
On the Bayesian Estimation of
Jump-Diffusion Models in Finance

by

Louis Arsenault-Mahjoubi

B.A., McGill University, 2019

Project Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
Department of Statistics and Actuarial Science

Faculty of Science

© Louis Arsenault-Mahjoubi 2021
SIMON FRASER UNIVERSITY

Summer 2021

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Louis Arsenault-Mahjoubi

Degree: Master of Science

Thesis title: On the Bayesian Estimation of Jump-Diffusion
Models in Finance

Committee: Chair: Joan Hu
Professor, Statistics and Actuarial Science

Jean-François Bégin
Supervisor
Assistant Professor, Statistics and Actuarial Science

Liangliang Wang
Committee Member
Associate Professor, Statistics and Actuarial Science

Himchan Jeong
Examiner
Assistant Professor, Statistics and Actuarial Science

ii

Abstract

The jump-diffusion framework introduced by Duffie et al. (2000) encompasses most one-
factor models used in finance. Due to the model complexity of this framework, the particle
filter (e.g., Hurn et al., 2015; Jacobs & Liu, 2018) and combinations of Gibbs and Metropolis-
Hastings samplers (e.g., Eraker et al., 2003; Eraker, 2004) have been the tools of choice for
its estimation. However, Bégin & Boudreault (2020) recently showed that the discrete non-
linear filter (DNF) of Kitagawa (1987) can also be used for fast and accurate maximum
likelihood estimation of jump-diffusion models. In this project report, we combine the DNF
with Markov chain Monte Carlo (MCMC) methods for Bayesian estimation in the spirit of
the particle MCMC algorithm of Andrieu et al. (2010). In addition, we show that deriva-
tive prices (i.e., European option prices) can be easily included into the DNF’s likelihood
evaluations, which allows for efficient joint Bayesian estimation.

Keywords: Discrete nonlinear filtering; Bayesian estimation; Particle Markov chain Monte
Carlo; Jump-diffusion models; Stochastic volatility.

iii

Dedication

À Lorraine et Miko,
Merci infiniment.

iv

Acknowledgements

I would first like to acknowledge and give many thanks to Dr. Jean-François Bégin. His
guidance, research ideas, and helpful suggestions made this project possible. He gave me
this project and introduced me to many topics in mathematical finance. I am fortunate to
work with him.

I would like to thank Dr. Joan Hu, Dr. Liangliang Wang, and Dr. Himchan Jeong for
being a part of the examining committee. Thank you for your time and for reviewing this
thesis.

I am grateful for the faculty and staff at the Department of Statistics and Actuarial
Science of Simon Fraser University for their hard work and dedication to the students.

Also, I would like to thank the following friends for making life more enjoyable: Maxence,
Patrick, Sophie, Siggi, Sonny, Gahyun, Zubia, Ahmad, Peter, and Seyeon.

Finally, I would like to give thanks to my family. They’ve organized video-conferences
throughout the lockdowns, are always encouraging, and are pleasant to talk to.

v

Table of Contents

Declaration of Committee ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1

2 Modelling Framework 4
2.1 Continuous-Time SVCJ Model . 4
2.2 Discrete-Time SVCJ Model . 5

3 Volatility Filtering 7
3.1 Background . 7

3.1.1 State-Space Models . 7
3.1.2 The Filtering Problem . 8

3.2 The Particle Filter . 10
3.2.1 Sequential Importance Sampling . 10
3.2.2 Sequential Importance Resampling 12
3.2.3 The Bootstrap Filter . 12

3.3 The Discrete Nonlinear Filter . 15
3.3.1 Framework . 15
3.3.2 Implementation for the SVCJ Model 15
3.3.3 Numerical Implementation . 17

4 Bayesian Estimation 21

vi

4.1 Background . 21
4.1.1 Markov Chains . 21
4.1.2 Markov Chain Monte Carlo . 23

4.2 Particle Markov Chain Monte Carlo . 27
4.3 DNF-Markov Chain Monte Carlo . 30

4.3.1 Forward Filtering Backward Sampling for the DNF 30
4.4 Simulation Study . 32
4.5 Empirical Application . 34

5 Joint Bayesian Estimation with Returns and Options Data 36
5.1 Option Pricing . 36
5.2 Joint Likelihood Contributions . 38
5.3 Simulation Study . 39
5.4 Empirical Application . 41

6 Conclusion and Future Work 43

Bibliography 45

Appendix A Simulation Study Posterior Parameter Statistics 50

Appendix B Empirical Study Data 52

Appendix C Posterior Volatility Comparisons 54

Appendix D Returns-Only Estimation Trace Plots 57

Appendix E Joint Estimation Trace plots 60

vii

List of Tables

Table 4.1 Posterior parameter mean comparison. 33
Table 4.2 Geweke convergence test rejection in percentage. 34
Table 4.3 Posterior parameter mean comparison. 35

Table 5.1 Parameter estimates with returns and options. 40
Table 5.2 Parameter estimates with returns and options. 42

Table A.1 Parameter median comparison. 50
Table A.2 Parameter modes comparison. 50
Table A.3 Parameter estimates with returns and nine options. 51

viii

List of Figures

Figure B.1 Daily returns (excluding dividends) from the TSX Composite index
from January 2005 to February 10th 2021. 52

Figure B.2 Daily returns (excluding dividends) from the S&P 500 index from
January 2000 to December 2019. 53

Figure C.1 Posterior mean volatility (dotted red) with 95% confidence interval
(red) and true variance (black) for 10,000 pMCMC iterations. . . . 54

Figure C.2 Posterior mean volatility (dotted red) with 95% confidence interval
(red) and true variance (black) for 10,000 dMCMC iterations. . . . 55

Figure C.3 Posterior mean volatility (dotted red) with 95% confidence interval
(red) and true variance (black) for 10,000 dMCMC iterations with
returns. 55

Figure C.4 Posterior mean volatility (dotted red) with 95% confidence interval
(red) and true variance (black) for 10,000 dMCMC iterations with
returns and three options. 56

Figure D.1 Trace plot for α with 50,000 dMCMC iterations for the TSX Com-
posite return series. 57

Figure D.2 Trace plot for ρz with 50,000 dMCMC iterations for the TSX Com-
posite return series. 58

Figure D.3 Trace plot for κ with 50,000 dMCMC iterations for the S&P 500
return series. 58

Figure D.4 Trace plot for θ with 50,000 dMCMC iterations for the S&P 500
return series. 58

Figure D.5 Trace plot for ρz with 50,000 dMCMC iterations for the S&P 500
return series. 59

Figure E.1 Trace plot for θ with 50,000 dMCMC iterations for the S&P 500
return and options series. 60

Figure E.2 Trace plot for ηx with 50,000 dMCMC iterations for the S&P 500
return and options series. 61

Figure E.3 Trace plot for ηJX with 50,000 dMCMC iterations for the S&P 500
return and options series. 61

ix

Chapter 1

Introduction

The Nobel prize-winning works of Black & Scholes (1973) and Merton (1973) changed
finance by attempting to model the market itself rather than the individual investors’ actions
(Brine & Poovey, 2017). In doing so, they provide a model for asset returns and a formula
for derivative pricing using risk-neutralized dynamics. In this model, the only parameter
that cannot be directly observed in the market is volatility. This parameter was assumed to
be constant across time and independent of the value of the stock. However, the volatility
implied by option prices provides evidence that these assumptions are unrealistic (e.g., the
volatility smile or the volatility skew).

Stochastic volatility (SV) models relax these assumptions by introducing a latent process
enabling volatility to change over time and to depend on the asset price. Heston (1993) shows
that this more complex specification can yield a semi-closed form derivative pricing formula.
With this additional model component, more sophisticated parameter estimation methods
were needed. Taylor (1986) first tried simple moment-matching methods, which lead to
the generalized method of moments of Melino & Turnbull (1990). Monte Carlo methods
were also developed (e.g., Danielsson & Richard, 1993; Shephard, 1993; Danielsson, 1994),
and filtering methods were used in the quasi-likelihood approaches by Scott (1987), Ruiz
(1994), and Harvey et al. (1994). While these rely on the Kalman (1960) filter, some applied
the discrete nonlinear filter (DNF) of Kitagawa (1987) to obtain likelihood estimates (e.g.,
Tanizaki & Mariano, 1994; Fridman & Harris, 1998; Watanabe, 1999; Bartolucci & De Luca,
2001, 2003; Langrock et al., 2012).

Although the above approaches rely on frequentist methodology, researchers also de-
veloped Bayesian approaches to account for parameter uncertainty. Jacquier et al. (1994),
Kim et al. (1998), and Eraker (2001) use a combination of Gibbs and Metropolis-Hastings
samplers in order to perform the Bayesian estimation of SV models.

Empirical evidence, particularly during periods of economic crisis, indicates that SV
models do not fully capture the dynamics of asset returns even when adding jumps in asset
returns (Bakshi et al., 1997; Bates, 2000; Pan, 2002). As a remedy, Duffie et al. (2000)
introduce a general affine framework based on jump-diffusions that incorporates stochastic

1

volatility, instantaneous variance jumps, and jumps in the asset returns.1 In addition to
introducing this class of models, they show that it yields a semi-closed-form option pricing
formula. Jump-diffusion models are flexible enough to replicate many market features and,
indeed, include most one-factor models used in finance as special cases.

Using Duffie et al.’s framework, Eraker et al. (2003) and Eraker (2004) provide empirical
support for the inclusion of both jump components using an extension of the aforementioned
Bayesian methods. The addition of these jump components makes Bayesian estimation com-
putationally cumbersome. For efficient Bayesian inference with state-space models, Andrieu
et al. (2010) develop a procedure that combines the particle filter of Gordon et al. (1993)
and Markov chain Monte Carlo (MCMC) into the particle MCMC (pMCMC) which was
recently applied to jump-diffusion models by Jacobs & Liu (2018).

Johannes et al. (2009) note that there are two optimal filters for the latent factors in
this framework: the particle filter and the DNF. Recently, Bégin & Boudreault (2020) apply
this alternative filter to high-dimensional jump-diffusion models and show that it provides
fast and accurate likelihood evaluations when compared to the particle filter.

In the present study, we explore whether the DNF can replace the particle filter in pM-
CMC and if its advantages for likelihood evaluations carry over to the Bayesian estimation
of jump-diffusion models. In fact, we are able to combine the DNF with Markov chain
Monte Carlo (dMCMC) by applying a filter-forward-backward-sampling (FFBS) algorithm
similar to the one used by Frühwirth-Schnatter (1994) and Carter & Kohn (1994) for the
Kalman filter. Throughout our work, we focus on the stochastic volatility with simultaneous
and correlated jumps in instantaneous variance and returns (SVCJ) model. We perform a
simulation study to compare the dMCMC to the pMCMC and find that the algorithms
obtain similar results. We give empirical applications of the dMCMC to estimate SVCJ
model parameters of returns time-series from the TSX composite and S&P 500 indices.

Then, we turn to the problem of incorporating option price data for joint estimation
with returns. This is an important issue since joint estimation should improve inference
as argued by Renault (1997) and Eraker (2004). We show that options prices can easily
be introduced as observables into the likelihood evaluations of the DNF. Therefore, we
can perform efficient joint Bayesian estimation with the dMCMC algorithm. To assess the
accuracy of dMCMC methods for joint Bayesian estimation, we perform another simulation
study. Then, we apply the algorithm to a series of S&P 500 index returns and option prices
to obtain estimates for both the physical measure and the risk-neutralized parameters as
well as option pricing error estimates for the SVCJ model.

1Earlier work has studied the inclusion of jump processes in financial models. Merton (1976) gives a
derivative pricing formula when volatility is constant and there are jumps in returns. Bates (1996) derives a
semi-closed form solution to option pricing with both stochastic volatility and jumps in returns

2

The remainder of this project report is organized as follows. In Chapter 2, we present
the SVCJ model in continuous-time and in discrete-time under the physical and risk-neutral
measures. In Chapter 3, we review the filtering problem, introduce the particle filter and the
DNF. Chapter 4 provides an overview of Markov chain Monte Carlo methods before giving
the pMCMC and dMCMC algorithms. Chapter 5 discusses option pricing with the SVCJ
model and highlights how the DNF can efficiently include options in Bayesian estimation.
Lastly, Chapter 6 concludes with a review of the project and suggestions for future work.

3

Chapter 2

Modelling Framework

2.1 Continuous-Time SVCJ Model

In this section we present the stochastic volatility model with simultaneous correlated jumps
in the variance and return dynamics (SVCJ). Duffie et al. (2000) introduce the SVCJ model
and provide semi-closed option pricing formula for it. This is an important reason for work-
ing with the model as we will later incorporate options in our estimation procedure. The
SVCJ relies on three features: a stochastic volatility factor, return jumps, and instantaneous
variance jumps. Each of these produces a distinct behaviour in the asset price and volatility
dynamics. This is the most complex model that we will work with in the present study.

We first set a filtered probability space (Ω,F ,F,P) equipped with a filtration F = {Ft :
t ∈ [0, T]}. Let Yt be the time-t observed financial asset price and Xt be its time-t latent
instantaneous variance for t ∈ [0, T]. Under the physical measure P, the dynamics of the
model are given by

dYt
Yt−

= (rt + δt + γt − ᾱω)dt+
√
Xt−dW

Y
t + d

(
Nt∑
n=1

(
eZ

Y
n − 1

))
and (2.1)

dXt = κ(θ −Xt−)dt+ σ
√
Xt−dW

X
t + d

(
Nt∑
n=1

ZXn

)
, (2.2)

where rt is the time-t risk-free rate of return in the economy, δt is the time-t dividend yield,
and γt is the total risk premium. For the variance process, θ is the unconditional long-run
level, κ is the rate of mean reversion, and σ is the volatility of the variance parameter.
The processes W Y = {W Y

t : 0 ≤ t ≤ T} and WX = {WX
t : 0 ≤ t ≤ T} are two

correlated Brownian motions with Corr(WX
t ,W

Y
t) = ρ. The number of jumps up to time

t, Nt, follows a Poisson process with arrival rate ω. Each variance jump is exponentially
distributed with mean ν (i.e., ZXn ∼ Exp(ν), ∀n ∈ {1, 2, . . . , NT } where ∼ denotes the
distribution of a random variable). The return jumps are Gaussian: ZYn ∼ N (α+ρzZ

X
n , δ

2),
∀n ∈ {1, 2, . . . , NT }. The jump compensator is ᾱω, where ᾱ = exp (α+0.5δ2)

1−ρzν
− 1.

