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Abstract

This thesis consists of three papers that explore early human organization. In the first paper
I argue that the economic and social structure of early humans would have resulted in an
especially difficult consanguinity problem. In particular, adverse selection in the exogamous
marriage market would have resulted in high levels of consanguinity and resulting fitness
depression. A partial solution to this problem was the evolution of aversion to endogamy,
known as the Westermarck effect, and was essential for the survival of our species. The
second paper (joint with Haiyun Chen) develops a model that explains linguistic diversity
as the cumulative result of strategic incentives faced by linguistic groups. In this model,
autonomous groups interact periodically in games that represent either cooperation, com-
petition, or a lack of interaction. Common language facilitates cooperation such as trade,
whereas language unique to one group affords that group an advantage in competitive inter-
actions. The relative frequency of cooperation and conflict in a region provides incentives for
each group to modify their own language, and therefore leads to changes in linguistic diver-
sity over time. Our model predicts that higher frequency of conflict relative to cooperation
will increase a region’s linguistic diversity. The third paper (joint with Gregory K. Dow and
Clyde G. Reed) investigates the incidence of early warfare among foragers and farmers in
prehistory. Our focus is specifically on conflict over land. Food is produced using inputs of
labor and land, and the probability of victory in a conflict depends on relative group sizes.
The group sizes are determined by individual migration and Malthusian population dynam-
ics. Both factors result in larger populations at better sites, which deters attack. There are
two necessary conditions for warfare: high enough individual mobility costs and large enough
shocks to the relative productivities of the sites. Together, these conditions are sufficient.
In particular, technological or environmental shocks that alter the productivities of sites can
trigger warfare, but only if individual agents do not change sites in response. These results
are consistent with evidence from archaeology and anthropology.

Keywords: Prehistory, Origin of Preferences, Early Institutions
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Chapter 1

Endogamy, Exogamy, Fitness Depression
and the Evolution of Endogamy Aversion
in the Pleistocene
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1.1 Introduction

Mating with close relatives, or repeated mating with medium distance relatives within a small
population, causes genetic problems that result in harmful effects known as fitness depression
(Charlesworth and Charlesworth, 1987; Lacy et al., 1993; Ralls et al., 1988; Charlesworth and
Willis, 2009). To avoid this problem, animals have developed various methods for avoiding
consanguinity, or for reducing its frequency (Pusey and Wolf, 1996). Humans, as well, appear
to have evolved methods for avoiding consanguinity (Van den Berghe, 1983). The mechanism
for this is believed not to be cultural (Van den Berghe, 1983), i.e., it is likely based in our
genetics.

In this paper I argue that the consanguinity problem would have been especially difficult
for early humans, due primarily to our species’ unusual social organization. Specifically, the
combination of monogamy and group living meant that marriage market candidates would
have had excellent information on the quality of their relatives, and poor information on
the quality of potential marriage partners from other groups. In this paper I show that this
social structure can cause inefficiency and possibly breakdown of the exogamous marriage
market, systemic marriage between related individuals, and fitness depression. I then ask
the questions, how did humans overcome this problem? What were the consequences?

Monogamy and group living, where multiple pairs of reproducing adults live in close prox-
imity, are possibly the oldest and most fundamental human institutions.1 This combination
is actually unique among primates, (Benshoof and Thornhill, 1979). Committed sexual and
life partnership between two people was an important innovation as our ancestors became
hunters (Benshoof and Thornhill, 1979). Such an ecological niche requires significant invest-
ment in offspring by the father, an arrangement known as “obligate monogamy” (Kleiman,
1977). The decision of whom to ‘marry’ became critically important for both sexes for the
passing on of genes to future generations, and thus there would have been strong evolution
by natural selection affecting all aspects of the decision problem.

There is very little direct empirical evidence regarding the marriage practices of our
Pleistocene ancestors. Some stylized facts collected from the historical record and from

1Polygamy is also present in most human societies, but it is a relatively small fraction of reproductive
unions (Benshoof and Thornhill, 1979). Polygamous arrangements are similar to monogamous ones in the
key assumptions made in this paper - mate choice is very important, both parents are major contributors
to the survival of children, and several stable unions of persons live together in groups. Many children are
also born from non-monogamous unions, but monogamy is the major human mating system (Benshoof and
Thornhill, 1979).
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modern hunter-gatherer societies form the basis of the model in this paper. This paper draws
on many literatures, but the main one that it contributes to is the evolution of economic
behavior. For an introduction to this literature see Robson (2001). In addition, I will rely on
biological research on genetics and animal behavior, as well as economic models of adverse
selection and signaling.

I begin by collecting some stylized facts from diverse lines of scholarly work regarding the
relevant environment. These include pre-Holocene human economics and social organization,
fitness depression due to inbreeding in general, and consanguinity avoidance in other animals.
I draw some hypotheses from this set of stylized facts. Next, I develop an economic model
of a two-sided matching market with endogamy costs. An asymmetric information problem
results in the collapse or partial collapse of the exogamous market. I develop a principal-agent
model where evolution, or nature, is the principal and individuals are the agents.2 I show
that the evolution of aversion to endogamy would have supported the exogamous marriage
market, alleviating the fitness depression problem to some degree. I provide evidence that
this aversion is still in evidence today, known as the Westermarck Effect (Westermarck,
1921).

The main purpose of this paper is to explain the Westermarck Effect, (Westermarck,
1921), also known as reverse sexual imprinting. Adolescents and adults are not (or much
less) sexually attracted to their childhood intimate associates. Van den Berghe (1983), for
example, found that children ages 2-6 seem to imprint negatively on all of their intimate
associates, even if they are not closely related. In the model I refer to this aversion to
sexual relations with intimate associates, or group mates, as “endogamy aversion” and use
an evolutionary framework to derive its fitness-maximizing level, as well as the corresponding
equilibrium level of fitness depression.

The theoretical model is a discrete time, heterogenous agents model in an evolutionary
setting. Agents, or groups, are heterogenous in their level of fitness depression, and this
fitness depression is persistent over time. Each period has five phases. In the first phase,
groups draw a level of quality from an i.i.d. distribution. This quality is transient, applicable
to the group for only one period. It represents characteristics that tend to be mean-reverting
such as skill, private information regarding resources, and the fit of genetic traits with the
current environment.

2For an overview of this approach see Robson (2002).
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Each group is randomly paired with another group in a marriage market. Candidates
may choose exogamy or endogamy, and exogamy occurs if both parties choose it. Exogamy
reduces both groups’ levels of fitness depression in the subsequent period, whereas endogamy
increases it.

Next, groups produce output. This output can be thought of as children that will form
the next generation of descendant groups. If the adults marry endogamously, this output is a
function of their group’s quality and its degree of fitness depression, which is determined by
the history of the groups endogamous and exogamous matches. If they marry exogamously,
the output is a function of their own quality and the quality of the group they are paired
with, because individuals from that group contribute to group i’s production. All groups
are assumed to be the same size. High output groups are more likely to become two or more
groups, analogous to cell growth, while low output groups are more likely to die out. Next,
groups receive utility payoffs. Finally, the fitness depression of the resulting groups updates,
and the next period begins.

The main results of the model are as follows. If the level of exogamy aversion is too low,
or if the population settles on a bad equilibrium, the level of fitness depression converges to
1 rapidly, and the entire population dies. For mid-range levels of endogamy aversion there
will be a threshold quality value; types above this threshold will choose endogamy, and those
below it choose exogamy. This threshold, and thus the exogamy rate, is increasing in the
level of endogamy aversion. If the level of endogamy aversion is sufficiently high, the entire
population marries exogamously and after sufficient time fitness depression disappears.

Next, I endogenize the level of fitness depression and inbreeding aversion and solve for a
steady state. There exists steady state equilibrium levels of fitness depression and inbreeding
aversion that are robust to invasion from other types. These levels are substantially larger
than zero.

Section 2 reviews the most relevant literature, establishes stylized facts, and conducts a
thought experiment. Section 3 introduces the model. Section 4 establishes results regard-
ing the relationship between inbreeding aversion and marriage market outcomes, and then
endogenizes the inbreeding aversion to establish a steady state. Section 5 concludes.

1.2 Background, Stylized Facts and Thought Experiment

In this section I review relevant literatures and conduct a thought experiment. First, I
review the economic literature on incentives for endogamy vs exogamy, then the literature
on the genetics of consanguinity for sexual organisms, the costs of consanguinity in humans,
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the methods other animals use for avoiding consanguinity, why the consanguinity problem
would have been especially hard for humans, and how humans avoid consanguinity.

There is a small literature in economics on the costs and benefits of exogamy as opposed
to endogamy in small scale societies. Chief among these is Dow et al. (2016), who explain
exogamy levels across societies that vary along a number of dimensions. They posit that the
main benefits of exogamy are a) exogamous couples are more mobile because they can share
knowledge about local environments and access to each other’s kin network, and b) the pool
of potential partners is larger, allowing heterogenous agents to find better matches than they
could in their own community. Using both modeling and empirical techniques, they find that
exogamy rate is an increasing function of the productivity gap between communities and a
decreasing function of community size.

The focus and conclusions of this paper are different from that of Dow et al. (2016)
primarily because I restrict attention to sparsely populated, Pleistocene era mobile foragers,
which are only a small subset of the societies that Dow et al. (2016) consider. The limited
technology and less productive environmental conditions of the Pleistocene result in smaller
community sizes. These communities would therefore have been the most vulnerable to
asymmetric information problems and fitness depression. The mobility of households is less
important because there are fewer or no property rights to land in this context, so social
barriers to accessing land are not a significant issue. If all groups can access all land, exogamy
does not increase access to resources unless the group married into has unusually high human
capital. In this paper the cost of exogamy is in the uncertainty of partner quality, instead
of in isolation from family and familiar territory. Exogamy increases production only if
the potential exogamous partner is of higher quality than the endogamous option, after
accounting for fitness depression.

A second explanation for exogamy vs endogamy rates in the economics literature is risk
aversion and the use of marriage to smooth consumption (Rosenzweig and Stark, 1989;
Rosenzweig, 1988b,a). These authors use longitudinal data from surveys of up to 400 house-
holds in six agricultural villages in rural India during 1975/1976 and 1984-1985. They find
that households with higher profit variance have marriages where the partners come from
locations that are further apart geographically, consistent with a consumption smoothing
story.

Unfortunately, it is difficult to directly study the role that exogamy and endogamy would
have had on fitness depression in Pleistocene-era populations. It is therefore helpful to
examine the biological mechanism that causes inbreeding depression and its occurrence in
non-human populations.
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The offspring of closely related individuals, or closely inbred strains, are generally subject
to reduced survival and fertility. This phenomenon is mainly due to an increase in homozy-
gosity, the frequency of identical pairs of alleles (Charlesworth and Willis, 2009). Recessive
deleterious alleles that are most often masked in outbred populations occur more often in
pairs in inbred populations (Leberg and Firmin, 2008), resulting in infertility, miscarriage,
and illness. There is also evidence for over-dominance - being heterozygotic for a pair of
alleles results in higher fitness than being homozygotic for either one. Intercrossing (out-
breeding) of inbred strains, known as heterosis, produces offspring of increased health and
vigour (Charlesworth and Willis, 2009).

Two related measures of inbreeding are used in the biological literature. The first is
Wright’s coefficient, f , which is the probability for a given individual that the pair of alleles
at any base pair on the DNA sequence are identical by descent. Wright’s coefficient is
also known as the coefficient of inbreeding. If a couple are only related in one way (for
example they share one great grandparent and no others), then their f is half the value of
their R, the more commonly used relatedness coefficient. The advantage of f is that it can
measure complex relationships between individuals, whereas R assumes that apart from the
relationship it measures, a pair is outbred.

The DNA at a loci codes for a specific product which is used in some biological process.
A deleterious allele produces a mildly or severely dysfunctional product. If a high frequency
of the loci contain pairs of alleles that are identical by descent, then there is also a high
frequency of pairs of deleterious alleles. A high percentage of the loci will therefore not
produce the required product and the organism will suffer.

An individual with a high f will, on expectation, have lower fitness and lower fertility.
Genetic disease will be more common, as well as generally less vigour. If she has offspring,
however, these will not be subject to the same challenges, so long as their father is not closely
related to their mother.

There are three related ways for an individual to have a high Wright’s coefficient. One is
if its parents have a high R value but are otherwise unrelated. For example, the parents could
be half siblings (R = 1/4) but otherwise related at the average level of a large population.
A second way is if the parents are related in several ways, but are otherwise unrelated.
For example, the parents could be double first cousins. A third way is if there is a small
population that is sexually isolated for many generations. Over time individuals would
become related in many ways. In this third case the population will also lose functional
alleles due to genetic drift (Leberg and Firmin, 2008), resulting in a higher f value. Some
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alleles become fixed - no population diversity at a given locus - and the population thereby
loses resilience.

An inbred population may succeed in purging their genetic load. That is, they produce
many offspring and those homozygous for the deleterious alleles are less likely to reproduce,
thus reducing the frequency of these alleles in the population. In a successful purge, the
individuals in the population become less and less fit for several generations, and then fitness
increases back to, or close to, initial levels. Many populations, however, fail to purge their
genetic load and either die out or remain at a lower level of fitness (Leberg and Firmin,
2008).

In circumstances where competition for resources with other populations is reasonably
intense, a small endogamous population is likely to die out before they become healthy again.
Purging of minor deleterious alleles works best in populations of several hundred individuals,
and not very well in smaller populations, due to drift and fixation of the alleles (Leberg and
Firmin, 2008). Furthermore, any effects of inbreeding depression due to over-dominance
(cases where a heterozygote has higher fitness than any homozygote) cannot be purged, as
inbreeding and drift causes only the loss of useful alleles. Even if the population survives a
purge, fixation of deleterious alleles will reduce their fitness relative to outbred populations.
At this point, any outbreeding would be beneficial.

The vast majority of our Pleistocene ancestors lived on large continents where competition
for resources with other homo sapiens, hominid species and predators would have been
significant. Group size would typically have been between 6 and 30. For these reasons, in the
model I will assume that endogamy meaningfully reduces fitness at any level of relatedness.

The health costs of a single instance of consanguinity decrease quickly as the f value
becomes smaller. (Helgason et al., 2008) study Icelandic couples that have varying degrees
of relatedness. They find that couples which are third or fourth cousins have the highest
reproduction rate. Third cousins that are otherwise unrelated have an R value of 1

128 , and
fourth cousins 1

512 . Consequently, for third cousins, the probability of an offspring having
alleles identical by descent at any one loci is less than 0.4%. It is unsurprising then that
the offspring of third cousins and fourth cousins are not significantly affected by fitness
depression.

Humans face significant consanguinity costs (Charlesworth and Willis, 2009). Bennett
et al. (2002) collected measures of risk to a child of a first cousin union, relative to the same
statistic for the rest of the population in which the consanguineous unions occurred. One
instance of first cousin marriage results in the following observed increases: risk of major
malformations increased from 2.1% to 4.1%, risk of congenital anomaly from 0.8% to 2.5%,
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risk of child mortality from 6.4% to 9.2% in one population and 7.7% to 8.7% in another;
in a third population (comprised of 38 subpopulations) there was a 4.4% increase, and in
a fourth there was an 8.8% increase of child mortality. McQuillan et al. (2012) found that
children of consanguineous marriages are up to 3 cm shorter than those of parents related
at the average population level. Probability of a stillbirth or infant death is about twice as
high when the parents are consanguineous (Stoltenberg et al., 1999; Kuntla et al., 2013).

It is important to note that socioeconomic factors may be responsible for some of the
increases in risk to children from cousin union, and that these can only partially be controlled
for by comparing unions from within the same population. When taken cumulatively, how-
ever, these health statistics appear to represent a significant biological cost.34

Animals have various methods for avoiding consanguinity. According to Pusey and Wolf
(1996), young are born geographically close to their parents and siblings, so if they were to
mate randomly with any opposite gender individual, there would be a very high chance of
consanguinity. They argue that a common incest avoidance mechanism is for the young to
disperse further than they otherwise would at puberty. Depending on the species the disper-
sal can be primarily females, primarily males or all individuals. If only the males disperse,
for example, when they become sexually mature they would not commonly encounter their
mothers, sisters, and most of their aunts and female cousins.

A second method is extra-pair copulation (Pusey and Wolf, 1996). Females mate with
several males and the fetuses and infants that are unhealthy die, letting the mother con-
centrate her resources on the remaining young. Another method is to have very numerous
offspring and expend few resources on each one. The weaker ones die, thus purging the
genetic load.

Third, some animals have methods for direct recognition of kin so that they can avoid
sexual intercourse with them (Pusey and Wolf, 1996); these methods can involve memory
and avoidance of mother and litter-mates, which reduce the probability of consanguinity but
do not prevent copulation with a father, aunts, cousins, etc.. Some animals with a keen sense
of smell are able to sense directly who is a relative and, as a consequence, avoid mating with
them. Maturation is sometimes repressed in the presence of an opposite sex parent.

3In some societies, there may be non-health related benefits to marrying relatives. These generally fall
under the categories of control of economic resources or increasing potential for altruism.

4If potential partners are sufficiently genetically different, then fitness may start decreasing with decreasing
relatedness. This usually only occurs where two populations of a species have adapted to different ecological
niches to the point where a hybrid no longer has high fitness in either niche, or is considered less attractive
to members of either population, or is less fertile. An example of the latter is the mule, a hybrid of a horse
and donkey, which is not fertile.
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An important aim of this paper is to establish that the consanguinity problem would have
posed a significant problem for our early human ancestors. In the following paragraphs, I
pose the hypothesis that the hunting and broad diet ecological niche / economy and its
impact on the social structure and life history of our early ancestors would have resulted in
a difficult consanguinity problem.

Humans are unusual in that they are the only contemporary primate species to live in
groups containing multiple mated pairs and have monogamy as the major mating system
(Benshoof and Thornhill, 1979).

