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Abstract 

Chemotherapeutants are commonly used to manage sea lice outbreaks in salmonid aquaculture. 

Among the classes of chemotherapeutants used are avermectins; these tend to persist in the 

sediments underneath salmon farms and may directly impact nearby benthic fauna of marine 

ecosystems. The present study sought to determine how two environmental factors – namely, 

sediment organic carbon (OC) and chemical residence time – can modify the toxicity of 

emamectin benzoate (EB; formulation: Slice®) and ivermectin (IVM) in two species of benthic 

invertebrates: the amphipod Eohaustorius estuarius and the polychaete Neanthes virens. In both 

species, sediment OC significantly reduced toxicity, an effect that was more pronounced for IVM 

and combination exposures. Four months of chemical residence time reduced toxicity in E. 

estuarius but did not affect toxicity in N. virens. This research provided novel insight into the 

effects of two environmental factors that potentially impact avermectin toxicity in nontarget 

species underneath salmon farms. 

Keywords:  Sea lice; Avermectins; Toxicity; Organic carbon; Sediment aging; Benthic 

invertebrates 
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Chapter 1. Introduction 

 

1.1. Aquaculture 

 

1.1.1. Worldwide 

 

In the past several decades, global aquaculture production has grown rapidly. In the 1980s 

and 1990s, the annual growth rate by tonnage of product was 10.8 and 9.5%, respectively (FAO 

2018). More recently, between 2001 to 2016, annual growth rates have slowed, but continue to 

grow at a rate of 5.8% (FAO 2018). Meanwhile, wild capture production has not nearly expanded 

as quickly. The world is becoming increasingly reliant on aquaculture, relative to wild capture 

production; aquaculture production is now approaching wild capture production rates by tonnage 

(FAO 2018). For example, the global production of aquaculture grew by approximately 30% 

between the years 2011 and 2016 (FAO 2018). On the other hand, wild capture production 

remained steady with a marginal decline of approximately 1% during that same timespan (FAO 

2018). The result is that aquaculture production, by tonnage, now comprises close to half of all 

seafood production globally. 

A variety of taxa are reared globally, with finfish representing a major proportion of 

production (FAO 2018). In 2016, global aquaculture production was 110.2 million tons, of which 

30.1 million tons were aquatic plants (FAO 2018). Finfish production was responsible for 

approximately 68% of aquatic animal production. The 80 million tons of animal production was 

comprised of 54.1 million tons of finfish, 17.1 million tons of molluscs, and 7.9 million tons of 

crustaceans (FAO 2018). The remaining 938,500 tons were other groups of animals such as 

turtles, sea cucumbers, sea urchins, frogs, and edible jellyfish (FAO 2018). As of 2016, the FAO 

(2018) has recorded 598 species to have been reared in aquaculture; this includes 369 finfish, 

109 molluscs, 64 crustaceans, 7 amphibians, 9 aquatic invertebrates, and 40 aquatic algae (FAO 

2018). Of the finfish, three species of carp (Ctenopharyngodon idellus, Hypophthalmichthys 

molitrix, and Cyprinus carpio) were the top three finfish produced globally in 2016, responsible for 

29% of all finfish production (FAO 2018). Atlantic salmon (Salmo salar) produced the ninth largest 

quantity of finfish, comprising 4% of all finfish produced globally (FAO 2018).  
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The largest producer of aquaculture is China. It has accounted for more tonnage of 

aquaculture production than the rest of the world combined since 1991 (FAO 2018). From 1995 

to 2016, it has contributed to over 60% of global aquaculture production, by tonnage (FAO 2018). 

This makes up a large percentage of Asia’s production, which has been responsible for close to 

90% of global aquaculture production from 1995 to 2016 (FAO 2018). In 2016, the Americas, 

Europe, Africa, and Oceania, were responsible for 4.2, 3.7, 2.5, and 0.3% of global aquaculture 

production by tonnage, respectively. Although the America’s and Oceania’s contributions have 

remained relatively constant between the years of 1995 to 2016, Africa’s contribution has been 

rising steadily (FAO 2018). Meanwhile Europe’s production has almost halved during these years 

(FAO 2018).  

 

1.1.2. Canadian aquaculture 

 

Aquaculture contributes significantly to Canada’s economy and has been expanding 

rapidly in recent decades. Between the years 2000 and 2018, the tonnage of production by 

aquaculture in Canada has grown by 50% (DFO 2018). This generates approximately 20% of 

total seafood production in Canada, contributing to one third of Canada’s total fisheries value 

(DFO 2018). In 2018, aquaculture produced 191,259 tons of product, corresponding to a 

monetary value of $1.4 billion CAD (DFO 2018). In addition, it is an important employer. In 2010, 

it was directly responsible for approximately $190 million CAD of the annual labor income, and 

indirectly for over $500 million CAD (DFO 2013). 

Aquaculture operations can be found in all provinces, and in the Yukon. However, there 

are five provinces that contribute to 95% of Canada’s aquaculture production: British Columbia, 

New Brunswick, Prince Edward Island, New Foundland, and Nova Scotia (DFO 2018). These 

provinces contributed to approximately 51%, 16.5%, 13%, 9.4%, and 5.3%, respectively, of total 

annual production in 2018 (DFO 2018).  

Forty-five aquatic species are reared in aquaculture operations across Canada (DFO 

2018). Of these, finfish, shellfish, and algae make up 26, 16, and 3 species, respectively (DFO 

2018). Finfish production plays the most significant role in Canadian aquaculture. It alone 

constitutes most of this industry’s production, accounting for close to 80% of Canada’s annual 

production, by tonnage, over the past ten years (DFO 2018). Salmonid species are the major 
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contributor to finfish production, representing a crucial resource for the Canada’s aquaculture 

industry. 

 

1.1.3. Salmonid aquaculture in Canada 

 

Canada is the fourth largest producer of farmed salmonids (Family: Salmonidae) 

worldwide, behind Chile, Scotland, and Norway (Burridge et al. 2010, DFO 2018). A total of 9 

salmonid species are farmed in Canada including those of the genus Salvelinus, Oncorhynchus, 

and Salmo (DFO 2018). Of these, the three major species farmed are Atlantic Salmon (Salmo 

salar), Chinook Salmon (Oncorhynchus tshawytscha), and Coho Salmon (Oncorhynchus 

kisutch). Salmonids represent an overwhelming majority of total finfish production in Canada. In 

2018, salmon and trout accounted for close to 90% of finfish production, by tonnage (DFO 2018). 

Three provinces account for essentially all salmon production in Canada: British Columbia, New 

Brunswick, and Nova Scotia; in 2018, these provinces comprised 70.6, 23, and 6.4% of all salmon 

production in Canada by tonnage, respectively (DFO 2018).  

 

1.1.4. Salmonid aquaculture in BC 

 

Well over half of all salmonid aquaculture production originates in BC. Approximately 130 

marine finfish aquaculture operations exist in BC (DFO 2011a). These operations are primarily 

situated along the east and west coasts of Vancouver Island, in coastal areas near locations 

including Tofino, Campbell River, and Port Hardy (DFO 2011a). These facilities are almost 

exclusively devoted to salmonid farming, especially Atlantic salmon (DFO 2011a). In 2018, by 

weight, salmonid aquaculture was responsible for approximately 99.4% of all finfish aquaculture 

production and 90.3% of all aquaculture production in BC. Furthermore, around 80 freshwater 

finfish facilities also exist in BC, typically using pond culture of rainbow trout, or functioning as a 

hatchery for sturgeon, Coho salmon, and sockeye salmon (DFO 2011a).  

Marine and freshwater salmonid aquaculture implements a variety of aquatic farming 

techniques. Among these, open net pens are a common method for farming salmonids in Canada. 

On the coast of BC, over 100 open net pen salmon farms are active in marine waters (DFO 2020). 

Open net pens are permeable enclosures that are placed directly in coastal waters. In this way, 
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they can take advantage of conditions of natural aquatic environments. For example, water 

temperature, salinity, and dissolved oxygen, can all be regulated in open net pens by continuous 

exchange with the surrounding aquatic environment. Additionally, waste products are prevented 

from building up in open net pens since they can disperse into the surrounding marine 

environment.  

The operational efficiencies of open net pens come with drawbacks. Coastal open net pens 

can negatively impact the surrounding marine ecosystem (Burridge et al. 2010, Burridge and Van 

Geest 2014, Krkosek et al. 2011, Haya et al. 2001, Morton and Routeledge 2016). One reason 

for this is that the run-off from farms, including waste-products and chemical treatments, can 

disperse into the surrounding environment, polluting the ecosystem (Burridge et al. 2010, Burridge 

and Van Geest 2014, Haya et al. 2001). Another reason is that these densely populated pens 

provide an ideal environment for the propagation of pathogens (Krkosek et al. 2011, Morton and 

Routeledge 2016). Pathogens such as viruses, bacteria, and parasites can proliferate on salmon 

farms, then disperse into the environment (Krkosek et al. 2011, Morton and Routeledge 2016). 

Sea lice are one example of a pathogen that can thrive on salmon farms. 

 

1.2. Sea lice 

 

Sea lice are ectoparasitic copepods of the family Caligidae, with over 500 species 

belonging to 37 genera (Boxaspen 2006, Ahyong et al. 2011). They can be found in both brackish 

and marine environments. Their life cycle can be summarized in the following stages: (1) free-

living planktonic (2) juvenile, (3) pre-adult, and (4) adult (Figure 1). The number of moulting events 

that occur at each of these stages depends on the species of sea lice (Boxaspen 2006). 

Furthermore, not all species have a pre-adult phase (Costello 2006). Immediately following 

hatching, the free-living planktonic stage, also called the naupliar stage, disperses with water 

currents (Boxaspen 2006). This precedes the juvenile stage when it begins to feed on the host 

(Boxaspen 2006). At the beginning of this juvenile stage, when it is referred to as a copepodid, 

the sea louse uses photo-, mechano-, and chemoreceptors to locate its host (Costello 2006, 

Thorstad et al. 2015); this is the infectious stage. Using specialized filamentous mouthparts, the 

copepodid attaches to the epithelium of the host, and begins feeding on the mucus, underlying 

tissue, and blood (Costello 2006). After attachment, the copepodid moults into a chalimus. During 

its juvenile stage it is sessile (Thorstad et al. 2015). Once it progresses to the pre-adult and adult 
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stages, it is mobile, continuing to feed with the additional ability of swimming in the water column 

for short periods (Thorstad et al. 2015). In this mobile phase, it has the potential to transfer from 

one host to another (Thorstad et al. 2015). The mobile phase is the most damaging to the host 

(Torrissen et al. 2013).  

Host range depends on the species of sea lice; most sea lice research has focused on 

two species: L. salmonis and C. elongatus (Boxaspen 2006). As a result, much more is known 

about these two species than others. C. elongatus is more of a generalist, having been recorded 

to parasitize over 80 species of both elasmobranch and teleost fish (Pike and Wadsworth 1999). 

On the other hand, L. salmonis is specialized in parasitizing salmonids. It has been observed to 

parasitize 13 species of salmonid (Johnson and Fast 2004, Pike and Wadsworth 1999). Under 

rare circumstances, it can also parasitize non-salmonid hosts (Johnson and Fast 2004, Pike and 

Wadsworth 1999). 

During the feeding stages of its life cycle, sea lice can reduce a salmonid host’s fitness. 

Sublethal effects that have been documented in salmon include reduced respiratory and 

osmoregulatory capacity; reduced growth and swimming capabilities; and compromised immune 

function (Fjelldal et al. 2019, Godwin et al. 2017, Johnson and Fast 2004, Tully and Nolan 2002, 

Wagner et al. 2004). These sublethal effects may indirectly lead to mortality, however it is less 

common that sea lice are directly responsible for the mortality of its salmonid host.  

Sea lice infection intensity thresholds for sublethal and lethal effects are hard to define as 

they appear to be salmonid species and life-stage dependent. Generally, Atlantic salmon (Salmo 

spp.) appear to be more susceptible to these effects than Pacific salmon species (Costello 2006). 

In addition, earlier life stages are more susceptible than adults (Liu et al. 2011, Morton et al. 2016). 

A recent study using L. salmonis showed that after four weeks, Arctic Char (Salvelinus alpinus) 

smolts with a mean infection intensity of 0.33 (range 0.09-0.91) mobile lice per g of fish show 

significant declines in body growth (weight and length), and osmoregulatory abnormalities 

(Fjelldal et al. 2019). Furthermore, fish mortality showed an infection intensity-dependent trend, 

with 100% mortality at > 0.7 mobile lice g- fish (Fjelldal et al. 2019). In a different study, at 21 d 

post-infection, brown trout (Salmo trutta) smolts began to show physiological signs of infection at 

an L. salmonis load of 0.19-0.68 mobile lice per gram of fish, corresponding to approximately 13 

sea lice per fish (Wells et al. 2006). These physiological endpoints included changes in plasma 

glucose, lactate, osmolarity, chloride, and cortisol (Wells et al. 2006). Deleterious effect thresholds 

of sea lice infection have not been thoroughly investigated for other species of salmonids. 

However, Costello (2006) suggests that if one accounts for laboratory, population, and on-farm 
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observations, a general guideline is that 5-10 sea lice per fish or 0.1 sea lice per gram of fish has 

the potential to be deleterious to all salmonid species of any life stage. 

High host population densities on salmon farms are conducive of propagation of parasites 

including sea lice. The first recorded outbreak of sea lice on Atlantic salmon farms occurred in 

Norway in the 1960s (Pike and Wadsworth 1999). Similar findings occurred in the mid-1970s and 

late 1980s in Scotland and the Atlantic coast of North America, respectively (Pike and Wadsworth 

1999). Of the species of sea lice that exist, there are five species that are reported most often in 

salmonid marine aquaculture globally: Caligus clemensi (Pacific Ocean) Caligus elongatus 

(Atlantic Ocean), Lepeophtheirus salmonis, Caligus teres, and Caligus rogercressyi (Johnson et 

al. 2004).  The latter two are found in the Southern Hemisphere, while the other three are found 

in the Northern Hemisphere (Johnson and Fast 2004). These five species are associated with the 

greatest economic and ecological burden. 

Sea lice outbreaks on salmon farms have the potential to cause both economic and 

ecological impacts. Economically, the cost of management and the loss of product is responsible 

for a reduction in revenue for the aquaculture industry. Costello (2009a) estimated that globally, 

sea lice outbreaks cost salmonid aquaculture operations close to $500 million USD annually, 

which is 6% of the total production value. More recently, Abolofia et al. (2017) estimates that sea 

lice infestations on salmon farms result in a loss of revenue of between 2.27-13.10% depending 

on latitude and seasonality of salmon cohort introduction into net pens. Wild catch fisheries may 

also experience a loss in revenue due the spread of sea lice from farmed salmon to wild 

populations. Although the financial impact on wild fisheries have been more challenging to define. 

Furthermore, the impact on wild salmon populations also represents an environmental concern. 

Many studies have revealed that open net pens allow for transmission of sea lice to wild 

populations, increasing the sea lice infection load in these populations (Costello 2009b, Krkosek 

et al. 2005, Morton et al. 2004, Morton et al. 2008, Torrissen et al. 2013, Thorstad and Finstad 

2018). In fact, the passive dispersal distance of the naupliar life-stage of sea lice can be greater 

than 100 km depending on ocean currents (Thorstad and Finstad 2018). Although sea lice are 

naturally occurring in wild populations, the added burden from this spill-over from salmon farms 

appears to be ecologically relevant. For example, two different salmon farms located in BC along 

wild salmon migration routes were modelled to increase sea lice infection pressure on juvenile 

wild pink (Oncorhynchus gorbuscha) and coho (Oncorhynchus kisutch) salmon by four to five 

orders of magnitude over natural infection rates (Krkosek et al. 2005). This was the case over a 

75 km span along the migration route (Krkosek et al. 2005). Similar findings have been made in 
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BC, showing a significantly greater abundance of L. salmonis and C. clemensi on wild juvenile 

pink, chum, and sockeye (Oncorhynchus nerka) salmon inhabiting areas near salmon farms 

compared to populations not in the vicinity of farms (Morton et al. 2004, Morton et al. 2008, Price 

et al. 2011). 

 

 

Figure 1: Depiction of salmon sea louse life cycle. The free-living planktonic stage is the nauplius 
(length: ~0.5-0.6 mm). This is followed by the juvenile life stages (copepodid and chalimus) when 
it begins feeding on the superficial tissue of the salmonid host. The preadult and adult phases can 
transfer from one host to another. Sizes of different life-stages are not shown to scale. The length 
of the copepodid and chalimus stages are 0.7 and 1.1-2.3 mm, respectively. The length of 
preadults is typically between 3.4-5.2 mm. The length of adults is 5-6 mm (males) and 8-12 mm 
(females). (Figure credit: Thorstad et al. 2015). 
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1.3. Sea lice management strategies 

 

Methods for managing and preventing sea lice burdens can be broadly categorized into two 

different groups: (1) non-chemical and (2) chemical. Non-chemical means include the following: 

fallowing; biological controls; improved animal husbandry; mechanical and electrical barriers; 

traps; mechanical, thermal, and optical delousing; and selective breeding (DFO 2014, Overton et 

al. 2018, Sletmoen 2016). Chemical treatments combat sea lice with chemotherapeutants. Five 

groups of chemotherapeutic compounds have been, or are currently being used, worldwide in 

salmonid aquaculture: organophosphates (OPs), pyrethroids, hydrogen peroxide, avermectins, 

and benzoyl ureas (Aaen et al. 2015, Burridge et al. 2010, Haya et al. 2005, Roth 2000). The 

latter two groups are delivered as in-feed additives, while the former three are delivered through 

bath treatments (Haya et al. 2005). Although the use of chemotherapeutants is currently the most 

widely used approach to management, there is a large base of evidence for sea lice developing 

resistance to all groups of chemotherapeutants except for benzoyl ureas (Aaen et al. 2015). In 

fact, certain mechanisms behind resistance have even been elucidated. For example, a mutation 

in the gene that encodes acetylcholinesterase (AChE) is responsible for resistance to 

organophosphates (Aaet et al. 2015, Fallang et al. 2004). The trend towards increased resistance 

to chemotherapeutants demonstrates the importance of developing an integrated approach to 

management. Furthermore, use of chemotherapeutants can have potentially damaging ecological 

effects due to chemical pollution of the surrounding aquatic ecosystem. Therefore, the 

development and improvement of non-chemical treatments is an important future direction for an 

effective integrated pest management strategy. 

 

1.3.1. Non-chemical treatments 

 

Many non-chemical sea lice management and prevention efforts exploit the concept of 

reducing salmonid host population densities on farms and the density of farms within a certain 

geographical area (DFO 2014, Jansen et al. 2012, Kristoffersen et al. 2013). For example, 

fallowing is a management option which involves removing salmon hosts from within a net-pen 

for a certain duration to reduce host population density, and therefore also sea lice density (DFO 

2014). An effective duration of fallowing depends on the life cycle length of sea lice, which is also 

affected by environmental conditions such as water temperature (DFO 2014). Another 
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consideration for effective fallowing is wild fish population densities near the salmon farm (DFO 

2014). If nearby wild host fish population densities are high, fallowing may be less effective. As a 

preventative measure, some salmon farms may also permanently operate with reduced salmon 

net-pen densities (DFO 2014). Furthermore, with regards to both management by fallowing and 

prevention by reduced cage density, it is important to consider geographical salmon farm density. 

For example, in Chile and Norway, the density of farms in an area is positively correlated with sea 

lice abundance on farms in that area (Jansen et al. 2012, Kristoffersen et al. 2013). It is therefore 

recommended that farms not be situated too close to each other. Furthermore, it is recommended 

that all farms nearby each other make a concerted effort when adopting any management and 

prevention approach.  

Biological controls can be divided into two methods: (1) Integrated Multitrophic 

Aquaculture (IMTA) using bivalves and (2) utilizing cleaner fish. Broadly speaking, IMTA looks to 

achieve a more ecologically sustainable approach by allowing nearby farmed seaweed or filter-

feeding mollusks to recycle excess nutrients (for example from feed/waste) generated by 

aquaculture operations (DFO 2014). However, promoting the proliferation of filter feeding bivalves 

can also act as a method for biological control, since they can feed on the free-living zooplanktonic 

life-stage of sea lice (Alexander et al. 2016, DFO 2014). Although, the efficacy of this approach 

has yet to be investigated. The more well-established biocontrol method is the use of certain fish, 

termed ‘cleaner fish’, which graze directly on attached sea lice, reducing parasite load for hosts. 

The use of wrasse (Labridae spp.) as a cleaner fish began in 1989 in Norway and Scotland. 

Currently, five species of wrasse are used in those countries (DFO 2014). One major limitation to 

wrasse is that they are dormant during winter months and therefore unable to graze at that time 

(Powell et al. 2018). This prompted interest in the lumpfish (Cyclopterus lumpus), which can 

continue to feed on lice in winter months (Powell et al. 2018). The lumpfish has shown promise 

and is now the most used cleaner fish in Norwegian aquaculture (Barrett et al. 2020, Imsland et 

al. 2018, Powell et al. 2018). Although in Scotland and Norway cleaner fish are common practice 

on farms, in Canada this strategy has yet to be adopted. Promising species for use in eastern 

Canada include the cunner (Tautogolabrus adspersus) and the lumpfish which are endemic to 

this region (DFO 2014). There are no known candidates for the west coast of Canada, since no 

known cleaner fish candidates are endemic to this area (DFO 2014).  

Selective breeding strategies for sea lice resistant strains of Atlantic salmon (Salmo salar) 

has the potential to become an important facet in sea lice management in aquaculture (Gharbi et 

al. 2015, Gjerde et al. 2011, Jones et al. 2002, Kolstad et al. 2005, Tsai et al. 2016). However, it 
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is still in need of development. Two major issues currently are that it lacks reliable protocols for 

identifying breeding value and its efficacy has not been sufficiently explored (Gharbi et al. 2015). 

It is also a work intensive and time-consuming process, which may not bear immediate results, 

and has no guarantee of working. Despite this, Atlantic salmon eggs for strains with increased 

sea lice resistance are now commercially available in Norway (DFO 2014). As it stands, selective 

breeding is an important future direction to consider in the development of non-chemical 

management strategies. 

Delousing strategies can be categorized as follows: mechanical, temperature/salinity 

treatment, and optical. Mechanical delousing technologies involve removal of sea lice by flushing 

the salmon with seawater (Sletmoen 2016, Overton et al. 2018). Several patented systems exist, 

and some systems include a step where a brush is used to remove any sea lice that persist after 

the flushing stage (Sletmoen 2016, Overton et al. 2018). Depending on which system is used, it 

can remove up to 81-100% of attached lice on individual fish (Overton et al. 2018). Temperature 

treatment involves using thermal delousing technologies. These exploit sea lice’s sensitivity to 

elevated temperatures. In this method, typically salmon are briefly flushed with hot water before 

entering a warm water bath (Sletmoen 2016). This method can remove between 75-100% of 

attached mobile sea lice (Overton et al. 2018). Salinity treatment involves utilizing an abrupt 

decrease in salinity to eliminate sea lice. For example, this may involve holding an affected fish 

in fresh water for between 2-3 h (Sletmoen 2016). This delousing strategy can eliminate up to 

90% of sea lice (Sletmoen 2016). Finally, optical delousing uses a camera that can recognize sea 

lice attached to salmon, at which point it exterminates the sea lice by focusing a laser on the louse 

(Sletmoen 2016).  

Mechanical and electrical barriers can prevent sea lice from entering salmon net pens. 

There are four main mechanical barrier technologies: snorkel (chimney) cages, nets, skirts, and 

aeration diffusers (BCFSA 2019, Bobadilla and Oidtmann 2017). Anti-sea lice nets are simply the 

addition of a plankton net (mesh size: 100 µm) around the net pen (Bobadilla and Oidtmann 2017). 

This is designed to prevent sea lice larvae from entering the net pen (Bobadilla and Oidtmann 

2017). Doing this may reduce sea lice infection rates by up to 75% (Bobadilla and Oidtmann 

2017). Anti-sea lice skirts involve a less permeable barrier by wrapping tarpaulin around the upper 

portion (up to depths of 10m) of a net pen (BCFSA 2019, Bobadilla and Oidtmann 2017). Since 

sea lice larvae tend to inhabit shallower water depths, closer to the surface, the skirt prevents 

entry at these depths (BCSFA 2019, Bobadilla and Oidtmann 2017). Snorkel cages have an 

angular net ceiling, which leads into a tarpaulin tube (Sletmoen 2016, Stien et al. 2016). This is 
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designed to encourage salmon to stay below the sea lice zone, while also allowing them to refill 

their swim bladders at the surface when necessary (Stien et al. 2016). Snorkel cages have been 

shown to reduce lice loads by between 24-84% (Geitung et al. 2019, Sletmoen 2016, Stien et al. 

2016). Oppedal et al. (2017), demonstrated when using snorkel depths of 0, 4, 8, 12, and 16 m, 

there was exponential decline in sea lice infestation levels with increasing snorkel depth. Snorkel 

depths of 16 m resulted in reductions in sea lice infestation levels by 10 to 20-fold compared to 

those at 0 m (Oppedal et al. 2017). Aeration diffusers also known as ‘bubble curtains’, are installed 

around the circumference of a net pen at around a depth between 15-20 m (BCSFA 2019). These 

machines release air bubbles around the perimeter of the net pen, creating a barrier and 

preventing sea lice from entering net pens (BCSFA 2019). In addition to mechanical barriers, 

electrical barriers have also been used to deter sea lice infiltration into net pens. For example, a 

technology called the Seafarm Pulse Guard utilizes electronic netting which stuns free-living stage 

of sea lice (Sletmoen 2016). 

 

 

Figure 2: The integrated approach to pest management of sea lice on salmon farms. These 
methods can be broadly categorized into non-chemical and chemical management strategies. 
Management strategies can target either the host (e.g. improved husbandry, fallowing, selective 
breeding, etc.) or they can focus on the sea lice (e.g. biological control, barriers, delousing, 
chemical, etc.). (Figure credit: Bobadilla and Oidtmann 2017)  
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Figure 3: Chemical control of sea lice. Structures of 7 chemicals that are currently used 
worldwide as chemotherapeutants for sea lice (clinical registration and usage varies from 
country to country). 
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1.3.2. Sea lice chemotherapeutants: worldwide and in Canada 

 

Although clinically registered treatments vary by country, seven compounds, found in a 

variety of sea lice formulations, are currently used in salmonid aquaculture globally: teflubenzuron 

and diflubenzuron (benzoyl ureas); cypermethrin and deltamethrin (pyrethroids); azamethiphos 

(OP); emamectin benzoate (avermectin); and hydrogen peroxide ([Figure 3] Aaen et al. 2015, 

Burridge et al. 2010, Torrissen et al. 2013). The use of chemotherapeutants to manage sea lice 

began in Norway in 1974 with the introduction of trichlorfon (metrifonate), an OP (Aaen et al. 

2015, Torrisen et al. 2013). The use of another OP, dichlorvos, followed with its introduction in 

Scotland in 1979 (Aaen et al. 2015, Torrisen et al. 2013). Dichlorovos was subsequently used in 

Chile and Norway in 1985 and 1986, respectively (Aaen et al. 2015). Until the 1990s it became 

the treatment of choice for most salmonid aquaculture operations globally (Torrisen et al. 2013). 

Trichlorfon was phased out by the late 1990s in most countries (Aaen et al. 2015, Roth 2000). At 

the time, it was also becoming evident that resistance was starting to develop, therefore 

alternative chemotherapeutants were investigated for effective control of sea lice (Aaen et al. 

2015).  

In the early 1990s, several new chemotherapeutants became available to aquaculture 

operations globally. This began with the introduction of hydrogen peroxide in Scotland and 

Norway in 1993 (Aaen et al. 2015). Azimethiphos, an OP, was introduced shortly after in 1994 in 

those two countries (Aaen et al. 2015). Azimethiphos was an important break-through at the time 

as it was shown to be 10-fold more effective than dichlorvos, with a larger therapeutic margin in 

Atlantic salmon (Salmo salar) (Overton et al. 2018, Roth 2000). This discovery likely led to the 

discontinuation of dichlorovos, which was no longer used by the late 1990s in most countries 

(Aaen et al. 2015, Roth 2000). Around the same time, pyrethroids also began to be purposed for 

sea lice management, first having been used in Norway in 1994 (Aaen et al. 2015, Overton et al. 

2018, Torrissen et al. 2013). Two pyrethroids, cypermethrin and deltamethrin, continue to be used 

for sea lice management today (Overton et al. 2018). In the late 1990s, two benzoyl ureas, 

teflubenzuron and diflubenzuron, began to be used in sea lice management (Haya et al. 2005). 

They were approved for use in Norway and Scotland in 1997 and 1999, respectively (Aaen et al. 

2015, Haya et al. 2005).   

The most recent addition to the chemical arsenal for managing sea lice is emamectin 

benzoate (EB). It became available in 1999 as a treatment option, and all salmonid-farming 

countries have adopted it since then (Aaen et al. 2015, Torrissen et al. 2013). It is part of a family 
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of drugs called avermectins, which are macrocyclic lactones synthetically derived from the 

bacterium Streptomyces avermitilis (Haya et al. 2005). In the past, two other avermectins, 

ivermectin (IVM) and doramectin, have been utilized less successfully as chemotherapeutants 

(Roth 2000, Horsberg 2012). Due to IVM’s narrow therapeutic margin, it is an unsatisfactory 

candidate for sea lice control (Roth 2000, Torrissen et al. 2013). In fact, IVM has never been 

licensed for use in aquaculture (Horsberg 2012). However, it has been used ‘off-label’ in Canada, 

Chile, and Ireland at least until the year 2000 (Horsberg 2012). The chemical manufacturer Merck, 

Sharp, and Dohme (MSD) do not condone this use (Haya et al. 2005). The introduction of EB has 

presumably offset the off-label usage of IVM for control of sea lice (Haya et al. 2005). Usage of 

doramectin has only been previously documented in Chile (Roth 2000, Horsberg 2012). No 

studies have been published with regards to its efficacy as an anti-sea lice agent in salmonid fish, 

and it currently does not play a major role in sea lice management (Horsberg 2012). 

In Canada, it was not until 1994 that chemotherapeutic means of sea lice control were 

explored and utilized in salmonid aquaculture (Burridge and Van Geest 2014). At that time, major 

sea lice outbreaks had occurred on Atlantic salmon farms in southwest New Brunswick. In 

response, the Pest Management Regulatory Agency (PMRA) of Health Canada granted 

emergency registration to a variety of formulations including the following: Salmosan® (active 

ingredient (AI): azamethiphos); Salartect® (AI: hydrogen peroxide); Excis® (AI: cypermethrin); a 

formulation containing ivermectin as the AI; and a formulation containing a mixture of naturally 

occurring pyrethroids (Burridge and Van Geest 2014). Between 1995 and 2000, Salmosan® and 

Salartect® were registered for use with the PMRA. Salmosan® was the more efficacious of the 

two. However, in 1999, the formulation SLICE® (AI: EB) became available under emergency 

registration. The use of SLICE® quickly overshadowed Salmosan® and Salartect®, which led to 

the manufacturers of the latter two formulations withdrawing their renewal application with the 

PMRA (Burridge and Van Geest 2014).  

By 2009, SLICE® was fully registered with the PMRA (Burridge et al. 2010). The heavy 

reliance on SLICE® led to the development of resistance in eastern Canada in 2009, prompting 

another emergency registration of three formulations: Salmosan®, Paramove®50 (AI: hydrogen 

peroxide), and Alphamax® (AI: deltamethrin). Use of Alphamax® was discontinued the following 

year, but Salmosan® and Paramove®50 continue to be the preferred formulations for use in 

eastern Canadian salmonid aquaculture. On the other hand, SLICE® is the only formulation used 

in BC (Burridge and Van Geest 2014). Currently, there are three commercial formulations that are 

approved for use as sea lice chemotherapeutants in Canadian aquaculture: SLICE®, 
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Interox®Paramove® 50 (AI: hydrogen peroxide), and Calicide® (AI: teflubenzuron) (Yossa and 

Dumas 2016). The additional two formulations that are available only under emergency release 

are Salmosan® and Alphamax® (Yossa and Dumas 2016). 

 

1.4. Emamectin Benzoate 

 

The benzoate salt of emamectin (emamectin benzoate; EB) is found in a variety of pesticide 

formulations designed for both terrestrial agricultural and aquaculture. Slice®, containing 0.2% 

EB (active ingredient), is a formulation that has been designed for use as an anti-sea lice 

chemotherapeutant. It was developed by Schering-Plough Animal Health (Kenilworth, New 

Jersey). Emamectin benzoate is mixture of two avermectin homologues: 4’-epimethyamino-4’-

deoxyavermectin B1a benzoate (MAB1a) (≥ 90%) and 4’-epimethyamino-4’-deoxyavermectin 

B1b benzoate (MAB1b) (≤ 10%) (Bright and Dionne 2005). These two molecules are relatively 

large (MAB1a: 1008.26 g/mol; MAB1b: 994.24 g/mol). 
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Figure 4: The two emamectin homologs which collectively are termed emamectin. 4’-
epimethyamino-4’-deoxyavermectin B1a benzoate (MAB1a) (≥ 90%) and 4’-epimethyamino-4’-
deoxyavermectin B1b benzoate (MAB1b) (≤ 10%). (Figure credit: Bright and Dionne 2005). 

 

1.4.1 Environmental fate 

 

EB is relatively lipophilic (log Kow value = 5 at pH 7.0) and has a low solubility in water (24 

- 320 mg/L in freshwater and 5.5 mg/L in seawater) (Bright and Dionne 2005). It has negligible 

volatility with a vapor pressure below 1 mm Hg (Bright and Dionne 2005). It degrades at a variety 

of rates depending on the environmental medium and conditions. If suspended in aqueous 

solution, it rapidly decays due to photolysis, with a degradation half-life (DT50) of 1.4 to 22.4 d 

(Bright and Dionne 2005). Between a pH of 5.2 and 8, it is stable to hydrolysis, but at pH 9 at 25 

oC, the DT50 due to hydrolysis is 136.5 d (Bright and Dionne 2005). The DT50 in aerobic and 
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anaerobic soils are reported to be 193.4 and 427 d, respectively (Bright and Dionne 2005). In 

marine sediment collected from underneath an active aquaculture operation, EB (in the form of 

Slice®) had a DT50 of 404 d (Benskin et al. 2016). While, Bright and Dionne (2005) report a DT50 

of 164-175 d in marine sediment. Its environmental persistence in sediment has been a cause for 

concern for aquatic ecosystems subject to chemical run-off from salmon farms. 

On salmon farms, EB and its metabolites can accumulate in the aquatic environment via 

uneaten, medicated food pellets treated with Slice® or contaminated excrement from medicated 

fish (Bright and Dionne 2005). Due to EB’s high log Kow value and low water solubility, it has a 

strong tendency towards binding to particulate matter when in an aqueous environment (Bright 

and Dionne 2005). Once bound, it will sink to the benthic zone of an aquatic environment. This 

suggests that it will build-up in the sediment underneath and adjacent to salmon farms. While 

tightly bound to sediment particulates, it may also gradually desorb into the aqueous interstitial 

spaces in sediment, transferring it into the water column (Bright and Dionne 2005). A small fraction 

of it will reside in the water column; laboratory studies indicate that typically 2 to 3% of it will reside 

in seawater (Bright and Dionne 2005). This fraction will rapidly decay by photolysis if it is exposed 

to appreciable levels of light from the water surface. 