4

Following the work of Jacobs & Liu (2018), we assume that, under the risk neutral
measure Q, the model dynamics are

dYt
Yt−

= (rt + δt − ᾱQω)dt+
√
Xt−dW̃

Y
t + d

 Ñt∑
n=1

(
eZ̃

Y
n − 1

) and (2.3)

dXt = κ̃(θ̃ −Xt−)dt+ σ
√
Xt−dW̃

X
t + d

 Ñt∑
n=1

Z̃Xn

 , (2.4)

where ᾱQ is the jump compensator under Q. Assuming that the diffusive variance risk
premium is ηxXt, we have that κ̃ = κ − ηx and θ̃ = κθ

κ̃ . The return and variance jump
risk premiums are assumed to be solely dependent on the average size of the return and
variance jumps, respectively, with ηJY = α−α̃ and ηJX = ν− ν̃. Assuming that the diffusive
return risk premium, ηyXt, is linear in Xt, we get the following total return risk premium:
γt = ηyXt + ω(ᾱ− ᾱQ). Lastly, σ and ω remain unaffected by the change of measure.

By removing the jump components (e.g., by setting ω = 0), we obtain the stochastic
volatility (SV) model similar to that of Heston (1993). This latter model has the latent
variance following a square-root diffusion similar to that used by Cox et al. (1985, CIR
hereafter) in the interest rate literature. It also incorporates the leverage effect when ρ is
negative. If we let ν = 0, we obtain the stochastic volatility with jumps in the return dynam-
ics (SVYJ) model. The SVYJ model resembles the one studied in Bates (1996). This model
often appears with the SVCJ in studies on the impact of jumps in the variance process.
Indeed, the addition of jumps in both return and volatility is well supported empirically
(see Eraker et al., 2003; Eraker, 2004). Jumps are particularly useful to capture the price
dynamics during turbulent market periods. Moreover, having the jumps occur simultane-
ously in both processes helps with parameter identification. Typically, volatility jumps are
harder to identify than jumps in returns. Therefore, having simultaneous jumps provides us
with more accurate estimates of the variance jump times from our return jump estimation.

2.2 Discrete-Time SVCJ Model

Since our measurements (e.g., daily returns and option prices) are observed in discrete-
time, we need to discretize the SVCJ dynamics. Unfortunately, using a simple Euler scheme
gives positive probability to negative variance values. Instead, we use the full truncation
(FT) scheme proposed in Lord et al. (2010) to circumvent the issue. In a simulation study,
the authors compare the Monte Carlo options prices reached by various simulation schemes
against the analytical price. They find that FT demonstrates rapid convergence and low bias
across option strike prices when compared to the other schemes for both the SV and SVYJ
models. Although the SVCJ model was not included in the study, we should expect similar

5

performance from FT as jumps in variance are not an additional source of discretization
error.

In discrete-time, we only have access to the information in the set G = {Gj : j =
0, 1, . . . , N} where we set hN = T , with N being the number of observations and h the
time between consecutive observations. Moreover, let yj = log

(
Yjh

Y(j−1)h

)
be the asset returns

at time j. Then, FT yields the following discrete-time dynamics:

yj =
(
rj−1 + δj−1 + γj−1 − ᾱω −

xj−1
2

)
h+

√
xj−1h ε

y
j +

nj∑
i=1

zyj,i, (2.5)

x̃j = x̃j−1 + hκ (θ − xj−1) + σ
√
xj−1h ε

x
j +

nj∑
i=1

zxj,i, and (2.6)

xj = max(x̃j , 0). (2.7)

We have that both εxj and εyj are standard normal random variables with correlation ρ. For
the jumps, nj ∼ Poi(ωh), zxj,i ∼ Exp(ν) and zyj,i ∼ N (α+ ρzz

x
j,i, δ

2), i = 1, 2 . . . nN .
Similar discrete-time dynamics can be found in the works of others. Setting ρ = 0 and

ω = 0, we have a specification similar to those in Danielsson & Richard (1993); Shephard
(1993); Danielsson (1994); Harvey et al. (1994); Jacquier et al. (1994); Ruiz (1994); Kim
et al. (1998) and Watanabe (1999), among others. If we set ν = 0, we remove the variance
jumps and find model dynamics similar to those investigated in Pitt et al. (2014).

6

Chapter 3

Volatility Filtering

3.1 Background

3.1.1 State-Space Models

State-space models denote a general class of models that are used in different settings
such as signal processing or object tracking. In financial applications, we find them in
yield detention, dynamic portfolio betas, and stochastic volatility (Rémillard, 2013). These
models describe a situation where a latent stochastic process or hidden state H = {Hj : j =
1, 2, . . . , N}, is related in some way to the measurement or observed process Z = {Zj : j =
1, 2 . . . , N}. Because the latent process H is a Markov process in most applications, these
models are also called hidden Markov models. State-space models can be in continuous-
time where we would replace j ∈ N by t ∈ R. The relationship of the hidden state and the
observations across time is characterized by

Zj = gΘ(Hj−1, ξ
z
j) and (3.1)

Hj = fΘ(Hj−1, ξ
h
j), (3.2)

where ξhj and ξzj are random variables (or random vectors) representing the noise in the
system while gΘ(H, ξz) and fΘ(H, ξh) are the measurement and transition equations, re-
spectively. Lastly, Θ is a vector containing the model parameters.

We can see that the discretized version of the SVCJ model is nested within this frame-
work: the asset returns Zj ≡ yj are the observations. Also, by letting Jyj ≡

∑nj

i=1 z
y
j,i, we get

ξzj ≡ (εyj , Jyj) as the measurement noise, and Θ = {r, α, ω, ρ, ρz, δ, ν, σ, θ, κ} the parameters.
From Equation (2.5), we get the measurement equation

gΘ(xj−1, ξ
z
j) =

(
rj−1 + δj−1 + γj−1 − ᾱω −

xj−1
2

)
h+

√
xj−1h ε

y
j + Jyj . (3.3)

As the volatility process, x1:N , is latent, we set it as the hidden state Hj ≡ xj , define
Jxj ≡

∑nj

i=1 z
x
j,i, and the transition noise is then ξhj ≡ (εxj , Jxj). From Equations (2.6) and

7

(2.7), we get the following transition equation:

fΘ(xj−1, ξ
h
j) = max

(
x̃j−1 + hκ (θ − xj−1) + σ

√
xj−1h ε

x
j + Jxj , 0

)
. (3.4)

Similarly, the continuous-time counterparts of these equations fall within the continuous-
time state-space model family. We will now describe the general problem of estimating
the model hidden states for our specific process of interest xj given N return observations
y1:N ≡ {yj : j = 1, . . . , N}.

3.1.2 The Filtering Problem

When working with state-space models, there are three common distributions of interest:
the filtering distribution p(xj | y1:j), the prediction distribution, p(xj+1 | y1:j), and the
smoothing distribution p(xj | y1:N). We also seek to obtain likelihood evaluations, p(y1:N),
as these are essential building blocks in Bayesian inference. All of these distributions and
quantities of interest are for a particular vector of parameters Θ. For the sake of conciseness,
we will specify the parameter set Θ in the various densities only when multiple distinct sets
of parameters are considered.

Filters are algorithms that, given a set of observations y1:N and model parameters Θ,
provide us with (or possibly approximations to) the posterior distributions of interest for
all j = 1, . . . , N . We will also see that with these distributions, we can obtain a likelihood
evaluation p(y1:N).

For example, the well-known Kalman filter (Kalman, 1960) is a quick and effective tool
to evaluate these distributions on simple state-space models. It gives exact solutions when
the underlying dynamics of the process of interest are linear and Gaussian. For the models
that we will be working with, these assumptions do not hold.

Although Kalman filter-based approaches have shown promise on some nonlinear stochas-
tic volatility models (see Scott, 1987; Ruiz, 1994; Harvey et al., 1994, for more details),
these were instances where the model had no jumps and the noise terms were assumed
to be uncorrelated (i.e., Corr(εxt , ε

y
t) = 0). Their approach relies on assuming Gaussianity

and yields quasi-maximum likelihood estimators (QMLE). As the SVCJ model dynamics
include discontinuities and correlated noise terms, they are more complex than the simple
SV models where the Kalman-based QMLE method was used. Thus, the approximations of
the distributions of interest would probably be very poor when compared to the true ones.

Another approximate solution to the filtering problem in nonlinear settings is the un-
scented Kalman filter of Julier & Uhlmann (1997). This filter can be readily implemented
on the SV model, but it is only accurate to the third order as it relies on Taylor series expan-
sions. Moreover, Tanizaki & Mariano (1994) argue that the use of Taylor approximations
in combination with the Kalman filter faces several theoretical issues; namely, there is no
guarantee that the errors have an expected value of zero, that they are uncorrelated with

8

the latent states, that they are Gaussian, and that they keep the right correlation structure
between the transition and the measurement errors.

In the present study we will focus on optimal filters. These are filters that do not target
approximations of the distributions of interest, but the distributions themselves. Indeed,
an optimal filter could provide us with the distributions of interests at any desired level
of precision given enough computational resources. There are two main filters capable of
converging to the distributions of interest in highly nonlinear settings: the particle filter
(PF) and the DNF (Johannes et al., 2009).

Before introducing these filters, we will look at how the measurement and transition
equations relate to the distributions of interest and, ultimately, to the likelihood of the
model.

It is standard in filtering problems to assume a given distribution p(x0) for our initial
hidden states (Creal, 2012). From there, we can use recursions through Bayes’ theorem to
obtain our three target distributions. The prediction density depends on the previous time’s
filtering density, p(xj−1 | y1:j−1), and the transition density, p(xj | xj−1) as we can see from

p(xj | y1:j−1) =
∫
p(xj , xj−1 | y1:j−1) dxj−1

=
∫
p(xj | xj−1) p(xj−1 | y1:j−1) dxj−1, (3.5)

whereas the filtering density is given by

p(xj | y1:j) = p(xj , yj | y1:j−1)
p(yj | y1:j−1)

= p(yj | xj) p(xj | y1:j−1)
p(yj | y1:j−1) . (3.6)

Finally, the smoothing density can be obtained via the following integral:

p(xj | y1:N) =
∫
p(xj+1, xj | y1:N) dxj+1

=
∫
p(xj | y1:j , xj+1) p(xj+1 | y1:N) dxj+1

=
∫
p(xj+1 | xj) p(xj | y1:j) p(xj+1 | y1:N)

p(xj+1 | y1:j)
dxj+1

= p(xj | y1:j)
∫
p(xj+1 | xj) p(xj+1 | y1:N)

p(xj+1 | y1:j)
dxj+1. (3.7)

The smoothing density in Equation (3.7) is a function of the filtering density p(xj | y1:j) of
Equation (3.6), the transition density p(xj | xj−1), the next time step’s smoothing density
p(xj+1 | y1:N), and the prediction density p(xj+1 | y1:j). Note that we can initialize this
recursion using the fact that the time-N smoothing density is equivalent to the time-N
filtering density (i.e., p(xj | y1:j) = p(xj | y1:N) for j = N).

9

The numerator of the filtering density requires the observation density, p(yj | xj) and the
current step’s prediction density p(xj | y1:j−1). Using the same densities, the denominator
in Equation (3.6) can then be obtained through the integral

p(yj | y1:j−1) =
∫
p(yj | xj)p(xj | y1:j−1) dxj . (3.8)

Computing p(yj | y1:j−1) at each time step allows us to evaluate our likelihood function for
a set of parameters Θ through the following decomposition:

p(y1:N) = p(y1)
N∏
j=2

p(yj | y1:j−1). (3.9)

As is the case for many state-space models, the integrals in Equations (3.7) and (3.8)
cannot be evaluated analytically for the SVCJ model. It is here that the main difference
between the PF and the DNF appears. They rely on different approaches to handle these
integrals. The PF is based on Monte Carlo integration methods while the DNF utilizes
deterministic numerical integration.

3.2 The Particle Filter

3.2.1 Sequential Importance Sampling

The idea of importance sampling (IS) is key to sequential importance sampling (SIS). It is
a Monte Carlo integration method that enables us to evaluate

E[h(X)] =
∫
h(x) f(x) dx (3.10)

for a random variable X, where we know the functional form of the density f(X) but cannot
sample directly from the associated distribution. Instead, we sample X(1), . . . , X(m) from a
proposal density q(X) and weigh each draw by the ratio of the target to the proposal density.
The importance weight of the i-th draw is w(i) ≡ f(X(i))

q(X(i)) , and its normalized importance

weight is ŵ(i) ≡ w(i)∑m

k=1 w
(k) for i ∈ {1, . . . ,m}. The proposal should be easy to sample from,

have the same support as the target density, and be as close as possible to the target density.
We then use

E[h(X)] ≈ 1
m

m∑
i=1

ŵ(i) h(Xi)

to obtain an estimator that converges to the quantity of interest as m→∞. This relies on
the importance sampling fundamental identity (Robert & Casella, 2013)

E[h(X)] =
∫
h(x) f(x)

q(x) q(x) dx.

10

In our case, we are interested in the distribution of the latent variance sequences X1:N ,
and the expectation in Equation (3.10) is taken under the posterior p(x1:N | y1:N). In
this context, SIS is favoured over IS as it targets the joint distribution sequentially using
the conditional distributions p(xj | x1:j−1, y1:j). This allows us to save time. The SIS also
bypasses having to find appropriate N -dimensional proposal distributions (Creal, 2012).
SIS’s conditional proposals are based on

q(x1:j | y1:j) = q(xj | x1:j−1, y1:j) q(x1:j−1 | y1:j−1), (3.11)

where q(x1:j−1 | y1:j−1) is a unit probability mass at the previous time’s sampled trajectory.
Each path generated in this way is called a particle. The time-j unnormalized weights of
the i-th particle can be computed recursively by using the following relationship:

w
(i)
j ≡

p(x(i)
1:j | y1:j)

q(x(i)
1:j | y1:j)

∝
p(x(i)

1:j , yj | y1:j−1)

q(x(i)
j | x1:j−1, y1:j) q(x1:j−1 | y1:j−1)

∝
p(yj | x(i)

j) p(xj | xj−1) p(x(i)
1:j−1 | y1:j−1)

q(x(i)
j | x

(i)
1:j−1, y1:j) q(x(i)

1:j−1 | y1:j−1)

= w
(i)
j−1

p(yj | x(i)
j) p(x(i)

j | x
(i)
j−1)

q(x(i)
j | x

(i)
1:j−1, y1:j)

= w
(i)
j−1 w̃

(i)
j , (3.12)

where w̃(i)
j is the incremental importance weight defined by w̃(i)

j ≡
p(yj |x

(i)
j) p(xj |x

(i)
j−1)

q(x(i)
j |x

(i)
1:j−1,y1:j)

.

