker strain. 

I did not see significant defects in the pioneer marker, likely because 

defasciculation of the left tract cannot be observed in this marker (Table 3.39).  

However, I did see a single instance of PVQL producing what appears to be a second 

axon (Figure A1).  I also infrequently observed an additional neurite sprout from one of 

the PVQ neurons, but I did not quantify this phenotype (Figure A1). 
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Figure 3.12 iglr-2(et34) VNC left tract defasciculation 
a) This is the VNC of a wildtype animal.  The left tract is tightly fasciculated.  b) In this iglr-2(et34) 
animal the left tract has briefly defasciculated (red arrow).  c) This iglr-2(et34) mutant’s left VNC 
tract has defasciculated (red arrows).  The anterior side of the worm is towards the left of the 
image, the left side of the worm is toward the top of the image.  Scale bars = 25μm.  Marker used: 
evIs111[rgef-1::GFP] V. 

 

 
Figure 3.13 iglr-2(et34) left VNC tract early separation 
a) A wildtype animal with the left VNC tact separating at the cluster of 3-4 motor neuron cell 
bodies (white arrow).  b) In this iglr-2(et34) mutant, the left tract separates early from the right 
tract (red arrow), before the motor neuron cell body cluster (white arrow).  The anterior side of the 
worm is towards the left of the image, the left side of the worm is toward the top of the image.  
Scale bars = 25μm.  Marker used: evIs111[rgef-1::GFP] V. 
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Table 3.36 iglr-2(et34) pan-neuronal VNC axon guidance defects 

Ventral Nerve Cord Marker Strain^ 
N = 787 

iglr-2(et34) 
N = 104 

No Defect 95% 94% 

Anterior Crossover 2% 4% 

Posterior 
Crossover 3% 3% 

Late Separation 0% 1% 
^The marker used was evIs111[rgef-1::GFP]. 

Table 3.37 iglr-2(et34) DNC axon guidance defects 

Dorsal Nerve 
Cord 

Marker Strain^ 
N = 245 

iglr-2(et34)  
N = 100 

No Defect 99% 100% 
Defasciculation 1% 0% 

***p<0.001; **p<0.01; *p<0.05 (χ2 test).  ^The marker used was evIs111[rgef-1::GFP]. 

Table 3.38 iglr-2(et34) VNC left tract defasciculation 

Left Ventral Nerve 
Cord 

Marker Strain^ 
N = 50 

iglr-2(et34)  
N = 104 

No Defect 90% 13%*** 
Defasciculation 6% 86%*** 
Early Separation 4% 27%** 

***p<0.001; **p<0.01; *p<0.05 (χ2 test).  ^The marker used was evIs111[rgef-1::GFP]. 

Table 3.39 iglr-2(et34) PVPR axon guidance defects 

PVPR Marker Strain^ 
N = 159 

iglr-2(et34) 
N = 93 

No Defect 93% 96% 

Crossover 6% 2% 

Late Separation 1% 1% 

Leave 0% 0% 

^The marker used was hdIs29[odr-2::CFP, sra-6::DsRed2]. 
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Chapter 4. Discussion 

4.1. lron genes’ function in axon guidance 

eLRR genes are extracellular or transmembrane proteins that contain LRR 

repeats on their extracellular domain.  Many eLRR genes function in neurodevelopment, 

including SLT-1/Slit which is an important axon guidance cue (Dickson and Gilestro, 

2006; Hao et al., 2001; Rothberg et al., 1990).  Other eLRRs such as NGR1, Trks, 

FLRT3 and NGL’s have also been found to function as receptors, co-receptors and even 

as ligands (de Wit et al., 2011; Lin et al., 2003; Yamagishi et al., 2011).  However, these 

genes require further study to fully understand their role in axon guidance pathways 

(Chen et al., 2006; de Wit et al., 2011).  Furthermore, many eLRR genes have not been 

studied in the context of axon guidance. 

The C. elegans lron gene family consists of eLRR genes that contain only LRRs 

in their extracellular domain.  These lron genes encode mostly single-pass 

transmembrane proteins, though some are GPI-linked or secreted.  lron genes have not 

been studied in any context, including in axon guidance.  The exception is dma-1, which 

has been well studied in its role as an adhesion receptor in dendrite guidance (Liu and 

Shen, 2011; Tang et al., 2019; Zou et al., 2018). 

eLRR genes in C. elegans, particularly those with only LRR domains, have 

diverged rapidly during evolution and rarely display sequence similarity with themselves, 

or similarly structured genes in other species (Dolan et al., 2007).  Since many C. 

elegans genes with mammalian homologs already have somewhat divergent sequences 

due to their separate evolutionary history, this makes identifying lron homologs very 

difficult.  Additionally, there are many genes that also contain LRR domains along with 

other motifs that have a relatively high degree of sequence similarity with lron genes 

based solely off of having large LRR domains.  Therefore, homologs for lron genes in 

mammals have not yet been identified.  However, lron genes do share a similar structure 

to the LRRTM gene family in mammals.  LRRTM’s also encodes single-pass 

transmembrane protein’s containing only LRRs on their extracellular domain. 

I investigated the lron family to identify if any of these genes function in axon 

guidance in the C. elegans’ VNC.  My data suggests that lron-11 functions in axon 
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guidance, in several different types of neurons (Table 3.1).  Other lron genes, particularly 

lron-14, have significant axon guidance defects but require further research to confirm 

their role in this process.  Genes that didn’t display axon guidance defects when 

screened with pan-neuronal and pioneer markers could still have axon guidance 

functions in neurons that were not analysed in this study.  For example, it is possible 

these genes guide axons in lateral axon tracts or within the head, which were outside the 

scope of my research. 

4.1.1. PVPR axon guidance 

PVPR is the interneuron that pioneers the left tract of the VNC.  I found 

significant, ~12%, crossover defects in PVPR with both lron-11 alleles (Table 3.1, 3.4).  I 

also observed ~5% of the late separation defect, where PVPR stays in the right tract for 

too long.  Despite the low penetrance, this was also significant since the marker strain 

only rarely (<1% penetrance) displayed this phenotype.  lron-5 was the only other lron 

gene that displayed significant PVPR defects (Table 3.1, 3.19, 3.24).  However, lron-

5(gk959442) did not have significant pan-neuronal axon guidance defects.  This conflicts 

with the pioneer data since PVPR defects should be observed in the pan-neuronal 

marker.  However, this lron-5 mutant strain, VC41011, contains many additional 

mutations and has not been outcrossed.  Therefore, the lron-5 strain crossed with the 

global marker will be homozygous for different background mutations than the lron-5 

strain containing the pioneer marker.  The difference in background mutations could 

account for the discrepancy between the pan-neuronal and pioneer marker axon 

guidance defects.  This suggests that lron-5 does not guide the PVPR axon, though the 

outcrossed lron-5 strain should be phenotyped to confirm this. 

Both studied lron-3 alleles are putative null alleles contain large deletions.  

Preliminary work on a lron-3(ok2614) strain found significant axon guidance defects, but 

this strain hadn’t been outcrossed.  Neither of the alleles I studied displayed significant 

PVPR axon guidance defects (Table 3.1, 3.19, 3.21).  However, lron-3(gk5319) did have 

significant pan-neuronal defects that were mostly left tract crossovers, which are often 

indicative of PVPR crossovers (Table 3.1, 3.17, 3.20).  However, the penetrance of 

defects was still quite low, at 11%.  I created lron-3; lron-11 double mutants which 

displayed pan-neuronal and PVPR defects that were comparable to the lron-11 single 

mutant (Table 3.30, 3.32).  Therefore, lron-3 could act in the same PVPR axon guidance 
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pathway as lron-11, which has similar PVPR defects to lron-3(gk5319) (Table 3.4).  

However, the much more likely explanation is that lron-3 doesn’t actually function in 

axon guidance in the VNC and that the significant pan-neuronal defects for one lron-3 

allele were a false positive result. 

lron-14(gk401715) displayed 15% PVPR defects, but this was not significant 

when compared with the marker strain (Table 3.1, 3.16).  lron-14 did have significant 

pan-neuronal defects, the majority of which involved defects in axons of the left tract 

which often indicative of PVPR defects (Table 3.1, 3.14).  Also, consistent in both the 

pan-neuronal and in PVPR, 2% of lron-14 mutants had axons in their left tract leave the 

VNC (Figure 3.9).  Based on these results, I phenotyped the lron-11; lron-14 double 

mutant in both the pan-neuronal and pioneer marker.  I observed axon guidance defects 

in the pan-neuronal marker that were significantly more penetrant than either of the 

single mutants (Figure 3.10; Table 3.33, 3.34).  This indicates that lron-11 and lron-14 

have an additive genetic interaction and function in separate pathways.  However, the 

increase in PVPR axon guidance defects in the double mutant was not significant when 

compared to the lron-11(gk5321) mutant (Figure 3.11; Table 3.35).  This suggests that 

lron-14 and lron-11 might function in the same pathway, which is somewhat 

contradictory to the pan-neuronal data, or it could mean that only lron-11 functions in 

PVPR axon guidance.  The lron-14(gk401715) mutant’s low penetrance of axon 

guidance defects could be making it harder to statistically detect an additive genetic 

interaction or it is possible that lron-14(gk401715) doesn’t actually function in axon 

guidance in the VNC.  To resolve this, lron-14(gk401715) should be outcrossed to 

determine if background mutations are causing this discrepancy, and to verify that it acts 

in axon guidance. 

