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Abstract

It is difficult to find closed-form optimal decisions in the context of pension plans. Therefore,
we often need to rely on numerical algorithms to find approximate optimal decisions. In this
report, we present two numerical algorithms that can be applied to solve optimal pension
funding problems: the value function approximation and the grid value approximation. The
value function approximation method applies to models with infinite time horizons and ap-
proximates the parameters of the value function by minimizing the difference between the
true and approximate evaluations of the Hamilton–Jacobi–Bellman (HJB) equation. The
grid value approximation method is used for models with finite time horizons. It works iter-
atively with backward and forward stages and approximates the optimal decisions directly
without using the HJB equation. Numerical results are presented to compare approximate
and true solutions for optimal contributions and share in risky assets for classic problems
in the pension literature.

Keywords: Numerical Algorithm; Approximation; Optimal Pension Funding; Dynamic
Programming.
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Chapter 1

Introduction

A pension plan is a retirement plan that requires the employer to set aside part of the
paid salary and put it into some funds to cover the employee’s future benefits after retire-
ment. Most occupational pension plans in Canada can be separated into two main types:
defined benefit (DB) plans and defined contribution (DC) plans. In defined benefit plans,
the employee’s retirement benefit is calculated by a specific pre-determined formula that
is usually based on the year of service and annual salaries. Upon retirement, this amount
of benefit is guaranteed to the employee, and the sponsor bears the risk if the money in
the pool of funds is insufficient. Therefore, the sponsor needs to optimize their decisions to
make sure the risk is minimized. For DC plans, on the other hand, this risk is transferred
to the employee. After the contributions are made to the fund, its performance decides the
amount the employee receives after retirement. As a consequence, the member is the one
optimizing the decisions in the DC context to obtain the best possible risk-reward trade-off.

The literature on DC and DC-type plans has been active for a long time. Merton (1969)
first discusses DC-type problems in his work which optimizes individual utility. The ideas
of DC-type plans these days can be seen as extensions of Merton (1969). Because the
retirement benefit depends on the performance of the assets, most of the studies focus
on investigating the optimal asset allocation that maximizes employee’s expected terminal
utility (e.g., Battocchio and Menoncin, 2004; Cairns et al., 2006; Gao, 2008; Han and Hung,
2012). Some other studies also consider other aspects of the DC plans. Vigna and Haberman
(2001) study optimal investment strategies that minimize the discounted future cost and also
consider the investment risk and annuitisation risk. Yu et al. (2012) investigate a portfolio
selection that matches the target liability so that it reduces the downside risk.

The objectives for DB-type plans are different than those of DC plans. Because the
benefit for the DB plan is fixed, DB plans aim at securing the promised benefits instead of
maximizing the employee’s utility. For any DB plans, the sponsor has two targets to achieve
this. First, the sponsor needs to keep the pension fund stable. Therefore, it is preferred if
each contribution to the pension fund is close to the benefits that will be accrued during the
period before the next contribution. The risk associated to this target is called contribution
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risk. Second, the sponsor wants the pension fund to meet its liabilities. This target leads to
solvency risk. Haberman and Sung (1994), Josa-Fombellida and Rincón-Zapatero (2001),
Josa-Fombellida and Rincón-Zapatero (2004), and Ngwira and Gerrard (2007) combine
these two risks using a quadratic criterion and minimize them.

Most of the studies in both DC and DB contexts find optimal strategies through dynamic
programming. To use dynamic programming, a well-educated guess of the value function
needs to be made first. Then, based on this functional form, the optimal decisions can
be solved using the Hamilton-Jacobi-Bellman (HJB) equation. This may take time if the
HJB equation is complicated or if the value function is not mathematically convenient. To
avoid the possible complicated process required to solve HJB equations, several numerical
algorithms can approximate the optimal decisions.

The main objective of this report is to find optimal strategies of such retirement-related
optimization problems via numerical algorithms. Taylor and Uhlig (1990) summarize sev-
eral different numerical algorithms that can be used to solve nonlinear stochastic models,
such as the value-function iteration (Christiano, 1990), the linear-quadratic approximation
(Christiano, 1990), the parameterizing expectation (Den Haan and Marcet, 1990), and the
least squares projection (Labadie, 1990).

This is not the first attempt to use numerical method to solve pension-related problems.
Das and Sundaram (2002) apply a numerical algorithm that approximates the value function
to solve DC-type problems. Changa et al. (2005) use Markov chain approximations to solve
optimal DB-type pension funding problems. Cui et al. (2009) use a grid value approximation
method to solve for the optimal individual consumption and portfolio choice problems, which
are also DC-type problems.

Among these methods, the value function approximation and the grid value approxima-
tion methods are promising approaches that can be used to solve optimal decisions for both
DC and DB-type pension funding problems. Therefore, we will examine the performances
of these two methods in this report.

The value function approximation method applies to models with infinite time horizons.
For this method, the first few steps are similar to those of solving dynamic programming
problems in closed form. We first choose a functional form that approximates the value
function and then derive the approximate HJB equation. Then, instead of solving this HJB
equation explicitly, we obtain the value function parameters by finding the best parameter
set that minimizes the differences between the approximate and true HJB equations. We
then can use the approximate parameters to calculate the optimal controls of the problem.

While the value function approximation method applies to problems with infinite time
horizons, the grid value approximation method can be used with finite time horizons. This
method does not require a derivation of the HJB equation; we only need the objective
function to perform this approximation. We first create a set of values of the post-control
state variables, referred to as grid values. This set of values should cover all possible values
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of the state variables over time. This method then works iteratively and has two stages:
the backward stage and the forward stage. In the backward stage, the method first finds
the optimal controls for each grid value, as well as the values of corresponding pre-decision
state variables at each time point. Then, given a specific path of the state variables, the
forward stage finds the corresponding optimal controls.

The main results of this report are as follows. For problems with infinite time hori-
zons, the value function approximation method provides approximate results that are very
close to true ones. From the results of the robustness tests, the performance of the value
function approximation method is very stable. For problems with finite time horizons, the
approximations from the grid value approximation method get better as we consider times
further into the future, and the overall performance is good. By examining the results of
the robustness checks, we find that the performance of this method relies on the range of
grid values we chose. That is, all the possible fund values need to be included in the range
of the grid values. A smaller time step used for discretization improves the performance.
Generally speaking, the two algorithms presented in this report are reliable for different pa-
rameter values and can be used to approximate the optimal decisions for retirement-related
optimization problems.

This report is structured as follows. Chapter 2 introduces the three models that are used
in this report. Then, the two numerical algorithms are discussed in Chapter 3. In Chapter
4, we apply the algorithms to the models. Robustness checks are presented in Chapter 5.
Chapter 6 concludes.
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Chapter 2

The Optimal Portfolio Choice
Problems

This chapter introduces the three models used in this report: the Merton model, an optimal
pension funding model with single risky asset, and an optimal pension funding model with
multiple risky assets. The explicit solutions of the optimal decisions for each model are
presented. The Merton model is used as a mean to illustrate the numerical algorithms
described in the next chapter. The two pension funding models (with single risky asset and
multiple risky assets) are our main models and will be used in the remaining chapters.

2.1 Merton’s Model

The first model comes from Merton (1969). In his model, the investor seeks to find the
optimal consumption and investment portfolio that maximize the lifetime utility of con-
sumption. The investment portfolio consists of two assets, a risk-free asset and a risky
asset. The risk-free asset has a non-stochastic constant continuously compounded rate of
return r. The price of the risky asset S(t) follows a geometric Brownian motion (gBm) with
a constant drift µ and a volatility parameter σ:

dS(t) = µS(t)dt+ σS(t)dW (t), (2.1)

where W (t) is the value of a time-t standard Brownian motion. The investor’s investment
income depends on the performance of the two assets. At any time t, the investor can
choose to invest a proportion π(t) of wealth into the risky asset and 1 − π(t) into the
risk-free asset. Meanwhile, the investor also consumes at rate C(t). Thus, the stochastic
differential equation (SDE) of wealth F ≡ F (t) at time t is given by

dF (t) = [F (t)(r + π(t)(µ− r))− C(t)]dt+ σπ(t)F (t)dW (t). (2.2)
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The objective function to be maximized is

E0

[∫ ∞
0

e−βtU(C(t))dt
]
, (2.3)

where E0 is the expectation conditional on the knowledge of F (0), β is the investor’s time
preference factor, U is the utility of consumption, and the time horizon is assumed to be
infinite. In this report, we only consider the constant relative risk aversion (CRRA) utility
function:

U(c) = c1−γ

1− γ , γ > 0 and γ 6= 1,

where γ is the risk aversion coefficient
At the initial time t = 0, the goal is to find the optimal decisions x∗(t) = {C∗(t), π∗(t)}

for all time t. So, the optimized value of the objective function is defined as

V (F, t) = max
{x(s)}∞s=t

Et

[∫ ∞
t

e−βs
C(s)1−γ

1− γ ds

]
, (2.4)

which is so called the value function. This can be written into an approximate recursive
form:

V (F, t) ≈ max
x(t)

Et

[∫ t+h

t
e−βs

C(s)1−γ

1− γ ds+ V (F, t+ h)
]
, (2.5)

where h is a small time interval. If this interval is sufficiently small, we have

∫ t+h

t
e−βs

C(s)1−γ

1− γ ds ≈ e−βtC(t)1−γ

1− γ h,

V (F, t+ h) ≈ V (F, t) + Vth+ VF∆F + 1
2VFFσ

2π(t)2F (t)2h,

and

∆F ≈ [F (t)(r + π(t)(µ− r))− C(t)]h+ σπ(t)F (t)∆W, (2.6)

where Vt is the first derivative of V (F, t) with respect to t, VF is the first derivative with
respect to F , VFF is the second derivative with respect to F, and ∆W = W (t+ h)−W (t).
Equation (2.6) follows Itō’s lemma. Inputting the above equations into Equation (2.5), we
obtain:

V (F, t) = max
x(t)

Et

[
e−βt

C(t)1−γ

1− γ h+ V (F, t) + Vth
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+VF [(F (t)(r + π(t)(µ− r))− C(t))h+ σπ(t)F (t)∆W ]

+1
2VFFσ

2π(t)2F (t)2h

]
. (2.7)

After removing V (F, t) on both sides of Equation (2.7), we have zero on the left hand side
(LHS). Also, since W (t) is the time-t value of a standard Brownian motion, the expected
value Et[∆W (t)] is equal to zero. By dividing the right hand side (RHS) by h and by moving
Vt to the LHS, we obtain

−Vt = max
C,π

{
e−βt

C1−γ

1− γ + VF [F (r + π(µ− r))− C] + 1
2VFFσ

2π2F 2
}
, (2.8)

where C and π are abbreviated versions of C(t) and π(t). This is the stochastic Hamilton-
Jacobi-Bellman (HJB) equation (Kirk, 2004). With an infinite time horizon, the above HJB
equation can be simplified.

We define

J(F, t) = eβtV (F, t)

= max
C,π

Et

[∫ ∞
t

e−β(s−t)C(s)1−γ

1− γ ds

]

= max
C,π

Et

[∫ ∞
0

e−βv
C(v + t)1−γ

1− γ dv

]
, (2.9)

which depends on time only through C. Thus, we can write J(F, t) as J(F ). The value
function can be written as V (F, t) = e−βtJ(F ). By substituting J(F ) into Equation (2.8),
we obtain

βe−βtJ(F ) = max
C,π

{
e−βt

C1−γ

1− γ + e−βtJF [F (r + π(µ− r))− C] + 1
2e
−βtJFFσ

2π2F 2
}
,

where JF and JFF are the first and second derivatives of J with respect to F. Dividing e−βt

on both sides, we have the simplified HJB equation:

βJ = max
C,π

{
C1−γ

1− γ + [F (r + π(µ− r))− C] JF + 1
2σ

2π2F 2JFF

}
, (2.10)

where J is the abbreviated version of J(F ).We then follow the usual dynamic programming
approach to solve for the optimal controls C∗(t) and π∗(t).

To find the maximum on the RHS, we choose the consumption C and the share in the
risky asset π that satisfy the two following first order conditions (FOCs):

C−γ − JF = 0,

6



F (µ− r)JF + σ2F 2JFFπ = 0.

We solve the above system of equations and obtain:

C = J
− 1
γ

F , (2.11)

π = −(µ− r)JF
σ2FJFF

. (2.12)

To find a solution to our value function, we can make a well-educated guess about the
functional form of J based on Equation (2.9):

J(F ) = v1F
v2 , (2.13)

where v1 and v2 are constant coefficients. Thus, the first and second derivatives of J with
respect to F are

JF = v1v2F
v2−1, (2.14)

JFF = v1v2(v2 − 1)F v2−2. (2.15)

Inputting these two derivatives back in Equations (2.11) and (2.12) leads to

C = (v1v2F
v2−1)−

1
γ , (2.16)

π = −(µ− r)
σ2

v1v2F
v2−1

Fv1v2(v2 − 1)F v2−2 = −(µ− r)
σ2

1
v2 − 1 . (2.17)

Now, we have that JF , JFF , C, and π are all expressed as functions of v1 and v2. We
can solve the HJB equation by finding the values of v1 and v2. Specifically, we substitute
Equations (2.14) to (2.17) in the HJB equation of (2.10) and get

0 =− βv1F
v2 + (v1v2F

v2−1)−
1−γ
γ

1− γ +
[
F

(
r − (µ− r)2

σ2
1

v2 − 1

)
− (v1v2F

v2−1)−
1
γ

]
v1v2F

v2−1

+ 1
2σ

2 (µ− r)2

σ4
1

(v2 − 1)2F
2v1v2(v2 − 1)F v2−2.

The above equation can be simplified by combining all the F terms that have the same
exponents:

0 =
(
−βv1 + rv1v2 −

1
2

(µ− r)2

σ2
1

v2 − 1v1v2

)
F v2 + γ

1− γ (v1v2)−
1−γ
γ (F v2−1)−

1−γ
γ . (2.18)

Because v1 and v2 should have non-zero values, it is impossible for the coefficient of
(F v2−1)−

1−γ
γ to be equal to zero. So, Equation (2.18) will always hold if and only if the

exponents of the F terms are the same and the summation of the coefficients of the two F
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terms is equal to zero; that is,

v2 = (v2 − 1)
(
−1− γ

γ

)
, (2.19)

0 =
(
−βv1 + rv1v2 −

1
2

(µ− r)2

σ2
1

v2 − 1v1v2 + γ

1− γ (v1v2)−
1−γ
γ

)
. (2.20)

Then, we solve the system of equations above to get the values of v1 and v2:

v1 =
[(
β − r(1− γ)− 1− γ

γ

(µ− r)2

2σ2

)
1
γ

]−γ 1
1− γ ,

v2 = 1− γ.