As we have seen in Equation (3.12) above, the importance weights can be written as
a product of the incremental importance weights at each time index. Thus, if a proposal
is poor and has an incremental weight of zero at time j, its importance weight remains
at zero in the following time steps. For a long enough series, this will eventually lead to a
single particle with weight one, while all the others will have a weight of zero. This issue
is called weight degeneracy. Note that this does not mean that the remaining particle is a
good estimate in any absolute sense, only that it is relatively good compared to the other
particles (Robert & Casella, 2013). The sequential importance resampling (SIR) adds a
resampling step to SIS to resolve the problem of weight degeneracy. We discuss the details
of this step in the next subsection.

11

3.2.2 Sequential Importance Resampling

The SIR algorithm (or particle filter) builds on SIS by adding a resampling step. Resampling
tends to eliminate lower weighted particles and increase forward propogation of those with
higher weights. Although other resampling schemes have been proposed, we present an SIR
algorithm with multinomial resampling performed at each time period in Algorithm 1. This
scheme relies on the fact that after computing the particles’ normalized weights, we have
m pairs {x(i)

j , ŵ
(i)
j }, where

∑m
i=1 ŵ

(i)
j = 1. With these pairs, we can create a multinomial

distribution to sample from with replacement. From this multinomial, we draw particles x(i)
j

with probability ŵ(i)
j . Importantly, resampling at every iteration of the algorithm allows for

Algorithm 1 Sequential Importance Resampling

1: Draw x
(i)
0 from initial density q0(·) and set importance weights w(i)

0 = p(x(i)
0)

q0(x(i)
0)

for each
i ∈ {1, . . . ,m}.

2: for j = 1, 2, . . . , N do
3: for i = 1, . . . ,m do
4: Draw x

(i)
j from q(xj | x1:j−1, y1:j).

5: Compute the importance weights w(i)
j = w

(i)
j−1 w̃

(i)
j .

6: Compute the normalized importance weights ŵ(i)
j = w

(i)
j∑m

k=1 w
(k)
j

.

7: end for
8: Resample m particles according to their normalized weights ŵ

(i)
j for each i ∈

{1, . . . ,m}.
9: Set w(i)

j = 1
m for each i ∈ {1, . . . ,m}.

10: end for

the evaluation of the likelihood using the following recursion:

p(yj | y1:j−1) =
∫
p(yj | xj) p(xj | y1:j−1) dy1:j−1

≈ 1
m

m∑
i=1

w̃
(i)
j . (3.13)

Now that we have a particle filtering framework, we will look at a specific choice of proposal
distribution and how it can be applied to the SVCJ model.

3.2.3 The Bootstrap Filter

The bootstrap filter of Gordon et al. (1993) is a PF that is easy to implement as it uses the
transition density as its proposal (i.e., we propose according to q(xj | x1:j−1, y1:j) ≡ p(xj |
xj−1)). Choosing the transition density as the proposal density allows for the following

12

simplification when computing the incremental importance weights:

w̃
(i)
j =

p(yj | x(i)
j) p(xj | x(i)

j−1)

q(x(i)
j | x

(i)
1:j−1, y1:j)

=
p(yj | x(i)

j) p(xj | x(i)
j−1)

p(xj | x(i)
j−1)

= p(yj | x(i)
j). (3.14)

As the proposal does not use information from the observations y1:j , it is “blind.” In the case
of the SVCJ model, we can sample sequentially from the transition as stated in Equation
(3.4) via iterated conditioning on latent factors

p(x(i)
j | x

(i)
j−1) = p(x(i)

j | x
(i)
j−1, n

(i)
j) p(n(i)

j)

= p(x(i)
j | x

(i)
j−1, n

(i)
j , J

x
(i)
j) p(Jx

(i)
j | n(i)

j) p(n(i)
j). (3.15)

For each particle, i ∈ {1, . . . ,m}, we first draw the number of jumps n(i)
j ∼ Poi(ωh), then

get the sum of variance jumps from a gamma distribution, i.e., Jx
(i)
j | n(i)

j ∼ Γ(n(i)
j , ν),

where n(i)
j is the shape parameter and ν is the scale parameter. Finally, we can draw the

instantaneous variance with the following discretization:

x
(i)
j | x

(i)
j−1, n

(i)
j , J

x
(i)
j ∼ N

(
x

(i)
j−1 + κ(θ − x(i)

j−1)h+ Jx
(i)
j , σ2x

(i)
j−1h

)
. (3.16)

We now derive the incremental importance weights for the SVCJ model. Under the bootstrap
PF, this means having to evaluate the measurement density given in Equation (3.3). As it
depends on the previous volatility, the number of jumps, and the size of the jumps in variance
which have been simulated, we are looking for p(yj | x(i)

j , x
(i)
j−1, n

(i)
j , J

x
(i)
j). Assuming that

x̃
(i)
j ≥ 0 (if this is not the case in practice, we set it to zero), from the transition Equation

(3.4), we can write

ε
x

(i)
j

j =
x

(i)
j − x

(i)
j−1 − hκ(θ − x(i)

j−1)− Jx
(i)
j

σ
√
x

(i)
j−1h

. (3.17)

Then, using the Cholesky decomposition, we write εyj =
√

1− ρ2ε⊥j +ρε
x

(i)
j

j , with Corr(ε⊥j , ε
x(i)

j
j) = 0.

This allows us to get the measurement under the following form:

yj =

rj−1 + δj−1 + γj−1 − ᾱω −
x

(i)
j−1
2

h+
√
x

(i)
j−1h

(√
1− ρ2ε⊥j + ρε

x
(i)
j

j

)
+ Jyj . (3.18)

Conditional on the latent factors produced by the proposal (the number of jumps, the
variance jump size, and the instantaneous variances up to time j), every remaining random
variable in Equation (3.18) is Gaussian and uncorrelated. Thus, we find that

yj | x(i)
j , x

(i)
j−1, n

(i)
j , J

x
(i)
j ∼ N(µ(i)

j , σ
(i) 2
j), (3.19)

13

where

(3.20)

µ
(i)
j =

rj−1 + δj−1 + γj−1 − ᾱω −
x

(i)
j−1
2

h+
√
x

(i)
j−1h (ρε

x
(i)
j

j) + nα+ ρzJ
x

(i)
j , (3.21)

with the value of ε
x

(i)
j

j coming from Equation (3.17), and

(3.22)

σ
(i) 2
j = x

(i)
j−1(1− ρ2)h+ nδ2. (3.23)

A popular alternative to the boostrap PF and its blind proposal is the auxiliary particle filter
(APF) of Pitt & Shephard (1999). The APF incorporates information from the data into
the filter’s proposals by resampling before drawing new particles from a joint density that
includes an auxiliary variable. The APF is implemented for the SVCJ model in Johannes
et al. (2009). For the Bayesian estimation of the SVCJ model, Jacobs & Liu (2018) find
that the APF yields more variable likelihood evaluations and is therefore less suitable than
the bootstrap filter. Pitt et al. (2014) also opt for the simpler filter arguing that single
observations are not particularly informative in the context of stochastic volatility models.
Thus, including them in the proposal should not lead to significant benefits. So, we will be
using the bootstrap filter in future sections.

We would also like to note in passing that there exists many other extensions to the PF
presented here. We will briefly discuss a few of them in the remainder of this subsection.

Doucet et al. (2006) presents a blocked sampling scheme that allows for a higher number
of unique particles throughout the series while reducing the number of resampling steps.
This solves an issue known as “particle thinning.” As resampling implies that we have fewer
and fewer unique particles at earlier times, we can get relatively poor approximations of
the target distributions for values of j much lower than N . However, the block sampling
strategy is computationally costly and requires the selection of a good joint proposal.

Another issue relevant to the PF is the randomness in its likelihood evaluations. Since
the PF uses the weights from a stochastic discrete distribution to evaluate likelihood con-
tributions, there can be jumps in the likelihood as a function of the parameter values. Noise
in the likelihood evaluations makes its maximization and Bayesian posterior distribution
estimation more difficult. Although using more particles can help smooth the likelihood,
it can be more effective to use the continuous resampling scheme of Malik & Pitt (2011).
Continuous resampling utilizes interpolation between the steps of the empirical distribution
function (ECDF) produced by the particles to allow midpoints to be sampled. While most
simple sampling schemes (including multinomial resampling) have a computational burden

14

of O(m) at each iteration, this scheme has a higher order of operations, i.e., O(m logm).
The more expensive scheme also introduces a bias of order 1

m in the likelihood estimates
which gives us a classic bias-variance trade-off situation. In the next section, we will see
that we can have a precise likelihood estimate by using a deterministic filter (i.e., with a nil
variance).

3.3 The Discrete Nonlinear Filter

3.3.1 Framework

Kitagawa (1987) introduces the discrete nonlinear filter (DNF) to obtain filtering, predic-
tion, and smoothing distributions as well as likelihood evaluations for general state-space
models. The method solves the filtering problem by iterated numerical integrations while
using the models’ transition and measurement equations. This approach has been applied
(and improved upon) by Pole & West (1990) in the context of conditionally Gaussian mod-
els and by Watanabe (1999), Langrock et al. (2012), and Bégin & Boudreault (2020) for
modelling financial assets.

With Equations (3.5), (3.6), (3.8) and (3.9) presented in Section 3.1.2, we can compute all
of the filtering and prediction densities of interest using the forward recursion of Algorithm
2.

Algorithm 2 Discrete Nonlinear Filter
1: Initialize by selecting density p(x0)
2: for j = 1, 2, . . . , N do
3: Compute p(xj | y1:j−1) by numerical integration using Equation (3.5).
4: Compute p(xj | y1:j) via Equation (3.6) and numerical integration of the
5: denominator using Equation (3.8).
6: end for
7: Compute p(y1:N) using Equation (3.9).

With the filtering densities computed, we can obtain the smoothing densities through
backwards recursion using the fact that the time-N filtering density equals the time-N
smoothing density and Equation (3.7).

3.3.2 Implementation for the SVCJ Model

The DNF has been applied to stochastic volatility models more complex than the SVCJ
model in Bégin & Boudreault (2020). They include a stochastic jump arrival intensity
component to get the SVCJSI model (stochastic volatility with correlated jumps in returns
and variance with stochastic jump arrival intensity). Following the methodology outlined
in this work, we apply the DNF to the simpler SVCJ model.

15

First, we can perform the prediction step of the DNF (i.e., Step 3 of Algorithm 2) by
integrating out the hidden factors

p(xj | y1:j−1) =
∫
R+
p(xj | xj−1) p(xj−1 | y1:j−1) dxj−1

=
∫∫

R2
+

p(xj | xj−1, J
xj) p(xj−1 | y1:j−1) p(Jxj) dJxj dxj−1

=
∞∑

nj=0

∫∫
R2

+

p(xj | xj−1, J
xj , nj) p(Jxj | nj) p(nj) (3.24)

p(xj−1 | y1:j−1) dJxj dxj−1,

where p(xj−1 | y1:j−1) is the previous iterations filtering distribution and all other densities
are identical to those found in Equations (3.15) and (3.16).

Second, we obtain the likelihood contribution by computing the following:

p(yj | y1:j−1) =
∫
R+
p(yj | xj) p(xj | y1:j−1) dxj

=
∫∫

R2
+

p(yj | xj , xj−1) p(xj | xj−1) p(xj−1 | y1:j−1) dxj dxj−1

=
∫∫∫

R3
+

p(yj | xj , xj−1, J
yj) p(Jyj)

p(xj | xj−1) p(xj−1 | y1:j−1) dxj dxj−1 dJ
yj

=
∞∑

nj=0

∫∫∫
R3

+

p(yj | xj , xj−1, J
xj , nj) p(Jxj | nj) (3.25)

p(nj) p(xj | xj−1, J
xj , nj)

p(xj−1 | y1:j−1) dxj dxj−1 dJ
xj ,

where we have the previous iteration’s filtering density, p(xj−1 | y1:j−1), the measurement
density, p(yj | xj , xj−1, J

xj , nj), given by Equation (3.19), and the transition densities found
in Equations (3.15) and (3.16).

Finally, we can get the filtering density by using the following equation:

p(xj | y1:j) =
∞∑

nj=0

∫∫
R2

+

p(xj , xj−1, J
xj , nj | y1:j) dxj dxj−1 dJ

xj

= 1
p(yj | y1:j−1)

(∞∑
nj=0

∫∫
R2

+

p(yj | xj , xj−1, J
xj , nj) (3.26)

p(xj , xj−1, J
xj , nj | y1:j−1) dxj dxj−1 dJ

xj

)
,

where p(xj , xj−1, J
xj , nj | y1:j−1) can be decomposed through iterated conditioning into the

components of the prediction density in Equation (3.24). Note that if we are only interested

16

in obtaining likelihood evaluations, p(y1:N), we do not need to compute the prediction
densities explicitly at each step. We can obtain the likelihood by computing only the time-j
filtering density and the likelihood contributions for j = 1, . . . , N as was done in Bégin &
Boudreault (2020).

3.3.3 Numerical Implementation

When performing the numerical integrations needed for the DNF, there are two main con-
siderations: the grid of nodes used (i.e., the points at which we evaluate the densities) and
the choice of the integration rule. These choices impact the DNF integration errors. Kita-
gawa (1987) highlights the three sources of error for the DNF and explains how they are
affected by the user’s decisions: (1) the errors that are usually associated with numerical
methods such as rounding error, (2) the errors that occur from truncating the target density
(determined by the range of the node grid), and (3) the errors related to the target density
approximation between the nodes. These errors are decided by the integration rule, the
node placement, and the number of nodes used.

Both Kitagawa (1987) and Bégin & Boudreault (2020) fix a sequence of nodes to be
used for numerical integration throughout the time series. Kitagawa (1987) mentions that
the effectiveness of the DNF depends on the careful selection of the node placement. Indeed,
more nodes should be found in regions with high nonlinear probability density as they could
lead to important approximation errors.

The nodes for discrete latent variables should be set to natural numbers. Therefore, for
the number of jumps, we simply use the following grid: R = [0, 1, . . . , R].

For continuous latent variables, we can obtain the boundaries of a latent factor H by
using

EH ± δL
√
VH , (3.27)

where EH = limj→∞ E [Hj | F0] and VH = limj→∞V [Hj | F0] are the long-run expected
value and variance of H, respectively. The function δL depends on the number of nodes,
L. To ensure convergence of the DNF, δL must satisfy two conditions. First, we require
that the boundaries cover the domain of integration as we increase the number of nodes
used. Therefore, we need limL→∞ δL = ∞. Second, the space between the nodes needs
to go to zero so that we have a finer partition as L increases. It is then necessary that
limL→∞

δL
L = 0. There are many possible choices of δL that satisfy the above conditions.