Interestingly, there appear to be many axon guidance pathways involved in 

PVPR axon guidance.  The cadherins cdh-4, and fmi-1, as well as the lin-17/frizzled 

receptor display the largest PVPR defects, with a crossover penetrance of over 50% 

(Schmitz et al., 2008; Steimel et al., 2010).  However other axon guidance genes have 

also been implicated.  The ephrin’s guidance pathway functions to inhibit many axons, 

including PVPR, from crossing the ventral midline (Boulin et al., 2006).  The ephrin 

receptor is expressed in the extending growth cone, and ephrins and the IgCAM wrk-1 

signal from the surface of motor neuron cell bodies along the midline.  sax-3/robo 

mutants display a high PVPR crossover penetrance as well (inferred from PVQL 
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defects), however this appears to be largely independent of its usual ligand slt-1/Slit 

(Boulin et al., 2006; Zallen et al., 1998).  Additionally, unc-6/netrin, which is secreted by 

ventral cells, also results in penetrant PVPR axon guidance defects when mutated 

(Hutter, 2003).  Finally, there are two PVPR axon guidance pathways mediated by 

heparan sulfate modified proteins.  Heparan sulfate modifying enzymes hst-2 and hse-5 

mutants have ~50% PVPR crossover defects, though the protein they are modifying has 

not been identified (Bülow and Hobert, 2004).  hst-6 may modify the HSPG sdn-1 which 

acts in a parallel PVPR axon guidance pathway (Rhiner et al., 2005).  Further work is 

required to determine if any of these axon guidance genes act in the same pathway or 

whether these are all separate axon guidance pathways. 

With the data currently available, it is impossible to accurately determine which of 

these pathways lron-11 might be a part of, if any.  The lron-11 single mutant PVPR 

crossover defects I observed were more moderate than in most of these other known 

axon guidance genes.  The exception is the ephrin vab-2, which also has PVPR defects 

under 20% (Boulin et al., 2006).  However, I have not found evidence of LRR domains 

interacting with ephrins or their receptors; the RTK eLRR TrkB binds ephA, but the LRR 

domain was not required for this interaction (Marler et al., 2008).  Therefore, there is not 

strong evidence to support lron genes functioning in this ephrin pathway.  However, 

there is strong evidence that the addition of heparan sulfate to neurexin is necessary for 

its proper binding with the eLRR-only proteins LRRTM1 and LRRTM2 to induce 

synaptogenesis (Ko et al., 2009; Yamagata et al., 2018; P. Zhang et al., 2018).  

Furthermore, heparan sulfate is also required for a functional interaction between 

LRRTM4 and glycipans, a heparan sulfate proteoglycan (HSPG) (de Wit et al., 2013).  

So, it is possible LRON proteins like LRON-11 bind HSPGs.  However, LRRTMs are not 

known homologs of lron genes, so this is a somewhat tenuous connection. 

Robo receptors have been shown to interact with several different eLRR 

proteins.  As previously stated, SAX-3/Robo receptor binds the eLRR protein SLT-1/Slit, 

and the ligand’s LRR domain is essential for this interaction (Battye et al., 2001; Hao et 

al., 2001).  Zebrafish eLRR-only LRRTM1, which has a similar ectodomain to the LRON 

proteins, has been shown to bind to Robo2 in-vitro (Söllner and Wright, 2009).  In 

Drosophila, eLRR-only protein Leucine Rich Repeat Trans-membrane protein (LRT), 

seems to bind Robo during muscle cell migration (Gilsohn and Volk, 2010).  

Interestingly, in mice the eLRR protein FLRT3 binds to Robo1 with its intracellular 
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domain, where it promotes netrin attraction by upregulating UNC-40/DCC in the 

presence of SLT-1/Slit, combining these axon guidance pathways (Leyva-Díaz et al., 

2014).  Therefore, it is possible that LRON-11 is another eLRR protein that bind SAX-

3/Robo.  However, lron-11‘s expression pattern has not been verified, and double 

mutants between lron-11 and sax-3 would have to be created to provide evidence for an 

interaction between these genes. 

Finally, there is evidence of eLRR proteins interacting with the netrin receptors 

UNC-40/DCC and UNC-5.  I already mentioned that FLRT3 can upregulate UNC-

40/DCC expression, though how this occurs is unclear.  However, it is also known that 

FLRT3 binds UNC-5b in Xenopus as an inhibitory cue for cell adhesion (Karaulanov et 

al., 2009).  This interaction primarily utilizes FLRT3’s LRR domain, demonstrating that 

UNC-5 receptors can bind LRRs.  More relevantly, FLRT2 and FLRT3 bind UNC-5D 

receptors as an inhibitory cue during mouse cortical neuron axon guidance (Yamagishi 

et al., 2011).  Intriguingly, these FLRTs shed their ectodomain and act as a secreted cue 

in this axon guidance pathway.  This cleavage does not require their fibronectin domain, 

so some lron genes might be capable of shedding their extracellular domains as well.  

UNC-5 does function in the pioneer AVG’s axon guidance, but it has not been studied in 

PVPR (Bhat and Hutter, 2016). 

While the axon guidance pathways that lron-11 is acting in cannot currently be 

identified, research on other similar eLRRs is informative as to what genes it might 

interact with.  lron-11 has a similar structure to dma-1, which functions as an adhesion 

receptor, so it is possible it could also act cell autonomously as an adhesion receptor.  

However, although all the lron genes have been grouped into the same family based on 

shared characteristics, they do not cluster together if you compare their amino acid 

sequences (Dolan et al., 2007).  Also, lron-11‘s PVPR defects seem more likely to be 

caused by signaling defects rather than adhesion defects, since PVPR is a pioneer 

axon.  Therefore, lron-11 might act as receptors for extracellular guidance cues.  DMA-1 

is capable of transmitting signals through its intracellular domain, and through cis-

binding of other transmembrane proteins, suggesting other lron genes might be capable 

of this as well (Tang et al., 2019; Zou et al., 2018).  Additionally, there is RNA-seq 

evidence that lron-11 is expressed in neurons during axon extension and could therefore 

function cell autonomously, though this requires further evidence to be confirmed 

(Packer et al., 2019).  I created a transcriptional expression construct by fusing the 3kb 
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upstream of the lron-11 start codon to GFP.  However, with this reporter I only observed 

faint expression in a band of muscle, and in a pair of sensory neurons in the head.  An 

explanation for this low and limited expression could be that lron-11’s introns contain 

enhancer elements that are important in its expression.  lron-11’s first two introns are 

very large, consisting of ~900 and ~2000 base pairs respectively.  In C. elegans, as well 

as other organisms, large early introns often play an important role in enhancing gene 

expression.  Therefore, further experiments, such as with a transcriptional reporter that 

includes lron-11’s promoter and its introns, are required to determine if lron-11 is 

expressed cell-autonomously by PVPR and could be functioning as a signal transducing 

receptor. 

4.1.2. AVG axon guidance 

I observed significant AVG crossover defects in lron-11(ok2333) mutants, but 

with only ~5% penetrance (Table 3.1).  I only saw 1% axon guidance defects in lron-

11(gk5321) animals (Table 3.1).  In the lron-11; lron-14 and lron-11; lron-3 double 

mutants I observed 4% and 5% AVG crossover defects (Table 3.32, 3.35).  The lron-11; 

lron-14 double mutant with the pioneer marker contained the lron-11(gk5321) allele, and 

the lron-11; lron-3 animals with the pioneer marker contained the lron-11(ok2333) allele.   

It is unsurprising that I observed such low penetrance of AVG crossovers since 

AVG is not greatly affected by single mutations in known axon guidance genes, likely 

due to redundant signaling pathways.  For example, unc-6/netrin and unc-5 mutants also 

display low, <10%, AVG crossover penetrance (Bhat and Hutter, 2016).  However, when 

they are combined with a nid-1/nidogen mutation, a gene which encodes part of the 

basement membrane, the ~40% crossover penetrance of the double mutant is much 

higher than either single mutant (Bhat and Hutter, 2016).  NID-1/nidogen is required for 

the correct navigation of longitudinal axons, though it is not required for basement 

membrane assembly (Ackley et al., 2003; Kim and Wadsworth, 2000).  This 

demonstrates that UNC-6 and UNC-5 do function in AVG axon guidance, despite low 

penetrance of defects in the single mutants.  Therefore, lron-11 mutant’s low penetrance 

of crossover defects could still be an indication that lron-11 has a role in AVG axon 

guidance. 
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4.1.3. AVK axon guidance 

AVKL and AVKR are interneurons situated near the anterior end of the VNC.  

They send their axons anteriorly into the nerve ring before they enter the VNC traveling 

posteriorly (Figure 3.4a).  AVKL’s axon enters the right tract, AVKR’s enters the left.  In 

lron-11(ok2333) mutants, I rarely observed any crossover defects in AVK axons (Table 

3.6).  This is not unexpected, since different axons often rely on different guidance 

pathways.  For example, mutations in the ephrin pathway and in hst-2, hst-6 and sdn-1 

have crossover defects in other interneurons like PVPR, but not in AVK (Boulin et al., 

2006; Bülow and Hobert, 2004).  The AVK axon does display crossover and VNC leave 

defects in sdn-1 and fmi-1 (Rhiner et al., 2005; Steimel et al., 2010).  In lron-11(ok2333) 

animals I did observe AVKL and/or AVKR axons prematurely leave the nerve ring in 

~10% of animals (Figure 3.4b; Table 3.6).  When this occurred, the AVK axon typically 

wanders posteriorly, and it would never enter the VNC (Figure 3.4c).  Although I did not 

observe this defect in the marker strain, these results are not statistically significant due 

to the low penetrance of the defect and because only 53 animals were scored for the 

marker strain.  More animals need to be scored to determine if this is a lron-11 mutant 

phenotype. 