Detectable levels of EB and its main desmethyl metabolite (4’-deoxy-4’-epi-amino 

avermectin B1a; AB1) can be found in sediment and water near aquaculture operations. In the 

Broughton Archipelago, BC, Canada, measurable concentrations of EB in surface sediment and 

sub-surface seawater after a 7-d treatment regimen with Slice® at two separate active marine 

salmonid aquaculture operations were found (DFO 2011b). Measurements were taken over the 

course of 4 months and at varying distances (up to 150m) from the edge of the salmon pen. On 

one of the sites, the surface sediment concentration of EB peaked at 35 µg/kg (i.e. parts per 

billion), measured at the edge of the salmon pen (0 m distance interval), 2 to 3 weeks following 

the first day of Slice® application (DFO 2011b). The other site had maximal levels of only 0.33 

µg/kg at the same distance and time interval. The two orders of magnitude difference between 

the maximal concentration found on these two sites was attributed to the difference between the 

hydrogeology of the two sites (DFO 2011b). Over the course of 4 months, this maximal detected 

concentration decreased only slightly (DFO 2011b). Furthermore, EB concentrations decreased 

as a result of increased distance from the salmon pen, where it began to be close to, or below, 

the limit of detection of 0.12 µg/kg at distance intervals of 100 and 150 m (east or west) from the 

edge of the net pens. In addition, detectable levels of EB (approximately 3 µg/kg) persisted when 

measured 1.5 years after Slice® treatment (DFO 2011b).  The measured concentration of AB1 
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were approximately less than 30% those of EB in surface sediment. Previous studies have had 

comparable results where EB and AB1 in surface sediment was measured at concentrations of 

2.2 and 0.6 µg/kg, respectively, one week after Slice® treatment at 10 m from a salmon pen 

(Bright and Dionne 2005).  

EB levels in the water column were much lower and shorter-lived than those in surface 

sediments (DFO 2011b). The highest detectable levels were measured in water at 0.6 ng/L (i.e. 

parts per trillion) within 50 m of both salmon farms one day after the first Slice® application (DFO 

2011b). These levels dissipated quickly to below the detectable limit (0.006 ng/L) after 4 to 5 

weeks after Slice® treatment (DFO 2011b). The concentration of AB1 was approximately 30% 

those of EB, which reflects similar results to those in surface sediment (DFO 2011b).  

 

1.4.2. Toxicity to non-target organisms 

 

Aquatic toxicity data from EB exposures with aquatic organisms was compiled and is 

presented in Table 1 and 2 for water and sediment exposures, respectively. A large portion of the 

resources and data were found in Lumaret et al. (2012). These values were verified with the 

original source wherever possible. However, some data reported in this review article were 

extracted from classified reports, so this was not always possible. Additional data was also 

extracted from Park (2013), which had carried out a similar compilation at that time. A thorough 

literature review was also conducted to address any data gaps in Lumaret et al. (2012) and Park 

(2013), and to find data from more recent years. 

Water exposures primarily involved administration through dissolving EB into test water; 

a small proportion of studies involved administration by incorporating EB into feed. Five out of the 

six species of aquatic vertebrates had toxicity values available from toxicity testing which involved 

dissolved administration. The 96 h LC50 of these five species ranged from 18 to 1340 µg/L. The 

least sensitive vertebrate species was Cyprinus carpio (common carp) with a 96 h LC50 of 1340 

µg/L. It is challenging to say which is the most sensitive species since life-stage is not reported in 

some cases. However, the early life-stages of Pimephales promelas (fathead minnow) had the 

lowest 96 h LC50 value at 18 µg/L. The two studies which involved in-feed administration found 

that juvenile O. mykiss and S. salar had similar sublethal 96 h NOAELs of 218 and 173 µg/kg, 

respectively. In comparison to vertebrates, toxicity data was available for a greater number of 

species of aquatic invertebrate species. The 96 h LC50 of the least and most sensitive 
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invertebrate species differed by more than four orders of magnitude. The most sensitive 

invertebrate species was Mysidopsis bahia with a 96 h LC50 of 0.04 µg/L. The least sensitive 

invertebrate species was Nephrops norvegicus with a 96 h LC50 of 983 µg/L. 

Sediment exposures assessed toxicity over a longer duration of exposure than most water 

exposures. Marine amphipods had 10 d LC50s ranging from 153-890 µg/kg (either dry or wet 

weight of sediment), for the species Corophium volutator, Eohaustorius estuarius, and 

Monocorophium insidiosum. Another species of crustacean, H. americanus, had a rather 

comparable 10 d LC50 of 250.23 µg/kg (wet weight) to these three marine amphipod species. 

Two species of annelids, Hediste diversicolor and Arenicola marina had 10 d LC50s that differed 

by an order of magnitude from each other at 1368 and 111 µg/kg (wet weight), respectively. A 

third species, Neanthes virens, was also assessed over a much longer duration of 30 d and found 

to have a NOEC of 171 µg/kg (wet weight). Only one species of mollusk, Cerastoderma edule, 

had been used in sediment toxicity tests, and the resulting 28 d LC50 could not be calculated but 

was greater than 1000 µg/kg (dry weight).
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WATER EXPOSURES 

Test organism Life-stage 
Measured 
or nominal 

Formulation 
or active 

ingredient 

Effect 
measurement 

Dose 
descriptor 

Notes 
Exposure 
duration 

Concentration 
or dose 

Reference 

VERTEBRA TES  

Oncorhynchus 
mykiss 
(Rainbow trout) 

      Mortality 
LC50 / 
NOEC 

Fresh 
water  

96 h 
174 / 48.7 µg L-
1  

McHenery & 
Mackie (1999), 
Schering-Plough 
Anim. Health 
(2002) – in 
Lumaret et al. 
(2012) 

Juvenile (166-
387 g) 

M AI 

Lethargy, 
Appetite, 
Coloration, and 
Histology 

NOAEL / 
LOAEL* 

Sea 
water; 
Feed 

96 h 
218 / 413  µg 
kg-1 

Roy et al. 2000 

Lepomis 
macrochirus 
(Bluegill sunfish) 

Juvenile (0.42 
g) 

  AI Mortality 
LC50 / 
NOEC 

Fresh 
water  

96 h 180 / 87 µg L-1  OPP 2000 

Salmo salar 
(Atlantic 
Salmon) 

Juvenile (289-
484 g) 

M AI 

Lethargy, 
Appetite, 
Coloration, and 
Histology 

NOAEL / 
LOAEL* 

Sea 
water; 
Feed 

96hr 
173 / 356 µg 
kg-1 

Roy et al. 2000 

Smolts (41-89 
g) 

M F 
Behavior, weight, 
histology 

NOAEL* 
Sea 
water; 
Feed 

7 d 54 µg kg-1 
Stone et al. 
(2002) 

 

Pimephales 
promelas 
(Fathead 
minnow)  

Adult  

    

Mortality 
LC50 / 
NOEC 

Fresh 
water 

96 h 
194 / 156 µg L-
1  

McHenery & 
Mackie (1999), 
Schering-Plough 
Anim. Health 
(2002) – in 
Lumaret et al. 
(2012) 

 

Early Life 
Stages 

Mortality 
LC50  / 
NOEC 

96 h 18 /12 µg L-1  
 

 

Mortality LOEC 96 h 28 µg L-1 
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Cyprinodon 
variegatus 
(Sheepshead 
minnow)  

      Mortality 
LC50 / 
NOEC 

Fresh 
water 

96 h 
1,340 / 860  µg 
L-1  

McHenery & 
Mackie (1999);, 
Schering-Plough 
Anim. Health 
(2002) – in 
Lumaret et al. 
(2012) 

 

Cyprinus carpio 
(Common carp) 

      Mortality LC50 
Fresh 
water 

96 h  
260 – 444 µg L-
1 

Wallace (2001b) 
in Park (2013) 

 

 

INVERTEBRATES   

 Nephrops 
norvegicus 
(Dublin Bay 
prawn)  

      

Mortality 
LC50 / 
NOEC 

Sea 
water 

96 h 
983 / 814 µg L-
1  McHenery & 

Mackie (1999), 
Schering-Plough 
Anim. Health 
(2002) – in 
Lumaret et al. 
(2012) 

 

Mortality 
LC50 / 
NOEC 

Sea 
water 

192 h 
572 / 440 µg L-
1 

 

Mortality 
LC50 / 
NOEC 

Feed 96 h 
> 68.2 / 68.2 mg 
L-1   

 

 

Mortality 
LC50 / 
NOEC 

Feed 192 h 
> 68.2 / 68.2 mg 
L-1   

 

Crangon 
crangon (Bay 
shrimp)  

   Mortality 
LC50 / 
NOEC 

Sea 
water 

96 h 
242 / 161 µg L-
1 

McHenery & 
Mackie (1999), 
Schering-Plough 
Anim. Health 
(2002) – in 
Lumaret et al. 
(2012)  

 

   Mortality 
LC50 / 
NOEC 

Sea 
water 

192 h 
161 / < 161 µg 
L-1  

 

Artemia salina 
(Brine shrimp) 

      Immobilization IC50  
Sea 
water 

6 h 1.73 µg L-1  

McHenery & 
Mackie (1999), 
Schering-Plough 
Anim. Health 
(2002) – in 
Lumaret et al. 
(2012)  

 

 

Mysidopsis 
bahia (Mysid 
shrimp) 

      Mortality 
LC50 / 
NOEC 

Sea 
water 

96 h 
0.04 / 0.02 µg 
L-1  

McHenery & 
Mackie (1999), 
Schering-Plough 
Anim. Health 
(2002)– in 
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Lumaret et al. 
(2012)  

Americamysis 
bahia (Mysid 
shrimp) 

      Growth NOEC 
Sea 
water 

28 d 0.0087 µg L-1 
Blankinship et al. 
2002b – in Park 
(2013) 

 

Pseudocalanus 
elongatus 
(Copepod) 

Nauplii (N6) N AI Immobilization EC50 

Sea 
water 

48 h 0.12 µg L-1  
Willis & Ling 
(2003)  

 

Copepodites 
(C1)  

N AI Immobilization EC50 48 / 96 h 
0.14 / 0.17 µg 
L-1  

Willis & Ling 
(2003)  

 

Copepodites 
(C6) 

N AI Immobilization EC50 48 / 96 h 
0.45 / 10.9 µg 
L-1  

Willis & Ling 
(2003)  

 

Temora 
longicornis 
(Copepod)  

Nauplii (N6) N AI Immobilization EC50 

Sea 
water 

48 h 0.23 µg L-1  
Willis & Ling 
(2003)  

 

Copepodites 
(C1) 

N AI Immobilization EC50 48 h 0.41 µg L-1 
Willis & Ling 
(2003)  

 

Copepodites 
(C6) 

N AI Immobilization EC50 48 h 2.8 µg L-1  
Willis & Ling 
(2003)  

 

Oithona similis 
(Copepod)  

Nauplii (N6) N AI Immobilization EC50 

Sea 
water 

48 / 96 h >15.8 µg L-1  
Willis & Ling 
(2003)  

 

Copepodites 
(C1)  

N AI Immobilization EC50 48 / 96 h 
15.86 / 14.75 
µg L-1  

Willis & Ling 
(2003)  

 

Copepodites 
(C6) 

N AI Immobilization EC50 48 / 96 h 
232 /  113 µg L-
1 

Willis & Ling 
(2003)  

 

Acartia clausi 
(Copepod) 

Nauplii (N6) N AI Immobilization EC50 

Sea 
water 

48 / 96 h 
0.57 / 0.48  µg 
L-1 

Willis & Ling 
(2003)  

 

Copepodites 
(C1)  

N AI 

Immobilization EC50 48 / 96 h 
0.28 / 0.13 µg 
L-1  

Willis & Ling 
(2003)  

 

N AI 
Willis & Ling 
(2003)  

 

Copepodites 
(C6) 

N AI Immobilization EC50 48 / 96 h 
0.29 / 5.27 µg 
L-1 

Willis & Ling 
(2003)  

 

Adult  N AI Egg Production LOEC/NOEC 7 d 
0.158 / 0.05 µg 
L-1 

Willis & Ling 
(2003)  

 

Willis & Ling 
(2003)  
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Corophium 
volutator (mud 
shrimp) 

   Mortality 
LC50 / 
NOEC 

Sea 
water 

10 d  
6.32 / 3.2 µg L-
1  

McHenery & 
Mackie (1999), 
Schering-Plough 
Anim. Health 
(2002) – in 
Lumaret et al. 
(2012) 

 

Daphnia magna       

Mortality 
LC50 / 
NOEC 

Sea 
water 

48 h 1.0 / 0.3 µg L-1  
McHenery & 
Mackie (1999), 
Schering-Plough 
Anim. Health 
(2002) – in 
Lumaret et al. 
(2012) 

 

Reproduction 
EC50 / 
LOEC 

Sea 
water 

21 d 
0.16 / 0.09 µg 
L-1  

 

Mortality LC50 
Sea 
water; 
Feed 

21 d 0.13 µg kg-1   

Daphnia spp. 

24 hr old N AI Mortality LC50 
Sea 
water; 
Feed 

48hr 0.24 µg L-1 Raja et al. 2020  

24 hr old N AI Immobilization EC50 
Sea 
water; 
Feed 

48hr 0.16 µg L-1 Raja et al. 2020  

Mytilus 
galloprovincialus 
(Mediterranean 
mussel) 

      

Development EC50 
Sea 
water 

48 h 314 µg L-1 Aufderheide 
(2002) – in Park 
(2013)  

 

Mortality LC50 
Sea 
water 

48 h > 713 µg L-1  

Crassostrea 
virginica 
(Eastern oyster) 

      

Shell deposition 
EC50 / 
NOEC  

Sea 
water 

96 h 
530 / 260 µg L-
1 Zelinka et al. 

(1994a) – in Park 
(2013) 

 

Mortality 
LC50 / 
NOEC 

Sea 
water 

96 h  
665 / 260 µg L-
1 

 

Capitella 
capitata 
(Polychaete) 

      Mortality 
LC50 / 
NOEC 

Sea 
water 

21 d 
1.04 / 0.46 µg 
L-1  

McHenery & 
Mackie (1999), 
Schering-Plough 
Anim. Health 
(2002) – in 
Lumaret et al. 
(2012) 

 

*interpreted 
from data    
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Table 1: Summary of toxicity values found for emamectin benzoate for water exposures (i.e. water is the only environmental medium 
present, but routes of administration may vary – e.g. dissolved, injected, or feed). *interpreted from data 

 

SEDIMENT EXPOSURES 

Test organism Life-stage 
Measured or 

nominal 

Formulation or 
active 

ingredient 

Effect 
measurement 

Dose 
descriptor 

Exposure 
duration 

Concentration Reference 

INVERTEBRATES 

Corophium 
volutator (mud 
shrimp) 

      Mortality LC50 / NOEC 10 d  193 / 115 µg kg-1 

McHenery & 
Mackie (1999), 
Schering-Plough 
Anim. Health (2002) 
– in Lumaret et al. 
(2012) 

  N F Mortality LC50 10 d  153 µg kg-1 w.w. Mayor et al. (2008) 

  N AI Mortality LC50/NOEC 28 d 
316 / 100 µg kg-1 
d.w. 

Cheng et al. (2020) 

  N AI Growth NOEC 28 d 30 µg  kg-1 d.w. Cheng et al. (2020) 

Eohaustorius 
estuarius 
(amphipod) 

  M F Mortality LC50 10 d 185 µg kg-1 w.w. Kuo et al. (2010)  

Monocorophium 
insidiosum 
(amphipod) 

  N AI 

Mortality LC50 10 d  890 µg kg-1 d.w. 

Tucca et al. (2014) Biochemical 
response (GST 
act./TBARS) 

LOEC* 10 d  
100 / 50 µg kg-1 
d.w. 

 
Hediste 
diversicolor 
(Rag worm) 

  N F Mortality LC50 10 d  1368 µg kg-1 w.w. Mayor et al. (2008) 

 

 

Arenicola 
marina 
(Lungworm) 

      Mortality LC50 / NOEC 10 d 
111 / 56.0 µg kg-1 
w.w. 

McHenery & 
Mackie (1999), 
Schering-Plough 
Anim. Health (2002) 
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– in Lumaret et al. 
(2012)  

  N AI Mortality LC50/NOEC 28 d 
> 1000 / ≥1000 µg 
kg-1 d.w. 

Cheng et al. (2020)  

Cerastoderma 
edule (common 
cockle) 

  N AI Mortality LC50/NOEC 28 d 
> 1000 / ≥1000 µg 
kg -1 d.w. 

Cheng et al. (2020)  

Homarus ameri 
(American 
lobster) 

Juvenile 
(Stage IV) 

M F Mortality LC50 5 d 607.05 µg kg -1 w.w. Daoud et al. (2018)  

Juvenile 
(Stage IV) 

M F Mortality LC50 10 d 250.23 µg kg -1 w.w. Daoud et al. (2018)  

Juvenile 
(Stage IV) 

M F Mortality LC50 15 d 68.82 µg kg -1w.w. Daoud et al. (2018)  

Juvenile 
(Stage IV) 

M F Mortality LC50 20 d 31.66 µg kg -1 w.w. Daoud et al. (2018)  

Juvenile 
(Stage IV) 

M F Mortality LC50 25 d 20.42 µg kg -1w.w. Daoud et al. (2018)  

Juvenile 
(Stage IV) 

M F Mortality LC50 30 d 17.87 µg kg -1 w.w. Daoud et al. (2018)  

Juvenile 
(Stage IV) 

M F Body positioning EC50 10 d 636.62 µg kg -1w.w. Daoud et al. (2018)  

Homarus ameri 
(American 
lobster) 

Juvenile 
(Stage IV) 

M F Body positioning EC50 15 d 96.16 µg kg -1 w.w. Daoud et al. (2018)  

Juvenile 
(Stage IV) 

M F Body positioning EC50 20 d 53.14  µg kg -1w.w. Daoud et al. (2018)  

Juvenile 
(Stage IV) 

M F Body positioning EC50 25 d 85.08  µg kg -1 w.w. Daoud et al. (2018)  

Juvenile 
(Stage IV) 

M F Moulting EC50 15 d 32.72 µg kg -1 w.w. Daoud et al. (2018)  

Juvenile 
(Stage IV) 

M F Moulting EC50 20 d 41.13 µg kg -1 w.w. Daoud et al. (2018)  

Juvenile 
(Stage IV) 

M F Moulting EC50 25 d 44.51 µg kg -1 w.w. Daoud et al. (2018)  

Juvenile 
(Stage IV) 

M F Moulting EC50 40 d  10.49 µg kg -1 w.w. Daoud et al. (2018)  

*interpreted from data        
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Table 2: Summary of toxicity values for emamectin benzoate in a variety of taxa of aquatic organisms for sediment exposures (i.e. 
concentration is based wet weight (w.w.) or dry weight (d.w.) of sediment). *interpreted from data 
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1.5. Ivermectin 

 

Ivermectin (IVM) is a mixture of ≥ 80% 22,23-dihydroavermectin-B1a and ≤20% 22,23-

dihydroavermectin-B1b (Halley et al. 1989). It is not commonly used for sea lice management in 

aquaculture; it has never been approved for the treatment of sea lice in any of the major salmon-

producing countries (Canada, Chile, Norway, Scotland, and Ireland) (Horsberg 2012). However, 

it has been used off-label on salmon farms in Canada, Chile, and Ireland (Haya et al. 2005, 

Horsberg 2012, Torrissen et al. 2013). The following three formulations containing IVM have been 

recorded as being used off-label in aquaculture: a 1% injectable solution (Ivomec®); a 1% oral 

drench (Eqvalan®); and a 0.6% medicated premix (Ivomec® Premix for Swine 0.6%) (Davies and 

Rodger 2000, Horsberg 2012, Johnson and Margolis 1993, Palmer et al. 1987). All of these have 

been used as an in-feed application – including the injectable solution, which was just 

homogenized into feed instead of being injected. 

 

1.5.1 Environmental fate 

 

As IVM is part of the same chemical group as EB, namely avermectins, they share many 

chemical properties. IVM is lipophilic (log Kow value = 3.2), has low water solubility (4 mg/L), and 

is not particularly volatile (vapor pressure = < 1.5 x 10-9 mm Hg) (Halley et al. 1989, Lumaret et 

al. 2012). It also has a relatively high absorption coefficient for soil (Kd = 227-333) (Lumaret et al. 

2012). As a result, IVM has a similar environmental fate to EB in the aquatic environment.  Like 

EB, it enters the aquatic environment via uneaten medicated pellets or excrement (both its 

metabolites and parent compound) from organisms which have ingested it. It has a strong 

tendency to bind to particulates while in the water column, and otherwise undergoes rapid 

photolysis when in the aqueous phase (DT50= < 0.5 d) (Lumaret et al. 2012). As a result, if used 

for treatment of sea lice, most of it will accumulate in the benthic zone, having adsorbed to 

sediment particulates where it will degrade much more slowly. In studies conducted with soil, it 

has been shown to have a DT50 between 7 to 240 d, heavily depending on light and temperature 

(Lumaret et al. 2012). In a laboratory study with IVM residing in high organic matter soil at 22oC 

in the dark, it had a DT50 ranging between 93-240 d (Halley et al. 1989). 
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1.5.2. Toxicity to non-target organisms 

 

Toxicity reference values for IVM-exposed aquatic vertebrates, invertebrates, and algae 

were mostly found in Lumaret et al. (2012) and Davies and Rodger (2000). These values were 

verified with the original source wherever possible. However, several articles were not accessible. 

A thorough literature review was also conducted for all IVM toxicity data involving aquatic 

organisms to identify and fill any data gaps in these review articles. Table 3 and 4 summarize the 

aquatic toxicity values found in literature for water and sediment exposures, respectively. 

Water exposures involved administration through dissolving, injecting, or incorporating 

IVM into feed. Some studies used formulations and others used the purified active ingredient. In 

vertebrates, A. anguilla was the most sensitive species, with a 24 h LC50 value of 0.2 µg/L. The 

least sensitive species was D. rerio, which surprisingly showed the greatest resistance to toxicity 

at the embryonic life-stage compared to the juvenile and adult life-stages. The 144 h LC50 of D. 

rerio embryos was 518.5 µg/L as compared to the 96 h juvenile and adult LC50 of 17.21 and 

74.88 µg/L, respectively. The two most sensitive species of invertebrates were D. magna and N. 

integer, which had almost identical 48 h LC50s of 0.025 and 0.026 µg/L. The least sensitive 

invertebrate species was the gastropod Hydrobia ulvae, which had a 96 h LC50 value of >10000 

µg/L. The two species of algae which data were available for, namely Chlorella pyrenoidosa and 

Pseudokirchneriella subcapitata, also were resistant to toxic effects of IVM. These two species 

had a 14 d NOEC (biomass) and a 72 h EC50 (biomass) of 5100 and > 4000 µg/L, respectively. 

Sediment exposures only involved invertebrate species. The most sensitive species was 

D. magna with a 48 h LC50 of 6.5 µg/kg (sediment dry weight). The two least sensitive species, 

A. rubens and L. variegatus, had respective LC50 values of 23600 µg/kg d.w. (10 d exposure) 

and 6440 µg/kg d.w. (28 d exposure). Most other species for which data existed, had toxicity 

values in the approximate range of 10 to 200 µg/kg (wet or dry weight) for exposure durations 

ranging between 96 h to 30 d, with assessment of either lethal or sublethal endpoints. 
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Figure 5: Chemical structure of Ivermectin (≥ 80% 22,23-dihydroavermectin B1a: R=C2H5; ≤ 
20% 22,23-dihydroavermectin B1b: R=CH3). (Figure credit: Halley et al. 1989). 
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WATER EXPOSURES 

Test organism Life-stage 
Measured 
or nominal 

Formulation 
or active 

ingredient 

Effect 
measurement 

Dose 
descriptor 

Notes 
Exposure 
duration 

Concentration or 
dose 

Reference 

VERTEBRATES  

Anguilla anguilla 
(eel)     F Mortality LC50 

dissolved; 
freshwater 24 hr 0.2 µg L-1 

Geets et al. 
1992 

Lepomis 
macrochirus 
(Bluegill sunfish)   AI Mortality LC50 

dissolved; 
freshwater 96 hr 4.8 µg L-1 

Halley et al. 
1989 

Salmo gardneri 
(Rainbow trout)     AI Mortality LC50 / NOEC 

dissolved; 
freshwater 96 hr 3.0 / 0.9 µg L-1 

Halley et al. 
1989 

Salmo gardneri 
(Rainbow trout)    Mortality LC50 

dissolved 
state 96 hr 3 µg kg-1 

Kilmartin et 
al. 1997 in 
Lumaret et al. 
2012 

Salmo salar 
(Atlantic salmon)       Mortality LC50 dissolved 96 hr 17 µg L-1 

Kilmartin et 
al. 1996 in 
Davies and 
Rodger 2000 

Salmo salar 
(Atlantic salmon)    Mortality LC50 injection 96 hr 500 µg kg-1 

Kilmartin et 
al. 1997 in 
Lumaret et al. 
2012 

Salmo trutta 
(Brown trout)       Mortality LC50 injection 96 hr 300 µg kg-1 

Wislocki et al. 
1989 in 
Lumaret et al. 
2012 

Sparus aurata 
(Sea bream) 40 g weight N F Mortality 0% mortality 

single 
peritoneal 
injection 35 d  

doses between 100-
800 µg kg-1 

Katharios et 
al. 2001 

Sparus aurata 
(Sea bream) 40 g weight N F Hematocrit LOEC 

single 
peritoneal 
injection 35 d  800 µg kg-1 

Katharios et 
al. 2001 

Danio rerio 
(Zebrafish) embryo N AI Mortality LC50 

dissolved; 
freshwater 144 hr 518.5 ug L-1 

Oliveira et al. 
2016 
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Danio rerio 
(Zebrafish) juvenile N AI Mortality LC50 

dissolved; 
freshwater 96 hr 17.21 ug L-1 

Oliveira et al. 
2016 

Danio rerio 
(Zebrafish) adult N AI Mortality LC50 

dissolved; 
freshwater 96 hr 74.88 ug L-1 

Oliveira et al. 
2016 

Danio rerio 
(Zebrafish) embryo N AI Lethargy EC50 

dissolved; 
freshwater 72 hr 93.16 ug L-1 

Oliveira et al. 
2016 

Danio rerio 
(Zebrafish) juvenile N AI Lethargy EC50 

dissolved; 
freshwater 72 hr 19.50 ug L-1 

Oliveira et al. 
2016 

Danio rerio 
(Zebrafish) adult N AI Lethargy EC50 

dissolved; 
freshwater 72 hr 229.91 ug L-1 

Oliveira et al. 
2016 

Danio rerio 
(Zebrafish) 

embryo/larva
e N AI 

Development 
(posture and 
spine) EC50 

dissolved; 
freshwater 96 hr 379.55 ug L-1 

Oliveira et al. 
2016 

Danio rerio 
(Zebrafish) embryos N AI 

Biochemical 
(ChE and CAT 
activity) NOEC / LOEC 

dissolved; 
freshwater 96 hr 40 / 80 ug L-1 

Oliveira et al. 
2016 

Danio rerio 
(Zebrafish) adult N AI 

Biochemical 
(GST activity) NOEC / LOEC 

dissolved; 
freshwater 96 hr 20 / 40 ug L-1 

Oliveira et al. 
2016 

Danio rerio 
(Zebrafish) adult N AI Mortality LC50 

dissolved; 
freshwater 96 hr 73.3 ug L-1 

Domingues et 
al. 2016 

Danio rerio 
(Zebrafish) adult N AI Feeding EC50 

dissolved; 
freshwater 21 d 5.1 ug L-1 

Domingues et 
al. 2016 

Clarias 
gariepinus  juvenile   AI Mortality LC50 

dissolved; 
freshwater 96 hr 15 ug L-1 

Ogueji et al. 
2019 

INVERTEBRATES 

Daphnia magna   N AI Mortality LC50 / NOEC 
dissolved; 
freshwater 48 hr 0.025 / 0.01 µg L-1 

Halley et al. 
1989 

Daphnia magna  N AI Immobilisation EC50 
static; 
freshwater 48 hr 0.0057 µg L-1 

Garric et al. 
2007 

Daphnia magna   N AI Growth NOEC / LOEC 
semi-static; 
freshwater 21 d 0.0003 / 0.001 ng L-1 

Garric et al. 
2007 

Daphnia magna  N AI Reproduction NOEC / LOEC 
semi-static; 
freshwater 21 d 0.0003 / 0.001 ng L-1 

Garric et al. 
2007 

Daphnia magna   N AI Sex ratio NOEC / LOEC 
semi-static; 
freshwater 21 d 0.0003 / 0.001 ng L-1 

Garric et al. 
2007 



 

32 
 

Daphnia magna  N AI Immobilisation EC50 
dissolved; 
freshwater 48 hr 0.59 µg L-1 

Bundschuh et 
al. 2016 

Artemia salina 
(Anostraca)     AI Mortality LC50 

dissolved; 
seawater 
(35 ppt) 24 hr > 300 µg L-1 

Grant and 
Briggs 1998 

Sphaeroma 
rugicauda 
(Isopoda)   AI Mortality LC50 

dissolved; 
brackish 
water (3.5 
ppt) 96 hr 348 µg L-1 

Grant and 
Briggs 1998 

Crangon 
septemspinosa 
(Decapoda)   N F Mortality LC50 feed 96 hr 8.5 mg kg-1 (feed) 

Burridge and 
Haya 1993 

Crangon 
septemspinosa 
(Decapoda)  N F Mortality LC50 dissolved 96 hr > 21.5 µg L-1 

Burridge and 
Haya 1993 

Palaemonetes 
varians 
(Decapoda)     AI Mortality LC50 

dissolved; 
brackish 
water (3.5 
ppt) 96 hr 54 µg L-1 

Grant and 
Briggs 1998 

Gammarus 
duebeni 
(Amphipoda)   AI Mortality LC50 

dissolved; 
brackish 
water (3.5 
ppt) 96 hr 0.33 µg L-1 

Grant and 
Briggs 1998 

Gammarus 
zaddachi 
(Amphipoda)     AI Mortality LC50 

dissolved; 
brackish 
water (3.5 
ppt) 96 hr 0.33 µg L-1 

Grant and 
Briggs 1998 

Carcinus maenas 
(Decapoda)   AI Mortality LC 50 

dissolved; 
brackish 
water (17.5 
ppt) 96 hr 957 µg L-1 

Grant and 
Briggs 1998 

Neomysis integer 
(Mysidacea)     AI Mortality LC50 dissolved 48 hr 0.026 µg L-1 

Grant and 
Briggs 1998 

Neomysis integer 
(Mysidacea)  M AI Mortality LC50 dissolved 96 hr 0.07 µg L-1 

Davies et al. 
1997 

Nereis 
diversicolor 
(Polychaeta)      AI Mortality LC50 

dissolved; 
brackish 96 hr 7.5 µg L-1 

Grant and 
Briggs 1998 
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water (17.5 
ppt) 

Lumbriculus 
variegates  N F Mortality LC50 

dissolved; 
freshwater 72 hr 490 µg L-1 

Ding et al. 
2001 

Lumbriculus 
variegates    N F Swimming EC50 

dissolved; 
freshwater 3 hr 0.96 µg L-1 

Ding et al. 
2001 

Lumbriculus 
variegates  N F Reversal EC50 

dissolved; 
freshwater 3 hr 14.0 µg L-1 

Ding et al. 
2001 

Lumbriculus 
variegates   N F 

Crawling 
Frequency EC50 

dissolved; 
freshwater 3 hr 79.6 µg L-1 

Ding et al. 
2001 

Lumbriculus 
variegates  N F 

Crawling 
Speed EC50 

dissolved; 
freshwater 3 hr 44.6 µg L-1 

Ding et al. 
2001 

Caenorhabditis 
elegans       Reproduction NOEC 

Followed 
ISO/CD 
10872 test 
protocol; 
water only 
exposure 96 hr  ≤ 1.0 µg L-1 

Liebig et al. 
2010 

Crassostrea 
gigas (Bivalvia) Larvae   Mortality LC50 dissolved 96 hr 80-100 µg L-1 

Kilmartin et 
al. 1997 in 
Davies et al. 
1997 

Crassostrea 
gigas (Bivalvia) Spat     Mortality LC50 dissolved 96 hr 460 µg L-1 

Kilmartin et 
al. 1997 in 
Davies et al. 
1997 

Mytilus edulis 
(Bivalvia)    Mortality LC50 dissolved 96 hr 400 µg L-1 

Kilmartin et 
al. 1997 in 
Davies et al. 
1997 

Pecten maximus 
(Bivalvia)       Mortality LC50 dissolved 96 hr 300 µg L-1 

Kilmartin et 
al. 1997 in 
Davies et al. 
1997 

Tapes 
semidecussata 
(Bivalvia) Larvae   Mortality LC50 dissolved 96 hr 380 µg L-1 

Kilmartin et 
al. 1997 in 
Davies et al. 
1997 
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Tapes 
semidecussata 
(Bivalvia) Spat     Mortality LC50 dissolved 96 hr 600 µg L-1 

Kilmartin et 
al. 1997 in 
Davies et al. 
1997 

Monodonta 
lineata 
(Gasteropoda)    Mortality LC50 dissolved 96 hr 780 µg L-1 

Davies and 
Rodger 2000 

Biomphlaria 
glabrata 
(Gasteropoda)   N AI Mortality LC50 dissolved 24 hr 30 µg L-1 

Matha and 
Weiser 1988 
in Lumaret et 
al. 2012 

Hydrobia ulvae 
(Gasteropoda)   AI Mortality LC50 

dissolved; 
brackish 
water (17.5 
ppt) 96 hr > 10000 µg L-1 

Grant and 
Briggs 1998 

Potamopyrgus 
jenkinsii 
(Gasteropoda)     AI Mortality LC50 

dissolved; 
brackish 
water (3.5 
ppt) 96 hr < 9000 µg L-1 

Grant and 
Briggs 1998 

Littorina littorea 
(Gasteropoda)   AI Mortality LC50 

dissolved; 
brackish 
water (17.5 
ppt) 96 hr > 1000 µg L-1 

Grant and 
Briggs 1998 

Littorina littorea 
(Gasteropoda)       Mortality LC50 dissolved 96 hr 580 µg L-1 

Kilmartin et 
al. 1997 in 
Davies et al. 
1997 

Nucella lapillus 
(Gasteropoda)    Mortality LC50 dissolved 96 hr 390 µg L-1 

Kilmartin et 
al. 1997 in 
Davies et al. 
1997 

Patella vulgata 
(Gasteropoda)       Mortality LC50 dissolved 96 hr 600 µg L-1 

Kilmartin et 
al. 1997 in 
Davies et al. 
1997 

Dugesia 
gonocephala 
(Platyhelminthes)  N AI Immobilisation EC50 

dissolved; 
freshwater 96 hr 675.2 µg L-1 

Bundschuh et 
al. 2016 
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Caenorhabditis 
elegans 
(Nematoda)   N AI Immobilisation EC50 

dissolved; 
freshwater 24 hr 17.5 µg L-1 

Bundschuh et 
al. 2016 

Brachionus 
calyciflorus 
(Rotifera)  N AI Immobilisation EC50 

dissolved; 
freshwater 24 hr 1961 µg L-1 

Bundschuh et 
al. 2016 

Tubifex tubifex 
(Oligochaeta)   N AI Immobilisation EC50 

dissolved; 
freshwater 96 hr 1866 µg L-1 

Bundschuh et 
al. 2016 

Radix ovata 
(Gastropoda)  N AI Immobilisation EC50 

dissolved; 
freshwater 96 hr 17 µg L-1 

Bundschuh et 
al. 2016 

G. pulex 
(Amphipoda)   N AI Immobilisation EC50 

dissolved; 
freshwater 96 hr 1.4 µg L-1 

Bundschuh et 
al. 2016 

A. aquaticus 
(Isopoda)  N AI Immobilisation EC50 

dissolved; 
freshwater 96 hr 390.3 µg L-1 

Bundschuh et 
al. 2016 

A. sulciollis 
(Plecoptera)   N AI Immobilisation EC50 

dissolved; 
freshwater 96 hr 14.3 µg L-1 

Bundschuh et 
al. 2016 

ALGAE 

Chlorella 
pyrenoidosa   N AI Biomass 

NOEC / 
LOEC* dissolved 14 d 5100 / 9100 µg L-1 

Halley et al. 
1989 

Pseudokirchnerie
lla subcapitata   N AI Biomass EC50 / NOEC 

Using 
OECD 201 
Guideline 
(OECD 
2002) 72 hr > 4000 / 391 µg L-1 

Garric et al. 
2007 

Table 3: Summary of toxicity values for aquatic organisms exposed to IVM in water exposures. *interpreted from data 
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INVERTEBRATES 

Chironomus 
riparius 
(Diptera) larvae N AI Mortality 

LC50 / 
NOEC 

Followed 
OECD 
Guideline 218 
(OECD 2004) 10 d 

64 / 25 µg kg -1 
d.w. 