We set δL = 3 + log(L) as done in Bégin & Boudreault (2020).

17

The grids for the instantaneous variance and the variance jumps are defined as X =[
x(1), . . . , x(M)

]
and J =

[
J (1), . . . , J (S)

]
, respectively. The grids’ boundaries are given by

x(1) = max

θ − (3 + log (M))

√
0.5 θ σ2

κ
, 0

 ,
x(M) = max

θ + (3 + log(M))

√
0.5 θ σ2

κ
,
√
Bx

 ,
J (1) = max

(
ν − (3 + log(S))

√
ν2, 0

)
and

J (S) = max
(
νR+ (3 + log(S))

√
Rν2, BJ

)
.

We then get the sequence of intermediate nodes by using

x(i) =
√
x(1) +

(
i− 1
M − 1

)(√
x(M) −

√
x(1)

)2
, i = 2, . . . ,M − 1,

J (l) = J (1) +
(
l − 1
S − 1

)(
J (S) − J (1)

)
, l = 2, . . . , S − 1,

where the intervals between the variance nodes get larger in i as they are uniformly dis-
tributed in the volatility (i.e., square root of the variance). The variance and jump size end
points, x(M) and J (S), have lower bounds determined by Bx and BJ in order to guarantee
that we have a large enough grid. These values will change depending on the context in
which we apply the DNF. Here, we set Bx = 0.15 and BJ = 0.015

Dynamic grid specification schemes have been proposed by Pole & West (1990) and
Watanabe (1999). These methods try to lower the number of nodes needed by dynamically
improving their placement. Unlike the fixed methods, dynamic ones incorporate information
from the data being filtered to place their nodes. Watanabe (1999) relies on using a non-
optimal filter first (e.g., the Kalman filter) to get estimates of the mean and variance for
the prediction and filtering distributions: Ê[xj | y1:j−1], Ê[xj | y1:j], V̂[xj | y1:j−1], and
V̂[xj | y1:j]. Then, he draws the nodes from the Gaussian mixture, i.e.,

1
2 N

(
Ê[xj | y1:j−1], v V̂[xj | y1:j−1]

)
+ 1

2 N
(
Ê[xj | y1:j], v V̂[xj | y1:j]

)
.

The smoothing distributions obtained by the non-optimal filter can also be added to the
Gaussian mixture from which the nodes are drawn. The hyperparameter v is set to 4 in
Watanabe (1999) with good results when applied to an SV model without leverage (i.e.,
similar to our model with ω = ρ = 0).

Pole & West (1990) incorporate dynamic grid updates in the optimal filter itself. At
each iteration, they move the grid points using the current grid’s filtered mean and variance
estimates. They repeat the process until the changes in filtered moments of interest are
insignificant. It is unclear how both of these methods would fare when applied to the SVCJ

18

model and compared to the static grid we define above. We leave this investigation for
future research.

We now present several numerical integration rules that have been used in the literature
for the DNF. Kitagawa (1987) and Watanabe (1999) both use the trapezoid rule. This rule
states that for two functions, f1 and f2 for example, we have

∫ b

a
f1(x) f2(x) dx ≈ 1

2(b− a) [f1(a) f2(a) + f1(b) f2(b)] (3.28)

if a and b are close enough. Pole & West (1990) use a Gauss-Hermite quadrature while
Fridman & Harris (1998) opt for the Gauss-Legendre quadrature. A rule based on a midpoint
c, ∫ b

a
f1(x) f2(x) dx ≈ (b− a) f1(c) f2(c) (3.29)

has also been used in the econometric literature by Bartolucci & De Luca (2001, 2003) (as
cited in Langrock et al., 2012). In this study, we use the numerical integration rule from
Langrock et al. (2012) and Bégin & Boudreault (2020),

∫ b

a
f1(x) f2(x) dx ≈ f1(c)

∫ b

a
f2(x) dx.

If f2 is a probability density function and F2 is the associated cumulative distribution
function, then this rule implies that

∫ b
a f1(x) f2(x) dx ≈ f1(c)(F2(b)− F2(a)).

Using the above nodes as midpoints, we define the intervals for the integrations as in
Bégin & Boudreault (2020). That is, we let

X(i) =
[
x(i−1) + x(i)

2 ,
x(i) + x(i+1)

2

)
, i = 1, . . . ,M,

J(l) =
[
J (l−1) + J (l)

2 ,
J (l) + J (l+1)

2

)
, l = 1, . . . , S,

where x(0) = −x(1), j(0) = −j(1) and x(M+1) = j(S+1) =∞.
Combining the chosen integration rule with Equation (3.24), we can approximate the

prediction density at each time with

p̂(x(ij) | y1:j−1) ≈
R∑

nj=0

M∑
ij−1=1

S∑
lj=1

p(xj ∈ X(ij) | x(ij−1), J (lj), nj)

p(Jxj ∈ J(lj) | nj) p(nj)p(x(ij−1) | y1:j−1).

19

Then, from Equation (3.25), we get the following approximation for the time-j likelihood
contribution:

p̂(yj | y1:j−1) ≈
R∑

nj=0

M∑
ij=1

M∑
ij−1=1

S∑
lj=1

p(yj | x(ij), x(ij−1), J (lj), nj)

p(xj ∈ X(ij) | x(ij−1), J (lj), nj)

p(Jxj ∈ J(lj) | nj) p(nj)p(x(ij−1) | y1:j−1).

Lastly, using Equation (3.26), we estimate the filtering density with the following approxi-
mation:

p̂(x(ij) | y1:j) ≈
1

p̂(yj | y1:j−1)

R∑
nj=0

M∑
ij−1=1

S∑
lj=1

p(yj | x(ij), x(ij−1), J (lj), nj)

p(xj ∈ X(ij) | x(ij−1), J (lj), nj)

p(Jxj ∈ J(lj) | nj) p(nj)p(x(ij−1) | y1:j−1).

We see that the operations are of O((R+ 1)M2S) at time j for the likelihood contribution.
The order of operations increases rapidly with the number of latent factors in the model.
Bégin & Boudreault (2020) perform a simulation study to evaluate the accuracy of the DNF
likelihood evaluations and how they compare to the bootstrap particle filter. They found
accurate (i.e., below 0.1% mean absolute percentage error or MAPE) likelihood evaluations
for the SVCJ model using R = 1, M between 50 and 60, and S = M/2.5. Moreover, for
the same computing budget, the DNF is more accurate and reliable than the basic particle
filter. These empirical results hold even for the SVCJSI model which has two additional
factors that need to be integrated out. Although the DNF would be uncompetitive at higher
dimensions, it is a promising choice of filter for the models we investigate in this report.

20

Chapter 4

Bayesian Estimation

4.1 Background

4.1.1 Markov Chains

In the Bayesian paradigm, we treat model parameters as random variables. In the context
of stochastic volatility models, this means estimating the joint posterior distribution of both
the instantaneous variances and the model parameters, p(x1:N ,Θ | y1:N). As this posterior
distribution cannot be obtained in closed form, Markov chain Monte Carlo (MCMC) meth-
ods are often used to approximate it (Jacquier et al., 1994; Eraker, 2001; Eraker et al., 2003;
Eraker, 2004; Jacobs & Liu, 2018). In this subsection, we will formally introduce Markov
chains. After defining Markov chains, we present the properties necessary to understand
ergodicity and stationary distributions as these are key concepts for MCMC methods. For
a more in-depth presentation of Markov chains on continuous spaces, we refer the reader to
Chapter 6 of Robert & Casella (2013) as well as Chapters 2 and 3 of Dobrow (2016) for the
discrete case.

Definition 1 (Markov Chain). A discrete-time Markov chain is a discrete-time stochastic
process X = {Xj ∈ X : j = 1, 2, 3, . . .}, where

p(Xj+1 | X1:j) = p(Xj+1 | Xj), ∀j = 1, 2, 3, . . . (4.1)

Equation (4.1) describes the so-called Markov property. It implies that once we know
a Markov chain’s current state, its history does not give additional information about the
next state’s distribution. In our case, the domain of the Markov chain, X , is either R or R+.
To properly deal with Markov chains on measurable spaces, measure theoretic probability
theory beyond the scope of this report is necessary. It can be found in Robert & Casella
(2013). We hope to provide an intuitive understanding of the concepts being presented.

Definition 2 (Stationary Distribution). We say that π is a stationary distribution for the
Markov chain X if

Xj ∼ π → Xj+1 ∼ π, (4.2)

21

Once a Markov chain reaches a stationary distribution, it is in equilibrium as it will
remain in the stationary distribution for all subsequent steps.

Definition 3 (Irreducibility). We say that a Markov chain X is irreducible if there exists
j ∈ N such that p(Xj ∈ A | X0 = x0) > 0 for all sets A ∈ X such that p(X ∈ A) > 0.

Irreducibility ensures that the regions available to the chain are not sensitive to its initial
condition, X0. Indeed, if a set can be reached by an irreducible Markov chain, then it can
be reached from any inital value.

Definition 4 (Recurrence). We say that the Markov chain X is recurrent if:

(1) X is irreducible.

(2) ∀A ∈ X such that p(X ∈ A) > 0, the expected number of times the chains visits A is
infinite.

Informally, we now define the concept of recurrence and transience for the states of
Markov chains. A Markov chain’s states can be recurrent or transient. If they are recurrent,
it will always be possible for the Markov chain to reach these states. If they are not recurrent,
they are transient (i.e., the chain might not be able to reach them after some point). If all
the states of an irreducible Markov chain are recurrent, then the chain is recurrent. If an
irreducible Markov chain is not recurrent, we say that the chain is transient.

There is a stronger concept of recurrence in the literature around Markov chains called
Harris recurrence. It requires that the probability that the chain eventually returns to a
region is one. This concept is used to ensure that MCMC chains converge for all rather
than almost all initial values (Robert & Casella, 2013).

Periodicity is the last concept needed before we can define ergodic Markov chains. A
chain is periodic if there is a deterministic pattern in its behaviour. This means that it is
somehow constrained in its transitions. The number of steps required for a periodic Markov
chains to move from one region to another is a multiple of an integer. The concept of
periodicity is essential for MCMC. As we will see, the Metropolis-Hastings algorithm relies
on using an aperiodic and irreducible transition density on the same support as its target
density as a proposal density in the spirit of an acceptance-rejection method (Smith &
Roberts, 1993).

Definition 5 (Ergodicity). A Markov chain with stationary distribution π is ergodic if it
is aperiodic, irreducible, and Harris recurrent.

There exist different types of ergodicity such as uniform ergodicity and geometric er-
godicity. We omit the details of these concepts and, again, refer the interested reader to
Chapter 6 of Robert & Casella (2013). Ergodic Markov chains are necessary for MCMC
methods as they eventually converge (the strength of this convergence depends on the type
of ergodicity) to the unique stationary distribution π regardless of initial conditions. The

22

key idea of MCMC is to use an algorithm that generates an ergodic Markov chain with the
target distribution as its stationary distribution.

Definition 6 (Detailed Balance Equation). A Markov chain and a probability density q
satisfy the detailed balance equation if

q(x)p(x′ | x) = q(x′)p(x | x′), ∀x,x′ ∈ X . (4.3)

In other words, the detailed balance equation is satisfied if the probability of the Markov
chain being in state x and moving to state x′ is the same as the probability of being in state
x′ and moving to state x for all pairs of states x and x′. This concept is useful because if an
ergodic Markov chain satisfies Equation (4.3) for some distribution q, then it can be shown
that q is its stationary distribution (Robert & Casella, 2013).

4.1.2 Markov Chain Monte Carlo

In this subsection, we introduce two MCMC algorithms: the Metropolis-Hastings sampler
(Metropolis et al., 1953; Hastings, 1970) and the adaptive Metropolis-Hastings sampler.
In general, a Markov chain Monte Carlo method is an algorithm that generates an ergodic
Markov chain with stationary distribution π. We can then take the chain’s states as samples
to estimate quantities of interest such as the moments of the target distribution. Because
the chain does not start in its stationary distribution, we burn in (i.e., throw away) the first
B observations.

It is common practice to set B = G
5 , where G is the total number of steps in the

Markov chain. So, the algorithm provides us with XB+1,XB+2, . . . ,XG ∼ π. The states after
the burn-in period are fundamentally identical to independent and identically distributed
samples from π if the chain has converged. Thanks to central limit theorems and convergence
results (Robert & Casella, 2013), we get estimators using

Ê [h(X)] = 1
G−B

G∑
j=B+1

h(Xj),

where
Ê [h(X)]→ E(h(X)) as G→∞,

which are similar to classic, naive Monte Carlo estimators. The above estimator converges
almost surely (i.e., with probability one).

To ensure that the chain reached its stationary distribution, convergence diagnostic tools
such as Gelman-Rubin tests (Gelman & Rubin, 1992), Geweke convergence tests (Geweke,
1992), or trace plots are necessary. To perform Gelman-Rubin diagnostics, we run the same
MCMC method on the same data using different starting values and compare the variance
between and within the chains. If the chains have converged, there should not be important

23

differences between those variances. Like other tools that require multiple chains, the speed
of convergence gets determined by the slowest chain. Then, the starting values for the chains
depend on our prior knowledge of the target distribution (i.e., what are reasonable values
for the chain to begin in).

An alternative diagnostic tool is the Geweke convergence test (Geweke, 1992). This
convergence test compares the mean at the beginning of the post-burn chain with the
mean at the end. If the chain has reached its stationary distribution, the mean should not
change significantly. It is standard practice to compare the first 10% with the last 50% of
the chain after the burn period. One issue is that the test results can be sensitive to this
choice of proportions (Cowles & Carlin, 1996). For example, Cowles et al. (1999) finds less
bias by using 25% for the first proportion, although both discard more samples than they
theoretically should for their simulation study.

The Geweke convergence test has the computational advantage of being a single-chain
method. This allows us to evaluate convergence without having run multiple chains on the
same data as with Gelman-Rubin diagnostics. The disadvantage of the single-chain ap-
proaches is that they cannot distinguish between a chain that has converged and a chain
stuck in a local optima because it has not explored enough of the parameter space. More
information about the Gelman-Rubin diagnostic, the Geweke diagnostic, and other conver-
gence tests can be found in Chapter 12 of Robert & Casella (2013).

Trace plots represent an alternative approach. This plot is a useful tool that is not a
formal test for convergence. The trace plot shows the path of a particular element of the
Markov chain as a function of the MCMC iterations. If the chain gets stuck in a particular
region, moves slowly, or does not leave its starting values, it could indicate that there is
a problem with the algorithm (Johannes & Polson, 2010). Unfortunately, these tools do
not always provide conclusive evidence. Johannes & Polson (2010) recommend the use of
simulation studies to verify the accuracy of MCMC methods.