Early hominids, such as Australopithecus, are thought to have lived in small multi-
male polygynous groups (Benshoof and Thornhill, 1979). During the time of Homo erectus,
brain size increased and hunting became more important (Benshoof and Thornhill, 1979).
Hunting large game and broad spectrum foraging takes great intelligence and much training
and practice (Walker et al., 2002). Human young are born with very large brains and
are completely helpless for many years, taking decades to become productive adults (Gurven
et al., 2006). Unlike most other primates, a single female would be unable to provide an infant
with adequate resources, necessitating significant involvement from her children’s father(s)
(or other adults) in providing sustenance, care, and education. Relative monogamy would
have been beneficial in that it assures relative certainty of paternity. Evolution cannot
sustain a system of significant paternal investment in children without fairly high certainty
of paternity (Kleiman, 1977).

From this set of circumstances the norm of marriage emerged. From the perspective of
evolution, choice of one’s marriage partner was vitally important for both sexes. Monogamy
and extensive nurturing of young does not allow for such mechanisms as extra-pair copulation
as a significant defense against inbreeding.

Due to our ancestral broad diet and hunting niche, human capital, i.e., intelligence,
education and experience, was extremely important. Productivity among Ache hunters, for
example, peaks ten to twenty years after individuals achieve adult body size (Gurven et al.,
2006). Hunting productivity also has high variance. Kaplan et al. (1985), for example, found
as much as a two-fold difference in productivity between the best and worst hunters. While
the members of any hunting species likely vary in their level of skill, due to differences in size,
muscle mass, and historical injuries, these traits are easily observable in a way that human
capital is not. This unobservability would compound the asymmetric information problem
in the human marriage market.

The methods of hunting that humans adopted were not dependent on a keen sense of
smell. It would have been difficult for the relatively undeveloped olfactory system to gain

9



the ability to distinguish genetic relatives from non-relatives. The identity of siblings, aunts,
cousins, etc., would be somewhat observable from direct observation and verbal communi-
cation, but not completely so. Potential Wright’s coefficient would be difficult to predict
because an individual can not know directly how long and to what degree the group as
a whole has been endogamous, and what the consequences are likely to be of further en-
dogamy. In any case, degree of relatedness is not directly observable to humans, apart from
mother-child relatedness.

Relative to many later human societies, early human society had few non-genetic incen-
tives for exogamy. Low resource density meant low population density and relatively open
access to land. Therefore, it was not necessary to marry into another group in order to
reduce risk by gaining access to their resources.5 There was likely little or no warfare (Dow
et al., 2017). Therefore, exogamous marriages for the purpose of political alliance - to help
with offense, defence, or to establish peace, would also have been relatively unimportant.

There are significant advantages to humans of living with relatives, foremost being that
evolution can support much higher levels of cooperation between relatives. Sharing of food,
assisting with child-rearing, and cooperation on hunts were all important aspects of the early
human economy and are more feasible with high within-group relatedness. Considering many
such factors, there may be an optimal level of relatedness for spouses, when taking into ac-
count co-operative and other possible benefits of marrying a relative. These would, however,
only compound the fitness depression problem and enhance the evolutionary importance of
a preference for endogamy aversion. In general for humans, the work of both sexes benefits
from living near same-gender close relatives, so a system of female or male dispersal would
be costly. In practice however many societies are patrilocal or matrilocal, meaning that
when marriage takes place one sex tends to remain with their group while the other changes
groups.

A tendency for both sexes to remain with one’s natal group would result in most potential
endogamous marriage partners having a high Wright’s coefficient, relative to the average of
the population at large. They would likely be aunts/uncles/nieces/nephews or first cousins.
This is in contrast to our closest relatives; chimpanzees, bonobos, and gorillas, where in-
dividuals also live in social groups but much of the population disperses to other groups
at puberty (Van Vuren and Isbell, 1996), for the most part prior to engaging in wooing or
competition for mates.

5Having said this, land ownership also can bring incentives for endogamy due to the efforts of elites to
keep the control of land concentrated within a small upper class. Evidence for these efforts is apparent even
in prehistoric times (Alt et al., 2013).
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The mechanism for human consanguinity avoidance occurs during childhood. Van den
Berghe (1983) finds that 2-6 year old humans seem to negatively imprint on their intimate
associates. Wolf (1995) studied sim-pua marriages, where the future bride is adopted by the
groom’s family and they are raised together, and found that intimate childhood association in
the first 30 months of life inhibits later sexual attraction. He suggests that "the attachment-
caregiving complex and the inbreeding avoidance complex coevolved" in primates.6

Schneider and Hendrix (2000) suggest, that olfaction (smelling) is likely involved in the
reverse sexual imprinting mechanism. People have some ability to identify relatives and
acquaintances by smell and this is stronger for opposite gender relatives (Weisfeld et al.,
2003). Humans, however, have notoriously poor senses of smell relative to other mammals
and would be unlikely to identify a close relative by smell if that person was previously
unknown to them.

Pleistocene human populations were very low. In Europe, for example, (Tallavaara et al.,
2015) estimate that between 30,000 years ago and 13,000 years ago population density in
the habitable area varied between 2.8 and 5.1 persons per 100 km2.

In populations with less than one person per square mile (2.59 km2), the dominant form
of organization is the Family-Level group (Johnson and Earle, 2000). Membership of these
groups and camps is more fluid and flexible than groups as they are modeled in this paper.
They can be as small as 5-8 closely related persons, and aggregate into as many as 25-50 in
order to harvest special resources at certain times of year (Johnson and Earle, 2000). Much
of the time, the population of a group would be somewhere in between, composed of several
related nuclear families.

To develop intuition, consider the following thought experiment, comparing the marriage
situation in a mobile society organized at the family/camp level with that of a sedentary
village of one thousand people.

In both societies, children and adolescents live with their nuclear family. In the society
organized at the family/camp level, nuclear families live for the most part on a home range
(Johnson and Earle, 2000). They are sometimes alone, sometimes assembled with one or
more closely related nuclear families, who live on ranges close by or overlapping. Once or
twice a year, all the people in the area assemble into a group of as many as 50 people.

Children of ages 2-6 years old would become intimate with all of their first cousins, aunts,
uncles, and probably first cousins once-removed. All of these people would have significant

6As it is a proxy for genetic relatedness, it seems likely that this same mechanism may also be at work in
some forms of altruistic behavior.

11



fitness depression if they produced children together later, and thus the Westermark effect,
reducing later sexual attraction to these people, is evolutionarily justified. When the child
later becomes a marriage market candidate, however, the situation would become problem-
atic. Perhaps 1/5 of the people in the larger group, 10 people, are on the marriage market
at any one time. Only 5 of these are of the appropriate gender for our individual, and most
are likely first cousins or aunt/uncles, with whom the individual was intimately associated
with as a child. They are almost all likely to be related with an f of at least 1/16, and thus
subject to significant fitness depression upon sexual union.

Consider now that our individual encounters a marriage market candidate in a group
from a neighbouring home range which is not at all related to her family. Setting aside
sexually selected traits that signal quality, the quality of this person is not known at all to
our individual. She might want her nuclear family to go and live with his nuclear family
for 6 months to get to know each other, but this is very costly. During this time, one
of the groups would be on unfamiliar territory, and their foraging productivity would be
reduced. They would be living with unrelated people, and thus unable to benefit from the
cooperation benefits that come with relatedness. They may speak a different language, and
misunderstandings might arise. The resources available to support 16 people at a time only
last a few weeks. The two young people might reproduce before quality had been determined
and a ceremony had taken place. In sum, there is considerable pressure to come to a decision
quickly, before quality is completely observed.

Next, consider a community of 1000 sedentary people. A young child spends a great deal
of time with his extended family, becoming intimate with all of his cousins, aunts, uncles,
perhaps 20-30 people. He plays regularly with all the local children, getting to personally
know his entire ten year cohort of perhaps 200 people. He learns which families never have
enough to eat, which are violent, sick, well fed, highly respected etc. He learns which children
are strong, clever, kind, reliable. When he becomes a marriage market candidate, he is not
attracted to perhaps 10 intimate associates (many of them relatives) of the opposite sex
in his cohort, but there are still 90 possible mates. Signaling of quality is not particularly
necessary because he knows their quality directly. Of these he tries to choose the best one
possible. With perfect information, the market clears from the top and in the end he settles
for someone that is unrelated to him and approximately his own quality. They are efficiently
matched as neither can do better on this market, and their biological relationship is distant
enough that their children are not afflicted by inbreeding depression. Furthermore, neither
family had to make sacrifices to gain information.
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1.3 Model

1.3.1 Summary

The model is a discrete time, heterogenous agents model in an evolutionary setting. Agents,
or groups, are heterogenous in two variables: their level of fitness depression and their
environmental or cultural quality. Fitness depression is persistent over time whereas quality
is not. All groups in the population are endowed with a common level of endogamy aversion.

Each period has five phases. In the first phase, groups draw a level of quality from an
i.i.d. distribution. This quality is environmental or cultural, but not genetic. In the second
phase, each group is randomly paired with another group in a marriage market. This pairing
provides each group with an opportunity to marry exogamously. In the third phase, groups
produce output as a function of: their quality; their fitness depression; whether they matched
with another group; and, if they matched with another group, the other group’s quality. High
output groups are more likely to succeed in reproducing into two or more groups, while low
output groups are more likely to die. In the fourth phase, groups receive payoffs. Finally,
the level of fitness depression of the resulting groups updates. If there was exogamy, both
groups’ levels of fitness depression is reduced for the subsequent period, whereas if there was
endogamy it is increased.

The main results of the model concern the the exogamy rate, which individuals will be
exogamous, and how these depend on inbreeding preferences. The results can be divided
into four parts.

First, I show that the population growth rate is increasing in the degree of exogamy. This
is a fairly simple result that follows immediately from the production function, in which the
product of endogamous marriages is depressed and that of exogamous ones are not. As a
consequence, total exogamy maximizes the growth rate of the population.

Second, I examine the case of a population with a fixed level of endogamy aversion,
common to all its members. I show that in any BNE, agents will follow a cutoff strategy,
with types above the cutoff marrying endogamously and types below the cutoff marrying
exogamously. Expected utility from remaining home is increasing in one’s quality, whereas
expected utility on the exogamous market is constant in one’s quality. Thus, if it is optimal
for a certain type to prefer exogamy, it is also optimal for any lower type to prefer it as well.
In a PBNE, the cutoff will be the same for all groups. If inbreeding aversion is too low, the
cutoff and the exogamy rate will be zero, and the population will die out. The intuition here
is that of Akerlof’s market for lemons (Akerlof, 1970), in which the market unravels from
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the top. The type space is continuous, allowing the market to unravel completely until all
individuals expect that anyone willing to marry exogamously has quality zero.

After making some additional assumptions on the type distribution, F (θ), I show that
if inbreeding aversion is below 1/4, the exogamous marriage market collapses and the popu-
lation dies out. The inbreeding aversion in this case is not strong enough to overcome the
asymmetric information problem, not even in part. If aversion is above 1/2, exogamy will be
universal. In this case, every individual has so much aversion to endogamy that she prefers
exogamy, even if the partner has quality zero.

If inbreeding aversion is in an intermediate range, the exogamy cutoff (and therefore rate)
is increasing in the degree of endogamy aversion. There is still substantial inefficiency due to
asymmetric information, but the solution is interior. Higher levels of aversion to inbreeding
mean that a higher quality type is indifferent between endogamy and exogamy, and thus a
larger fraction of the population marries exogamously.

Third, I allow for invading groups with different levels of inbreeding aversion. I show
that there is a unique equilibrium with positive exogamy that is robust to invaders. As
the solution depends on the specific functional form of the distribution of types, no explicit
closed-form solution exists, but it is still possible to describe some characteristics of the
equilibrium.

1.3.2 Setup

Initial Conditions

Time is discrete and indexed by t. In period 0, there exists a measure of groups, indexed
by i ∈ [0, 1]. Each group has size s > 2, of which two are fertile in any period, and is a
measure 0 share of the total population. Each group is endowed with a initial latent level
of fitness depression, δi0 ∈ {0, ε, 2ε ..., 1} (where ε−1 = D ∈ N), which is unobservable and
common across all group members.7 It represents the percentage of alleles in the group that
are identical by descent, and its value is determined by the previous instances of exogamy
and endogamy of the group, as will be specified in section 1.3.2. Although groups do not
know their own level of fitness depression, they are endowed by nature with a degree of
endogamy aversion λ ∈ [0, 1], which is common to all groups and common knowledge. Each
period can be divided into five phases.

7None of the results presented below depend directly on the size of the group, s. However, it seems
reasonable to believe that s and ε are linked; the smaller the group the larger the impact of one instance of
endogamy on fitness depression.
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Draw Quality

In the first phase, each group draws and observes a level of quality, θit ∈ R+, common
to all group members. An individual’s quality can be interpreted as the quantity of food
they can produce. θit ∼ F (·) is an absolutely continuous random variable, and draws are
independent with respect to previous quality draws and the full history of levels of fitness
depression. Thus, a high θit is a transitory advantage for group i.

A group with a high θit is not fitter in the sense that their genes are absolutely better,
nor that the genes are expected to dominate the population over time. Instead, they have
a transitory advantage. This could be because they temporarily accumulated more human
capital, either technological skill or information regarding resources; were lucky in terms of
the amount of food that they were able to collect recently and so are healthier; or their
genes are better adapted to environmental conditions that are not expected to persist (for
example, it is a cold decade and they are shorter and stockier than the average group).

Marriage

In the second phase, groups have the opportunity to participate in a marriage market. In
this market, each group i is randomly paired with another group j. Groups observe neither
the quality nor the level of fitness depression of the other group. yit ∈ {0, 1} represents group
i’s decision on whether to offer to exchange one member from group i marrying exogamously
into group j while one member of group j marries exogamously into group i. Consequently,
exogamous marriage does not immediately change the size of either group.While groups may
have more than two members, I assume that within a given period, only two people from
that group (those who were on the marriage market that period) produce offspring. Other
group members are assumed to be too young, too old, infertile, repressing fertility etc.

Exogamous marriage, mit = mjt = 1, occurs only if both groups agree. mit = yityjt.8 If
one or both groups do not agree, all candidates marry endogamously.

8As a result of the payoffs introduced in the next paragraph, if one marriage candidate from group i
wishes to marry exogamously so will the other one, and if group j accepts one the other will be accepted as
well. Assuming one couple will reside with i and the other with j, the marriage phase will not change the
size of either group.
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Production

In the third phase children, and thereby daughter groups, are produced, in a process analo-
gous to how a cell grows and then splits into daughter cells.9 The expected number of groups
in period t+ 1 descending from group i in period t is10:

πit =

θit + θjt if mit = 1

(θit + θit) (1− δit) otherwise
(1.1)

Thus, there are two inputs in the production of daughter groups: the summation of
parental qualities (food produced) and the genetic compatibility of the parents. The ex-
pected number of daughter groups is equal to one’s own quality plus one’s partner’s quality,
depreciated by the level of fitness depression, δit, if and only if the marriage is endogamous.
The quality of each parent is important because it is represents their ability to produce food,
with which to feed themselves and their children. If exogamy occurs, production is increas-
ing in the quality of the partner group j because an individual from that group contributes
to the success of the next generation, and thus the reproduction of the group into multiple
groups, or of extinction.

The fitness depression coefficient represents the death of some of generation t’s children
due to genetic challenges, either in utero or as children. Children that do not survive cannot
contribute to the formation of daughter groups. The period t children that survive to be the
adults in period t+ 1 are those that do not have significant genetic challenges, as evidenced
by their survival to adulthood. The higher δit is, the fewer the surviving number of children
that are available to form daughter groups.

The expected number of daughter groups is continuous, but the realization is an integer.
This is similar to how expected number of children is commonly expressed as a continuous
variable, but its realization is an integer. There is stochasticity in the process by which
daughter groups are produced, but the expectation is assumed to be increasing linearly in
parental quality so that the distribution of this variable is adequately described by its mean.
Although groups are all the same size, successful groups are more likely to have many healthy
children and thereby split and multiply into several groups, and unsuccessful groups face a

9In this way, characteristics that increase group fitness can still come to dominate the population over
time.

10Suppose the total number of offspring is s times the expression in equation (1.1). Then the number of
daughter groups will be πit, provided that the parents die before the next period. If instead, the parents live
forever, the number of offspring per unit of θit implied by equation (1.1) is s− 1.
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higher probability of dying out. I do not explicitly model this process except to specify the
expected number of period t+ 1 descendent groups.1112

If endogamy occurs, production of food is heavily dependent on the quality of group i,
and the fitness depression factor δit associated with group i. Fitness depression affects the
expected number of daughter groups because it affects the number of offspring that survive
to become adults and form new groups. The survivors are assumed not to have any lingering
genetic impairment, just the potential for their children to have fitness depression problems
if they marry endogamously (but not exogamously). These payoffs are consistent with the
empirical finding (discussed in section 2) that a single instance of heterosis (exogamy) will
fully restore vigour in the offspring.13 They are also consistent with the finding that a
single instance of endogamy between related persons will result in fitness depression, which
is increasing in the degree of relatedness of the parents.

The assumption of a strong positive correlation between one’s own quality, θit and that
of an endogamous partner is made because the life histories of both persons would be very
similar. They have experienced similar history, technological exposure and environmental
knowledge. Their genes are similar, rendering them a similar fit to the current environment.
Strong sharing norms in hunter gatherer societies (Kaplan et al., 1985, 2012) ensure that
they have been eating approximately equally. Remaining in one’s natal group at marriage is
also remaining in community with a group of individuals whose quality is highly correlated
with one’s own quality.

11One could precisely specify how groups split/die out as follows. If the expected number of daughter
groups is πit, the realized number of daughter groups is bπitc (floor(πit)) with probability (1− (πit − bπitc)),
and bπitc+ 1 with probability (πit − bπitc), so that bπitc (1− (πit − bπitc)) + (bπitc+ 1) (πit − bπitc) =
bπitc − πit bπitc+ bπitc2 + πit bπitc − bπitc2 + πit − bπitc = πit.
However, for all results in this paper only the expected number of daughter groups is relevant, so other

ways of allocating realized numbers of daughter groups to parents could be allowed provided they resulted
in the same number of groups on expectation.

12In principle, I could create notation to explicitly track the level of fitness depression of each group i,
the parents of group i, the period in which i split from its parent, and whether i is still alive at period t.
However, the model has only one state variable for each group, δit, and so I only need to track the fraction
of the population at each of a finite number of levels of fitness depression. Consequently, extending the
notation would involve considerable work without providing any additional benefit.