Egeler et al. 
2010 

Chironomus 
riparius 
(Diptera) larvae N AI Length 

NOEC / 
LOEC 

Followed 
OECD 
Guideline 218 
(OECD 2004) 10 d 

12.5 / 25 µg kg -1 
d.w. 

Egeler et al. 
2010 

Chironomus 
riparius 
(Diptera) larvae N AI Biomass 

NOEC / 
LOEC 

Followed 
OECD 
Guideline 218 
(OECD 2004) 10 d 

3.1 / 6.3 µg kg -1 
d.w. 

Egeler et al. 
2010 

Chironomus 
riparius 
(Diptera) larvae N AI Emergence (male) 

EC50 / 
NOEC 

Followed 
OECD 
Guideline 218 
(OECD 2004) 28 d 

19.5  / 12.5 µg kg 
-1 d.w. 

Egeler et al. 
2010 

Chironomus 
riparius 
(Diptera) adult N AI Emergence (females) 

EC50 / 
NOEC 

Followed 
OECD 
Guideline 218 
(OECD 2004) 28 d 

9.0 / 6.3 µg kg -1 
d.w. 

Egeler et al. 
2010 

Chironomus 
riparius 
(Diptera) adult N AI Development (males) 

NOEC / 
LOEC 

Followed 
OECD 
Guideline 218 
(OECD 2004) 28 d 

25 / >25 µg kg -1 
d.w. 

Egeler et al. 
2010 

Chironomus 
riparius 
(Diptera) adult N AI Development (females) 

NOEC / 
LOEC 

Followed 
OECD 
Guideline 218 
(OECD 2004) 28 d 

6.3 / 12.5 µg kg -
1 d.w. 

Egeler et al. 
2010 

Lumbriculus 
variegatus 
(Oligochaeta)  N AI Survival/Reproduction 

EC50 / 
NOEC 

Followed 
OECD 
Guideline 225 
(OECD 2007) 28d 

6440 / 160 µg kg 
-1 d.w. 

Egeler et al. 
2010 

Lumbriculus 
variegatus 
(Oligochaeta)   N AI Biomass 

EC50 / 
NOEC 

Followed 
OECD 
Guideline 225 
(OECD 2007) 28d 

2980 / 160 µg kg 
-1 d.w. 

Egeler et al. 
2010 
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Daphnia magna  N AI Abundance/Biomass NOEC 

IVM-spiked 
cattle dung 
added to 
water-
sediment test 
system 10 d 

53  µg kg -1 dung 
d.w. 

Schweitzer 
et al. 2010 

Corophium 
volutator 
(Amphipoda)   N F Mortality LC50   10 d 180 µg kg -1 d.w. 

Davies et al. 
1998 

Asterias rubens 
(Asteroida)  N F Mortality LC50  10 d 

23600 µg kg-1 
d.w. 

Davies et al. 
1998 

Arenicola 
marina 
(Polychaeta)     AI Mortality LC50   10 d 23 µg kg-1 d.w. 

Grant and 
Briggs 1998 

Arenicola 
marina 
(Polychaeta)  N F Mortality 

LC50 / 
NOEC  10 d 

18 / 12  µg kg-1 
w.w. 

Thain et al. 
1997 

Arenicola 
marina 
(Polychaeta)   N F Feeding NOEC   10 d < 5 µg kg-1 w.w. 

Thain et al. 
1997 

Homarus 
americanus 
(Decapoda) 

Juvenile 
(Stage 
IV) M F Mortality LC50  10 d 

212.1 µg kg-1 
w.w. 

Daoud et al. 
2018 

Homarus 
americanus 
(Decapoda) 

Juvenile 
(Stage 
IV) M F Mortality LC50   30 d 11.6 µg kg-1 w.w. 

Daoud et al. 
2018 

Homarus 
americanus 
(Decapoda) 

Juvenile 
(Stage 
IV) M F Body positioning EC50   10d 42.1 µg kg-1 w.w. 

Daoud et al. 
2018 

Homarus 
americanus 
(Decapoda) 

Juvenile 
(Stage 
IV) M F Body positioning EC50   25 d 11.7 µg kg-1 w.w. 

Daoud et al. 
2018 

Homarus 
americanus 
(Decapoda) 

Juvenile 
(Stage 
IV) M F Moulting EC50  15 d 14.0 µg kg-1 w.w. 

Daoud et al. 
2018 

Homarus 
americanus 
(Decapoda) 

Juvenile 
(Stage 
IV) M F Moulting EC50   25 d 7.3 µg kg-1 w.w. 

Daoud et al. 
2018 
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Caenorhabditis 
elegans       Reproduction NOEC 

Followed 
ISO/CD 
10872 test 
protocol; 
sediment 
exposure 96 hr 100 ug kg-1 d.w. 

Liebig et al. 
2010 

 

Table 4: Summary of toxicity values for aquatic organisms exposed to IVM in sediment exposures. 
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1.6. Toxic mechanism of action of avermectins 

 

Avermectins target ligand-gated chloride channels in the nervous system of invertebrates. 

They act as positive modulators of two types of these channels: glutamate-gated chloride 

channels (GluClRs) and ionotropic subtypes of GABA receptors (GABARs) (Song et al. 2016, 

Wolstenholm and Rodgers 2005, Wolstenholme 2010). Binding of avermectins to these receptors 

results in an influx of chloride ions, hyperpolarizing the nerve or muscle cell membrane, inhibiting 

action potential propagation at the post-synaptic membrane (Wolstenholme 2010). GluClRs are 

only found in invertebrates, at the neuromusculuar junction (Lankas et al. 1997, Wolstenholme 

2010). This is thought to be the main reason why avermectins cause flaccid paralysis and 

subsequent death in invertebrates (Lankas et al. 1997). However, some have also attributed these 

adverse effects to interaction with GABARs, which are also involved in locomotion in invertebrates 

(Lumaret et al. 2012, Lunt 1991, Song et al. 2016).   

The mechanism of toxicity in the vertebrate nervous system is less well understood (Chen 

et al. 2014, Wolstenholme 2010). However, similarly to invertebrates, avermectins have been 

shown to interact with ligand-gated chloride channels, such as glycine receptors and GABARs 

(Lumaret et al. 2012, Wolstenholm 2010). These receptors are only found in the central nervous 

system in vertebrates. In addition, it has been recognized that vertebrates are potentially less 

prone than invertebrates to the toxic effects of avermectins. There are three possible reasons for 

this: (1) GluClRs are not present in vertebrates (2) avermectins have a higher affinity 

(approximately 100 times higher) for invertebrate isoforms of GABARs and (3) avermectins do 

not readily cross the blood-brain barrier of vertebrates which is necessary to access their target 

receptors (Fisher and Mrozik 1992, Kohler 2001, Lumaret et al. 2012, Reddy 2013).  

 

1.7. Toxicity modifying factors 

 

Many environmental factors can alter a xenobiotic substance’s toxicity in both the aquatic 

and terrestrial environment. These can be divided into three categories: (1) chemical, (2) physical, 

and (3) biological. Chemical factors describe the chemical properties of an environmental medium 

(e.g. pH, cationic/anionic profile, organic matter content, etc.). Physical factors describe the 

physical properties of a given environmental medium (e.g. sediment grain size; water/sediment 

turbidity; light intensity; temperature, etc.). Biological factors are those that pertain to biota present 
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in an environmental medium (e.g. microbial activity). Collectively, all these environmental factors 

which alter exposure or bioavailability, and hence internal dose and toxicity can be termed 

exposure and toxicity modifying factors (ETMFs) (CCME 2007). ETMFs in an aquatic environment 

can further be divided into two matrix-dependent categories: (1) water characteristics and (2) 

sediment and porewater characteristics. 

 

1.7.1 Water characteristics 

 

In the water column, recognized ETMFs include the following: suspended solids, turbidity, 

light intensity, temperature, resident microbial activity, pH, hardness, alkalinity, dissolved oxygen 

(DO), dissolved organic carbon (DOC), particulate organic carbon (POC), and cationic/anionic 

profile (e.g. Mg2+, Ca2+, K+, Na+, Cl-, CO3
-) (CCME 2007, Di Toro et al. 2001, Loverage 2016, 

Santore et al. 2001, Smith and Lizotte 2007, Wang 1987). These are all factors to consider when 

deriving a water quality guideline for any environmental contaminant (CCME 2007). Many of these 

factors have been shown to alter the toxicity of organic compounds (Akkanen and Kukkonen 

2001, Bostrom and Berglund 2015, Tsui and Chu 2003, Smith and Lizotte 2007). For example, 

the toxicity of Roundup® (AI: N-phosphonomethylglycine) was shown to significantly increase 

with increasing pH (ranging between 6 to 9) (Tsui and Chu 2003). The 48 h LC50 of Ceriodaphnia 

dubia in the most alkaline treatment (pH = 9) was over 4-fold lower than the most acidic treatment 

(pH = 6). Furthermore, Bostrom and Berglund (2015) showed that the toxicity of six 

pharmaceuticals depended on pH, which determines whether these compounds are ionized or 

not. For all the compounds tested, the 48 h EC50 (immobilization) of D. magna increases at the 

pH with the highest fraction of ionized compound. This demonstrates that the neutral form of a 

compound is typically more toxic to the exposed organism. In another study, Smith and Lizotte 

(2007) show that water hardness, turbidity, suspended solids, and phytoplankton density all had 

a significant negative linear correlation with the toxicity of two pyrethroids, ʎ-cyhalothrin and ƴ-

cyhalothrin, in Hyalella azteca. The 48 h EC50 (immobilization) values ranged more than 10-fold 

between 1.4 to 15.7 ng/L and 0.6 to 13.4 ng/L for ʎ-cyhalothrin and ƴ-cyhalothrin, respectively, 

depending on the level of these ETMFs. 
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1.7.2. Sediment and porewater characteristics 

 

Characteristics of sediment and its porewater which can alter toxicity of contaminants during 

sediment exposures can be divided into three main categories: (1) persistent physical 

characteristics of the medium, (2) persistent chemical characteristics of the medium, and (3) non- 

or less-persistent chemical characteristics of the medium. Persistent physical characteristics of 

sediment include the following: grain size, grain angularity, sediment consolidation and water-

retention capacity (Bentivegna et al. 2004, Lapota et al. 2000, Simpson and Kumar 2016, Word 

et al. 2005). Persistent chemical characteristics include the following: sediment mineral 

constituents (oxides of Fe, Al, Mn), total organic carbon (TOC), and total organic nitrogen (TON) 

(Bentivegna et al. 2004, Besser et al. 2004, Lapota et al. 2000, Simpson and Kumar 2016). Non- 

or less-persistent chemical characteristics are those that predominantly describe sediment 

porewater characteristics, which are heavily influenced by the surrounding sediment, including 

the following: ammonia, pH, DO, salinity, and sulfide content (Lapota et al. 2000, Word et al. 

2005); these characteristics have been observed to be notably different when compared to 

overlying water (Lapota et al. 2000). Porewater DOC and POC are not included in this category, 

because these together with sediment-adsorbed OC, make-up sediment TOC, which is 

categorized as a persistent chemical characteristic. 

 

1.8. Organic carbon as a toxicity modifying factor 

 

Organic matter (OM) is the term for the heterogenous mixture of organic compounds 

derived from biomass at various stages of decomposition (Swift 1996, Thurman 1985). It is 

typically measured as organic carbon (OC), due to the ease with which OC can be accurately 

measured in comparison to OM (Thurman 1985). OC includes just the carbon skeleton of OM 

molecules, which may otherwise contain other elements such as oxygen and hydrogen (Thurman 

1985). Generally, by weight, OM content is approximately twice that of OC, however this depends 

on which compounds make up the OM (Thurman 1985).  

In an aqueous environment, OC can broadly be categorized into two components: (1) 

dissolved organic carbon (DOC) and (2) particulate organic carbon (POC). All organic carbon that 

is greater than 0.45 µm is considered POC, and anything less than that threshold is DOC. In most 

aquatic environments, POC makes up only a very small portion of OC (Thurman et al. 1985). 
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DOC is primarily comprised of humic substances (approximately 50-75%) which are composed 

of humins, humic acids, and fulvic acids (Steinberg 2003). The distinction between these three 

categories of humic substances is based on traditional fractionation methods of soil humic 

substances (Steinberg 2003). Adding alkali to humic substances dissolves the humic and fulvic 

acids, leaving behind the undissolved humins (Steinberg 2003). Then, if one acidifies this alkaline 

extract, the humic acids precipitate separating them from the fulvic acids which remain dissolved 

(Steinberg 2003). Humic substances have anionic chemical moieties arising predominantly from 

carboxylic functional groups, and to a lesser extent hydroxyl and phenolic groups. Hypothetical 

molecular structures of humic and fulvic acids are represented in Figure 7. The remainder of DOC 

is made-up of biological macromolecules such as carbohydrates (e.g. lignin from plants), amino 

acids, fatty acids, and hydrocarbons (Thurman 1985). While POC on the other hand is made up 

of all detrital material exceeding 0.45 µm (Thurman 1985). Total organic carbon (TOC) is the sum 

of DOC and POC. In sediment, this refers to the sum of the DOC and POC in porewater, in 

addition to OC adsorbed to sediment. The mechanism by which OM can alter toxicity involves 

complexation with environmental contaminants resulting in reduced bioavailability and altered 

environmental fate of the contaminant. In this way, humic substances can reduce toxicity of 

xenobiotic compounds and metals by lowering the internal dose received by the organism 

(Gonzalez-Guadarrama et al. 2018, Steinberg 2003). Xenobiotic compounds chemically interact 

with humic substances in a variety of ways. This can involve adsorption or covalent bonding 

(Bollag and Myers 1992, Steinberg 2003). Adsorption can be the result of the following types of 

chemical bonds: Van der Waals forces, hydrophobic interactions, ionic bonding (i.e. electrostatic 

attraction), charge-transfer (π- π) bonds, and hydrogen bonding (Bollag and Myers 1992, Laird 

and Koskinen 2008, Steinberg 2003). Hydrophilic xenobiotic compounds tend to predominantly 

interact with humic substances via ionic and hydrogen bonding (Steinberg 2003). However, other 

mechanisms of molecular attraction, including hydrophobic interactions, Van der Waals forces, 

and π- π bonds play a lesser role in adsorption for some hydrophilic compounds (Laird and 

Koskinen 2008). The theoretical interaction between the hydrophilic compound keto-s-triazine, a 

triazine herbicide, and a humic substance molecule is depicted in Figure 8. This figure shows the 

variety of different chemical bonds that can occur simultaneously between these two molecules 

including hydrogen bonding, ionic bonding, and hydrophobic interactions. 

Hydrophobic organic contaminants (HOCs) complex with humic substances 

predominantly by hydrophobic interactions and Van der Waals forces (Steinberg 2003). These 

xenobiotics have a high affinity for non-polar regions on humic substance molecules, especially 

the aromatic rings (Moeckel et al. 2013, Steinberg 2003). This affinity is typically expressed as a 
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binding constant, KDOC, which is the proportion of humic-substance-bound HOC relative to 

unbound HOC in an aqueous environment (Li et al. 2015). The method used to determine this is 

called the complexation flocculation (CF) method (Laor and Rebhun 1994). Using this method, Li 

et al. (2015) determined the log KDOC values or thirty-three HOCs belonging to four chemical 

classes of contaminants: polyaromatic hydrocarbons (PAHs), phthalic acid esters (PAEs), 

polybrominated diphenyl ethers (PBDEs), and organic chlorine pesticides (OCPs). The log KDOC 

for these contaminants ranged between 4.16-7.14. This aptly demonstrates the binding affinity 

HOCs have for DOC in an aqueous environment; where the HOCs with the highest affinity have 

a DOC-bound fraction that is 6 or 7 orders of magnitude greater than the unbound fraction. 

Furthermore, the hydrophobicity of a compound (expressed as log Kow) is positively correlated 

with its log KDOC (Li et al. 2015). This makes sense, given that complexation between HOCs and 

humic substances is dependent on hydrophobic interactions between the molecules. The log Kow 

values of the compounds studied by Li et al. (2015) ranged from 3.27-8.55. Given that the log Kow 

values of EB and IVM are 5 and 3.2, respectively, it makes sense that their bioavailability and 

resulting toxicity could be modified by humic substances. In fact, EB and IVMs log KOC values are 

3.54-4.38 and 4.10-4.20, respectively, suggesting they have a high affinity for OC (Lumaret et al. 

2012). 

Organic carbon is a well-established ETMF. In most scenarios, it will ameliorate toxicity, 

however at high concentrations it may exacerbate toxicity additively (Cloran et al. 2010, Nadella 

et al. 2009). Most studies investigating the effects OC has on toxicity of environmental 

contaminants have focused on the effect DOC in the water column has on toxicity of metals, 

especially copper (Table 1). Fewer studies have explored the relationship between either water 

DOC or sediment TOC and toxicity of non-metals (Table 1 and 2). Table 1 and 2 summarize the 

toxicity modifying effect that OC has in water and sediment exposures, respectively, for metal and 

non-metal contaminants in a variety of taxa. In most of the sediment and water exposures 

involving metals and non-metals, OC significantly mitigated toxicity. 

There is substantial evidence for organic carbon reducing toxicity of metals. Studies which 

have documented this have shown that toxicity of the following metals are modified by the 

presence of DOC: copper (Cu), chromium (Cr), cadmium (Cd), zinc (Zn), nickel (Ni), silver (Ag), 

arsenic (As), and uranium (U) (Table 1). This protective effect had a broad range, increasing the 

LCx or ECx by approximately 2- to 50-fold in the presence of the highest DOC treatments tested 

in these studies. Most studies did not exceed a maximum concentration of DOC of 30 mg C/L. 

Within this range, most studies clearly demonstrated that there was a DOC-concentration-
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dependent trend, with a negative correlation between DOC-concentration and toxicity. This 

correlation was typically linear, however there were a few exceptions (Cloran et al. 2010, Nadella 

et al. 2009, Wang et al. 2011). In rare instances, toxicity was not significant altered by OC. For 

example, in Koukal et al. (2003) Cd and Zn did not have a significant effect on photosynthetic 

activity of Pseudokirchneriella subcapitata, when fulvic acids were added from the Suwannee 

River. On other hand, in that same study, Cd and Zn did have a significant effect on photosynthetic 

activity when the source of the DOC was in the form of peat and soil humic acids (Koukal et al. 

2003). This may suggest that the source of the humic substances plays a role in their potential to 

reduce toxicity. Two studies also found that OC exacerbated toxicity of metals (Cloran et al. 2010, 

Nadella et al. 2009). Cloran et al. (2010) attributed this to the fact that the highest two 

concentrations of DOC (48 and 80 mg C/L) when tested in the absence of Ni, significantly reduced 

survival; DOC had intrinsic toxicity at these higher concentrations. It appeared in that study that 

DOC and Ni were acting additively. Nadella et al. (2009) showed an 11-fold decrease in the EC50 

when exposed to copper in the presence of 20 mg C/L. These findings were peculiar, since at 

that DOC concentration range, all other studies observed a protective against toxicity. The authors 

were not sure how to explain this result, but the source of the water they used seemed to make a 

significant difference. Also, intermediate OC levels did show a protective effect, so the highest 

concentration may be explained by intrinsic DOC toxicity as in Cloran et al. (2010).  

The effect of OC on toxicity in water exposures involving non-metals were less consistent. 

Toxicity of the following substances was reduced in the presence of DOC: triclosan, chlorphyrifos, 

DDT, formaldehyde, and γ-hexachlorocyclohexane. However, of those that did show significant 

effects on toxicity, the magnitude of this effect ranged between a 1.4- to a 21.6-fold increase in 

LC50 or EC50 values. No studies showed any evidence for DOC exacerbating toxicity. This may 

be attributed to the fact that the highest concentration of DOC evaluated in these studies was 

21.7 mg C/L. This is below the higher concentrations of DOC which showed intrinsic toxicity in 

the studies that investigated metal exposures. In sediment exposures for non-metals, the 

following four compounds were significantly affected by sediment TOC: tributyltin, bifenthrin, 

glyphosate, and alkylbenzene sulfonate. The reduction in toxicity ranged between a 1.6- to a 5.7-

fold increase in LC50 or EC50 values. The greatest effect on toxicity could be seen at a sediment 

TOC level of 4.43%, but levels as low as 0.59% had a significant effect on toxicity. 

Accumulation of sediment OC may be especially relevant to aquaculture open net pen 

operations. The high fish population densities on farms result in above normal discharge of 

organic waste which can accumulate in sediment directly below or adjacent to a net pen (Brown 
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et al. 1987, Carroll et al. 2003, Chou et al. 2002, Findlay et al. 1997, Sutherland et al. 2000, 

Tsutsumi et al. 2006). In Japan, the flux of OC to the sea floor has been shown to be 2.5-fold 

higher (2.11 gC/m2/d) below red seabream fish farms (Pagrus major) relative to nearby reference 

sites (Tsutsumi et al. 2006). Remarkably similar results have been found salmonid net-pens in 

BC (Sutherland et al. 2000). Beside the bottom of the net-pen, carbon flux was approximately 200 

mg/m2/h which was 2-fold higher compared to the control site with a carbon flux of approximately 

100 mg/m2/h (Sutherland et al. 2000). It appears that this carbon flux only significantly increases 

TOC % of sediment near the salmon farm. For example, Brown et al. (1987) showed that at 3 m 

from salmon pens, the sediment TOC was 1.6-fold higher compared to 11 m from salmon pens. 

They also found that all sediment 15 m and further (in intervals up to 1400 m) from the salmon 

pen was highly similar, and approximately 2.3 to 2.4-fold lower than at 3 m (Brown et al. 1987). 

Given these results, it seems the radius of effect for the increased sediment OC is relatively small, 

within the range of approximately 10 m. Thus, the major environmental implications of organic 

matter pollution, such as hypoxia in the water column, which have been discussed in other 

literature (Tsutsumi et al. 2006) may only be relevant to benthic organisms within this radius of 

effect. On the contrary, these increased OC levels may be beneficial by acting as a toxicity 

modifying factor underneath active salmon farms, mitigating the toxic effects of sea lice 

chemotherapeutants. 

 



 

46 
 

 

Figure 6: Hypothetical chemical structures of humic and fulvic acids. There are many variations 
to the structures humic and fulvic acids can assume in the environment (Figure credit: Wang 
and Mulligan 2006) 
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Figure 7: An example of chemical interactions between organic matter and organic contaminants, 
showing the proposed chemical interactions between keto-s-triazine (hydrophilic environmental 
contaminant) and organic matter (humic or fulvic acid molecule). (Figure credit: Laird and 
Koskinen 2008). 
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WATER EXPOSURES 

Substance 
Duratio

n 
Endpoint Species 

OC 
Measur

e 

Lowest 
OC 

tested 

Highes
t OC 

tested 

Toxicity 
Modifying 

Effect 
Notes pH 

Hardnes
s (mg/L 
CaCO3) 

Reference 

METALS 

Cadmium (II) 
(CdCl2) 1 hr 

Photosynthetic 
activity 

Pseudokirchneriell
a subcapitata DOM 0 mg/l 5 mg/l 

5-fold and 2-
fold decrease 
(significant) in 
photosyntheti
c inhibition 
(peat and soil 
humic acids, 
respectively) 

Bioavailability: 
metal 
complexed with 
colloids at 
higher DOC 

8.5 
± 
0.1 N/R 

Koukal et 
al. 2003 

Cadmium (II) 
(CdCl2) 1 hr 

Photosynthetic 
activity 

Pseudokirchneriell
a subcapitata DOM 0 mg/l 5 mg/l 

FAs had no 
significant 
effect on 
toxicity 

Source of FAs: 
Suwannee 
River (GA, 
USA) 

8.5 
± 
0.1 N/R 

Koukal et 
al. 2003 

Chromium (III) 
(chrome 
lignosulfonate) 96 hr Mortality Daphnia pulex DOC 0 mg/L 

50 
mg/L 

1.2-fold 
increase in 
LC50 
(significant) 

Bioavailability 
shown to 
decrease 
(decrease in 
free chromium 
ion) 

8.0 
± 
0.1 92 ± 8 

Stackhous
e and 
Benson 
1989 

Chromium (III) 
(CrCl3) 96 hr Mortality Daphnia pulex DOC 0 mg/L 

50 
mg/L 

~50-fold 
increase in 
LC50* 

Bioavailability 
shown to 
decrease 
(decrease in 
free chromium 
ion) 

8.0 
± 
0.1 92 ± 8 

Stackhous
e and 
Benson 
1989 

Chromium (VI) 
(K2Cr2O7) 48hr Immobilization Daphnia magna DOC 0 mg/l 80 mg/l 

1.5-fold 
increase in 
EC50 

DOC did not 
have a 
significant 
effect on 
toxicity 7 250 

Park et al. 
2009 

Copper 
(CuCl2) 3hr 

Mechanosensor
y (hair cell) cell 
death Danio rerio DOC 

0.1 
mg/L 4.3 mg/l 

4.4-fold 
increase in 
EC50  

EC50 and DOC 
highly 
correlated (r^2 
= 0.975) 

6.97
-
7.46 45 

Linbo et al. 
2009 
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Copper (II) 
(CuCl2) 48hr 

Embryo 
development Mytilus trossolus DOC 0 mg/L 

20 
mg/L 

4-fold 
increase to 
11-fold 
decrease in 
EC50 
values*****   7.88 N/R 

Nadella et 
al. 2009 

Copper (II) 
(CuSO4) 48hr Mortality 

Diaptomus 
clavipes TOC 0 mg/l 

26.2-
30.1 
mg/l 

3- to 10-fold 
increase in 
LC50* 

Change in 
LC50 depended 
significantly on 
temperature 
(10, 20, 30 
degrees 
celsius) 

7.2-
7.6 10-50 

Boeckman 
and 
Bidwell 
2006 

Copper (II) 
(CuSO4) 48hr Mortality Daphnia pulex TOC 0 mg/l 

14.0-
16.9 
mg/l 

~20- to 25- 
fold increase 
in LC50* 
(depending 
on 
temperature 
treatment) 

LC50 and TOC 
highly 
correlated ( 
p<0.0001; r^2 = 
0.91) 

7.2-
7.6 32-52 

Boeckman 
and 
Bidwell 
2006 

Copper (II) 
(CuSO4) 4 d Mortality Villosa iris DOC 

0.5 
mg/L 

10 
mg/L 

5-fold 
increase in 
LC50 
(significant) 

LC50 and DOC 
highly 
correlated 
(r^2=0.90) 

8.3-
8.4 98-169 

Wang et al. 
2011 

Copper (II) 
(CuSO4) 2 d Mortality 

Ceriodaphnia 
dubia DOC 

0.5 
mg/L 

10 
mg/L 

11-fold 
increase in 
LC50 
(significant) 

LC50 and DOC 
highly 
correlated 
(r^2=0.98) 

8.3-
8.4 102-174 

Wang et al. 
2011 

Copper (II) 
(CuSO4) 28 d Mortality Villosa iris DOC 

0.5 
mg/L 

10 
mg/L 

5-fold 
increase in 
LC20 
(significant) 

EC20 and DOC 
highly 
correlated 
(r^2=0.99) 

8.3-
8.4 98-169 

Wang et al. 
2011 

Copper (II) 
(CuSO4) 7 d Mortality 

Ceriodaphnia 
dubia DOC 

0.5 
mg/L 

10 
mg/L 

17-fold 
increase in 
LC20 
(significant) 

EC20 and DOC 
highly 
correlated 
(r^2=0.94) 

8.3-
8.4 102-174 

Wang et al. 
2011 

Copper (II) 
(CuSO4) 28d Biomass Villosa iris DOC 

0.5 
mg/L 

10 
mg/L 

5-fold 
increase in 
EC20 
(significant) 

EC20 and DOC 
highly 
correlated 

8.3-
8.4 98-169 

Wang et al. 
2011 
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(r^2=0.99); 
exponential fit 

Copper 
(CuSO4) 7d Reproduction 

Ceriodaphnia 
dubia DOC 

0.5 
mg/L 

10 
mg/L 

4-fold 
increase in 
EC20 
(significant) 

EC20 and DOC 
correlated 
(r^2=0.79); 
logistic fit 

8.3-
8.4 102-174 

Wang et al. 
2011 

Copper (II) 
(CuCl2) 48hr Immobilization Daphnia magna DOC 0 mg/l 80 mg/l 

20-fold 
increase in 
EC50 

EC50 and DOC 
highly 
correlated 
(p<0.0001; 
r^2=0.904) 7 250 

Park et al. 
2009 

Copper (II) 
(CuSO4) 48hr Lethality Daphnia magna DOC 0 mg/l 

3.75 
mg/l 

~10-fold 
increase in 
LC50* 

Bioavailability: 
DOC 
significantly 
reduced the 
amount of free 
ionic copper in 
solution 7 N/R 

Meador 
1991 

Nickel 48 hr Mortality Daphnia magna DOC 0 mg/l 80 mg/l 

Survival lower 
than 25% at a 
DOC-free 
LC75 of Ni****  

7.89 
± 
0.04 100 ± 2 

Cloran et 
al. 2010 

Silver (I) 
(AgNO3) 96 hr Mortality 

Oncorhynchus 
mykiss (rainbow 
trout) DOC 0.3 mg/l 5.8 mg/l 

4.1-fold 
increase in 
LC50 
(significant) 

Bioavailability: 
no significant 
decrease in 
Ag+ ions 

6.76 
± 
0.07   

Bury et al. 
1999 

Silver (I) 
(AgNO3) 96 hr Mortality 

Pimephales 
promelas DOC 0.3 mg/l 5.8 mg/l 

2.7-fold 
increase in 
LC50 
(significant) 

Bioavailability 
reduced; shown 
by significant 
decrease in 
free Ag+ ions   

Bury et al. 
1999 

Uranium (II) 
(UO2SO4) 72 hr Growth Rate Chlorella sp. DOC 0 mg/l 20 mg/l 

19.6-fold 
increase in 
IC50 
(significant***) 

Water source: 
Synthetic 
Magela Creek 
water 

6.2 
(6.0-
6.4) 

3.6 (3-
3.9) 

Trenfield et 
al. 2011 

Uranium (II) 
(UO2SO4) 96 hr 

Population 
Growth Rate Hydra viridissima DOC 0 mg/l 20 mg/l 

7.5-fold 
increase in 

Water source: 
Synthetic 

6.1 
(6.0-
6.2) 

3.6 (3-
3.9) 

Trenfield et 
al. 2011 
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IC50 
(significant***) 

Magela Creek 
water 

Uranium (II) 
(UO2SO4) 96 hr Survival 

Mogurnda 
mogurnda DOC 0 mg/l 20 mg/l 

4.7-fold 
increase in 
LC50 
(significant***) 

Water source: 
Synthetic 
Magela Creek 
water 

6.2 
(6.0-
6.4) 

3.6 (3-
3.9) 

Trenfield et 
al. 2011 

Uranium (II) 
(UO2SO4) 72 hr Growth Rate Chlorella sp. DOC 0 mg/l 10 mg/l 

11.5-fold 
increase in 
LC50 
(significant***) 

Water source: 
Sandy 
Billabong water 

6.0 
(5.9-
6.3) 

4.6 (3.5-
6) 

Trenfield et 
al. 2011 

Uranium (II) 
(UO2SO4) 96 hr 

Population 
Growth Rate Hydra viridissima DOC 0 mg/l 10 mg/l 

2.3-fold 
increase in 
IC50 
(significant***) 

Water source: 
Sandy 
Billabong water 

6.1 
(5.8-
6.4) 

4.6 (3.5-
6) 

Trenfield et 
al. 2011 

Uranium (II) 
(UO2SO4) 96 hr Survival 

Mogurnda 
mogurnda DOC 0 mg/l 10 mg/l 

1.8-fold 
increase in 
LC50 
(significant***) 

Water source: 
Sandy 
Billabong water 

6.2 
(5.9-
6.4) 

4.6 (3.5-
6) 

Trenfield et 
al. 2011 

Zinc (II) 
(ZnSO4) 1 hr 

Photosynthetic 
activity 

Pseudokirchneriell
a subcapitata DOM 0 mg/l 5 mg/l 

2- and 10-fold 
decrease 
(significant) in 
photosyntheti
c inhibition 
(peat and soil 
humic acids, 
respectively)  

Bioavailability: 
metal 
complexed with 
colloids at 
higher DOC 

8.5 
± 
0.1 N/R 

Koukal et 
al. 2003 

Zinc (II) 
(ZnSO4) 1 hr 

Photosynthetic 
activity 

Pseudokirchneriell
a subcapitata DOM 0 mg/l 5 mg/l 

FAs had no 
significant 
effect on 
toxicity 

Source of FAs: 
Suwannee 
River 

8.5 
± 
0.1 N/R 

Koukal et 
al. 2003 

NON-METALS 

Chlorpyrifos 24 hr Mortality 
Ceriodaphnia 
dubia DOC 0.6 mg/l 

21.7 
mg/l 

Significant 
4.8-fold 
increase of 
survival % 
(from 19.1% 
to 91.6%)  

Exposure to 82 
ng/L 
Chlorphyrifos N/R 53.2 

Mezin and 
Hale 2004 

Chlorpyrifos 24 hr Mortality 
Americamysis 
bahia DOC 2.2 mg/l 

14.8 
mg/l 

1.2-fold 
decrease in 

Exposure to 
322 ng/L 
Chlorphyrifos N/R N/R 

Mezin and 
Hale 2004 
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survival (not 
significant) 

DDT 24 hr Mortality 
Ceriodaphnia 
dubia DOC 0.6 mg/l 

21.7 
mg/l 

Significant 2-
fold increase 
in survival 
(50.6% to 
~100%) 

Exposure to 
1100 ng/l of 
DDT; protective 
effect maxes 
out at 30 mg 
DOM/l N/R 53.2 

Mezin and 
Hale 2004 

DDT 24 hr Mortality 
Americamysis 
bahia DOC 2.2 mg/l 

14.8 
mg/l 

1.2-fold 
decrease in 
survival (not 
significant)* 

Exposure to 
1100 ng/l of 
DDT N/R N/R 

Mezin and 
Hale 2004 

Formaldehyde 144 hr 
Embryo 
mortality** Danio rerio DOC 0 mg/l 5 mg/l 

21.6-fold 
increase in 
LC50 
(significant) 

Using hard 
water 

7.71
-
7.77 125.6 

Meinelt et 
al. 2005 

Formaldehyde 144 hr 
Embryo 
mortality** Danio rerio DOC 0 mg/l 5 mg/l 

1.4-fold 
increase in 
LC50 
(significant) 

Using soft 
water 

7.54
-
7.86 53.6 

Meinelt et 
al. 2005 

gamma-
Hexachlorocycl
-ohexane 144 hr Bioaccumulation 

Marsilea minuta 
(aquatic fern) DOM 0% 1% 

47-78% 
reduction in 
tissue 
concentration 

Bioaccumulatio
n reduction 
depends on 
segment of 
plant tissue 
sampled and 
light intensity N/R N/R 

Misra et al. 
2000 

Triclosan 48 hr Immobilization Gammarus pulex DOC 

Not 
reporte
d 

11 mg/l 
(added) 

1.4-fold 
increase in 
EC50 
(significant) 

Water source: 
Synthetic Fresh 
Water (SFW) 

8.35
-
8.39  

Rowett et 
al. 2016 

Triclosan 48 hr Immobilization Gammarus pulex DOC 

Not 
reporte
d 

11 mg/l 
(added) 

1.29-fold 
increase in 
EC50 (not 
significant) 

Water source: 
Synthetic Fresh 
Water (SFW) 

7.25
-
7.27   

Rowett et 
al. 2016 

*approximation based on visual inspection of graph 

**unhatched embryos considered dead 

***not reported, but inferred based on non-overlapping 95% confidence intervals 
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****Protective at 18 mg/l DOC: ~1.5 fold greater survival than expected at LC75 of Ni; exposure to 48 and 80 mg/L DOC alone resulted in significant mortality (15 and 55%) 

*****Results depended on water source; intermediate OC levels (<10 mg C/L) still showed protective effect: appeared to have a inverted U shape in terms of OC versus EC50 

for 2 out of 3 of the water sources tested 

Table 5: The toxicity modifying effect of organic carbon on metals and non-metals in water exposures with aquatic organisms. Most 
quantifications of toxicity modifying are expressed as the change in LC/ECx value that results at the highest organic carbon (OC) or 
organic matter (OM) treatment compared to the lowest OC or OM treatment. Dissolved and total OC are abbreviated as DOC and 
TOC, respectively; dissolved OM is abbreviated as DOM. Where possible, the valency (roman numerals) and salt of the metal used in 
the toxicity study was included (e.g. copper in CuCl2 with a valency of 2). 