4.1.4. Command interneuron axon guidance 

Command interneurons axons enter the VNC at the anterior end.  While initially 

command interneuron axons enter the VNC in both the left and right tract, the axons in 

the left tract will all crossover very early on, before the AVG cell body (Figure 3.5a).  The 

axons then extend posteriorly along the right tract.  In lron-11(ok2333) animals, I only 

saw 5% penetrance of crossovers into the left tract (Table 3.7).  So, lron-11 doesn’t 

appear to play a major role in guiding command interneurons along the VNC.  Notably, 

sdn-1 mutants display no command interneuron defects, despite significant PVPR and 

AVK crossover defect (Rhiner et al., 2005).  Ephrin and FMI-1 however do function in 

command interneuron axon guidance (Boulin et al., 2006; Steimel et al., 2010).  In lron-

11(ok2333) mutants I did observed axons in the left tract extend past the AVG cell body 

before crossing over in ~10% of animals, which I never observed in the marker strain 

and was statistically significant (Figure 3.5b; Table 3.7).  This might indicate a modest 

role for lron-11 in guiding command interneurons as they enter the VNC. 
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4.1.5. HSN axon guidance 

The HSN motor neuron’s cell bodies reside slightly dorsal of either side of the 

VNC and are just posterior of the vulva (Figure 3.3a).  HSNL is on the left side, where it 

sends its axon ventrally into the left VNC.  HSNR sends its axon into the right tract.  The 

HSN axons then travel anteriorly along the VNC.  Mutations in several known axon 

guidance genes cause HSN axon guidance defects.  This includes the ephrin pathway, 

since vab-2 and wrk-1 mutants have 15-20% HSN crossover defects (Boulin et al., 

2006).  sax-3 mutants have the largest defects, with ~50% penetrance of HSN 

crossovers (Zallen et al., 1998).  Finally, mutations in all three heparan sulfate modifying 

enzymes hst-2, hse-5 and hst-6 and in sdn-1 result in significant HSN crossover (Bülow 

and Hobert, 2004; Rhiner et al., 2005).  lron-11(ok2333) mutants had 17% penetrance of 

crossovers in HSNL (Figure 3.3b; Table 3.5).  This was not significant and since the 

PVPR axon sometimes leaves the left tract in lron-11(ok2333) animals, it is possible that 

the HSNL axon is simply following this pioneer axon when it crosses over (Table 3.4).  

Therefore, lron-11 doesn’t appear to guide the HSN axons in the VNC. 

4.1.6. DD/VD motor neuron neurite guidance 

Motor neurons cell bodies are present along the ventral midline and they send 

their neurites only into the right tract of the VNC.  They send their commissures dorsally 

to the DNC, up either the left side or the right side of the animal, in a consistent pattern.  

Most DD/VD commissures are sent up the right side of the animal.  In 55% of lron-

11(ok2333) mutants, at least one commissure extends up the wrong side of the animal 

and in 20% of animals there are more than two errant commissures (Figure 3.6b; Table 

3.9).  This commissure polarity defect was significant, but it should be noted that the 

marker strain had 34% penetrance of commissure polarity defects (Table 3.9). 

Commissure polarity defects cannot be easily interpreted as an adhesion defect.  

Therefore, this suggests LRON-11 might not act as an adhesion receptor like DMA-1, at 

least for commissure polarity.  However, there is some evidence for adhesion, or at least 

cell-cell contact, being important for commissure polarity.  First, the cadherin adhesion 

receptor cdh-4 also has over 50% penetrant DD/VD commissure polarity defects 

(Schmitz et al., 2008).  Further evidence comes from AVG ablation experiments.  When 

AVG is ablated early, its axon is not able to pioneer the right tract, resulting in the right 
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axon tract becoming highly defasciculated (Durbin, 1987).  Interestingly AVG ablation 

also causes a high penetrance of commissure polarity defects, in both DD/VD and 

DA/DB motor neuron commissures (Hutter, 2003).  Therefore, adhesion to AVG or other 

neighbouring axons in the right tract might be important for the establishment of left-right 

polarity in motor neurons.  Other mutants such as fmi-1, unc-6 and sax-3 also display 

DD/VD commissure polarity defect, although their penetrance is less than 50% (Hutter, 

2003; Steimel et al., 2010).  unc-6 and sax-3 mutants having commissure polarity 

defects suggests that there is at least some signaling component in determining 

commissure polarity.  Heparan sulfate also appears to be involved in this process, with 

hst-2 and hse-5 animals having ~25% penetrant defects (Bülow and Hobert, 2004). 

The lron-11(ok2333) mutant allele did not impair DD/VD commissure’s ability to 

navigate dorsally to reach the DNC (Table 3.8).  In wildtype animals, once these 

commissures reach the DNC, they should form a continuous tract (Figure 3.7a).  Gaps in 

the DNC were observed in 23% of lron-11 mutants, however this was not significant 

compared to the marker strain (Figure 3.7b, 3.7c; Table 3.11). 

Interestingly, in the pan-neuronal marker I did observe significant defects in the 

DNC of lron-11 mutants, but only with the gk5321 allele.  In both mutant alleles, part of 

DNC defasciculated in ~5% of animals (Figure 3.1d; Table 3.3).  Intriguingly, despite the 

lron-14(gk401715) single mutant only having 2% penetrance of DNC defasciculation, the 

lron-11; lron-14 double mutant had 19% penetrance for DNC defects (Table 3.15, 3.34).  

This included the DNC bending ventrally in some animals (Table 3.34).  The lron-11; 

lron-14 double mutant’s DNC defects were highly significant from the marker strain, as 

were also significant from both the lron-11 single mutant strains (Table 3.34).  This 

suggests that both lron-11 and lron-14 might play minor roles in DNC fasciculation.  The 

cause of this defasciculation defect could be impaired adhesion between the 

commissures within the DNC, which is thought to be the cause of the ~50% penetrance 

of DNC defasiculation defects observed in the cadherin cdh-4 mutants (Schmitz et al., 

2008).   

Alternatively, lron-11’s commissure polarity defects could be causing this 

disorganization in the DNC.  As mentioned previously, mutations in a heparan sulfate 

pathway induce commissure polarity defects (Bülow and Hobert, 2004).  Mutations in the 

heparan sulfate modifying enzymes hst-2 and hse-5 mutants also cause ~25% DNC 
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defasciculation penetrance and sdn-1 mutants have 15% defects (Bülow and Hobert, 

2004).  cdh-4 mutants also have both commissure polarity defects and DNC 

defasciculation defect (Schmitz et al., 2008).  Therefore, lron-11 could be functioning as 

an adhesion receptor during DNC fasciculation, and/or its function in commissure 

polarity could be indirectly impacting the organization of the DNC, resulting in 

defasciculation. 

In addition to commissure defects, I observed DD/VD neurites extend aberrantly 

into the left tract in 22% of lron-11(ok2333) animals (Figure 3.6c, 3.6d; Table 3.10).  This 

occurred due to a crossover event, or due to an outgrowth error that results in the 

neurite starting in the left tract.  I observed both of these events in lron-11 mutants and 

the penetrance of this defect was statistically significant from the marker strain.  I only 

counted this as a defect if the neurite(s) stayed in the left tract for at least two motor 

neuron cell body lengths. 

DD/VD neurites crossing into the left tract could be cause by loss of adhesion to 

other neurites in the right tract.  This loss of adhesion could cause a neurite to 

occasionally cross the ventral midline when it otherwise would have stayed bound to the 

right tract.  This is thought to be the cause of the cadherins cdh-4 and fmi-1’s ~25% 

DD/VD neurite crossover phenotype (Schmitz et al., 2008; Steimel et al., 2010).  

However, because some of the neurites initially outgrew into the left tract, this suggests 

that lron-11 plays a signaling role in DD/VD neurites outgrowth.  Therefore, the neurites 

crossing into the left tract could also be interpreted as a signaling defect.  For instance, if 

neurites are no longer able to recognise a repulsive signal at the ventral midline, they will 

crossover more frequently.  Loss of known axon guidance signaling pathway 

components has been implicated in DD/VD neurite crossovers.  For example, mutants 

lacking the axon guidance cue unc-6 have a DD/VD neurite crossover penetrance of 

42% (Hutter, 2003).  Additionally, sax-3 functions as a receptor in a separate axon 

guidance signaling pathway, and mutations in sax-3 have a DD/VD crossover 

penetrance of 30% (Hutter, 2003).  hst-2 and hse-5 were shown to have penetrant ‘VNC 

defasciculation’ defects in DD/VD motor neurons as well (Bülow and Hobert, 2004).  

These observations suggest that DD/VD neurite guidance might require both adhesion 

and signaling for proper guidance along the VNC. 
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Based on this data, lron-11 could be functioning purely as a receptor for axon 

guidance signals or it could have a fasciculation function in these neuron’s neurites.  