The Metropolis-Hastings Algorithm

The steps of the Metropolis-Hastings sampler are given in Algorithm 3. In short, we begin
by drawing a candidate move x′ for the Markov chain conditional on x from the proposal
distribution with density q(x′ | x). This distribution is chosen by the user and should ide-
ally be easy to sample from and close to the target. The proposal distribution needs to be
aperiodic and irreducible on the same support as the target distribution π for the algorithm
to converge (Smith & Roberts, 1993). Fortunately, the aperiodicity and irreducibility con-
ditions are usually satisfied if the Markov chain’s transition density has the same support
as the target distribution (Chib & Greenberg, 1995).

Then, we accept the j-th proposal with acceptance probability α(x′j , xj−1). The ratio
π(x′j)
π(xj−1)

q(xj |x′j−1)
q(x′j−1|xj) in the acceptance probability is sometimes called the Hastings ratio. If a

symmetric proposal is used (i.e., q(x′ | x) = q(x | x′), ∀x,x′ ∈ X), then the Hastings ratio

24

Algorithm 3 Metropolis-Hastings
1: Initialize by selecting x0.
2: for j = 1, 2, . . . , G do
3: Draw x′j ∼ q(x′ | xj−1) and u ∼ U(0, 1).

4: Compute α(x′j ,xj−1) = min
{

π(x′j)
π(xj−1)

q(xj−1|x′j)
q(x′j |xj−1) , 1

}
.

5: if u < α(x′j , xj−1) then
6: Set xj = x′j .
7: else
8: Set xj = xj−1.
9: end if
10: end for

simplifies to a likelihood ratio as

π(x′j)
π(xj−1)

q(xj−1 | x′j)
q(x′j | xj−1) =

π(x′j)
π(xj−1) .

We can show that the Metropolis-Hastings algorithm converges to π as it satisfies the
detailed balance equation in Equation (4.3). First, note that the probability of the chain
going from x to x′ is the probability that x′ is proposed and accepted (i.e., the transition can
be written as p(x′ | x) = q(x′ | x)α(x′,x)). Without loss of generality, assume π(x′) q(x′ |
x) > π(x) q(x | x′). Then, we have

π(x) p(x′ | x) = π(x) q(x′ | x)α(x′,x)

= π(x) q(x′ | x) π(x′)
π(x)

q(x | x′)
q(x′ | x)

= π(x′) p(x | x′),

where the last equality holds because q(x | x′) = p(x | x′) as α(x,x′) = 1. If π(x′) q(x′ |
x) = π(x) q(x | x′), then α(x′,x) = α(x,x′) = 1 and detailed balance is immediately
implied. Now that it is clear that π is the stationary distribution for the Markov chain pro-
duced by the Metropolis-Hastings algorithm, we turn to the issue of choosing the proposal
distribution, q(x′ | x).

Like standard acceptance-rejection methods, the choice of proposal distribution influ-
ences the rate at which the Metropolis-Hastings algorithm converges. As we mentioned
earlier, the proposal should be close to the target distribution. But, in some situations—
particularly in high dimensions—this can be a difficult problem.

A practical solution is to use a random walk proposal. That is, for a chain at state x,
we draw proposals x′ ∼ N (x, s2). As this proposal is irreducible on R and aperiodic, it
converges for target distributions that lie on the real numbers. In sum, Gaussian proposals

25

centred at the current state are symmetric, easy to implement in high dimension by using
multivariate Gaussian proposals, and converge for a wide range of target distributions.

Using random-walk Metropolis-Hastings, we might encounter the issue of having a target
with a support that is a subset of the real line (e.g., R+). In these cases, one could simply
reject all of the proposals that fall outside the target’s support (Johannes & Polson, 2010),
propose conditional on the regional constraints (Gelman & Rubin, 1992), or work with a
transformation of x.

Another issue with random walk proposals is that they do not converge rapidly. They
can only be geometrically ergodic rather than uniformly ergodic according to Mengersen et
al. (1996). In this case, the proposal variance s2 can be seen as a tuning parameter that can
be changed to optimize the performance of the algorithm. To avoid an expensive search for
good values of s2, we turn to adaptive MCMC methods.

The Adaptive Metropolis-Hastings Algorithm

The adaptive Metropolis-Hastings algorithm avoids the problem of specifying the covari-
ance matrix of the random walk proposal distribution. Adaptive MCMC methods aim to im-
prove the proposal parameters while they run. We present the adaptive Metropolis-Hastings
method given in Roberts & Rosenthal (2009) as this was the approach used in Jacobs &
Liu (2018) to estimate the posterior parameter distributions of the SVCJ model. For a
d-dimensional target, the proposal x′ from the adaptive Metropolis-Hastings chain at x is
drawn for the first G0 steps using a fixed initial Gaussian random walk proposal and then
using a Gaussian mixture:

x′j ∼ N
(

x, v0 0.12 Id
d

)
, if j ≤ G0 and (4.4)

x′j ∼ (1− β)N
(

x, 2.382 Σj−1
d

)
+ βN

(
x, vj 0.12 Id

d

)
, if G0 < j ≤ G, (4.5)

where Σj−1 is the previous iteration’s empirical covariance matrix estimate based on the
Markov chain’s past states and Id is a d-dimensional identity matrix. The second component
of the mixture in Equation (4.5) is fixed to ensure that the variance of the proposal distri-
bution has a lower bound so that the chain does not stop exploring. Following Roberts &
Rosenthal (2009), we take β = 0.05. Variables v0 and vj are d-dimensional vectors to scale
the variances of the initial proposal distribution and the fixed component of the Gaussian
mixture proposal, respectively.

The user must also choose a period p. At every p steps, we compute Σj based on
x1, . . . ,xj−1 and use it for the next p steps. If p = G, we use Σ0 throughout the proposals and
the adaptive algorithm reduces to the standard random-walk Metropolis-Hastings sampler.
We present the pseudo-code for the adaptive Metropolis-Hastings sampler in Algorithm 4.

26

Algorithm 4 Adaptive Metropolis-Hastings
1: Initialize by selecting x0, v0 and G0.
2: for j = 1, 2, . . . , G do
3: Draw x′j from Equation (4.4) if j ≤ G0 or Equation (4.5) if G0 < j and u ∼ U(0, 1).

4: Compute α(x′j ,xj−1) = min
{

π(x′j)
π(xj−1) , 1

}
.

5: if u < α(x′j , xj−1) then
6: Set xj = x′j .
7: else
8: Set xj = xj−1.
9: end if

10: if j/p ∈ N and j > G0 then
11: Set Σj = Var(x1:j).
12: else
13: Set Σj = Σj−1.
14: end if
15: end for

4.2 Particle Markov Chain Monte Carlo

In this section we describe a popular particle Markov chain Monte Carlo (pMCMC) method
presented in Andrieu et al. (2010): the particle marginal Metropolis-Hastings sampler. The
algorithm combines the particle filter with MCMC to allow for the Bayesian estimation of
state-space models. The particle filter is used to obtain proposals of the latent variables.

The first use of pMCMC methods can be found in the economics literature around dy-
namic stochastic general equilibrium (DSGE) models (An & Schorfheide, 2007; Fernández-
Villaverde & Rubio-Ramírez, 2007). They use the particle filter to obtain approximate
likelihood evaluations of complex DSGE models within a random-walk Metropolis-Hastings
sampler. Andrieu et al. (2010) provide theoretical validity to this approach by proving that
the algorithm converges to the joint posterior of the latent variables and parameters under
mild regularity conditions. pMCMC methods have been since applied to many areas out-
side of DSGE models as they are suitable in any state-space context. In this report, we are
especially interested in their use for the SVCJ model (see Jacobs & Liu, 2018).

Let x1:N be the sequence of latent variables, y1:N be the observations, and Θ be a
vector containing the parameters of the state-space model. The pMCMC algorithm relies
on decomposing the target distribution as follows:

p(x1:N ,Θ | y1:N) = p(x1:N | y1:N , Θ) p(Θ | y1:N). (4.6)

A similar decomposition can be applied to the proposal distribution in the particle marginal
Metropolis-Hastings sampler. If the Markov chain of interest is {x1:N , Θ}, then Andrieu et

27

al. (2010) suggest using a proposal of the form

q(x′1:N , Θ′ | x1:N , Θ, y1:N) = q(x′1:N | y1:N , Θ′) q(Θ′ | Θ).

This proposal is performed in two steps: (1) given that the current value of the parameters in
the chain is at Θ, sample a new set of parameters using a user-chosen proposal distribution
q(Θ′ | Θ), and (2) sample from the latent variable space using the particle filter conditional
on the sampled parameter vector Θ′.

We can sample x′1:N using a similar rationale as that of the multinomial sampling done
at every step of SIR in Algorithm 1. The particle filter provides us withm (the total number
of particles) pairs of particles and their normalized weights (x(i)

1:N , ŵ
(i)
N) for each i = 1, ...,m.

Since
∑m
i=1 ŵ

(i)
N = 1, we can draw a specific x(i)

1:N with probability ŵ(i)
N . A naive application

of the Metropolis-Hastings theory explained in Section 4.1.2 gives the following Hastings
ratio:

p(x′1:N | y1:N , Θ′) p(Θ′) q(x1:N | y1:N , Θ) q(Θ | Θ′)
p(x1:N | y1:N , Θ) p(Θ) q(x′1:N | y1:N , Θ′) q(Θ′ | Θ) ,

where p(Θ) is the parameter prior distribution. To compute q(x′1:N | y1:N , Θ′), the proba-
bility of proposing a particular path with the particle filter, we marginalize out all possible
paths that are sampled. We cannot do this directly as this density is generally intractable.
Fortunately, this issue can be solved by defining an extended proposal distribution that
includes the particles generated at every time j, the parent of the particles, and their en-
tire trajectory as auxiliary variables. These variables have statistical properties that can
be precisely defined through auxiliary distributions. With the joint density for all of the
components necessary in generating a particle’s trajectory, Andrieu et al. (2010) show that
we can use the likelihood p(y1:N | Θ′). Then, the acceptance probability can be written as

α({x′1:N ,Θ′}, {x1:N ,Θ}) = min
[
1, p(y1:N | Θ′) p(Θ′) q(Θ | Θ′)

p(y1:N | Θ) p(Θ) q(Θ′ | Θ)

]
(4.7)

where the likelihood evaluations p(y1:N | Θ) and p(y1:N | Θ′) can be approximated using
Equations (3.8) and (3.13).

The particle marginal Metropolis-Hastings algorithm is presented below in Algorithm 5
where we use x ≡ x1:N to reduce the notational burden. Unlike standard SMC estimation of
the latent variables’ posterior distributions, pMCMC methods are less liable to suffer from
particle thinning when estimating the latent states (see Section 3.2.2). Because we sample
a full particle path for each accepted proposal, we almost surely obtain a unique particle
throughout j = 1, . . . , N for each acceptance.

Andrieu et al. (2010) show that this algorithm converges to the target posterior distribu-
tion under mild regularity conditions despite using approximate likelihood evaluations from
the particle filter. Similarly to the Metropolis-Hastings algorithm, the proposal distribution
along the parameter space should be aperiodic and irreducible on the same support as the

28

Algorithm 5 Particle Marginal Metropolis-Hastings
1: Initialize by selecting x0 and Θ0.
2: for j = 1, 2, . . . , G do
3: Draw Θ′j ∼ q(Θ′ | Θj−1) and u ∼ U(0, 1).
4: Run the particle filter with Θ′j .
5: Compute approximate likelihoods p̂(y1:N | Θ′j) using Equations (3.8) and (3.13).
6: Estimate α({x′j ,Θ′j}, {xj−1,Θj−1}) with Equation (4.7) and p̂(y1:N | Θ′j) from Step
7: 5.
8: if u < α({x′j ,Θ′j}, {xj−1,Θj−1}) then
9: Sample x′j from the particles in Step 4 according to their time-N normalized

10: weights.
11: Set xj = x′j and Θj = Θ′j .
12: else
13: Set xj = xj−1 and Θj = Θj−1.
14: end if
15: end for

target distribution. Moreover, the estimation of the likelihood function should be unbiased
for the convergence to the target distribution to be theoretically guaranteed. Many sam-
pling schemes are unbiased (e.g., multinomial or stratified), but the continuous resampling
scheme of Malik & Pitt (2011) for instance is not. As the bias of the scheme is inversely
related to the number of particles used, it is unclear how it would perform. In practice, the
bias can be made arbitrarily small by increasing the number of particles.

When implementing pMCMC methods, the number of particles in the filter is an impor-
tant tuning parameter. As we perform an SMC step every time we sample new parameters,
using a large number of particles substantially increases the computational burden of the
algorithm. Nonetheless, a large number of particles reduces the variance of the likelihood
evaluations, which can speed up the convergence of the Markov chain. Thus, there is a
trade-off between the speed of an iteration and the precision of its likelihood estimate. For
our simulation study, we are able to run an adaptive particle marginal Metropolis-Hastings
sampler with 10,000 iterations with 10,000 particles per bootstrap filter in under 48 hours.

Other fine-tuning options that could impact the algorithm performance are: (1) the
parameter proposal and prior distributions and (2) the use of another particle filter than
the bootstrap filter (e.g., different proposals distributions for the particle generation or
sampling schemes within the filter).

In sum, pMCMCmethods use a particle filter to propose latent variable samples in a very
efficient way. This allows for efficient Bayesian estimation of complex state-space models.
Nonetheless, the evaluation of the acceptance probability in Equation (4.7) depends on the
particle filter’s noisy likelihood estimates and can be computationally intensive.

29

4.3 DNF-Markov Chain Monte Carlo

In this section, we introduce a discrete nonlinear filter Markov chain Monte Carlo (dM-
CMC) method. The algorithm uses the DNF as a proposal within a MCMC method as
pMCMC utilizes the particle filter. Algorithm 5 shows that pMCMC uses the particle filter
in two different steps: (1) to obtain likelihood estimates p̂(y1:N | Θ′j) for the iteration j

proposed parameters Θ′j in Step 5 and (2) to sample x′1:N ∼ p(x1:N | y1:N , Θ′j), the joint
smoothing distribution in Step 9. The DNF given in Algorithm 2 yields an estimate of the
likelihood, but does not provide us with the samples from the joint smoothing distribution
directly. In this section, we develop a recursive algorithm to sample from the joint smoothing
distribution constructed from the DNF.