 

SEDIMENT EXPOSURES 

Substance Duration Endpoint Species 
OC 

Measure 

Lowest 
OC 

tested 

Highest 
OC 

tested 

Toxicity 
Modifying 

Effect 
Notes 

Particle 
Size 

pH Reference 

NON-METALS 

Alkylbenzene 
sulfonate 48 hr Mortality 

Hyalella 
azteca TOC 0.35% 4.64% 

4.6-fold 
increase in 
LC50 
(significant) 

Sediment 
OC series 
(0.35, 0.65, 
0.84, 1.47, 
and 4.64); 
dry weight N/R N/R 

Cano et al. 
1996 

Bifenthrin 
(pyrethroid) 10 d Mortality 

Hyalella 
azteca TOC 0.56% 4.43% 

5.7-fold 
increase in 
LC50 
(significant) 

dry weight 
of sediment 

Low OC: 14 
: 62 : 24 
(Sand : Silt 
: Clay); 
High OC: 
(46 : 47: 7) 

6.76 ± 0.13 
(overlying 
water) 

Hardwood 
et al. 2012 

Bifenthrin 
(pyrethroid) 10 d Immobilization 

Hyalella 
azteca TOC 0.56% 4.43% 

4.9-fold 
increase in 
EC50 
(significant) 

dry weight 
of sediment 

Low OC: 14 
: 62 : 24 
(Sand : Silt 
: Clay); 
High OC: 
(46 : 47: 7) 

6.76 ± 0.13 
(overlying 
water) 

Hardwood 
et al. 2012 
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Bifenthrin 
(pyrethroid) 10 d Mortality 

Chironomus 
dilutus TOC 0.56% 4.43% 

2.2-fold 
increase in 
LC50 
(significant) 

dry weight 
of sediment 

Low OC: 14 
: 62 : 24 
(Sand : Silt 
: Clay); 
High OC: 
(46 : 47: 7) 

6.76 ± 0.13 
(overlying 
water) 

Hardwood 
et al. 2012 

Bifenthrin 
(pyrethroid) 10 d Immobilization 

Chironomus 
dilutus TOC 0.56% 4.43% 

1.6-fold 
increase in 
EC50 
(significant) 

dry weight 
of sediment 

Low OC: 14 
: 62 : 24 
(Sand : Silt 
: Clay); 
High OC: 
(46 : 47: 7) 

6.76 ± 0.13 
(overlying 
water) 

Hardwood 
et al. 2012 

Glyphosate 48 hr Mortality 
Ceriodaphnia 
dubia TOC 0.0% 2.10% 

3.1-fold 
increase in 
LC50 
(significant) 

Formulation: 
'Roundup' N/R 8.0 

Tsui and 
Chu 2004 

Glyphosate 48 hr Mortality 
Ceriodaphnia 
dubia TOC 0.0% 2.10% 

1.3-fold 
decrease (not 
significant) 

Formulation: 
'Roundup 
Biactive' ** N/R 8.0 

Tsui and 
Chu 2004 

Tributyltin 10 d Mortality 

Rhepoxynius 
abronius 
(Amphipoda) TOC 0.12% 0.59% 

Concentration 
resulting in 
20% mortality 
at highest OC 
is ~ 2-fold 
higher* than 
LC50 at 
lowest OC***  

97% and 
90% sand 
for high and 
low OC 
sediment, 
respectively 

7.8 ± 0.06 
(porewater) 

Meador et 
al. 1997 

Tributyltin 10 d Mortality 

Armandia 
brevis 
(Polychaeta) TOC 0.30% 0.87% 

Concentration 
resulting in 
33% mortality 
at highest OC 
is ~3-fold 
higher* than 
LC50 at 
lowest OC****   

84% sand 
for both 
high and 
low OC 
sediment 

7.8 ± 0.1 
(porewater) 

Meador et 
al. 1997 

*Approximation based on visual inspection of graph 

**The only difference compared to regular 'Roundup' formulation is the surfactant found in this formulation 

***Mortality at highest TBT concentration in highest OC concentration treatment resulted in 20% mortality (preventing LC50 calculation) 



 

55 
 

****Mortality at highest TBT concentration in highest OC concentration treatment resulted in 33% mortality (preventing LC50 calculation) 

 
Table 6: The toxicity modifying effect of organic carbon (OC) on non-metals in sediment (with overlying water) exposures with aquatic 
organisms. Most quantifications of toxicity modifying are expressed as the change in LC/ECx value that results at the highest OC 
treatment compared to the lowest OC treatment. Total OC content of sediment is abbreviated as TOC. 
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1.9. Chemical residence time as a toxicity modifying factor 

 

Besides sediment and porewater characteristics, the duration of contact between a chemical 

and a certain environmental medium (i.e. chemical residence time) may also play a role in 

modifying a substance’s toxicity. There are two proposed mechanisms that underly this and can 

be categorized as follows: (1) bond strength and (2) sequestration. When a substance complexes 

with humic substances, the strength of the bond between them can increase over time (Clark and 

Choppin 1990). With relevance only to sediment/soil matrices, a substance may also gradually 

sequester in pockets of the soil matrix which are inaccessible to even the smallest of 

microorganisms (Alexander 2000). Both mechanisms may result in a decrease in bioavailability 

of a substance over time.  

Clark and Choppin (1990) conducted an experiment that adds validity to the mechanism 

involving modification of bond strength. After 15 min of contact, it was found that 100% of trivalent 

europium (Eu) was bound to humic acids, but only 4% of the bonding was characterized as bonds 

with high affinity. However, after 2 d of contact, 38% of the bonds were high affinity bonds (Clark 

and Chopping 1990). Therefore, it appears that bond strength for contaminant-DOC complexes 

can increase over time, reducing the bioavailability of an environmental contaminant, and thus 

reducing its toxicity. However, few published toxicological studies to date have confirmed this. On 

the contrary, another experiment showed that copper (Cu) and cadmium (Cd) accumulation on 

the gills of juvenile Oncorhynchus mykiss were unaffected by the age of the metal-DOC complex, 

when these complexes were aged for a period of three weeks (Hollis et al. 1996). The ability of 

DOC to keep these metals from accumulating on the gill surface is the main mechanism for its 

protective effect (Hollis et al. 1996). Therefore, these findings do not support the idea that 

chemical residence time affects toxicity in the case of these two metals. However, it is possible 

that the three weeks of aging in the study was not sufficient to observe a significant influence on 

toxicity. No other literature could be found regarding the age of DOC-contaminant complexes, 

and its effect on toxicity. 

Some literature exists regarding a chemical’s residence time on the bioaccessibility of 

various compounds in soil. Alexander (2000) summarizes results from a variety of studies which 

found that all of the following 7 compounds are less accessible to microbes for mineralization after 

aging in soil: naphthalene, phenanthrene, anthracene, fluoranthene, pyrene, atrazine, and 4-

nitrophenol. For example, Chung and Alexander (1998) measured microbial mineralization of 

phenanthrene and atrazine at various time-points over the course of 200 d, in 16 different soil 
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types. After 200 d of aging in soil, both atrazine and phenanthrene were significantly less 

mineralizable by microbes in 15 out of 16 soil types tested, when compared to initial un-aged 

conditions (Chung and Alexander 1998). In many cases, this reflected an approximately two-fold 

decrease in percentage of microbial mineralization of these two compounds (Chung and 

Alexander 1998). 

 

1.10.  Study goal and objectives 

 

The objective of this study was to assess the effect of chemical residence time and sediment 

OC content on the toxicity of ivermectin (pure chemical) and the formulation Slice® (a.i. EB) to 

benthic invertebrates. Toxicity was assessed for both lethal and sublethal endpoints using two 

species of benthic invertebrates: Eohaustorius estuarius (Amphipoda) and Neanthes virens 

(Polychaeta). Three levels of sediment OC (low, medium, and high) and chemical residence time 

(0-, 2-, and 4-months) were included, for a total of 9 combinations of the two factors. This design 

also allowed for the assessment of any interaction between these factors. The lowest organic 

carbon treatment (0-OC) had a sediment TOC content below the limit of detection (<0.05%) and 

the highest (1-OC) was 0.42%, with the intermediate OC treatment (0.5-OC) being a 50/50 

mixture of the highest and lowest OC sediments. Exposure durations for E. estuarius and N. 

virens were 48 h and 10 d, respectively. Sublethal endpoints involved behavioral assays which 

included light-avoidance and burrowing behavior for E estuarius and N. virens, respectively. 

Combined exposures to both avermectins were also included to investigate the toxic effects that 

may result upon simultaneous exposure to both avermectins. 
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Chapter 2. The effects of sediment organic carbon and 

chemical residence time on lethal and sublethal 

avermectin toxicity to benthic invertebrates 

 

2.1 Introduction 

 

Sea lice are an ectoparasitic copepods which can be found in marine or brackish waters 

(Boxaspen 2006). Following attachment sea lice feed on the surface tissues of the host. In 

salmonid hosts, the resulting sublethal effects can include reduced respiratory and 

osmoregulatory capacity; reduced growth and swimming capabilities; and compromised immune 

function (Fjelldal et al. 2019, Godwin et al. 2017, Johnson and Fast 2004, Tully and Nolan 2002, 

Wagner et al. 2004). These sublethal effects may indirectly lead to mortality, however it is less 

common that sea lice are directly responsible for the mortality of its salmonid host (Costello 2006). 

Farmed salmon host fitness decreases can become an economic burden to the salmonid 

aquaculture industry; it has been estimated that sea lice are responsible for annual losses of $500 

million USD, accounting for 6% of global salmonid aquaculture production (Costello 2009a). 

Although there are over 500 species of sea lice known (Ahyong et al. 2011), only 5 of them have 

been observed in salmonid aquaculture operations in both Europe and the Americas: Caligus 

clemensi (Pacific Ocean) Caligus elongatus (Atlantic Ocean), Lepeophtheirus salmonis, Caligus 

teres, and Caligus rogercressyi (Johnson and Fast 2004). The latter two are found in the Southern 

Hemisphere, while the other three are found in the Northern Hemisphere (Johnson and Fast 

2004). Besides the economic cost associated with sea lice, they are also a concern for wild 

salmon populations; densely populated open net pens allow for the cultivation of sea lice, which 

can then spread to wild populations (Krokosek 2004, Morton et al. 2008, Thorstad and Finstad 

2018, Torrisen et al. 2013). The economic and ecological toll has prompted management efforts 

worldwide to contain this costly marine pest.  

Chemical management strategies have been used since the 1970s in Norway, starting 

with the use of trichlorfon (i.e. metrifonate) (Aaen et al. 2015, Torrisen et al. 2013). Currently 7 

compounds, found in a variety of sea lice formulations, are used in salmonid aquaculture globally: 

teflubenzuron and diflubenzuron (benzoyl ureas); cypermethrin and deltamethrin (pyrethroids); 

azamethiphos (organophosphates); emamectin benzoate (avermectin); and hydrogen peroxide 
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(Aaen et al. 2015, Burridge et al. 2010, Torrissen et al. 2013). Clinically registered treatments vary 

by country. In Canada there are currently 5 commercial formulations that can be used in 

aquaculture: Slice® (active ingredient (AI): emamectin benzoate), Interox®Paramove®50 (AI: 

hydrogen peroxide), Calicide® (AI: teflubenzuron), Salmosan® (AI: azamethiphos), and 

Alphamax® (AI: deltamethrin) (Yossa and Dumas 2016). The latter two are only available if 

emergency registration is granted by Health Canada’s  est Management Regulatory Agency 

(PMRA) (Yossa and Dumas 2016). In British Columbia, Slice® is the only formulation used 

(Burridge and Van Geest 2014).  

The in-feed formulation Slice® contains 0.2% emamectin benzoate (EB) which is part of 

a class of compounds called avermectins (Lumaret et al. 2012). Avermectins are macrocyclic 

lactones which are derived from the bacteria Streptomyces avermitilis (Reddy 2013). EB is a 

mixture of two homologues of avermectins: 4’-epimethyamino-4’-deoxyavermectin B1a benzoate 

(MAB1a) and 4’-epimethyamino-4’-deoxyavermectin B1b benzoate (MAB1b) (Bright and Dionne 

2005). The compounds are relatively large with a molecular weight of 1008.3 and 994.24 g/mol, 

respectively (Bright and Dionne 2005). They are hydrophobic (logKow=5 at pH=7), therefore they 

tend to partition to sediment, allowing EB to build-up in sediment underneath salmon pens, with 

minimal levels residing in the water column (Bright and Dionne 2005). In an aquatic environment, 

the dispersal radius for EB is not particularly large; EB has been shown to be almost undetectable 

(limit of detection: 0.06 µg/kg) in sediment beyond 100 to 150 m from the edge of an open net 

pen after a typical 7-d treatment regimen of Slice® (DFO 2011b). However, it does have relatively 

high environmental persistence in sediment, with a degradation half-life (DT50) ranging between 

164 to 404 d in marine sediment (Benskin et al. 2006, Bright and Dionne 2005). Conversely, if 

suspended in the water column, it rapidly decays due to photolysis, with a DT50 between 1.4 and 

22.4 d (Bright and Dionne 2005). 

Ivermectin (IVM) is also an avermectin compound and has been previously used as an off 

label chemotherapeutant in aquaculture (Haya et al. 2005). It has never been licensed for use in 

aquaculture, however countries including Ireland, Canada, and Chile had used it until the year 

2000 (Horsberg et al. 2012). It is not clear how frequently it is used currently, but it is not a popular 

method for sea lice control. Like EB, it is administered by incorporation into fish feed. Three 

formulations have been used historically in aquaculture: a 1% injectable solution (Ivomec®); a 1% 

oral drench (Eqvalan®); and a 0.6% swine premix (Ivomec® Premix for Swine) (Horsberg et al. 

2012). It then disperses into the marine environment by leaching from uneaten food pellets, or 

from the excrement of treated fish (Bright and Dionne). It also has similar chemical characteristics 
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to EB, being hydrophobic (log Kow value = 3.21), with a tendency to accumulate in sediments 

under aquaculture operations and is found only minimally in the water column. Its DT50 in sediment 

is comparable to that of EB. When residing in a soil-feces mixture at 22oC in a laboratory setting, 

the DT50 ranges between 93 to 240 d (Halley et al. 1989). The tendency of IVM and EB to build-

up in the sediment and persist for long periods is a concern for non-target sediment-dwelling 

organisms. 

The toxic mode of action of avermectins is linked to their affinity for ligand-gated chloride 

channels in both invertebrates and vertebrates (Lumaret et al. 2012, Song et al. 2016, 

Wolstenholme 2010). However, they are generally regarded as being more toxic to invertebrates 

due to a high selectivity for glutamate-gated chloride channels, which are only found in 

invertebrates (Fisher and Mrozik 1992, Lumaret et al. 2012, Reddy 2013). Many aquatic toxicity 

studies have looked at mortality as a toxicological endpoint for both EB and IVM in non-target 

species. In aquatic vertebrates, the 96-h LC50 of EB for water-only exposures ranges between 

18 and 1340 µg/L, when considering the following five species of fish: Oncorhynchus mykiss 

(juvenile), Lepomis macrochirus (juvenile), Pimephales promelas (adult and early life stages), 

Cyprinodon variegatus, Cyprinus carpio (Lumaret et al. 2012, OPP 2000, Wallace 2001b in Park 

2013). In aquatic invertebrates, the 96-h LC50 of EB for water-only exposures ranges between 

0.04 and 983 µg/L, when considering 4 species of invertebrates: Nephrops norvegicus, Crangon 

crangon, Mysidopsis bahia, Crassostrea virginica (Lumaret et al. 2012, Zelinka et al. 1994 in Park 

2013). In comparison, the 96-h LC50 values in water-only exposures to IVM in vertebrates ranges 

between 0.2 and 74.88 µg/L when considering the following 6 species: Clarias gariepinus, Danio 

rerio, Anguilla Anguilla, Lepomis macrochirus, Salmo gardneri, Salmo salar (Davies and Rodger 

2000, Domingues et al. 2016, Geets et al. 1992, Halley et al. 1989, Oliveira et al. 2016). For 

invertebrates, the 96-h LC50 values in water-only exposures to IVM ranges between 0.07 and > 

10,000 µg/L when considering the following 19 species: Sphaeroma rugicauda (Isopoda), 

Crangon septemspinosa (Decapoda) Palaemonetes varians (Decapoda) Gammarus duebeni 

(Amphipoda) Gammarus zaddachi (Amphipoda) Carcinus maenas (Decapoda) Neomysis integer 

(Mysidacea) Nereis diversicolor (Polychaeta) Crassostrea gigas (Bivalvia) Mytilus edulis 

(Bivalvia) Pecten maximus (Bivalvia) Tapes semidecussata (Bivalvia) Monodonta lineata 

(Gasteropoda) Biomphlaria glabrata (Gasteropoda) Hydrobia ulvae (Gasteropoda) Potamopyrgus 

jenkinsii (Gasteropoda) Littorina littorea (Gasteropoda) Nucella lapillus (Gasteropoda) Patella 

vulgata (Gasteropoda) (Grant and Briggs 1998 Burridge and Haya 1993 Davies et al. 1997 Davies 

and Rodger 2000 Matha and Weiser 1988).  
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EB- and IVM-induced mortality has also been investigated in non-target species of 

invertebrates in exposures involving sediment and overlying water. The 10-d LC50 of EB ranges 

between 111 and 1368 µg per kg (dry/wet weight) of sediment when considering the following 6 

species of benthic invertebrates: Corophium volutator (Amphipoda), Eohaustorius estuarius 

(Amphipoda), Monocorophium insidiosum (Amphipoda), Homarus americanus (Decapoda), 

Arenicola marina (Polychaeta), Hediste diversicolor (Polychaeta) (Daoud et al. 2018, Kuo et al. 

2010, Lumaret et al. 2012, Mayor et al. 2008, Tucca et al. 2014). The latter two species 

correspond to the lowest and highest LC50 values, respectively. The 10-d LC50 of IVM ranges 

between 18 and 212 µg per kg (dry/wet weight) of sediment when considering the following 4 

benthic invertebrate species: Chironomus riparius (Diptera), Corophium volutator (Amphipoda), 

Arenicola marina (lugworm, Polychaeta), and Homarus americanus (American lobster) (Daoud et 

al. 2018, Davies et al. 1998, Egeler et al. 2010, Grant and Briggs 1998, Thain et al. 1997). The 

latter 2 species have the lowest and highest LC50 values, respectively. However, in Asterias 

rubens (Asteroida) the 10-d LC50 for IVM has been reported to be 23,600 µg/kg (dry weight of 

sediment) (Davies et al. 1998).  

Besides mortality, both EB and IVM exposure can result in a suite of sublethal toxic effects 

in both aquatic invertebrates and vertebrates. Sublethal effects previously observed in aquatic 

invertebrates exposed to either EB or IVM include the following: loss of locomotory control, 

paralysis, developmental effects (e.g. reduced growth and failure to molt), and reduction in 

reproductive capacity (Bundschuh et al. 2016, Cheng et al. 2020, Daoud et al. 2018, Ding et al. 

2001, Egeler et al. 2010, Liebig et al. 2010, Song et al. 2016, Willis & Ling 2003). In aquatic 

vertebrates, the following sublethal effects have been observed upon exposure to EB: reduced 

appetite; lethargy; loss of motor coordination; changes in coloration (Roy et al. 2000, Stone et al. 

2002). The following sublethal effects in IVM-exposed aquatic vertebrates have been observed: 

reduction in hematocrit and appetite; changes in cholinesterase, catalase, and glutathione S-

transferases activity; lethargy; postural abnormalities and spine deformities (Katharios et al. 2001, 

Oliveira et al. 2016).  

Many environmental factors can alter a substance’s toxicity in both the aquatic and 

terrestrial environment. These can be divided into three categories: (1) chemical, (2) physical, 

and (3) biological. Chemical factors describe chemical properties of the environmental medium 

such as pH, cationic/anionic solute profile, organic matter content, dissolved oxygen. Physical 

factors describe physical properties of an environmental medium (e.g. water/sediment turbidity, 

sediment grain size, light intensity, temperature, etc.). Biological factors are those that pertain to 
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biota present in an environmental medium such as microbial activity.  Collectively, all these 

environmental factors which alter exposure or bioavailability, and hence internal dose and toxicity 

can be termed exposure and toxicity modifying factors (ETMFs) (CCME 2007). In the aquatic 

environment, this can be divided into two matrix dependent categories: (1) water column 

characteristics and (2) sediment/porewater characteristics.  

In the water column, recognized ETMFs include the following: suspended solids turbidity, 

light intensity, temperature, resident microbial activity, pH, hardness, alkalinity, dissolved oxygen 

(DO), dissolved organic carbon (DOC), particulate organic carbon (POC), levels of major 

cations/anions (e.g. Mg2+, Ca2+, K+, Na+, Cl-, CO3
-) (CCME 2007, Di Toro et al. 2001, Loverage 

2016, Santore et al. 2001, Smith and Lizotte 2007, Wang 1987). Many of these factors have been 

shown to alter the toxicity of organic compounds (Akkanen and Kukkonen 2001, Bostrom and 

Berglund 2015, Tsui and Chu 2003, Smith and Lizotte 2007). In sediment, recognized ETMFs 

include the following: grain size and angularity, sediment consolidation, water-retention capacity, 

mineral constituents (e.g. oxides of Fe, Al, and Mn), total organic carbon (TOC), and total organic 

nitrogen (TON) (Bentivegna et al. 2004, Lapota et al. 2000, Simpson and Kumar 2016, Word et 

al. 2005). Sediment porewater characteristics, which are heavily influence by surrounding 

sediment, that are considered ETMFs include the following: ammonia, pH, DO, and acid-volatile 

sulfides (AVS) (Lapota et al. 2000, Word et al. 2005). 

Organic matter (OM), predominantly made up of humic substances, is a well-recognized 

toxicity modifying factor (Ferraz et al. 2020, Steinberg 2003, Thurman 1985). Organic carbon 

(OC) includes only the carbon constituent of OM molecules and is the typical method of 

quantifying OM (Thurman 1985). The bioavailability of non-metal contaminants can be reduced 

by a variety of chemical interactions with humic substances including ionic and covalent bonding, 

hydrophobic interactions, Van der Waals forces, π-π stacking, and hydrogen bonding (Bollag et 

al. 1992, Bollag and Meyers 1992, Steinberg 2003). Several studies have shown the protective 

effect DOC has on the bioavailability and toxicity of non-metals in experiments involving exposure 

in the water column (Mezin and Hale 2004, Meinelt et al. 2005, Misra et al. 2000, Rowett et al. 

2016). This effect can be dramatic, but also depends on water chemistry parameters such as 

hardness and pH. For example, Meinelt et al. (2005) show 5 mg/L of DOC in hard water (125.6 

mg CaCO3/L) corresponded to a significant 21.6-fold increase in the 144-h LC50 of embryonic 

stage D. rerio exposed to formaldehyde compared to the control group (0 mg/L of DOC). In 

contrast, they found that when using soft water (53.6 mg CaCO3/L) instead, the increase in the 

LC50 was only 1.4-fold relative to the control group. Although this still resulted in a significant 
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increase in the LC50 relative to the control group, the toxicity mitigating effect of DOC is much 

less pronounced when soft water was used instead of hard water. Rowett et al. (2016) found that 

11 mg/L of DOC in slightly alkaline water (pH = 8.35 to 8.39) corresponded to a significant 1.4-

fold increase in the 48-h EC50 (immobilization) relative to the control group (0 mg/L of DOC) of 

Gammarus pulex exposed to triclosan. However, when using more neutral water (pH = 7.25-7.27), 

they found that the increase in the EC50 was only 1.29-fold, and not statistically significant. These 

two examples illustrate that water chemistry parameters, such as hardness and pH, can influence 

the protective effect of DOC. Other studies which did not involve a point-estimate (i.e. LC/ECx) 

metric for toxicity have also found toxicity-ameliorating effects of DOC. For example, Mezin and 

Hale (2004) found that 21.7 mg/L of DOC significantly reduced mortality of Ceriodaphnia dubia 

exposed to chlorpyrifos and dichlorodiphenyltrichloroethane (DDT) relative to a low-DOC 

treatment group at 0.6 mg/L of DOC. However, in this same study they found that 14.8 mg/L of 

DOC had no effect on mortality-induced by these two compounds in Americamysis bahia; 

although in this case it was relative to a low-DOC treatment group of 2.2 mg/L. Overall, DOC has 

been shown to reduce the toxicity of non-metals in the water column, albeit inconsistently. This 

reduction in toxicity generally appears to be less than two-fold, as represented by changes in 

LC/ECx’s, but can also be as high as approximately 20-fold. 

Some studies have also focused on the effects OC has on the toxicity of non-metals in 

sediment exposures (Cano et al. 1996, Harwood et al. 2013, Meador et al. 1997, Tsui and Chu 

2004). For example, Harwood et al. (2013) showed that a TOC in sediment of 4.43% significantly 

increased the 10-d LC50 and EC50 values by 5.7- and 4.9-fold, respectively, in Hyalella azteca 

exposed to a pyrethroid pesticide, bifenthrin. This increase was shown relative to a control group 

of 0.56% sediment TOC. Cano et al. (1996) made a comparable finding where 4.64% sediment 

TOC corresponded to a significant 4.6-fold increase in the 48 h LC50 of H. azteca exposed to 

alkylbenzene sulfonate when compared to a low-TOC treatment of 0.35%. Other studies have 

shown that a much lower sediment TOC content can also result in a reduction in toxicity. For 

example, Meador et al. (1997) found that a sediment TOC of 0.59% resulted in a significant 

reduction in mortality of Rhepoxynius abronius (Amphipoda) after 10 d exposures to tributyltin, 

relative to a control sediment with 0.12% TOC. In this case, an LC50 for the 0.59% TOC treatment 

could not be calculated due to insufficient mortality at the highest concentration of tributyltin 

tested. However, the concentration resulting in 20% mortality in this treatment was two-fold higher 

than the LC50 of the 0.12% TOC treatment. Meador et al. (1997) conducted a similar experiment 

with Armandia brevis (Polychaeta), finding that the concentration resulting in 33% mortality with 

a 0.87% TOC treatment was 3-fold higher than the LC50 at the lower TOC treatment of 0.30%. 
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Toxicity of glyphosate has also been shown to be reduced by sediment TOC in exposures with 

Ceriodaphnia dubia (Tsui and Chu 2004). A sediment TOC of 2.10% resulted in a statistically 

significant 3.1-fold higher 48-h LC50 value relative to a 0.0% TOC control group with exposures 

using the glyphosate-containing formulation Roundup®. However, when the glyphosate-

containing formulation Roundup Biactive® was used, the 48 h LC50 was 1.3-fold lower than the 

control group. The only difference between these 2 formulations is the surfactant used. No studies 

have addressed the modifying effects on the toxicity of OM on EB or IVM, or any avermectins. 

Since the environmental fate of EB and IVM dictates that the environmental medium they will 

predominantly reside in is sediment, rather than water, it is imperative to understand the effects 

varying levels of sediment TOC will have on toxicity of these compounds. 

Increasing chemical residence time (the length of time that a substance spends in contact 

with sediment) has been shown to reduce bioavailability (the portion of a compound which can be 

absorbed by an organism, through any route of exposure, from both the physically available and 

unavailable pools of that compound) of persistent organic pollutants (Alexander 2000, Chung and 

Alexander 1998, Conrad et al. 2002, Kukkonen and Landrum 1998, Landrum et al. 1992, Taylor 

et al. 2019). One recognized mechanism for this decrease in bioavailability with increasing 

chemical residence time is that contaminants gradually sequester into pockets of the sediment 

matrix which are inaccessible to even the smallest of organism, such as soil microbes (Alexander 

2000). This represents a reduction in a contaminant’s physical availability: the portion of a 

compound that can come in direct contact with the exterior or interior surfaces of an organism. 

For example, Chung and Alexander (1998) demonstrate that soil microbes were significantly less 

able to mineralize – and therefore, presumably, were less in contact with – phenanthrene and 

atrazine after 200 d of being aged with sediment. However, this may not accurately reflect the 

exposure scenario in multicellular organisms which have organs with extractive functions, like the 

gastrointestinal tract, enabling more effective extraction of contaminants from sediment particles 

than single-celled microbes. Nevertheless, a reduction in bioavailability of contaminants with 

increasing chemical residence time has been previously observed in multicellular organisms 

including Lumbriculus variegatus (aquatic oligochaete), Diporeia spp. (benthic amphipod), and 

Eisenia foetia (earthworm) exposed to persistent organic pollutants (Conrad et al. 2002, 

Kukkonen and Landrum 1998, White et al. 1999, You et al. 2009). Furthermore, it was found that 

physical occlusion of the contaminant was responsible for 21% of the overall reduction in pyrene 

bioavailability in L. variegatus, after 220 d of chemical residence time (Conrad et al. 2002). This 

indicates that physical occlusion of contaminants, with increasing chemical residence time, plays 
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a role in bioavailability reductions of these contaminants in more complex organisms than 

microbes. 

The decrease in physical availability of a contaminant is not solely responsible for a 

decrease in its bioavailability. For example, the bioavailability, normalized to physical availability 

of pyrene (i.e. only when considering the physically available pool of pyrene in sediment) in L. 

variegatus decreased by about 58% over the course of 220 d of chemical residence time (Conrad 

et al. 2002). This represents a decrease in bioavailability that is attributed to reasons other than 

a contaminant’s physical availability.  It is worth noting that a large amount (approximately 60%) 

of the decrease in bioavailability of pyrene can be accounted for after the first d of sediment aging. 

In fact, Conrad et al. (2002) found that the reduction in bioavailability over the course of 220 d 

followed 3-stage progression. The first stage: a rapid reduction in bioavailability by approximately 

30% over the course of the first day. The second stage: a plateau in bioavailability between day 

14 to 70. The third stage: between day 70 to 220, a further 28% decrease in bioavailability. This 

demonstrates that the reduction in bioavailability might be a rapid process initially. Besides 

bioavailability, the chemical extractability, representing the physically available fraction, of pyrene 

decreased by 50% after 220 d of chemical residence time (Conrad et al. 2002). Therefore, the 

recorded 70% decrease in body burden of pyrene in the test species used in that study over the 

course of 220 d of sediment aging, represents a decrease in the overall bioavailability of pyrene. 

Furthermore, to address the confounding-effect of chemical degradation of pyrene, the authors 

did confirm that pyrene did not decay during the entire 220 d of the experiment.  

Besides pyrene, the bioavailability of other persistent organic pollutants has been shown 

to decrease with increasing chemical residence time. For example, the bioavailability of 

benzo(a)pyrene to the benthic amphipod Diporeia spp. decreased by 42% after a period of 13 

months of chemical residence time (Kukkonen and Landrum 1998). A vast majority 

(approximately 90%) of this decrease in bioavailability occurred after the first week of sediment 

aging. Other studies have also shown that dichlorodiphenyltrichloroethane (DDT), polychlorinated 

biphenyls (PCBs), and other polycyclic aromatic hydrocarbons (PAHs) also experience a 

reduction in bioavailability with increasing chemical residence time (Landrum et al. 1992, Menchai 

et al. 2008, Taylor et al. 2019). The role that chemical residence time plays in the bioavailability 

of EB and IVM has not previously been investigated. 

The aim of this study was to investigate the effects of sediment OC content and chemical 

residence time on the toxicity of two compounds in sea lice chemotherapeutants: EB and IVM. 

Both single-chemical and combination exposures to EB and IVM were conducted. Combination 
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exposures allowed for insight into the consequences of using these two compounds concurrently 

on the same salmon farm. The test organisms used were two benthic marine invertebrates: the 

polychaete Neathes virens and the amphipod Eohaustorius estuarius. These sediment-dwelling 

organisms potentially represent particularly sensitive and highly exposed ecological entities. 

 

2.2 Materials and Methods 

 

2.2.1. Organisms and Holding Conditions 

 

E. estuarius were provided by Nautlius Environmental (Burnaby, BC). N. virens were 

provided by Aquatic Research Organisms (Hampton, NH). Before being used in experiments, 

both species were acclimatized at 11oC, with a 12 : 12 light : dark schedule, for a minimum of 1 

week. Both species were provided with sediment and seawater in their holding vessels. Sea water 

was aerated during holding. Between 30 to 50 N virens were placed in plastic totes (41.9 cm x 

26.7 cm x 16.5 cm) filled 33% (v/v) with uncontaminated sediment collected from Centennial 

Beach (Tsawwassen, BC, Canada; coordinates: 49.017095, -123.040231) (not from the intertidal 

zone, unlike the low OC sediment [described in Section 2.2.3.]). Plastic totes were submerged in 

170 L plexiglass tanks (185 cm x 36.8 cm x 25.4 cm) almost entirely full of seawater. Four totes 

were placed in each 170 L plexiglass tank. E. estuarius were held in plastic containers (10.2 cm 

x 10.2 cm x 6.4 cm) filled 50% with sediment provided with the plastic containers by Nautilus 

Environmental (Burnaby, BC). Each container held 110 E. estuarius. The containers were 

submerged in a large plastic tote (55.9 cm x 36.8 cm x 15.2 cm), filled 75% full of seawater. For 

E. estuarius, seawater was not filtered or changed during holding. For N. virens, in addition to 

continuous filtering of seawater with canister filters, all seawater was changed daily during holding 

to prevent the build-up of waste products. E. estuarius were not fed while in holding. N. virens 

were fed Phytogold-S® (Brightwell Aquatics; Fort Payne, AL); a few drops of Phytogold® were 

delivered into their holding tanks once per week. However, it is likely that these organisms were 

feeding on particulate matter that existed in the sediment they were provided with. Seawater was 

pH 8.1, salinity 28ppt. 
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2.2.2. Chemicals and Formulations 

 

SLICE® 0.2% Premix (Merck Animal Health, Intervet Canada Corp., Kirkland, QC), which 

contains 0.2% EMB w/w, was obtained from Fisheries and Oceans Canada (DFO). IVM (CAS 

Number 70299-86-7), which is a solid white powder, was obtained from Sigma-Aldrich (Oakville, 

ON).  IVM was stored in the dark at 4oC, while Slice® was stored in the dark at room temperature.  