More research to discover other genes lron-11 is interacting with is required to determine 

what role it is playing in DD/VD neurites navigation.  Of the genes with similar DD/VD 

motor neuron defects, lron-11 seems most likely to function in the sax-3/Robo or 

heparan sulfate pathways.  This is because many eLRR protein’s LRR domains have 

been shown to bind to SAX-3/Robo and heparan sulfate modified proteins, including 

binding Robo in axon guidance signaling pathways (Battye et al., 2001; de Wit et al., 

2013; Gilsohn and Volk, 2010; Hao et al., 2001; Leyva-Díaz et al., 2014; Söllner and 

Wright, 2009; P. Zhang et al., 2018).  Creation of double mutants to test for genetic 

interactions would elucidate any interaction between these genes. 

4.1.7. DA/DB motor neuron neurite guidance 

The DA/DB motor neuron neurites make similar axon guidance decisions to 

DD/VD motor neuron neurites.  Neurites extend into the right VNC, and the commissures 

choose to travel up the left or right side of the animal to the DNC.  However, fewer genes 

have been implicated in DA/DB neurite guidance, so they seem to not rely entirely on the 

same guidance pathways that DD/VD motor neurons use.  In lron-11(ok2333) mutants, I 

did not observe neurites in the left tract when observing these neurons (Table 3.12).  

However, I did see a 75% penetrance of at least one commissure polarity defect in these 

mutant animals (Figure 3.8; Table 3.12).  Additionally, 40% of lron-11 animals had at 

least two commissures traveling up the wrong side, and 7% had more than four (Table 

3.12).  Interestingly, the lron-11 mutation had different effects across DA/DB neurons 

(Table 3.13).  DA4 was defective in ~50% of animals, which is the same as if it was 

choosing randomly.  So, without functional lron-11 DA4 seems unable to polarize along 

the left-right axis.  Conversely, the posterior-most neurons counted, DB5, DA5, DB6, 

DA6 and DB7, were only slightly affected, with commissure polarity defects in 10% or 

less of mutants.  lron-11’s commissure polarity defect cannot be classified purely as an 

axon outgrowth or axon guidance defect, since both were predominant in different motor 

neurons (Table 3.13).  For example, the DA4 commissure traveled along the VNC briefly 

before turning up the wrong side of the animal for the majority of commissure polarity 

defects observed.  However, for all DB3 and DA2 defects, the commissures outgrew 

directly from the wrong side of the cell body.  This suggests lron-11 is required to 
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different degrees and even in different processes (commissure guidance and outgrowth) 

in various DA/DB motor neurons.  Interestingly, mutations in heparan sulfate modifying 

enzymes and in sdn-1 also have divergent effects on the different DA/DB commissures.  

In this case, the DA2 and DB3 commissures almost completely lost their left-right 

polarity in hst-2; hst-6 double mutants, and in sdn-1 mutants (Bülow et al., 2008).  No 

other commissure was heavily impacted.  Together, these results suggest that different 

DA/DB motor neurons rely on different axon guidance pathways to polarize along the 

left-right axis.  DA2 and DB3 seem to rely on a heparan sulfate pathway, whereas DA4 

relies on lron-11. 

sax-3 is the only other axon guidance gene with high penetrance of DA/DB 

commissure polarity defects, with 70% of animals having errant commissures (Hutter, 

2003).  fmi-1 and unc-6 also have commissure polarity defects, but these are only ~20% 

penetrant (Hutter, 2003; Steimel et al., 2010).  This is additional evidence that lron-11 

could be acting in a sax-3/Robo signaling pathway.  As previously noted, both lron-11 

and sax-3 mutants have display axon guidance defects in PVPR and in DD/VD motor 

neurons, and have few crossovers in command interneurons (Table 3.4, 3.5, 3.7, 3.9, 

3.10; Hutter, 2003; Zallen et al., 1998).  It should be noted that sax-3 mutant’s defects in 

PVPR and HSN are much more highly penetrant than in lron-11 mutants.  However, this 

does not mean lron-11 can’t be functioning in the same pathway.  sax-3 could act in 

multiple axon guidance signaling pathways or other genes could have a redundant role 

to lron-11 in this pathway.  Regardless, more research is required to demonstrate an 

interaction between lron genes and sax-3. 

4.1.8. Other possible lron gene functions 

While I didn’t observe axon guidance defects in some lron genes, they could still 

function in axon guidance outside of the VNC.  However, it is likely most of them have 

other functions.  Some of these lron genes are expressed in neurons, so they, like many 

other eLRRs, could act in synapse formation or function (Figure 1.8; Liu and Shen, 2011; 

Packer et al., 2019).  This includes the LRRTM family, which has only LRRs on their 

extracellular domain and in mammals has the most comparable protein structure to the 

LRON family.  LRRTM2 is an important binding partners for neurexin and recruits 

synaptic proteins in the postsynaptic membrane to induce excitatory synapse 

differentiation in both the pre- and postsynaptic membranes (de Wit et al., 2009; Ko et 
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al., 2009; Linhoff et al., 2009; Yamagata et al., 2018).  LRRTM4 also induces synaptic 

differentiation, but by binding the heparan sulfate proteoglycan glypicans (de Wit et al., 

2013).  Both neurexin and glypicans have homologs in C. elegans that function in 

synapses, so these homologs are good candidates for binding partners of the LRON 

proteins that are expressed in neurons (Ackley et al., 2003; Lázaro-Peña et al., 2018; 

Reissner et al., 2013).  The Slitrks also function in synaptic differentiation through 

binding LAR family receptor protein tyrosine phosphatases (Yim et al., 2013).  

Furthermore, the IG containing eLRR NGL family functions in excitatory synapse 

formation as well (Kim et al., 2006).  The SALM (synaptic adhesion-like molecules) 

family, which contain LRR, IG and fibronectin domains, also function in synaptogenesis, 

as well as in synapse maturation and neurite outgrowth (Ko et al., 2006; Nam et al., 

2011).  In Drosophila, the eLRR Caps is expressed in both the pre- and postsynaptic 

membranes where it mediates axon and dendrite target selection through hetero- or 

homophilic binding (Hong et al., 2009; Kohsaka and Nose, 2009; Shinza-Kameda et al., 

2006).  Toll receptors also have a function in target selection, as they inhibit motor 

neuron synaptic initiation in Drosophila (Rose et al., 1997).  This demonstrates that 

eLRRs commonly play a role in synapse development, so neuronal expressed lron 

genes that did not display axon guidance defects could instead function in synapses. 

eLRR genes also have diverse functions outside of nervous system 

development.  lron genes not expressed in developing neurons could potentially act in 

these processes.  This includes functions in innate immunity (Nürnberger et al., 2004) 

pain (Wadachi and Hargreaves, 2006) heart function (Li et al., 2017) modulation of 

voltage-gated channels (Peltola et al., 2011) as hormone receptors (Van Loy et al., 

2008) muscle regeneration (K. Zhang et al., 2018) stem cell regulation (Rafidi et al., 

2013) and modulation of cell growth (Böttcher et al., 2004; Ghiglione et al., 1999; Zhang 

et al., 2005).  Additionally, in Drosophila the Toll receptor functions during embryonic 

development, playing a key role in the creation of the dorsal-ventral polarity of the 

embryo (Anderson et al., 1985).  Interestingly, Toll receptors have also been found to 

initiate apoptosis in neurons (Ma et al., 2006).  Finally, eLRR’s have roles in synapse 

function.  LRRTM1 and LRRTM2 stabilize AMPA receptors in the postsynaptic 

membrane (Bhouri et al., 2018).  When they are mutated, the normal increase of AMPA 

receptors required for LTP is prevented.  Other eLRR proteins, such as Slitrk5, have 

also been found to have synaptic transmission or memory functions (Bando et al., 2005; 
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Shmelkov et al., 2010).  eLRR proteins also function in myelination, though this process 

does not occur in C. elegans (Bermingham et al., 2006; Mi et al., 2005).  There are 

undoubtably more undiscovered functions of eLRR genes, since this group of genes has 

not been as well characterized (Dolan et al., 2007).  

4.2. iglr genes’ function in axon guidance 

Most of the eLRR genes that are known to function in axon guidance contain IG 

domains in addition to their LRR domains (Figure 1.8).  The Trks, which have relatively 

few LRR domains and contain two IG domains, have an important role in neuron survival 

and in synapse development (Barbacid, 1994; Huang and Reichardt, 2001).  In addition, 

all three Trks have been implicated in guiding a variety of axons in several model 

organisms (Cabelli et al., 1997; Gallo et al., 1997; Guo et al., 2011; Patel et al., 2000; T. 

D. Patel et al., 2003; Perez-Pinera et al., 2008).  Linx is transmembrane protein with 

LRRs, one IG domain, and a fibronectin domain (Homma et al., 2009).  It modulates 

TrkA’s activity during sensory and motor axon guidance in mice (Mandai et al., 2009).  It 

also functions in mouse thalamocortical axons, their guidepost cells, and in axons 

navigating through the optic chiasm of zebrafish (Abudureyimu et al., 2018; Mandai et 

al., 2014; Panza et al., 2015).  These functions are independent of TrkA.  Lingo-1 and 

Amigo-3, which both contain a LRR domain and a single IG domain, function as 

coreceptors to the eLRR NGR1 to induce axon repulsion from myelin (Ahmed et al., 

2013; Mi et al., 2004).  Additionally, Amigo-1 has been found to enable fasciculation 

through homophilic binding (Kuja-Panula et al., 2003; Zhao et al., 2014). 