Finally, this gives us the optimal controls for our problem:

C∗(t) =
(
r + β − r

γ
− 1− γ

γ2
(µ− r)2

2σ2

)
F (t), (2.21)

π∗(t) = µ− r
γσ2 . (2.22)

2.2 Optimal Pension Funding Problem with a Single Risky
Asset

The models explained in the remaining parts of this chapter are the main focus of the report.
They consider dynamic models of pension funding in the DB context (Josa-Fombellida and
Rincón-Zapatero, 2001; Ngwira and Gerrard, 2007). We start with a simpler case for which
the investment portfolio has only one risky and one risk-free asset. We consider both the
infinite and finite time cases.

2.2.1 Infinite Time Horizon

We start with the infinite time horizon as it is simpler. We denote F (t) the value of assets
at time t and C(t) the contribution rate at time t. The benefit paid out is denoted by P , the
actuarial liability AL, and the normal cost for all participants of the plan NC. We assume
that P, AL, and NC are all constant. The unfunded actuarial liability UAL is the excess of
AL over F. The actuarial liability accumulates at a rate of P −NC with a valuation rate of
δ. Thus, the relationship between these three components satisfies the following equation:

δAL+NC − P = 0. (2.23)

Same as Merton’s model, the risk-free asset has a constant continuously compounded
rate of return r. The value of the risky asset S(t) follows Equation (2.1). The sponsor can
choose to invest π(t) of the wealth into the risky asset and 1 − π(t) in the risk-free asset.

8



So, the evolution of the pension fund depends on the assets performance, the contribution
rate paid into the fund, and the benefits paid out:

dF (t) = [F (t)(r + π(t)(µ− r)) + C(t)− P ]dt+ σπ(t)F (t)dW (t). (2.24)

As discussed in the previous chapter, there are two main types of risks that need to be
considered in the DB context. The first risk is the contribution risk, which is measured as
the deviations of the contributions from the normal cost. The second one is the solvency risk,
which is measured with the size of UAL. We want the combination of these two deviations
to be as small as possible. Depending on the relative importance of these two risks, a weight
factor 0 < κ ≤ 1 is given to one of the risks. As a consequence, the value function becomes

V (F, t) = min
{C(s),π(s)}∞s=t

Et

[∫ ∞
t

e−βs
(
κ(C(s)−NC)2 + (1− κ)(AL− F (s))2

)
ds

]
, (2.25)

where β is the sponsor’s time preference factor (Josa-Fombellida and Rincón-Zapatero,
2001). Since the sponsor desires stable contributions and dislikes both overfunding and
underfunding, we penalize negative and positive deviations equally by using the squared
deviation of the contribution rate and fund value.

To solve this optimization problem, we follow similar steps to those discussed in the
previous section. We first derive the infinite time horizon HJB equation:

βV = min
C,π

{
κ(C −NC)2 + (1− κ)(AL− F )2 + VF [F (r + π(µ− r)) + C − P ]

+1
2VFFσ

2π2F 2
}
, (2.26)

where C, π, F, and V are abbreviated versions of C(t), π(t), F (t), and V (F, t). The FOCs
that minimize the RHS of Equation (2.26) are

C = NC − VF
2κ , (2.27)

π = − VF
FVFF

µ− r
σ2 . (2.28)

By inputting Equations (2.27) and (2.28) in Equation (2.26), we obtain

βV = κ

(
VF
2κ

)2
+ (1− κ)(AL− F )2 + VF

[
F

(
r − VF

FVFF

(µ− r)2

σ2

)
+NC − VF

2κ − P
]

+ 1
2VFFσ

2 V 2
F

F 2V 2
FF

(µ− r)2

σ4 F 2

= V 2
F

4κ + (1− κ)(AL− F )2

9



+ VF

[
rF − VF

VFF

(µ− r)2

σ2 +NC − VF
2κ − P

]
+ 1

2
V 2
F

VFF

(µ− r)2

σ2

= −V
2
F

4κ + (1− κ)(AL− F )2 + VF (rF − δAL)− 1
2
V 2
F

VFF

(µ− r)2

σ2 . (2.29)

Then, to find a solution of the value function, we again need to make a well-educated guess
about the functional form of V based on the objective function of Equation (2.25). In this
case, we select the following:

V (F, t) = v1F
2 + v2AL

2 + v3F ·AL, (2.30)

where v1, v2 and v3 are constant coefficients. Thus, the first and second derivatives of V
with respect to F are

VF = 2v1F + v3AL, (2.31)

VFF = 2v1, (2.32)

respectively, and the FOCs become

C = NC − 2v1F + v3AL

2κ , (2.33)

π = −2v1F + v3AL

2v1F

µ− r
σ2 . (2.34)

By substituting the two derivatives of Equations (2.31) and (2.32), the FOCs of Equations
(2.33) and (2.34), and the value function of Equation (2.30) into Equation (2.29), we obtain

0 =− β
(
v1F

2 + v2AL
2 + v3F ·AL

)
− 1

4κ(2v1F + v3AL)2 + (1− κ)(AL− F )2

+ (2v1F + v3AL)(rF − δAL)− 1
2

(2v1F + v3AL)2

2v1

(µ− r)2

σ2

=
(
−βv1 −

v2
1
κ

+ (1− κ) + 2v1r −
(µ− r)2

σ2 v1

)
F 2

+
(
−βv2 −

v2
3

4κ + (1− κ)− v3δ −
(µ− r)2

σ2
v2

3
4v1

)
AL2

+
(
−βv3 −

v1v3
κ
− 2(1− κ)− 2v1δ + v3r −

(µ− r)2

σ2 v3

)
F ·AL. (2.35)

To make this equation hold for any value of F and AL, we need to set the coefficients in
front of F 2, AL2, and F ·AL to zero. Thus, by solving the following system of equations:

−βv1 −
v2

1
κ

+ (1− κ) + 2v1r −
(µ− r)2

σ2 v1 = 0, (2.36)
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−βv2 −
v2

3
4κ + (1− κ)− v3δ −

(µ− r)2

σ2
v2

3
4v1

= 0, (2.37)

−βv3 −
v1v3
κ
− 2(1− κ)− 2v1δ + v3r −

(µ− r)2

σ2 v3 = 0, (2.38)

we can obtain the values for v1, v2, and v3. Letting ∆ = κ2
(

(µ−r)2

σ2 + β − 2r
)2

+ 4κ(1− κ),
the unique positive solution of Equation (2.36) is then

v1 =

√
∆− κ

(
(µ−r)2

σ2 + β − 2r
)

2 . (2.39)

Inputting the above solution in Equation (2.38) gives the value of v3:

v3 =
−4κ(1− κ)− 2κδ

√
∆ + 2κ2δ

(
(µ−r)2

σ2 + β − 2r
)

√
∆ + κ

(
(µ−r)2

σ2 + β
) . (2.40)

Then, v2 can be solved by inputting Equations (2.39) and (2.40) into Equation (2.37). Since
our purpose is to find the optimal controls of the contribution rate C∗(t) and the investment
proportion π∗(t), and these two controls do not require the value of v2, we do not show the
exact solution of v2 here. Finally, from Equations (2.33) and (2.34), we find that the optimal
controls for this pension funding problem are:

C∗(t) = NC +

√
∆− κ

(
(µ−r)2

σ2 + β − 2r
)

2κ × 1
2(1− κ) + r

(√
∆− κ

(
(µ−r)2

σ2 + β − 2r
))

×
{[

2(1− κ) + δ

(√
∆− κ

(
(µ− r)2

σ2 + β − 2r
))]

AL

−
[
2(1− κ) + r

(√
∆− κ

(
(µ− r)2

σ2 + β − 2r
))]

F

}
, (2.41)

π∗(t) =


[
2(1− κ) + δ

(√
∆− κ

(
(µ−r)2

σ2 + β − 2r
))]

AL[
2(1− κ) + r

(√
∆− κ

(
(µ−r)2

σ2 + β − 2r
))]

F
− 1

 µ− r
σ2 . (2.42)

2.2.2 Finite Time Horizon

We now consider a more realistic case where the pension fund accumulates until time T.
Under this assumption, we also want the deviation of the fund value from the actuarial
liability at terminal time T to be as small as possible. So, a terminal condition is added to
the objective function and the value function becomes

V (F, t) = min
{C(s),π(s)}Ts=t

Et

[∫ T

t
e−βs

(
κ(C(s)−NC)2 + (1− κ)(AL− F (s))2

)
ds

11



+ αe−βT (F (T )−AL)2
]
, (2.43)

where 0 < α ≤ 1 reflects the importance of the terminal condition (Ngwira and Gerrard,
2007). The pension fund and the value of the assets all follow the same dynamics as those
used in the previous section. To find the optimal contribution rate C∗(t) and the investment
share π∗(t), we again derive the HJB equation. Using the idea used to derive Equation (2.8),
the HJB equation for this case is given by

−Vt = min
C,π

{
e−βt

[
κ(C −NC)2 + (1− κ)(AL− F )2

]
+ VF [F (r + π(µ− r)) + C − P ] + 1

2VFFσ
2π2F 2

}
, (2.44)

with the terminal condition

V (F, T ) = αe−βT (F (T )−AL)2, (2.45)

where Vt is the first derivative of V with respect to t. The abbreviated notations from the
previous section still apply here.

Unlike the infinite time case, our value function now depends on time t as well. The
form of the terminal condition of Equation (2.45) suggests the following functional form for
V :

V (F, t) = e−βtL(t)
(
F 2 − 2Q(t)F +K(t)

)
, (2.46)

where L(t), Q(t), and K(t) are functions of time t that satisfy

L(T ) = α,

Q(T ) = AL,

K(T ) = AL2.

The derivatives of V required for calculations are

Vt = −βV + e−βtLt
(
F 2 − 2Q(t)F +K(t)

)
+ e−βtL(t) (−2QtF +Kt) , (2.47)

VF = 2e−βtL(t)(F −Q(t)), (2.48)

VFF = 2e−βtL(t), (2.49)

where Lt, Qt, and Kt are the first derivatives of the original functions with respect to t. The
FOCs with respect to the contribution rate C and the share invested in the risky asset π
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are

C = NC − VF
2κe−βt = NC + L(t)

κ
[Q(t)− F ], (2.50)

π = −(µ− r)
σ2

VF
FVFF

= µ− r
σ2

[
Q(t)− F

F

]
. (2.51)

By substituting Equations (2.47) to (2.51) in Equation (2.44), we obtain

0 = (−βL(t) + Lt)
(
F 2 − 2Q(t)F +K(t)

)
+ L(t) (−2QtF +Kt)

+ 2rL(t)F 2 − 2rL(t)Q(t)F − (µ− r)2

σ2 L(t)
(
F 2 − 2Q(t)F +Q(t)2

)
+ 2L(t) (F −Q(t)) (NC − P )− L(t)2

κ

(
F 2 − 2Q(t)F +Q(t)2

)
+ (1− κ)

(
AL2 − 2AL · F + F 2

)
. (2.52)

The above equation is true under all circumstances if the terms independent of F and the
coefficients in front of F 2 and F are all zero:

0 = Lt +
(

2r − β − (µ− r)2

σ2

)
L(t)− 1

κ
L(t)2 + (1− κ), (2.53)

0 = Qt −
(
r + 1− κ

L(t)

)
Q(t)− (NC − P ) + AL

L(t)(1− κ), (2.54)

0 = Kt +
(
−β + Lt

L(t)

)
K(t) + (1− κ)AL

2

L(t) − 2(NC − P )Q(t)

−
[

1
κ
L(t) + (µ− r)2

σ2

]
Q(t)2. (2.55)

In order to find the optimal controls C∗(t) and π∗(t), we need to find the solutions of the
system of ordinary differential equations (ODEs) above, yielding L(t) and Q(t). First, L(t)
can be obtained by solving the ODE of Equation (2.53), which can be rewritten as

Lt = −(1− κ)−
(

2r − β − (µ− r)2

σ2

)
L(t) + 1

κ
L(t)2.

Indeed, this is a Riccati differential equation that has the following solution (Ngwira and
Gerrard, 2007):

L(t) = ω2ψ1 − ω1ψ2e
ω3(T−t)

ψ1 − ψ2eω3(T−t) , (2.56)
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where

ω1 = κ

2

2r − β − (µ− r)2

σ2 +

√[
2r − β − (µ− r)2

σ2

]2
+ 4(1− κ)

κ

 , (2.57)

ω2 = κ

2

2r − β − (µ− r)2

σ2 −

√[
2r − β − (µ− r)2

σ2

]2
+ 4(1− κ)

κ

 , (2.58)

ω3 = ω1 − ω2
κ

, (2.59)

ψ1 = α− ω1, ψ2 = α− ω2. (2.60)

Then, we solve the ODE associated with Q(t). By following the general steps of solving
linear differential equations with variable coefficients, we have

Q(t) = AL− κ(r − δ)AL(
ω2ψ1 − ω1ψ2eω3(T−t)) (κr − ω1)(κr − ω2)

×
{

(κr − ω2)ω2ψ1 − (κr − ω1)ω1ψ2e
ω3(T−t)

−[(κr − ω2)ω2ψ1 − (κr − ω1)ω1ψ2]e−(r−ω1
κ

)(T−t)
}
. (2.61)

The detailed steps of this derivation are given in Appendix A. Using L(t) and Q(t), we can
finally find our optimal controls for the finite time horizon version of our problem:

C∗(t) = NC + L(t)
κ

[Q(t)− F ], (2.62)

π∗(t) = µ− r
σ2

[
Q(t)− F

F

]
. (2.63)

2.3 Optimal Pension Funding Problem with Multiple Risky
Assets

We now consider more general cases where multiple risky assets are available.