 

2.2.3. Sediment 

 

Marine sediment was collected from the intertidal zone during low tide at Centennial 

Beach, Tsawwassen, BC, at the following coordinates: 49.014819, -123.038693. The sediment 

was wet sieved with a 2 mm sieve, stored at room temperature, and allowed to dry for 

approximately 2 months before use. Allowing the sediment to dry facilitated OC degradation. 

Sediment with a total organic carbon (TOC) percent that was below the limit of detection (<0.05%) 

was used as the low OC (0-OC) sediment treatment. The sediment used for the high OC (1-OC) 

sediment treatment was collected from the Tofino Mudflats (Tofino, BC), at the following 

coordinates: 49.125609, -125.883488. This sediment had a TOC content 0.42% (4200 mg C/kg). 

After collection, this sediment was kept hydrated with a top layer of seawater to prevent 

degradation of OC. This sediment was then sieved to a particle size of 6.35 mm to remove rocks 

and marine debris. It was then stored at 4 oC, to minimize degradation of OC. After processing 

the 0-OC and 1-OC sediment, it was sent to Maxxam Analytics (Burnaby, BC) for analysis of the 

following characteristics: pH, total organic matter (TOM), TOC, and particle-size distribution. For 

a summary of these sediment characteristics, refer to Appendix A (Figure A.1, Figure A.2, &  

Table A.1). The sediment for the intermediate OC (0.5-OC) level was a 50:50 mixture, by mass, 

of the 0-OC and 1-OC sediments. 

 

2.2.4. Sediment Spiking and Incubation 

 

For N. virens exposures, 250 g of sediment was added to 1 L glass mason jars to a depth 

of 2.5 cm. For E. estaurius exposures, 100 g of sediment was added to a 500 mL glass mason 

jars and prepared in a similar manner. A shallow layer of seawater was then added to a level of 
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approximately 2-4 cm above the sediment. Sediment was then spiked with either Slice®, IVM, or 

a combination, using seawater as a solvent for delivery. Spiked sediment was stirred vigorously 

with a glass stirring rod. Spiked and control sediment jars were incubated for three different 

lengths of time: overnight (0 months), 60 d (2 months), and 120 d (4 months). The 0-month 

treatment was incubated overnight in the dark at room temperature, while the 2- and 4-month 

groups were incubated in the dark at 4 oC. After incubation, seawater was added to jars so that 

an approximate seawater volume to sediment volume ratio of 4 : 1 was attained as recommended 

for sediment-water toxicity tests with aquatic oligochaetes (OECD 2007). A similar ratio was used 

as recommended for use with marine amphipods, including E. estuarius (USEPA 2016). These 

jars were then used for exposures. 

 

2.2.5. Exposures 

 

At the beginning and end of exposures, the following water quality parameters were 

measured: pH, salinity, dissolved oxygen (DO), temperature. The duration of exposure was 

different for the two species: for N. virens it was 10 d, while for E. estuarius it was 48 h. Exposures 

were conducted in a temperature-controlled room at 11 oC. The light-dark cycle in this room 

followed a 12 : 12 light : dark rotation. Seawater in all jars was lightly aerated. All exposures were 

static (no water changes took place for the duration of the exposure).  

For single-chemical exposures, N. virens were exposed to the following 8 nominal 

concentrations of EB for all 3 organic carbon levels: 10, 20, 40, 80, 800, 2400, 4800, 9600 µg/kg.  

The following 8 nominal concentrations were used for IVM: 4, 8, 20, 40, 80, 400, 1200, 4800 

µg/kg. All concentrations are expressed as µg of chemical per kg of sediment wet weight (w.w.). 

For combination exposures, the following concentrations (EB/IVM) were used: 10/4, 10/8, 20/4, 

80/20, 80/40, 800/20, 800/40, 2400/400 µg/kg. For example, the ‘10/4’ combination treatment 

corresponds to 10 µg/kg of EB and 4 µg/kg of IVM. Eight replicate jars were included for each of 

the 5 highest EB concentrations. Four replicate jars were included for each of the 3 lowest EB 

concentrations. Eight replicate jars were included for each of the following IVM concentrations: 

20, 40, 400, 1200, and 4800 µg/kg, while only 4 replicate jars were included for each of the 

following IVM concentrations: 4, 8, and 80 µg/kg. The imbalance in replicates was because 

exposures were split into 2 groups based on endpoint measurements: lethal and sublethal. The 

lethal group included higher concentrations and had 8 replicate jars for each concentration. The 
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sublethal (where lethality was also measured) group included lower concentrations and had 4 

replicates jars for each concentration. This was done for each of the 9 chemical residence time 

and OC co-treatments. Mortality was measured for all replicate jars used in this study (i.e. either 

4 or 8 replicates depending on concentration); meanwhile sublethal endpoint measurements were 

only carried out for 4 replicates at each of the 6 lowest concentrations for EB, IVM, and 

combination exposures. In cases where 8 replicate jars existed at a given concentration, 4 jars 

were randomly selected for sublethal measurements. Concentrations for combination exposure 

groups had the same number of replicate jars as their corresponding single-chemical 

concentration had. Each replicate jar contained 1 organism. For mortality, 12 replicate solvent 

(seawater) control jars were included for each OC and chemical residence time combination. This 

was because 4 and 8 control jar replicates were included for the sublethal and lethal concentration 

series groups, respectively. For sublethal endpoints, 8 control jars were assessed for sublethal 

endpoints for each OC and chemical residence time combination: 4 randomly selected from the 

lethal concentration series group, and 4 included for the sublethal concentration series group. 

E. estuarius were exposed to a different series of concentrations for each of the 3 OC 

levels, since preliminary testing suggested that a different concentration series would be 

necessary for reliable point-estimate methods of statistical analysis. Refer to Table 7 for the list 

of nominal concentrations for EB, IVM, and combination exposures. Three replicate jars were 

included for each concentration, except for the 2000 and 1500 µg/kg concentrations of EB for the 

0.5-OC and 0-OC groups, respectively. For these concentrations 3 additional replicates were 

included. Each replicate jar contained ten organisms. Six replicate solvent (seawater) control jars 

were included for each combination of chemical residence time and OC: the reason 6 replicates 

were included was because concentration series were split into two groups: a lower (sublethal) 

and higher (lethal) concentration series, like with N. virens. Three control replicates were included 

in each of these 2 concentration series groups.  

 

 
E. estuarius Concentration Series 

 
0-OC 0.5-OC 1-OC 

Concentration 

[EB] 

(µg/kg

) 

[IV] 

(µg/kg

) 

[EB/IVM] 

(µg/kg) 

[EB] 

(µg/kg

) 

[IVM] 

(µg/kg

) 

[EB/IVM] 

(µg/kg) 

[EB] 

(µg/kg

) 

[IVM] 

(µg/kg

) 

[EB/IVM] 

(µg/kg) 

C1 10 2.5 

10/2.5 

(C1/C1) 50 5 50/5 (C1/C1) 50 5 50/5 (C1/C1) 



 

70 
 

C2 50 5 50/5 (C2/C2) 100 10 

100/10 

(C2/C2) 150 10 

150/10 

(C2/C2) 

C3 100 10 

100/10 

(C3/C3) 200 50 

200/50 

(C3/C3) 500 25 

500/50 

(C3/C4) 

C4 500 25 

100/50 

(C3/C4) 500 25 

500/25 

(C4/C4) 1000 50 

500/100 

(C3/C6) 

C5 1000 50 

500/10 

(C4/C3) 1000 75 

500/75 

(C4/C5) 1500 75 

1000/25 

(C4/C3) 

C6 1500* 80 

1000/25 

(C5/C4) 2000* 135 

1000/25 

(C5/C4) 2000 100 

1500/50 

(C5/C4) 

C7 2500 120 

500/50 

(C4/C5) 3500 100 

1000/75 

(C5/C5) 3000 150 

1500/100 

(C5/C6) 

C8 5000 150 

1500/120 

(C6/C7) 6000 200 

2000/135 

(C6/C6) 5000 250 

3000/150 

(C7/C7) 

C9 
 

300 
  

500 
 

8500 600 
 

Table 7: Summary of concentrations (C1-C9; in µg/kg) of emamectin benzoate ([EB]), ivermectin 
([IVM]), and combinations of the two ([EB]/[IVM]) that E. estuarius were exposed to during toxicity 
tests. OC levels are unitless (relative scale) and each level has a unique concentrations series. 
Three replicate jars were used for all concentrations, except for those indicated with the asterisk 
(*), where 6 replicates were used.  Shaded boxes indicate concentrations at which sublethal 
testing was conducted. 

 

2.2.6. Toxicological endpoints 

Mortality 

At the end of the exposure period, mortality was assessed and recorded; for both species, 

if an organism was not moving spontaneously, it was gently prodded 3 times and observed for 

any movement. For N. virens, tissues of the body and tail segments may move with necrotic and 

decaying head tissue; in these cases, the organism was considered dead. 

Behavioural assays 

A light-avoidance assay was used to test for the sublethal effects of toxicity on E. 

estuarius. After 48 h exposures, E. estuarius were placed in a small, hollowed-out block (15.9 cm 

x 2.8 cm x 2.8 cm) divided evenly into 2 sides: one side was transparent, allowing light to enter; 

the other side was covered and dark (referred to as light-dark blocks). These light-dark blocks 

were arranged in 2 groups of 6 on a level surface. Each group of 6 blocks was comprised of three 

blocks adjacent lengthwise, with the light side of these blocks touching the light side of another 

three blocks adjacent lengthwise. The assay chamber was surrounded by black curtain to prevent 
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changes in light in the surrounding environment from affecting behavior. Three lamps illuminated 

the curtain-enclosed assay chamber, 2 of which were each placed over a different group of 6 

light-dark blocks. The third lamp was placed roughly in the middle of the 2 groups of light-dark 

blocks. All light-dark blocks were filled half full of sea water prior to introducing E. estuarius. Two 

live amphipods randomly selected from the same replicate jar were introduced into the light side 

of each of these light-dark blocks. A video camera was mounted on a tripod and placed 

approximately 25 cm above each of the 2 groups of 6 light-dark blocks, for a total of 12 light-dark 

blocks being recorded simultaneously. Refer to Figure A.3 (Appendix A) for an example of 1 group 

of 6 light-dark blocks being filmed by a single camera. Upon video review, time spent per individual 

in the light v. dark was calculated over the course of 12 min. This was then expressed as 

percentage of total time spent in the dark v. total time of the assay. 

A burrowing behavioral assay was conducted with N. virens at the termination of 

exposures. This assay was conducted in plastic totes (41.9 cm x 26.7 cm x 16.5 cm) divided by 

plexiglass sheets (18 cm x 20.3 cm) into 4 equal-sized quadrants. These totes were filled with 4 

kg (dry weight) of uncontaminated sediment, to a depth of 4.5 cm. A shallow top-layer of seawater 

was added over the sediment to a depth of approximately 2-4 cm. Uncontaminated sediment used 

for this assay was the same that was used for N. virens holding tanks, as described in Section 

2.2.1. This sediment was characterized by a coarser grain size than either the 0-OC or 1-OC 

sediment (qualitative observation). Video cameras were placed at a height of approximately 1 m 

above the water. Prior to introducing N. virens into plastic totes, video recording began. One N. 

virens was placed on sediment in each quadrant of the tote. As soon as the organism touched 

the sediment, they were filmed to determine whether they were completely burrowed after 15 min 

had elapsed. Organisms were only considered completely burrowed if no portion of their body 

was visible on inspection of video recordings. 

 

2.2.7. Statistical Analysis 

Single Chemical Exposures 

For all single-chemical exposures, EB and IVM concentrations were treated as numeric 

(continuous) variables. For concentration-response analysis of E. estuarius mortality data, the drc 

package (Version 3.0-1) for RStudio Statistical Software Version 3.5.3 (RStudio PBC; Boston, 

MA) was used to generate sigmoidal concentration-response curves using a log-logistic 3-

parameter model with an upper limit of 1 (Ritz et al. 2015, Ritz and Strebig 2016). Concentration-
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response curves were generated for each combination of chemical residence time and OC 

treatments for single chemical exposures. This was done for EB and IVM separately. To 

determine whether there was a significant concentration-dependent increase in mortality, it was 

tested whether the slope parameter (proportional to the slope at the inflection point of the curve) 

(Ritz 2010) of the log-logistic model was significantly different from 0 with a t-test. The 

concentration-response curves were used to calculate LC50 values and their associated 95% 

confidence intervals for each combination of chemical residence time and OC. To determine the 

effects of OC and chemical residence time on toxicity of EB and IVM, multiple pairwise 

comparisons were made between LC50 values, using the EDcomp function within the drc 

package. This method uses a t-test to evaluate whether LCx values are statistically different from 

each other. To determine the effects of OC on mortality, pairwise comparisons were made 

between LC50 values across OC levels and within chemical residence time treatments. To 

determine the effects of chemical residence time on mortality, pairwise comparisons were made 

between LC50 values across chemical residence times and within OC levels. To address the 

inflation of type 1 statistical errors caused by multiple comparisons, a Bonferroni correction was 

applied: the threshold p-value for statistical significance (α) was divided by the number of pairwise 

comparisons (29); thus, the Bonferroni corrected α value was 0.00172. 

JMP Statistical Software (version 15.0) and RStudio Statistical Software Version 3.5.3 

(RStudio PBC; Boston, MA) were used to analyze E estuarius light-avoidance bioassay data. 

Unlike lethality data, point estimates (i.e. ECx values) were not determined due to the poor linear 

correlation between concentration and response. Instead, analysis focused on determining 

whether a linear correlation existed between concentration and response for each combination of 

chemical residence time and OC. Light avoidance was expressed as percentage of time spent in 

the dark during the 12-min period of observation. For each chemical residence time and OC 

treatment combination, percentage of time in the dark (response variable) and chemical 

concentration were incorporated into a linear regression model to determine whether a 

concentration-response relationship existed in each group. This was done separately for EB and 

IVM single-chemical exposures. To determine whether concentration had a significant effect on 

percentage of time spent in the dark, a one-way ANOVA was conducted to test whether the slope 

of the curves was significantly different from 0; this was done using JMP Statistical Software 

(version 15.0). To investigate the effect OC had on concentration-response relationships, an 

ANCOVA was carried out with an interaction term to evaluate whether a significant difference 

existed between slopes of the concentration-response curves of the 3 OC levels (0-, 0.5-, and 1-

OC) at each chemical residence time (0-, 2-, and 4-months), separately. To determine the effect 
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chemical residence time had on concentration-response relationships, an ANCOVA was carried 

out with an interaction term to evaluate whether a significant difference existed between slopes 

of the 3 chemical residence time treatments for each OC level separately. All analyses were done 

separately for EB and IVM single-chemical exposures. Follow-up pairwise comparisons between 

slopes were made using a posthoc test with a Tukey adjustment. All ANCOVA analyses were 

conducted using RStudio Statistical Software Version 3.5.3 (RStudio PBC; Boston, MA); the 

emmeans package (Version 1.5.3) was used for pairwise statistical comparisons between slopes 

of concentration-response curves. 

N. virens mortality and re-burrowing data was analyzed differently than E. estuarius data 

because it was binary (nominal) data for both lethality and burrowing. In addition, the same 

concentration series was used for each OC level, which allowed for a direct comparison between 

the three OC levels. For mortality data, either an organism was dead (1) or alive (0). For the re-

burrowing assay, either an organism was unburrowed (1) or burrowed (0). For binary mortality 

and re-burrowing data, concentration-response analysis and LC50 and EC50 estimates were 

generated using JMP Statistical Software (version 15.0). To determine whether concentration-

response relationships were significant for each chemical residence time and OC combination, 

binomial logistic regressions (logit) were conducted with concentration as the only factor in the 

model for each of these time-OC treatment combinations. This was done for EB and IVM 

separately. To determine whether concentration had a significant effect on response (either 

mortality or burrowing), a maximum likelihood ratio test was performed, using a chi-squared test 

statistic. The logistic regression models that used mortality data were used to calculate LC50 

values and their associated 95% confidence intervals for each time-OC combination, for EB and 

IVM separately. EC50 values for burrowing were not calculated due to an inability to establish a 

consistent baseline response for each chemical residence time and OC treatments.  

To determine whether chemical residence time and OC influenced lethal and sublethal 

toxicity, a 3-factor binomial nominal logistic regression model was run with the following three 

factors: concentration, chemical residence time, and OC. All 2-way interactions between all 3 

factors were included as terms in the model. A maximum likelihood ratio test, using a chi-squared 

test statistic, was carried out to determine statistical significance of main effects and statistical 

interactions. To reduce the complexity of models, increasing statistical power, all non-significant 

terms in the model were dropped from the model. With these simplified models, maximum 

likelihood ratio tests were conducted to determine significant terms in the model. If no interaction 

existed between chemical residence time and OC, then follow-up paired comparisons between 
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treatment groups could be made for each of these 2 factors independently, without consideration 

of the level of the other factor: for example, paired comparisons between the 0-, 0.5-, and 1-OC 

groups would be made, pooling data across all chemical residence times. However, if an 

interaction was detected, then paired comparisons would need to be made amongst all nine 

chemical residence time and OC groups. This was done across OC levels, and within chemical 

residence time treatments, to determine the effects of OC. Conversely, this was done across 

chemical residence times, and within OC levels, to determine the effect of chemical residence 

time. Post-hoc tests with a Tukey-Kramer adjustment were used to locate differences in paired 

comparisons using the emmeans package in RStudio Statistical Software Version 3.5.3 (RStudio 

PBC; Boston, MA).  

Combination Exposures 

For all combination exposures, concentration was treated as a categorical (nominal) 

variable. JMP Statistical Software (version 15.0) was used to conduct all statistical analyses on 

E. estuarius combination exposure data. To investigate the effects of chemical residence time 

and concentration on mortality and light-avoidance in E. estuarius, a 2-way ANOVA model with 

an interaction term was fitted to the data for combination exposures. The 2 factors were chemical 

residence time and concentration. These 2 factors and their interaction were treated as fixed-

effect factors in the model. Models were generated for each OC level separately because the 

concentration series for each OC-level differed. For mortality data, since a statistically significant 

interaction was found between chemical residence time and concentration for all 3 OC levels, the 

main effects of these factors on their own could not be used to draw conclusions. Instead, to 

determine whether chemical residence time influenced mortality, a one-way ANOVA was 

conducted to test for significant differences in mean mortality between the 3 chemical residence 

time treatments at each of the nine concentration levels (including the control group). To 

determine whether concentration influenced mortality, a one-way ANOVA was conducted to test 

for a statistical difference in mean mortality between concentration treatments for each chemical 

residence time. Subsequently, a Tukey HSD post-hoc test was used to statistically compare mean 

mortality at the 8 EB/IVM combination concentrations to the control group within the same 

chemical residence time treatment; this was done to determine whether there were concentration-

dependent changes in mortality for each chemical residence time treatment. For light-avoidance 

data, significant interactions between concentration and chemical residence time were only found 

at the 0- and 0.5-OC levels. Therefore, the same methods as mentioned for mortality data were 

used to assess whether concentration and chemical residence time treatments significantly 
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influenced light avoidance. In the case of the 1-OC level, where an interaction did not exist, the 

main effects could be analyzed for each of the two factors on their own. In this case, a post-hoc 

Tukey HSD test was conducted to locate statistical differences between the 3 different chemical 

residence times and the 6 different concentrations, separately.  

To investigate the effects of OC on mortality and light-avoidance in E. estuarius, a subset 

of 3 combination concentrations which overlapped between all 3 OC levels (refer to Table 7) were 

used to observe differences in response between OC levels. These 3 concentrations were 0 

(control), 50/5, 1000/25 (EB/IVM; in µg/kg). A 2-way ANOVA model was run with the following 2 

factors (independent variables): concentration and OC. A 2-way interaction term was included in 

this model.  For mortality data, a statistically significant interaction between OC and chemical 

residence time was found in a preliminary 3-way ANOVA model, therefore a separate 2-way 

ANOVA model was run for each chemical residence time. Since a significant statistical interaction 

between OC and concentration was detected, OC’s effect on mortality was evaluated at all 3 

concentrations separately. To determine whether there were concentration-dependent changes 

in mortality, a post-hoc Tukey HSD test was carried out to detect pairwise statistical differences 

between concentration treatments and the control group within the same OC treatment. For light-

avoidance data, there was no statistically significant interaction between OC and chemical 

residence time, therefore light-avoidance data was pooled across chemical residence times for 

all 3 OC groups and all 3 concentrations. The 2-way ANOVA model found no interaction between 

concentration and OC, therefore the main effects of these two factors were evaluated on their 

own. 

For N. virens, to determine the effect of OC and chemical residence time on each endpoint, 

3-factor binomial logistic regression models (logit) were run for each in RStudio Statistical 

Software Version 3.5.3 (RStudio PBC; Boston, MA). These models included the following 3 

factors and all possible 2-way interactions between these factors: chemical residence time, OC, 

and concentration. These models were used to conduct a maximum likelihood ratio test (chi-

squared test statistic) to determine whether each of the 3 factors had a significant effect on 

response and whether any significant interactions existed between factors. To reduce the 

complexity of models, increasing statistical power, all non-significant terms in the model were 

dropped from the model. With these simplified models, maximum likelihood ratio tests were 

conducted. This was followed by post-hoc tests using a Tukey-Kramer adjustment to locate 

statistically significant differences in pairwise comparisons using the emmeans package in 

RStudio Statistical Software Version 3.5.3 (RStudio PBC; Boston, MA). To determine 



 

76 
 

concentration’s effect on each endpoint, a  earson’s chi-squared test was conducted for each. 

Pairwise comparisons were made using a posthoc test with a False Discovery Rate adjustment 

(Benjamini-Hochberg procedure) for multiple comparisons, with the chisq.bintest function in the 

RVAideMemoir (Version 0.9-78) package in RStudio Statistical Software Version 3.5.3 (RStudio 

PBC; Boston, MA). For mortality data, due to a significant interaction detected between 

concentration and chemical residence time, the  earson’s chi-squared test and subsequent 

posthoc test were done for each chemical residence time separately. While for burrowing data, 

this was done pooling data across all chemical residence time and OC cotreatments. 

 

2.3. Results 

 

2.3.1. Water quality parameters 

 

A summary of the water quality parameters measured in both E. estuarius and N. virens 

exposures can be found in Table A.2 and Table A.3 (Appendix A), respectively. The mean 

temperature for each chemical residence time and OC treatment group ranged from 9.48 ± 0.13 

to 13.44 ± 0.18 oC, and 8.65 ± 0.16 to 11.43 ± 0.15 oC, for E. estuarius and N. virens exposures, 

respectively. Seawater pH generally ranged between 7 to 8 in most exposure groups. Dissolved 

oxygen was > 80% in all groups except for the 0-0.5 and 0-1 group for E. estuarius, where it was 

78 and 73%, respectively. Salinity was the most consistent water quality parameter typically 

ranging between 29 to 30 ‰. 

 

2.3.2. Control mortality 
 

Refer to Table A.4 in Appendix A for a summary of control survival for all sediment OC 

and chemical residence time treatment combinations. For E. estuarius, the control mortality did 

not exceed 10% for any sediment OC content or for any length of chemical residence time, 

ranging between 0 and 8.3%. For N. virens, the mean control mortality did not exceed 20% in any 

group, ranging between 0 to 16.7%. 
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2.3.3. Lethal toxicity: concentration-response analysis 
 

In single chemical exposures, IVM caused a significant concentration-dependent increase 

in mortality in E. estuarius for all chemical residence time and OC treatment combinations (Figure 

8). The estimated 48-h LC50 value for IVM in E. estuarius ranged between 32.38 to 468.2 µg/kg, 

depending on the chemical residence time and OC treatment group (Table 8). For EB exposures, 

there was a significant concentration-dependent increase in mortality for 8 out of 9 combinations 

of chemical residence time and OC: at 4 months of chemical residence, the 0-OC treatment did 

not show a concentration-dependent increase in mortality (p=0.12; Figure 8). Concentration-

response curves are shown in Figure 8. The estimated 48-h LC50 value for EB-exposed E. 

estuarius ranged between 1875.45 µg/kg to > 6532.97 µg/kg, depending on the combination of 

chemical residence time and OC (Table 8). The effect of OC and chemical residence time on E. 

estuarius 48-h LC50 values for EB and IVM single-chemical exposures is discussed in Section 

2.3.4 and 2.3.5 (for OC and chemical residence time, respectively). 

 

 E. estuarius 

 48 h LC50 values 

Time-OC EB IVM 

0-0 2009 (1571-2447) 32.4 (11.9-52.8) 
0-0.5 2413 (2029-2797) 121.0 (99.2-142.8) 
0-1 2093 (1597-2589) 107.3 (82.1-132.5) 
2-0 1876 (1497-2254) 39.6 (25.0-54.2) 
2-0.5 2931 (2601-3260) 91.9 (78.9-105.0) 
2-1 2482 (2158-2806) 154.9 (114.8-194.9) 
4-0 >5000 200.3 (163.1-237.4) 
4-0.5 >6000 276.7 (225.3-328.2) 
4-1 6533 (5826-7240) 468.2 (373.0-563.4) 

 

Table 8: Summary of emamectin benzoate (EB) and ivermectin (IVM) 48-h LC50 values for E. 
estuarius at each combination of chemical residence time (0-, 2-, and 4-months) and organic 
carbon (0-, 0.5-, and 1-OC; relative scale) [Time-OC]. The 0-, 0.5-, and 1-OC organic carbon (OC) 
treatments used sediments with total OC contents of < 0.05, ~ 0.2, and 0.42%, respectively. All 
LC50 values are in µg / kg of sediment (wet weight) and were calculated using nominal 
concentrations for EB and IVM. 95% upper and lower confidence limits are in brackets. 
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Figure 8:  E. estuarius emamectin benzoate (EB) concentration-response curves for the 3 organic 
carbon (OC) levels (refer to legend) at (i) 0-, (ii) 2- , and (iii) 4-months of chemical residence, and 
ivermectin (IVM) concentration-response curves at (iv) 0- , (v) 2-, and (vi) 4-months of chemical 
residence time. The 0-, 0.5-, and 1-OC treatments used sediments with total OC contents of < 
0.05, ~0.2, and 0.42%, respectively. Concentration is in µg/kg (w.w. sediment). Each data point 
represents the mean mortality proportion (± 95% confidence intervals). Lines represent 3-
parameter log-logistic models fitted to data, which were used to calculate LC50 values. 

 

For N. virens IVM exposures, 6 out of 9 combinations of chemical residence time and OC 

showed a significant concentration-dependent increase in mortality (Figure 9). At 0 months of 

chemical residence time, the 0- and 0.5-OC groups showed a significant concentration-dependent 

increase in mortality (p<0.0001 and p=0.0350, respectively), while the 1-OC group did not 

(p=0.1033). At 2 months of chemical residence time, the 0-, 0.5-, and 1-OC groups all showed a 

highly significant concentration-dependent increase in mortality (p<0.0001 for all 3). At 4 months 
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of chemical residence time, only the 0-OC group showed a significant concentration-dependent 

increase in mortality (p=0.0311), while the 0.5- and 1-OC groups did not (p=0.0994 and 0.7905, 

respectively). The 10-d LC50 for IVM-exposed N. virens ranged from 537.63 to > 4800 µg/kg, 

depending on chemical residence time and OC treatment (Table 9). The effect of OC and 

chemical residence time on lethal toxicity will be discussed in Section 2.3.4 and 2.3.5., 

respectively. Unlike for E. estuarius, a statistical comparison between LC50 values of the various 

chemical residence time and OC treatments was not conducted for N. virens. Instead, direct 

comparison of mortality data, pooling across all concentrations, were made between the various 

OC and chemical residence time treatment groups with binomial logistic regression models 

(described in Section 2.2.7.). This is because for N. virens, the concentration series used for the 

various chemical residence time and OC treatments were identical, unlike for E. estuarius where 

the concentration series differed between OC treatments. 

For N. virens EB exposures, 8 out of 9 combinations of chemical residence time and OC 

showed significant concentration-dependent increase in mortality (Figure 9). At 0 months of 

chemical residence time, the 0-, 0.5-, and 1-OC groups all showed a significant concentration-

dependent increase in mortality at 0 months of chemical residence time (p=0.0002, 0.0077, 

0.0387, respectively). At 2 months of chemical residence time, the 0.5- and 1-OC groups showed 

a significant concentration-dependent increase in mortality (p=0.0037 and 0.0053, respectively), 

while 0-OC did not (p=0.2655). At 4 months of chemical residence time, the 0-, 0.5-, and 1-OC 

groups all showed a highly significant concentration-dependent increase in mortality (p<0.0001 

for all 3). The 10-d LC50 for EB-exposed N. virens ranged between 4414.87 to > 9600 µg/kg 

(Table 9). 

 N. virens 

 10-d LC50 values 

Time-OC EB IVM 

0-0 7107 (4855-13042) 2694 (1646-5637) 

0-0.5 7539 (4559-23804) 4753 (2590-54238) 

0-1 >9600 >4800 

2-0 >9600 538 (43.2-6275) 

2-0.5 8216 (5290-20720) 689 (424-1380) 

2-1 9155 (5963-24524) 2206 (1262-5165) 

4-0 4415 (3073-7119) 3546 (1779-45455) 

4-0.5 7534 (5331-12862) >4800 

4-1 9413 (7341-14249) >4800 

   
Table 9: Summary of emamectin benzoate (EB) and ivermectin (IVM) 10-d LC50 values for N. 
virens at each combination of chemical residence time (0-, 2-, and 4-months) and organic carbon 
(0-, 0.5-, and 1-OC; relative scale) [Time-OC]. The 0-, 0.5-, and 1-OC organic carbon (OC) 
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treatments used sediments with total OC contents of < 0.05, ~ 0.2, and 0.42%, respectively. All 
LC50 values are in µg / kg of sediment (wet weight) and were calculated using nominal 
concentrations for EB and IVM. 95% upper and lower confidence limits are in brackets. 

 

 

Figure 9: N. virens emamectin benzoate concentration-response curves for all 3 organic carbon 
(OC) levels (refer to legend) at (i) 0-, (ii) 2-, and (iii) 4-months of months of chemical residence; 
ivermectin concentration-response curves at (iv) 0-, (v) 2-, and (vi) 4-months of chemical 
residence time. The 0-, 0.5-, and 1-OC treatments used sediments with total OC contents of < 
0.05, ~0.2, and 0.42%, respectively. Concentration is in µg/kg (w.w. sediment). Each data point 
represents the observed mortality proportion. Lines represent binomial logistic regression models 
fitted to data (used to calculate LC50 values). Shaded grey regions represent 95% confidence 
bands of logistic regression curves. 
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Combination (EB/IVM) exposures with E. estuarius showed a concentration-dependent 

trend of increasing mortality, as with the single chemical exposures. This trend depended on the 

chemical residence time and OC treatment combination. Concentration significantly influenced 

mortality in 8 out of 9 combinations of chemical residence time and OC. There was a statistically 

significant interaction between concentration and chemical residence time for each OC treatment 

(p<0.0001 for all 3 OC levels; Figure 19). Therefore, the effect of concentration on mortality was 

assessed for each chemical residence time separately, instead of pooling data across chemical 

residence times; this was done for each OC level. For the 0- and 0.5-OC group, concentration 

had a significant effect on mortality for all 3 chemical residence time treatments (p<0.0001 for all 

3 chemical residence times for both OC levels; Figure 19 i and ii). For the 1-OC group, 

concentration had a highly significant effect on mortality only for the 0 and 2 months of chemical 

residence time treatments (p<0.0001 for both; Figure 19 iii); at 4 months of chemical residence 

time, concentration did not have a significant effect on mortality (p=0.1796; Figure 19 iii). 

For combination exposures with N. virens, mortality was significantly different between 

concentration treatments for 0-, 2-, and 4-months of chemical residence time (p<0.0001, 

p<0.0001, and p=0.004209, respectively; Figure 10). Overall, there was a concentration-

dependent increase in mortality. Paired comparisons show that mortality in the highest 

concentration group (i.e. 2400/400) was significantly greater than the control group at all chemical 

residence time treatments. At 4-months of chemical residence time the 80/40 group had 

significantly higher mortality than the control group. No other groups were significantly different 

than the control group. The reason this data was grouped by chemical residence time was due to 

a statistically significant interaction between concentration and chemical residence time 

(p=0.02595). 
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Figure 10: The effect of concentration (µg/kg) on lethal toxicity in N. virens exposed to a 

combination of emamectin benzoate (EB) and ivermectin (IVM). Concentrations are expressed 

as the concentration of EB / concentration of IVM. The proportion dead (± 95% confidence 

intervals) is represented for each concentration treatment (i) 0-, (ii) 2-, and (iii) 4-months of 

chemical residence time. Mortality data is pooled across all organic carbon (OC) treatments. Data 

grouped by chemical residence time treatments due to a significant interaction between 

concentration and chemical residence time. Letters above error bars indicate statistical 

significance; if a letter is shared between groups, they are not statistically different (α=0.05). 
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2.3.4. Lethal toxicity: the effect of organic carbon 

 

There is some evidence to suggest sediment OC influenced EB-induced mortality in both 

E. estuarius and N. virens. For N. virens, the mortality proportion, pooled across all EB 

concentrations, tended to be lower at higher OC content for all chemical residence times (Figure 

12). However, this reduction in mortality was not significant in most cases. Since there was a 

statistically significant interaction between OC and chemical residence time (p=0.0095), each 

factor could not be assessed for their effect on mortality without considering the level of the other 

factor. Therefore, pairwise comparisons were performed between all 9 chemical residence time 

and OC combinations, instead of direct comparisons between the 3 OC levels (Figure 12). The 

mortality proportion in Figure 12 represents the number of dead N. virens divided by the number 

of observations, pooled across all concentrations (from the control to the highest concentration), 

for each of the 9 chemical residence time and OC treatment combinations. Paired comparisons 

were made using the binomial logistic regression model described in Section 2.2.7. When 

comparing across OC levels, but within chemical residence time treatments, there are only 2 pairs 

of treatment groups which are statistically significantly different from each other: the 0-0.5 group 

has a significantly greater mortality than the 0-1 group (p=0.0421), and the 4-0 group has a 

significantly greater mortality than the 4-1 group (p=0.0349). For E. estuarius, based on paired 

comparisons of LC50s, there is less evidence than with N. virens exposures, to suggest that OC 

reduces mortality. When comparing across OC levels, but within chemical residence time 

treatments, there were only 2 LC50 values which were statistically different from each other: the 

2-0.5 group had a significantly higher LC50 value compared to that for the 2-0 group (Figure 11 i, 

ii, iii). To summarize, OC’s protective effect against EB-induced lethal toxicity is not particularly 

pronounced in N. virens, and even less so in E. estuarius.  
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Figure 11: The effect of organic carbon (OC) on lethal toxicity in E. estuarius for each chemical 
residence times in single-chemical exposures. Lethal toxicity is represented by 48-h LC50 
values (using nominal concentrations) in µg/kg w.w. sediment. The 48-h LC50 values for 
emamectin benzoate are shown for each OC level (0-, 0.5-, and 1-OC) for (i) 0-, (ii) 2-, and (iii) 
4-months of chemical residence time.  The 48-h LC50 values for ivermectin are shown for each 
OC level for (iv) 0-, (v) 2-, and (vi) 4-months of chemical residence time. The 0-, 0.5-, and 1-OC 
treatments used sediments with total OC contents of < 0.05, ~0.2, and 0.42%, respectively. 
Error bars represent 95% confidence intervals. Letters above error bars indicate statistical 
significance; if a letter is shared between groups, they are not significantly different from each 
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other (Bonferroni adjusted α=0.00172). In cases where the LC50 estimate is greater than the 
highest concentration tested (i.e. non-estimable), this is indicated above the bars (e.g. panel iii, 
0- and 0.5-OC). 