The C. elegans’ iglr genes are single-pass transmembrane proteins containing 

eLRRs and a single IG domain.  Transcriptional and translational reporter experiments 

provide evidence that iglr-1 and iglr-2 are being expressed in neurons (Kuo et al., 2020; 

Liu and Shen, 2011).  Like the genes just described, their LRRs are closest to their N 

terminus, with the IG domain’s being closer to the transmembrane domain (Figure 1.8).  

It has been proposed that all human LRR and IG containing proteins, including the Trks, 

Lingos and Amigos, evolved from a single ancestor gene (Mandai et al., 2009).  

However, similar to the lron family, the iglr genes have no identified homologs, though 

iglr-2 does cluster with the uncharacterized Drosophila gene CG16974 (Dolan et al., 

2007).  However, iglr genes do have the same domain organization as the Lingo and 

Amigo mammalian gene families, which both cluster together due to their sequence 
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similarity (Mandai et al., 2009; Ulian-Benitez et al., 2017).  These genes’ extracellular 

domains are also made up of a single IG domain and LRRs and they are also single-

pass transmembrane proteins.  Genes in both of these families have been implicated in 

axon guidance (Ahmed et al., 2013; Kuja-Panula et al., 2003; Mi et al., 2004; Zhao et al., 

2014).  Given that eLRR and IG containing genes with similar domain structure to iglr 

genes function in axon guidance, some iglr genes could have a similar function. 

4.2.1. Pan-neuronal and pioneer crossover defects 

I analyzed iglr-1(gk687851) and iglr-2(et34) mutants for VNC axon guidance 

defects with pioneer and pan-neuronal markers.  I did observe significant pan-neuronal 

defects in iglr-1 animals, though these were only 11% penetrant (Table 3.1).  Also, 

although most of these crossovers were from axons in the left tract, iglr-1(gk687851) 

mutants didn’t have display significant PVPR defects.  This indicates that this is either a 

false positive result or iglr-1 plays a minor role in AVKR or HSNL axon guidance.  I did 

not observe significant crossover defects in the iglr-2 mutants.   

4.2.2. Left VNC fasciculation defects 

Intriguingly, in iglr-2(et34) mutants, I observed apparent fasciculation defects in 

the left VNC in the pan-neuronal marker (Figure 3.12).  The left tract split in 86% of iglr-2 

animals, compared with just 6% of wildtype animals (Table 3.38).  In contrast, I did not 

notice any defasciculation of the right tract.  However, any defasciculation of the right 

tract that isn’t major (involving crossovers) is difficult to observe due to the number of 

axons in the right tract (Chisholm et al., 2016).  Fasciculation defects can prevent axons 

from synapsing with their proper targets because most synapses in C. elegans form en 

passant between adjacent neurites (Hall and Russell, 1991; White et al., 1986).   

While iglr-2 mutants seem to have a fasciculation defect in the left tract, there are 

other explanations.  Half of the fasciculation events observed started anterior of the AVG 

cell body.  The cell bodies near AVG and in the head together produce an excess of 

fluorescence that makes it difficult to observe the faint left tract at the anterior end of the 

VNC.  This makes it difficult to identify if this is a real split in the left tract or if an anterior 

axon is simply crossing over gradually from the right tract to the left.  Another 

explanation is that axons from the head or neurites from motor neurons could be 
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inappropriately extending into the left VNC.  Since these axons are not meant to 

navigate along this fascicle, they might not fasciculate properly with the axons in this 

bundle.  Further analysis in a motor neuron marker could identify if any motor neuron 

neurites are extending into the left tract, which could also be caused by a fasciculation 

defect.  However, for the rest of this discussion I will assume that this is primarily a left 

VNC fasciculation defect. 

I also noticed significant, ~30%, early separation defects in the iglr-2(et34) 

mutants (Table 3.38).  This occurs when the left tract leaves the right tract abnormally 

early, before the cluster of motor neuron cell bodies near the end of the VNC (Figure 

3.13).  This is hard to interpret, since the PVPR axon forms the left tract almost 

immediately after outgrowing (Durbin, 1987).  Its only later in development that the start 

of the left tract is shifted anteriorly, presumably due to additional growth and cell 

rearrangement that occurs later in development.  So, this defect presumable is caused 

by an alteration of these developmental processes in this region, not due to an axon 

guidance error. 

The left VNC consists of only four axons, the pioneer PVPR, as well as PVQL, 

HSNL and AVKR (Figure 1.5).  PVQL in particular is known to fasciculate tightly to 

PVPR (Durbin, 1987; Hutter, 2003).  HSNL requires either PVQL or PVPR to navigate 

along the left tract properly (Garriga et al., 1993).  AVKR appears to be able to navigate 

along the left tract without the PVPR or PVQL axon being constantly present, although it 

still fasciculates tightly to PVPR when it is in the left tract (Steimel et al., 2010).  Since all 

of the follower axons depend on PVPR, directly or indirectly, to form a tight fascicle, the 

most likely cause of iglr-2’s defasciculation would be loss of adhesion between the 

pioneer PVPR and one or more of the followers.  This could be demonstrated by 

creating a double mutant of iglr-2 and another gene such as sax-3 which has high 

penetrance for PVPR crossovers but has no PVPR/PVQL fasciculation defects (Hutter, 

2003).  With a pioneer marker this would enable observation of defasciculation between 

PVPR/PVQL if PVQL doesn’t follow PVPR during its crossovers. 

Only mutations in two genes have been proven to disrupt fasciculation between 

PVPR and its followers, the cadherin fmi-1 and the lin-17/frizzled receptor (Steimel et al., 

2010).  These genes act in the same pathway for PVPR/PVQL fasciculation, and likely 

directly bind each other because in Drosophila, fmi-1’s homolog Flamingo/Starry night 
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directly interacts with Frizzled in the planar cell polarity pathway (W.-S. Chen et al., 

2008; Steimel et al., 2010).  The defasciculation results from this paper cannot be 

directly compared to my results, since their measure of defasciculation was different.  

fmi-1 mutants not only have left VNC fasciculation defects, they also have frequent 

PVPR crossover events (Steimel et al., 2010).  Therefore, in this paper fasciculation was 

measured by comparing the number of times PVQL crossed with PVPR, to the number 

of times PVQL crossed without PVPR.  Since iglr-2 animals don’t have crossovers, this 

type of analysis was not possible.  Interestingly, fmi-1’s crossover defect was found to be 

independent of its fasciculation defect.  fmi-1 mutants rescued with FMI-1 lacking its 

extracellular cadherin domains rescued the fasciculation defects, but not the crossover 

defects (Steimel et al., 2010).  Conversely, the extracellular domain was required to 

rescue the crossover defect.  Perhaps, as it doesn’t have crossover defects, iglr-2 is 

functioning solely in the fmi-1/lin-17 fasciculation pathway. 

However, proteins with IGLR-2’s domain structure such as the Lingo’s, Amigo’s 

or Trk’s have not been found to interact with cadherins or with frizzled receptors, though 

this could be due to a dearth of research on some of these proteins.  For example, the 

Drosophila gene CG16974, which clusters with iglr-2, has not been studied (Dolan et al., 

2007).  Many eLRR proteins with a single IG domain have not been characterized in 

axon guidance.   

Alternatively, since fasciculation between PVQL and PVPR was only disrupted in 

~60% of crossovers, other fasciculation pathway(s) must exist (Steimel et al., 2010).  

Therefore, IGLR-2 could act in a parallel pathway to promote fasciculation.  There is 

some evidence of eLRR proteins with a single IG domain acting in fasciculation.  In 

Drosophila, Kekkon1 has been shown to promote fasciculation in central nervous system 

axon tracts, though how this occurs has not been elucidated (Speicher et al., 1998).  

Like IGLR-2, Kekkons have extracellular LRR domains with a single IG domain.  

Interestingly, Kekkons cluster with the Trk receptors which contain an extra IG domain 

as well as an intracellular tyrosine kinase domain, instead of with the Lingo and Amigo 

families which have a single IG domain and more closely resemble IGLR proteins 

domain structure (Mandai et al., 2009; Ulian-Benitez et al., 2017).  As mentioned 

previously, all three Trk receptors have been implicated in axon guidance, in multiple 

different types of neurons (Cabelli et al., 1997; Gallo et al., 1997; Guo et al., 2011; Patel 

et al., 2000; T. D. Patel et al., 2003; Perez-Pinera et al., 2008).  This demonstrates that 
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proteins with only extracellular LRRs and IG domains can operate in axon guidance and 

fasciculation.  However, Trks have a divergent domain structure compared to IGLR 

genes, so this data doesn’t provide strong evidence for IGLR proteins also functioning in 

these processes. 

Unfortunately, there are only a limited number of studies on the Lingo and Amigo 

families, which more closely resemble iglr genes.  Both Lingo-1 and Amigo-3 have been 

found to function as coreceptors in axon inhibition in the NGR1 axon guidance pathway, 

however they have not been well characterized outside of this pathways function in 

inhibiting axon regeneration or extension (Filbin, 2003; Mi et al., 2004).  However, there 

have been several papers published on Amigo-1 which are relevant to my IGLR-2 data.  