13Production resulting from exogamy is not subject to fitness depression because the minimum possible
number of alleles will be identical by descent, and therefore the offspring will be subject only to the min-
imum level of genetic disease possible in the population. There will still be exogamous offspring that are
homozygotic for deleterious alleles, but for the population in question, these are minimized with a single
instance of exogamy. Furthermore, any potential benefits of heterosis will be fully realized.
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There is a stark difference in the relevance of fitness depression for endogamous and
exogamous marriages, which captures the fitness cost of homozygosity. An individual from
a highly-inbred group will produce fewer offspring when matched to a member of their
own group, because of the relatively high probability of also matching recessive genes for
deleterious traits. However, when matched with a member of another group (in the model,
a randomly drawn member of the population), the probability of sharing recessive traits
reverts to the lowest possible level.

Surviving to adulthood is a process that screens for major genetic problems in any partic-
ular individual, but not for potential problems in endogamous reproduction. For this reason,
the fitness depression coefficient is assumed not to apply directly to one’s own quality, only
to production of offspring if one is endogamous.

(1.1) can equivalently be expressed as:

πit = mit (θit + θjt) + 2 (1−mit) (1− δit) θit (1.2)

Payoffs:

In the fourth phase, groups receive utility payoffs. Payoffs cannot exactly match the level
of production of daughter groups because the group’s level of fitness depression, δit is un-
observable and varies over time.14 To address this, I assume that nature assigns a level of
inbreeding aversion, λ to the population.

Group i’s payoff can be written as:

Uit =

θit + θjt if mit = 1

2 (1− λ) θit otherwise
(1.3)

Uit = mit (θit + θjt) + 2 (1−mit) (1− λ) θit (1.4)

Where λ is the level of consanguinity or inbreeding aversion, common to all groups in
the population. Notice that the utility function is very close to the production function,
differing only by having the variable λ instead of δit. Groups cannot observe the level of
δit, and individuals cannot be expected to understand the genetic mechanism underlying the

14This may seem like a strong assumption, but I will show below that nature can endow individuals
with a level of endogamy aversion such that they behave “as if” they approximately understand the impact
of endogamy on fitness depression. Practically speaking, it seems unlikely that early humans had a deep
understanding of the mechanics of fitness depression, and even if they did it would be difficult for them to
accurately predict the degree of harm it would cause in the case of any particular endogamous match.
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impact that endogamy will have on their offspring, and their descendants more generally.
Nature endows individuals with aversion to partnering with their group members. The level
of aversion would evolve to be a proxy for the cost of partnering with a person that is likely
a relative.

There is no conflict of interest between individual marriage candidates and their groups.
In what follows I refer to the group as the the decision making agent.

Law of Motion:

In the fifth phase, the fitness depression of groups updates, and the period ends. At each
time t, the degree of fitness depression in each period is a discrete state variable. δit ∈
{0, ε, 2ε, ..., 1}, where ε = D−1 for some D ∈ N. Furthermore, δit evolves as follows:

δit+1 =



1 if mit = 0 and δit ≥ 1− ε

δit + ε if mit = 0 and δit < 1− ε

δit − ε if mit = 1 and δit ≥ ε

0 if mit = 1 and δit < ε

(1.5)

Exogamy decreases the level of fitness depression of the group, while endogamy increases
it. This definition normalizes the minimum level of fitness depression to 0.15 Fitness de-
pression also cannot reasonably be greater than one. To see this, suppose δit = 1 and i

marries endogamously in period t. By (1.5), i’s expected number of daughter groups is
πit = (θit + θit) (1− 1) = 0, which means that the group dies out almost surely. If δit = 1− ε
however, and group i marries endogamously, the group’s expected offspring is (θit + θit) ε,
which is positive and therefore they have a positive probability of producing a daughter
group.

Daughter groups inherit their parent groups’ δit, plus or minus ε depending on their
marriage market outcome in period t.16 In subsequent periods, sister daughter groups’ levels
of fitness depression will diverge as they face different outcomes on the marriage market.

15One interpretion of this minimal level of fitness depression is that it occurs where group i already have
the lowest possible frequency of pairs of alleles that are identical by descent, at least in the population, and
therefore cannot lower this frequency by further exogamy. This is discussed in more detail in section 2

16If there is endogamy, this inheritance is straightforward. If there is exogamy, I assume that one of i’s
candidates will go to group j and one of j’s will go to group i. To simplify the model, we assume that group
i passes on its δit, plus or minus epsilon, to its daughter groups, despite the presence of a member of group
j.
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Denote the period t distribution of fitness depression coefficients by δit ∼ Ht (·). In each
period, this distribution depends on λ, the distribution of quality, F (θ), and the initial
distribution of fitness depression in the population, H0 (·). In later sections when we intro-
duce the principal-agent metaphor, we assume Nature observes a stable long-run equilibrium
population distribution of inbreeding depression coefficients, Hλ (·) = limt→∞Ht (·), but not
an out of equilibrium period t distribution, Ht (·), or the individual realizations of fitness
depression, δit.
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1.4 Results

1.4.1 Population-Maximizing Growth:

I first show a minor result regarding the overall higher productivity of exogamy relative to
endogamy. It follows almost directly from the production function defined in equation (1.2).

Proposition 1.1. The growth rate of the population is weakly increasing in the amount of
exogamy.

Proof. For this proof, I define that the amount of exogamy has increased from one state to
another if a) all the groups that were marrying exogamously in the first state continue to do
so in the second state, and b) a positive measure of groups that were marrying endogamously
in the first state switch to exogamy in the second state.

Consider any two groups that are paired on the marriage market, i and j. Obtaining πit
and πjt from equation (1.2), and averaging, obtains the two groups’ average growth rate:

πit + πjt
2 =

θit + θjt if mit = 1

(1− δit) θit + (1− δjt) θjt otherwise

The first term is the joint expected offspring from exogamy, while the second term is the
joint expected offspring from endogamy. Comparing these, exogamy results in weakly higher
growth if:

θit + θjt ≥ (1− δit) θit + (1− δjt) θjt

Rearranging, I get:

δitθit + δjtθjt ≥ 0 (1.6)

Exogamy therefore gives a weakly higher growth rate for any pair of groups. A positive
measure of groups switching from endogamy to exogamy, (and a measure zero switching from
exogamy to endogamy), will therefore give a weakly higher population growth rate.17

17It is possible to prove a stronger version of the above result; that the inequality holds strictly in most
cases. Clearly, if both groups have zero quality, θit = θjt = 0, equation (1.6) is satisfied with equality.
However, this expression holds only for a measure zero fraction of groups. If both θit > 0 and θjt > 0 we can
apply the fact that δit and θit are independent to sum the above equation over all possible levels of fitness
depression, and obtain:

δt (θit + θjt) ≥ 0
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Here, and in the rest of the paper, I restrict my attention to strategies that do not depend
on δt−1 or t.

1.4.2 Inbreeding Aversion and the Exogamy Cutoff

In this subsection I take the population level of endogamy aversion, λ, to be exogenous and
establish the PBNE of marriage choices for different ranges of λ. In subsection (1.4.4), the
level of endogamy aversion will be endogenized.

In principle, the strategy space for this game is quite large. Each type θ ∈ R+ could offer
to marry exogamously with any probability between zero and one. Together, the next two
Lemmas show that, under reasonably general conditions, I need only consider a tiny subset
of the possible strategies. Specifically, each group will play a strategy defined by a cutoff
that is common across groups, where types above the cutoff choose endogamy, while those
below it choose exogamy. In the results in this section, I make reference to the following
assumption:

Assumption 1. The support of the distribution of θ is an interval with inf θ ≥ 0

Lemma (1.1) shows that all groups will play a cutoff strategy, and Lemma (1.2) shows
that the cutoff is the same for all groups.

Lemma 1.1. For almost all combinations of λ ∈ [0, 1] and beliefs over the quality distribution
of marriage market participants for each group, Git (θ), a BNE requires agents to follow a
cutoff strategy θ̄it ∈ R+. If i’s type is realized below the cutoff i will prefer exogamy; if above,
i will prefer endogamy.

Suppose that after observing its beliefs over the distribution of groups for which mjt = 1,
Git (θ), group i chooses a cutoff type θ̄it. To prove the Lemma, I need to show there exists
a cutoff type such that after θit is realized, group i strictly prefers exogamy if θit < θ̄it and
strictly prefers endogamy if θit > θ̄it.

Proof. Let i′s belief about the distribution of groups agreeing to marry exogamously in
period t be Git (θ). Then we can integrate over group i’s beliefs in the types willing to marry
exogamously, Git (θjt) to get the expected utility of exogamy. Group i prefers exogamy iff:

Therefore, exogamy results in strictly faster growth unless the population has zero fitness depression. The
only way fitness depression could be zero on average is if all groups married exogamously in the previous
period.
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θit +
ˆ ∞

0
θjtdGit (θjt) > 2 (1− λ) θit

Collecting terms, I get:

∞̂

0

θdGit (θ) > (1− 2λ) θit (1.7)

If λ > 1/2 , equation (1.7) holds regardless of beliefs and type (if λ = 1/2, this holds
regardless of type provided

´∞
0 θdGit (θ) > 0). That is, exogamy is always preferred, which

can be represented by a cutoff of ∞.
If 0 < λ ≤ 1/2, the left-hand side is constant in θit whereas the right-hand side is increasing

on the domain from 0 to ∞, and so a cutoff type must exist (although it may be 0). The
sole exception is if λ = 1/2 and agent i believes only types with quality 0 will participate in
the market.18

This result establishes that, if inbreeding aversion is sufficiently high, everyone will choose
exogamy. For moderate to low levels of inbreeding aversion, high types will choose endogamy
and low types will choose exogamy. This is somewhat counterintuitive to the modern ex-
perience, where people who are successful academically or in business tend to travel farther
from their hometowns for school and work and thereby encounter and marry spouses from
further away.

The next result establishes that the cutoff will be at the same quality level for all groups,
and characterizes equilibrium threshold values for each value of inbreeding aversion. It does
not, however, rule out multiple equilibria. It also does not guarantee the existence of any
equilibrium with positive levels of exogamy. The questions of existence and uniqueness will
be addressed later by Proposition 1.3.

Lemma 1.2. For any λ ∈ [0, 1], a PBNE requires groups to follow a common cutoff strategy,
θ̄t, in each period. Types below the cutoff prefer exogamy while types above prefer endogamy.

18In this case, the agent would be indifferent between exogamy and endogamy regardless of type, so any
strategy is supported. However, even this special case is not a PBNE, and restricting the agent to cutoff
strategies would not reduce their expected utility.
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Such a cutoff satisfies:

θ̄t ∈



{
0, x : (1− 2λ)−1 1

F (x)

´ x
0 θdF (θ) = x

}
if λ < 1

2

{0,∞} if λ = 1
2

{∞} otherwise

{0,∞} (1.8)

Proof. Lemma 1.1 shows that restricting the set of strategies to cutoff strategies does not
restrict the set of BNE, and therefore also does not restrict the set of PBNE. Similarly to
Lemma (1.1), group i′s problem can be expressed as “choose exogamy if and only if”:

θit +
ˆ ∞

0
θjtdGit (θjt) > 2 (1− λ) θit (1.9)

The left-hand side is the utility from exogamy, integrated over the distribution of types
who choose to enter the marriage market, while the right-hand side is the utility from en-
dogamy, which does not depend on the type distribution. Next, restricting the solution
set to PBNEs, all agents must hold the same, correct beliefs about the distribution willing
to marry exogamously. Therefore, we can replace Git (θ) in equation (1.7) with Gt (θ), all
groups’ common belief of the distribution of quality for groups willing to marry exogamously.
Agents prefer exogamy if and only if:

ˆ ∞
0

θjtdGt (θjt) > θit (1− 2λ) (1.10)

If λ ≥ 1/2, there is an equilibrium with θ̄it on the boundary at∞. In this case
´∞

0 θdGt (θ) =
E [θ], and the inequality in equation (1.9) holds strictly. From the perspective of group i

when λ > 1/2, even if the expected value of θjt is zero, the group still receives a payoff of θit on
the exogamous market, which is greater than the endogamous payoff of 2 (1− λ) θit, which
is strictly less than θit. Thus, even if one’s exogamous option is completely unproductive, if
inbreeding aversion is sufficiently high, it is still preferable to marry exogamously. 19

If λ ≤ 1/2, there is a boundary equilibrium where θ̄it = 0 and thus the left-hand side of
equation 1.10 is zero. Since λ < 1/2, the right-hand side is strictly positive, so endogamy is
strictly preferred. If λ = 1/2, then the right-hand side is zero also. If groups believe that
no groups will offer to marry exogamously or only those that have zero quality, all groups

19It may appear that θ̄it = 0 is an equilibrium even if λ > 1/2, because if no other group would be willing
to match, choosing a threshold of 0 does not make a group worse off. This would be the case if groups chose
their thresholds before they drew types. However, groups only behave “as if” they prespecify thresholds; by
assumption, they cannot do this and so cannot commit to strategies that are not subgame perfect.
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will be indifferent to exogamous vs endogamous marriage. However, in both of these perfect
Bayesian Nash equilibria, all groups play the same cutoff.20

This equilibrium represents a complete collapse of the exogamous marriage market. If
this were to occur it would be disastrous, especially if beliefs about the quality of individuals
willing to marry exogamously were persistent across periods.

Finally, if λ < 1/2, there may be interior equilibria where θ̄ satisfies equation (1.10) at
equality, i.e., x = (1− 2λ)−1 1

F (x)

´ x
0 θdF (θ). In these equilibria, agents with quality θ̄ are

indifferent between endogamy and exogamy, but these groups are a measure 0 share of the
population.

Population Collapse:

The next preliminary result establishes that if there is no inbreeding aversion or if it is too
low, endogamy will happen with certainty every period. Asymmetric information causes
the market to unravel completely. Later, Proposition 1.3 will show that with additional
assumptions on the functional form, f (θ), the market unravels and there is no exogamy for
all λ < 1

4 , and therefore that inbreeding aversion must be substantial to avoid this population
collapse.

Proposition 1.2. Without endogamy aversion (i.e., λ = 0), the unique PBNE is for all
individuals to marry endogamously. The population then dies out within D+1 periods.

Proof. From equation (1.10), plugging λ = 0 into the right side, and settingGt (θ) =
´ θ̄
0 θdF (θ)
F(θ̄) ,

agents marry exogamously iff:

´ θ̄
0 θdF (θ)
F
(
θ̄
) > θ̄

But this cannot be true for any θ̄t > 0 because all absolutely continuous random variables
with finite expectation have a mean that is strictly less than their maximum.

The second part of the proposition follows directly from equation (1.5). Complete en-
dogamy implies mit = 0 ∀ i, t. This, and equation (1.5) imply δit = min {δit−1 + ε, 1}.
Working this backwards, I get:

20In these equilibria, it is possible for a measure zero set of agents to play some other cutoffs, subject to
some conditions on the distribution of groups who do so. In what follows I ignore these equilibria because
the population growth rate is unaffected.
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δiD = min {δi0 +Dε, 1} = min {δi0 + 1, 1} = 1

After D periods, all surviving groups (those with δi0 = 0) will be completely inbred. Any
groups still existing at time D will again marry endogamously. Because a completely inbred,
endogamously-marrying, group dies with probability 1, these remaining groups also die.

Corollary 1.1. If λ < 1/2 and all groups, every period, believe that only types of quality zero
will choose exogamy, all groups choose endogamy and the population dies out within D+1
periods.

Proof. Follows directly from equations (1.8) and (1.5).

To rule out the disastrous equilibria and focus attention on a viable one whenever it
exists, I make the following definition and assumption:

Definition 1.1. Let κ (λ) := max
{
θ̄ (λ)

}
where θ̄ (λ) is a PBNE corresponding to a given

λ.

Assumption 2. For a given λ, a population will always play the equilibrium cutoff that
maximizes the population growth rate. By Proposition 1.1 this is the equilibrium with the
highest supportable cutoff, κ (λ).

For some distributions and values of endogamy aversion, multiple interior equilibria exist.
From now on, I focus on the highest possible cutoff type, κ (λ), that can be sustained for
a given level of endogamy aversion, λ. This focus is motivated by an appeal to a weak
form of natural selection at the population level: if there were multiple distinct populations
endowed with endogamy aversion λ, the population that coordinated on the κ (λ) cutoff
would be less inbred in the long-run, and would therefore grow faster over time, replacing
other populations.

In order to rule out multiple interior equilibria, it is necessary to make an assumption on
the quality distribution:

Assumption 3. Let R = 1
θ̄F(θ̄)

´ θ̄
0 θdF (θ). The quality distribution F (θ) satisfies the

following property:

dR

dθ̄
< 0 (1.11)
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i.e.

f
(
θ̄
)
F
(
θ̄
)
θ̄2 −

[
F
(
θ̄
)

+ θ̄f
(
θ̄
)] θ̄ˆ

0

θdF (θ) < 0

As I will show in Proposition 1.3, this assumption insures that higher levels of inbreeding
aversion do in fact lead to more exogamy and less fitness depression. i.e., that dκ(λ)

dλ
> 0.

Without it the problem is less tractable.
One final assumption:

Assumption 4. F (θ) is concave. i.e. f ′ (θ) ≤ 0.

Lemma 1.3. Any i. Uniform distribution, ii. Pareto Distribution, or iii. Exponential
distribution satisfies assumptions 4 and 3, i.e. dR

dθ̄
< 0, where R = 1

θ̄F(θ̄)
´ θ̄

0 θdF (θ)
substituting x for θ,

Proof. For the three cases:
i. Consider a uniform quality distribution, F (x) = x−a

b−a on [a, b]. f (x) = 1
b−a . In this

case, R = 1
θ̄F(θ̄)

´ θ̄
0 θdF (θ) = 1

2 + a
2x , which is decreasing in x on [a, b].

ii. Consider the Pareto Distribution F (x) = 1 − x−β for x ≥ 1 and β > 1. Hence
f (x) = βx−β−1. 1

θ̄F(θ̄)
´ θ̄

0 θdF (θ) is then 1
x(1−x−β)

´ x
1 xβx

−β−1dx. Integrating, it becomes
β

x(1−x−β)
(

1−x1−β

β−1

)
. This function is decreasing in x (for all x > 1) if (β − 1)x1−β−1+x1−β−

(β − 1)x−β = ϕ (x) < 0. ϕ (1) = 0, and ϕ′ (x) = −β (β − 1)x−β−1 (x− 1) < 0, so ϕ (x) < 0
for all x > 1.

iii. Finally, consider the Exponential Distribution, F (x) = eλx for all x > 0, λ > 0 .