 

 

 

Figure 12: Summary of effects of organic carbon (OC) and chemical residence time (months) on 
mortality in N. virens exposed to emamectin benzoate. Mortality, expressed as a proportion (± 
95% confidence intervals), is shown for each chemical residence time and organic carbon (T-OC) 
combination (e.g. 2-0 corresponds to 2 months of chemical residence time and 0-OC sediment). 
Mortality data is pooled across all concentrations for each T-OC treatment group. The 0-, 0.5-, 
and 1-OC treatments used sediments with total OC contents of < 0.05, ~0.2, and 0.42%, 
respectively. Due to a significant interaction between OC and chemical residence time, the effects 
of these 2 factors on mortality cannot be assessed on their own. * Statistically significant 
difference in mortality, only between these two T-OC groups (p<0.05). 

 

IVM-induced lethal toxicity was significantly reduced in the two highest OC levels (0.5- 

and 1-OC), relative to the lowest OC level (0-OC) in both E. estuarius and N. virens. For N. virens, 

OC did not significantly interact with chemical residence time or concentration (p=0.11428 and 

0.09301, respectively). Therefore, the main effect of OC on mortality can be assessed on its own 
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without consideration of chemical residence time or concentration. There was a decrease in 

mortality from 0- to 1-OC (Figure 13). The mortality proportion in Figure 13 shows the number of 

dead N. virens divided by the number of observations, pooling data across all chemical residence 

time (0- to 4-months) and concentrations (control to highest), for each OC level. The 0-OC group 

had significantly higher mortality than the 0.5- and 1-OC groups (p=0.0336 and 0.0001, 

respectively). The latter two groups were not significantly different from each other (p=0.1408). 

For E. estuarius, when comparing across OC levels, but within chemical residence times, the 

LC50 values for IVM at the 0-OC level were significantly lower than those at either the 0.5- or 1-

OC level, or both, depending on the chemical residence time (Figure 11 iv, v, vi). The 1-OC 

group’s LC50 values ranged between 2.3- to 3.9-fold higher than the 0-OC group depending 

chemical residence time. The 0.5-OC group’s LC50 values ranged between 1.4- to 3.7-fold higher 

than the 0-OC group depending on chemical residence time. At 0- and 2-months of chemical 

residence time, the 0-OC group had a significantly lower LC50 than the 0.5- and 1-OC groups. At 

4 months of chemical residence time, the LC50 of the 0-OC group was significantly lower than 

the LC50 of the 1-OC group, but not significantly different than the LC50 of the 0.5-OC group. 

Overall, evidence demonstrating OC’s protective effect against lethal toxicity is much more 

convincing in IVM exposures compared to EB exposures. 
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Figure 13: The effect of organic carbon (OC) (0-, 0.5-, and 1) on lethal toxicity after 10 d exposures 
to ivermectin in N. virens. The 0-, 0.5-, and 1-OC treatments used sediments with total OC 
contents of < 0.05, ~0.2, and 0.42%, respectively. Mortality is represented as a proportion for 
each OC treatment. Mortality data is pooled across all chemical residence time and concentration 
treatments for each OC level. Error bars represent 95% confidence intervals. Letters above error 
bars indicate statistical significance; if a letter is shared between groups, they are not statistically 
different (α=0.05).  

 

OC mitigated lethal toxicity in combination exposures for both E. estuarius and N. virens. 

In E. estuarius, OC’s effects could only be evaluated for a subset of 3 combination concentrations 

as explained in Section 2.2.7 (Figure 14). Due to a significant interaction between OC and 

chemical residence time, OC’s effects were evaluated at each chemical residence time, 

separately. It is evident that at 0- and 2-months of chemical residence time, OC reduces lethal 

toxicity (Figure 14). At 0 months of chemical residence time, mortality in the 0-OC group was 

significantly greater than in the 1-OC group at both the 50/5 and 1000/25 combination 

concentrations (EB/IVM); the 0-OC group also had a significantly greater mortality than the 0.5-

OC group at the 50/5 concentration (Figure 14 i). At 2 months of chemical residence time mortality 

in the 0-OC group was significantly greater than both the 0.5- and 1-OC groups (Figure 14 ii). Due 
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to a lack of significant lethal toxicity for any treatment group at 4-months, OC’s effects on toxicity 

cannot be determined at this chemical residence time treatment (Figure 14 iii). In N. virens 

combination exposures, OC had a highly significant effect on mortality proportion (p<0.0001; 

Figure 15). There was significantly lower mortality in the 1-OC group than the 0- and 0.5-OC 

groups (p<0.0001 and p=0.0334, respectively). The overall trend is a significant decrease in lethal 

toxicity with increasing OC in N. virens and E. estuarius exposures, as seen in the IVM single 

chemical exposures. 

 

Figure 14: the effect of organic carbon (OC) on lethal toxicity in E. estuarius exposed to a 
combination of emamectin benzoate (EB) and ivermectin (IVM) at (i) 0-, (ii) 2-, and (iii) 4-months 
of chemical residence time. Concentration is in µg/kg (EB/IVM). Bars represent the mean 
proportion dead (± 95% confidence intervals). The 3 OC levels (0-, 0.5-, and 1-OC) are 
represented by bars of different colors on a grayscale (refer to figure legend). The 0-, 0.5-, and 1-
OC treatments used sediments with total OC contents of < 0.05, ~0.2, and 0.42%, respectively. 
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*Significant differences between OC groups at each concentration are represented are 
represented by lines above error bars (Tukey HSD, α=0.05). Hashtags (#) denote statistical 
differences from the control of the same OC treatment. 

 

 

Figure 15: The effect of organic carbon (OC) on lethal toxicity in N. virens exposed to a 
combination of emamectin benzoate and ivermectin. Mortality is expressed as a proportion (± 
95% confidence intervals) for each OC treatment (0-, 0.5-, and 1-OC). The 0-, 0.5-, and 1-OC 
treatments used sediments with total OC contents of < 0.05, ~0.2, and 0.42%, respectively. 
Mortality data is pooled across all concentration and chemical residence time treatments. Letters 
above error bars indicate statistical significance; if a letter is shared between groups, they are not 
statistically different (α=0.05). 

 

2.3.5. Lethal toxicity: the effect of chemical residence time 
  

The effect of chemical residence time on EB-induced mortality differed between E. 

estuarius and N. virens. For N. virens, chemical residence time did not influence mortality; when 

comparing across chemical residence time and within OC levels, no significant difference was 
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found between any groups (Figure 12). On the other hand, based on 48-h LC50 values for E. 

estuarius, 4 months of chemical residence time was associated with a significant reduction in EB-

induced mortality (Figure 16 i, ii, iii). At 4 months of chemical residence time, there was an 

increase in LC50 values relative to the 0- and 2-month chemical residence time groups; these 

latter two groups were not significantly different at any OC treatments. When comparing across 

chemical residence times, but within OC treatments, there were two pairs of groups that were 

significantly different: at 1-OC, the 4 months of chemical residence time treatment had a 3.1- and 

2.6-fold greater (both significant) LC50 value than both the 0- and 2-month groups groups, 

respectively. Within the 0- and 0.5-OC levels, a statistical comparison could not be made with the 

4-month group due to the LC50 values being non-estimable (>5000 and >6000 µg/kg, 

respectively). However, within the 0-OC group, the 4-month chemical residence time treatment 

had an LC50 value that is > 2.5- and > 2.7-fold larger than the 0- and 2-month groups, 

respectively. Within the 0.5-OC group, the 4-month treatment had an LC50 value that is > 2.5- 

and > 2.1-fold larger than the 0- and 2-month groups, respectively.  Therefore, the overall trend 

is a significant decline in lethal toxicity at 4 months of chemical residence time for E. estuarius. 

 The effect of chemical residence time on IVM-induced mortality also differed between E. 

estuarius and N. virens exposures. For E. estuarius the trend remained the same as the EB 

exposures: there was a significant decline in IVM’s lethal toxicity at 4 months of chemical 

residence time (Figure 16 iv, v, vi). When comparing across chemical residence times, but within 

OC levels, no significant differences were found between the 0- and 2-month groups. However, 

for all OC levels, the 4-month group had significantly higher LC50 values than the 0- and 2-month 

groups. For example, within the 0-OC group, the 4-month group had a significantly greater LC50 

than both the 0- and 2-month groups; this was also the case for the 0.5- and 1-OC groups. The 

difference between the LC50 values at 4 months of chemical residence time compared to 0- and 

2-months, within OC levels, ranged between 2.3- to 6.2-fold. On the other hand, for N. virens, the 

trend differed between EB and IVM exposures: for IVM exposures, chemical residence time had 

a highly significant effect on mortality (p<0.0001), with 2-months of chemical residence time being 

associated with a significantly higher mortality than both the 0- and 4-month groups (p<0.0001 

and p=0.0003, respectively; Figure 17). Mortality in the 0- and 4-month groups were not 

significantly different (p=0.3023). Since there was a significant interaction between chemical 

residence time and concentration (p=0.0002), the effect of chemical residence time cannot be 

generalized to all concentrations of IVM. To summarize, in E. estuarius, only after 4 months of 

chemical residence time in EB- and IVM-exposures was lethal toxicity significantly mitigated. On 

the other hand, in N. virens, lethal toxicity was unaffected by chemical residence time of EB 
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exposures, but for IVM exposures 2 months of chemical residence time was associated with a 

significant increase in lethal toxicity relative to the 0- and 4-month groups. 

 

 

Figure 16: The effect of chemical residence time (months; x-axis) on lethal toxicity in E. estuarius 
for each organic carbon (OC) level in single-chemical exposures. Lethal toxicity is represented by 

 

    

    

    

    

    

    

   

  
 
 
   
 
  
 
 

 

  

     

             

 

    

    

    

    

    

    

    

   

  
 
 
  
 
 
  
 
 

 

  

 
 

     

             

 

    

    

    

    

    

    

    

    

   

  
 
 
  
 
 
  
 
 

   

  

 

             

 

  

   

   

   

   

   

  
 
 
  
 
 
  
 
 

               

  

 

 

  

   

   

   

   

   

   

   

  
 
 
  
 
 
  
 
 

 

 

 

 

             

 

   

   

   

   

   

   

   

  
 
 
  
 
 
  
 
 

  

 
 

 

             



 

92 
 

48-h LC50 values (using nominal concentrations) in µg/kg w.w. sediment. The 48-h LC50 values 
for emamectin benzoate are shown for each chemical residence time (0-, 2-, and 4-months) for 
(i) 0-, (ii) 0.5-, and (iii) 1-OC treatments.  The 48-h LC50 values for ivermectin are shown for each 
chemical residence time for (iv) 0-, (v) 0.5-, and (vi) 1-OC treatments. The 0-, 0.5-, and 1-OC 
treatments used sediments with total OC contents of < 0.05, ~0.2, and 0.42%, respectively. Error 
bars represent 95% confidence intervals. Letters above error bars indicate statistical significance; 
if a letter is shared between groups, they are not significantly different from each other (Bonferroni 
adjusted α=0.00172). In cases where the LC50 estimate is greater than the highest concentration 
tested (i.e. non-estimable), this is indicated above the bars (e.g. panel i and ii, 4-months of 
chemical residence time). 

 

 

 

Figure 17: The effect of chemical residence time (0-, 2-, and 4-months) on lethal toxicity after 10 
d of exposure to ivermectin in N. virens. Mortality expressed as a proportion, pooled across 
organic carbon (OC) and concentration treatment levels, is shown for each chemical residence 
time treatment. Error bars represent 95% confidence intervals. Letters above error bars indicate 
statistical significance; if a letter is shared between groups, they are not statistically different 
(α=0.05). 
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Figure 18: The effect of chemical residence time on lethal toxicity in N. virens after 10 d exposures 
to a combination of emamectin benzoate and ivermectin. Mortality, expressed as a proportion, is 
shown for each chemical residence time treatment (0-, 2-, and 4-months). Mortality data is pooled 
across all concentrations and organic carbon (OC) treatments. Error bars represent 95% 
confidence intervals. Letters above error bars indicate statistical significance from pairwise 
comparisons; if a letter is shared between groups, they are not statistically different (α=0.05). 

 

 In E. estuarius combination exposures, the main effect of chemical residence time on 

mortality could not be determined since there was a significant interaction between chemical 

residence time and treatment concentrations for all 3 OC levels (p<0.0001 for all 3). However, at 

0-, 0.5-, and 1-OC there exists a significant difference in mortality between chemical residence 

time treatments in 5, 4, and 6 out of the 8 combination concentrations, respectively (Figure 19).  

This suggests that chemical residence time influenced mortality in the combination exposures. 

The overall trend appears to be that avermectin-induced mortality decreased as chemical 

residence time increased, showing a pronounced difference in mortality at 4 months of chemical 

residence time relative to the 0- and 2-month groups; this was a similar finding to single chemical 

exposures with E. estuarius. 
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For N. virens, chemical residence time had a significant effect on lethal toxicity in 

combination exposures (p=0.00072; Figure 18). The interaction between chemical residence time 

and concentration was not statistically significant (p=0.051); therefore, these results can be 

generalized to all concentration treatments. Two months of chemical residence time was 

associated with the highest mortality compared to the 0- and 4-months of chemical residence time 

treatments. However, pairwise comparisons between chemical residence time treatments did not 

reveal any statistically significant differences. 

 

 

Figure 19: The effect of chemical residence time and concentration on lethal toxicity in 
combination exposures with E. estuarius at the 3 organic carbon (OC) levels: (i) 0-, (ii) 0.5-, and 
(iii) 1-OC. The 0-, 0.5-, and 1-OC treatments used sediments with total OC contents of < 0.05, 
~0.2, and 0.42%, respectively. Concentrations (emamectin benzoate / ivermectin) are in µg/kg 
(w.w.). Mortality is expressed as a proportion. Data points represent mean mortality proportion (± 
95% confidence intervals). Bar shadings (white, gray, or black) correspond to different chemical 
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residence time treatments (0-, 2-, and 4-months; refer to figure legend). Asterisks (*) indicate 
statistical difference between chemical residence time treatments within the same concentration 
treatment (*p<0.05, ** p<0.01, ***p<0.001, ****p<0.0001). Hashtags (#) indicate statistical 
difference from the control group within the same chemical residence time. 

 

2.3.6. Sublethal toxicity: concentration-response analysis 
 

Avermectin exposure was inconsistently associated with reduced light-avoidance in E. 

estuarius. For EB single-chemical exposures with E. estuarius, 3 out of 9 time-OC treatment 

combinations showed a significant concentration-dependent decrease in light-avoidance (Figure 

21 i, ii, iii and Table B.1). For IVM exposures, 5 out of 9 time-OC treatment combinations showed 

a significant concentration-dependent decrease in light-avoidance (Figure 21 iv, v, vi and Table 

B.1). Due to the poor correlation between concentration and altered light-avoidance, EC50 values 

were not extracted from curves generated for each chemical residence time and OC treatment 

combination in EB and IVM exposures (R2 values given in Figure 21). 

For most chemical residence time and OC treatments, avermectin exposure significantly 

reduced the ability of N. virens to burrow (Figure 20). For EB exposures with N. virens, 7 out of 9 

combinations of chemical residence time and OC showed a significant concentration-dependent 

decrease in an organisms ability to burrow (Figure 20): at 0 months of chemical residence time, 

the 0-, 0.5-, and 1-OC groups all showed significant concentration-dependent decreases in an 

organism’s ability to burrow (p=0.0006, <0.0001, and =0.0005, respectively); at 2 months of 

chemical residence time, the 0- and 0.5-OC groups showed significant concentration-dependent 

decreases in an organism’s ability to burrow (p=0.0109 and 0.0050, respectively), while the 1-OC 

group did not (p=0.1062); at 4 months of chemical residence time, the 0- and 0.5-OC groups 

showed significant concentration-dependent decreases in an organism’s ability to burrow 

(p=0.0140 and 0.0022, respectively), while the 1-OC group did not (p=0.6164). For IVM exposures 

with N. virens all 9 combinations of chemical residence time and OC showed significant 

concentration-dependent decreases in an organism’s ability to burrow (Figure 20). Overall, there 

is clear evidence for EB- and IVM-concentration-dependent decreases in burrowing ability in N. 

virens. 

In E. estuarius, there is no clear concentration-dependent trend in light-avoidance upon 

combined exposures to both avermectins (Figure 27 and Figure 28). For the 0- and 0.5-OC groups 

there was a significant statistical interaction between treatment concentration and chemical 
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residence time (p=0.0006 and p=0.0308, respectively; Figure 27). Therefore, concentration’s 

effect on light-avoidance behavior was evaluated for each chemical residence time separately. 

For the 0-OC group, a significant difference between the mean light-avoidance existed between 

concentrations at the 0-, 2- and 4-months of chemical residence time treatments (p=0.0007, 

0.0003, 0.0178, respectively; Figure 27 i). However, for all 3 chemical residence times, the mean 

light-avoidance did not significantly differ from the control group for any of the treatment 

concentrations (Figure 27 i). For the 0.5-OC group, a significant difference between mean light-

avoidance existed between concentrations at the 0-months of chemical residence time treatment 

(p=0.0002), but not at the 2- or 4-months of chemical residence time treatments (p=0.0629 and 

0.1049, respectively; Figure 27 ii). However, the mean light-avoidance did not significantly differ 

from the control group for any treatment concentration within 0-months of chemical residence 

time. Due to the lack statistically significant difference in light-avoidance from control groups within 

the same chemical residence time treatment at all treatment concentrations, there is no evidence 

for concentration-dependent changes in light-avoidance at 0- and 0.5-OC. 

In the 1-OC treatment, concentration and chemical residence time did not interact 

(p=0.0782; Figure 28). Therefore, main effects of these factors could be evaluated on their own. 

Concentration did have a significant effect on light-avoidance (p=0.0010; Figure 28). Furthermore, 

two of the higher concentration combinations (500/100 and 1500/50) were significantly greater 

than two of the lower concentration combinations (50/5 and 150/10) (Tukey HSD; p<0.05). 

However, no concentrations were significantly different than the control group (Tukey HSD; 

p<0.05), therefore there is no evidence to suggest a concentration-dependent change in light-

avoidance in the 1-OC treatment. Overall, there is no clear concentration-dependent trend of 

increasing or decreasing light-avoidance in any of the 3 OC treatments. 

In N. virens combination exposures, concentration had a highly significant effect on 

burrowing behavior (p<0.0001). There is a clear concentration-dependent trend of increasing 

proportion unburrowed as concentration increases (Figure 23). No significant interaction was 

detected between concentration and OC (p=0.7232) or chemical residence time (p=0.3846). 

Therefore, the overall effect of concentration does not depend on the levels of chemical residence 

time or OC.  
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Figure 20: N. virens emamectin benzoate concentration-response curves for burrowing behavior 
in all 3 organic carbon (OC) treatments (refer to figure legend) at (i) 0-, (ii) 2-, and (iii) 4-months 
of months of chemical residence; ivermectin concentration-response curves at (iv) 0-, (v) 2-, and 
(vi) 4-months of chemical residence time. The 0-, 0.5-, and 1-OC treatments used sediments with 
total OC contents of < 0.05, ~0.2, and 0.42%, respectively. Concentration is in µg/kg (w.w. 
sediment). Each data point represents the observed proportion unburrowed. Lines represent 
binomial logistic regression models fitted to data. Shaded grey regions represent 95% confidence 
bands of logistic regression curves. 

 

                                            

 
 
 
 
  
 
 
 
 

 
 
 
 
  
 
 
 
 

 
 
 
 
  
 
 
 
 

 

  

   

  

 

  



 

98 
 

 

Figure 21: The effect of organic carbon (OC) on E. estuarius concentration-response curves for 
light-avoidance behavior in single-chemical exposures to emamectin benzoate (EB) (i, ii, iii) and 
ivermectin (IVM) (iv, v, vi). Light avoidance is represented by the percent of time spent in the dark 
during the light-avoidance behavioral assay. Linear plots are shown for all OC levels (see figure 
legend) for EB at (i) 0-, (ii) 2-, and (iii) 4-months of chemical residence time; plots for IVM are 
shown for all OC levels at (iv) 0-, (v) 2-, and (vi) 4-months of chemical residence time. The 0-, 0.5-
, and 1-OC treatments used sediments with total OC contents of < 0.05, ~0.2, and 0.42%, 
respectively. Data points represent means (± 95 % confidence intervals). R2 values for each OC 
level are provided at the bottom left part of each of the six panels. (E.g. R2 (0) for panel ‘i’ 
represents the R2 for the linear fit for the EB concentration response curve at 0-OC and 0-months 
of chemical residence time). ANOVA p-values for associated linear fits are provided in Table B.1 
(Appendix B). 
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Figure 22: The effect of chemical residence time on emamectin benzoate (EB) (i, ii, iii) and 
ivermectin (IVM) (iv, v, vi) concentration-response curves for E. estuarius light-avoidance 
assays. Light avoidance is represented by the percent of time spent in the dark (mean ± 95 % 
confidence intervals) during the light-avoidance behavioral assay. Linear plots are shown for 
each of the 3 chemical residence times (0-, 2-, and 4-months; refer to figure legend) for EB at 
the 3 different organic carbon (OC) levels of (i) 0-, (ii) 0.5-, and (iii) 1-OC; plots for IVM are 
shown for each chemical residence time at (iv) 0-, (v) 0.5-, and (vi) 1-OC. The 0-, 0.5-, and 1-
OC treatments used sediments with total OC contents of < 0.05, ~0.2, and 0.42%, respectively. 
R2 values for each chemical residence time treatment are provided at the bottom left part of 
each of the six panels. (E.g. R2 (2) for panel ‘i’ represents the R2 for the linear fit for the EB 
concentration response curve at 2-months of chemical residence time). ANOVA p-values for 
associated linear fits are provided in Table B.1 (Appendix B). 
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Figure 23: The effect of concentration (emamectin benzoate (EB) / ivermectin (IVM); in µg/kg) on 
burrowing behavior in exposures where N. virens were exposed to a combination of EB and IVM. 
The proportion of organisms not burrowed after 15 minutes of observation are shown for each 
concentration. Data is pooled across organic carbon (OC) and chemical residence time 
treatments for each concentration level. Error bars represent 95% confidence intervals. Letters 
above error bars indicate statistical significance from pairwise comparisons; if a letter is shared 
between groups, they are not statistically different (α=0.05). 

 

2.3.7. Sublethal toxicity: the effect of organic carbon  
 

There is evidence to suggest that OC mitigates EB-induced sublethal toxicity in N. virens 

and E estuarius. In E. estuarius single-chemical exposures, OC’s effect on the steepness of the 

concentration-response curve’s negative slope was used to determine how OC influenced 

sublethal toxicity: if increasing OC made the negative concentration-response slope shallower, it 

decreased sublethal toxicity; if it made the negative concentration-response slope steeper, it 

increased sublethal toxicity. In E. estuarius, OC affected the concentration-response relationship 

between EB concentration and light-avoidance at 2 months of chemical residence time; the slopes 
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of the concentration-response curves are not equal between OC levels (p=0.000718; Figure 21). 

Pairwise comparison between slopes reveals that the slope of the 0-OC curve is significantly 

steeper than both the 0.5- and 1-OC groups (p=0.0005 and 0.0099, respectively). The latter two 

OC groups were not significantly different from each other (p=0.4431). However, at 0- and 4-

months of chemical residence time, OC did not significantly affect the slope of the concentration-

response curves (p=0.194 and 0.526, respectively). Although, at 4 months of chemical residence 

time, none of the OC treatments showed a significant concentration-dependent decrease in light-

avoidance (Table B.1 in the Appendix B). Therefore, toxicity was not observed over the 

concentration range tested. Due to the absence of toxicity at 4 months of chemical residence time 

for all 3 OC levels, OC’s effect on toxicity should not considered relevant. Overall, depending on 

chemical residence time, increasing sediment OC content significantly reduced EB-induced 

sublethal toxicity across the range of concentrations tested.  

In N. virens, OC’s protective effect against EB-induced sublethal toxicity was only 

observed at the intermediate OC level (0.5-OC). Since there was no statistical interaction 

(p=0.2933) between OC and chemical residence time, the main effects of OC could be evaluated 

without considering the level of chemical residence time. OC had a significant effect on N. virens 

ability to burrow (p=0.00093; Figure 24 i), with the intermediate OC level (0.5-OC) being 

associated with the lowest proportion of unburrowed N. virens; EB-induced interference of 

burrowing ability in N. virens was only significantly offset at 0.5-OC (p=0.0105), but not at 1-OC 

(p=0.3885), relative to the 0-OC group. It should be noted that since OC and concentration have 

a statistically significant interaction (p=0.0139), the main effect of OC cannot be generalized to all 

concentrations. Therefore, the magnitude and direction of effect of OC is similar at all EB 

concentrations tested. Thus the 0.5-OC treatment significantly decreasing the proportion of 

unburrowed N. virens is not the case at all EB concentrations tested. Overall, an intermediate 

(0.5-OC) treatment of OC significantly offsets EB-induced deficits of burrowing behavior, relative 

to the 0-OC treatment, but this does not occur at the high-OC (1-OC) treatment. 

The protective effect of OC against sublethal toxicity of IVM was only evident in N. virens, 

but not E. estuarius. In E. estuairus, the slopes of the concentration-response curves for the 3 OC 

levels were not significantly different at 0-, 2-, or 4-months of chemical residence time (p=0.597, 

0.142, 0.932, respectively; Figure 21). This indicates that OC did not have a significant effect on 

the concentration-response relationship between IVM concentration and light-avoidance. 

However, as mentioned previously (for EB exposures), since there is no evidence of toxicity at 4 

months of chemical residence time, OC’s effects on toxicity should not be considered for this 
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chemical residence time. On the other hand, in N. virens IVM exposures, OC had a highly 

significant effect on burrowing behavior (p=0.00016). The 0.5- and 1-OC groups significantly 

reduced IVM-induced interference on burrowing behavior relative to the 0-OC group (p=0.0005 

and 0.0038, respectively; Figure 24 ii). There was a similar reduction in the proportion unburrowed 

at the two higher OC levels, relative to the 0-OC group. OC did not interact with either chemical 

residence time (p=0.3195) or concentration (p=0.1327), therefore the results can be generalized 

to all concentration levels and chemical residence time treatments. This means that OC’s effect 

on burrowing behavior was similar for all chemical residence time and concentrations tested. 

Thus, 0.5- and 1-OC significantly increased burrowing ability relative to 0-OC, regardless of the 

IVM concentration or chemical residence time tested, in N. virens. 

 

Figure 24: The effect of organic carbon (OC) on sublethal toxicity (burrowing behavior) in N. virens 
exposed to (i) emamectin benzoate (EB), (ii) ivermectin (IVM), and (iii) a combination of both EB 
and IVM. The proportion unburrowed after 15 minutes of observation is shown for each OC level 

   

   

   

   

     

  

   

   

   

   

   

     

  

   

   

   

   

   

     

  

   

   

A

B

AB

A

B B

A

B
AB



 

103 
 

(0-, 0.5-, and 1-OC). The 0-, 0.5-, and 1-OC treatments used sediments with total OC contents of 
< 0.05, ~0.2, and 0.42%, respectively. Burrowing data is pooled across all chemical residence 
times and concentrations for each OC level. Error bars represent 95% confidence intervals. 
Letters above error bars indicate statistical significance; if a letter is shared between groups, they 
are not statistically different (α=0.05). 

 

 

 

 

Figure 25: The effect of organic carbon (OC) on sublethal toxicity in E. estuarius combination 
exposures in a subset of 3 combination concentrations (emamectin benzoate / ivermectin; in 
µg/kg). Light-avoidance is represented by percentage of time spent in the dark during 12-min 
observation period of the light-dark assay. Bars represent mean percentage of time spent in the 
dark for each OC level (refer to figure legend). The 0-, 0.5-, and 1-OC treatments used sediments 
with total OC contents of < 0.05, ~0.2, and 0.42%, respectively. Data is pooled across chemical 
residence time.  
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In E. estuarius combination exposures, there is no evidence to suggest that OC had a 

significant effect on sublethal toxicity. In E. estuarius combination exposures, OC did not 

significantly affect light-avoidance behavior based on data from a subset of 3 combination 

concentration of EB and IVM (p=0.548; Figure 25). The 2-way ANOVA showed no significant 

interaction between concentration and OC (p=0.510), therefore OC’s effect on light-avoidance 

was not assessed at each concentration separately, unlike with mortality data presented at the 

end of Section 2.3.4.  

In N. virens combination exposures, OC had a significant effect on burrowing behavior 

(p=0.0105; Figure 24 iii). The 0.5-OC group had a significantly lower proportion of unburrowed N. 

virens than the 0-OC group (p=0.0152). Pairwise comparisons found no other statistically 

significant differences: burrowing in the 1-OC group was not significantly different than the 0-OC 

group (p=0.057). No statistically significant interactions were detected between OC and chemical 

residence time (p=0.2735) or concentration (p=0.7234). Therefore, the main effect of OC can be 

generalized to all levels of these 2 factors. This means that OC had a similar effect (i.e. 0.5-OC 

having a lower proportion unburrowed than the 0-OC group) at all concentrations and chemical 

residence times tested. Overall, it appears the 0.5-OC treatment mitigates sublethal toxicity in N. 

virens, but the 1-OC treatment does not, relative to the 0-OC treatment; This is the same trend 

that was observed for the single-chemical EB exposures with N. virens.  While in E. estuarius, 

OC has no effect on sublethal toxicity. 

 

2.3.8. Sublethal toxicity: the effect of chemical residence time 
 

In E. estuarius EB exposures, there is some evidence that chemical residence time 

significantly affects the relationship between concentration and light-avoidance. However, no 

consistent trend of increasing chemical residence time decreasing sublethal toxicity was found 

(Figure 22). In E. estuarius single-chemical exposures, chemical residence time’s effect on the 

steepness of the concentration-response curve’s negative slope was used to determine how 

chemical residence time influenced sublethal toxicity: if chemical residence time made the 

negative concentration-response slope shallower, it decreased sublethal toxicity; if it made the 

negative concentration-response slope steeper, it increased sublethal toxicity. Chemical 

residence time significantly affected the slope of the concentration-response curves at 0- and 0.5-

OC (p=0.00059 and 0.00880), but not at 1-OC (p=0.1165) (Figure 22 i, ii). For the 0-OC group, at 
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2 months of chemical residence time the concentration-response curve has a significantly steeper 

negative slope than at 0- and 4-months (p=0.0060 and 0.0009); the latter two treatments did not 

have significantly different concentration-response slopes (p=0.8174). Given the steeper 

(negative) concentration-response slope, this suggests 2 months of chemical residence time 

significantly increases sublethal toxicity, while 4 months does not affect toxicity, relative to 0 

months of chemical residence time. On the other hand, for the 0.5-OC group, the concentration-

response curve for the 0-month group had a significantly steeper negative slope than the 2-month 

group (p=0.0069), but not the 4-month group (p=0.5064); while the latter two chemical residence 

time treatments did not have significantly different slopes (p=0.1133). Therefore, in this case, 2 

months of chemical residence time significantly reduces toxicity, while 4 months does not affect 

toxicity, relative to 0 months of chemical residence time. Overall, there is no consistent trend as 

to whether increasing chemical residence time reduces toxicity. In contrast, for IVM exposures, 

chemical residence time had no significant effect on the slope of the concentration-response 

curves, at 0-, 0.5-, or 1-OC (p=0.1698, 0.3648, 0.2728, respectively; Figure 22 iv, v, vi). 

In N. virens EB exposures, chemical residence time had no effect (p=0.1037) on burrowing 

behavior. (Figure 26 i) There was a statistically significant interaction between chemical residence 

time and concentration (p=0.00456), therefore these results cannot be generalized to all 

concentration levels. This means that chemical residence time’s lack of effect of burrowing 

behavior may not occur at all concentrations tested. Two months of chemical residence time 

appears to be associated with the highest proportion of unburrowed N. virens, despite the lack of 

statistical significance of this trend. Similarly, for IVM-exposures, chemical residence time did not 

have a significant effect on burrowing behavior of N. virens (p=0.3207; Figure 26 ii). Chemical 

residence time did not have a significant interaction with either concentration (p=0.6121) or OC 

(p=0.3195); therefore, the lack of effect of chemical residence time on burrowing behavior can be 

generalized to all levels of these two factors. To summarize, chemical residence time did not 

significantly alter the ability of N. virens to burrow upon single-chemical exposure to either EB or 

IVM. 
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Figure 26: The effect of chemical residence time on burrowing behavior of N. virens after 10 d 

exposures to (i) emamectin benzoate (EB), (ii) ivermectin (IVM), or (iii) a combination of EB and 

IVM. The proportion of N. virens unburrowed (± 95% confidence intervals) after the 15-minute 

observation period is shown for each chemical residence time treatment (0-, 2-, and 4-months). 

Burrowing data is pooled across all organic carbon (OC) and concentration levels for each 

chemical residence time treatment. Error bars represent 95% confidence intervals. 

 

In E. estuarius combination exposures, the whole model main effects of chemical 

residence time on mortality could not be determined for the 0- and 0.5-OC groups since there 

was a significant interaction between chemical residence time and treatment concentrations for 

these OC treatments levels (p=0.0006 and p=0.0308, respectively; Figure 27). However, based 

on one-way ANOVAs conducted at each concentration combination treatment, there is little 
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evidence to suggest chemical residence time influenced the light-avoidance endpoint (Figure 

27). At 0-OC, there exists a significant difference between chemical residence time treatments 

at 3 out of 7 (including the control) combination concentrations of EB and IVM (Figure 27 i). At 

0.5-OC a significant difference exists between chemical residence time treatments only at 1 out 

of 6 combination concentration treatments (Figure 27 ii). Furthermore, a clear trend as to 

whether chemical residence time increases or decreases light-avoidance is not evident. In the 

1-OC treatment, concentration and chemical residence time did not interact (p=0.0782; Figure 

28). Therefore, main effects of these factors could be evaluated on their own. For this OC 

treatment, chemical residence time did not have a significant effect on light-avoidance 

(p=0.0595; Figure 28 ii). Overall, there is a lack of evidence to suggest chemical residence time 

affected light-avoidance behavior at any level of OC.  

Chemical residence time did not have a significant effect on burrowing behavior in N. 

virens exposed to a combination of EB and IVM (p=0.2037; Figure 26 iii); the same result was 

observed in single-chemical exposures for N. virens. Chemical residence time did not statistically 

interact with either OC (p=0.2735) or concentration (p=0.3846), therefore chemical residence 

time’s lack of effect can be generalized to all levels of these other two factors. In summary, 

combination exposures with N. virens and E. estuarius did not demonstrate chemical residence 

time affecting sublethal toxicity.  