Presence of the Amigo-1 ectodomain in solution causes defasciculation of axons from 

neurons grown in vitro (Kuja-Panula et al., 2003).  A possible explanation could be that 

soluble Amigo-1 is binding the Amigo-1 in the axon’s membrane, preventing it from 

dimerizing with another Amigo-1 in adjacent axons.  Further research supports this, 

revealing that Amigo proteins can form homophilic bonds between their LRR domains 

(Kajander et al., 2011).  Finally, knockdown of Amigo-1 was shown to cause 

defasciculation in the developing zebrafish brain (Zhao et al., 2014).  Embryos injected 

with constructs expressing Amigo-1’s ectodomain also had fasciculation defects, similar 

to the in vitro results.  This provides further evidence that Amigo-1 homophilic binding is 

necessary for Amigo-1 induced fasciculation.  Furthermore, Amigo-1 was found to be 

expressed in the growth cone, as well as along axon fascicles (Zhao et al., 2014).  While 

these studies aren’t on verified IGLR homologs, they do demonstrate that the LRR and 

single IG ectodomain structure can promote the fasciculation of axons through 

homophilic binding.  Perhaps, like Amigo-1, IGLR-2 is also engaging in homophilic 

binding to fasciculate left VNC axons together, independent of other adhesion 

molecules.  Double mutants between fmi-1 and iglr-2 could elucidate whether iglr-2 

functions in PVPR/PVQL axon guidance, and if so, whether it functions in fmi-1’s 

pathway or not. 

4.2.3. Conclusion 

I analysed the lron and iglr gene families for axon guidance defects within the 

VNC.  I discovered significant axon guidance defects with a pan-neuronal marker in four 

lron mutants (lron-3, lron-8, lron-11, and lron-14) and in two iglr mutants (iglr-1 and iglr-
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2).  In these mutant animals, the primary defect was axons crossing into the opposite 

VNC tract.  The exception is iglr-2, which did not have crossover defects but instead had 

penetrant defasciculation defects in the left axon tract.  Additionally, lron-5, and lron-11 

animals were found to have significant crossover defects in the pioneer PVPR axon.  

Overall, lron-11 mutants had the highest penetrance of crossover defects in these 

markers.  Further observation of lron-11 animals found modest defects in command 

interneurons and potentially in the AVK interneurons, as well as highly penetrant defects 

in the DD/VD and DA/DB motor neurons. 

My results reveal that lron-11 functions in axon guidance in several types of 

neurons.  However, it is not currently understood what role lron-11 is playing in axon 

guidance.  Based on lron-11’s structure and its mutants’ crossover and commissure 

polarity defects, it seems to be acting cell autonomously, possibly as an adhesion and/or 

signaling transducing receptor, although some defects do not seem to be caused by lack 

of adhesion.  Further expression and genetic interaction data will be required to validate 

that it functions cell autonomously as an axon guidance receptor, and to identify what 

axon guidance pathway(s) it participates in.  My observations also suggest that iglr-2 

acts in axon guidance, possible by functioning in axon fasciculation.  iglr-2 should be 

further studied by analysing mutants in other neurons such as motor neurons and by 

crossing iglr-2 with a mutant that has PVPR crossovers so that potential PVPR/PVQL 

defasciculation is observable.  While lron-5, lron-8, lron-14 and iglr-1 mutants also 

displayed significant axon guidance defects, these will have to be outcrossed (except for 

lron-8, which was scored with the CRISPR-generated allele gk5317) and further 

characterized to verify and characterize their roll in axon guidance. 

Uncovering new genes involved in axon guidance in C. elegans deepens our 

understanding of how this ‘simple’ nervous system is created.  Being able to 

comprehend how such a comparatively simple neural network is built is a good first step 

to being able to understand our own brain’s development.  This work could have more 

direct implications for mammalian research as well, since many of the signaling 

pathways in the critical developmental process of axon guidance are conserved.  In 

mammals, many eLRR genes have not been well characterized, partially due to the 

limitations of working with complex and expensive model organisms.  Now, identification 

of the genes and signaling pathways that eLRR genes like lron-11 interact with during 

axon guidance can be done in the high-throughput model organism C. elegans.  This 
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could provide candidate genes for researchers searching for genes interacting with 

similar mammalian eLRR genes during axon guidance.  All life on earth is connected 

through their shared evolutionary past, and we can use this to our advantage. 
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Appendix A.  
 
IGLR-2 neurite outgrowth defects 

 

 
Figure A1 iglr-2(et34) PVQ defects 
a) Wildtype PVQ neurons sending their axons into the VNC.  b) This iglr-2(et34) worm has what 
appears to be two axons extending from PVQL (two upper red arrows).  PVQR also has an extra 
neurite extending out of its anterior surface (lower red arrow).  Marker used: hdIs26[odr-2::CFP & 
sra-6::DsRed2] III. 

A 

B 
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Appendix B.  
 
Data for lron genes without significant axon 
guidance defects 

Table B1 lron-1(gk5081) pan-neuronal VNC axon guidance defects 

Ventral Nerve Cord Marker Strain^ 
N = 787 

lron-1(gk5081) 
N = 102 

Wildtype 95% 96% 
Anterior Crossovers 2% 1% 
Posterior Crossovers 3% 2% 
Late Separation  0% 1% 

^The marker used was evIs111[rgef-1::GFP]. 

Table B2 lron-1(gk5081) PVPR axon guidance defects 

PVPR Marker Strain^ 
N = 294 

lron-1(gk5081) 
N = 100 

Wildtype 94% 96% 
Crossover 6% 2% 
Late Separation  1% 2% 

^The marker used was hdIs26[odr-2::CFP, sra-6::DsRed2]. 

Table B3 lron-4(gk5099) pan-neuronal VNC axon guidance defects 

Ventral Nerve Cord Marker Strain^ 
N = 787 

lron-4(gk5099) 
N = 96 

Wildtype 95% 99% 
Anterior Crossovers 2% 0% 
Posterior Crossovers 3% 1% 
Late Separation  0% 0% 

^The marker used was evIs111[rgef-1::GFP]. 

Table B4 lron-4(gk5099) PVPR axon guidance defects 

PVPR Marker Strain^ 
N = 294 

lron-4(gk5099) 
N = 105 

Wildtype 94% 93% 
Crossover 6% 6% 
Late Separation  1% 1% 

^The marker used was hdIs26[odr-2::CFP, sra-6::DsRed2]. 
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Table B5 lron-6(gk736335) pan-neuronal VNC axon guidance defects 

Ventral Nerve Cord Marker Strain^ 
N = 787 

lron-6(gk736335)  
N = 99 

Wildtype 95% 97% 
Anterior Crossover 2% 0% 
Posterior Crossover 3% 2% 
Late Separation  0% 1% 

^The marker used was evIs111[rgef-1::GFP]. 

Table B6 lron-6(gk736335) DNC axon guidance defects 

Dorsal Nerve Cord Marker Strain^ 
N = 245 

lron-6(gk736335)  
N = 103 

Wildtype 99% 97% 
Defasciculation 1% 3% 

^The marker used was evIs111[rgef-1::GFP]. 

Table B7 lron-6(gk736335) PVPR axon guidance defects 

PVPR Marker Strain^ 
N = 159 

lron-6(gk736335) 
N = 100 

Wildtype 93% 97% 
Crossover 6% 3% 
Late Separation  1% 0% 

^The marker used was hdIs29[odr-2::CFP, sra-6::DsRed2]. 

Table B8 lron-7(gk5353) pan-neuronal VNC axon guidance defects 

Ventral Nerve Cord Marker Strain^ 
N = 787 

lron-7(gk5353)  
N = 99 

Wildtype 95% 92% 
Anterior Crossovers 2% 0% 
Posterior Crossovers 3% 7% 
Late Separation  0% 1% 

^The marker used was evIs111[rgef-1::GFP]. 

Table B9 lron-7(gk5353) DNC axon guidance defects 

Dorsal Nerve Cord Marker Strain^ 
N = 245 

lron-7(gk5353)  
N = 100 

Wildtype 99% 100% 
Defasciculation 1% 0% 

^The marker used was evIs111[rgef-1::GFP]. 
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Table B10 lron-7(gk5353) PVPR axon guidance defects 

PVPR Marker Strain^ 
N = 163 

lron-7(gk5353)  
N = 109 

Wildtype 90% 91% 
Crossover 10% 8% 
Late Separation  0% 1% 

^The marker used was hdIs28[odr-2::CFP, sra-6::DsRed2]. 

Table B11 lron-10(gk5064) pan-neuronal VNC axon guidance defects 

Ventral Nerve Cord Marker Strain^ 
N = 787 

lron-10(gk5064) 
N = 100 

Wildtype 95% 94% 
Anterior Crossovers 2% 1% 
Posterior Crossovers 3% 3% 
Late Separation  0% 2% 

^The marker used was evIs111[rgef-1::GFP]. 

Table B12 lron-10(gk5064) DNC axon guidance defects 

Dorsal Nerve Cord Marker Strain^ 
N = 245 

lron-10(gk5064) 
N = 108 

Wildtype 99% 99% 
Defasciculation 1% 1% 

^The marker used was evIs111[rgef-1::GFP]. 