4.3.1 Forward Filtering Backward Sampling for the DNF

Forward-filtering-backward-sampling (FFBS) algorithms have been used to sample from the
joint smoothing distribution of various state-space models. As the name suggests, FFBS
relies on first running a filter on the data to obtain some quantities or distributions, and on
a backward recursion to sample from p(x1:N | y1:N , Θ) using those quantities.

The first uses of the FFBS algorithm can found Carter & Kohn (1994) and Frühwirth-
Schnatter (1994), where the Kalman filter is applied to sample from the joint smoothing
distribution within an MCMC method to perform the Bayesian estimation of certain state-
space models. The Kalman filter is used to determine the first two moments of the filtering
densities. Then, the FFBS algorithm uses these moments to recursively sample the joint
smoothing distribution.

We now introduce the sampling recursion and demonstrate how it can be carried out
in the context of the DNF. All distributions in the FFBS algorithm are conditional on a
particular set of parameters, Θ, which we omit for the remainder of this section. To obtain
the FFBS recursion for the DNF, we start by conditioning p(x1:N | y1:N) on the last state,
xN :

p(x1:N | y1:N) = p(x1:N−1 | xN , y1:N) p(xN | y1:N)

= p(x1:N−1 | xN , y1:N−1) p(xN | y1:N).

To initiate the FFBS algorithm, we sample from the time-N filtering distribution, p(xN |
y1:N), which is given by the DNF. Then, conditioning the first term, p(x1:N−1 | xN , y1:N−1),
on xN−1, we have:

p(x1:N−1 | xN , y1:N−1) = p(x1:N−2 | xN−1:N ,y1:N−2) p(xN−1 | xN ,y1:N−1)

= p(x1:N−2 | xN−1,y1:N−2) p(xN−1 | xN ,y1:N−1).

30

If we continue conditioning the first term on xN−2, xN−3, . . . , x1, we obtain:

p(x1:N | y1:N) = p(xN | y1:N)
N−1∏
j=1

p(xj | xj+1, y1:j). (4.8)

With Bayes’ theorem, each p(xj | xj+1, y1:j) term in the product of Equation (4.8) can be
written as:

p(xj | xj+1, y1:j) = p(xj+1 | xj , y1:j) p(xj | y1:j)
p(xj+1 | y1:j)

= p(xj+1 | xj) p(xj | y1:j)
p(xj+1 | y1:j)

∝ p(xj+1 | xj) p(xj | y1:j),

where the filtering distribution p(xj | y1:j) is computed from the DNF and the transition
density p(xj+1 | xj) is specified by the state-space model. The transition density should
be computed for all possible pairs of M latent variable nodes that are used in the DNF.
Thus, the sampling is of O(M2), which is relatively inexpensive when compared to the
computational cost of filtering. For the SVCJ model, the transition density can be evaluated
using Equations (3.15) and (3.16).

Algorithm 6 Forward Filtering Backward Sampling for the DNF
1: Run the DNF from Algorithm 2 to obtain the filtering distributions for all j = 1, . . . , N .
2: Sample a node xN in X from a multinomial distribution by normalizing the filtering

density p(xN | y1:N) obtained from the DNF.
3: Compute the transition densities p(x′ | x) for all x′, x ∈ X
4: for j = N − 1, N − 2, . . . , 1 do
5: Compute pj ≡ p(xj+1 | xj) p(xj | y1:j) for all xj ∈ X.
6: Sample a node xj in X from a multinomial with probabilities given by normalizing
7: pj .
8: end for

The steps to perform FFBS with the DNF are given in Algorithm 6. We can then
slightly modify the particle marginal Metropolis-Hastings algorithm to perform dMCMC.
Most steps are identical to those in Algorithm 5, but we run the DNF instead of the particle
filter in Step 5 and sample from the joint smoothing distribution with FFBS in Step 9.

Directly using the FFBS in combination with the DNF could result in noticeably discrete
sample paths when using a small number of nodes. For example, the posterior instantaneous
variance sample can only take 50 different values if M = 50. This is less of an issue over
the course of the dMCMC since we almost surely use a different set of M nodes at for
each parameter combination. Thus, the posterior instantaneous variance sample can take
different sets of M values at each accepted proposal. For less crude samples, a methodology

31

similar to the continuous sampling scheme in essence could be implemented by interpolating
between the nodes as in Malik & Pitt (2011).

With dMCMC, we get an algorithm similar to the particle marginal Metropolis-Hastings
algorithm, but with deterministic likelihood evaluations. These evaluations have an error
that can be made arbitrarily small and can reach high accuracy at relatively low compu-
tational costs (Bégin & Boudreault, 2020). As the likelihood is a key component in the
particle marginal Metropolis-Hastings, we believe that this can have a significant impact
on the computational costs needed for Bayesian estimation in the context of jump-diffusion
models.

4.4 Simulation Study

In this section, we perform a simulation study to compare the dMCMC to the pMCMC in
the Bayesian estimation of the SVCJ model. We generate 100 paths of 2,520 observations
(i.e., ten-year series) from the SVCJ model with a realistic set of parameter values. These
parameters are given in the first column of Table 4.1. They are based on the SVCJ maximum
likelihood parameter estimates of Bégin & Boudreault (2020) for the S&P 500 index daily
returns from January 1990 to September 2018.

We assume the risk-free rate of return rj to be constant and equal to 1% annually. We
also assume that ρz = 0 and that it is a known constant as this parameter is difficult to
estimate when using exclusively returns data (Johannes et al., 2009). We relax this last
assumption in Section 5.3, where we perform a simulation study with both returns and
option prices. We assume that ᾱ − ᾱQ = 0 throughout the returns-only estimation for
reasons of parameter identifiability.

The pMCMC algorithm uses the bootstrap filter described in Section 3.2.3 with 10,000
particles while the dMCMC uses a DNF withM = 50, S = 20, and R = 1. Both methods use
the adaptive Metropolis-Hastings sampler described in Algorithm 4 to generate parameter
proposals. We update the covariance matrix estimate of these proposals every p = 100
iterations after the first G0 = 500 iterations. Recall that, during these first G0 iterations,
we use a diagonal matrix with initial proposal variances v0 to sample new parameter sets.
The initial parameters in the Markov chain are drawn from a Gaussian distribution with
a mean equal to the true parameters and a standard deviation that is 10% of the true
parameter’s magnitude. The initial standard deviation of the parameter proposals√v0 is the
absolute value of 10% of the initial parameter values. We set the mixture component’s scale
vector vj = v0, for j = 1, . . . , N . We run the adaptive Metropolis-Hastings for G = 10,000
iterations and burn the first B = 2,000 iterations. The pMCMC algorithm requires roughly
30 hours to run, while the dMCMC is 20% faster.

The SVCJ prior distributions are set to ηy ∼ Γ(3, 1), α ∼ N (0, 1), δ ∼ N (0, 1), ρ ∼
U(−1, 1), ω ∼ Γ(5, 1), and ν ∼ Γ(1.25, 0.01), while κ, θ, and σ are uniform over the positive

32

Table 4.1: Posterior parameter mean comparison.
Parameter True Value pMCMC Mean dMCMC Mean

(RMSE) (RMSE)
ηy 3.000 2.823 2.712

(0.780) (0.748)
ρ −0.745 −0.750 −0.742

(0.043) (0.042)
100 θ 3.200 2.852 2.972

(0.603) (0.503)
σ 0.446 0.401 0.399

(0.052) (0.054)
κ 3.689 3.876 3.829

(0.831) (0.640)
ω 5.125 3.914 3.394

(1.361) (1.807)
1000 ν 4.000 6.467 6.202

(3.544) (3.251)
1000 δ 3.000 7.164 7.614

(5.10) (5.54)
1000α −7.000 −3.962 −2.548

(5.151) (6.490)

real line. As it is difficult to distinguish between few large jumps and frequent small jumps,
we choose prior distributions that favour the former as done in Eraker et al. (2003) and
Jacobs & Liu (2018).

The average posterior parameter means and their root-mean-square errors (RMSEs) are
given in the second and third columns of Table 4.1. We can see that the dMCMC algorithm
has a similar performance to the pMCMC algorithm. Specifically, the dMCMC leads to
comparable or lower RMSEs for the parameters that are not associated with jumps; that
is, ηy, ρ, θ, σ, and κ. However, the dMCMC RMSEs are higher for the all jump parameters
besides ν. These parameters are known to be more difficult to estimate as we expect to have
only 51.25 jumps for the whole ten year time series used, on average. Moreover, it is often
difficult to distinguish between fewer large jumps and more frequent smaller jumps as we
mentioned above. The median values and modes for the parameter posterior distributions
are given in Table A.1 and Table A.2 of Appendix A, respectively. These statistics report a
similar general pattern than that obtained with posterior means.

The dMCMC simulations have a proposal acceptance probability of 14.7%, on average,
while the pMCMC average acceptance probability is 14.2%.

Table 4.2 gives the percentage of rejections for the Geweke convergence tests for each
parameter. According to the Geweke tests, the dMCMC converged less often than the pM-
CMC for the jump parameters. For the rest of the parameters, it has similar convergence

33

Table 4.2: Geweke convergence test rejection in percentage.
Parameter pMCMC 95% dMCMC 95%

(99%) (99%)
ηy 14% 8%

(7%) (5%)
ρ 9% 10%

(5%) (5%)
θ 18% 16%

(7%) (6%)
σ 12% 7%

(3%) (3%)
κ 12% 19%

(4%) (9%)
ω 14% 20%

(5%) (10%)
ν 18% 24%

(11%) (8%)
δ 18% 24%

(11%) (17%)
α 13% 15%

(4%) (6%)

percentages with the exceptions of κ and ηy. The results also tell us that more iterations
should be used to ensure that the chains attain the stationary distribution for each pa-
rameter. Finally, the dMCMC performs well in terms of RMSE for parameters with high
convergence rates. This suggests that when the algorithm converges, it reaches a similar
distribution to the pMCMC.

Figures C.1 and C.2 in Appendix C give the posterior mean volatilities for a particular
path along with 95% confidence intervals (CI) around these means for each method. Both
algorithms were run for 10,000 iterations and the first 2,000 were burned. Although param-
eter estimates may differ, the estimated instantaneous variance trajectories display similar
trends. The pMCMC has wigglier CIs which can be explained by the discrete nature of the
sampling of the dMCMC.

4.5 Empirical Application

In this section, we apply the dMCMC algorithm to estimate the parameters of the SVCJ
model using market data. We use returns from the TSX Composite index between Jan-
uary 2005 and February 2021 and returns from the S&P 500 index from January 2000 to
December 2019 (excluding dividends). Both returns series are plotted in Appendix B. The
dMCMC has the same tuning parameter settings and priors as in Section 4.4, and uses

34

G = 50,000 iterations. Additionally, we estimate ρz and following Eraker et al. (2003), we
set the prior for this parameter to ρz ∼ N(0, 4). Table 4.3 provides the posterior parameter
means and standard errors for each series. All parameters have the expected sign for both.
We obtain an acceptance probability of about 10% for the TSX composite index and 15%

Table 4.3: Posterior parameter mean comparison.
Parameter TSX Composite S&P 500

(Standard error) (Standard error)
ηy 0.875 0.797

(0.483) (0.418)
ρ −0.634 −0.813

(0.049) (0.024)
100 θ 4.186 3.862

(0.481) (0.367)
σ 0.282 0.448

(0.024) (0.025)
κ 1.574 3.275

(0.283) (0.483)
ω 0.817 4.290

(0.384) (1.450)
1000 ν 38.640 2.976

(15.268) (1.677)
1000 δ 48.088 3.167

(62.639) (2.344)
1000α −48.289 −9.734

(67.093) (3.599)
ρz −0.021 −1.474

(0.782) (1.138)

for the S&P 500 index’s. For the TSX, the Geweke convergence test rejects both α and ρz
at the 1% level. For the S&P 500, convergence in κ is rejected at the 1% level, while θ and
ρz are rejected at the 5% level. We provide trace plots for these parameter in Appendix D.
The trace plots for κ and θ do not appear to be too problematic as they have relatively
stable means and variances. Moreover, ρz does not converge for both series and this is not
surprising as this parameter is difficult to estimate.

For the TSX Composite series, we find much fewer jumps, but they are significantly
more important than those found with the S&P 500 index. The TSX jump parameter
values resemble those found in Jacobs & Liu (2018) for the S&P 500 index (given in the
first column of Table 5.2). This shows that our prior distributions on ω, ν, δ and α do
not overly constrain these parameters. We find similar diffusive equity risk premiums ηy for
both indices. Moreover, the S&P 500 parameter estimates are aligned with previous studies
using the SVCJ model (summary tables can be found in Jacobs & Liu, 2018).

35

Chapter 5

Joint Bayesian Estimation with
Returns and Options Data

Including options as observables in econometric models has been a long-standing goal of re-
searchers in the field (Renault, 1997). These contracts contain additional information about
the underlying asset dynamics and its latent factors that is not found in return time series.
Eraker (2004) argues that there are three main benefits of including options: (1) we can
estimate both risk neutral and physical parameters, (2) we should obtain more accurate es-
timates for certain parameters, and (3) the latent volatility factor estimates should be more
accurate. The estimation of stochastic volatility financial models using both returns and
option prices has been approached under the frequentist paradigm by Hurn et al. (2015),
among others. These approaches rely on particle filters which are computationally cumber-
some for joint estimation. Jacobs & Liu (2018) offer an estimation methodology based on
joint likelihoods via approximations of the option implied volatility. Their algorithm saves
much of the costs associated with joint estimation when using the particle filter and makes
joint Bayesian estimation feasible.

In this chapter, we demonstrate that the DNF can be used to efficiently include op-
tions into the Bayesian inference of jump-diffusion models without introducing additional
sources of error. The new method allows for flexibility when specifying the error distribution
associated with the option prices.

5.1 Option Pricing

Duffie et al. (2000) provide a closed-form option pricing formula for the risk-neutralized
SVCJ model of Equations (2.3) and (2.4). Particularly, they present the moment generating
function (mgf) for log(YTmat) conditional on the latent variables and the model parameters,
where Tmat is the time at which the option expires in days. Letting τ = (Tmat − j)h be
the time to maturity in years and ΘQ be the set of model parameters under the risk neural

36

measure, we have the following mgf for log(YTmat):

φ(u, Yj , xj , rj , τ, ΘQ) = exp {A(u, τ) + u log(Yj) + B(u, τ)xj} ,

where the coefficients

B(u, τ) = − a (1− e−γ τ)
2 γ − (γ + b) (1− e−γ τ) ,

A(u, τ) = α0 − ω τ (1 + u ᾱ) + ω C(u,B(u, τ)) with

α0 = (rj − δj)u τ − κ̃ θ̃
(
τ
γ + b

σ2 + 2
σ2 log

(
1− (γ + b)

2 γ (1− e−γ τ)
))

, and

C(u,B(u, τ)) = eα̃ u+δ2 u2
2 d

rely on the following constants: a = u (1−u), b = σ ρu− κ̃ , c = 1− ρz ν̃ u, γ =
√
b2 + a σ2,

and

d = τ (γ − b)
(γ − b) c+ ν̃ a

− 2 ν̃ a
(γ c)2 − (b c− ν̃ a)2 log

(
1− (γ + b) c− ν̃ a

(2 γ c) (1− e−γ τ)
)
.