 

 

Figure 27: The effects of chemical residence time and concentration (emamectin benzoate (EB) 
/ ivermectin (IVM); in µg/kg) on light-avoidance behavior in E. estuarius after 48 h exposures to a 
combination of EB and IVM for the (i) 0- and (ii) 0.5-OC organic carbon (OC) treatments. The 0- 
and 0.5-OC treatments used sediments with total OC contents of < 0.05 and ~0.2%, respectively. 
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Light avoidance is quantified as percentage of time spent in the dark during the light-dark assay. 
Data points represent the mean percent of time spent in the dark (± 95% confidence intervals). 
Different chemical residence times are represented by different bar shadings: 0- (white), 2- (gray), 
and 4-months (black) (refer to figure legend). Asterisks indicate statistical significance between 
chemical residence time treatments within the same treatment concentration (ANOVA: *p<0.05, 
** p<0.01, ***p<0.001, ****p<0.0001). No concentration treatments were significantly different 
than the control (0) treatment within the same chemical residence time treatment (Tukey HSD, 
α=0.05). The upper limit (U.L.) of the error bars are denoted for concentration treatments 100/10 
and 500/10 in panel i. 

 

 

 

Figure 28: The effect of concentration (emamectin benzoate (EB) / ivermectin (IVM); in µg/kg) (i) 
and chemical residence time (ii) on light-avoidance in E. estuarius for EB and IVM combination 
exposures at the 1-OC organic carbon (OC) treatment which used sediment with a total OC 
content of 0.42%. Light avoidance is quantified as the percent of time spent in the dark. Data 
points represent the least square means of percentage of time spent in the dark (± 95% 
confidence intervals) for various (i) concentrations and (ii) chemical residence times (0-, 2-, and 
4-months). Values are pooled across all chemical residence times for each concentration in (i), 
and across all concentrations for each chemical residence time in (ii). Letters above error bars 
indicate statistical significance from pairwise comparisons; if a letter is shared between groups, 
they are not statistically different (Tukey HSD, α=0.05). 
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2.4. Discussion 

 

2.4.1. Acute lethal toxicity of avermectins 
 

For EB and IVM single-chemical exposures, significant concentration-dependent 

increases in lethal toxicity were seen in acute 48-h and 10-d exposures in E. estuarius and N. 

virens, respectively. For most chemical residence time and OC co-treatments, the generation of 

sigmoidal concentration response curves fit the data well and allowed for relatively precise LC50 

estimates. Conversely, mortality in N. virens was not high enough at the highest concentrations 

tested to achieve equally precise LC50 estimates. 

It is challenging to draw comparisons between the acute lethality (LC50) values for E. 

estuarius in the present study to those reported in literature due to differences in exposure 

duration and/or the species tested. In the present study, at 0 months of chemical residence time, 

the 48-h LC50 values for E. estuarius ranged between 2009 and 2413 µg/kg (w.w.), depending 

on OC treatment, in EB exposures. Kuo et al. (2010) found that in E. estuarius, the 10-d LC50 for 

EB was 185 µg/kg (w.w.). This is highly comparable to another species of amphipod, Corophium 

volutator, which has reported 10-d LC50 values for EB of 193 and 153 µg/kg (w.w.) (Lumaret et 

al. 2012, Mayor et al. 2008). Relative to the present study, a direct comparison cannot be drawn 

due to the difference in exposure duration. However, given that the present study used 48 h 

exposures, much shorter than the 10 d exposures used in the aforementioned studies, it is 

reasonable that the LC50 values in the present study are higher (by an order of magnitude) than 

values reported in those studies. For IVM exposures in the present study, the 48-h LC50 values 

for E. estuarius at 0 months of chemical residence time ranged between 32.4 and 121 µg/kg 

(w.w.), depending on OC treatment. Davies et al. (1998) found that in the amphipod C. volutator, 

the 10-d LC50 was 180 µg/kg d.w. That LC50 value is higher than in the present study, despite 

the exposure duration being substantially longer. Therefore, it appears likely that E. estuarius is 

more sensitive to IVM than C. volutator. 

For N. virens, at 0 months of chemical residence time, the 10-d LC50 values for EB 

exposures ranged between 7107.1 and >9600 µg/kg w.w., depending on OC treatment. No 

reported toxicity concentration descriptors (e.g. EC/LCx, NOEC, or LOEC) exist for EB in N. virens 

in the literature. However, Hediste diversicolor, another closely related marine polychaete species 

of the same family (Nereidiae), had a 10-d LC50 of 1368 µg/kg w.w. (Mayor et al. 2008). Another 
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study done with a more distantly related polychaete, Arenicola marina (Order: Capitellida), 

reported a 10-d LC50 of 111 µg/kg w.w. for EB (Lumaret et al. 2012). Therefore, it appears H. 

diversicolor and A. marina are more sensitive to EB than N. virens. It is possible that since H. 

diversicolor is much smaller than N. virens, it is subject to a higher internal dose to a given 

sediment concentration of EB. An average individual wet weight for H. diversicolor is 

approximately 0.30 g (Bergstrom et al. 2019), while N. virens typically weigh approximately 3 g 

(wet weight) (Clos 2014).  On the other hand, A. marina adults are approximately 4 g (Chennu et 

al. 2015), which is comparable to N. virens. Therefore, body weight discrepancy is not likely to 

play a major role in the observed differences in sensitivity to EB between these two species. 

Altogether, there are no direct comparisons that can be drawn to literature LC50 values for N. 

virens at an exposure length of 10 d, due to a difference in the study species used. 

Due to an absence of IVM sediment exposure data with N. virens in the literature, 

comparison of LC50 values in the present study are made to other annelid species. In the present 

study, at 0 months of chemical residence time, IVM’s 10-d LC50 values for N. virens ranged 

between 2694 and 4753 µg/kg w.w., depending on OC treatment. The polychaete A. marina was 

found to have a 10-d LC50 of 23 µg/kg d.w. (Grant and Briggs 1998). This is more than two orders 

of magnitude lower than the 10-d LC50 for IVM in N. virens. Therefore, N. virens is less sensitive 

to IVM compared to A. marina. Meanwhile, the annelid Lumbriculus variegatus (Oligochaeta) was 

reported to have a 28-d LC50 for IVM of 6440 µg/kg d.w. Since this LC50 estimate is higher than 

those found in the present study even though the exposure duration is almost 3-fold longer, N. 

virens is likely more sensitive to IVM than L. variegatus. Overall, it appears annelids are highly 

variable in their sensitivity to avermectin toxicity.  

The present study showed that IVM had a higher toxic potency than EB. For example, in 

E. estuarius, the LC50 values for EB are more than an order of magnitude higher than the values 

for IVM. The higher relative potency of IVM compared to EB has previously been seen in other 

studies. For example, the 48-h LC50 values of EB and IVM for D. magna were reported to be 1.0 

µg/L (Lumaret et al. 2012) and 0.025 µg/L (Halley et al. 1989), respectively. Similarly, in the 

species A. marina, the 10-d LC50 values for EB and IVM were reported to be 23 µg/kg d.w. (Grant 

and Briggs 1998) and 111 µg/kg w.w. (Lumaret et al. 2012), respectively. In both species, IVM is 

approximately 5-fold more potent than EB based on comparison of LC50 values. Additionally, in 

L. macrochirus (bluegill sunfish), the reported 96-h LC50 values for EB and IVM are 180 µg/L 

(OPP 2000) and 4.8 µg/L (Halley et al. 1989), respectively, more than one order of magnitude 

apart; this is comparable to the potency difference between EB and IVM found in the present 
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study. However, some studies have found EB and IVM to have comparable potency. For example, 

the 10-d LC50 for IVM-exposed C. volutator reported by Davies et al. (1998) of 180 µg/kg d.w. is 

highly comparable to the 10-d LC50 of 153 µg/kg w.w. for EB in this species (Mayor et al. 2008). 

Daoud et al. (2018) also reported comparable toxicity between EB and IVM in Homarus 

americanus: a 10-d LC50 of 250 µg/kg w.w. for EB, and a 10-d LC50 of 212 µg/kg w.w. for IVM. 

Therefore, the relative difference in toxic potency between EB and IVM may be species-specific. 

The differences in toxic potencies between macrocyclic lactones – the family of drugs that 

avermectins belong to – may be related to their varying abilities to inhibit the family of ATP-binding 

cassette (ABC) transporters called P-glycoproteins (P-gp) (Prichard et al. 2012). The ABC 

transporters are a highly evolutionarily conserved superfamily of proteins involved in multi-

xenobiotic resistance in both invertebrates and vertebrates (Higgins et al. 1992, Jeong et al. 

2017). These transporters actively pump xenobiotics out of cells, aiding in their excretion (Smital 

et al. 2000). A variety of xenobiotics are known to inhibit the functioning of P-gp (Jeong et al. 

2017); macrocyclic lactones are one such class of xenobiotics (Lespine et al. 2011, Prichard et 

al. 2012). The inhibition of P-gp by macrocyclic lactones can therefore exacerbate the toxicity of 

these compounds. There are differences between different macrocyclic lactones in their capacity 

to inhibit P-gp functioning as demonstrated in vitro with Chinese hamster ovary cells (Prichard et 

al. 2012). For example, moxidectin is a significantly less potent inhibitor of P-gp function than IVM, 

eprinomectin, abamectin, selamectin, and doramectin (Prichard et al. 2012). However, moxidectin 

is not an avermectin; it is a milbemycin. Among the avermectins (IVM, eprinomectin, abamectin, 

and selamectin), there appears to be comparable potency for inhibiting P-gp function (Prichard et 

al. 2012). Additionally, in a study conducted with in vitro membrane preparations of Sf9 cells 

(derived from Spodoptera frugiperda) overexpressing P-gp, EB appears to have a comparable 

potency (albeit slight lower) to IVM in inhibiting P-gp; the IC50 (50% inhibition of P-gp ATPase 

activity) values were approximately 8 and 5 µM for each compound, respectively (Igboeli et al. 

2012). Therefore, it appears that P-gp inhibition may be similar amongst avermectins and not 

explain their varying toxic potencies. Conversely, in another study, IVM has been shown to be a 

more potent inhibitor of P-gp than EB in hepatocytes of Oncorhynchus mykiss (rainbow trout) 

(Kennedy et al. 2014). Additionally, IVM was shown to be significantly more toxic than EB when 

assessing swimming performance in O. mykiss (Kennedy et al. 2014). Furthermore, the co-

treatment with a chemo sensitizing agent which inhibits P-gp activity (Cyclosporin A) exacerbated 

EB toxicity to a much greater extent than IVM (Kennedy et al. 2014); this further reinforces the 

notion that EB does not inhibit P-gp to as great an extent as IVM. Overall, there are mixed results 

regarding the degree to which P-gp inhibition explains varying toxic potencies among 



 

112 
 

avermectins. However, in O. mykiss, the greater inhibition of P-gp displayed by IVM compared to 

EB, appears to provide an explanation for the difference in toxic potencies of these 2 compounds. 

Another reason for the differences in toxic potencies among macrocyclic lactones may be 

related to their varying potency in increasing the activation of ligand-gated chloride channels, their 

proposed molecular targets. For example, in C. elegans, it was shown that the chloride ion current 

generated by glutamate-gated chloride channels upon separate exposures (at the same 

concentrations) to 3 avermectin analogs and milbemycin D was significantly positively correlated 

with the lethal toxicity of these 4 macrocyclic lactones (quantified as the LD95) (Arena et al. 1995). 

These 4 compounds listed from highest to lowest chloride current potentiation value and lethal 

toxicity were as follows: IVM > 4'-epi-acetylamino-4'-desoxy-4a(2-imidazolylcarbonyloxy)-

avermectin B1a > 13-Epi-avermectin B1a > milbemycin D (Arena et al. 1995). Conversely, when 

expressing Caligus rogercresseyi isoforms of the glutamate-gated chloride channels in Xenopus 

laevis oocytes, Cornejo et al. (2014) found that EB and IVM showed a similar potency in activating 

glutamate-gated chloride channels: the EC50 (50% maximum observed increase in chloride 

current) was 202 and 181 nM for these 2 compounds, respectively. Therefore, the potency to 

activate ligand-gated chloride channels may not explain the different toxic potencies between EB 

and IVM. 

Typically, chemicals which have the same molecular target, like EB and IVM, tend to exert 

toxicity additively (Borgert et al. 2004). Toxic interaction between 2 chemicals can fall into the 

following 4 categories: additivity, antagonism, potentiation, and synergism. Additivity is when the 

resulting toxicity of combined exposure to 2 chemicals is equal to their combined individual 

toxicities; these chemicals exert their toxicity independently of one another. Antagonism is when 

combined exposure to 2 chemicals results in toxicity that is significantly less than what would be 

expected if these 2 chemicals exerted their toxic effects additively. Potentiation is when 1 

chemical, at a concentration that would not result in significant toxicity if acting alone, significantly 

exacerbates the toxicity of another chemical when these 2 chemicals are delivered in 

combination. Synergism is when 2 chemicals exacerbate each other’s toxic effects so that the 

resulting toxicity of a combined exposure to these 2 chemicals is significantly greater than if these 

chemicals exerted their toxicity additively. In the present study, combination exposures to EB and 

IVM appeared to additively exert their lethal toxicity in both E. estuarius and N. virens. For 

example, in E. estuarius, at 0 months of chemical residence time and 1-OC, mortality is 

approximately 90% at a combined exposure of 1500 and 100 µg/kg of EB and IVM, respectively. 

Single chemical exposures to these same concentrations of EB and IVM resulted in approximately 
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30% and 50% mortality, respectively. Therefore, the combined toxicity of EB and IVM appears to 

be additive. Similarly, in N. virens, the highest concentration of combined exposure to EB and 

IVM (2400 and 400 µg/kg, respectively) resulted in approximately 50% mortality at 0 months of 

chemical residence time, which was significantly higher than the control group. Single chemical 

exposures at these same concentrations of EB and IVM, resulted in approximately 25% mortality 

for each of these chemicals. Overall, EB and IVM appear to act additively when delivered in 

combination. 

 

2.4.2. Acute sublethal toxicity of avermectins 
 

The tendency to move towards (positive) or away from (negative) a light source has been 

termed phototaxis (Kohler et al. 2018). Phototaxis has previously been investigated in 

crustaceans exposed to neuromodulating substances (Fossat et al. 2014, Guler and Ford 2010, 

Hamilton et al. 2016). For example, in the marine amphipod Echinogammarus marinus, there was 

a significant concentration-dependent decrease in light-avoidance after 3-week exposures to 

serotonin concentrations ranging from 0.01 to 10 µg/L (Guler and Ford 2010). However, for 

fluoxetine-exposed E. marinus, there was a non-monotonic trend where an intermediate 

concentration of 0.1 µg/L caused a significant reduction in light-avoidance, while other 

concentrations (0.01, 1, and 10 µg/L) did not result in light-avoidance behavior that was 

significantly different than unexposed controls. Another study showed that Pachygrapsus 

crassipes (striped shore crab) exposed to 5 and 25 mg/L of fluoxetine for 15 min sought out dark 

conditions significantly less than unexposed controls: controls exhibited negative phototaxis, with 

approximately 67% of time spent in dark conditions, while those exposed to 5 and 25 mg/L of 

fluoxetine did not show a preference for light or dark conditions, spending approximately 50% of 

their time in dark conditions (Hamilton et al. 2016). In contrast, Procambarus clarkii (crayfish) 

injected with serotonin (5 µg/g) was found to significantly increase light-avoidance relative to an 

unexposed control group that exhibited a preference for dark conditions. Therefore, exposure to 

neuro-modulating compounds appears to alter an aquatic invertebrate’s phototactic behavior, but 

in which way it does this (i.e. positively or negatively) is perhaps species-specific. 

In the present study, light-avoidance was assessed in E. estuarius, a marine amphipod 

that naturally spends most of its time burrowed in sediment, under low-light conditions. Therefore, 

in addition to previous research on phototactic behavior in invertebrates, the normal light 

avoidance/burrowing behavior of a benthic organism like E. estuarius suggested itself as a 
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potential behavioral endpoint that might be useful in toxicity tests (F.Lin personal communciation). 

Following bioassays, it was found that the mean percent of time spent in test chambers in the 

dark for unexposed (control) E. estuarius was typically 50% under conditions where the organisms 

had access to both light and dark. Therefore, unexposed E. estuarius did not appear to show a 

natural preference for low-light conditions. This is not consistent with reported findings in literature 

where the baseline behavior for other marine invertebrates is to exhibit negative phototaxis, which 

has been shown in the following test species: Gammarus pulex, E. marinus, P. clarkii, and P. 

crassipes (Fossat et al. 2014, Guler and Ford 2010, Hamilton et al. 2016, Kohler et al. 2018). 

Regardless, the effects of exposure on light-avoidance could still potentially be determined in this 

design since the exposure to EB and IVM can result in avermectin-induced locomotory depression 

in invertebrates (in extreme cases flaccid paralysis) (Lankas et al. 1997, Lumaret et al. 2012, Lunt 

1991, Song et al. 2016). Therefore, in the present study’s design, once initially placed in the light, 

E. estuarius may be less able to seek out low-light conditions if exposed to avermectins, due to 

locomotory depression. In invertebrates, avermectins bind to glutamate-gated chloride channels 

and ionotropic GABA receptors on nerve and muscle cells, resulting in an influx of chloride ions 

at the postsynaptic membrane (Batiha et al. 2020, Lumaret et al. 2012, Song et al. 2016, 

Wolstenholme 2010). This hyperpolarizes the postsynaptic membrane, preventing propagation of 

action potentials, resulting in dampened signal transmission of motor impulses. This is thought to 

be the reason for the observed flaccid paralysis that occurs in avermectin-exposed invertebrates 

(Arena et al. 1995, Lumaret et al. 2012, Song et al. 2016). In aquatic invertebrates, numerous 

studies have shown locomotory deficits upon exposure to EB (Daoud et al. 2018, McBriarty et al. 

2018, Raja et al. 2020, Willis and Ling 2003) and IVM (Daoud et al. 2018, Ding et al. 2001, 

Bundschuh et al. 2016, Garric et al. 2007). For example, acute exposure to IVM was shown to 

result in paralysis in 7 species of aquatic invertebrates (Bundschuh et al. 2016); the most sensitive 

species was D. magna with a 48-h EC50 (immobilization) of 0.59 µg/L, while the least sensitive, 

T. tubifex, had a 24-h EC50 (immobilization) of 1961 µg/L. 

However, in the present study, a concentration-dependent reduction in light-avoidance 

only occurred inconsistently for single-chemical exposures, and this trend was not observed at all 

in combination exposures. Therefore, there was little evidence for an impaired ability for E. 

estuarius to seek out low-light conditions. Perhaps, to see clear evidence for sublethal toxicity 

with the light-avoidance assay, exposures to higher concentrations of avermectins would be 

necessary. Also, an increase in the number of replicates would be warranted, especially given 

the high variability in response: for example, unexposed (controls) E. estuarius, which generally 
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showed the lowest variability in percent time spent in the dark, tended to have 95% confidence 

intervals which spanned approximately 50% of the response range (e.g., 50% ± 25%). Certain 

treatments exposed to EB and/or IVM were even associated with 95% confidence intervals which 

spanned the entire response range. It is also possible that the E. estuarius experienced stress in 

the bioassay test chamber since they were introduced into an environment without sediment, 

which in natural circumstances would be available to them. Perhaps this would make them exhibit 

exploratory behavior in the test chamber, with the biological imperative of seeking out sediment 

to burrow into. This could explain why controls did not exhibit negative phototaxis. Thus, the effect 

of avermectins on E. estuarius light-avoidance behavior in a stress-inducing artificial environment, 

like the bioassay chamber, might not be extrapolated to a natural environment. On the other hand, 

negative phototaxis has been shown to be more pronounced in stressed organisms, as 

demonstrated with the freshwater crustacean P. clarkii (Fossat et al. 2014). However, this may 

be species specific, especially considering P. clarkii is not an organism that burrows in sediment, 

unlike E. estuarius.  Interestingly, many treatment groups showed an increase in light-avoidance 

relative to the control at lower concentrations (Figure 21). It is possible that at low concentrations 

of avermectins, E. estuarius becomes sensitized to light, and avoids it, while at higher 

concentrations, they become subject to the locomotory depression that accompanies avermectin 

toxicity. This would provide a reason as to why the concentration-response trend might be non-

monotonic (i.e. the slope of the concentration-response curve changes directions within the 

concentration range tested), which would make it difficult to find a concentration-dependent trend 

of decreasing light avoidance. However, the suggestion of a non-monotonic concentration-

response curve for light-avoidance is speculative, with no clear evidence, and would require 

further investigation. 

Burrowing behavior of N. virens is an ecological relevant endpoint. The inability to burrow 

makes N. virens more prone to predation, which reduces its overall fitness and natural survival 

rates. The disruption of burrowing behavior and an associated increased natural mortality in N. 

virens, has ecological implications. Burrowing of benthic fauna, like N. virens, disturbs sediment 

and water (bioturbation) in the benthic zone, which plays a critical role in the aeration of sediment 

porewater and overlying water at the sediment-water interface, and in nutrient 

cycling/redistribution (Aller 1988, Biles et al. 2002, Gautreau et al. 2020, Krantzberg 1985, 

Mermillod-Blondin and Rosenberg 2006). Burrowing activity promotes aeration in porewater and 

overlying water by ventilating water and reducing surficial sediment consolidation in the benthic 

zone (Gautreau et al. 2020, Pearson 2001). Therefore, large populations of N. virens could drive 

widescale oxygenation of the benthic zone in marine ecosystems preventing development of 
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hypoxic/anoxic conditions in sediment porewater and overlying water, making it a habitable 

environment for most aquatic species. In fact, ventilation rate of water by N. virens has been 

reported to be about 86 mL water/g worm / h (Miron et al. 1994); this equates to approximately 

21 L of water moved within a 24 h period for a large specimen of this species (McBriarty et al. 

2018). Bioturbation is also essential for the redistribution of inorganic and organic nutrients within 

an aquatic ecosystem, potentially making them more widely available for other species, including 

microbes, and preventing nutrients from concentrating to deleterious levels (Biles et al. 2002, 

Gautreau et al. 2020, Mermillod-Blondin and Rosenberg 2006). For example, distribution of OM 

by bioturbation in sediment can support microbial communities that mineralize OM (Mermillod-

Blondin and Rosenberg 2006); mineralization of OM provides inorganic nutrients to facilitate algal 

growth (Biles et al. 2002). Additionally, even distribution of OM prevents excessive nutrient 

loading in sediment, which would otherwise result in anoxic conditions due to excess microbial 

activity (Suess 1979). Overall, burrowing of benthic fauna, like N. virens, in aquatic ecosystems 

is important for the survival of this species itself, and consequently the beneficial ecosystem 

processes that it contributes to. 

Sublethal avermectin toxicity was clearly demonstrated in the present study using the 

burrowing endpoint in N. virens exposures. Declining burrowing success in N. virens was 

significantly associated with increasing concentrations of avermectins in single-chemical and 

combination exposures. Typically, baseline (unexposed controls) failure to re-establish burrows 

within 15 minutes was approximately 50%, and then peaked at 100% upon exposure to 

approximately to ≥ 1000 µg/kg of EB and between 10 to 100 µg/kg of IVM. Locomotory function 

is crucial for coordination of burrowing in N. virens. The observed avermectin-induced reduction 

in burrowing ability may be attributed to the neurotoxicity of avermectins and their deleterious 

effects on locomotory function. Significant disruptions of burrowing in N. virens have previously 

been shown with exposure to concentrations of EB (formulation: Slice®) at 171 µg/kg (w.w. 

sediment), with nearly 0% (out of 50 organisms) burrowed after a 30 d exposure period, compared 

to > 80% were burrowed in control groups (McBriarty et al. 2018). This EB concentration (171 

µg/kg) is approximately 5-fold higher than maximal concentrations (35 µg/kg) measured in surface 

sediment at the edge of active salmonid net pens, 2 to 3 weeks following the first day of a typical 

7-d Slice® treatment regimen in BC, Canada (DFO 2011b). Therefore, environmentally relevant 

concentrations of EB in sediment near (within 100 m) salmonid aquaculture operations, which 

actively treat sea lice with Slice®, have the potential to adversely affect burrowing behavior in N. 

virens and more sensitive benthic fauna. 
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2.4.3. The effect of organic carbon on toxicity 

 

In the present study, sediment OC significantly mitigated lethal and sublethal avermectin-

induced toxicity in N. virens, and lethal toxicity in E. estuarius, although this effect was less 

pronounced in EB exposures relative to IVM and combination exposures. The lack of effect of OC 

on sublethal toxicity in E. estuarius may be the result of little or no quantifiable effect of avermectin 

toxicity on light-avoidance behavior in the present study; this was discussed in Section 2.4.3. OM, 

measured as OC, is a well-established toxicity modifying factor. Humic substances that make up 

a large portion of OM may have bound to EB and/or IVM, reducing their bioavailability and thus 

their toxicity. Environmental contaminants can bind to humic substances by a variety of chemical 

interactions including the following: hydrogen/ionic/covalent bonding, hydrophobic interactions, 

π-π stacking, and Van der Waals forces (Bollag et al. 1992, Bollag and Meyers 1992, Steinberg 

2003). Since EB and IVM are relatively hydrophobic contaminants, it is likely that these two 

compounds bind with molecules of humic substances in the sediment primarily through 

hydrophobic interactions, Van der Waals forces, and π-π stacking (Steinberg 2003). Hydrophobic 

contaminants have a high affinity for non-polar regions of humic substances, particularly the 

aromatic rings (Moeckel et al. 2013, Steinberg 2003). 

Avermectins have been previously described as having an affinity for OM in sediment, 

making them relatively immobile (Gruber et al. 1990, Halley et al 1993, Krogh et al. 2008, Lumaret 

et al. 2012). However, evidence for this is inconsistent. For example, the distribution coefficient 

values (Kd: the ratio of the concentration of sediment-bound compound to concentration of 

unbound/dissolved compound) of EB and abamectin have been shown to not correlate with 

sediment OC content (Mushtaq et al. 1996, Novotny et al. 2020). The Kd values of EB were found 

to have no relationship with sediment OC when testing 4 different sediments ranging from 0.03 to 

1.07% TOC (Mushtaq et al. 1996). The Kd values of abamectin were found to have no significant 

correlation with sediment OC when testing 5 different sediments (at 2 different depths) with a TOC 

ranging from 0.50 to 6.66% TOC (Novotny et al. 2020). On the other hand, the Kd value of IVM 

increased from 227 to 333, with an increase in sediment OM content from 2.5 to 3.9% (Halley et 

al. 1989), indicating that sediment-associated OC may be involved in adsorbing the contaminant 

to sediment. Although only 2 different sediments were tested in this case preventing adding 

uncertainty to conclusions drawn. Furthermore, other physicochemical characteristics also 

differed between the different sediments tested in their study, such as particle size distribution, 
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pH, and cation exchange capacity (Halley et al. 1989). Furthermore, Krogh et al. (2008) combined 

their own data with the data found in Halley et al. (1989) and found no correlation between Kd 

values of IVM and OM content, when using data from 5 different sediment ranging in OM content 

from 0.1 to 4.9%. On the other hand, the Kd of avermectin B1a has been shown to have a clear 

positive correlation with sediment OC content; 3 different sediments with 0.1, 2.1, and 4.8 % TOC 

content were tested for Kd values which were 17.4, 80.2, and 147, respectively (Gruber et al. 

1990). Overall, it is evident that avermectins tightly bind to soil/sediment (indicated by their high 

Kd) values. However, their affinity for OC is not necessarily a main contributor to this and may 

depend on the avermectin and/or other physicochemical characteristics of the sediment. 

The bioavailability of IVM has previously been shown to decrease with increasing 

sediment OC. Slootweg et al. (2010) found that there was a significant negative correlation 

between bioaccumulation of IVM in L. variegatus (an aquatic oligochaete) and sediment OC 

content. They found that the bioaccumulation factors (BAF; the ratio of the concentration of 

compound in organism tissue to the concentration in of the compound in sediment) were 4.5, 

2.93, 2.09, 0.58, and 0.12, for sediments with % TOC values of 0.62, 1.96, 2.86, 3.67, and 20.6%, 

respectively. This reflects a reduction in bioavailability with increasing sediment OC content. This 

is consistent with the decrease in IVM toxicity at higher OC treatments observed in the present 

study, although the range of sediment OC tested in Slootweg et al. is much higher than in the 

present study. The effect of OC on the bioavailability/toxicity of other avermectins, including EB, 

has not been previously investigated, so whether this trend also applies to other avermectins is 

unclear. 

Studies have shown toxicity mitigating effects of sediment OC in aquatic sediment 

exposures involving organic contaminants other than avermectins (Cano et al. 1996, Harwood et 

al. 2013, Meador et al. 1997, Tsui and Chu 2004); these studies found significant increases in 

LC/EC50 values in the highest OC treatments relative to the lowest OC treatments. This 

difference ranged between a factor of 1.6 to 5.7-fold. However, several of these studies used a 

high-OC treatment of >2% TOC (Cano et al. 1996, Harwood et al. 2013, Tsui and Chu 2004), 

much higher than the present study, making it difficult to draw a comparison to the present study. 

For example, in a toxicity study with bifenthrin, Harwood et al. (2013) found that a sediment TOC 

of 4.43% resulted in a significant reduction in toxicity when compared to a TOC of 0.56% in H. 

azteca and Chironomus dilutus; this resulted in a 5.7- and 2.2-fold increase in the LC50s in these 

organisms, respectively. On the other hand, Meadeor et al. (1997) used sediment OC treatments 

what were much more comparable to the present study. They found that 0.59% sediment TOC 
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was enough to cause a significant decrease in tributyltin-induced mortality in Rhepoxynius 

abronius (Amphipoda) when compared to sediment with a TOC of 0.12%. In addition, they found 

that sediment with a TOC of 0.87% was associated with a significant decrease in tributyltin-

induced mortality in another species, Armandia brevis (Polychaeta), relative to sediment with a 

TOC of 0.30%. For both species tested in their study, the difference between OC content of the 

low and high TOC treatments was comparable to that of present study. Therefore, this is 

consistent with the findings in the present study that a high-OC treatment of 0.42% TOC can result 

in a significant reduction in toxicity relative to a low-OC treatment of < 0.05% TOC. 

However, reductions in toxicity cannot definitively be attributed to TOC content since many 

other sedimentary characteristics can also alter a contaminant’s observed toxicity. Sediment 

characteristics which can potentially act as confounding variables in sediment toxicity 

assessments can be categorized as follows: (1) persistent physical characteristics; (2) persistent 

chemical characteristics; and (3) non- or less-persistent chemical characteristics (Word et al. 

2005). Persistent physical characteristics include the following: grain size/angularity, sediment 

consolidation, and water retention capacity. Persistent chemical characteristics include the 

following:  TOC, total organic nitrogen (TON), sediment matrix-associated minerals, exogenous 

pollutants, and woody debris. Non- or less- persistence chemical characteristics include 

ammonia, salinity, pH, and sulfides. It is possible that some of these sediment characteristics 

could have contributed to variability in the findings for exposures involving EB and IVM for E. 

estaurius and N. virens. Particle size distribution is an excellent example of this, as higher OC-

content typically co-occurs with smaller grain sizes. 

Particle size distribution (i.e. grain size) is a well-recognized sediment characteristic linked 

to modifying toxicity (Campana et al. 2013, Lapota et al. 2000, Strom et al. 2011). In the present 

study, sediment characteristics that were measured include the following: particle size distribution, 

TOC, total organic matter (TOM), and pH. There was a clear difference between the 1-OC and 0-

OC sediment with regards to particle size distribution; a grain size of < 0.063 mm (silt) composed 

approximately 20% and 5% of these two types of sediments, respectively (Refer to Appendix A, 

Figure A.1 and Figure A.2). The smaller grain size of the 1-OC sediment could have a toxicity 

mitigating effect, as has been seen in previous studies (Strom et al. 2011). For example, when 

controlling for sediment TOC content, Strom et al. (2011) found that toxicity was negatively 

correlated with grain size in both Spisula trigonella and Tellina deltoidalis. When comparing 

copper toxicity in sediment with a silt content of 100% to that of 25%, the LC50 values were 4.3- 

and 4.9-fold higher in the former treatment group, for both species, respectively. Conversely, 
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smaller grain size has also been linked to deleterious effects in organisms such as amphipods 

(Lapota et al. 2000). For instance, it can impede amphipods from burrowing, resulting in stress 

(Lapota et al. 2000). This was unlikely the case in the present study given that toxicity was found 

to decrease in the 1-OC sediment. It may also be worth noting, that grain size, TOC, sulfides, 

ammonia are all typically correlated to one another. Smaller grain size provides more surface 

area for OM to adsorb to, which in turn harbors sulfide- and ammonia-producing microbes. 

Therefore, in a natural setting these factors should be seen to co-occur, and one may be predictive 

of the others. This means that parsing these factors apart may be unnecessary from the 

standpoint of predicting toxicity in environmentally relevant conditions. Instead, it may be more 

helpful to view these factors as a tetrad of factors that modify toxicity in sediment exposures. 

Another relevant physicochemical characteristic that may affect toxicity of sediment is its 

inorganic constituents (e.g. sediment matrix-associated minerals). It has been shown that 

avermectins can form complexes with inorganic components in sediment (Krogh et al. 2008, 

Litskas et al. 2011). For example, IVM can form adducts with cations, such as ammonium and 

sodium, as has been shown with liquid chromatography–mass spectrometry (Ali et al. 2000). It 

has also been suggested that IVM may bind to calcium ions, which was inferred by Krogh et al. 

(2008) based on a 3-fold decrease in Kd value with 5-fold decrease in concentration of CaCl2 

solution used for adsorption testing. Litsaks et al. (2011) found a strong correlation (r2=0.87) 

between cation-exchange-capacity (CEC; log transformed) and Kd values, when pooling data on 

3 different avermectins. In their study they pooled data for IVM (Krogh et al. 2008), abamectin 

(Gruber et al. 1990), and their own study on eprinomectin, combining for a total of 9 different 

sediments with varying CEC (0.328 to 39.2 mols of electric charge per 100 g sediment). In addition 

to this, they also found that when pooling data for IVM and eprinomectin, there was a strong 

correlation (r2=0.95) between varying Cu (range: 0.04 to 27 mg/kg) and Fe (range: 0.09 to 852 

mg/kg) content for 6 different soils. Therefore, it is possible that the association between 

avermectins and inorganic components of soil/sediment may play as important a role in sediment 

adsorption processes as hydrophobic interactions with sediment-associated OM. In fact, Litskas 

et al. (2011) found no correlation (r2<0.5) between Kd values and sediment OM content (range: 

0.1 to 4.8%) when pooling data for 3 avermectins from 9 different types of sediment (in the same 

manner as mentioned above). Thus, their study suggests that interactions with inorganic 

components of sediment may play a bigger role in the adsorption of avermectins to the sediment 

matrix, than hydrophobic interactions with sediment OM. Altogether, it remains uncertain to what 

extent adsorption to sediment can be attributed to OM or other physicochemical characteristics 

of sediment. However, it is clear that many sediment characteristics play a role in how tightly 
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avermectins bind to sediment, and therefore perhaps their bioavailability. This means the reduced 

avermectin toxicity seen in the high-OC treatment relative to the low-OC treatment in the present 

study may not be solely attributed to avermectins binding to OM, but instead to a multitude of 

sediment characteristics, some of which are co-occurring as explained in the above paragraph. 