R = − 1
eλx−1 + 1

λx
. dR
dx

= λeλx

(eλx−1)2 − 1
λx2 =

[
λxe

λx
2 −(eλx−1)

][
λxe

λx
2 +eλx−1

]
(eλx−1)2

λx2
. Both the denominator

and the second multiplier in the numerator are positive. Consider the sign of the first
multiplier in the numerator, letting t = λx, t > 0. d(tet/2−et+1)

dt
= et/2 + t

2e
t/2 − et =

et/2
(
1 + t

2 − e
t/2
)
. 1 + t

2 − e
t/2 is decreasing and always negative on t > 0. Thus, the first

multiplier, λxe
λx
2 −

(
eλx − 1

)
, is always decreasing on t > 0. Since it equals to zero when

t = 0, we have shown that it is negative on the domain. Thus dR
dx
< 0.

Now we are ready to show that the cutoff, and thus the proportion of the population
marrying exogamously, is weakly increasing in the level of inbreeding aversion.

Proposition 1.3. Under assumptions 1, 2, and 3, κ (λ) is 0 below 1/4, strictly increasing on
the domain λ ∈ [1/4, 1/2], and infinite above 1/2.
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Proof. From equation (1.8) κ (λ) =∞ if λ > 1/2.
Also from equation (1.8), any finite equilibria satisfies 1

F (κ(λ))

´ κ(λ)
0 θdF (θ) = (1− 2λ)κ (λ).

Towards a contradiction, suppose κ (λ) > 0 and λ < 1/4. Then (1− 2λ) > 1
2 , so 2 > 1

1−2λ

, so 2
F (κ(λ))

´ κ(λ)
0 θdF (θ) > κ (λ). But given Assumption (4), the p.d.f. of the distribution

does not slope upward anywhere, and so its expected value cannot be greater than half its
maximum. Therefore, if λ < 1/4, κ (λ) = 0.

Now suppose 0 < θ̄it < ∞. Then, from equation (1.8) λ < 1/2 and, plugging in the
true value of Gt (θ) (the common belief on the distribution of quality among exogamously
marrying groups), I get:

θ̄it = (1− 2λ)−1 1
F
(
θ̄t
) θ̄tˆ

0

θdF (θ)

Rearranging:

1
F
(
θ̄t
) θ̄tˆ

0

θdF (θ)− θ̄it (1− 2λ) = 0 (1.12)

This is the first order condition of group i’s utility maximizing problem. At the threshold
θ̄it, increasing θ̄it potentially costs the value of the foregone endogamous match, θ̄it. This
value is deflated by (1− 2λ) because both parties in the endogamous match will be subject
to a fitness depression penalty. The second order condition of equation (1.12) w.r.t. θ̄it is
− (1− 2λ), verifying that if the F.O.C. is satisfied, the optimum is global.

Taking equation (1.12) and setting θ̄it = θ̄t, rearranging, and dropping the t subscript:

(1− 2λ) = 1
θ̄F

(
θ̄
) θ̄ˆ

0

θdF (θ) (1.13)

Taking the derivative of equation (1.13) with respect to θ̄:

−2∂λ
∂θ̄

=
f
(
θ̄
)
F
(
θ̄
)
θ̄2 −

[
F
(
θ̄
)

+ θ̄f
(
θ̄
)] ´ θ̄

0 θdF (θ)

F
(
θ̄
)2
θ̄2

Rearranging:

∂λ

∂θ̄
=

[
F
(
θ̄
)

+ θ̄f
(
θ̄
)] ´ θ̄

0 θdF (θ)− f
(
θ̄
)
F
(
θ̄
)
θ̄2

2F
(
θ̄
)2
θ̄2
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Because F
(
θ̄
)
, θ̄, f

(
θ̄
)
, and

´ θ̄
0 θdF (θ) are all continuous, and F

(
θ̄
)
and θ̄ are both

strictly positive ∀θ̄ > 0, ∂λ
∂θ̄

is continuous ∀θ̄ ≥ 0. In accordance with assumption (3),

f
(
θ̄
)
F
(
θ̄
)
θ̄2 −

[
F
(
θ̄
)

+ θ̄f
(
θ̄
)] ´ θ̄

0 θdF (θ) < 0, and therefore ∂λ
∂θ̄
> 0.

What is the range of λ
(
θ̄
)
? From equation (1.12),

λ = 1
2 −

1
F(θ̄t)

´ θ̄t
0 θdF (θ)

2θ̄
If θ̄ → ∞, λ → 1/2 (if θ̄ → ∞, the R.H.S. must go to zero by the finite expectation of

F (·)). If θ̄ → 0, λ → 1/4. This result follows from the fact that as θ̄ goes to zero, the ratio
of the expectation of the distribution to its maximum must converge to 1/2.

In sum, λ
(
θ̄
)
is a monotonically increasing, continuous function of θ̄ on the domain R+,

with range [1/4, 1/2]. But this implies the inverse function, κ (λ), is monotonically increasing
continuous function on the domain [1/4, 1/2] with range R+.

I have established that the exogamy threshold and rate are increasing in the level of
inbreeding aversion. In subsection (1.4.4) I will endogenize the inbreeding aversion coefficient,
λ. The following corollary will be useful:

Corollary 1.2. By choosing λ ∈ [1/4, 1/2], nature can induce any cutoff θ̄ ∈ R+.

Next we establish a system of two equations for λ and δ. In subsection (1.4.3) we take λ to
be exogenous and solve for the corresponding level of fitness depression. In subsection (1.4.4)
we solve for the level of inbreeding aversion that is evolutionarily stable against invaders,
given δ. Then in Theorem 1.1 I establish existence and uniqueness of an equilibrium. In what
follows, θ̄ is used as shorthand for κ (λ). The long-run mean of the distribution of δit arising
in a population playing threshold θ̄ (or with endogamy aversion λ), limt→∞

∑D
j=0 εjh (jε|λ)

is often written simply as δ
(
θ̄
)
, (or δ (λ)).

1.4.3 Endogenizing Fitness Depression

In this subsection I define a long-run equilibrium with respect to fitness depression, and show
that the equilibrium level of fitness depression is decreasing in the exogamy threshold θ̄.

Definition 1.2. A population is in a long run equilibrium with respect to fitness depression
if the mean level of fitness depression is constant over time.

Consider a population that is all playing some exogenous threshold strategy, with λ ∈
[0, 1]. There are three possible cases, according to Proposition 1.3. The edge cases are

29



straightforward. First, if λ ≤ 1
4 , then θ̄ = 0 by Proposition (1.3), all marriages are endog-

amous, over time δ goes to zero and the population becomes extinct by Proposition 1.2.
Second, if λ ≥ 1

2 , by Proposition 1.3 θ̄ = ∞ and all unions are exogamous and δ goes to 1
over time. I will show in subsection 1.4.4 that this case is not proof against invaders with a
different λi.

Finally, and for the rest of this subsection, consider the case where λ ∈
(

1
4 ,

1
2

)
. In this

case, there must be an interior equilibrium, where the mass of daughter groups resulting
from exogamous marriages is equal to the mass resulting from endogamous marriages, after
accounting for the effect of fitness depression on the fecundity of the endogamously marrying
groups.

In a long run equilibrium, the average value of δ
(
θ̄ (λ)

)
does not change from one period

to the next. By the definition of the law of motion for fitness depression in equation (1.5),
an offspring group has fitness depression that is ε higher than its parental group if the
parent group married endogamously and ε lower if the parental group married exogamously.
Therefore, in equilibrium, the measure of groups whose fitness depression increases by ε

must exactly be cancelled out by an equivalent measure of groups whose fitness depression
decreases by ε, provided that the measures of the groups account for the creation of daughter
groups and fitness depression. This equality allows the average level of fitness depression in
the population, δ

(
θ̄ (λ)

)
, to be pinned down as a function of the degree of exogamy.

In an interior long-run equilibrium, the mass of children born from exogamous unions
must be equal to that born from endogamous unions. For convenience, normalize the popula-
tion entering the period to have size one. From the conditional production function, equation
(1.1), each exogamous group on expectation will have πit = θit + θjt offspring groups. In-
tegrating over the segment of the population that marries exogamously (and removing the
groups that have δit = 0; according to (1.5) groups cannot become less inbred if they already
have zero fitness depression) gives the mass of groups becoming less inbred:

(
1− P

[
δit = 0|θ̄

]) θ̄ˆ

0

θ̄ˆ

0

(θit + θjt) dF (θit) dF (θit) (1.14)

While it is possible to solve for the long-run value of P
[
δit = 0|θ̄

]
as a function of

E [θ], F
(
θ̄
) ´ θ̄

0 θdF (θ), and ε, it is not very tractable. Instead, I take the limit of the above
expression as ε→ 0 in the long-run steady state. I show in Appendix A.1 that for all λ such
that F

(
θ̄ (λ)

)
∈ [0, 1), limε→0 limt→∞ P

[
δit = 0|θ̄

]
= 0 ∀θ̄ <∞. Expression (1.14) simplifies

to:
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2F
(
θ̄
) θ̄ˆ

0

θdF (θ) (1.15)

after plugging in 0 for P
[
δit = 0|θ̄

]
. After suppressing the time subscript (due to the fact

that the population is in a long-run steady state where t → ∞), and writing δ
(
θ̄ (λ)

)
with

δ
(
θ̄
)
to simplify the notation, the mass of groups becoming more inbred will be:

(1− F (θ̄))
θ̄ˆ

0

2θidF (θi) +
∞̂

θ̄

2θidF (θi)

(1− δ (θ̄)) (1.16)

The above expression is the sum of the mass of groups who tried to marry exogamously
but were rejected, plus the mass of groups who drew a θi above the threshold θ̄ and therefore
chose endogamy. This mass is deflated by the fitness depression factor, because in endog-
amous unions this percentage of the population is removed due to fitness depression and
therefore does not contribute to the mass that increases its fitness depression factor. Any
group whose δit = 1 will die with certainty if they marry endogamously again, so there is no
need to remove these groups. Expression (1.16) can be rewritten as:

2
(
1− δ

(
θ̄
))E [θ]− F

(
θ̄
) θ̄ˆ

0

θdF (θ)

 (1.17)

Setting the mass from endogamous union equal to the mass from exogamous unions
yields:

δ
(
θ̄
)

=
E [θ]− 2F

(
θ̄
) ´ θ̄

0 θdF (θ)

E [θ]− F
(
θ̄
) ´ θ̄

0 θdF (θ)
(1.18)

One important implication of this equation is that although individual groups are re-
stricted to a discrete set of fitness depression levels, the long-run population average δ

(
θ̄
)

can be any element of [0, 1] (this fact also holds for the population average δt in any period
t).

Lemma 1.4. The average level of fitness depression is decreasing in the exogamy rate and
in endogamy aversion.
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Proof. From (1.18), δ
(
θ̄
)

= E[θ]−2F(θ̄) ´ θ̄0 θdF (θ)

E[θ]−F(θ̄) ´ θ̄0 θdF (θ)
, so

dδ
(
θ̄
)

dθ̄
= −E (θ)[

E (θ)− F
(
θ̄
) ´ θ̄

0 θdF (θ)
]2 ×

d
[
F
(
θ̄
) ´ θ̄

0 θdF (θ)
]

dθ̄

−E (θ) < 0,
[
E (θ)− F

(
θ̄
) ´ θ̄

0 θdF (θ)
]2
> 0, and

d

[
F(θ̄) ´ θ̄0 θdF (θ)

]
dθ̄

> 0, and so
dδ(θ̄)
dθ̄

< 0.
From subsection (1.4.3), those below the threshold choose exogamy, so a higher threshold

means a higher fraction of the population is both below the threshold and is also paired with
another group below the threshold; a higher threshold therefore results in a higher exogamy
rate. There is a positive, monotonic function between θ̄ and λ, so δ is decreasing in λ as
well.

Thus, the higher the threshold for exogamy (and therefore the higher the fraction of the
population that is exogamous, or the higher the endogamy aversion), the lower the level of
fitness depression in the population, as one would expect.

1.4.4 Endogenizing Inbreeding Aversion:

Next, I turn to in endogenizing inbreeding aversion, essentially creating a second equation
which, together with equation (1.18), describe a general equilibrium between the two vari-
ables δ and λ. Given δ

(
θ̄ (λ)

)
as characterized by equation (1.18), what level of λ would

emerge via evolution by natural selection? To characterize this level, I need to define an
equilibrium concept.

Consider a population playing a particular threshold, θ̄ = κ (λ). Recall that the popula-
tion has a corresponding long-run distribution of fitness depression parameters, limt→∞Ht (·),
which we denote Hλ (·) (the existence and uniqueness of this long-run distribution is proved
in Appendix A.1).

Definition 1.3. The population is in an evolutionary stable equilibrium, or proof against
invaders, if it is not possible for any group to play some λit 6= λ, and have a strictly higher
growth rate.21

21It would probably be more realistic to model the invading λi as a hereditary trait, but this would
introduce significant complication, both algebraic and substantive. My intuition is that if inbreeding aversion
was hereditary, the λi that maximized the long run growth of group i would be higher than the one resulting
from the current assumption. The group would internalize the negative externality that endogamy has on
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To operationalize this definition I introduce a mutation that causes group i to have a
different preference for endogamy aversion λit, and therefore choose a different threshold for
one period. Recall that if nature could choose a homogenous λ for the entire population, she
would chose λ ≥ 1/2 and total exogamy. In contrast, we would intuitively expect nature to
choose a lower λit, and therefore less exogamy, for the invader. The reason for this difference
is that while a lower λit and therefore less exogamy, will result in greater fitness depression
in future periods, from the perspective of the invader there is a chance that this fitness
depression will be borne by a group that no longer has the invading λit. Effectively, the
invading mutation can free-ride off the incumbent preference.

This depends on the very reasonably requirement that endogamy aversion preferences
are not perfectly persistent at the group level; the preferences are genetic, after all, and the
entire purpose of sex is to allow for the exchange of genetic material between individuals (and
in this case, groups). In principle, one could operationalize this by modelling a mutation
that survives with probability 0.5 if the invader marries exogamously, and 1 otherwise.

Instead, I make the starker assumption that mutations are completely transitory in na-
ture, i.e., E [λit+1|λit 6= λ] = λ. To motivate this assumption, consider a mutation that
manifests only under specific conditions that occur with probability q, and take the limit
as q → 0. This assumption captures the key feature of the free-riding mechanism. Conve-
niently, it ensures that the distribution of fitness depression of the invader remains the same
as the incumbent.

Denote the invader threshold by θ̄i = κi (λi, λ). I assume that the invaders are a measure
zero share of the total population. Therefore, one invader encountering another on the
marriage market is a zero probability event.

Subsection (1.4.4) considers the principal-agent problem regarding group i’s preferences
and decision. The population level λ, corresponding θ̄ (λ) and mean inbreeding aversion
level δ (λ) (as specified in (1.18)) are exogenous to this problem. I define nature’s objective
function for the invading group to be gi. gi is i’s long-run growth rate when facing a popula-
tion with inbreeding aversion level λ ∈ [0, 1] and equilibrium fitness depression distribution
Hλ (·) according to equations (1.2) and (1.18). Neither the principal nor the agent observes
δi, so nature can not condition the invader’s preferences on the invader’s fitness depression
coefficient. However, because the population is in a long-run equilibrium with respect to

proceeding generations, thereby lowering the endogamy rate and fitness depression, and resulting in a higher
λ∗ and lower δ∗. This assumption complicates the model though because an individual from other groups
can marry into group i and λj would presumably have an effect on the inbreeding aversion level of generation
i, t+ 1.
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fitness depression, nature has learned the equilibrium distribution of δit, which is the same
as the rest of the population, Hλ (·), and therefore can condition on this distribution.

First, I consider the fully exogamous case. By equation 1.3 λ ≥ 1
2 , θ̄ = ∞, and by

subsection 1.4.3, δ = 0. As all groups are choosing exogamy, the expected payoff for choosing
exogamy is θi + E [θ]. This population is not proof against an invader with λi = 0 and θ̄ =
E (θ) because there are information benefits and no fitness penalty for choosing endogamy. If
group i drew θi > E (θ), they would have a strictly higher growth rate by choosing endogamy.
By equation (1.2) if they choose endogamy they will produce on expectation 2θi daughter
groups, which is strictly larger on expectation than the θi + E [θ] daughter groups they
produce if they choose exogamy.

Next, in subsection (1.4.4), I consider the interior case described by λ ∈
(

1
4 ,

1
2

)
and δ (λ)

as in equation (1.18). I show that nature can induce group i to maximize this growth rate
by choosing a specific λi. I show that group i′s utility function Ui from equation (1.3) is
the same as nature’s objective function when λi = δ (λ), where δ (λ) is the long-run average
level of fitness depression in the population.

The population is only proof against invaders when all individuals have these preferences,
i.e., when λi = λ = δ (λ). Otherwise, some mutation could result in a group having a higher
expected growth rate. Therefore, in equilibrium λ = δ.

For the population to be in a long-run equilibrium it must be true that λ ∈ (1/4, 1/2) and
therefore that δ is also in this range. Thus, there is a significant level of inbreeding aversion
and fitness depression in the population.

Nature’s objective function for Group i

Integrating the group’s production function (equation (1.2)) over the type distribution and
the possible levels of fitness depression gives the period t expected growth rate of group i:

g (λi, λ, δ) =
N∑
k=0

∞̂

0

∞̂

0

mit (θit + θjt) + 2 (1−mit) (1− δit) θitdF (θit) dF (θjt)h (δit = kε | λ)

(1.19)
This growth rate integrates over the realizations of the quality draws of both groups, θit

and θjt. Because the level of fitness depression takes discrete values, δit ∈ {0, ε}, the outer
term sums (instead of integrates) over the different possible levels of fitness depression.

Next we manipulate and simplify this expression in order to show that for a certain value
of λi, the growth function is equivalent to the utility function, and thus that nature can
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induce the group to play the growth-maximizing strategy by assigning them this level of
aversion to endogamy.