The moneyness of an option with strike price K, which is defined as Mj ≡ K
Yj
, is an

important quantity for option pricing. It is possible to write the pricing formula as a product
of a function of moneyness and the spot price, Yj . Indeed, the mgf of the log terminal price
can be written as

φ(u, Yj , xj , τ, ΘQ) = eK φ(u,M−1
j , xj , τ, ΘQ). (5.1)

Then, we can rewrite the formula to price a European call option from the Appendix of
Bégin & Gauthier (2020) as

Cj(Yj , xj , K, τ, ΘQ) = e−rjτEQ [max (Yj −K) , 0]

= Yj
(
e−δj τP1 −Mje

−rj τP2
)
,

where

P1 = 1
2 + Mj

π

∫ ∞
0

e−rj τ Re
(
φ(ui+ 1,M−1

j , xj , rj , τ, ΘQ)
ui

)
du, and

P2 = 1
2 + 1

π

∫ ∞
0

Re
(
φ(ui,M−1

j , xj , rj , τ, ΘQ)
ui

)
du.

This formulation is practical as it can greatly reduce the computational burden of the
joint estimation. If we select options that have the same maturity and moneyness for all

37

j = 1, . . . , N , we need only compute the quantity e−rj τ P1 −Mje
−τP 2 for the different

instantaneous variance values used to obtain likelihood evaluations.
With the DNF, the M instantaneous variances nodes are also fixed across time. Then,

we need to evaluate the normalized option price only MNo times, where No is the number
of options we include at each time step. Finally, multiplying this normalized option price by
the appropriate price Yj gives the theoretical option prices Cj(Yj , xj , K, τ, ΘQ) necessary
for joint likelihood evaluations.

The same approach with the particle filter would require computing Cj(Yj , xj , K, τ, ΘQ)
for each of the m particles at every time j as the instantaneous variance used to evaluate
the option price is almost surely distinct from that of other particles (past and present).
This requires the pricing of mTNo options where both T and m are usually much larger
than M .

Although computing the price of a single option does not take much computing time,
the difference between the approaches can be significant. For example, to incorporate a
single option in an iteration of the pMCMC simulation study performed in Section 4.4 with
10,000 particles and ten-years series requires 25,200,000 option price evaluations while the
dMCMC method requires only 50.

5.2 Joint Likelihood Contributions

For the joint estimation of jump-diffusion models, it is necessary to specify a likelihood
function that includes the returns yj and the options ck,j , where j = 1, 2, . . . , N and k =
1, 2, . . . , No. We use a weighted likelihood approach. The weights given to the observations
can have a large influence on the likelihood as the option prices will typically outnumber
the single return that we observe each day (Jacobs & Liu, 2018). Our time-j, weighted
likelihood contribution therefore takes the following form:

p(yj , c1:No,j | y1:j−1) = p(yj | y1:j−1)
(
No∏
k=1

p(ck,j | ΘQ)
) 1

No

.

In the latter, the option prices and the returns are independent and given equal weight in
the likelihood. It is similar to the likelihood used in Jacobs & Liu (2018), who warn that it
“is not entirely guided by theory and therefore, to some extent, ad-hoc.”

There are different potential distributions p(c | ΘQ) that can be used for the option
pricing errors. Hurn et al. (2015) investigate four different error specifications (ES). Their
second specification (ES2) is used in Jacobs & Liu (2018). Under this specification, the
observed option prices are related to the theoretical ones using an additive Gaussian noise
with constant variance σ2

c :
c ∼ N (C, σ2

c).

38

ES2 has some drawbacks: it gives positive probability to negative options prices, and the size
of the error is independent of the theoretical price. Both drawbacks make the specification
less realistic when compared to other error distributions. Hurn et al.’s third specification
(ES3), on the other hand, avoids these problems by assuming that

log
(
c

C

)
∼ N (0, σ2

c).

ES3 suffers from the fact that the mean of the observed option distribution is not the
theoretical option price. Hurn et al. (2015) remedy this in their fourth specification (ES4),
but note that this last specification did not significantly affect parameter estimates and
comes at an increased computational cost. For these reasons, we use ES3 in our simulation
study and empirical applications.

5.3 Simulation Study

We now perform a simulation study similar to that of Section 4.4 where we estimate SVCJ
model parameters from option prices as well as returns. The observations for our 100 paths
are drawn from the SVCJ model with parameters given in the first column of Table 5.1. We
generate three European call options: one with a moneynesses of 0.9 and a maturity of 30
days, one with a moneyness of 1 and a maturity of 90 days, and one with a moneyness of
1.1 and a maturity of 120 days. We assume that on the option price errors are distributed
according to ES3.

In addition to estimating the risk-neutral parameters, ρz is assumed to be unknown. We
apply the dMCMC algorithm to estimate the parameters of the model with both sources of
information and use the correct error specification (i.e., ES3) to compute the joint likelihood
contributions.

We keep the same prior distributions as those used in the simulation study of Section 4.4
for the common parameters and assume that ρz ∼ N (0, 4), ηJY ∼ N (0, 4), κ̃ = κ− ηx > 0,
σc > 0, and that ν̃ = ν − ηJX > 0. With p = 100, G0 = 500, M = 50, S = 20, R = 1, and
G = 10, 000 iterations, we obtain the results shown in Table 5.1. Table A.3 in Appendix A
gives the results for a similar study with nine options.

With three options and this choice of grid node density, the dMCMC speed is similar
to that of the pMCMC algorithm using 10,000 particles without options. With the options,
the dMCMC obtains lower RMSEs than the pMCMC across the jump parameters despite
having to estimate ρz. The dMCMC gets lower RMSEs for κ and θ, but has higher errors
for ηy, ρ, and σ. We also get estimates for the risk premiums and the option price errors.
The risk premiums associated with the risk-neutral measure are ηx, ηJY , and ηJX . These
are typically difficult to estimate. Indeed, we obtain a large RMSE on ηx. On the other

39

Table 5.1: Parameter estimates with returns and options.
True Value dMCMC

ρ −0.745 −0.819
(0.077)

100 θ 3.200 3.209
(0.390)

σ 0.446 0.384
(0.064)

κ 3.689 3.595
(0.218)

ω 5.125 4.033
(1.265)

1000 ν 4.000 4.617
(1.369)

1000 δ 3.000 3.756
(1.808)

1000α −7.000 −9.109
(3.803)

ρz −1.809 −1.642
(0.523)

ηy 3.000 3.187
(0.906)

100 ηx 5.000 2.788
(8.374)

100 ηJY 3.610 4.035
(0.842)

1000 ηJX 2.000 1.651
(1.296)

100σc 5.000 5.534
(0.539)

hand, ηJY , and ηJX have relatively smaller RMSEs. The dMCMC tends to overestimate the
option price errors.

Figures C.3 and C.4 in Appendix C compare the posterior means with 95% confidence
intervals for 10,000 iterations of dMCMC when we include three options. We can see that the
dMCMC has some difficulty and that the posterior volatility estimates do not yet capture
the behaviour of the true volatility. When we add options, however, the posterior mean is
close to the true volatility and the confidence intervals are tighter.

40

5.4 Empirical Application

We apply the joint estimation techniques described in Section 5.1 to the S&P 500 index
returns series (excluding dividends) from 2000 to 2019 (this series is also used in Section 4.5).
We include nine European call options per day. These nine options have all combinations
with a moneyness of 0.95, 1, or 1.05, and maturities of 30 days, 90 days, or 150 days. Using
the same priors, error specification, and adaptive Metropolis-Hastings parameter values as
in Section 5.3, we obtain the SVCJ model parameter estimates given in the third column
of Table 5.2 with G = 50,000 dMCMC iterations. After the 10,000 burn-in period, we have
an acceptance probability of about 7%. Three parameters are rejected at the 5% level by
the Geweke convergence test: θ, ηy, and ηJX . Trace plots for these parameters are given in
Appendix E.

In the second column of Table 5.2, we give the parameter estimates from Jacobs &
Liu (2018). with the other parameters. Although they also performed joint estimation of
the S&P 500 index with returns and options data, there are a number of differences in the
methodology and data used. They use 30 options per day and data from 1996 to 2015. They
run a pMCMC algorithm for 2,500 iterations and use 10,000 particles for the SMC. We use
the ES3, while they use the ES2 for the option price distribution. Finally, we estimate σc
along with the other parameters.

Parameters ηy, ρ, ω, α, and ρz remain similar to our returns-only estimates in the second
column of Table 4.3. When including options, θ σ, κ, and δ decrease. Jacobs & Liu (2018)
get similar decreases for κ, θ, and σ, but not for δ. Interestingly, we get a very similar
κ to the option-only estimates from their work (i.e., they obtained 0.6183). Like them,
we find positive and statistically significant return jump risk premium ηJY . We also both
find significant negative ρz parameters, although our value is closer to the one in Bégin &
Boudreault (2020). Moreover, we find a positive, but not statistically significant, diffusive
variance risk premium parameter ηx. Jacobs & Liu (2018) obtain statistically significant
results using models without variance jumps, but mention that, when they include variance
jumps, this risk premium is harder to identify and is sometimes negative. Our estimate of
σc resembles those found by Hurn et al. (2015) when performing joint estimation using S&P
500 index returns and options prices from 1990 to 2011.

41

Table 5.2: Parameter estimates with returns and options.
Parameter JL2018 dMCMC Mean

(Standard error) (Standard error)
ρ −0.924 −0.845

(0.017) (0.012)
100 θ 2.410 3.073

(0.080) (0.304)
σ 0.345 0.217

(0.007) (0.012)
κ 1.125 0.787

(0.049) (0.107)
ω 0.601 2.246

(0.036) (0.521)
1000 ν 60.800 12.285

(1.300) (3.265)
1000 δ 42.600 13.602

(0.600) (4.669)
1000α −10.400 −0.198

(0.500) (4.197)
ρz −0.503 −2.265

(0.008) (0.486)
ηy 3.040 0.784

(0.349) (0.413)
100 ηx 4.980 0.531

(3.550) (10.207)
100 ηJY 3.610 −2.345

(0.030) (0.497)
1000 ηJX 1.800 −3.548

(1.500) (2.453)
100σc 10.784

(0.487)

42

Chapter 6

Conclusion and Future Work

The jump-diffusion framework captures key features of market dynamics through its stochas-
tic volatility, instantaneous variance jumps, and return jumps. Although essential for gen-
erating certain stylized facts about the market, these components complicate parameter
estimation. Specifically, Bayesian estimation which relies on Monte Carlo methods to ob-
tain posterior parameter distributions becomes a difficult task in the presence of numerous
latent factors.

One approach to Bayesian estimation of general state-space models presented in Andrieu
et al. (2010) is to draw latent variable proposals from a particle filter within an MCMC
method. In this project, we show that the discrete nonlinear filter of Kitagawa (1987) can
be combined in a similar fashion to create a dMCMC algorithm that can estimate posterior
parameter distributions for complex models. For this, we need two things from the discrete
filter: likelihood evaluations and samples from the smoothed volatility distribution. For the
former, Bégin & Boudreault (2020) already applied the DNF to jump-diffusion models and
found that it was fast and accurate compared to the particle filter. For the latter, we apply a
filter-forwarding-backward-sampling algorithm to the DNF as done by Frühwirth-Schnatter
(1994) and Carter & Kohn (1994) for the Kalman fitler. As this sampling is fast, the benefits
of using the DNF over the particle filter for likelihood evaluations carry over to Bayesian
estimation with the dMCMC algorithm.

Moreover, we show that the DNF can efficiently evaluate the joint likelihood of a se-
ries using returns and options. It has been argued that there is information about market
dynamics contained in returns and in options, thus including both is advantageous in the
context of parameter estimation (Renault, 1997; Hurn et al., 2015; Jacobs & Liu, 2018).
And, this allows for the simultaneous estimation of the physical and risk-neutral model
dynamics. We show that the dMCMC can quickly perform joint estimation and allows for
any option price error specification.

For future work, we believe that the dMCMC algorithm can aid in performing joint
estimation with alternative volatility dynamics that do not necessarily yield closed-form
option pricing formulas (for example, see Christoffersen et al., 2010). Finally, the dMCMC

43

and pMCMC algorithms could be extended to account for model uncertainty via Bayesian
model averaging by including proposals along the model space with the reversible jump
approach of Green (1995).

44

References

An, S., & Schorfheide, F. (2007). Bayesian analysis of DSGE models. Econometric Reviews,
26 (2-4), 113–172.

Andrieu, C., Doucet, A., & Holenstein, R. (2010). Particle Markov chain Monte Carlo
methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
72 (3), 269–342.

Bakshi, G., Cao, C., & Chen, Z. (1997). Empirical performance of alternative option pricing
models. Journal of Finance, 52 (5), 2003–2049.

Bartolucci, F., & De Luca, G. (2001). Maximum likelihood estimation of a latent variable
time-series model. Applied Stochastic Models in Business and Industry, 17 (1), 5–17.

Bartolucci, F., & De Luca, G. (2003). Likelihood-based inference for asymmetric stochastic
volatility models. Computational Statistics & Data Analysis, 42 (3), 445–449.

Bates, D. S. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in
Deutsche Mark options. Review of Financial Studies, 9 (1), 69–107.

Bates, D. S. (2000). Post-’87 crash fears in the s&p 500 futures option market. Journal of
Econometrics, 94 (1-2), 181–238.

Bégin, J.-F., & Boudreault, M. (2020). Likelihood evaluation of jump-diffusion models
using deterministic nonlinear filters. Journal of Computational and Graphical Statistics,
1–15.

Bégin, J.-F., & Gauthier, G. (2020). Price bias and common practice in option pricing.
Canadian Journal of Statistics, 48 (1), 8–35.

Black, F., & Scholes, M. (1973). The valuation of options and corporate liabilities. Journal
of Political Economy, 81 (3), 637–654.

Brine, K. R., & Poovey, M. (2017). Finance in America: An unfinished story. University
of Chicago Press.