2.3.1 Infinite Time Horizon

Similar to the single risky asset case, we have a risk-free asset with a constant compounded
rate of return r. Instead of having only one risky asset, however, the portfolio manager
now has access to n risky assets. The values of these risky assets are given by the following
stochastic differential equations:

dSi(t) = µiS
i(t)dt+ Si(t)

n∑
j=1

σijdWj(t), (2.64)
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where Si(t) is the value of the i-th risky asset at time t, µi is the average rate of return for
the i-th asset, and σij is the i-th row, j-th column element of the Cholesky decomposition
of the asset covariance matrix. The vector W (t) = (W1(t), . . . ,Wn(t))> is the time-t value
of an n-dimensional standard Brownian motion. At any time t, the sponsor can choose
to invest a proportion πi(t) of the plan’s asset into the i-th risky asset. The remaining
proportion 1−

∑n
i=1 πi(t) of the asset is invested in the risk-free asset. So, the evolution of

the pension fund now becomes

dF (t) =
[
rF (t) +

n∑
i=1

πi(t)(µi − r)F (t) + C(t)− P
]
dt

+
n∑
i=1

n∑
j=1

σijπi(t)F (t)dWj(t). (2.65)

As we are still dealing with an infinite time horizon in this design, we select the value function
of Equation (2.25). We let the matrix σ = (σij), for i ∈ {1, . . . , n}, j ∈ {1, . . . , n}, be the
Cholesky decomposition of the covariance matrix. Π(t) = (π1(t), . . . , πn(t))> is defined as
the column vector of the share invested in n risky assets, and the µ = (µ1, . . . , µn)> is the
column vector of expected returns on the n risky assets. The HJB equation considering
multiple risky assets can thus be written as

βV = min
C,Π

{
κ(C −NC)2 + (1− κ)(AL− F )2

+VF
[
rF + Π>(µ− r1)F + C − P

]
+ 1

2VFFΠ>ΣΠF 2
}
, (2.66)

where 1 denotes the column vector of size n, with the elements of the vector being 1,
Σ = σσ> is the covariance matrix, and Π is the abbreviated version of Π(t). As usual, we
solve this HJB equation by first finding the FOCs:

C = NC − 1
2κVF , (2.67)

Π = − VF
FVFF

Σ−1(µ− r1). (2.68)

Since the objective function is the same as that presented in Section 2.2.1, we choose Equa-
tion (2.30) as our guess for the functional form of V. As a consequence, our first and second
derivatives of V with respect to F follow Equations (2.31) and (2.32). By substituting the
two derivatives to Equations (2.67) and (2.68), the FOCs become

C = NC − 1
2κ(2v1F + v3AL), (2.69)

Π = −2v1F + v3AL

2v1F
Σ−1(µ− r1). (2.70)
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Then, we substitute Equations (2.69) and (2.70) in the HJB equation of Equation (2.66),
which gives

0 =
(
−βv1 −

v2
1
κ

+ (1− κ) + 2v1r − θ>θv1

)
F 2

+
(
−βv2 −

v2
3

4κ + (1− κ)− v3δ − θ>θ
v2

3
4v1

)
AL2

+
(
−βv3 −

v1v3
κ
− 2(1− κ)− 2v1δ + v3r − θ>θv3

)
F ·AL,

where θ = σ−1(µ − r1) is a vector containing the market prices of risk. Using an idea
similar to that used in Section 2.2.1, we solve for v1, v2, and v3 by setting the coefficients in
front of F 2, AL2, and F · AL to zero. Because the value of v2 is not used, we only provide
the equations for v1 and v3:

v1 =

√
∆− κ

(
θ>θ + β − 2r

)
2 , (2.71)

v3 =
−4κ(1− κ)− 2κδ

√
∆ + 2κ2δ

(
θ>θ + β − 2r

)
√

∆ + κ (θ>θ + β)
, (2.72)

where ∆ = κ2
(
θ>θ + β − 2r

)2
+ 4κ(1 − κ). If we compare Equations (2.71) and (2.72)

to Equations (2.39) and (2.40), the only difference is that we need to substitute (µ−r)2

σ2

by θ>θ, which is a general expression for the squared price of risk in the multiple asset
context. Thus, our optimal controls C∗(t) and Π∗(t) for the problem indeed look similar to
Equations (2.41) and (2.42):

C∗(t) = NC +

√
∆− κ

(
θ>θ + β − 2r

)
2κ × 1

2(1− κ) + r
(√

∆− κ (θ>θ + β − 2r)
)

×
{[

2(1− κ) + δ
(√

∆− κ
(
θ>θ + β − 2r

))]
AL

−
[
2(1− κ) + r

(√
∆− κ

(
θ>θ + β − 2r

))]
F
}
, (2.73)

Π∗(t) =


[
2(1− κ) + δ

(√
∆− κ

(
θ>θ + β − 2r

))]
AL[

2(1− κ) + r
(√

∆− κ (θ>θ + β − 2r)
)]
F
− 1

Σ−1(µ− r1). (2.74)

2.3.2 Finite Time Horizon

The last case we want to introduce is the model with multiple risky assets and a finite
time horizon, which is also the most complicated one investigated in this report. Because
we are still considering multiple risky assets, the values of n risky assets follow Equation
(2.64), and the fund value follows Equation (2.65). As discussed in Section 2.2.2, we need a
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terminal condition under the finite time case. We therefore use the value function presented
in Equation (2.43). Our HJB equation thus looks very similar to Equation (2.44), but takes
multiple risky assets into account:

−Vt = min
C,Π

{
e−βt [κ (C −NC)2 + (1− κ)(AL− F )2 ]

+ VF
[
rF + Π>(µ− r1)F + C − P

]
+ 1

2VFFΠ>ΣΠF 2
}
, (2.75)

with the terminal condition of Equation (2.45). Again, because the objective function is
the same as that given in Section 2.2.2, Equation (2.46) is selected as our well-educated
guess for the functional form of V. Consequently, we have that our Vt, VF , and VFF follow
Equations (2.47) to (2.49). Then, our FOCs needed to solve for the optimal controls, C∗(t)
and Π∗(t), are given by the following equations:

C = NC − VF
2κe−βt = NC + L(t)

κ
[Q(t)− F ], (2.76)

Π = − VF
FVFF

Σ−1(µ− r1) =
[
Q(t)− F

F

]
Σ−1(µ− r1). (2.77)

If we input Equations (2.47) to (2.49) and Equations (2.76) to (2.77) into Equation (2.75),
we obtain

0 =
(
−βL(t) + Lt + 2rL(t)− θ>θL(t)− L(t)2

κ
+ (1− κ)

)
F 2

+
(
−2rL(t)Q(t) + 2θ>θL(t)Q(t) + 2

κ
L(t)2Q(t)− 2δALL(t)− 2(1− κ)AL

+2βL(t)Q(t)− 2Q(t)Lt − 2L(t)Qt
)
F

+
(
−θ>θL(t)Q(t)2 − 1

κ
L(t)2Q(t)2 + 2δALQ(t)L(t) + (1− κ)AL2 − βL(t)K(t)

+LtK(t) + L(t)Kt

)
.

As discussed above, the above equation holds if and only if the term independent of F and
the coefficients in front of F 2 and F are all equal to zero. So, we have

0 = Lt +
(
2r − β − θ>θ

)
L(t)− 1

κ
L(t)2 + (1− κ), (2.78)

0 =
[(
r − β − θ>θ

)
L(t)− 1

κ
L(t)2 + Lt

]
Q(t)

− (NC − P )L(t) + (1− κ)AL+ L(t)Qt, (2.79)

0 = Kt +
(
−β + Lt

L(t)

)
K(t) + (1− κ)AL

2

L(t)

− 2(NC − P )Q(t)−
[1
κ
L(t) + θ>θ

]
Q(t)2, (2.80)
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where δAL is substituted by −(NC − P ) according to Equation (2.23). The coefficient in
front of Q(t) in Equation (2.79) can be written as[(

2r − β − θ>θ
)
L(t)− 1

κ
L(t)2 + Lt + (1− κ)

]
− rL(t)− (1− κ),

where the part inside the square brackets follows Equation (2.78) and is equal to zero. As
a consequence, Equation (2.79) can be expressed as

0 = [0− rL(t)− (1− κ)]Q(t)− (NC − P )L(t) + (1− κ)AL+ L(t)Qt,

or equivalently,

0 = Qt −
(
r + 1− κ

L(t)

)
Q(t)− (NC − P ) + AL

L(t)(1− κ). (2.81)

By comparing Equations (2.78) and (2.81) to Equations (2.53) and (2.54), we again find
that the only difference between them is the terms of (µ−r)2

σ2 and θ>θ in the equations.
Thus, we can obtain the solutions for L(t) and Q(t) from Equations (2.56) and (2.61) by
replacing (µ−r)2

σ2 with θ>θ inside ω1 and ω2 of Equations (2.57) and (2.58):

ω1 = κ

2

2r − β − θ>θ +

√
[2r − β − θ>θ]2 + 4(1− κ)

κ

 ,
ω2 = κ

2

2r − β − θ>θ −

√
[2r − β − θ>θ]2 + 4(1− κ)

κ

 .

Finally, our optimal controls for the finite time horizon with multiple risky assets are:

C∗(t) = NC + L(t)
κ

[Q(t)− F ], (2.82)

Π∗(t) = Σ−1(µ− r1)
[
Q(t)− F

F

]
. (2.83)
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Chapter 3

Numerical Algorithms

In this chapter, we present two different numerical algorithms that can be used to ap-
proximately solve the optimization problems discussed in the previous chapter. The first
algorithm is called value function approximation, and it applies to problems with infinite
time horizons. The second one is called grid value approximation, and it works well for the
problems with finite time horizons. These two algorithms are introduced using Merton’s
model in this chapter as an example of the methods. We will apply these two algorithms to
the remaining models in the next chapter.

3.1 Value Function Approximation

3.1.1 Introduction of the Algorithm

This method solves the optimization problem by approximating the value function (Das and
Sundaram, 2002). We first choose a functional form that approximates the value function
based on the functional form of the objective function and derive the initial HJB equation
based on this approximation. Here, we denote the approximate value function by V̂ (ν) ≡
V̂ (F, t;ν), where ν ∈ Rp is a set of parameters {ν1, . . . , νp} that defines the approximate
value function. Based on V̂ (ν), we can derive the FOCs of the controls and thus the controls
with respect to ν, i.e., x̃(ν). Then, we apply V̂ (ν) and the controls x̃(ν) to the initial HJB
equation. If the functional form of V̂ (ν) is the same as the functional form of the true
value function, and if the values of the parameters ν used are the correct values, this
approximate HJB equation should be the same as the true one and hold for any values
of the state variables F . Instead, if the values of ν are different from the true values, the
approximate HJB equation would deviate from the true HJB equation. The purpose of this
method is to obtain the best approximation parameter set ν that minimizes the deviation
between the true HJB equation and the HJB equation derived from the approximate value
function.

For instance, suppose we want to find the optimal controls of Merton’s model under the
CRRA utility of Equation (2.4). The approximate value function V̂ (ν) can be written as
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V̂ (ν) = e−βtĴ(ν). Instead of using the approximate value function V̂ , we use the trans-
formed version of the approximate value function, Ĵ . Based on the functional form of the
objective function, Ĵ(ν) should be same as Equation (2.13):

Ĵ(ν) = ν1F
ν2 , (3.1)

where ν = {ν1, ν2}. Using Equation (3.1), we derive the first and second derivatives of Ĵ(ν)
with respect to F : ĴF and ĴFF . Furthermore, the approximate optimal controls x̃(ν) =
{C̃(ν), π̃(ν)} follow Equations (2.16) and (2.17):

C̃(ν) =
(
ν1ν2F

ν2−1
)− 1

γ , (3.2)

π̃(ν) = −µ− r
σ2

1
ν2 − 1 , (3.3)

where C̃(ν) and π̃(ν) are both functions with respect to ν. The initial true HJB equation
follows Equation (2.10). The initial HJB equation based on this approximation is, on the
other hand,

βĴ(ν) ≈ max
x(ν)

{
C̃(ν)1−γ

1− γ + [F (r + π̃(ν)(µ− r))− C̃(ν)]ĴF + 1
2σ

2π̃2(ν)F 2ĴFF

}
.

By moving βĴ(ν) to the RHS of the equation, we obtain

0 ≈ max
x(ν)

{
C̃(ν)1−γ

1− γ + [F (r + π̃(ν)(µ− r))− C̃(ν)]ĴF + 1
2σ

2π̃2(ν)F 2ĴFF

}
− βĴ(ν),

(3.4)

where the LHS and RHS of Equation (3.4) are equal only if the functional form of Ĵ(ν) is
consistent with the true one, and the values used for ν1 and ν2 are the correct values.

Next, using ĴF , ĴFF , and inputting Equations (3.1) to (3.3) into Equation (3.4) leads
to

0 ≈
(
−βν1 + rν1ν2 −

1
2

(µ− r)2

σ2
1

ν2 − 1ν1ν2

)
F ν2 + γ

1− γ (ν1ν2)−
1−γ
γ (F ν2−1)−

1−γ
γ , (3.5)

which should be true for any value of F, and should be strictly equal to zero if J = Ĵ .
Because this is normally not the case in most applications, we define

M =
(
−βν1 + rν1ν2 −

1
2

(µ− r)2

σ2
1

ν2 − 1ν1ν2

)
F ν2 + γ

1− γ (ν1ν2)−
1−γ
γ (F ν2−1)−

1−γ
γ .

as being the error between the approximate and true HJB equations. The idea of this
algorithm is then to find the best approximate values of ν1 and ν2 that make this error M
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as close to zero as possible for any given value of F. Assume we have N different values of
F such that each value of F is indexed by i, and we want the total errors to be minimal.
As a consequence, one way to find parameters is to solve

min
ν

N∑
i=1

M2
i , (3.6)

where

Mi =
(
−βν1 + rν1ν2 −

1
2

(µ− r)2

σ2
1

ν2 − 1ν1ν2

)
F ν2
i + γ

1− γ (ν1ν2)−
1−γ
γ (F ν2−1

i )−
1−γ
γ .

As discussed above, we use M2
i here to penalize both the negative and positive deviations,

so that the total error from the approximation is as close to zero as possible.
To make this algorithm work, we need to pick a set of values for F. We can choose any

set of values that is reasonable. If we have an initial fund value F0 = 20, a reasonable set
of F values would have a lower bound of 0 and an upper bound of 40. By having the set of
F and the optimization function of Equation (3.6), we can use any programming language
to perform the optimization.