Table B13 lron-10(gk5064) PVPR axon guidance defects 

PVPR Marker Strain^ 
N = 159 

lron-10(gk5064) 
N = 102 

Wildtype 93% 91% 
Crossover 6% 8% 
Late Separation 1% 0% 
Leave 0% 1% 

^The marker used was hdIs29[odr-2::CFP, sra-6::DsRed2]. 
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Table B14 lron-12(gk187625) pan-neuronal VNC axon guidance defects 

Ventral Nerve Cord Marker Strain^ 
N = 787 

lron-12 
(gk187625) 

N = 102 
No Defect 95% 90% 
Anterior Crossover 2% 0% 
Posterior 
Crossover 3% 8%* 

Late Separation 0% 2% 
***p<0.001; **p<0.01; *p<0.05 (χ2 test).  ^The marker used was evIs111[rgef-1::GFP]. 

Table B15 lron-12(gk187625) DNC axon guidance defects 

Dorsal Nerve 
Cord Marker Strain^ 

N = 245 

lron-12 
(gk187625) 

N = 51 
Wildtype 99% 100% 
Defasciculation 1% 0% 

^The marker used was evIs111[rgef-1::GFP]. 

Table B16 lron-12(gk187625) PVPR axon guidance defects 

PVPR 
Marker Strain^ 

N = 159 
lron-12 

(gk187625) 
N = 93 

No Defect 93% 96% 
Crossover 6% 3% 
Late Separation 1% 1% 

^The marker used was hdIs29[odr-2::CFP, sra-6::DsRed2]. 

Table B17 lron-13(gkDf31) pan-neuronal VNC axon guidance defects 

Ventral Nerve Cord Marker Strain^ 
N = 787 

lron-13(gkDf31) 
N = 98 

Wildtype 95% 93% 
Anterior Crossover 2% 0% 
Posterior Crossover 3% 5% 
Late Separation  0% 2% 

^The marker used was evIs111[rgef-1::GFP]. 
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Table B18 lron-13(gkDf31) DNC axon guidance defects 

Dorsal Nerve 
Cord 

Marker Strain^ 
N = 245 

lron-13(gkDf31) 
N = 61 

Wildtype 99% 100% 
Defasciculation 1% 0% 

^The marker used was evIs111[rgef-1::GFP]. 

Table B19 lron-13(gkDf31) PVPR axon guidance defects 

PVPR Marker Strain^ 
N = 159 

lron-13(gkDf31) 
N = 108 

Wildtype 93% 93% 
Crossover 6% 6% 
Late Separation  1% 1% 

^The marker used was hdIs29[odr-2::CFP, sra-6::DsRed2]. 

Table B20 lron-15(gk918201) pan-neuronal VNC axon guidance defects 

Ventral Nerve Cord Marker Strain^ 
N = 787 

lron-15(gk918201) 
N = 102 

Wildtype 95% 93% 
Anterior Crossovers 2% 3% 
Posterior Crossovers 3% 4% 
Late Separation  0% 0% 

^The marker used was evIs111[rgef-1::GFP]. 

Table B21 lron-15(gk918201) DNC axon guidance defects 

Dorsal Nerve Cord Marker Strain^ 
N = 245 

lron-15(gk918201) 
N = 51 

Wildtype 99% 100% 
Defasciculation 1% 0% 

^The marker used was evIs111[rgef-1::GFP]. 

Table B22 lron-15(gk918201) PVPR axon guidance defects 

PVPR Marker Strain^ 
N = 294 

lron-15(gk918201) 
N = 101 

Wildtype 94% 95% 
Crossover 6% 4% 
Late Separation  1% 0% 
PVPR premature stop 0% 1% 

^The marker used was hdIs26[odr-2::CFP, sra-6::DsRed2]. 
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Table B23 dma-1(wy686) pan-neuronal VNC axon guidance defects 

Ventral Nerve Cord Marker Strain^ 
N = 787 

dma-1(wy686) 
N = 101 

Wildtype 95% 95% 
Anterior Crossover 2% 2% 
Posterior Crossover 3% 2% 
Late Separation  0% 1% 

^The marker used was evIs111[rgef-1::GFP]. 

Table B24 dma-1(wy686) DNC axon guidance defects 

Dorsal Nerve Cord Marker Strain^ 
N = 245 

dma-1(wy686) 
N = 100 

Wildtype 99% 100% 
Defasciculation 1% 0% 

^The marker used was evIs111[rgef-1::GFP]. 

Table B25 dma-1(wy686) PVPR axon guidance defects 

PVPR Marker Strain^ 
N = 294 

dma-1(wy686) 
N = 75 

Wildtype 94% 97% 
Crossover 6% 3% 
Late Separation  1% 0% 

^The marker used was hdIs26[odr-2::CFP, sra-6::DsRed2]. 

Table B26 lron-11(ok2333) PVQL following PVPR data 

PVQL lron-11(ok2333) 
N = 110 

PVQL always followed PVPR 98% 
PVQL didn’t follow PVPR 1% 

PVQL was deemed to have not followed PVPR if it crossed into the right tract without PVPR, or if PVPR crossed into 
the right tract and PVQL didn’t follow. 
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Appendix C.  
 
The primers used to genotype C. elegans 
populations 

Table C1 Primer pairs used in PCRs to genotype C. elegans populations 

Gene 
(allele) 

Primer A (Sequence 
5’ to 3’) 

Primer B 
(Sequence 5’ to 3’) 

Wildtype 
Band 

Size (bp) 

Mutant 
Band 

Size (bp) 

Potential 
Problems 

lron-1 
(gk5081) 

lron-1_gk5081_ex1 
(TTTCTGGGACTTG
ACATACC) 

lron-1_gk5081_P2 
(TGGTGTATTGCTG
ATGGTTA) 

655 0  

lron-1 
(gk5081) 

lron-
1_gk5081_insertionF 
(TACGTAGAGCTCG
GTACCTC) 

lron-
1_gk5081_insertion
R 
(GGTCGATTATCAC
TTTAGCA) 

0 185  

lron-3 
(ok2614) 

lron-3_ok2614_ex1 
(CCCACATTTCTCA
TTCACTC)  

lron-3_ok2614_ex2 
(ATATTAAACCAAG
ACCCAACC) 

2267 507  

lron-3 
(ok2614) 

lron-3_ok2614_ex2 
(ATATTAAACCAAG
ACCCAACC) 

lron-3_ok2614_P1 
(TAGGACAGGTGG
ATTTAGAAC) 

1500 0  

lron-3 
(gk5319) 

lron-3_ok2614_ex1 
(CCCACATTTCTCA
TTCACTC)  

lron-3_ok2614_P2 
(GTGAAAGGTGGT
AGATCAAAG) 

1413 0  

lron-3 
(gk5319) 

lron-3_ok2614_ex2 
(ATATTAAACCAAG
ACCCAACC) 

lron-3_ok2614_P1 
(TAGGACAGGTGG
ATTTAGAAC) 

1500 0  

lron-4 
(gk5099) 

lron-4_gk5099_P1 
(AGTTGGTATGAAC
CTTGGTG) 

lron-4_gk5099_P2 
(GGCTTACACATCA
AACCAGT) 

192 0  

lron-4 
(gk5099) 

lron-
4_gk5099_insertionF 
(TACGTAGAGCTCG
GTACCTC) 

lron-
4_gk5099_insertion
R 
(GGTCGATTATCAC
TTTAGCA) 

185 0  

lron-5 
(gk959442) 

lron-
5_gk959442_geno1 
(GAGGTTAGTCGG
GAAGAACT) 

lron-
5_gk959442_geno2 
(TCGATCCGCATAC
TTTCTAT) 

509 509 (point 
mutation) 

 

lron-6 
(gk736335) 

lron-
6_gk736335l6geno1 
(GAAGATAAAGAAG
AACGAAGACG) 

lron-
6_gk736335l6geno2 
(AGTGATGGCTATG
TTGAGTG) 

900 900 (point 
mutation) 
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Gene 
(allele) 

Primer A (Sequence 
5’ to 3’) 

Primer B 
(Sequence 5’ to 3’) 

Wildtype 
Band 

Size (bp) 

Mutant 
Band 

Size (bp) 

Potential 
Problems 

lron-7 
(gk5353) 

lron-7_gk5353_ex3 
(TTTGTGTGTCGTT
TGTGTCT) 

lron-7_gk5353_in4 
(CACTTTAGCGATT
ACCAACC) 

0 1598  The mutant 
band showed 

up 
inconsistently 

and non-
specific bands 
were observed 

lron-10 
(gk5064) 

lron-10_gk5064_ex1 
(CCACTCTTTGGGT
CTCTGT) 

lron-10_gk5064_P2 
(GCGTCGACATAAC
TTCGT) 

0 116  The mutant 
band is faint 

lron-10 
(gk5064) 

lron-10_gk5064_ex1 
(CCACTCTTTGGGT
CTCTGT) 

lron-10_gk5064_ex2 
(AGAGAGTTTCGG
CTTCAAGA) 

349 0 The Wildtype 
band is faint 

lron-11 
(ok2333) 

lron-11_ok2333_ex7 
(TGACAGCGTACAT
CTTGG) 

lron-11_ok2333_ex8 
(TGACGGGAAAGA
GGAAAGG) 

1650 500  

lron-11 
(ok2333) 

lron-11_ok2333_p5 
(GTGCTCTTCATCC
TTCTCCTG) 

lron-11_ok2333_ex8 
(TGACGGGAAAGA
GGAAAGG) 

450 0  

lron-11 
(gk5321) 

lron-11_ok2333_ex7 
(TGACAGCGTACAT
CTTGG) 

lron-11_ok2333_ex8 
(TGACGGGAAAGA
GGAAAGG) 