Nature cannot assign preferences that are contingent on groups realizations of fitness
depression, δit to either incumbents or invaders. However, Nature is assumed to understand
that her choice of λ (but not λi) will affect the long-run distribution of fitness depression
coefficients, Hλ (·). The invader’s δ will be drawn from the same distribution as the rest of
the population. Because θit and δit are independent, we can sum equation (1.19) over the
long-run distribution of δ to get:

g (λi, λ) =
∞̂

0

∞̂

0

mit (θit + θjt) + 2 (1−mit) (1− δ (λ)) θitdF (θit) dF (θjt)

Substituting in from equation (1.1) and integrating over the quality ranges that would
result in exogamy and endogamy:

g (λi, λ) =
κ(λ)ˆ

0

κ(λi,λ)ˆ

0

(θit + θjt) dF (θit) dF (θjt) (1.20)

+2 (1− δ (λ))


κ(λi,λ)ˆ

0

∞̂

κ(λ)

θitdF (θjt) dF (θit) +
∞̂

κ(λi,λ)

θitdF (θit)


The first double integral is when both groups are below the threshold, the second is when

j is above and i is below. The last integral is when i is above (and j is below or above).

Specifying the Optimal Invader’s preferences

Now that I have specified the evolutionary objective function, I investigate how nature can
specify group preferences in order to maximize its growth rate. Effectively, we are looking for
the λi that will cause the invader to choose a growth maximizing threshold, θ̄i, in response
to a population endowed with λ and therefore playing κ (λ) according to Proposition 1.3.

Proposition 1.4. Nature’s best response to a population playing a cutoff θ̄ is to set λi =
δ (λ), where δ (λ) = E[θ]−2F (κ(λ))

´ κ(λ)
0 θdF (θ)

E[θ]−F (κ(λ))
´ κ(λ)
0 θdF (θ)

in accordance with equation (1.18).

Proof. The group’s problem will be:

max
θ̄it

Uit
(
θ̄t, θ̄it

)
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Substituting in from the payoffs defined in equation (1.4), Uit = mit (θit + θjt)+ 2 (1−mit) (1− λ) θit,
and integrating over the appropriate ranges of quality:

max
θ̄it

ˆ θ̄it

0

ˆ θ̄t

0
(θit + θjt) dF (θjt) dF (θit)+2 (1− λ)

ˆ ∞
θ̄t

ˆ θ̄it

0
θitdF (θit) dF (θjt) +

ˆ ∞
θ̄it

θitdF (θit)


The first expression is the probability weighted payoff if both candidates/groups are
below the cutoff, and thus marry exogamously. The second term is the payoff if i marries
endogamously, integrated over the ranges of quality that would result in this outcome (either
below the cutoff and rejected by group j, or above the cutoff).

But this problem is very similar to nature’s problem in (1.20); the only difference is that
λ replaces δ

(
θ̄
)
.

Suppose that λ ∈ (1/4, 1/2). If nature chooses λi = δ
(
θ̄
)
, the two problems are identical.

Therefore, nature can induce individuals to choose the growth maximizing θ̄i by assigning
the preference λi = δ

(
θ̄
)
(the uniqueness of this assignment will be discussed in Theorem

1.1 below).
Therefore, the λi that maximizes the growth rate must result in a threshold of κ (δ (λ) , λ)

. The problem is symmetric for all groups and so λi = λ for all i.
For λ ≤ 1

4 , the population dies within a finite number of periods and so cannot be said
to be in a long-run equilibrium. For λ > 1/2, a similar argument shows that the solutions
to the two problems coincide. However, if λ > 1/2, the population level of fitness depression
will reach zero in a finite number of periods. After this point, any group with a draw of
θi > E [θ] can do better by deviating to endogamy, so no λ in this range can be robust to
invaders.

Essentially, Proposition 1.4 states that agents will discount endogamous marriages at the
expected rate they are destructive of productivity, which is intuitively appealing.

General Equilibrium

Theorem 1.1. Under assumptions 1, 2, 3, and 4 there exists a unique λ∗ ∈ (1/4, 1/2) that is
evolutionarily stable. By Corollary 1.2, this implies the existence of a unique evolutionarily
stable θ̄∗ ∈ (0,∞), and by Proposition 1.4, a unique δ∗ ∈

(
1
4 ,

1
2

)
.

Proof. Collect results from equation (1.12), equation (1.18) and Proposition 1.4 above. This
gives us three equations (in order):

36



(1− 2λi) θ̄i = 1
F(θ̄)
´ θ̄

0 θdF (θ)

δ
(
θ̄
)

= E[θ]−2F(θ̄) ´ θ̄0 θdF (θ)

E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

λi = δ
(
θ̄
)

If the equilibrium is robust to invaders, it must be the case that λi = λ (and therefore
θ̄i = θ̄). That is, the best an invader can do is to play the same strategy as the other groups
in the population. Consequently, I can collapse the system of three equations into two:

R1
(
θ̄
)

= 1
2

(
1− 1

θ̄F(θ̄)
´ θ̄

0 θdF (θ)
)

R2
(
θ̄
)

= E[θ]−2F(θ̄) ´ θ̄0 θdF (θ)

E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

To show existence and uniqueness, I will show that the first expression is increasing in
θ̄ and the second is decreasing. These properties follow because the first expression starts
below the second and after some point is above it, so they must cross exactly once. To
elaborate, consider:

dR1
(
θ̄
)

dθ̄
=
d
(
− 1

2θ̄F(θ̄)
´ θ̄

0 θdF (θ)
)

dθ̄
= −1

2 ×
d
(

1
θ̄F(θ̄)

´ θ̄
0 θdF (θ)

)
dθ̄

From Assumption 3
d

(
1

θ̄F(θ̄)
´ θ̄
0 θdF (θ)

)
dθ̄

< 0, so dR1(θ̄)
dθ̄

> 0

From Lemma (1.4),
dR2(θ̄)
dθ̄

< 0.
Consider R1

(
θ̄
)
. Using l’Hopital’s Rule twice, assuming that f(0) > 0; and that f ′ (0)

exists, it follows that R1 (0) = 1
4 . R2 (0) = 1 > R1 (0). R2 is decreasing in θ̄ whereas R1 is

increasing in θ̄. Therefore, if they cross they must cross only once.
Since R1 (0) = 1/4 and is an increasing function, it must be strictly positive everywhere.

If F
(
θ̄
)

=
√

1
2 then R2

(
θ̄
)

= 0, and thus at θ̄ : F
(
θ̄
)

=
√

1
2 , R1 > R2. The functions are

both continuous. Therefore, they must cross exactly once.
Denote this value of θ̄ as θ̄∗. The corresponding value of R1

(
θ̄∗
)

= R2
(
θ̄∗
)
≡ λ∗. Because

R1 (0) = 1
4 and R1 is an increasing function, λ∗ > 1

4 . From Proposition 1.4 δ∗ = λ∗.
In sum, the model predicts not only positive levels of endogamy, fitness depression, and

lower growth than is socially optimal, but also that the degree of fitness depression and
decreased growth would have been quantitatively different from zero. The primary driver
of this result is adverse selection in the marriage market. The presence of adverse selection
may in itself be unsurprising. What is more revealing is that this adverse selection is quite
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difficult to counteract. Even endowing nature with the ability to modify group preferences
so they dislike endogamy cannot overcome the problem, as free-riding at the level of the gene
results in continued fitness depression and lower population growth.

1.5 Conclusion

For the vast majority of time that Homo sapiens have been on the planet, low population
density meant that there would have been relatively few opportunities for observing the
quality of potential exogamous marriage partners. Adverse selection - resulting from the
unwillingness of high types to accept a partner of unknown quality - likely afflicted the
exogamous marriage market, causing high types to choose endogamy. The resulting fitness
depression would have been significant and potentially result in the complete collapse of
some populations. An innate preference for aversion to endogamy would likely have evolved.
This would have enabled significant amounts of exogamy, reducing the population wide level
of fitness depression.

An interesting avenue for further research is how humans overcame this problem. Various
additional preferences, strategies and physical traits would likely have been helpful in reduc-
ing fitness depression, especially those that provided opportunities to observe the quality
of potential mates. Social institutions for congregation would likely have been beneficial,
especially if these included costly signaling activities such as dancing, athletic competition
and displays of wealth. Other types of traits that probably would have been helpful include
physical traits that signal health, such as long head hair, beards and excess adipose tissue.
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Chapter 2

Cooperation, Competition, and
Linguistic Diversity
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2.1 Introduction

Over 7,000 human languages are currently spoken on the planet. (Lewis et al., 2013). Prior
to colonialization, approximately 850 of these were spoken in the area that is now Papua
New Guinea.1 Nearby Australia, on the other hand, was home to only about 392 languages,
despite being over 16 times as large.2

Why are there so many languages in some places and so few in others? Is it possible
that economic incentives play a role in effecting this diversity? In this paper we show that
repeated conflict and cooperative interactions can plausibly generate linguistic change and
explain spatial and temporal variations in the distribution of languages.

From the empirical literature on linguistic change and linguistic diversity, we extract three
stylized facts. First, linguistic diversity varies greatly across the earth’s surface, correlated
with several geographic factors. Second, a pair of languages can merge, diverge, or maintain
a stable relationship. Sometimes a language goes extinct, or is revived from near-extinction.
Third, there is large variation in the rates that languages diverge, and they tend to explode
apart very quickly when they first separate. We will describe and discuss these patterns in
more detail in section 2.5.

We explain the phenomena described above by explicitly modeling a process of linguistic
development in small-scale, sedentary societies. We develop a formal economic model to
explain how strategic incentives can induce language change and thereby explain linguistic
diversity. This model is dynamic, micro-founded, incentive based and it produces a rich set
of predictions.

We propose that conflict may be an important causal variable for linguistic change,
particularly the divergence of languages over time and their diversity over space. Conflict
here is defined as any competitive interaction between two groups, each containing multiple
members. In addition to conflict as a diverging influence on languages, our model also incor-
porates the traditional, more intuitive idea that cooperation fosters linguistic homogeneity.
As a result, our theory generalizes to a broad set of situations. This paper complements
the existing literature on trade and conflict by suggesting how language may affect these
interactions, and how it is in turn influenced by them.

We begin by choosing modeling assumptions appropriate to the environment and strategic
interactions that small-scale, sedentary societies faced.

1Based on Ethnologue, Papua New Guinea. 851 languages minus one that is not indigenous

2Based on Ethnologue, Australia. 403 languages minus 11 that are non indigenous
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We develop a formal model of language and linguistic change, including a set of elements
that forms a vocabulary, definitions for ’dialect’ vs ’language’ and a mechanism for change.
We define a game that is played each period.

We show how the relationship between a pair of languages can affect basic economic in-
teractions between two groups. Common language facilitates co-operation, whereas language
unique to one group gives that group an advantage in competitive interactions. We argue
that the relationship between a pair of languages, and linguistic diversity itself, is important
in that it impacts the outcomes of these common strategic games.

Next, we show how these interactions create incentives for groups to modify the language
they use, and characterize those changes for a given period. Repeated changes over multiple
periods results in convergence or divergence for a pair of dialects.

Finally, we show that if the underlying probability of conflict vs cooperative games re-
mains constant, these trajectories result in a stable pattern of linguistic diversity in a region.
This pattern should be of interest to economists because it feeds back into the probable
outcomes of cooperative and competitive games between groups.

A high frequency of cooperative games, such as trade, has a homogenizing effect on lan-
guage, thus leading to low linguistic diversity. High frequency of competition such as warfare,
on the other hand, raises the value of private information. This leads to the generation of
new linguistic expressions and, over time, high linguistic diversity.

2.1.1 Preview of the Model

In our model, groups interact periodically in pairs, in one of three types of activities: cooper-
ation, competition, and non-interaction (hereafter referred to as a “null game”). Each group
speaks a dialect, and two dialects are considered the same language if they are sufficiently
similar.3 In section B.1, we show that the groups’ expected payoffs in a game are a func-
tion of the relationship between their dialect and their opponent’s dialect. In cooperation,
modeled as a coordination game, group i’s payoff is increasing in the commonality between i
and j’s dialects. This captures the intuition that coordination is more likely to be successful
when the two groups can communicate in an accurate and inexpensive manner.

During conflict, modeled as a zero-sum game, i’s expected payoff increases in how much
it understands the opponent j’s dialect, while decreasing in the level of j’s comprehension of
i’s dialect. Intuitively, when i and j are in an antagonistic relationship, the more information
i has about j, the more advantaged i would be in that relationship. Since language is the

3The definitions of dialect and language will be made more precise in section 2.3.
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most common medium of intra-group communication, a better understanding of j’s dialect
leads to a higher chance of obtaining j’s private information. By the same token, the less j
understands i’s dialect, the better i would be able to protect its own information.4

Lastly, if two groups do not interact in a period, which we model by a “null game”, payoffs
are constant in all outcomes.

Each group interacts with every other group exactly once per period, and the nature of
each interaction (i.e. cooperative, competitive, or null) is determined by a random draw
for every pair from among the three games. For a pair i, j, the probability of drawing
a cooperative game is pij, the probability of drawing a competitive game is qij, and the
probability of drawing a null game is 1−pij−qij. The null game is more likely to occur when
groups are farther apart geographically. To maximize expected payoff, group i can make a
costly effort to change its dialect at the beginning of a period by (i) learning parts of the
dialect(s) spoken by some other group(s), and/or (ii) inventing novel linguistic expressions
that are only understood by members of group i. The benefit of learning from an existing
dialect is twofold: first, it boosts i’s chance to succeed in a cooperative interaction with
speakers of that dialect; second, it increases i’s competitive edge in conflict against speakers
of that dialect, because i would be more likely to decipher j’s intra-group communication.
Inventing new expressions for intra-group communication, on the other hand, improves i’s
odds of winning a conflict against all other groups, as the new expressions make it harder
for all other groups to acquire information on i.

For simplicity we assume that agents are myopic, i.e. they do not consider the impact of
the changes they make on future generations.5

The main results we derive in this paper fall into three categories: (i) optimal linguistic
change in a period game; (ii) the existence and characterization of a steady state in the
infinitely repeated game, and convergence towards this state; and (iii) the steady state
number of languages in a region and its comparative statics.

In any given period, it will always be optimal for a group to invent some new linguistic
expressions, assuming that competitive games happen with positive probability. With regard
to learning existing dialects, we show that if the probability of a non-trivial interaction

4There is an additional, complementary benefit to a group of speaking a differentiated dialect, which
we do not discuss at length or model explicitly. Differentiated language—including both vocabulary and
accent—can help group members identify each other, which in turn facilitates the in-group distribution of
sensitive information.

5Considering future generations would likely have a symmetric effect, enhancing both incentives to invent
new expressions and to learn other groups’ languages.
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(i.e. cooperation or competition) with a neighbor drops sufficiently fast with an increase in
geographical distance, then it is optimal for a group to learn from the dialect spoken by its
closest neighbor(s) first.

In the dynamic setting, where the period game is played repeatedly, we establish the
existence and uniqueness of a steady state in which the set of groups speaking each language
remains unchanged over time. We emphasize that while languages themselves continue to
evolve in the steady state, the set of groups speaking any particular language does not.
This in turn generates a unique steady state number of languages. If the initial linguistic
composition is of a particular symmetric structure, we show that the number of languages in
the region converges to that in the steady state. Lastly, we show that the steady state number
of languages is weakly decreasing in the relative probability of cooperative vs. competitive
interactions.

The rest of the paper is organized as follows. Section section 2.2 describes the envi-
ronmental and institutional context of the societies in question and reviews the economic
literature relevant to the paper. We present our model in section 2.3, and the theoretical
results in section 2.4. In subsection 2.4.1, we derive optimal language change in a typical pe-
riod. subsection 2.4.2 introduces the dynamic setting, establishes the existence, uniqueness
and characterization of the steady state, and convergence thereto. The comparative statics
of the steady state are given in subsection 2.4.3.

section 2.5 summarizes the multidisciplinary literature on linguistic diversity and identi-
fies stylized facts pertaining to our model. Existing explanations for linguistic diversity are
summarized and discussed. section 2.6 concludes.

2.2 Context

This paper draws on several different theoretical literatures and is consistent with empirical
results from a variety of fields of inquiry. In this section we outline the economic conditions
of the societies we are modeling and the relevant economic literature. In section 2.5 we
will discuss linguistic research from other academic disciplines that has bearing upon the
question.

Modern linguistic diversity is the result of many thousands of years of change, much
of which occurred in small-scale societies. More recent conditions should be weighted more
heavily, and sedentism has been widespread globally for the past few thousand years. ’Small-
scale’ is defined here to include societies with the highest level of political organization
being the family, the village, the clan, the big man collectivity or the simple chiefdom, as
described in Johnson and Earle (2000). Complex chiefdoms and states are beyond the scope
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of the model. Sedentary peoples live largely in one place, and in small-scale societies their
descendants are likely to live there as well.

The societies we are modeling may be foragers or farmers, they may be stratified or egal-
itarian, but literacy is virtually nonexistent, and there are no standing armies or specialized
bureaucrats or merchants. Population of a politically autonomous group is typically less
than 2000 (Johnson and Earle, 2000, p.246) .

The results of our model, regarding variation in linguistic diversity over time, space and
trajectory, should be interpreted under these specific circumstances. Societies organized
into states are beyond the scope of this model primarily because local language is not free to
evolve independently of a region wide political power. State bureaucracies use a standardized
language to administer government programs and often provide incentives and pressure for
local groups to adopt or at least learn this common language.

Small scale societies often engage in strategic interactions of cooperation and conflict.
Trade, including long distance trade, exogamous marriage, political alliance, warfare, feast-
ing, and raiding are features of many small scale societies. Their frequency, however, varies
greatly across groups, from non-existent to common. For descriptions and explanations of
the variation across societies of these institutions, see Dow et al. (2016) for exogamy, John-
son and Earle (2000) for political alliance, Dow et al. (2017) for warfare, Hayden (1996) for
feasting.