3.1.2 Optimization Method

The optimization method we use for this algorithm is a limited-memory version of the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (L-BFGS) as explained in Byrd et al.
(1994) and Byrd et al. (1995). This method allows us to solve large nonlinear optimization
problems with bounds on the variables. The L-BFGS method starts with the user choosing
an initial estimate of the solution, ν0, and the method then tries to find a better solution
iteratively by making small changes to the existing solution. At the beginning of each
iteration, the method calculates an estimate of the Hessian matrix by using the gradient
function, the current estimate of the solution ν, and the value of the optimized function.
Then, the estimated Hessian matrix is used to find the next approximated solution. The
iterations stop either when the value difference of the optimized function between two
iterations is less than the threshold or when the maximum number of iterations is reached.
For this report, we set the threshold to be 10−8 and allow the method to have a maximum
of 10,000 iterations.

3.2 Grid Value Approximation

The grid value approximation is an algorithm that works for finite time problems (Carroll,
2006; Cui et al., 2009). This algorithm combines backward and forward dynamic program-
ming. In the backward step, we first construct a set of grid values. We then find the optimal
controls at time t ∈ {0, h, 2h, . . . , T −h, T} for all grids and create a matrix for each control
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variable. Then, in the forward step, given a value of the state variable, we search for the
optimal controls from these precomputed matrices. We again use Merton’s model as an
example to introduce this algorithm.

3.2.1 Derivations of Approximation

Since this algorithm works only with finite time horizons, we need to change Merton’s
optimization problem. The objective function of Equation (2.3) thus becomes

E0

[∫ T

0
e−βtU(C(t))dt

]
, (3.7)

where the utility follows the CRRA utility function. Even though we change the time horizon
to be finite, the value function of the problem still follows Equation (2.4). In order to apply
this algorithm, we first need to discretize the SDE of wealth of Equation (2.2) and the value
function of Equation (2.4). The discretized wealth SDE of Equation (2.2) is

F (t+ h)− F (t) = [F (t)(r + π(t)(µ− r))− C(t)]h+ σπ(t)F (t)(W (t+ h)−W (t))

= F (t)
[
(r + π(t)(µ− r))h+ σπ(t)

√
hZ(t+ h)

]
− C(t)h,

whereW (t+h)−W (t) =
√
hZ(t+h) and Z(t+h) is the value of a standard normal random

variable. The discrete evolution of the wealth is thus:

F (t+ h) = F (t)
[
1 + (r + π(t)(µ− r))h+ σπ(t)

√
hZ(t+ h)

]
− C(t)h. (3.8)

This Euler-based discretization assumes that we first invest F (t) at time t. Then, at time
t + h, we consume an amount of C(t)h. If we use this equation as our recursive formula
for the wealth, we have three unknown variables (i.e.,F (t), π(t), andC(t)) in the backward
step, making it challenging to apply the algorithm. Therefore, to streamline the algorithm,
we assume that the consumption is made at the beginning of the time period and the
remaining wealth is invested into the portfolio at time t. If we let the time step h be small
enough, these two situations are almost equivalent. As a consequence, our recursive formula
becomes

F̃ (t+ h) =
(
F̃ (t)− C̃(t)h

) [
1 + (r + π̃(t)(µ− r))h+ σπ̃(t)

√
hZ(t+ h)

]
=
(
F̃ (t)− C̃(t)h

) [
1 + rh− π̃(t)rh+ π̃(t)

(
µh+ σ

√
hZ(t+ h)

)]
=
(
F̃ (t)− C̃(t)h

) [
1 + rh− π̃(t)(1 + rh) + π̃(t)

(
1 + µh+ σ

√
hZ(t+ h)

)]
,

where F̃ (t) is the approximate discrete wealth evaluated at time t, π̃(t) is the approximate
discrete share in the risky asset, C̃(t) is the discrete consumption evaluated at time t, and
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the terminal optimal consumption is C̃∗(T ) = F̃ (T ). Because the risk-free asset follows

dB(t) = rB(t)dt,

we have the Euler’s discretization of the evolution as

B(t+ h) = (1 + rh)B(t),

and the exact solution of B(t+ h) as

B(t+ h) = erhB(t).

Similarly, because the risky asset follows Equation (2.1), Euler’s discretization of S(t + h)
is

S(t+ h) =
(
1 + µh+ σ

√
hZ(t+ h)

)
S(t),

and the exact solution of the SDE is

S(t+ h) = e

(
µ−σ

2
2

)
h+σ
√
hZ(t+h)

S(t).

Thus, 1 + rh can be seen as Euler’s discretization of erh, and 1 + µh + σ
√
hZ(t + h) as

Euler’s discretization of e
(
µ−σ

2
2

)
h+σ
√
hZ(t+h)

. Consequently, the approximate wealth F̃ (t+h)
becomes

F̃ (t+ h) =
(
F̃ (t)− C̃(t)h

) [
R0
t+h + π̃(t)

(
Rt+h −R0

t+h

)]
, (3.9)

where R0
t+h = erh and Rt+h = e

(
µ−σ

2
2

)
h+σ
√
hZt+h

. Then, we define a(t) to be a set that
contains possible values of F̃ (t) − C̃(t)h, called the grids. Any value in this set a ∈ a(t)
is called a grid value. The discrete recursive value function is the Euler discretization of
Equation (2.4) with integration from t to T and with the state variable F̃ :

Ṽ (F̃ , t) = max
C̃(t),π̃(t)

Et

[
e−βtU(C̃(t))h+ Ṽ (F̃ , t+ h)

]
. (3.10)

To find the optimal controls C̃∗(t) and π̃∗(t), we first find the FOCs using Equation
(3.10). Even though Ṽ (F̃ , t) is not a direct function of π̃(t), π̃(t) affects the value of Ṽ (F̃ , t)
through F̃ (t+ h). The FOC of π̃(t) is thus

Ṽπ̃(t) = 0 + Et

[
∂Ṽ (F̃ , t+ h)

∂π̃(t)

]
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=Et

[
ṼF̃ (t+ h)∂F̃ (t+ h)

∂π̃(t)

]
=Et

[
ṼF̃ (t+ h)

(
F̃ (t)− C̃(t)h

) (
Rt+h −R0

t+h

)]
= 0,

where Ṽπ̃(t) is the partial derivative of Ṽ (F̃ , t) with respect to π̃(t) and ṼF̃ (t + h) is the
partial derivative of Ṽ (F̃ , t+ h) with respect to F̃ (t+ h). Because Rt+h is the only random
variable in the above expectation and F̃ (t)− C̃(t)h is known at time t, we obtain

0 = Et

[
V̂F̃ (t+ h)

(
Rt+h −R0

t+h

)]
. (3.11)

The FOC for C̃(t) is therefore

ṼC̃(t) = Et

[
e−βthUC̃(t)

]
+ Et

[
ṼF̃ (t+ h)∂F̃ (t+ h)

∂C̃(t)

]
= 0, (3.12)

where ṼC̃(t) is the partial derivative of Ṽ (F̃ , t) with respect to C̃(t) and UC̃(t) is the
derivative of U(c) with respect to c evaluated at C̃(t).

We need the expression of ṼF̃ (t + h) to solve Equations (3.11) and (3.12). We start
with the partial derivative at time t, ṼF̃ (t). By applying the envelope theorem and using
Equations (3.9) and (3.10), the partial derivative is calculated as

ṼF̃ (t) = 0 + Et

[
∂Ṽ (F̃ , t+ h)

∂F̃ (t)

]
= Et

[
ṼF̃ (t+ h)

(
R0
t+h + π̃(t)

(
Rt+h −R0

t+h

))]
= −Et

[
ṼF̃ (t+ h)∂F̃ (t+ h)

∂C̃(t)
1
h

]
(3.13)

We need to satisfy

Et

[
ṼF̃ (t+ h)∂F̃ (t+ h)

∂C̃(t)

]
= −Et

[
e−βtUC̃(t)h

]
(3.14)

so that the FOC of Equation (3.12) holds. As a consequence, Equation (3.13) can be written
as

ṼF̃ (t) = Et

[
e−βtUC̃(t)

]
= e−βtEt

[
UC̃(t)

]
, (3.15)

Since C̃(t) is deterministic and known at time t, Equation (3.15) becomes

ṼF̃ (t) = e−βtUC̃(t).
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Then, we can replace ṼF̃ (t+ h) by e−β(t+h)UC̃(t+ h) in the two FOCs and obtain:

0 = e−β(t+h)Et
[
UC̃(t+ h)

(
Rt+h −R0

t+h

)]
,

0 = e−βthUC̃(t)− hEt
[
e−β(t+h)UC̃(t+ h)

[
R0
t+h + π̃(t)

(
Rt+h −R0

t+h

)]]
.

Because h is constant, we can further simplify the above equations to

0 = e−β(t+h)Et
[
UC̃(t+ h)

(
Rt+h −R0

t+h

)]
,

UC̃(t) = Et

[
e−βhUC̃(t+ h)

[
R0
t+h + π̃(t)

(
Rt+h −R0

t+h

)]]
.

From the above equations, we know that the values of C̃(t) and π̃(t) both depend on C̃(t+h),
which is affected by F̃ (t+h). Because the value of F̃ (t+h) is determined by some grid value
a, the optimal controls π̃∗(t) and C̃∗(t) are affected by the grid value a as well. Therefore,
to solve for π̃∗(t) and C̃∗(t), we simply need to obtain the solutions of these grid value
dependent equations:

0 = e−β(t+h)Et
[
UC̃∗(t+ h)[a]

(
Rt+h −R0

t+h

)]
, (3.16)

C̃∗(t)[a] = IU
(
e−βhEt

[
UC̃∗(t+ h)[a]

(
R0
t+h + π̃∗(t)[a]

(
Rt+h −R0

t+h

))])
, (3.17)

where π̃∗(t)[a] is the optimal value of π̃(t) given grid value a applicable at time t, C̃∗(t)[a] is
the time-t optimal consumption given grid value a, UC̃∗(t+h)[a] is the derivative of U(c) with
respect to c evaluated at C̃∗(t+h)[a], C̃∗(t+h)[a] is time-(t+h) optimal consumption given
a, and IU (·) is the inverse function of UC̃(t). Using any root finding techniques, Equation
(3.16) gives the optimal share π̃∗(t)[a] for a specific a. Then, Equation (3.17) gives the
corresponding optimal consumption level C̃∗(t)[a].

3.2.2 Expectation Computation

Before applying a root finding technique, we need to calculate the expectations in Equations
(3.16) and (3.17) first. Using Equation (3.16) as an example, the expectation can be written
as

Et

[(
C̃∗(t+ h)[a]

)−γ (
e

(
µ−σ

2
2

)
h+σ
√
hZt+h − erh

)]

=
∫ ∞
−∞

(
C̃∗(t+ h)[a]

)−γ (
e

(
µ−σ

2
2

)
h+σ
√
hz
− erh

)
1√
2π
e−

z2
2 dz. (3.18)

If we let x = z√
2 , the above equation becomes

∫ ∞
−∞

(
C̃∗(t+ h)[a]

)−γ (
e

(
µ−σ

2
2

)
h+σ
√
h
√

2x
− erh

)
1√
π
e−x

2
dx, (3.19)
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which has the form of
∫∞
−∞ e

−x2
f(x)dx.We can therefore use the Gauss-Hermite quadrature

to approximate the integral:

∫ ∞
−∞

e−x
2
f(x)dx ≈

n∑
i=1

wif(xi),

where xi are the roots of the physicists’ version of the Hermite polynomial Hn(x), n is the
number of sample points used, and wi are weights given by1

wi = 2n−1n!
√
π

n2[Hn−1(xi)]2
.

Here, Hn−1(x) is the Hermite polynomial of order n− 1 evaluated at x and is given by

Hn−1(x) = (−1)n−1ex
2 dn−1

dxn−1 e
−x2

.

We can write the expectation at any time t in a form similar to Equation (3.19) and thus
use the Gauss-Hermite quadrature.

3.2.3 Backward and Forward Steps

From Equations (3.16) and (3.17), we can now perform the backward and forward steps
of the algorithm. The first step is to construct the grids at time t, a(t), which contains J
possible values of the post-consumption wealth, F̃ (t)− C̃(t)h. Then, in the backward step,
we need to find the optimal decisions at time t ∈ {0, h, 2h, . . . , T −h, T} for each grid value
a ∈ a(t).We know that at time T , C̃∗(T ) = F̃ (T ). So, it is easy to find the optimal decisions
at time T − h. At time t = T − h and given the grid value a ∈ a(t), Equation (3.16) can be
written as

0 =Et
[
UC̃∗(t+ h)[a]

(
Rt+h −R0

t+h

)]
=ET−h

[
UC̃∗(T )[a]

(
RT −R0

T

)]
=ET−h

[(
F̃ (T )

)−γ (
RT −R0

T

)]
=ET−h

[((
F̃ (T − h)− C̃(T − h)h

) [
R0
T + π̃∗(T − h)[a]

(
RT −R0

T

)])−γ (
RT −R0

T

)]
=ET−h

[(
a
[
R0
T + π̃∗(T − h)[a]

(
RT −R0

T

)])−γ (
RT −R0

T

)]
, (3.20)

using Equation (3.9). By root finding techniques, we can solve for the optimal portfolio
weight π̃∗(T − h)[a] for each a ∈ a(T − h). The optimal consumption can then be obtained
directly from Equation (3.17).