Unlike in IVM and combination exposures, EB exposures showed a less pronounced and 

consistent protective effect of OC on lethal and sublethal toxicity in both species in the present 

study. Perhaps the most notable example of this is that with E. estuarius, OC did not affect EB-

induced lethal toxicity, based on LC50 value comparisons, while in IVM exposures there were 

clear increases in LC50 values with increasing OC content. These results would suggest that 

perhaps EB binds less strongly to humic substances in OM, compared to IVM. However, EB and 

IVM share many chemical characteristics and are highly similar in their chemical structures. 

Although, as mentioned previously, the affinity to OC may depend on the avermectin. Therefore, 

it is a possible explanation for the discrepancy in OC’s effect on EB v. IVM toxicity. 

Another explanation for the less pronounced effect OC had on EB-induced toxicity, is that 

Slice® is largely composed of two carbohydrates: maltodextrin (47.4%) and cornstarch (50.07%) 

(Bright and Dionne 2005). Together these make up 97.5% of the Slice® formulation (Bright and 

Dionne 2005). These two carbohydrates can be considered a source of fresh OM (Thurman 

1985). Therefore, even the 0-OC groups would have had a detectable amount of OM present in 

the form of maltodextrin and cornstarch when Slice® is used to spike this sediment. For example, 

the highest EB concentration tested for the 0-OC group in E. estuarius exposures was 5000 µg/kg, 

which corresponded to the addition of 0.25 g of Slice® to 100 g of sediment. After addition of Slice® 

this would have introduced an additional 0.24% of OM in the form of maltodextrin and cornstarch. 

As a rule of thumb, a conversion factor of 0.58 to convert OM to OC is typically applied in the 

context of soil OM; this is known as the van Bemmelen factor (Wang et al. 2016). Therefore, after 

applying this conversion factor, this addition at the highest EB concentration would correspond to 

an addition of approximately 0.14% TOC to the 0-OC sediment. However, the 1-OC treatment 

would also experience an increase in sediment TOC, like the 0-OC treatment. For example, the 

highest concentration test in the 1-OC treatment in E. estuarius exposures was 8500 µg/kg, which 

corresponded to adding 0.43 g of Slice® to 100 g of sediment. This corresponds to an additional 

0.24% of OC incorporated into the sediment, adding to the 0.42% already present in the 1-OC 

treatment, for a total of 0.66% TOC in the 1-OC sediment. Therefore, the high-OC treatment 

experiences an increase in OC content as well, which would perhaps offset the effect of 

introducing additional OC in the low-OC treatment. On the other hand, if the presence of just a 
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small amount of sediment TOC (such as 0.14%) is sufficient to bind to the same number of 

molecules of EB or IVM and prevent toxicity just as effectively as a larger amount of sediment OC 

(such as 0.66%), then the amendment of the 0-OC sediment with a small amount of OC could 

reduce toxicity to a similar extent as the 1-OC sediment; this assumes that the avermectin-OC 

binding potential is similar between a TOC of 0.14% and 0.66%, perhaps due to a lack of 

saturation of OC-binding sites in the 0.14% treatment. This would confound the results and may 

explain why the effect of OC on toxicity was not as evident in EB exposures as it was in IVM 

exposures. 

It is speculation that OC being introduced in the form of carbohydrates found in the Slice® 

formulation may have confounded the results, since the source of OC may not be a form that 

readily binds to EB. However, it is plausible that the type of formulation, or whether a formulation 

is used at all, can play a major role in OC’s effect on toxicity in sediment toxicity testing with non-

metal contaminants. For example, Tsui and Chu (2004) highlighted the importance of knowing 

the type of formulation that is used when it comes to sediment OC influencing toxicity. Their study 

investigated the effect of sediment OC on glyphosate toxicity, in 2 different formulations: 

Roundup® and Roundup Biactive®. The only difference between these 2 formulations is the 

surfactant used. When conducting 48 h toxicity tests with Ceriodaphnia dubia, they found that a 

sediment TOC of 2.10% caused a significant 3.1-fold increase in LC50 value when compared to 

the lowest TOC of 0.0% for Roundup® exposures. On the other hand, for Roundup Biactive® 

exposures they found that a TOC of 2.10% corresponded to a 1.3-fold decrease (non-significant) 

in the LC50 value when compared to the 0.0% TOC treatment. This demonstrates the importance 

of considering which formulation is used when conducting toxicity tests. It should also be noted 

that it was observed in the present study that after 4 months of incubation, sediment spiked with 

significant amounts of Slice® had the presence of a slick black material, with a sulfurous odor. 

This likely indicates the thriving of sediment microbes, resulting in an anaerobic environment 

where sulfate-reducing bacteria produce hydrogen sulfide (H2S), which may be responsible for 

the sulfurous odor (Muyzer and Stams 2008). With the abundance of microbial activity, it is 

possible these 2 carbohydrates could have also been biotransformed by sediment microbes into 

other types of OM molecules. Overall, although speculative, the introduction of OC in the form of 

carbohydrates found in the Slice® formulation may explain the discrepancy in the results regarding 

OC’s effect on toxicity between purified IVM exposures versus Slice® exposures. 

Since salmonid aquaculture uses Slice®, one could argue that the 2 carbohydrates found 

in this formulation would also factor into benthic fauna EB-exposure scenarios underneath salmon 
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farms, and therefore the laboratory results may reflect results in the field. But this toxicity-

mitigating effect of OC in Slice® might not be extrapolated from a closed system (i.e. a jar with 

spiked sediment) in a laboratory to a more complex open system like a salmon farm. For example, 

on a salmon farm, EB in uneaten pellets treated with Slice® may separate from the carbohydrates 

found in the formulation. These carbohydrates are generally more water soluble, and could then 

be influenced by ocean currents, and not end up underneath the open net pen at all. Meanwhile, 

EB would sink to the benthic zone due to its much lower water solubility then maltodextrin and 

cornstarch found in Slice®. Similarly, if Slice®-treated pellets are ingested by farmed fish, the 

carbohydrates and EB may separate in the gastrointestinal tract of the treated fish, whereby EB 

would be excreted by treated fish into the environment and end up in the sediment not 

accompanied by the 2 carbohydrates in the formulation. Altogether, the potential of the 

carbohydrates in the Slice® formulation to mitigate toxicity (confounding the results regarding 

sediment OC’s effect on EB toxicity) in the laboratory setting may not translate to what would 

occur in the field. Therefore, naturally occurring sediment OC may have a bigger impact on EB 

toxicity underneath a salmon farm, then is suggested by the present study. Furthermore, 

underneath salmon farms, sediment TOC can be as high as approximately 9% (Brown et al. 

1987). The present study does not provide insight as to EB toxicity that would occur at these 

levels of sediment OC. 

 

2.4.4. The effect of chemical residence time on toxicity 

 

In E. estuarius exposures, 4 months of chemical residence time appeared to have 

significantly reduced the bioavailability of both avermectins, and consequently, acute lethality in 

this treatment group. Chemical residence time may affect how tightly bound a contaminant is to 

sediment and its associated OM (Clark and Choppin 1990, Nam and Kim 2002) and/or result in 

the contaminant gradually migrating and sequestering in pockets of sediment pores that are 

inaccessible to biota (Alexander 2000, Conrad et al. 2002, Nam and Kim 2002). The latter 

mechanism is well recognized, and results in a reduction in a contaminant’s physical availability 

with increasing chemical residence time.  

The reduction in bioavailability with increasing chemical residence time has previously 

been observed with persistent organic pollutants in terrestrial and aquatic environments (Conrad 

et al. 2002, Chung and Alexander 1998, Kukkonen and Landrum 1998, Landrum et al. 1992, 
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Leppanen and Kukkonen 2000, Menchai et al. 2008, Reid et al. 2000, Taylor et al. 2019, White 

et al. 1999). For example, when normalized to the physically available fraction, the bioavailability 

(measured as the change in BAF) of pyrene to L. variegatus (an aquatic oligochaete) decreased 

by approximately 58% over the course of 220 d of chemical residence time (Conrad et al. 2002). 

Since this normalized value only considers the physically available pool of the contaminant, this 

calculated decrease in bioavailability is attributed to factors other than a reduction in physical 

availability. Additionally, the chemical extractability, representing the physically available fraction, 

of pyrene decreased by 50% over the course of 220 d of chemical residence time (Conrad et al. 

2002). The compounded effect of the reduction in physical availability of the contaminant and 

factors unrelated to physical availability resulted in an overall 70% reduction in pyrene body 

burden in L. variegatus, representing the overall reduction in bioavailability (Conrad et al. 2002). 

In the same species, You et al. (2009) found that the bioavailability of permethrin to L. variegatus 

decreased significantly by 65% when comparing 7 d v. 90 d chemical residence time in one of the 

sediment types tested. However, in the other sediment type tested, they found a non-significant 

1% decline in bioavailability. Therefore, it appears sediment physicochemical characteristics play 

a role in chemical residence time’s effect on bioavailability. Kukkonen and Landrum (1998) found 

that 13 months of chemical residence time in aquatic sediments resulted in a 42% decline in the 

bioavailability of benzo(a)pyrene in exposures with Diporeia spp., a benthic amphipod. 

Additionally, phenanthrene has been observed to experience a 38% reduction in bioavailability 

after 30 d of soil aging (relative to 3 d of aging), in Eisenia foetia (earthworm) (White et al. 1999). 

Furthermore, after 365 d of chemical residence time, Menchai et al (2008) found that the physical 

availability of dichlorodiphenyltrichloroethane (DDT) decreased by between 86 to 93%, depending 

on soil type; in their study, physical availability was measured using a semi-permeable membrane 

device containing cod liver oil. Altogether, there is substantial evidence for significant reductions 

in bioavailability occurring upon 30 d or more of sediment-contaminant contact time in organic 

contaminants. 

The reduction in bioavailability of a contaminant due to contact time with sediment has 

previously been characterized as an initially rapid process. A large portion of reduced 

bioavailability occurs within the first day of contact with sediment (Conrad et al. 2002). For 

example, Conrad et al. (2002), found that the bioavailability (normalized to physical availability) 

initially decreased by approximately 30% after 1 day of contact time, afterwards remaining 

relatively constant over the course of 70 d. However, when measured after 220 d, there was an 

additional notable (28%) decrease in bioavailability. This led the authors to conclude changes in 

bioavailability – in this case normalized to physical availability – of sediment-associated 
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contaminants follow a 3-stage process involving (1) an initial rapid decrease, (2) a plateau, and 

(3) a further decrease.  

The reduction in physical availability appears to be a slower, more gradual process than 

aspects of bioavailability unrelated to physical availability of a contaminant. Conrad et al. (2002) 

found a 10% drop in physical availability after 70 d of pyrene-sediment contact time. However, 

after 220 d, there was a substantial drop in physical availability to around 50% of initial values. 

This appears to be the only study that differentiates the effects of physical availability from factors 

unrelated to physical availability of a contaminant, when investigating chemical residence time’s 

effect on bioavailability. Most studies measure overall bioavailability. For instance, Kukkonen and 

Landrum (1998) found that 90% of the decrease in bioavailability of benzo(a)pyrene over the 

course of 13 months of chemical residence time, occurred within the first week. Indeed, it has 

been recognized that a biphasic reduction in bioavailability with increasing chemical residence 

time is typical: a rapid initial reduction in bioavailability, followed by a more gradual reduction in 

bioavailability (Reid et al. 2000). For example, Mah et al. (2012) found that the bioavailability to 

E. fetida (earthworm) of soil-assocaited phenanthrene and pyrene decreased substantially 

(approximately 40% and 25%, respectively) after the first 15 d of chemical residence time. This 

was followed by a steady and more gradual decline in bioavailability by an additional 50% and 

30%, respectively, over the next 135 d of chemical residence time. In the present study, perhaps 

a large reduction in bioavailability of avermectins occurred rapidly prior to introduction of 

organisms, whereby the 0-month treatment group – in which avermectins spent approximately 12 

h in contact with sediment prior to the introduction of organisms for toxicity testing – experienced 

similar reductions in avermectin bioavailability as the 2-month group. Meanwhile, perhaps the 4-

month treatment group was subject to a further gradual decrease in bioavailability of the 

avermectins, resulting in the significant change in mortality associated with this treatment group 

in E. estuarius, compared to the other 2 treatment groups. 

In their study, Conrad et al. (2002) confirmed that pyrene had not degraded over the 

course of the 220 d study, therefore it could be concluded that chemical degradation was not 

responsible for the observed reduction in pyrene body burden. This highlights an important 

limitation in the present study’s design, whereby the roles of chemical residence time and 

chemical degradation in the altered toxic response cannot be parsed since chemical degradation 

was not measured. Therefore, it may be erroneous to conclude that longer avermectin-sediment 

contact times reduced their bioavailability which was ultimately responsible for the observed 

reduction in mortality of E. estuarius at 4 months of chemical residence time. Instead, this may 
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just as easily be explained by degradation of EB and IVM. Laboratory studies suggest that the 

degradation half-life (DT50) of IVM ranges between 93 to 240 d when residing in a soil-feces 

mixture at 22oC in the dark (Halley et al. 1989). The DT50 of EB is comparable to IVM, ranging 

between 164 to 404 d in marine sediment (Benskin et al. 2006, Bright and Dionne 2005). 

Therefore, after 4 months of incubation at 4oC in the dark, it is plausible that EB and IVM may 

have significantly degraded, thus explaining the decrease in lethal toxicity observed relative to 

the 0- and 2-months of chemical residence time groups. Therefore, the confounding effect of 

chemical degradation of EB and IVM should be considered and is a possible explanation for the 

observed outcome; however, both chemical residence time and chemical degradation may have 

contributed to the reduction in mortality at 4 months of chemical residence time. Although it is not 

clear how much EB and IVM would have degraded during incubation at 4oC in the dark, as was 

the case in the present study. To address this, future studies should use measured concentrations 

instead of nominal concentrations. 

In N. virens, it is unclear why the degradation of EB and IVM, as discussed above, did not 

reflect a significant reduction in toxic response (and therefore, presumed bioavailability) after 4 

months of incubation with sediment, as it did in E. estuarius exposures. Instead, this suggests 

that significant chemical degradation of EB and IVM did not occur after 4 months of chemical 

residence time. Perhaps it is possible that EB and IVM concentration remained relatively constant, 

but the bioturbation generated by N. virens triggered its desorption from sediment. This is 

consistent with the fact that N. virens is a much bigger organism, capable of disturbing sediment 

to a much greater extent than E. estuarius. Therefore, due to less bioturbation in E. estuarius 

exposures, perhaps EB and IVM remained relatively immobile, sequestered in inaccessible 

pockets of the sediment matrix. This might explain the reduction in mortality observed after 4 

months of chemical residence time in E. estuarius. In contrast, in N. virens exposures, bioturbation 

may have liberated avermectins from inaccessible parts of the sediment matrix, allowing them to 

become bioavailable to N. virens, resulting in similar mortality across all chemical residence times. 

Differences in feeding behavior between N. virens and E. estuarius may have also 

contributed to the difference between the effect of chemical residence time on avermectin toxicity 

in each species. Since N. virens ingests sediment (qualitative observation in present study; 

Macdonald and Ingersoll 2003, Vismann 1990), absorption of sediment-associated contaminants 

is likely primarily through an oral route of exposure. Although, E. estuarius is thought to be a 

deposit feeder (USEPA 1994), like N. virens, therefore it is also likely exposed to sediment-

associated contaminants via an oral route of exposure. Nevertheless, it is possible that E. 
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estuarius is exposed to a lesser extent via an oral route of exposure, and instead more through 

its integument (dermal exposure), when compared to N. virens. If, after avermectin-sediment 

contact time, absorption of avermectins only decreases for the dermal route of exposure, but 

remains constant for the oral route of exposure, this could explain the discrepancy in chemical 

residence time’s effect on toxicity between these 2 test species. In this case, N. virens would 

absorb avermectins primarily via the oral route of exposure, so absorption might remain relatively 

constant across all chemical residence time treatments. Meanwhile, E. estuarius would absorb 

avermectins to a lesser extent as soon as their absorption decreases through the dermal 

exposure route with increasing chemical residence time. In fact, absorption of sediment-

associated persistent hydrophobic contaminants has previously been shown to decline more 

rapidly with increasing chemical residence time via a dermal route of exposure compared to an 

oral route of exposure. Leppanen and Kukkonen (2000) showed that L. variegatus capable of 

feeding accumulated pyrene and benzo(a)pyrene between 2- to 9-fold faster (depending on which 

chemical and the length of contaminant-sediment contact time) relative to those which were 

unable to feed. The observed decline in pyrene bioaccumulation rate due to increasing 

contaminant-sediment contact time (up to 34 d) was less pronounced in feeding worms. The rate 

of bioaccumulation of pyrene in feeding worms was approximately 2-fold higher than non-feeding 

worms during 0 to 6 d of pyrene-sediment contact time; meanwhile it was approximately 9-fold 

higher in feeding worms relative to non-feeding worms during 28 to 34 d of pyrene-sediment 

contact time. Therefore, it is possible that sediment contact time has less of an effect on 

absorption through an oral route of exposure. However, this result was not observed with 

benzo(a)pyrene, and therefore may be chemical-dependent. To summarize, a difference in 

feeding ability, and therefore route of exposure, between the 2 test species in the present study 

may explain the difference in chemical residence time’s effect on avermectin toxicity. 

For chemical residence time to exacerbate lethal toxicity as it did in the IVM exposures 

with N. virens, 2 scenarios can be considered: (1) IVM bioavailability increased after 2 months of 

chemical residence time; (2) IVM was biotransformed into a more toxic form. It is unlikely that 

avermectin bioavailability would have increased with increasing contaminant-sediment contact 

time, as all studies previously done with persistent organic contaminants indicated that 

bioavailability either decreases or remains the same (and does not increase) with increasing 

contaminant-sediment contact time (Conrad et al. 2002, Chung and Alexander 1998, Kukkonen 

and Landrum 1998, Landrum et al. 1992, Leppanen and Kukkonen 2000, Menchai et al. 2008, 

Reid et al. 2000, Taylor et al. 2019, White et al. 1999). No evidence was found in the literature for 

chemical residence time increasing bioavailability of sediment-associated organic contaminants. 
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Instead, it is perhaps possible that IVM was metabolized by sediment microbes into more potent 

toxic metabolites. For example, in the case of EB, the desmethyl metabolite of EB is 10-fold more 

potent than EB itself (Kuo et al. 2010). However, IVM is not known to have metabolites which are 

more toxic than the parent compound (Halley et al. 1989). For instance, the monosaccharide and 

aglycone metabolites of IVM have been shown to be much less toxic to D. magna, with 48-h LC50 

values of 0.4 and 17 µg/kg, respectively, compared to the 48-h LC50 value of 0.025 µg/kg for the 

parent compound (Halley et al. 1989). Furthermore, Slootweg et al. (2010) found that after a 28 

d IVM exposure with L. variegatus in a sediment-water system, no biotransformation products 

were found in sediment or L. variegatus tissue. However, of the small proportion of IVM and its 

metabolites in the water column (7% of the initial IVM added to the system), a large proportion 

(83%) of this was comprised of 2 metabolites, the rest (17%) being parent compound. Based on 

the results of Prasse et al. (2009), these were likely the aglycone and monosaccharide 

metabolites of IVM: this study also found that these metabolites only reside in the water column, 

and not sediment. Given that IVM metabolites are less toxic, and only represent a small fraction 

(approximately 6%; Slootweg et al. 2010) of an entire aerobic sediment-water system, the 

presence of these metabolites does not explain the increased mortality in N. virens seen after 2 

months of chemical residence time.  
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Chapter 3. Conclusion and future directions 

 

3.1. Conclusion 

 

In conclusion, the present study finds novel evidence for marine surface sediment OC and 

sediment aging exerting a significant protective effect against sublethal and lethal toxicity of 

avermectins. The toxicity-mitigating effects of OC were discovered in both marine benthic 

invertebrate test species, N. virens and E. estuarius. Generally, this effect was less pronounced 

in EB exposures relative to IVM and combination exposures. On the other hand, the effect of 

sediment aging on avermectin toxicity showed interspecies difference. Generally, four months of 

contaminant-sediment contact time significantly reduced toxicity of both avermectins in E. 

estuarius. Chemical decay and/or a decrease in bioavailability of both avermectins are likely 

responsible for this trend. However, 4 months of chemical residence time had no effect on toxicity 

in N. virens. Therefore, the toxicity-ameliorating effects of sediment aging are species specific.  

 

3.2. Recommendations for use of avermectins in aquaculture 

 

Sediment TOC is particularly relevant to aquaculture since overcrowded net pens tend to 

result in a significantly higher sediment TOC content underneath and in the immediate vicinity of 

aquaculture enclosures. For example, in salmonid net-pens in BC, Canada, Sutherland et al. 

(2000) found that the carbon flux adjacent to the salmon farms was 2-fold higher when compared 

to control sites. This may increase the TOC within 3 m of the edge of salmon pens by greater than 

2-fold, in comparison to the baseline TOC of the surrounding sediment (Brown et al. 1987). 

However, this increased TOC is only observed up to 15 m from the edge of the salmon pen. 

Therefore, the dispersal distance for avermectins delivered on a salmon farm should also be 

considered since the elevated sediment TOC content may only be present within a relatively small 

radius around a finfish farm. Furthermore, the high sediment OC treatment in this study may not 

have reflected the conditions underneath a salmon farm. Marine sediment can have a TOC 

content as high as 9.35% underneath salmon farms in BC (Brown et al. 1987). Therefore, it is 

possible that at these levels, OC would influence avermectin-induced toxicity to an even greater 

extent. The extent to which avermectins persist and remain bioactive underneath salmon farms 
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is another important consideration, which could determine temporal spacing of avermectin 

treatments on salmon farms. For example, EB has been shown to persist at detectable levels (3 

µg/kg; limit of detection: 0.12 µg/kg) in sediment 1.5 years after a standard 1-week administration 

of Slice® on salmon farms (DFO 2011b). 

In conclusion, based on the present study’s findings, it is advisable to consider the 

sediment TOC percent of the benthic zone when regulating or assessing the environmental risk 

of avermectin sea lice chemotherapeutant usage. Even a TOC content of < 1% (and all other 

associated sediment characteristics) appears to be sufficient to significantly mitigate toxicity of 

avermectins, as seen in the present study. Additionally, appropriate temporal spacing of treatment 

administration of avermectins should be exercised as these are relatively persistent compounds 

when residing in sediment. This is evident by their relatively high DT50 values in sediment. 

Chemical residence time may mitigate avermectin toxicity; however, this was species-specific, 

and although 4 months significantly reduced toxicity in E. estuarius, this did not occur with N. 

virens. Therefore, generalizations should not be made regarding toxicity reductions due to 

chemical residence time across species. To be conservative, salmonid aquaculture operations 

should space the administration of avermectins by more than 4 months (a more specific 

recommendation would require testing on longer chemical residence time treatments), since no 

change in toxicity was observed after 4 months of chemical residence time in N. virens. It is worth 

noting also that the extent to which chemical decay of avermectins was involved in the reduction 

in toxicity seen in E. estuarius also remains unknown in the present study. However, the degree 

to which chemical residence time v. chemical degradation contribute to the observed toxicity 

reduction may not be important since the combination of both gives an idea as to the sum of 

effects of both mechanisms: this is ultimately what is important when considering an exposure 

scenario at a given site. Similarly, for sediment TOC, frequently co-occurring sediment 

characteristics (e.g. smaller particle size) may contribute to toxicity reduction. Therefore, the 

extent to which TOC is solely responsible for the observed toxicity reduction is debatable. 

However, it is the sum of effects of all these co-occurring sediment characteristics that takes 

precedence when considering the toxicity-ameliorating characteristics of any given sediment. 
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3.3. Recommendations for future studies 

 

The present study takes the initial steps in understanding the effects of 2 toxicity modifying 

factors, namely sediment organic carbon and chemical residence time, that are relevant to the 

application of avermectin sea lice chemotherapeutants in salmonid aquaculture net pens. 

However, there remain data gaps to address with regards to the environmental risk/impact of EB 

and IVM on salmonid farms, and the importance of toxicity modifying factors for deriving site-

specific ecotoxicity guidelines. Firstly, it would be worth designing studies which make a more 

direct measure of bioavailability and/or gain a more detailed mechanistic understanding of 

changes in bioavailability of avermectins with alterations in toxicity modifying factors. Secondly, it 

would also be useful to conduct population level studies of benthic fauna near salmonid 

aquaculture sites – and perhaps comparing sites with varying characteristics – to evaluate 

whether avermectin sea lice chemotherapeutant usage is ecologically harmful; therefore, in situ 

studies on ecological impact would be advisable. Thirdly, using environmentally relevant exposure 

concentration and longer exposure durations may also affect how OC and chemical residence 

time affect toxicity, and therefore these may be worth investigating. Finally, it may be important to 

test the effects of avermectin-toxicity in other species of benthic fauna to widen the database on 

the relative sensitivities of aquatic species to avermectins. 

The bioavailability of avermectins with contaminant-sediment contact time in aquatic 

sediment exposures has not been well investigated. While this study does address the toxicity 

(indirectly measuring bioavailability) that occurs at varying sediment aging and OC co-treatments, 

it does not directly measure bioavailability. For example, most bioavailability studies with 

persistent organic pollutants measure the BAF or other tissue burden parameters of 

contaminants, to understand how much a contaminant is still absorbed upon varying conditions. 

Additionally, to get mechanistic insight into how these 2 factors affect bioavailability, measuring 

the concentration of organic- and inorganic-avermectin adducts using analytical chemistry 

techniques may be helpful. For example, one could measure the level of avermectin adducts 

compared to unbound avermectin and compare that with changes in bioavailability. This would 

help determine whether bioavailability may be attributed to the formation of organic- or inorganic-

adducts, and to what extent organic v. inorganic adducts play a role in changes in bioavailability 

of avermectins. Furthermore, with regards to chemical residence time’s effect on bioavailability, 

one could investigate to what extent the decrease bioavailability is the result of sequestration of 

contaminants into physically inaccessible parts of the sediment matrix. To achieve this, one could 



 

132 
 

use harsh chemical extraction techniques, to estimate the physically available fraction of 

avermectins. This would provide a more detailed understanding as to the mechanism involved in 

changes in bioavailability with increasing chemical residence time. Overall, future studies would 

be advised to build on the present research by elucidating the bioavailability alterations of 

avermectins that occur with varying OC and chemical residence time, or other toxicity modifying 

factors, in the context of sediment exposures with benthic fauna. This would be invaluable for site-

specific assessment of avermectin sea lice chemotherapeutant usage. 

Investigating the ecological impact of avermectin usage on aquaculture with population 

level studies is challenging, but necessary. If no population level effects can be discerned from 

population level studies of a wide variety of species from all trophic levels, then the ecological 

effects of avermectin usage on aquaculture may be negligible. Without large scale, multi-species 

ecological effects testing, it remains difficult to determine the ecological impact of avermectin 

usage as sea lice chemotherapeutants on salmon farms. Additionally, it may be helpful to collect 

sediment from underneath aquaculture operations and conduct laboratory testing with that 

sediment. Site-specific sediment toxicity studies could then be conducted, also evaluating the 

effects of toxicity modifying factors in these studies. 

Exposure durations were acute in the present study, and future studies would be advised 

to conduct sub-chronic and chronic exposure durations; longer durations would reflect more 

ecologically relevant exposure scenarios, with lower concentrations used. Exposure duration and 

chemical concentration might even impact the extent to which OC and chemical residence time 

could alter toxicity. For example, the adsorption dynamics of a compound may change with 

concentration of a contaminant. Additionally, it may be helpful to conduct toxicity tests with 

organisms of other taxa, such as sediment-dwelling vertebrates (e.g. demersal fish species) in 

future studies. In general, there is a lack of toxicity literature on sediment exposures with 

avermectins with sediment-dwelling aquatic vertebrates (Lumaret et al. 2012). Benthic 

vertebrates may forage on or near the sediment increasing risk of exposure to contaminants which 

primarily build-up in sediment, like avermectins. Furthermore, when ecological risk assessment 

is carried out, it is helpful to have data available for a wider array of taxa, as this helps identify 

particularly sensitive taxa. It is also possible the extent to which OC can be protective may be 

different across taxa. For example, perhaps feeding habits would affect route of exposure, and 

this could affect the extent to which sediment OC is protective against avermectin toxicity. Or 

maybe dermal exposure may be affected by different epidermal casings which vary across taxa. 
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To summarize, the following investigations are warranted with regards to avermectin sea 

lice chemotherapeutant usage on salmon farms: (1) gaining mechanistic insights into of how 

toxicity modifying factors alter bioavailability; (2) conducting environmental impact assessments, 

characterizing population level effects and gauging the resulting ecological disturbance; (3) using 

more environmental realistic exposure scenarios such as by using site-specific sediment for 

toxicity testing, or using lower concentrations for longer exposure durations; (4) investigating toxic 

thresholds in other species to widen the database, helping in identifying particularly sensitive 

species. There remain many avenues of research for avermectin usage in salmonid aquaculture. 
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Appendix A. 

Characteristic CB TM 

OM (%) <1.0 2.8 

TOC (mg/kg) < 500 4200 

pH 7.3 7.82 

Sand/silt/clay 78/15/7 95/3/2 
 
Table A.1. Summarizing analysis of sediment characteristics for centennial beach (CB; 0-OC) 
sediment and Tofino Mudflats (TM; 1-OC) sediment. OM denotes organic matter (limit of 
detection is 1.0%); TOC denotes total organic carbon (limit of detection is 500 mg/kg). 
Sand/silt/clay is the % of each respective grain size (below are graphs showing the distribution).   

 

 

Figure A.1. Graph showing particle-size distribution graph of centennial beach sediment (0-OC). 

 

Figure A.2. Graph showing particle-size distribution of Tofino Mudflats Sediment (1-OC). 
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E. estuarius 

Group (T-OC) Temperature (oC) pH DO (%) Salinity (ppt) 

0-0 13.43 ± 0.43 7.07 ± 0.08 83.36 ± 1.30 29.27 ± 0.57 

  n=50 n=32 n=50 n=50 

0-0.5 13.44 ± 0.18 6.72 ± 0.15 78.06 ± 3.32 29.11 ± 0.58 

  n=50 n=32 n=50 n=50 

0-1 13.29 ± 0.29 7.22 ± 0.195 73.00 ± 3.72 29.00 ± 0.35 

  n=62 n=56 n=62 n=62 

2-0 9.48 ± 0.13 - 99.00 ± 1.35 30.56 ± 0.83 

  n=12 - n=13 n=24 

2-0.5 11.38 ± 0.36 - 99.86 ± 0.67 29.83 ± 0.42 

  n=55 - n=56 n=56 

2-1 11.82 ± 0.13 - 98.93 ± 1.09 28.58 ± 0.30 

  n=28 - n=28 n=28 

4-0 8.21 ± 0.19 - 93.27 ± 0.94 31.24 ± 0.79 

  n=30 - n=30 n=30 

4-0.5 9.61 ± 0.44 - 94.79 ± 0.44 28.78 ± 0.51 

  n=24 - n=24 n=24 

4-1 - - - - 

     
Table A.2. Mean values for water quality parameter measurements (± 95% confidence intervals) 
for 48-hour single-chemical and combination exposures with E. estuarius. Data is shown for 
each of the nine chemical residence time and OC treatment groups (T-OC). Data from 
measurements before and after exposure are pooled. Dashes refer to missing data. 
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N. virens 

Group (T-OC) Temperature (oC) pH DO Salinity 

0-0 9.41 ± 0.10 7.47 ± 0.14 92.60 ± 0.80 30.12 ± 0.48 

  n=20 n=20 n=20 n=20 

0-0.5 11.43 ± 0.15 - 82.2 ± 1.74 30.02 ± 0.69 

  n=20 - n=20 n=20 

0-1 9.07 ± 0.11 8.07 ± 0.05 88.46 ± 1.97 29.27 ± 0.45 

  n=52 n=52 n=52 n=52 

2-0 8.1* - 100* 30.49 ± 0.56 

  n=2 - n=2 n=14 

2-0.5 9.33 ± 0.15 - 94.63 ± 2.41 28.75 ± 0.34 

  n=16 - n=16 n=16 

2-1 8.65 ± 0.16 - 95.85 ± 1.59 30.24 ± 0.68 

  n=37 - n=26 n=42 

4-0 8.87 ± 0.16 8.06 ± 0.05 89.84 ± 3.87 29.41 ± 0.63 

  n=44 n=44 n=44 n=44 

4-0.5 8.80 ± 0.05 8.07 ± 0.05 91.03 ± 1.21 29.38 ± 0.53 

  n=78 n=52 n=36 n=65 

4-1 8.97 ± 0.09 8.02 ± 0.06 87.75 ± 2.73 29.18 ± 0.84 

 
n=52 n=20 n=52 n=50 

 

Table A.3. Mean values for water quality parameter measurements (± 95% confidence intervals) 
for 10-day single-chemical and combination exposures with N. virens. Data is shown for each of 
the nine chemical residence time and OC treatment groups (T-OC). Data from measurements 
before and after exposure are pooled. Dashes refer to missing data. *95% confidence intervals 
could not be calculated due to insufficient replicates. 
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Group E. estuarius N. virens 

OC group 

T 

(months) Mortality (%) (95 % CIs) Mortality (%) (95 % CIs) 

0 0 3.3 (-2.1-8.8) 0.0 

0.5 0 1.7 (-2.6-6.0) 0.0 

1 0 0.0 0.0 

0 2 0.0 16.7 (-4.8-38.2) 

0.5 2 1.7 (-2.6-6.0) 8.3 (-7.7-24.3) 

1 2 3.3 (-2.1-8.8) 8.3 (-7.7-24.3) 

0 4 8.3 (-5.6-22.3) 0.0 

0.5 4 1.7 (-2.6-6.0) 0.0 

1 4 0.0 0.0 

 

Table A.4. Showing mean control mortality of E. estuarius (n=6) and N. virens (n=12) in each 
organic carbon (OC) and chemical residence time (T) group. OC is unitless (relative scale). 95% 
confidence interval (95CI) of mean mortality are given in brackets. 

 

 

Figure A.3. E. estuarius light-dark assay set-up showing one group of 6 light-dark blocks (next 
to another group of 6, only the corner of one box is shown of the other group of 6 blocks, in the 
top right corner of the image). Two E. estuarius are placed in each light-dark block. 
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Appendix B. 
 

 p-value 

Time-OC EB IVM 

0-0 0.8773 0.0036* 
0-0.5 0.0025* 0.0348* 
0-1 0.0131* 0.0419* 

2-0 <0.0001* 0.0049* 

2-0.5 0.4021 0.4486 
2-1 0.4546 0.0124* 
4-0 0.3887 0.4524 
4-0.5 0.4577 0.7342 
4-1 0.9711 0.608 
   

Table B.1. A list of ANOVA p-values associated with the linear concentration-response fits for 
EB and IVM exposures with E. estuarius for each chemical residence time and OC treatment 
combination (Time-OC) that are shown in Figure 21 and Figure 22. 
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Appendix C.  
 

Supplementary Data Files 

 

Description: 

The accompanying Excel spread sheets contain raw data from toxicity tests with amphipod and 

polychaete test species (Eohaustorius estuarius and Neanthes virens, respectively). These data 

sheets show mortality and sublethal endpoint data. Refer to data sheet files for 

definitions/descriptions of each column heading.  

 

Filenames: 

AmphipodDataMastersheet.xlsx 

PolychaeteDataMastersheet.xlsx 