Small scale societies have much less individual specialization than state-organized soci-
eties (Johnson and Earle, 2000); and so most adults would be involved in most activities
when the opportunity arose. Few or no people were uniquely merchants, translators, or
warriors, and so internal or external coordination would involve the participation of large
segments of society, and thus affect their common language. Rapid large scale invasions
and large scale political institutions are not considered, as the technology and institutions
largely did not exist for such activities. The set of conditions we are analyzing does include,
however, unorganized large scale movements of people that take place over many generations
such as the Bantu expansion. This movement of people, languages and technology occurred
in Sub-Saharan Africa from about 3000-2000 years ago. There was probably no central polit-
ical organization nor large scale effort to homogenize language. We therefore would predict
that dialects, and then languages, would arise over time in the newly occupied territories, in
accordance with the frequency of competitive and cooperative interactions. Caution should
therefore be used when applying the intuition resulting from this model to more modern
circumstances.
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In situations involving potential benefit from cooperation between groups, the parties’
ability to understand each other is undoubtedly crucial. Trade, exogamous marriage and
political alliances rely on clear communication. Perhaps less conventionally, communication
is also critical in situations of conflict. Theoretical work on conflict suggests that information
plays a vital role in determining the outcome of a hostile contention. In particular, there
are “incentives to misrepresent information [...] specifically, each party would like to appear
tougher than they really are” (Garfinkel and Skaperdas, 2007). Information regarding the
strength of a group and any plans they have regarding attack or defense is particularly
important. Success is more likely in these situations when a party can communicate such
information within the group while keeping it indecipherable from their opponents. The
invention of new terms that are understood only by the “insiders” of the group facilitates
the control of information.6 In addition, the empirical work by Arbatlı et al. (2020) records
a positive effect of population (genetic) diversity on the risk and intensity of historical and
contemporary civil conflicts. One of the channels of such an effect is through the increased
linguistic fractionalization and polarization due to population diversity, which in turn bred
mistrust among different linguistic groups, thereby contributing conflicts.

The highly creative, social and linguistic human species has evolved to use language as
a tool in strategic interactions. It is easy to imagine several possible micro mechanisms
for linguistic change. For example, there could be a leader that decides on the changes, or
a more organic process in which everyone takes a turn changing a few things, or even an
evolved instinct to learn and innovate, especially under certain conditions. We don’t have
strong beliefs about the precise mechanism, or the level of intention involved.

Perhaps the literature we draw most heavily on is theory of language and communication.
Economic theorists have a long, albeit sporadic, interest in the subject. It is common to
regard language as a facilitator of cooperation, especially in the form of trade (Lazear,
1999). Blume et al. (1993), Wärneryd (1993), and Robson (1990), among others, studied
how messages in a language become associated with meaning in cooperative interactions with
communication. Rubinstein (2000) characterized an “optimal” language based on criteria

6Group-specific vocabulary and other common elements of language (e.g. accents) may also serve the
purpose of identifying insiders from “outsiders” of the group. Accurate identification of fellow members
enables groups to communicate strategically sensitive information to its membership without accidentally
revealing it to outsiders. Accents would be especially useful for the purpose of identifying members of
groups that are closely related linguistically. We do not formally model differentiated language as enabling
identification in this way, but this use of language is definitely consistent with our hypothesis that linguistic
groups will choose to invent more new terms in high conflict settings. Language as an identifier is especially
useful in groups large enough that not all members know each other personally.
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such as the ability of a language to identify objects and the ease by which the language is
learned.7 More recently, Blume and Board (2013a) explored the implications of language
competence, and the knowledge thereof, on the efficiency of communication in common
interest games.

We incorporate versions of these concepts into our model. Specifically, there is a cost
associated with learning linguistic elements, as well as a benefit in that learning elements
increases the likelihood of understanding future communications. We also have an ’optimal’
language, although we innovate in that groups are able to choose which languages to learn
and how much to learn of each.

Anderson and Van Wincoop (2004) review the literature showing that communication
barriers increase the cost of trade between countries. Blume and Board (2013b) outlines the
theoretical case where the misalignment of interest between a sender and a receiver would
lead the former to intentionally communicate with messages that are vague, even though
more precise alternatives are available.

We bring together cooperative and competitive incentives into a single dynamic model,
exploring how they generate together patterns of change and the spatial distribution of
languages.

There are large empirical literatures that use geography to predict and/or explain linguis-
tic diversity, linguistic diversity to predict/explain conflict and cooperation, and geography
to predict/explain conflict and cooperation. We link these variables together in a logical ex-
planatory pathway from geography to conflict/cooperation to linguistic diversity. Geography
is important as it is the most exogenous and has the best available data, resulting in many
studies of the relationship between geographic variables and linguistic diversity. Levels of
conflict and cooperation are almost certainly affected by technology, culture, cultural differ-
ences and linguistic differences, but we mostly leave the exploration of these relationships to
other researchers. We focus on the effect of conflict on linguistic diversity as we think this
line of thinking is both novel and compelling.

Almost by definition, the societies we are interested in did not leave written records of
their languages. Anthropologists and archaeologists have studied many small-scale societies
in detail, but this data tends to be focused on describing each society at a single point in time.
Panel data is nearly impossible to come by. As a result we rely mostly on qualitative evidence

7See Lipman (2003) for a good review.
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and the results of other researchers on related questions to establish empirical support for
our theory.8

Having said this, there is a large literature in economic development establishing a strong
positive correlation between ethnolinguistic diversity and conflict (Esteban et al., 2012;
Desmet et al., 2012). Some authors, however, do not find this relationship (Fearon and
Laitin, 2003). Most of the data used is from the modern era during which societies were
organized at the state or colonial level, and with most a single cross-section of languages’
vocabularies. It is therefore not well suited to studying our question.

Measures of polarization, which rely on measures of ethnolinguistic distance between
groups, are found to be significant correlates of conflict (Esteban et al., 2012). Measures of
distance between languages are often used as proxies for differences in ethnicity or differences
in preferences over public goods. The authors use linguistic data for the explanatory variable
of interest because it is more available than data on genetic distance or on differences in
preferences, and more exogenous than the latter.

If conflict causes significant linguistic change, however, there is an endogeneity problem in
any attempt to measure the causal impact of ethnolinguistic fractionalization or polarization
on conflict. This would be particularly problematic in approaches where linguistic similarity
alone is used to estimate distance between a pair of groups or time since a linguistic split,
or where the number of groups used to measure fractionalization is based solely on linguistic
difference.

We do not deny that linguistic distance or its correlates may lead to higher levels of
conflict, but we do believe that the reverse is also likely to be true. It would be unfortunate
to over-attribute conflict to ethnic division and overlook other possible causes.

We argue that changes in linguistic diversity are, at least partially, influenced by strate-
gic incentives. Over many generations, strategically induced changes may accumulate and
generate new languages. We propose a causal channel for such linguistic change: a region’s
geographic make-up (e.g. climate, terrain, soil, vegetation, natural resources, bodies of wa-
ter, etc.) and the technology of the society affects the relative probability of cooperative vs.
competitive interactions. This relative probability in turn determines the strategic incentives
that drive linguistic change.

8The data available on small scale societies in the cross-cultural standard sample has only a few hundred
observations at most, and many of the data points are problematic for various reasons. We have not been
able to find or construct any panel data that documents changes in linguistic diversity and conflict levels
over time for many small scale societies. This makes it difficult to establish any relationship with the degree
of certainty required to report empirical results. For this reason, this paper is mainly theoretical. We have
done our best to document and discuss empirical patterns whenever possible
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It is therefore helpful to review the literature that studies the impact of geography on
linguistic diversity. In this section we focus on studies by economists; for a more detailed
review of studies of the relationship between language and geography, see section 2.5.

Michalopoulos (2012) finds that variance in land quality and in altitude are positively
and significantly correlated with linguistic diversity. He theorizes that geographically het-
erogeneous regions foster location-specific human capital that is not easily transferable to a
different environment. As a result, possession of location-specific human capital contributes
to the immobility of language groups. Immobility thus leads to a higher linguistic diversity
within the region. Michalopoulos (2012) also notes that, as geographically uniform territo-
ries are easier to conquer, and invasion has a homogenizing effect on language and culture,
so one would expect to see a positive correlation between linguistic diversity and geographic
heterogeneity within a region.

Michalopoulos does not cite any evidence that location-specific human capital or any
related variables are correlated with linguistic diversity.

According to a line of argument mostly mapped out in Dow and Reed (2015), Dow
et al. (2016) and Dow et al. (2017), environmental productivity and climate shocks are
important conditions for prehistoric warfare. High resource productivity leads to sedentism
and larger communities. Larger communities results in more endogamy, which along with
sedentism makes it harder for individuals to relocate from one site to another in response to
disproportional productivity shocks.

It seems likely that geographic heterogeneity makes the effect of climate shocks more likely
to be disproportional across sites. The site that benefited most (or was harmed least) by the
shock becomes an attractive attack target for a group living at a less favoured site. Thus,
we posit the following chain of causation: high regional productivity and high geographic
variation causes increased conflict, which over time causes high linguistic diversity.

Arbatlı et al. (2020) identify population (genetic) diversity as a pivotal factor that con-
tributes to both contemporary and historical conflicts within and across groups. The authors
provide empirical support for a number of channels through which population diversity may
lead to conflicts. Most relevant for this paper are the channels involving (ethno)linguistic di-
versity. Two measures of ethnolinguistic diversity are used: ethnolinguistic fractionalization
and ethnolinguistic polarization, both of which capture essentially the proportional repre-
sentation of ethnic groups within a society. The authors find that higher ethnolinguistic
diversity not only has a direct, positive association with more conflicts, but also contributes
indirectly to conflicts through the erosion interpersonal trust, which in turn breeds animosity
among members of a society.
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Last but not least, Chen (2017) reports findings from a lab experiment in which linguistic
diversification is observed. The design of the experiment follows closely of the model in this
paper. In the experiment, pairs of subjects endowed with a set of words, or vocabulary,
interact repeatedly in a series of underlying games, in which they use the words to signal
their intended action. The underlying games are either coordination or zero-sum, and the
subjects are allowed to modify their vocabularies by learning words from their counterpart
and creating new words. The author observes that, over time, the pairs of vocabularies
in coordination games tend to converge, while in zero-sum games, the vocabularies experi-
ence constant pressure to diverge. These findings provide strong support for the theoretical
predictions made in this paper.

2.3 Model

Groups residing in a region interact myopically in every period. There are three types
of interactions—cooperative, competitive, and null—which we use to model cooperation,
competition, and no interactions, respectively. The probability of each type of interaction
occurring is determined by the geographic environment, which is captured by a fixed, ex-
ogenous, region-wide parameter, and a measure of distance between the interacting groups.
The payoffs of the interactions depend on the groups’ understanding of each other’s dialects.
Therefore, at the beginning of a period, the groups, anticipating the type of interactions they
may be involved in, choose to update their existing dialect by either learning words from
other groups or inventing new linguistic expressions. These linguistic changes, as well as the
region’s linguistic composition, in turn determine the groups’ payoffs in the periodic inter-
actions.9 The geographic parameters are constant over time, while the linguistic variables,
to be introduced in subsection 2.3.2, are in general time varying. We use a superscript t on
the linguistic variables to index time. However, in this and the next section, where it is clear
from the context that the variable refers to one in a particular period t, we may suppress
this time index.

2.3.1 Geography

In this subsection, we impose a geographic structure on a region. This structure will allow
us to discretely count the dialects and languages and to determine whether two groups speak

9A region’s linguistic composition is a description of which group speaks which language, and how much
each group understands of the other groups’ dialects. The term is formally defined in 2.5.
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Figure 2.1: Neighborhood Illustration

the same language. A region of size normalized to 1 is populated by groups from the set
G = {1, . . . , G}, where G = 2n, n ∈ N∪ {0}. Each group i ∈ G controls a site in the region.
To model distances between sites, we introduce a neighborhood structure analogous to a
binary tree, as depicted in Figure 2.1. A degree 1 neighborhood is inhabited by two groups;
they are each other’s closest neighbors. A degree 2 neighborhood consists of two degree 1
neighborhoods, or four groups; and a degree k neighborhood consists of two degree k − 1
neighborhoods. Hence, there are 2k groups living in a degree k neighborhood.

The degree of neighborhood between two groups can be loosely interpreted as a measure of
the travel time between them, including both distance and geographic barriers. For example,
we can think of Sub-region 1 in Figure 2.1 as including a common meeting place,and the
degree 1 as a measure of the difficulty with which groups 1 and 2 (living in Sites 1 and 2)
reach the meeting place. In this example the Region (or degree 2 neighbourhood) includes
places for groups 1 or 2 to meet groups 3 or 4. Due to geographic barriers/distance this
degree 2 meeting place is assumed to be less accessible than a degree 1 meeting place.

For any two groups i and j, let dij ∈ {0, 1, . . . , D} denote the smallest degree neighbor-
hood i and j share.10 Then dij is a proxy for the traveling time for the members of group
i to meet with group j. A higher dij indicates a farther distance between groups i and j.11

10Trivially, dij = dji. Since any group is a degree 0 neighbor with itself, dij = 0 ⇔ i = j.

11The binary tree neighborhood structure is a highly stylized way to model distance between groups. We
choose this approach mainly for its tractability. This binary tree neighborhood structure allows us to use a
single parameter, d, to keep track of both the distance between any two groups and the number of groups
within a particular degree of neighborhood (2d). The latter feature is useful in proving 2.1, and subsequently
establishing the existence of a steady state.
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As will be clear in subsection 2.3.3, the higher a pair’s neighborhood degree, the less likely
they will interact in a given period. D is the highest degree of neighborhood possible in the
region (in Figure 2.1, for example, D = 2). Thus, D = log2G, or equivalently, G = 2D.

2.3.2 Language

For simplicity, we model a language as a list of sound-meaning pairs, which we call linguistic
elements. Let L be the set of all possible linguistic elements.12 For technical convenience,
we assume that L = R.13 Let B be the Borel σ-algebra on R, and | · | be the Lebesgue
measure on (L ,B). Therefore, (L ,B, | · |) forms a measure space.

Definition 2.1. A dialect spoken by group i at the beginning of period t is a non-empty,
measurable (with respect to | · |) subset Lti ⊂ L with a finite measure |Lti| < ∞. Let
Lt0 = L \ ⋃k∈G L

t
k denote the set of linguistic elements that are not used in any dialect.

Group i can choose to enrich its dialect in two ways: (i) adopting linguistic elements
from other groups’ dialects, i.e. from {Ltj \ Lti : j 6= i}, or (ii) acquiring elements from Lt0,

which are not in use by any group.
Denote by Et

i the set of linguistic elements i learns from other groups’ dialects. We write

Et
i =

⋃
k∈G \{i}

Et
ik

where Et
ik ⊆ Ltk \ Lti is the (possibly empty) set of linguistic elements adopted from Ltk

by i. Assume that each Et
ik is measurable. A non-empty Et

i indicates that group i is
adopting/learning part of other groups’ vocabulary. This captures, for example, the adoption
of English words by Spanish as discussed in section 2.5.

Let N t
i ⊆ Lt0 denote the set of linguistic elements i acquires from Lt0. Again, each N t

i is
measurable.14 We further assume that groups acquire elements from Lt0 in an uncoordinated
fashion, and therefore that N t

i and N t
j are disjoint (up to a subset of measure zero) for any

12That is, L contains all possible sound-meaning pairs. For example, “perro”-dog, “haha”-dog, “cat”-dog
and “dog”-dog would be four of the elements of L . Note also that L is not time dependent.

13We do not require a notion of closeness of any two linguistic elements, however. Using an alternative
assumption—letting L be countable—will not change our results qualitatively. It is just awkward to work
with a discrete set.

14In the remainder of the paper, whenever we refer to a subset of L , we assume that it is measurable,
unless otherwise noted.
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i and j.15 The latter assumption is plausible, in that Lt0 is of an infinite measure while each
N t
i has a finite measure, and so it is unlikely that any two groups would adopt the same

subset of elements from Lt0 when their actions are uncoordinated. This type of learning can
be thought of as people in group i inventing new expressions for their own dialect.

We consider several dialects to be variants of the same language if they are sufficiently
similar, as follows:

Definition 2.2. A subset G̃λt ⊆ G of groups speak the same language λt at the end of period
t if Lti ∪ Et

i = Ltj ∪ Et
j, up to a subset of measure zero for all i, j ∈ G̃ t. The language λt is

defined as the set λt = ⋃
k∈G̃λt

(Ltk ∪ Et
k ∪N t

k).

Thus, two dialects are deemed the same language if they consist of the same set of linguis-
tic elements acquired either through inheritance from a previous generation (i.e. elements in
the set Ltk) or learning (i.e. elements in the set Et

k).16

Elements in N are linguistic innovations, as discussed in subsection 2.3.3, and often
considered to be new “slang”. By counting English as a single language we declare Canadian
English and American English, for example, to be the same language. These two variants
of English, however, are by no means identical. What distinguishes them, differences in
spelling, accent, language use, etc., exist partially due to the diverging force of competition.

15Note also that Lti, Eti and N t
i are disjoint pairwise. The names of the sets are chosen to signify their

properties: E stands for “existing”, so elements in Eti are chosen from existing dialect (other than Lti); and
N stands for “non-existing”, so that it contains elements that are not from an extant dialect.

16Some readers may wonder why we choose Lti ∪Eti = Ltj ∪Etj , as opposed to Lti = Ltj (or Lti ∪Eti ∪N t
i =

Ltj ∪ Etj ∪N t
j ), as the criterion of similarity between i and j’s dialects. Our choice is based on two reasons.

First, languages evolve continually, and so it is unlikely for two dialects—in our model as well as in reality—
to be identical at any point in time. Therefore, Lti = Ltj as a criterion of similarity, which requires i and
j’s dialects to be identical up to a subset of measure zero, would be too stringent. Second, in our model,
especially the dynamic part in subsection 2.4.2, groups learn and invent linguistic elements in every period.
In this setting, Lti ∪Eti = Ltj ∪Etj is the most similar two dialects can get at the end of a given period. Hence
2.2 is already using a very strict criterion.
2.2 is also consistent with the two criteria of language classification in the Ethnologue (see footnote 35):

common ethnolinguistic source and mutual intelligibility. Every language has many variants, and these vari-
ants contain features specific to a particular linguistic group. The degree of similarity of pairs of variants
is of a continuous nature. Above some arbitrary degree of dissimilarity, variants are referred to as distinct
dialects, and above a second but higher arbitrary degree of dissimilarity they are counted as distinct lan-
guages. In defining language and dialect, the Ethnologue makes the following comment: “Every language is
characterized by variation within the speech community that uses it. Those varieties, in turn, are more or less
divergent from one another. These divergent varieties are often referred to as dialects. They may be distinct
enough to be considered separate languages or sufficiently similar to be considered merely characteristic of
a particular geographic region or social grouping within the speech community.” (Lewis et al., 2013) The
elements in N t

i and N t
j represent exactly this aspect of dialects; their presence does not disqualify dialects

from being counted as a single language.
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Hence, we consider it appropriate to ignore elements in N t
i and N t

j when judging whether
groups i and j speak the same language.