1See Abramowitz and Stegun (1972) for more details.
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From Equation (3.20), we see that the optimal consumption at time T − h depends on
the grid value a ∈ a(T −h). If we change the value of a, we have a new value of π̃∗(T −h)[a]
and thus a new C̃∗(T −h)[a], leading to F̃ ∗(T −h)[a] = a+ C̃∗(T −h)[a]h. So, for each given
grid value a applicable at time T − h, we have unique values of π̃∗(T − h)[a], C̃∗(T − h)[a],
and F̃ ∗(T − h)[a]. Then, at time T − 2h, we have

0 = e−β(T−h)ET−2h
[
(C̃∗(T − h)[a])−γ

(
RT−h −R0

T−h

)]
, (3.21)

where the value of C̃∗(T −h)[a] depends on F̃ ∗(T −h)[a]. Given a grid value a applicable at
time T − 2h, the root finding technique tries different candidate values of π̃(T − 2h)[a]. For
each candidate value of π̃(T − 2h)[a] tried, a new value of wealth F̃ (T − h)[a] is produced
using Equation (3.9), where a = F̃ (T − 2h) − C̃(T − 2h)h. From the previous calculation
at time t = T − h, we already have J groups of values for F̃ ∗(T − h) and C̃∗(T − h).
Therefore, all the new values of F̃ (T − h)[a] can be expressed as the linear interpolation
of two nearest values of F̃ ∗(T − h) we already have. By doing this, we can also obtain the
corresponding C̃(T − h)[a] using the similar linear interpolation of the two values of the
C̃∗(T − h) that are paired with the two values of F̃ ∗(T − h). We then will have the pair
of
(
F̃ ∗new(T − h)[a], C̃∗new(T − h)[a]

)
for each π̃(T − 2h)[a] used. Among all these pairs, we

finally can find the optimal π̃∗(T − 2h)[a] that satisfies Equation (3.21). After obtaining
the optimal π̃∗(T − 2h)[a], we again use the linear interpolation to find the corresponding
pair of wealth and consumption at time T − h and solve for C̃∗(T − 2h)[a] using Equation
(3.17). We finally repeat this procedure till time t = 0 is reached.

After the backward pass is done, we have J groups of optimal decisions as well as the
state variables for each time t. Then, we start the forward part of our algorithm. The
purpose of the forward pass is to produce the optimal controls given a specific path of the
state variables over time. By reference to the J grid values a(0) and their corresponding
state variables F̃ ∗(0)[a], we can again express the initial wealth F (0) as a linear interpolation
between the two nearest values of F̃ ∗(0)[a] from the grid. We can then locate the two values
of C̃∗(0)[a] and the two values of π̃∗(0)[a] associated with the same grid values. We therefore
obtain the final optimal decisions at time zero; that is, C̃∗(0) and π̃∗(0). By relying on the
optimal decisions at time zero and wealth F (0), we can thus compute the time-h wealth
from Equation (3.9). By repeating this procedure till time T −h, we can find all the needed
optimal decisions.

3.3 Results

To test if these two methods work for the simplest case, we set the model parameters to
r = 0.02, µ = 0.05, σ = 0.15, and γ = 3. The time preference factor β is equal to the
risk-free rate r. The grid we used for the value function approximation is from 0.1 to 40
with increments of 0.05. We choose ν0 = (−30,000,−2) as our starting points, with a lower
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Figure 3.1: Distributions of Approximate Solution Based on the Grid Value Ap-
proximation Method and True Solution with Merton’s Model.

(a) Distribution of True Fund Value (b) Distribution of Approximate Fund Value

(c) Distribution of True Optimal Contribu-
tion

(d) Distribution of Approximate Optimal
Contribution

(e) Distribution of True Optimal Share (f) Distribution of Approximate Optimal
Share

bound of (−100,000,−10) and an upper bound of (−0.01,−0.01) in the optimization. The
approximate and true value function parameters are presented in Table 3.1. The relative
differences, |νi−vivi

|×100%, between the approximate and true values are 0.022% and 0.005%
respectively. Because these differences are less than 0.1%, we consider that this method
works well for Merton’s model.

For the grid value approximation, we use a monthly time step of h = 1/12 and a
time horizon of T = 4 years. The set of grids used has a minimum value of 0.01 and a
maximum of 40. The initial wealth is set to F (0) = 20. Even though the method works
with one path, we set the number of simulation runs in the forward pass to N = 5,000 to
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Approximate True

Parameters ν1 ν2 v1 v2

Values −34,239.344443 −1.999894 −34,231.780616 −2.000000

Table 3.1:Optimal Value Function Parameters of Merton’s Model Based on Value
Function Approximation.

evaluate the performance of the method. The results are given in Figure 3.1. Solutions of
true contribution amount and share in the risky asset can be found in Merton (1969). We
compare different quantiles between the true and approximate solutions. We notice that
the differences between the true and approximate solutions are almost nil. We can thus
conclude that the grid value approximation works well for Merton’s model, too.
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Chapter 4

Applications of the Numerical
Algorithms

In this chapter, we apply the two algorithms discussed in Chapter 3 to the optimal pension
funding problems of Chapter 2. In each section, we first show the equations and steps
required to apply the method. Then, we follow with numerical results for each model.

4.1 Single Risky Asset

We start with the models that only have one risky asset, which are discussed in Section 2.2.

4.1.1 Infinite Time Horizon

For optimal pension funding problems with infinite time horizon, we use the value function
approximation introduced in Section 3.1. The problem under study is that of Equation
(2.25). The approximate value function V̂ (ν) has a functional form similar to that of Equa-
tion (2.30):

V̂ (ν) = ν1F
2 + ν2AL

2 + ν3F ·AL, (4.1)

where ν = {ν1, ν2, ν3}. Using Equation (4.1), the first and second derivatives of V̂ with
respect to F are

V̂F (ν) = 2ν1F + ν3AL, (4.2)

V̂FF (ν) = 2ν1, (4.3)

respectively. The FOCs for the two controls, C̃(ν) and π̃(ν), follow the same functional
forms as of Equations (2.33) and (2.34):

C̃(ν) = NC − 2ν1F + ν3AL

2κ , (4.4)
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π̃(ν) = −2ν1F + ν3AL

2ν1F

µ− r
σ2 . (4.5)

Therefore, the initial approximate HJB equation follows

0 ≈
(
−βν1 −

ν2
1
κ

+ (1− κ) + 2ν1r −
(µ− r)2

σ2 ν1

)
F 2

+
(
−βν2 −

ν2
3

4κ + (1− κ)− ν3δ −
(µ− r)2

σ2
ν2

3
4ν1

)
AL2

+
(
−βν3 −

ν1ν3
κ
− 2(1− κ)− 2ν1δ + ν3r −

(µ− r)2

σ2 ν3

)
F ·AL. (4.6)

According to Section 3.1.1, the error between the approximate and true HJB equations for
any given value of Fi can be set to

Mi =
(
−βν1 −

ν2
1
κ

+ (1− κ) + 2ν1r −
(µ− r)2

σ2 ν1

)
F 2
i

+
(
−βν2 −

ν2
3

4κ + (1− κ)− ν3δ −
(µ− r)2

σ2
ν2

3
4ν1

)
AL2

+
(
−βν3 −

ν1ν3
κ
− 2(1− κ)− 2ν1δ + ν3r −

(µ− r)2

σ2 ν3

)
Fi ·AL, (4.7)

and the minimization problem that needs to be solved to is given in Equation (3.6).
To solve the problem, we need to first set the grid over which the minimization equation

is computed. As the initial fund value is equal to F (0) = 20, we choose the grid to have a
lower bound of 0 and an upper bound of 40, where the upper bound refers to a total return
of 100%. The increment of the grid is set to 0.05, and we use a total of 801 points in the
minimization problem. We set the risk-free rate to r = 0.05, the rate of return for the single
risky asset to µ = 0.1, and the volatility to σ = 0.15 (see, e.g., Ngwira and Gerrard, 2007).
The valuation rate δ and the time preference factor β are both assumed to be equal to r.
The weight of the contribution risk κ is set to 0.8.

We first approximate the values ν and compare them with the true values of v1, v2, and
v3. After testing different initial values of the optimization and comparing the results, we
choose ν0 = (0.4, 0.4,−0.5) as our starting point. We set the lower and upper bounds for
the three parameters to −1 and 3, respectively. The estimated approximate and true values
solved are reported in Table 4.1 for the problem under study. To examine the performance
of the approximation, we calculate the relative differences, |νi−vivi

| × 100%, between the
approximate and true values of the parameters. The relative differences are all less than
0.01%. Therefore, we expect the approximate and true values of the optimal controls to be
very close.
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Approximate True

Parameters ν1 ν2 ν3 v1 v2 v3

Values 0.376298 0.376306 −0.752597 0.376302 0.376302 −0.752604

Table 4.1: Optimal Value Function Parameters of Optimal Pension Funding
Model Based on Value Function Approximation Method with Single Risky As-
set.

To evaluate the performance of the approximate value function in producing optimal
controls, we perform a simulation study. We generate N simulated paths of future risky asset
returns and, along each path, compute the evolution of the fund value and the corresponding
optimal controls. We then compare the resulting distributions of the true and approximate
optimal controls as well as the fund value. We use a total of N = 5,000 simulation paths to
perform the comparison. Because it is impossible for us to test the infinite time horizon, we
assume a terminal time T of 4 years. The time step is set to one week; that is, h = 1/52. We
start the simulation at time t = 0 with an initial fund level F (0) = 20. The actuarial liability
AL has a deterministic value of 21. The function used to calculate the approximate and
true optimal controls follow Equations (4.4) and (4.5), respectively, where the approximate
controls use estimated values of ν1, ν2, and ν3, while the true ones use v1, v2, and v3 in Table
4.1. The normal cost NC is calculated using Equation (2.23) with a benefit of P = 2. To
perform the simulation, we use the discrete evolution of the fund value of Equation (2.24).
For consistency, Equation (2.24) is discretized using the idea discussed in Section 3.2.1:

F̃ (t+ h) =
(
F̃ (t) + C̃(t)h

) [
R0
t+h + π̃(t)

(
Rt+h −R0

t+h

)]
− P · h. (4.8)

The 5th, 50th, and 95th quantiles of the true and approximate fund value, optimal con-
tribution, and optimal share are presented in Figure 4.1. Because the initial unfunded
actuarial liability is quite large, we need to make a large contribution to the plan and invest
a moderate share of wealth into the risky asset. As a consequence, the unfunded actuarial
liability decreases. The fund value keeps increasing as t increases and reaches the target
level eventually, which leads to a decrease in the UAL. The UAL decrease then leads to
a decrease in the optimal contributions and share in the risky asset. As time passes, the
different percentiles of both approximate and true optimal contributions start to converge
to their long run level. We expect that all these percentiles will eventually reach the target
level; that is, the normal cost. Similarly, different percentiles of the optimal share in the
single risky asset tend to go to zero as t increases. If we compare the distributions between
the approximate and true solutions, we find that the differences are almost nil, which meets
our expectations. Thus, we conclude that this method works quite well with the optimal
pension funding problem under the given assumptions.
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Figure 4.1: Distributions of Approximate Solution Based on the Value Function
Approximation Method and True Solution of Optimal Pension Funding Model
with Single Risky Asset.

(a) Distribution of True Fund Value (b) Distribution of Approximate Fund Value

(c) Distribution of True Optimal Contribu-
tion

(d) Distribution of Approximate Optimal
Contribution

(e) Distribution of True Optimal Share (f) Distribution of Approximate Optimal
Share

4.1.2 Finite Time Horizon

For the same pension funding problem discussed above but with a finite time horizon, we use
the grid value method to solve for the optimal controls. The model is the one presented in
Section 2.2.2. As discussed in Section 3.2.1, we first need to discretize the value function and
the wealth evolution equation. The discrete evolution of the fund value follows Equation
(4.8) and can be obtained by following similar steps to those done in the derivation of
Equation (3.9). The initial value function follows Equation (2.43) and can be written in a
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recursive form:

V (F, t)

= min
C(t),π(t)

Et

[∫ t+h

t
e−βs

(
κ(C(s)−NC)2 + (1− κ)(AL− F (s))2

)
ds+ V (F, t+ h)

]
.

(4.9)

We discretize the above equation to get

Ṽ (F̃ , t)

= min
C̃(t),π̃(t)

Et

[
e−βt

(
κ(C̃(t)−NC)2 + (1− κ)(AL− F̃ (t))2

)
h+ Ṽ (F̃ , t+ h)

]
, (4.10)

which is based on the discrete fund value F̃ and the discrete controls C̃ and π̃. The terminal
condition satisfies

Ṽ (F̃ , T ) = αe−βT (F̃ (T )−AL)2.

Because F̃ (T ) is determined by C̃(T − h) and π̃(T − h) and is known at time T, the last
decision is made at time T −h.We therefore start the backward pass at time T −h, and due
to the existence of the terminal condition, we have unique optimal controls at t = T − h.
From Equation (4.10), the value function at t = T − h is

Ṽ (F̃ , T − h)

= min
C̃(T−h),π̃(T−h)

{
ET−h

[
e−β(T−h)

(
κ
(
C̃(T − h)−NC

)2

+(1− κ)
(
AL− F̃ (T − h)

)2
)
h

]
+ ET−h

[
Ṽ (F̃ , T )

]}
. (4.11)

The optimal controls C̃∗(T−h) and π̃∗(T−h) can be obtained by solving the above equation.
We first give the FOC for π̃(T − h) using Equations (4.8) and (4.11):

Ṽπ̃(T − h)

=ET−h

[
2αe−βT (F̃ (T )−AL) ∂F̃ (T )

∂π̃(T − h)

]
=ET−h

[
2αe−βT (F̃ (T )−AL)

(
F̃ (T − h) + C̃(T − h)h

) (
RT −R0

T

)]
= 2αe−βTET−h

[(
a
[
R0
T + π̃(T − h)

(
RT −R0

T

)]
− P · h−AL

)
a
(
RT −R0

T

)]
= 0, (4.12)

34



where a ∈ a(T − h) is the grid value used to represent the post-contribution fund value,
F̃ (T − h) + C̃(T − h)h. Because a is not random, Equation (4.12) can be simplified:

0 = ET−h
[(
a
[
R0
T + π̃(T − h)

(
RT −R0

T

)]
− P · h−AL

) (
RT −R0

T

)]
. (4.13)

As the only unknown variable in Equation (4.13) is π̃(T − h) and the only random variable
is RT , π̃(T − h) can be solved directly without using a root finding technique:

π̃∗(T − h)[a] = P · h+AL− aR0
T

a

ET−h
[
RT −R0

T

]
ET−h

[(
RT −R0

T

)2] , (4.14)

where π̃∗(T − h)[a] is the optimal value of π̃(T − h) given the value of a.
Next, we state the FOC for the contribution amount at time T − h, C̃(T − h). Using

Equation (4.10), we obtain the FOC for C̃(T − h):

ṼC̃(F̃ , T − h)

=ET−h

[
2he−β(T−h)κ

(
C̃(T − h)−NC

)
+ 2αe−βT

(
F̃ (T )−AL

) ∂F̃ (T )
∂C̃(T − h)

]
= 0. (4.15)

Similar to the optimal share, Equation (4.15) can be solved directly as well:

C̃∗(T − h)[a]

=NC − α

κ
e−βhET−h

[(
a
[
R0
T + π̃∗(T − h)[a]

(
RT −R0

T

)]
− P · h−AL

)
×
(
R0
T + π̃∗(T − h)[a]

(
RT −R0

T

))]
, (4.16)

where C̃∗(T − h)[a] is the optimal contribution given a ∈ a(T − h).
After obtaining the specific equations for the optimal controls at time T − h, we can

now find the general solution for time t ∈ {0, h, . . . , T − 2h}. We use Equation (4.10) to
solve for the optimal controls C̃∗(t) and π̃∗(t). The FOCs for C̃(t) and π̃(t) are:

Ṽπ̃(t) = Et

[
∂Ṽ (F̃ , t+ h)

∂π̃(t)

]
= Et

[
ṼF̃ (t+ h)∂F̃ (t+ h)

∂π̃(t)

]
= Et

[
ṼF̃ (t+ h)(F̃ (t) + C̃(t)h)

(
Rt+h −R0

t+h

)]
= 0, (4.17)

ṼC̃(t) = Et

[
e−βt2hκ

(
C̃(t)−NC

)]
+ Et

[
ṼF̃ (t+ h)∂F̃ (t+ h)

∂C̃(t)

]
= 0. (4.18)
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Similar to Merton’s model, we need the expression of ṼF̃ (t + h) to solve Equations (4.17)
and (4.18). We start with the partial derivative at time t, ṼF̃ (t):

ṼF̃ (t) = Et

[
−2he−βt(1− κ)(AL− F̃ (t))

]
+ Et

[
∂Ṽ (F̃ , t+ h)

∂F̃ (t)

]
= Et

[
−2he−βt(1− κ)(AL− F̃ (t))

]
+ Et

[
ṼF̃ (t)

(
R0
t+h + π̃(t)

(
Rt+h −R0

t+h

))]
= Et

[
−2he−βt(1− κ)(AL− F̃ (t))

]
+ Et

[
ṼF̃ (t)∂F̃ (t+ h)

∂C̃(t)
1
h

]
. (4.19)

Equation (4.18) needs to satisfy

Et

[
ṼF̃ (t+ h)∂F̃ (t+ h)

∂C̃(t)

]
= −Et

[
e−βt2hκ

(
C̃(t)−NC

)]
. (4.20)

As a consequence, Equation (4.19) can be written as

ṼF̃ (t) = Et

[
−2he−βt(1− κ)(AL− F̃ (t))

]
− 1
h
Et

[
e−βt2hκ

(
C̃(t)−NC

)]
. (4.21)

Because there is no randomness in C̃(t) and F̃ (t) at time t, we can remove the expectation
in Equation (4.21). We thus obtain

ṼF̃ (t+ h) = −2he−β(t+h)(1− κ)
(
AL− F̃ (t+ h)

)
− 2e−β(t+h)κ

(
C̃(t+ h)−NC

)
. (4.22)

By inputting Equation (4.22) into Equation (4.17), we obtain the equation needed to find
π̃∗(t):

− 2e−β(t+h)Et
[
a
(
Rt+h −R0

t+h

) (
h(1− κ)

(
AL− F̃ (t+ h)

)
+ κ

(
C̃(t+ h)−NC

))]
=Et

[(
h(1− κ)

[
AL−

(
a
(
R0
t+h + π̃(t)

(
Rt+h −R0

t+h

))
− P · h

)]
+κ

[
C̃(t+ h)[a]−NC

]) (
Rt+h −R0

t+h

)]
= 0, (4.23)

where a is a value of F̃ (t) + C̃(t)h and C̃(t+ h)[a] is the contribution amount at time t+ h

given a at time t. By substituting Equation (4.22) into Equation (4.18), we get the solution
for C̃∗(t):

C̃∗(t)[a]

=NC + e−βh

κ
Et

[(
h(1− κ)

[
AL+ P · h− a

(
R0
t+h + π̃∗(t)[a]

(
Rt+h −R0

t+h

))]
+κ

(
C̃∗(t+ h)[a]−NC

)) (
R0
t+h + π̃∗(t)[a]

(
Rt+h −R0

t+h

))]
. (4.24)
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Because there is no closed-form solution for the expectations in Equations (4.23) and (4.24),
we need to use numerical integration discussed in Section 3.2.2 to calculate the expectations.
Using any root finding technique, Equation (4.23) gives the optimal share π̃∗(t)[a] for any
given value of a. Then, Equation (4.24) gives the corresponding optimal contribution amount
C̃∗(t)[a].

To investigate the performance of this approximate algorithm, we compare the approxi-
mate numerical results to the true solutions through a simulation study. The choice of grid
values depends on the values of F (0) and AL. Because the fund value is supposed to reach
the actuarial liability, we expect the lower and upper bounds of the fund value to be close
to the initial fund value and the actuarial liability, respectively. If the initial fund value is
20 and the actuarial liability is 21, a(t) is then assumed to have a minimum value equals
to 19 and maximum value equals to 22. The increment of the grid is set to be 0.005 and
thus we have a total of 601 possible values. All other parameters follow the values given
in Section 4.1.1; that is, r = 0.05, µ = 0.1, σ = 0.15, δ = β = r, and κ = 0.8. The rate of
benefit paid out is P = 2, and the value of the normal cost is calculated using Equation
(2.22). Furthermore, the parameter dealing with the importance of the terminal condition,
α, is set to 0.2.

We generate 5,000 scenarios with a weekly time step of h = 1/52 for 4 years. The values
for the explicit optimal controls are obtained from Equations (2.62) and (2.63) with F

replaced by its discrete approximation F̂ (t), where

F̂ (t+ h) =
(
F̂ (t) + C(t)h

) [
R0
t+h + π(t)

(
Rt+h −R0

t+h

)]
− P · h.

The 5th, 50th, and 95th quantiles of both the true and approximate solutions are pre-
sented in Figure 4.2. For each panel, the three quantiles tend to converge to a certain target
level as time passes by. If we compare the true and approximate solutions, the distributions
are very similar.

To further explore how the approximation performs, we plot the time-t empirical cumu-
lative distribution functions (ECDF) for the true and approximate optimal controls as well
as the fund values in the same plot. The results are given in Figures 4.3.

At any time t, the true optimal contribution amount and true optimal share in the
risky asset are determined by reference to the optimal controls derived in Section 2.2.2,
which depend on F (t). However, in the approximate solutions, since we use discrete time,
the approximate optimal share in the risky asset is determined after the approximate op-
timal contribution amount is made, which is based on the fund value after contribution,
F (t) +C(t). Since the sponsor contributes more to the pension plan when UAL is high, the
difference between the fund value before and after the contribution is large at the beginning
of the simulation horizon. As a consequence, the difference between the ECDFs of the true
and approximate optimal shares in the risky asset is larger for the initial steps. This differ-
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ence diminishes as time passes. After two years (i.e, 104 weeks), the ECDFs are almost the
same for both controls. We can thus conclude that the grid value approximation works well
under the given assumptions.

Figure 4.2: Distributions of Approximate Solution Based on the Grid Value Ap-
proximation Method and True Solution of Optimal Pension Funding Model with
Single Risky Asset.

(a) Distribution of True Fund Value (b) Distribution of Approximate Fund Value

(c) Distribution of True Optimal Contribu-
tion

(d) Distribution of Approximate Optimal
Contribution

(e) Distribution of True Optimal Share (f) Distribution of Approximate Optimal
Share
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4.2 Multiple Risky Assets

We now apply the same two algorithms to more general cases with multiple risky assets
discussed in Section 2.3. To simplify the simulation process, we consider two different risky
assets.

4.2.1 Infinite Time Horizon

Since we only change the number of assets in the portfolio, the approximate value function
V̂ (ν) keeps the same functional form as Equation (4.1). Therefore, the first and second
derivatives of V̂ with respect to F follow Equations (4.2) and (4.3). The FOC for the
contribution, C̃(ν), still follows Equation (4.4), while the FOC for optimal shares, Π̃(ν), is
now given by Equation (2.70):

Π̃(ν) = −2ν1F + ν3AL

2ν1F
Σ−1(µ− r1), (4.25)

where Π̃(ν) = (π̃1(ν), π̃2(ν))>, µ = (µ1, µ2)>, and

Σ = σσ>

=
(
σ1 0
ρσ2

√
1− ρ2σ2

)(
σ1 0
ρσ2

√
1− ρ2σ2

)>

=
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, 0 < ρ < 1. (4.26)

The initial approximate HJB equation thus becomes

0 ≈
(
−βν1 −

ν2
1
κ

+ (1− κ) + 2ν1r − θ>θν1

)
F 2

+
(
−βν2 −

ν2
3

4κ + (1− κ)− ν3δ − θ>θ
ν2

3
4ν1

)
AL2

+
(
−βν3 −

ν1ν3
κ
− 2(1− κ)− 2ν1δ + ν3r − θ>θν3

)
F ·AL, (4.27)

where

θ =
(
σ1 0
ρσ2

√
1− ρ2σ2

)−1 [(
µ1

µ2

)
−
(
r

r

)]
. (4.28)
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Therefore, the error between the approximate and true HJB equations for any given value
of Fi is

Mi =
(
−βν1 −

ν2
1
κ

+ (1− κ) + 2ν1r − θ>θν1

)
F 2
i

+
(
−βν2 −

ν2
3

4κ + (1− κ)− ν3δ − θ>θ
ν2

3
4ν1

)
AL2

+
(
−βν3 −

ν1ν3
κ
− 2(1− κ)− 2ν1δ + ν3r − θ>θν3

)
Fi ·AL. (4.29)

Then, we solve the minimization problem of Equation (3.6) to find ν.
We use the grid given in Section 4.1.1. The risk-free rate is again r = 0.05. In addition

to the single risky asset used in the model of Section 4.1.1, we add a new risky asset
with a higher return of µ2 = 0.15 and a higher volatility of σ2 = 0.25. Thus, we have
µ = (0.1, 0.15)> and

σ =
(

0.15 0
0.25ρ 0.25

√
1− ρ2

)
, (4.30)

where the correlation coefficient is set to ρ = 0.85. The values of δ, β, and κ used the same as
those in Section 4.1.1. Since we only add one additional risky asset, we expect the parameter
values of the value function to be close to those of the single risky asset case. We therefore
use the initial starting point, ν0 = (0.4, 0.4,−0.5), and the lower and upper bounds same as
those in Section 4.1.1. The approximate and true parameter values are presented in Table
4.2.

Approximate True

Parameters ν1 ν2 ν3 v1 v2 v3

Values 0.358448 0.358337 −0.716678 0.358356 0.358356 −0.716711

Table 4.2: Optimal Value Function Parameters of Optimal Pension Funding
Model Based on Value Function Approximation Method with Two Risky As-
sets.

Similar to the single risky asset case, we obtain approximate parameter values that are
very close to the true values. The relative differences are all less than 0.01%. We then again
generate 5,000 scenarios to simulate possible situations. By doing that, we can compare the
approximate and true distributions of the optimal controls and the state variables. The time
horizon is assumed to be T = 4 years. We again use weekly time steps of h = 1/52. Values
for F (0), AL, and P are those introduced in Section 4.1.1. The function used to calculate
the approximate and true optimal controls now follow Equations (4.4) and (4.25), where
the approximate controls use estimated values of ν1, ν2, and ν3, and the true ones are given
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Figure 4.4: Distributions of Approximate Solution Based on the Value Function
Approximation Method and True Solution of Optimal Pension Funding Model
with Two Risky Assets.

(a) Distribution of True Fund Value (b) Distribution of Approximate Fund
Value

(c) Distribution of True Optimal Con-
tribution

(d) Distribution of Approximate Opti-
mal Contribution

(e) Distribution of True Optimal Share
in Risky Asset 1

(f) Distribution of Approximate Opti-
mal Share in Risky Asset 1

(g) Distribution of True Optimal Share
in Risky Asset 2

(h) Distribution of Approximate Opti-
mal Share in Risky Asset 2
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in Table 4.2. The evolution of approximate fund value follows

F̃ (t+ h) =
(
F̃ (t) + C̃(t)h

) [
R0
t+h + Π̃>(t)

(
Rt+h −R0

t+h1
)]
− P · h, (4.31)

and the true fund value follows

F̂ (t+ h) =
(
F̂ (t) + C(t)h

) [
R0
t+h + Π>(t)

(
Rt+h −R0

t+h1
)]
− P · h,

where Rt+h =
(
R1
t+h, R

2
t+h

)>
is the column vector of the risky asset returns and

Rit+h = e

(
µi−

∑2
j=1 σ

2
ij

2

)
h+
√
h
∑2

j=1 σijZj

, (4.32)

where Z1 and Z2 are two independent standard normal random variables. Figure 4.4 shows
the distributions of the optimal controls and fund value. It should not come as a surprise
that the patterns of the distributions in Figure 4.4 are all similar to those of Figure 4.1.
Furthermore, the differences between the distributions of the approximate and true solutions
are very small, meaning that the approximation works.

4.2.2 Finite Time Horizon

The model for the finite time case is the one presented in Section 2.3.2. Since we only add
assets to the portfolio, the value function has the same functional form as the one used for
single risky asset case. The initial value function therefore follows Equation (4.9) and can
be written in a recursive form:

V (F, t)

= min
C(t),Π(t)

Et

[∫ t+h

t
e−βs

(
κ(C(s)−NC)2 + (1− κ)(AL− F (s))2

)
ds+ V (F, t+ h)

]
.

(4.33)

Thus, the discrete recursive form we used for the algorithm is

Ṽ (F̃ , t)

= min
C̃(t),Π̃(t)

Et

[
e−βt

(
κ(C̃(t)−NC)2 + (1− κ)(AL− F̃ (t))2

)
h+ Ṽ (F̃ , t+ h)

]
, (4.34)

where Π̃(t) = (π̃1(t), π̃2(t))> is the column vector of discrete shares in the two risky assets,
and F̃ follows Equation (4.31). Since we now only have two risky assets, we can expand
Equation (4.31)

F̃ (t+ h) =
(
F̃ (t) + C̃(t)h

) [
R0
t+h + π̃1(t)

(
R1
t+h −R0

t+h

)
+ π̃2(t)

(
R2
t+h −R0

t+h

)]
− P · h,
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where R1
t+h and R2

t+h follow Equation (4.32). The terminal condition is again

Ṽ (F̃ , T ) = αe−βT (F̃ (T )−AL)2.