Carter, C. K., & Kohn, R. (1994). On Gibbs sampling for state space models. Biometrika,
81 (3), 541–553.

Chib, S., & Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. Amer-
ican Statistician, 49 (4), 327–335.

45

Christoffersen, P., Jacobs, K., & Mimouni, K. (2010). Volatility dynamics for the S&P 500:
Evidence from realized volatility, daily returns, and option prices. Review of Financial
Studies, 23 (8), 3141–3189.

Cowles, M. K., & Carlin, B. P. (1996). Markov chain Monte Carlo convergence diagnostics:
a comparative review. Journal of the American Statistical Association, 91 (434), 883–904.

Cowles, M. K., Roberts, G. O., & Rosenthal, J. S. (1999). Possible biases induced by
MCMC convergence diagnostics. Journal of Statistical Computation and Simulation,
64 (1), 87–104.

Cox, J. C., Ingersoll Jr, J. E., & Ross, S. A. (1985). A theory of the term structure of
interest rates. Econometrica, 53 (2), 385–408.

Creal, D. (2012). A survey of sequential Monte Carlo methods for economics and finance.
Econometric Reviews, 31 (3), 245–296.

Danielsson, J. (1994). Stochastic volatility in asset prices estimation with simulated maxi-
mum likelihood. Journal of Econometrics, 64 (1-2), 375–400.

Danielsson, J., & Richard, J.-F. (1993). Accelerated Gaussian importance sampler with
application to dynamic latent variable models. Journal of Applied Econometrics, 8 (S1),
153–173.

Dobrow, R. P. (2016). Introduction to stochastic processes with R. John Wiley & Sons.

Doucet, A., Briers, M., & Sénécal, S. (2006). Efficient block sampling strategies for sequen-
tial Monte Carlo methods. Journal of Computational and Graphical Statistics, 15 (3),
693–711.

Duffie, D., Pan, J., & Singleton, K. (2000). Transform analysis and asset pricing for affine
jump-diffusions. Econometrica, 68 (6), 1343–1376.

Eraker, B. (2001). MCMC analysis of diffusion models with application to finance. Journal
of Business & Economic Statistics, 19 (2), 177–191.

Eraker, B. (2004). Do stock prices and volatility jump? Reconciling evidence from spot and
option prices. Journal of Finance, 59 (3), 1367–1403.

Eraker, B., Johannes, M., & Polson, N. (2003). The impact of jumps in volatility and
returns. Journal of Finance, 58 (3), 1269–1300.

Fernández-Villaverde, J., & Rubio-Ramírez, J. F. (2007). Estimating macroeconomic mod-
els: A likelihood approach. Review of Economic Studies, 74 (4), 1059–1087.

Fridman, M., & Harris, L. (1998). A maximum likelihood approach for non-Gaussian
stochastic volatility models. Journal of Business & Economic Statistics, 16 (3), 284–291.

Frühwirth-Schnatter, S. (1994). Data augmentation and dynamic linear models. Journal
of Time Series Analysis, 15 (2), 183–202.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequences. Statistical Science, 7 (4), 457–472.

46

Geweke, J. (1992). Evaluating the accurating of sampling-based approaches to the calcula-
tion of posterior moments. Bayesian Statistics, 4 , 169–193.

Gordon, N. J., Salmond, D. J., & Smith, A. F. (1993). Novel approach to nonlinear/non-
Gaussian Bayesian state estimation. In IEEE proceedings F: Radar and Signal Processing)
(Vol. 140, pp. 107–113).

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination. Biometrika, 82 (4), 711–732.

Harvey, A., Ruiz, E., & Shephard, N. (1994). Multivariate stochastic variance models.
Review of Economic Studies, 61 (2), 247–264.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 21 , 97–109.

Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with
applications to bond and currency options. Review of Financial Studies, 6 (2), 327–343.

Hurn, A. S., Lindsay, K. A., & McClelland, A. J. (2015). Estimating the parameters of
stochastic volatility models using option price data. Journal of Business & Economic
Statistics, 33 (4), 579–594.

Jacobs, K., & Liu, Y. (2018). Estimation and filtering with big option data. Working
Paper .

Jacquier, E., Polson, N. G., & Rossi, P. E. (1994). Bayesian analysis of stochastic volatility
models. Journal of Business & Economic Statistics, 12 (4).

Johannes, M., & Polson, N. (2010). MCMC methods for continuous-time financial econo-
metrics. In Handbook of financial econometrics: Applications (pp. 1–72). Elsevier.

Johannes, M., Polson, N., & Stroud, J. (2009). Optimal filtering of jump diffusions: Ex-
tracting latent states from asset prices. Review of Financial Studies, 22 (7), 2759–2799.

Julier, S. J., & Uhlmann, J. K. (1997). New extension of the Kalman filter to nonlinear
systems. In I. Kadar (Ed.), Signal Processing, Sensor Fusion, and Target Recognition VI
(Vol. 3068, pp. 182 – 193). SPIE.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal
of Basic Engineering, 82 (1), 35–45.

Kim, S., Shephard, N., & Chib, S. (1998). Stochastic volatility: Likelihood inference and
comparison with arch models. Review of Economic Studies, 65 (3), 361–393.

Kitagawa, G. (1987). Non-Gaussian state-space modeling of nonstationary time series.
Journal of the American Statistical Association, 82 (400), 1032–1041.

Langrock, R., MacDonald, I. L., & Zucchini, W. (2012). Some nonstandard stochastic
volatility models and their estimation using structured hidden markov models. Journal
of Empirical Finance, 19 (1), 147–161.

47

Lord, R., Koekkoek, R., & Dijk, D. V. (2010). A comparison of biased simulation schemes
for stochastic volatility models. Quantitative Finance, 10 (2), 177–194.

Malik, S., & Pitt, M. K. (2011). Particle filters for continuous likelihood evaluation and
maximisation. Journal of Econometrics, 165 (2), 190–209.

Melino, A., & Turnbull, S. M. (1990). Pricing foreign currency options with stochastic
volatility. Journal of Econometrics, 45 (1-2), 239–265.

Mengersen, K. L., Tweedie, R. L., et al. (1996). Rates of convergence of the Hastings and
Metropolis algorithms. Annals of Statistics, 24 (1), 101–121.

Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics and
Management Science, 141–183.

Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous.
Journal of Financial Economics, 3 (1-2), 125–144.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).
Equation of state calculations by fast computing machines. Journal of Chemical Physics,
21 (6), 1087–1092.

Pan, J. (2002). The jump-risk premia implicit in options: Evidence from an integrated
time-series study. Journal of Financial Economics, 63 (1), 3–50.

Pitt, M. K., Malik, S., & Doucet, A. (2014). Simulated likelihood inference for stochastic
volatility models using continuous particle filtering. Annals of the Institute of Statistical
Mathematics, 66 (3), 527–552.

Pitt, M. K., & Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters.
Journal of the American Statistical Association, 94 (446), 590–599.

Pole, A., & West, M. (1990). Efficient Bayesian learning in non-linear dynamic models.
Journal of Forecasting, 9 (2), 119–136.

Rémillard, B. (2013). Statistical methods for financial engineering. CRC Press.

Renault, E. (1997). Econometric models of option pricing errors. Econometric Society
Monographs, 28 , 223–278.

Robert, C., & Casella, G. (2013). Monte Carlo statistical methods. Springer Science &
Business Media.

Roberts, G. O., & Rosenthal, J. S. (2009). Examples of adaptive MCMC. Journal of
Computational and Graphical Statistics, 18 (2), 349–367.

Ruiz, E. (1994). Quasi-maximum likelihood estimation of stochastic volatility models.
Journal of Econometrics, 63 (1), 289–306.

Scott, L. O. (1987). Option pricing when the variance changes randomly: Theory, estimation,
and an application. Journal of Financial and Quantitative analysis, 419–438.

Shephard, N. (1993). Fitting nonlinear time-series models with applications to stochastic
variance models. Journal of Applied Econometrics, 8 (S1), S135–S152.

48

Smith, A. F., & Roberts, G. O. (1993). Bayesian computation via the Gibbs sampler and
related Markov chain Monte Carlo methods. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 55 (1), 3–23.

Tanizaki, H., & Mariano, R. S. (1994). Prediction, filtering and smoothing in non-linear
and non-normal cases using Monte Carlo integration. Journal of Applied Econometrics,
9 (2), 163–179.

Taylor, S. J. (1986). Modelling financial time series. World Scientific.

Watanabe, T. (1999). A non-linear filtering approach to stochastic volatility models with
an application to daily stock returns. Journal of Applied Econometrics, 14 (2), 101–121.

49

Appendix A

Simulation Study Posterior
Parameter Statistics

In this section, we give additional statistics from the simulation performed in Sections 4.4
and 5.3.

Table A.1: Parameter median comparison.
Parameter True Value pMCMC Median dMCMC Median

ηy 3.000 2.588 2.503
ρ -0.745 -0.747 -0.743

100 θ 3.200 2.778 2.951
σ 0.446 0.401 0.397
κ 3.689 3.679 3.782
ω 5.125 3.568 3.107

1000 ν 4.000 4.920 4.835
1000 δ 3.000 5.600 5.978
1000α -7.000 -4.761 -2.775

Table A.2: Parameter modes comparison.
Parameter True Value pMCMC Mode dMCMC Mode

ηy 3.000 3.074 2.790
ρ -0.745 -0.761 -0.753

100 θ 3.200 2.754 3.075
σ 0.446 0.396 0.400
κ 3.689 3.769 3.641
ω 5.125 3.874 2.837

1000 ν 4.000 5.880 4.760
1000 δ 3.000 5.007 5.253
1000α -7.000 -5.198 -4.387

50

Table A.3 gives the results for a simulation study similar to the one in Section 5.3, but with
nine options. The nine options have all combinations between a moneyness of 0.95, 1 and
1.05, with maturities of 30 days, 90 days, and 150 days. With these nine options, we still

Table A.3: Parameter estimates with returns and nine options.
Parameter True Value dMCMC Median

(RMSE)
ρ −0.745 −0.809

(0.069)
100 θ 3.200 2.915

(0.403)
σ 0.446 0.382

(0.068)
κ 3.689 3.427

(0.399)
ω 5.125 5.364

(0.693)
1000 ν 4.000 4.096

(1.363)
1000 δ 3.000 3.992

(2.233)
1000α −7.000 −6.936

(4.338)
ρz −1.809 −1.931

(0.631)
ηy 3.000 2.835

(0.934)
100 ηx 5.000 −4.570

(21.944)
100 ηJY 3.610 3.558

(0.466)
1000 ηJX 2.000 0.645

(1.921)
100σc 5.000 7.886

(2.879)

find better RMSEs for the jump parameters than with returns only and similar results for
the other parameters. With more options, we obtain better estimates of ω, α, ρz, and ηJY

than with the three options of Section 5.3. However, the estimates of ηx and σc have higher
RMSEs. There is a large standard error of 0.169 associated with ηx.

51

Appendix B

Empirical Study Data

This section displays plots of the TSX Composite returns time series used in Section 4.5
and the S&P 500 returns series used in Sections 4.5 and 5.4.

Figure B.1: Daily returns (excluding dividends) from the TSX Composite index from Jan-
uary 2005 to February 10th 2021.

52

Figure B.2: Daily returns (excluding dividends) from the S&P 500 index from January 2000
to December 2019.

53

Appendix C

Posterior Volatility Comparisons

This section provides plots of the posterior mean instantaneous variance with 95% confi-
dence intervals using different algorithms (pMCMC and dMCMC) and different simulated
observables (returns and options).

Figure C.1: Posterior mean volatility (dotted red) with 95% confidence interval (red) and
true variance (black) for 10,000 pMCMC iterations.

54

Figure C.2: Posterior mean volatility (dotted red) with 95% confidence interval (red) and
true variance (black) for 10,000 dMCMC iterations.

Figure C.3: Posterior mean volatility (dotted red) with 95% confidence interval (red) and
true variance (black) for 10,000 dMCMC iterations with returns.

55

Figure C.4: Posterior mean volatility (dotted red) with 95% confidence interval (red) and
true variance (black) for 10,000 dMCMC iterations with returns and three options.

56

Appendix D

Returns-Only Estimation Trace
Plots

In this appendix, we provide the trace plots for parameters from the empirical application
of the dMCMC in Section 4.5. Particularly, these are the parameter for which the Geweke
test rejects convergence at the 5% level for either the TSX Composite or the S&P 500 series.

Figure D.1: Trace plot for α with 50,000 dMCMC iterations for the TSX Composite return
series.

57

Figure D.2: Trace plot for ρz with 50,000 dMCMC iterations for the TSX Composite return
series.

Figure D.3: Trace plot for κ with 50,000 dMCMC iterations for the S&P 500 return series.

Figure D.4: Trace plot for θ with 50,000 dMCMC iterations for the S&P 500 return series.

58

Figure D.5: Trace plot for ρz with 50,000 dMCMC iterations for the S&P 500 return series.

59

Appendix E

Joint Estimation Trace plots

In this appendix, we provide the trace plots for parameters from the empirical application
of the dMCMC for joint estimation in Section 5.4. Particularly, these are the parameter for
which the Geweke test rejects convergence at the 5% level.

Figure E.1: Trace plot for θ with 50,000 dMCMC iterations for the S&P 500 return and
options series.

60

Figure E.2: Trace plot for ηx with 50,000 dMCMC iterations for the S&P 500 return and
options series.

Figure E.3: Trace plot for ηJX with 50,000 dMCMC iterations for the S&P 500 return and
options series.

61

	Declaration of Committee
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Modelling Framework
	Continuous-Time SVCJ Model
	Discrete-Time SVCJ Model

	Volatility Filtering
	Background
	State-Space Models
	The Filtering Problem

	The Particle Filter
	Sequential Importance Sampling
	Sequential Importance Resampling
	The Bootstrap Filter

	The Discrete Nonlinear Filter
	Framework
	Implementation for the SVCJ Model
	Numerical Implementation

	Bayesian Estimation
	Background
	Markov Chains
	Markov Chain Monte Carlo

	Particle Markov Chain Monte Carlo
	DNF-Markov Chain Monte Carlo
	Forward Filtering Backward Sampling for the DNF

	Simulation Study
	Empirical Application

	Joint Bayesian Estimation with Returns and Options Data
	Option Pricing
	Joint Likelihood Contributions
	Simulation Study
	Empirical Application

	Conclusion and Future Work
	Bibliography
	Appendix Simulation Study Posterior Parameter Statistics
	Appendix Empirical Study Data
	Appendix Posterior Volatility Comparisons
	Appendix Returns-Only Estimation Trace Plots
	Appendix Joint Estimation Trace plots