Defining a language in this way allows us to determine the speakership of each language,
and then count the number of languages in the region. This can be done for any period,
and becomes particularly important in subsection 2.4.2, when the model is extended to a
dynamic setting where speakerships may change from period to period.

The cost of acquiring new linguistic elements within a period depends on the sizes of
the sets acquired, Et

i and N t
i ,17 and is assumed to have the following (time independent)

functional form:
C
(
|Et

i |, |N t
i |
)

= c(|Et
i |) + c(|N t

i |)

where c : [0,∞] → R ∪ {∞} is a strictly increasing and strictly convex function with
c(0) = 0.18 Assume that c is the following quadratic:

c(| · |) = 1
2 | · |

2, (2.1)

where | · | is the measure of a set. Convexity represents the increasing marginal costs that
are likely to occur with such activities.

2.3.3 Strategic Interactions

Each pair of groups in the region interacts periodically in one of three activities: cooperation,
competition, or non-interaction.19

17In this paper, we use the words “size” and “measure” interchangeably.

18This functional form assumes that there is no complementarity between the costs of the two modes
of acquisition. Learning another language and inventing new expressions occur in very different contexts.
Learning happens in an inter-group environment, in which multiple groups must spend time together; whereas
inventing occurs in an intra-group context, where members of a single group spend time together inventing
novel linguistic expressions. The social and mental resources required for engaging in these activities seem
different enough to justify a zero cross-partial derivative.We do not believe that relaxing the additive sep-
arability assumption would change our results in a qualitative way. At the very least, we conjecture that
our conclusions would still hold if we allow for a sufficiently small cross partial between the costs in the two
modes of acquiring new linguistic elements.

19This subsection deals with what happens in a typical period t, so we suppress the superscript t on the
linguistic variables.
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Formally, we model a cooperative interaction as a pair of groups trying to coordinate
on accomplishing some task using language. The expected payoff from a cooperation is
increasing in the measure of the intersection (Li ∪ Eij) ∩ (Lj ∪ Eji).20

The intuition is that, since i and j use language to coordinate their actions, the more
linguistic elements they have in common, the more accurate their communication will be,
and consequently the better the two groups will perform in the cooperative interaction. As
we show in section B.1, i’s expected payoff from the cooperative interaction has the following
reduced form:

ui(Ei, Ej) = |(Li ∪ Eij) ∩ (Lj ∪ Eji)|. (2.2)

Observe that Ni and Nj do not affect ui. It would thus be equivalent to define ui as
|(Li ∪ Eij ∪Ni) ∩ (Lj ∪ Eji ∪Nj)| , since Ni ∩ (Lj ∪ Eji ∪Nj) = ∅.

A competitive game represents a situation where the two groups are antagonistic towards
each other, for example when they are competing over the use of resources.21

We formally model the competitive game as a form of zero-sum game. The role of
language in this context is to communicate within a group itself, for example for group i

to organize a show of strength, an attack, or a plan for defense. With positive probability,
i’s within-group communication may be intercepted/overheard by someone from group j.
If members of group j know a large portion of the elements in i’s dialect, there is a high
probability that an intercepted communication will be understood and used to group i’s
disadvantage. We show in section B.1 that the expected payoff from the competitive game
has the following reduced form:

vi(Ei, Ni, Ej, Nj) = β [|(Li ∪ Ei ∪Ni) \ (Lj ∪ Ej)| − |(Lj ∪ Ej ∪Nj) \ (Li ∪ Ei)|] . (2.3)

This is the difference between how much of i’s dialect is private from j, and how much of
j’s dialect is private from i. The first term in the square brackets captures i’s ability to conceal
information from j, and the second term reflects j’s ability to conceal information from i.
Therefore, i’s expected payoff from the competitive game is increasing in the former and

20See section B.1 for an explanation

21See, for example, Dawson (1891). The real world counterparts to this game, however, need not involve
actual violence.
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decreasing in the latter.22 The parameter β represents the relative magnitude of competitive
payoffs vs. cooperative payoffs. Note also that vi(·) = −vj (·).

The null game can be interpreted as a scenario in which i and j do not interact. When
a pair of groups play a null game, each gets a payoff of zero with certainty.

For any matched pair i and j, the probability of a cooperative interaction occurring is
pij, a competitive game qij, and a null game 1− pij − qij. These probabilities are related to
the distance between i and j, dij, and the geography of the region through a parameter r
which summarizes the region’s geographic conditions.

Let the relative probability of the cooperative vs. competitive game in a given period be

pij
qij

= r, (2.4)

where r is exogenous and constant throughout the region.23 The fraction pij/qij is the
defining characteristic of the region and is the same for all pairs i, j ∈ G .

Let π : {0, . . . , D} → [0, 1] be a function that relates the geographic distance between
i and j, dij, to the probability that these two groups will interact either cooperatively or
competitively, i.e. pij + qij. Then, the probability of i and j playing a null game, i.e. they
do not interact in a period, is

1− pij − qij = 1− π(dij). (2.5)

We assume that π (·) satisfies the following property:

π(d)
π(d+ 1) ≥ 2d, ∀d ∈ {0, . . . , D} (2.6)

with the requirement that π(0) = 1.24 Property (Equation 2.6) implies that π(·) is a de-
creasing function. Thus, the farther apart two groups are geographically (i.e. the larger dij
is), the less likely they will interact with each other. Furthermore, property (Equation 2.6)

22Notice that the functionality distinction is only relevant in a cooperative game. Thus, even if both i and
j learn the same (measurable) subset of elements from a third group k, knowledge of that subset of elements
does not affect the payoffs of a competitive game between i and j.

23Our theory does not depend critically on the relationship between r and any specific geographic variables,
as long as it is determined jointly by a set of relevant geographic factors, and is roughly constant throughout
the region. For example, a high r could mean high complementarity between the resources in the region, so
that groups need to cooperate in order to produce final goods or diversify their diet.

24An example would be π(d) = γ2−d(d−1)/2, where γ = π(1) ≤ 1.
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requires that the probability of interaction between any two groups drops sufficiently fast as
the distance between them increases. In other words, we assume that the probability of a
group interacting with one degree d neighbor is greater than the sum of the probabilities of
interacting with all of its degree d+ 1 neighbors.25

Together, (Equation 2.4) and (Equation 2.5) imply that

pij = r

1 + r
π(dij) and qij = 1

1 + r
π(dij). (2.7)

The parameter r and the set of pairwise distance measures, {dij : i, j ∈ G } are exogenous
and constant over time. They are also common knowledge. Within a given period, each
group plays a total of G − 1 games, one with every other group in the region. In every
period, therefore, a total of G(G− 1)/2 games are played.

The timing of events within a period, illustrated by Figure 2.2, is as follows:

1. At the beginning of a period, each group observes {|Lj \Li| : i, j ∈ G }. In other words,
each group knows the measure of the set that exists to be learned from every other
group’s dialect.

2. {Ei}i are chosen simultaneously.

3. {Ni}i are chosen simultaneously.

4. A period game is then drawn for every possible pair of groups, according to the prob-
abilities described in (Equation 2.5) and (Equation 2.7).

5. Lastly, all G(G− 1)/2 games are played, and payoffs are realized.

In subsection 2.4.1, we derive a group’s optimal decisions, N∗i and E∗i , for a typical period.
In subsection 2.4.2, we examine the long run implications of these short run results.

2.4 Results

2.4.1 Short Run

Our first result establishes the optimal size of Ni for every group i. We show that each N∗i ,
the optimal subset of linguistic elements acquired by group i from L0, has the same measure.

25This assumption is necessary for the proof of 2.1, which shows that i always prefers to learn, when
possible, from a closer neighbor’s dialect than from a farther neighbor’s. Without this simplifying assumption,
we would lose tractability when characterizing the equilibrium.
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Figure 2.2: Timing of events in a typical period t

Proposition 2.1 (Optimal size of Ni). For i ∈ G , we have |N∗i | = |N∗|, where

|N∗| = β

1 + r

D∑
k=1

2k−1π(k). (2.8)

Proof. From (Equation 2.2) and (Equation 2.3), the ex ante expected payoff of group i is

Ui(·) =
∑
j 6=i

pij [|(Li ∪ Eij) ∩ (Lj ∪ Eji)|]− c(|Ei|)

+
∑
j 6=i

βqij [|(Li ∪ Ei ∪Ni) \ (Lj ∪ Ej)| − |(Lj ∪ Ej ∪Nj) \ (Li ∪ Ei)|]− c(|Ni|). (2.9)

Observe that only the second line involves Ni. Thus group i’s maximization problem is

max
|Ni|

∑
j 6=i

βqij [|(Li ∪ Ei ∪Ni) \ (Lj ∪ Ej)| − |(Lj ∪ Ej ∪Nj) \ (Li ∪ Ei)|]− c(|Ni|).

Since the marginal benefit is positive everywhere, cost is strictly convex in |Ni|, and c′ (0) = 0,
there exists a unique interior maximum. The maximum is given by the first order condition
where marginal cost is equal to marginal benefit.26 Notice that marginal benefit of |Ni| is
constant, described by

β
∑
j 6=i

qij = β
∑
j 6=i

1
1 + r

π(dij) = β

1 + r

D∑
k=1

2k−1π(k),

where the first equality follows from equation (Equation 2.7) and the last equality follows
from the fact that i has 2k−1 degree k neighbors. The marginal cost of acquiring elements is

26Linear benefit and strictly convex cost ensures that the second order condition holds as well.
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Figure 2.3: Optimal |N∗i |

just |N∗|, according to (Equation 2.1). Therefore condition (Equation 2.8) is precisely the
first order condition. Since the problem is symmetric for every i, it follows that (Equation 2.8)
holds for all i ∈ G .

The intuition for this result is the standard marginal analysis in economics, as depicted
in Figure 2.3. Acquiring linguistic elements from L0 means inventing new expressions that
no other groups but i can understand. Doing so enhances i’s ability to keep secrets from all
other groups, which in turn raises i’s expected payoff in all of its competitive games. The
marginal benefit is therefore the sum of the probabilities of playing a competitive game with
each other group in the region, weighted by the relative magnitude of competitive payoffs to
cooperative ones, β. At the (interior) optimum, the marginal benefit must equal marginal
cost of inventing new linguistic expressions. Observe that |N∗| depends only on r, β and D,
which are all exogenous parameters and constant over time. Therefore, |N∗| is constant over
time as well.

To obtain a similar characterization for |E∗i |, we need to put some structure on the initial
set of dialects, {Li}i∈G . Specifically, we restrict attention to sets of dialects that are localized,
as defined below.

Definition 2.3 (Localization). The set of dialects {Li}i∈G is localized if the following con-
dition is satisfied:

` ∈ Li \ Lj ⇒ ` /∈ Lk, ∀i, j, k ∈ G such that dij < dik. (2.10)
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Localization means that if there is an element that a group j can learn from Li, then that
element cannot also be in the dialect of any of i’s and j′s mutually farther neighbors.27 In
other words, localization requires that whenever Li and a distant neighbor’s dialect Lk have
a common element, then all the dialects of i’s closer neighbors must also have that element.

Localization captures the intuition that it is very improbable for two distant languages
to independently develop a common word-meaning pair. Evidence from historical linguistics
suggests that the elements of pre-colonial languages at least roughly satisfy the localization
property. When a linguistic group splits into two, the speakers of the two new dialects
naturally tend to live close together. Studies of the Indo-European languages, for example,
found that languages with a more recent common linguistic ancestor—e.g. Spanish and
Portuguese, both of which share many common features of Latin, their “parent language”—
are also geographically close to each other (Finegan, 2008).

According to Pagel et al. (2007), “[l]anguages, like species, evolve by a process of descent
with modification”. Linguistic divergences are also commonly represented as trees, similar
to those relating biological species (Kruskal et al., 1971; Pagel, 2000; Esteban et al., 2012).
Suppose that i and j have a more recent common linguistic ancestor than i, j, and k.
An element that satisfies any one of the three following conditions satisfies the localization
property: i) all three retain the element from a common ancestor, ii) an ancestor of both
i and j split from k and then acquired it before i and j split from each other, or iii) any
element acquired by a single group after all three had split.

There is also a theoretically appealing reason for our focus on symmetric and localized
sets of dialects. As we show later in 2.2, if the region begins with a set of symmetric and
localized dialects, then the set of dialects will always be symmetric and localized. If all
groups in a neighborhood of some degree d ∈ {0, 1, . . . , D} speak the same language, then
the set of dialects is localized. Localization, however, holds for a much more general set of
dialects.

Assuming localization enables us to establish the order in which a group i learns from
existing dialects. This order is closely connected to the magnitude of the marginal benefit of
learning a subset of another dialect. Let MBi(dij, s) = 2dij−s(pij +βqij) denote the marginal

27It is worth noting that both i and j are equally distant from k when dij < dik. In Figure 2.1, suppose
i, j, k are Sites 1, 2, and 3, respectively. Sites 1 and 2 are degree 1 neighbors with d12 = d21 = 1, and both
are degree 2 neighbors of Site 3 with d13 = d23 = 2. Thus, d12 < d13 implies that d21 < d23.
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benefit that i receives from learning a subset of elements that is shared by 2dij−s neighbors
of degree dij, where s ∈ {1, . . . , dij}.28

Lemma 2.1 (Order of Learning). Suppose the set of dialects {Li}i is localized. Then,
MBi(dij, s) is decreasing in dij. As a result, it is always optimal for i to learn all of

⋃
j(Lj\Li)

before learning anything from
⋃
k(Lk \ Li), where j, k are such that dij < dik.

Proof. From 2.3 and equation (Equation 2.2), it follows that after learning all the elements
of all the languages where d < dij, learning a subset of elements Eij ⊆ Lj \ Li is only
going to affect i’s payoff when it is interacting with neighbor(s) of degree dij. According to
(Equation 2.9) and (Equation 2.7), therefore, given an arbitrary dij ∈ {1, . . . , D},MBi(dij, s)
is at least

pij + βqij = r + β

1 + r
π(dij), (2.11)

as is the case when s = dij, and at most

2dij−1(pij + βqij) = 2dij−1
(
r + β

1 + r
π(dij)

)
, (2.12)

as is the case when s = 1. s = 1 is the case where all of i’s degree dij neighbors know
the element, so it will be useful in games with any of them. Observe that (Equation 2.11)
and (Equation 2.12) are the same when dij = 1, because i only has one degree 1 neighbor.
Observe also that the lowest marginal benefit of learning from a degree dij neighbor, i.e.
MBi(dij, dij), is higher than the highest marginal benefit of learning from a degree dij + 1
neighbor, i.e. MBi(dij + 1, 1):

r + β

1 + r
π(dij)− 2(dij+1)−1

(
r + β

1 + r
π(dij + 1)

)
≥ 0, ∀dij ∈ {0, . . . , D}.

The inequality follows from (Equation 2.6). This completes the proof.

28Localization, together with symmetry of dialects (see 2.4), imply that within each degree dij neighbor-
hood, MBi(dij , s) has at most dij values, and s indicates the sth highest value. Take dij = 3 for example.
Group i has four neighbors of degree 3. Symmetry and localization require that any linguistic element i
learns must be either (i) commonly shared by all four neighbors, (ii) shared by two groups (who are degree
1 neighbors with each other), or (iii) unique to one of the four groups. Hence, the three possible values of
MBi(3, s) would be, from the highest to lowest, MBi(3, 1) = 4(pij + βqij), MBi(3, 2) = 2(pij + βqij), and
MBi(3, 3) = (pij + βqij). Bear in mind that some of these steps need not exist. For example, when Li = Lj
(up to a subset of measure zero) for all i, j ∈ G , MBi(dij , s) = 0 for all dij . If not all dialects in the region
are identical, however, symmetry and localization implies that the lowest step always exists.
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2.1 allows us to partition the set of i’s learnable elements,
⋃
k(Lk \ Li), according to the

marginal benefit they confer, and hence the neighborhood degrees. Let

Pi(d) =

{
⋃
k (Lk \ (⋃k′ Lk′)) : dik = d and dik′ < d} if d ∈ {1, . . . , D}

∅ if d = 0

describe the elements of this partition.
Pi(d) is the set of learnable linguistic elements in the dialects of i’s degree d neighbors,

excluding the elements that are in the dialects of i’s closer neighbors, of degrees less than d.
Note that elements of i’s own language are never learnable to i; since i is a degree 0 neighbor
with itself, Pi(d) ∩ Li = ∅ for all d. Moreover, for any d 6= d′, Pi(d) and Pi(d′) are disjoint.

It follows, therefore, that |⋃d Pi(d)| = ∑
d |Pi(d)|. By 2.1, it also follows that, for any

A ⊆ Pi(d) and A′ ⊆ Pi(d′) where |A| = |A′| and d < d′, the marginal benefit of learning |A|
is strictly greater than that of learning |A′|. Moreover, each Pi(d) can be further partitioned
into d cells, based on how many neighbors of degree d share those elements.

By the definition of MBi(dij,s), the more neighbors sharing an element, the higher the
marginal benefit that element confers. Therefore, assuming localization, we can order i’s set
of learnable elements by their associated marginal benefits: first by neighborhood degree d,
and then by s within each Pi(d). Such an ordering, together with 2.1, implies that as |Ei|
increases, marginal benefit decreases in a step-wise fashion.

Proposition 2.2 (Optimal size of E∗i ). Let the set of dialects {Li}i be localized. The optimal
size of E∗i is contained within the following interval:

|E∗i | ∈
[
d∗∑
k=0
|Pi(k)|,

d∗+1∑
k=0
|Pi(k)|

)
,

where d∗ ∈ {0, . . . , D} is determined by

r + β

1 + r
π(d∗) ≥

d∗∑
k=0
|Pi(k)| and

r + β

1 + r
π(d∗ + 1) <

d∗+1∑
k=0
|Pi(k)|. (2.13)

Our dynamic results in subsection 2.4.2 do not require that we know the exact value of
|E∗i |, only the degree of neighborhood d∗ within which i chooses to learn all the remaining
elements of its neighbors dialects.