Similar to the single risky asset case, we first need to find the unique optimal controls at
t = T − h. The recursive form of the value function at t = T − h, Ṽ (F̃ , T − h), follows
Equation (4.34). We first solve the FOCs for π̃1(T − h) and π̃2(T − h), respectively. The
FOC of π̃1(T − h) is

Ṽπ̃1(T − h)

=ET−h

[
2αe−βT (F̃ (T )−AL) ∂F̃ (T )

∂π̃1(T − h)

]
=ET−h

[
2αe−βT (F̃ (T )−AL)

(
F̃ (T − h) + C̃(T − h)h

) (
R1
T −R0

T

)]
= 2αe−βTET−h

[(
a
[
R0
T + Π̃>(T − h)

(
RT −R0

T1
)]
− P · h−AL

)
a
(
R1
T −R0

T

)]
=ET−h

[(
a
[
R0
T + Π̃>(T − h)

(
RT −R0

T1
)]
− P · h−AL

) (
R1
T −R0

T

)]
= 0. (4.35)

Similarly, the FOC of π̃2(T − h) is

0 = ET−h
[(
a
[
R0
T + Π̃>(T − h)

(
RT −R0

T1
)]
− P · h−AL

) (
R2
T −R0

T

)]
. (4.36)

Equations (4.35) and (4.36) can be written in the form of(
P · h+AL

a
−R0

T

)
ET−h

[
R1
T −R0

T

]
= π̃1(T − h)ET−h

[(
R1
T −R0

T

)2
]

+ π̃2(T − h)ET−h
[(
R1
T −R0

T

) (
R2
T −R0

T

)]
, (4.37)

and (
P · h+AL

a
−R0

T

)
ET−h

[
R2
T −R0

T

]
= π̃2(T − h)ET−h

[(
R2
T −R0

T

)2
]

+ π̃1(T − h)ET−h
[(
R1
T −R0

T

) (
R2
T −R0

T

)]
. (4.38)

We can combine the above two equations into one equation using a matrix representation:

(
P · h+AL

a
−R0

T

)(
ET−h

[
R1
T −R0

T

]
ET−h

[
R2
T −R0

T

])

=

 ET−h
[(
R1
T −R0

T

)2]
ET−h

[(
R1
T −R0

T

) (
R2
T −R0

T

)]
ET−h

[(
R1
T −R0

T

) (
R2
T −R0

T

)]
ET−h

[(
R2
T −R0

T

)2]
 Π̃(T − h). (4.39)
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Let

D(T ) =

 ET−h
[(
R1
T −R0

T

)2]
ET−h

[(
R1
T −R0

T

) (
R2
T −R0

T

)]
ET−h

[(
R1
T −R0

T

) (
R2
T −R0

T

)]
ET−h

[(
R2
T −R0

T

)2]
 .

Then, the optimal value of Π̃(T −h) given a can be solved by using the following equation:

Π̃∗(T − h)[a] =
(
P · h+AL

a
−R0

T

)
D(T )−1

(
ET−h

[
R1
T −R0

T

]
ET−h

[
R2
T −R0

T

]) . (4.40)

Next, we solve the FOC for the contribution amount, C̃(T − h). The FOC of C̃(T − h)
follows Equation (4.15) and can be solved directly as well:

C̃∗(T − h)[a]

=NC − α

κ
e−βhET−h

[(
a
[
R0
T + Π̃∗>(T − h)[a]

(
RT −R0

T1
)]
− P · h−AL

)
×
(
R0
T + Π̃∗>(T − h)[a]

(
RT −R0

T1
))]

. (4.41)

Starting from t = T − 2h, we have general solutions for the optimal controls. Using the
idea employed to derive Equation (4.40), we first find the FOCs of the contribution and the
two shares separately:

Ṽπ̃1(t) = Et

[
ṼF̃ (t+ h)(F̃ (t) + C̃(t)h)

(
R1
t+h −R0

t+h

)]
= 0, (4.42)

Ṽπ̃2(t) = Et

[
ṼF̃ (t+ h)(F̃ (t) + C̃(t)h)

(
R2
t+h −R0

t+h

)]
= 0, (4.43)

ṼC̃(t) = Et

[
e−βt2hκ

(
C̃(t)−NC

)]
+ Et

[
ṼF̃ (t+ h)∂F̃ (t+ h)

∂C̃(t)

]
= 0. (4.44)

Applying Equation (4.22) to Equations (4.42) and (4.43), we then obtain

0 =Et
[(
R1
t+h −R0

t+h

) (
h(1− κ)

(
AL− F̃ (t+ h)

)
+ κ

(
C̃(t+ h)−NC

))]
,

0 =Et
[(
R2
t+h −R0

t+h

) (
h(1− κ)

(
AL− F̃ (t+ h)

)
+ κ

(
C̃(t+ h)−NC

))]
.

These two equations can be combined:(
0
0

)
= E

[(
R1
t+h −R0

t+h
R2
t+h −R0

t+h

)(
h(1− κ)

(
AL− F̃ (t+ h)

)
+ κ

(
C̃(t+ h)−NC

))]

= E
[
d(t+ h)

(
h(1− κ)

(
AL−

(
a
(
R0
t+h + Π̃>(t)d(t+ h)

)
− P · h

))
+κ

(
C̃(t+ h)[a]−NC

))]
, (4.45)

where
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Figure 4.5:Distributions of Approximate Solution Based on the Grid Value Func-
tion Approximation Method and True Solution of the Optimal Pension Funding
Model with Two Risky Assets.

(a) Distribution of True Fund Value (b) Distribution of Approximate Fund Value

(c) Distribution of True Optimal Contribu-
tion

(d) Distribution of Approximate Optimal
Contribution

(e) Distribution of True Optimal Share in
Risky Asset 1

(f) Distribution of Approximate Optimal
Share in Risky Asset 1

(g) Distribution of True Optimal Share in
Risky Asset 2

(h) Distribution of Approximate Optimal
Share in Risky Asset 2
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d(t+ h) =
(
R1
t+h −R0

t+h
R2
t+h −R0

t+h

)
.

The optimal shares in the two risky assets, Π̃∗(t) can therefore be found using Equation
(4.45). Then, we apply Equation (4.22) to Equation (4.44) to find the solution of C̃∗(t):

C̃∗(t)[a] =NC + e−βh

κ
× Et

[(
R0
t+h + Π̃∗>(t)[a]d(t+ h)

)
×
[
h(1− κ)

(
AL+ P · h− a

(
R0
t+h + Π̃∗>(t)[a]d(t+ h)

))
+κ

(
C̃∗(t+ h)[a]−NC

)]]
. (4.46)

We can then use Equations (4.45) and (4.46) to find the approximate numerical results
and compare them with the true solutions. The initial fund value F (0), the actuarial liability
AL, and the choice of grid values are similar to those given in Section 4.1.2. Using the
parameter values discussed in Section 4.2.1, Figure 4.5 shows the 5th, 50th, and 95th quantiles
of both true and approximate solutions.

Overall, the different percentiles in each panel tend to reach the target level. The dis-
tributions of the true and approximate solutions are almost identical. Figure 4.6 reports
the ECDF plots that examine the performance of the algorithm at different times. The
algorithm performs poorly for the assets’ shares at the beginning, but improves as time
passes by. When we reach the end of Year 2, the ECDFs are almost the same. For the
contribution amount, the approximation works well for any time t. As a consequence, the
true and approximate fund values are very close all the times. We can thus conclude that
the grid value approximation also works well for the multiple risky assets case, generally
speaking.
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Chapter 5

Robustness Checks

In this chapter, we perform robustness checks on the two algorithms. We apply a series of
tests to assess whether the two algorithms are robust to other parameter choices. Due to the
long computing time required to run the multiple-asset cases, we only focus on robustness
tests for single-asset cases.

5.1 Parameter Sets

Other than the base case that has been discussed in the previous chapters, 30 additional
parameter sets are tested. We divide these sets into several different groups.

5.1.1 Weight of the Contribution Risk

We first assess the impact of the importance of the contribution risk on the performance of
the algorithms. In the base case, we use a value of κ = 0.8, which puts a large weight on
the contribution risk. We therefore add two tests where the importance of contribution risk
is moderate at κ = 0.5, and low at κ = 0.2.

5.1.2 Market Price of Risk

By investigating the true optimal solutions, we find that the share in the risky asset is
directly impacted by the market price of risk (i.e., Sharpe ratio). Therefore, instead of
testing the risk-free return r, the risky return µ, and volatility σ separately, we assess
robustness tests based on different market prices of risks. Other than the market price of
risks of 0.3333 in the base case, we test two sets: market price of risks of 0.2 and 0.5.

5.1.3 Time Preference Factor, Valuation Rate, and Risk-Free Return

The third group of scenarios we consider is related to the time preference factor β, the
valuation rate δ, and the risk-free return r. Because the relationship between the values of
δ and r affects the target level of the contribution amount, we test the robustness of the
two algorithms under different target levels by changing the values of these two parameters.
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Moreover, δ and β are two parameters that control the discount level and both affect the
optimal solutions. Therefore, it is better to test these two parameters together. Thus, we
run robustness tests for different combinations of these three parameters. That is, for each
specific relationship between the values of δ and r (δ > r, δ = r, or δ < r), we test the
performance of two algorithms with different value combinations of δ and β.

5.1.4 Combined Effects

The above group is tested given a specific market price of risk. Because the value of r has
an impact on the market price of risk, we need to combine the above two types of groups
together as well. Hence, we apply the third group of sets introduced in Section 5.1.3 to each
market price of risks mentioned in Section 5.1.2.

5.2 Results

This section presents the performance of the two algorithms for the 30 different parameter
sets mentioned above. We use the root-mean-square error (RMSE) and the normalized root-
mean-square error (NRMSE) to examine the performance. The steps for calculating RMSE
and NRMSE are as follows:

1. Calculate the squared errors computed from the true and approximate solutions from
each time point along in each of the N = 5,000 simulated paths.

2. Sum all squared errors to find the total square error.

3. Compute the mean of the total square error.

4. Compute the square root of the total mean square error to obtain the RMSE.

5. For each time point, calculate the mean of the N true solutions.

6. Find the time-t variance of the N true solutions using the mean of N paths, t ∈
[0, T − h] for C∗ and π∗, and t ∈ [h, T ] for F.

7. Compute the mean of all the variances to find the average variance and its square
root to find the standard deviation.

8. Divide the RMSE by this standard deviation to find the NRMSE.

We use the parameter values introduced in Chapter 4 as the reference, which is Set
0 in Tables 5.1 and 5.2. Sets 1 and 2 belong to the first group which tests the weight of
the contribution risk. Starting from Set 3, the value of κ is back to 0.8. Sets 3 and 4 are
related to the second group that examines the Sharpe ratio. The next eight sets are part of
the third group, which uses a Sharpe ratio of 0.3333. The fourth group assesses combined
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effects and includes the remaining 18 sets, with Sets 13 to 21 using a Sharpe ratio of 0.2 and
the last nine sets a Sharpe ratio of 0.5. Table 5.1 shows the performance of value function
approximation, and Table 5.2 gives the results using grid value approximation.

From Table 5.1, we find that the RMSEs for all sets are very small. Even though the
NRMSE values are higher than the RMSE values, all of them are still below 0.1%. We
therefore conclude that value function approximation has a stable performance for different
parameter values. The RMSE values from Table 5.2 are much higher than those in Table
5.1, which is not a surprise. The approximation errors in value function approximation
mainly come from the approximation errors in the value function parameters, which lead
to approximation errors in the optimal controls and fund values.

The approximation errors in grid value approximation come from multiple sources. First,
there are discretization errors when converting the continuous-time problem to a discrete-
time problem. Second, during the backward stage, the root finding technique produces
approximation errors for each optimal share. Since the contribution amount depends on
the optimal share, the approximation errors in the optimal share also cause errors in the
contribution amount, which in turn lead to errors in the fund value. These approximation
errors also accumulate. Finally, in the forward stage, the linear interpolation creates errors
as well.

Although the values of the RMSEs for grid value approximation are higher, most of
the RMSEs are still below 0.4% for C∗ and π∗ and below 0.8% for F. Overall, grid value
approximation performs quite well. There are three sets that yield quite high RMSEs for
both C∗ and π∗: Sets 13 to 15. By using the parameter values from these three sets and
a time horizon of 4 years, the range of the values of F ∗(t) + C∗(t) is quite wide, which
goes beyond the range of the set of grid values we chose. A higher valuation rate δ than
the risk-free return r seems to cause this. As a consequence of the narrow grid values,
many of the approximation optimal controls are computed based on linear interpolation (or
extrapolation), which increases the approximation errors. If we increase the range of the
grid values, the RMSE values decrease. The value of the time preference factor has a small
impact on the accuracy of the approximation. From Equations (4.23) and (4.24), we find
that as κ decreases, additional weight is put on the part that may cause approximation
errors, which leads to higher RMSEs in Sets 1 and 2. This can be improved by choosing a
smaller time interval h.

If we focus on the NRMSE, many sets have values larger than 4%. Because the RMSE
values for most of them are less than 4%, the high NRMSE values are caused by small
standard deviations. These high values can be lowered by further decreasing the RMSE
values, which can be done by choosing a smaller time step h. The remaining several large
NRMSE values are due to high RMSE values, which can be improved by choosing a wider
range of grid values, as discussed above.
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Chapter 6

Conclusion

In the pension context, sponsor or employee’s optimal strategies could be determined by
solving dynamic programming problems. These optimal decisions may be difficult to obtain
in closed-form if the value function cannot be found or the HJB equation is hard to solve.
Therefore, numerical algorithms can be used to approximately solve these problems.

In this report, we presented two different numerical algorithms, the value function ap-
proximation and the grid value approximation. We then applied them to retirement related-
problems. The value function approximation can be applied to problems with infinite time
horizons, and the grid value approximation to those with finite time horizons. We used Mer-
ton’s model as an example of a DC-type problem and the model from Josa-Fombellida and
Rincón-Zapatero (2001) as an example of a DB-type problem. We consider both single and
multiple risky assets cases. The approximation results are compared with the true solutions
using different quantiles and the ECDFs at different time. The comparisons indicated that
the two algorithms perform well. In the robustness tests, we examined the performances
of two algorithms by using different parameter values. These combinations of parameter
values represented different choices of the assets, different market performances, and differ-
ent sponsor preferences. By comparing the RMSEs and NRMSEs, we concluded that the
two approximation methods can be used as alternative ways to find the optimal decisions
of similar problems, in general. Despite the fact that we know the true solutions for these
models, normally for more complex models, we would not. The good performance of the
two methods gives some guidance about solving optimal controls for more complex models.