1650 0  

lron-11 
(gk5321) 

lron-11_gk5321-in1 
(TTCGGGGTGTAAA
GTTCAGC) 

lron-11_ok2333_ex8 
(TGACGGGAAAGA
GGAAAGG) 

0 615  

lron-12 
(gk187625) 

lron-
12_gk187625ex3 
(CATCTAAAGAATT
GGGCCTG) 

lron-
12_gk187625ex4 
(AAAGAAGAGATTG
ATGGAAGATG) 

1872 1872 
(point 

mutation) 

 

lron-13 
(gkDf31) 

lron-13_gkdf31_ex2 
(CGGAGCGAAACT
AGCAAT) 

lron-13_gkdf31_P1 
(GGAACAGTAAGTA
AACGGTACG) 

498 0  

lron-13 
(gkDf31) 

lron-13_gkDf31_ex4 
(TGACTTCCAGAAA
ATGCTTC) 

lron-13_gkDf31_Ex5 
(CAACAAAAACGAC
ATTTCGAC) 

1400 600  This deletion is 
larger than 
predicted at 

Wormbase.org 
lron-14 
(gk401715) 

lron-
14_gk401715_geno1 
(TCCTGAAAACCTG
ACCGACT) 

lron-
14_gk401715_geno2 
(TGAGCTAACGTGA
GCAGCAT) 

576 576 (point 
mutation) 

 

lron-15 
(gk441339) 

lron-
15_gk441339_geno1 
(GAAACAACAAAGT
TCGAAGG) 

lron-
15_gk441339_geno2 
(TTTCGGAAGATCA
GCTAGAG) 

836 836 (point 
mutation) 
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Gene 
(allele) 

Primer A (Sequence 
5’ to 3’) 

Primer B 
(Sequence 5’ to 3’) 

Wildtype 
Band 

Size (bp) 

Mutant 
Band 

Size (bp) 

Potential 
Problems 

dma-1 
(wy686) 

dma-1_wy686_ex1 
(TCTATTTCCCACC
CAACTGC) 

dma-1_wy686_ex2 
(ACACCGATCCGTC
ATTTTTC) 

7000  3500 The mutant 
band showed 

up 
inconsistently 

dma-1 
(wy686) 

dma-1_wy686_p1 
(TCCTTTTTGCCGC
ACTACTT) 

dma-1_wy686_ex2 
(ACACCGATCCGTC
ATTTTTC) 

985 0 Sometimes a 
non-specific 

200-300 band 
was observed 

for mutants 
iglr-1 
(gk687851) 

iglr-1_gk687851_Ex1 
(CTGGAAACGTTAG
ACCTGAG) 

iglr-
1_gk687851_Ex2 
(ACTCGTCACGCA
GTTTTATT) 

1340 1340 
(point 

mutation) 

 

iglr-2(et34) iglr-2_Ex1 
(AAGTAATTGTGCC
GGTAAGA) 

iglr-2_Ex2 
(ATATCGAGCAGA
GAACctga) 

2290 2290 
(point 

mutation) 

 

The sequencing primers used to identify point mutations are in the Table C2. 
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Table C2 Sequencing primers used to idenitfy point mutations 

Gene (allele) Sequencing Primer 
(Sequence 5’ to 3’) 

Wildtype Flanking 
sequence (5’ to 3’) 

Mutant Flanking 
Sequence (5’ to 3’) 

Point 
Mutation 

lron-5 
(gk959442) 

lron-5_gk959442_seq1 
(GAGGTATTAGTGGGAC
ACGA) 

TTTACGAGTTGATC
AAAATCCTCTCCGA
TGTGATTGTTCCCT

GTATGACAT 

TTTACGAGTTGAT
CAAAATCCTCTCT
GATGTGATTGTTC
CCTGTATGACAT 

C to T 

lron-6 
(gk736335) 

lron-6_gk736335l6sequ2 
(CAACTTCTCCACTCAA
CAATG) 

GGAGCAATATGACT
GGATGTTGGAACAA
ATGGAAGTTTATAG

AGAATTAGA 

GGAGCAATATGAC
TGGATGTTGGAAT
AAATGGAAGTTTAT

AGAGAATTAGA 

C to T 

lron-12 
(gk187625) 

lron-12_gk187625seq3 
(GAAATACAATCGGAGA
CTTGG) 

GATGAAATGGATGA
CTAGTGTTGAGGTA
AGGATTTTATATGA

TTAAAAACC 

GATGAAATGGATG
ACTAGTGTTGAGA
TAAGGATTTTATAT

GATTAAAAACC 

G to A 

lron-14 
(gk401715) 

lron-14_gk401715_seq1 
(GCAGAAGAATCCATTA
ACCA) 

TGAAGTCATCA
AGTTTTGCTGG
TTCCAAATTTCA
AGTCAAATTGTT
TTTATCCGAGAA

TCCACTAC 

TGAAGTCATCA
AGTTTTGCTGG
TTCCAAATTTT
AAGTCAAATTG
TTTTTATCCGA
GAATCCACTAC 

C to T 

lron-15 
(gk918201) 

lron-15_gk441339_seq3 AACACCAGAAGCTT
TAAGAGATTTGCGA
AATTTGACACATTT

GAATCTAAA 

AACACCAGAAGCT
TTAAGAGATTTGT
GAAATTTGACACA
TTTGAATCTAAA 

C to T 

iglr-1 
(gk687851) 

iglr-1_gk687851_seq 
(CTCGGGGTTCAAACGA
ATAC) 

TTGTTCGTGTACAT
CTCGTGATATGCAG
GATTACGGCGCAAT

AACTATTGT 

TTGTTCGTGTACAT
CTCGTGATATGTA
GGATTACGGCGCA

ATAACTATTGT 

C to T 

iglr-2 (et34) iglr-2_seq1 
(CGATTTACCTCGGAGA
ATTA) 

ATTCAACGTTTGGA
ACTTCACAATTGGC
AACATGATCAGCTT

AATTTCGAT 

ATTCAACGTTTGG
AACTTCACAATTAG
CAACATGATCAGC

TTAATTTCGAT 

G to A 

 


	Declaration of Committee
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Chapter 1. Introduction
	1.1. Development of Neural Circuits
	1.1.1. Axon guidance
	1.1.2. Growth cone dynamics

	1.2. Caenorhabditis elegans as a model organism for axon guidance
	1.2.1. C. elegans ventral nerve cord

	1.3. Guidance cues and their receptors
	1.3.1. UNC-6/netrin and its UNC-40/DCC and UNC-5 receptors
	1.3.2. SLT-1/Slit and SAX-3/Roundabout
	1.3.3. Ephrins
	1.3.4. Wingless/Wnt and Frizzled receptors
	1.3.5. Heparan sulfate and heparan sulfate proteoglycans

	1.4. Adhesion receptors in axon guidance
	1.4.1. Cadherins
	1.4.2. IgCAMs

	1.5. The leucine-rich repeat motif
	1.5.1. Leucine-rich repeat proteins
	1.5.2. Leucine-rich repeat proteins in axon guidance

	1.6. The extracellular-Leucine Rich Repeat-Only gene family
	1.7. The iglr gene family
	1.8. Thesis objective

	Chapter 2. Materials and methods
	2.1. Maintenance and strains
	2.2. Crossing
	2.3. Genotyping
	2.4. Phenotyping
	2.5. Expression construct

	Chapter 3. Results
	3.1. Axon guidance defects in the ventral nerve cord of lron and iglr mutants
	3.1.1. lron-11 pan-neuronal and pioneer axon guidance phenotypes
	3.1.2. lron-11 HSN phenotypes
	3.1.3. lron-11 AVK axon guidance phenotypes
	3.1.4. lron-11 command interneuron axon guidance phenotypes
	3.1.5. lron-11 DD/VD motor neuron phenotypes
	3.1.6. lron-11 DA/DB motor neuron phenotypes
	3.1.7. lron-11 expression construct
	3.1.8. lron-14 pan-neuronal and pioneer axon guidance phenotypes
	3.1.9. lron-3 pan-neuronal and pioneer axon guidance phenotypes
	3.1.10.  lron-5 pan-neuronal and pioneer axon guidance
	3.1.11. lron-8 and iglr-1 pan-neuronal and pioneer axon guidance phenotypes
	3.1.12. lron-11; lron-3 double mutant axon guidance phenotypes
	3.1.13. lron-11; lron-14 double mutant axon guidance phenotypes
	3.1.14. iglr-2 pan-neuronal and pioneer axon guidance phenotypes


	Chapter 4. Discussion
	4.1. lron genes’ function in axon guidance
	4.1.1. PVPR axon guidance
	4.1.2. AVG axon guidance
	4.1.3. AVK axon guidance
	4.1.4. Command interneuron axon guidance
	4.1.5. HSN axon guidance
	4.1.6. DD/VD motor neuron neurite guidance
	4.1.7. DA/DB motor neuron neurite guidance
	4.1.8. Other possible lron gene functions

	4.2. iglr genes’ function in axon guidance
	4.2.1. Pan-neuronal and pioneer crossover defects
	4.2.2. Left VNC fasciculation defects
	4.2.3. Conclusion


	References
	Appendix A.   IGLR-2 neurite outgrowth defects
	Appendix B.   Data for lron genes without significant axon guidance defects
	Appendix C.   The primers used to genotype C. elegans populations