There are some limitations in our models and assumptions. First, we assume that the
price of the assets follows a gBm. This makes the problem simpler but not representative
of the behavior of our markets. Further works can consider more complicated asset return
models; for example, by adding a jump term to the model. Second, we keep the normal cost
and the benefit paid out in our models constant, which may not be the case in real life.
It would be relevant to consider numerical algorithms used in this study to models that
account for the evolution of the normal cost and the benefit. The third limitation is related
to the objective function; we assume a quadratic criterion when combining the two risks in
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DB plans. It would be interesting to consider whether the two algorithms work for other
types of objective functions (e.g., absolute criterion).
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Appendix A

A.1 Detailed Solution of Q(t)

By Equation (2.54), Q(t) can be written as

Qt =
(
r + 1− κ

L(t)

)
Q(t) +

[
(NC − P )− AL

L(t)(1− κ)
]
. (A.1)

Let y(t) = r+ 1−κ
L(t) and b(t) = (NC −P )− AL

L(t)(1− κ). Equation (A.1) therefore has a form
of Qt = y(t)Q(t) + b(t), which is a linear differential equation that allows for the following
solution:

Q(t) = l · eY (t) + eY (t)
∫
b(t)e−Y (t) dt, (A.2)

where l = ek is a constant and Y (t) =
∫
y(t) dt. First, we solve for Y (t) :

Y (t) =
∫
r + 1− κ

L(t) dt

=
∫
r +

(
ψ1 − ψ2e

ω3(T−t)
)

(1− κ)
ω2ψ1 − ω1ψ2eω3(T−t) dt

=
∫
rdt+ (1− κ)

∫
ψ1 − ψ2e

ω3(T−t)

ω2ψ1 − ω1ψ2eω3(T−t) dt.

The first integral is trivial and we mainly focus on the second integral. We multiply both
the nominator and denominator by eω3t and the integral becomes∫

ψ1e
ω3t − ψ2e

ω3T

ω2ψ1eω3t − ω1ψ2eω3T
dt. (A.3)

To solve Equation (A.3), several substitutions are needed. First, let ν = −ω3t:

− 1
ω3

∫
ψ2e

ν+ω3T − ψ1
ω1ψ2eν+ω3T − ω2ψ1

dν.
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Then, we let u = −ν − ω3T :

−
∫

ψ1e
u − ψ2

ω2ψ1eu − ω1ψ2
du

=−
∫ ψ1

ω2ψ1
(ω2ψ1e

u − ω1ψ2) + ω1ψ2ψ1
ω2ψ1

− ψ2

ω2ψ1eu − ω1ψ2
du

=−
∫ 1
ω2

+
ω1ψ2
ω2
− ψ2

ω2ψ1eu − ω1ψ2
du

=−
[(
ω1ψ2
ω2
− ψ2

)∫ 1
ω2ψ1eu − ω1ψ2

du+
∫ 1
ω2
du

]
. (A.4)

After applying two substitutions, Equation (A.4) looks much simpler than Equation (A.3)
does. To solve Equation (A.4), two final substitutions are required. Let z = eu and p =
ω2ψ1 − ω1ψ2

z , so our equation can be further simplified and solved:

−
[(
ω1ψ2
ω2
− ψ2

) 1
ω1ψ2

ln p+
∫ 1
ω2
du

]
=−

[(
ω1ψ2
ω2
− ψ2

) 1
ω1ψ2

ln
(
ω2ψ1 −

ω1ψ2
z

)
+ u

ω2

]
=−

[(
ω1ψ2
ω2
− ψ2

) 1
ω1ψ2

ln ω2ψ1e
u − ω1ψ2
eu

+ u

ω2

]
=−

( 1
ω2
− 1
ω1

)
ln ω2ψ1e

u − ω1ψ2
eu

− u

ω2
. (A.5)

Now, we have solved the integral of Equation (A.3) with two substitutions. To obtain the
final solution, we need to undo all the substitutions. First, we undo the substitution of
u = −ν − ω3T :

−ω1 − ω2
ω1ω2

ln
(
ω2ψ1e

−ν−ω3T − ω1ψ2
e−ν−ω3T

)
− −ν − ω3T

ω2
.

Then, we undo the second substitution of ν = −ω3t:

− 1
ω3

[
−ω1 − ω2

ω1ω2
ln
(
ω2ψ1e

ω3t−ω3T − ω1ψ2
eω3t−ω3T

)
− ω3t− ω3T

ω2

]

= t− T
ω2

+ ω1 − ω2
ω1ω2ω3

ln ω2ψ1e
−ω3(T−t) − ω1ψ2
e−ω3(T−t) . (A.6)

The expression denoted by (A.6) is our final solution of Equation (A.3). Using this solution,
Y (t) becomes

Y (t) = (1− κ)
(
t− T
ω2

+ ω1 − ω2
ω1ω2ω3

ln ω2ψ1e
ω3(t−T ) − ω1ψ2
eω3(t−T )

)
+ rt.

After finding Y (t), we can compute eY (t):

eY (t) = e
(1−κ)

(
t−T
ω2

+ ω1−ω2
ω1ω2ω3

ln ω2ψ1e
ω3(t−T )−ω1ψ2
eω3(t−T )

)
+rt
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=
(
e

ln ω2ψ1e
ω3(t−T )−ω1ψ2
eω3(t−T )

)(1−κ) ω1−ω2
ω1ω2ω3

· e
1−κ
ω2

(t−T )+rt

=
(
ω2ψ1e

ω3(t−T ) − ω1ψ2
eω3(t−T )

)(1−κ) ω1−ω2
ω1ω2

ω1−ω2
κ · e

1−κ
ω2

(t−T )+rt

=
(
ω2ψ1 − ω1ψ2e

ω3(T−t)
)κ(1−κ)

ω1ω2 · e
1−κ
ω2

(t−T )+rt

= 1
ω2ψ1 − ω1ψ2eω3(T−t) e

1−κ
ω2

(t−T )+rt
. (A.7)

By having eY (t), it is easy to obtain e−Y (t). Thus, we are able to find the solution of∫
b(t)e−Y (t) dt:∫
b(t)e−Y (t) dt

=
∫ (NC − P )−

(
ψ1 − ψ2e

ω3(T−t)
)

(1− κ)AL
ω2ψ1 − ω1ψ2eω3(T−t)

(ω2ψ1 − ω1ψ2e
ω3(T−t)

)
e
− 1−κ

ω2
(t−T )−rt

dt

=
∫

(NC − P )
(
ω2ψ1 − ω1ψ2e

ω3(T−t)
)
e
− 1−κ

ω2
(t−T )−rt

dt

−
∫

(1− κ)AL
(
ψ1 − ψ2e

ω3(T−t)
)
e
− 1−κ

ω2
(t−T )−rt

dt

=(NC − P )
[

ω2ψ1

−1−κ
ω2
− r

e

(
− 1−κ

ω2
−r
)
t+ 1−κ

ω2
T
− ω1ψ2

−ω3 − 1−κ
ω2
− r

e

(
−ω3− 1−κ

ω2
−r
)
t+
(
ω3+ 1−κ

ω2

)
T
]

− (1− κ)AL
[

ψ1

−1−κ
ω2
− r

e

(
− 1−κ

ω2
−r
)
t+ 1−κ

ω2
T
− ψ2

−ω3 − 1−κ
ω2
− r

e

(
−ω3− 1−κ

ω2
−r
)
t+
(
ω3+ 1−κ

ω2

)
T
]

=e
1−κ
ω2

(T−t)−rt
[
(NC − P ) ω2

2ψ1
−(1− κ)− rω2

− (1− κ)AL ω2ψ1
−(1− κ)− rω2

]

− e

(
1−κ
ω2

)
(T−t)−rt

eω3(T−t)
[
(NC − P ) ω1ω2ψ2

−ω2ω3 − (1− κ)− rω2

−(1− κ)AL ω2ψ2
−ω2ω3 − (1− κ)− rω2

]
=e

1−κ
ω2

(T−t)−rt
[
ALω2ψ1(δω2 + (1− κ))

(1− κ) + rω2
− ω2ψ2AL(δω1 + (1− κ))

ω2ω3 + (1− κ) + rω2
eω3(T−t)

]
.

As a consequence, the solution of eY (t) ∫ b(t)e−Y (t)dt is

AL

ω2ψ1 − ω1ψ2eω3(T−t)

[
ω2ψ1(δω2 + (1− κ))

(1− κ) + rω2
− ω2ψ2(δω1 + (1− κ))
ω2ω3 + (1− κ) + rω2

eω3(T−t)
]
. (A.8)

Since we have ω1ω2 = −κ(1−κ) and ω3 = ω1−ω2
κ from Equations (2.57) to (2.59), Equation

(A.8) can be written as

AL

ω2ψ1 − ω1ψ2eω3(T−t)

[
κψ1(δω2 + (1− κ))

κr − ω1
− κψ2(δω1 + (1− κ))

κr − ω2
eω3(T−t)

]
.
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The second to last step is to determine the constant l in Equation (A.2). From Section 2.2.2,
we know that Q(T ) = AL, which means that

AL = l · 1
ω2ψ1 − ω1ψ2eω3(T−T ) e

1−κ
ω2

(T−T )+rT

+ AL

ω2ψ1 − ω1ψ2eω3(T−T )

[
κψ1(δω2 + (1− κ))

κr − ω1
− κψ2(δω1 + (1− κ))

κr − ω2
eω3(T−T )

]
= l · 1

ω2ψ1 − ω1ψ2
erT

+ AL

ω2ψ1 − ω1ψ2

[
κψ1(δω2 + (1− κ))

κr − ω1
− κψ2(δω1 + (1− κ))

κr − ω2

]
. (A.9)

Using Equation (A.9), we can find the constant l:

l = ALe−rT
{

(ω2ψ1 − ω1ψ2)− κ
[
ψ1(δω2 + (1− κ))

κr − ω1
− ψ2(δω1 + (1− κ))

κr − ω2

]}
. (A.10)

Finally, we can obtain the equation for Q(t) by applying Equations (A.7), (A.8) and (A.10)
to Equation (A.2):

Q(t) =ALe−rT e
1−κ
ω2

(t−T )+rt

ω2ψ1 − ω1ψ2eω3(T−t)

×
{

(ω2ψ1 − ω1ψ2)− κ
[
ψ1(δω2 + (1− κ))

κr − ω1
− ψ2(δω1 + (1− κ))

κr − ω2

]}
+ AL

ω2ψ1 − ω1ψ2eω3(T−t)

[
κψ1(δω2 + (1− κ))

κr − ω1
− κψ2(δω1 + (1− κ))

κr − ω2
eω3(T−t)

]
= AL

ω2ψ1 − ω1ψ2eω3(T−t)

×
{
e

(
1−κ
ω2

+r
)

(t−T )
[
(ω2ψ1 − ω1ψ2)− κ

(
ψ1(δω2 + (1− κ))

κr − ω1
− ψ2(δω1 + (1− κ))

κr − ω2

)]
+
[
κψ1(δω2 + (1− κ))

κr − ω1
− κψ2(δω1 + (1− κ))

κr − ω2
eω3(T−t)

]}
. (A.11)

The above equation can be simplified. First, from Equations (2.57) to (2.60), we have

ψ1ω2 − ψ2ω1 = α(ω2 − ω1)
1− κ
ω2

= −ω1
κ

ψ2ω
2
1 − ψ1ω

2
2 = α(ω2

1 − ω2
2)− ω1ω2(ω1 − ω2)

ψ1 − ψ2 = ω2 − ω1.

By applying these four equivalences to Equation (A.11), we can finally obtain

Q(t) = AL(
ω2ψ1 − ω1ψ2eω3(T−t)) (κr − ω1)(κr − ω2)

×
{
e−(r−ω1

κ )(T−t)(r − δ)κ[(κr − ω2)ω2ψ1 − (κr − ω1)ω1ψ2]
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+κδ
[
(κr − ω2)ω2ψ1 − (κr − ω1)ω1ψ2e

ω3(T−t)
]

−ω1ω2
[
(κr − ω2)ψ1 − (κr − ω1)ψ2e

ω3(T−t)
]}

= −ALκ(r − δ)(
ω2ψ1 − ω1ψ2eω3(T−t)) (κr − ω1)(κr − ω2)

×
{

(κr − ω2)ω2ψ1 − (κr − ω1)ω1ψ2e
ω3(T−t)

−[(κr − ω2)ω2ψ1 − (κr − ω1)ω1ψ2]e−(r−ω1
κ )(T−t)

}
+ AL(

ω2ψ1 − ω1ψ2eω3(T−t)) (κr − ω1)(κr − ω2)

×
{
κr
[
(κr − ω2)ω2ψ1 − (κr − ω1)ω1ψ2e

ω3(T−t)
]

−ω1ω2
[
(κr − ω2)ψ1 − (κr − ω1)ψ2e

ω3(T−t)
]}

= −ALκ(r − δ)(
ω2ψ1 − ω1ψ2eω3(T−t)) (κr − ω1)(κr − ω2)

×
{

(κr − ω2)ω2ψ1 − (κr − ω1)ω1ψ2e
ω3(T−t)

−[(κr − ω2)ω2ψ1 − (κr − ω1)ω1ψ2]e−(r−ω1
κ )(T−t)

}
+ AL(

ω2ψ1 − ω1ψ2eω3(T−t)) (κr − ω1)(κr − ω2)

× (κr − ω2)(κr − ω1)
(
ω2ψ1 − ω1ψ2e

ω3(T−t)
)

=AL− κ(r − δ)AL(
ω2ψ1 − ω1ψ2eω3(T−t)) (κr − ω1)(κr − ω2)

×
{

(κr − ω2)ω2ψ1 − (κr − ω1)ω1ψ2e
ω3(T−t)

−[(κr − ω2)ω2ψ1 − (κr − ω1)ω1ψ2]e−(r−ω1
κ )(T−t)

}
.
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