Proof. First, observe that a unique |E∗i | exists. The size of acquired elements from existing
dialects, |Ei|, takes a value from a compact set

[
0,∑D

k=0 |Pi(k)|
]
, on which the objective

function (Equation 2.9) is continuous. Hence a maximum exists. Since marginal benefit
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Figure 2.4: Optimal |E∗i |

is weakly decreasing in |Ei| while marginal cost is strictly increasing, uniqueness of |E∗i | is
ensured. Figure 2.4 provides an illustration.

We can verify that |E∗i | is indeed bounded by the proposed interval through the first order
condition. Notice that the benefit function is an increasing, piece-wise linear function that is
not differentiable at a finite number of points, namely the points at which marginal benefit
makes a discrete jump downwards. Nevertheless, for each value of |Ei|, there exists a set of
(super-)derivatives for the benefit function, bounded by the left- and right-derivatives at |Ei|,
and the set is a non-singleton at the points where the benefit function has a kink. The first
order condition requires that at |E∗i |, there exists a (super-)derivative of benefit function that
is equal to the derivative of the cost function (the latter of which is uniquely defined at every
|Ei|). Moreover, it has to be true that (i) at |Ei| =

∑d∗

k=0 |Pi(k)|, marginal benefit is weakly
higher than marginal cost; and (ii) at |Ei| = ∑d∗+1

k=0 |Pi(k)| marginal cost exceeds marginal
benefit. But according to (Equation 2.13), d∗ is chosen such that these two conditions
are simultaneously satisfied. The marginal benefit of learning the last element in Pi(d∗) is
described by (Equation 2.11); for otherwise i would have learned it sooner. The marginal
cost of learning this last element is

∑d∗

k=0 |Pi(k)|. Therefore, equation (Equation 2.13) ensures
that d∗ is chosen such that the marginal benefit of learning the last element in Pi(d∗) is higher
than the marginal cost. However, the marginal cost exceeds the marginal benefit if Pi(d∗+1)
is fully acquired.

We know |Ei| =
∑d∗

k=0 |Pi(k)| when everything up to and including Pi(d∗) is fully learned
and |Ei| = ∑d∗+1

k=0 |Pi(k)| when everything up to and including Pi(d∗ + 1) is fully learned.
Therefore, |E∗i | must lie between these two values.
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Corollary 1. At the optimum, group i will acquire (i) all the learnable elements from its
neighbors with degree smaller than or equal to d∗; (ii) a proper subset of learnable elements
from its degree d∗+ 1 neighbors; and (iii) no elements from its neighbors with degree greater
than d∗ + 1.

Proof. This follows directly from 2.1 and 2.2.

Furthermore, if the region’s dialects satisfy a symmetry condition, then 2.2 immediately
implies that all groups learn the same measure of elements in a typical period.

Definition 2.4 (Symmetry). The set of dialects {Lti}i∈G is symmetric at t if the following
two conditions are satisfied:

|Lti| = |Ltj|, ∀i, j ∈ G (2.14)

|Lti ∩ Ltj| = |Lti ∩ Ltk|, ∀i, j, k ∈ G such that dij = dik. (2.15)

Condition (Equation 2.14) requires that the measure of each dialect is the same. Condi-
tion (Equation 2.15) requires that the intersection of any dialect Lti with that of any equally
distant neighbors has the same measure.

Corollary 2. If the set of dialects {Li}i is symmetric and localized, then the optimal size of
E∗i is the same for all groups in any given period, i.e. |E∗i | = |E∗| for all i ∈ G .

Proof. This follows directly from the properties of symmetry and localization of the set of
dialects, and the symmetry of each group’s decision.

While 2.2 makes no requirement about which subset of the degree d∗ + 1 neighbors’
dialects a group should learn, we make two assumptions about how groups learn from their
d∗+1 neighbors’ dialects. The first assumption ensures that the set of dialects stay symmetric
and localized in the subsequent period, so that results derived in this section can be applied
to analyze long-run properties of the region’s languages in a dynamic context. The second
assumption enables us to use the definition of same language (i.e. 2.2) consistently in the
dynamic setting.29

Assumption 5. When a group is indifferent between learning from several dialects, it will
learn the same measure of elements from each of them; the elements learned are chosen
randomly from the set of learnable elements in those dialects.

29Without 6, we would have to modify the criterion for same language to a slightly more complicated
version: Lti ∪

(⋃dt∗

k=1 Eik

)
= Ltj ∪

(⋃dt∗

k′=1 Ejk′
)
. The other aspects of the model are unaffected by this

assumption.
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Assumption 6. All groups within a degree d∗ neighborhood learn the same subset of ele-
ments from their degree d∗ + 1 neighbors.

Notice that the characteristics of the set of learnable elements may vary from period to
period. Consequently, unlike |N∗|, |E∗| need not be the same across time.

2.4.2 Long Run

In this subsection, we examine the long run implications of the model. Suppose that a period
represents a human generation of approximately twenty years. Each new generation of group
members inherits the dialect of the previous generation, and then may choose to learn from
the neighbors’ dialects as well as to invent novel expressions.

We assume that groups are myopic, so that each generation is only interested in payoffs
in the current period.30

Myopic play implies that each group’s decision in any given period is characterized in
subsection 2.4.1. This allows us to analyze the trajectory of a region’s linguistic composition
over generations.

Definition 2.5. The linguistic composition in the region at time t is the set

Λt =

(λ, G̃λ) : λ =
⋃
k∈G̃λ

(Ltk ∪ Et
k ∪N t

k) where G̃λ is

the set of groups speaking the same language λ

 .
Recall that the criterion for “same language” is given in 2.2. We are interested in the

steady state of a region’s linguistic make-up; that is, a linguistic composition that is stable
in the long run. We denote such a composition Λ, wherein each language λ ∈ Λ is spoken
by the same subset of groups G̃λ ⊆ G in every subsequent period.31 Henceforth, we use a
superscript t on the variables to index time. In accordance with 2.2, we formally define a
steady state as follows:

30This assumption frees us from considering repeated game effects. Group myopia over payoffs is not
implausible. Group membership in small scale societies is fluid across generations. Most small scale societies
are patrilocal or matrilocal, so adults expect that approximately half of their offspring, at maturity, will
leave for another group.

31Note however that the languages themselves will not be the same; they will grow in size over time,
according to the results in subsection 2.4.1.
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Definition 2.6. The region’s linguistic composition is in a steady state if for all t,

Lti ∪ Et
i = Ltj ∪ Et

j ⇒ Lt+1
i ∪ Et+1

i = Lt+1
j ∪ Et+1

j (2.16)

and
Lti ∪ Et

i 6= Ltj ∪ Et
j ⇒ Lt+1

i ∪ Et+1
i 6= Lt+1

j ∪ Et+1
j (2.17)

for all i, j ∈ G .32

A linguistic composition is in a steady state if the following two conditions hold: (i) every
pair of groups i, j that speak the same language in any period t will continue to speak the
same language in t+ 1; and (ii) every pair i, j that do not speak the same language in t will
not speak the same language in t+ 1. Therefore, a steady state of the linguistic composition
is a set Λ of languages, each of which is spoken by the same subset G̃λ of groups over time.

Recall from subsection 2.3.3 that the order of events in a typical period t is as follows:

1. {|Ltj \ Lti| : i, j ∈ G } is observed by all groups.

2. {Et
i}i are chosen simultaneously.

• The number of languages for period t, #(Λt), is counted at this point.33

3. {N t
i }i are chosen simultaneously.

• The set of dialects at the beginning of period t+ 1, {Lt+1
i }i = {Lti ∪Et

i ∪N t
i }i, is

determined at this point.

4. A period game is drawn for every possible pair of groups according to (Equation 2.5)
and (Equation 2.7).

5. The period games are played, and payoffs are determined based on {Lti, Et
i , N

t
i }i.

For the results in subsection 2.4.1 to apply in every period, it must be the case that the
set of dialects is symmetric and localized at the beginning of every period. The following
lemma shows that if {Lti}i satisfies symmetry and localization in the initial period, it will
continue to do so in subsequent periods.

32In our model, the sizes of the languages are growing over time. Hence, the steady state of a linguistic
composition is steady in the sense that each language in the composition has a stable speakership.

33#(Λ) is the number of elements in Λ.

65



Lemma 2.2. Suppose {Lti}i is symmetric and localized. Then {Lt+1
i }i is also symmetric and

localized.

The proof of this lemma can be found in subsection B.2.1.
Before we state our main dynamic results, it helps to define an important value, d. As we

will state formally in 2.4 and 2.5, d is the threshold value of neighborhood distance. Groups
with dij ≤ d will speak the same language in the steady state, and groups with dij > d will
speak different languages.

Definition 2.7. Define d as an element of {0, . . . , D} that satisfies the following condition:

r + β

1 + r
π(d) ≥

d∑
k=0
|P t
i (k)| and

r + β

1 + r
π(d+ 1) <

d+1∑
k=0
|P t
i (k)|, (2.18)

where

|P t
i (k)| =

2k−1|N∗| if k ∈ {1, . . . , d}

0 if k = 0

and |P t
i (k)| ≥ 2k−1|N∗| if k ≥ d+ 1.

The particular neighborhood distance d has some special properties. The next proposi-
tion, for example, establishes that if dij > d for a pair of groups i, j, then their languages
will, in some sense, become less similar over time. This is because the size of the set that j
invents every period, |Nj|, will always be larger than the size of the set that i learns from j,
|E∗ij|. With each passing period, the set of elements that i speaks but j doesn’t will become
larger. Due to symmetry, the set of elements that j speaks but i doesn’t will also become
larger.

Proposition 2.3. If dij > d then |E∗ij| < |Nj|. Thus, |Lj \ Li| increases every period.

The proof can be found in subsection B.2.2. 2.3 is a result regarding the trajectory of
a pair of languages. From (Equation 2.5), π (d) is the probability of a non-null interaction
occurring between the groups. According to (2.6), π (·) is a decreasing function of d, so
the further apart i and j are geographically, the less they interact. 2.3 establishes that if
meaningful interactions between i, j are sufficiently infrequent, that is, if d is high enough,
their dialects will become less and less similar over time. This process might look empirically
similar to linguistic drift, as both types of divergence theoretically decrease with frequency
of interaction.

The next proposition builds on the results of 2.3, establishing that if dij ≤ d, and i,j
begin by speaking the same language, then their languages will continue to be the same.
That is, in every period i will learn all of j’s newly invented elements, and vice versa.
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Proposition 2.4 (Existence and characterization of a steady state). There exists a steady
state, Λ, which is characterized by the following condition:

Lti ∪ Et
i = Ltj ∪ Et

j ⇔ dij ≤ d, ∀i, j ∈ G , (2.19)

where d ∈ {0, . . . , D} is determined by (Equation 2.18).

The proof of this proposition can be found in subsection B.2.3. The proposition estab-
lishes that there is a steady state of the region’s linguistic composition which can be fully
described by a particular degree of neighborhood, d. In this steady state, all groups that are
members of the same d neighborhood speak the same language, and furthermore only groups
which are members of the same d neighborhood speak the same language. In other words, if
dij ≤ d then Li ∪ Ei = Lj ∪ Ej, and if dij > d then Li ∪ Ei 6= Lj ∪ Ej. Note that d depends
only the exogenous parameters of the model (|N∗| is also a function of those parameters).
Thus, d is constant over time.

Corollary 3 (Steady state number of languages). The number of languages in the steady
state is #(Λ) = G/2d.

Proof. This follows directly from condition (Equation 2.19). Each degree d neighborhood
is inhabited by 2d groups, and these groups share a common language in the steady state.
Since there are G groups, the number of languages in the steady state is therefore G/2d.

Next we turn our attention to convergence, showing that for a general set of initial
conditions, the linguistic composition converges towards the Λ described in 2.4.

Proposition 2.5. If {L0
i }i∈G is symmetric and localized, then after a finite number of peri-

ods, the steady state Λ is reached.

The proof of this proposition is presented in subsection B.2.4. This proposition says
that, after finitely many periods, i will learn the entire set of learnable elements from its
degree d neighbors and will therefore, by definition, speak the same language as each of
them. It is worth noting the two special initial linguistic compositions where all groups
have identical initial dialects or completely distinct ones both satisfy the symmetry and
localization conditions.

Every period, i learns a larger set of the languages of its d ≤ d neighbors than those
groups collectively invent. In other words, |E∗i | > 2d−1|N∗|. Suppose i does not initially
speak the same language as its d = 1 neighbor, and d ≥ 1. In the first period, i begins
“catching up” with its d = 1 neighbor, then later with its d = 2 neighbors, and so forth until

67



it has learned the entire set of learnable elements from its neighbors of degree d ≤ d. At this
point, Li ∪ Ei = Lj ∪ Ej holds for all of i’s d ≤ d neighbors.

From this point onwards, i learns at least 2d−1|N∗| elements every period, including all
those invented in the last period by its neighbors of degree d ≤ d. i may learn some elements
from its degree d+1 neighbors, but as was shown in 2.3, not as many as this set of neighbors
invents. For this reason, i never catches up with these neighbors.34 From Corollary 3,
#(Λ) = G/2d, therefore G/2d is the steady state number of languages. Last but not least,
since the steady state is uniquely determined by d, we conclude that it is the unique steady
state for the set of initial linguistic compositions that we consider.

2.4.3 Comparative Statics

Now we return to our original purpose: to show the effect of cooperative and competitive
incentives on the number of languages in a region. In this section, we establish the key
comparative static result for the number of languages in the steady state: #(Λ) is weakly
decreasing in r, the ratio of the probabilities of cooperative and competitive interactions.

Furthermore, we examine the results of exogenous changes in the geographic locations
of groups on the relationships between particular dialects. Specifically, we determine under
what circumstances such a change would alter the steady state identity of the dialects of an
arbitrary pair of groups.

Proposition 2.6. The steady state number of languages, #(Λ), is weakly decreasing in r.

In other words, the higher the regional ratio of the probability of cooperation vs. com-
petition, the fewer languages there will be in the region in steady state.

Proof. According to Corollary 3, #(Λ) = G/2d. We show that #(Λ) is weakly decreasing
in r by proving that d is weakly increasing in r. Recall that d is determined by (Equa-
tion 2.18). In particular, it must be the case that, for any d ∈ {1, . . . , D}, the first inequality

34The divergence of i’s language from those of its higher degree neighbors actually occurs immediately, as
a result of its choice of Ei in the first period.
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of (Equation 2.18) can be rearranged as follows:

r + β

1 + r
π(d) ≥ (2d − 1)|N∗|

r + β

1 + r
π(d) ≥ (2d − 1) β

1 + r

D∑
k=1

2k−1π(k) by (2.8)

(r + β) ≥ 2d − 1
π(d)

[
β

D∑
k=1

2k−1π(k)
]
. (2.20)

Similarly, for any d ∈ {0, . . . , D−1}, the second inequality of (Equation 2.18) can be written
as

(r + β) < 2d+1 − 1
π(d+ 1)

[
β

D∑
k=1

2k−1π(k)
]
. (2.21)

(Equation 2.20) and (Equation 2.21) together imply that

2d − 1
π(d)

[
β

D∑
k=1

2k−1π(k)
]
≤ r + β <

2d+1 − 1
π(d)

[
β

D∑
k=1

2k−1π(k)
]
, (2.22)

where the terms in the square brackets are independent of either r or d. Note that the
fraction (2k − 1)/π(k) is strictly increasing in k, because π(·) is decreasing. Thus, when the
increase in r is sufficiently large, d would also have to increase in order for (Equation 2.22)
to hold. Likewise, when the decrease in r is large enough, d needs to decrease as well to
satisfy (Equation 2.22). This completes the proof.

Proposition 2.7. The steady state number of languages, #(Λ), is not affected by multiplying
the probability of a non-null interaction, π (d) , by any positive constant, φ > 0.

Proof. The statement follows trivially from (Equation 2.22): note that a constant φ multi-
plying π(·) gets canceled out immediately.

This result shows that an exogenous change in the frequency of meaningful interactions
in the region, as long as it does not affect either the relative frequency of cooperative vs.
competitive interactions, r, nor the set of ratios π(d)/π(d+ 1), d ∈ {1, . . . , D− 1}, will have
no effect on the steady state number of languages in the region.
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2.5 Evidence

2.5.1 Stylized Facts

Fact 1: Linguistic diversity is related to geography. The Ethnologue, a common
reference for language classification, documents 7,105 human languages that are currently
spoken worldwide (Lewis et al., 2013).35 These languages are distributed very unevenly on
earth.Papua New Guinea, for example, accounts for only 0.3% of the world’s land mass, yet
it is home to 12% of all living languages. Australia, by contrast, accounts for 5.1% of the
world’s land area, but hosts merely 3% of its languages.36 Further examples of regions with
high linguistic diversity include sub-Saharan west Africa and south-central Mexico (Lewis,
2009).37 Examples of areas with low linguistic diversity include northern Asia, Australia, and
Brazil. In previous studies, scholars have documented relationships between geography and
linguistic diversity. The most notable among those studies, from an economics perspective,
is by Michalopoulos (2012), who finds that variance in land quality and in altitude are
positively and significantly correlated with linguistic diversity.

Scholars in several disciplines have documented empirical correlations between linguistic
diversity and various ecological and geographic factors. Using historical data on native North
American populations at the time of European contact, Mace and Pagel (1995) find a signif-
icant positive correlation between linguistic diversity and the diversity of mammal species,
both of which, in turn, exhibit a pronounced negative latitudinal gradient. On a global scale,
Harmon (1996) documents a positive correlation between linguistic and biological diversity.
Also on a global scale, Nettle (1998) identifies climate as a key factor influencing global lan-
guage distribution. In particular, he observes that areas with low rainfall and short growing

35The Ethnologue uses the ISO 639-3 standard, which classifies languages using a three-letter coding
system. The basic criteria that the Ethnologue uses to identify languages (as opposed to, for example,
dialects) are (i) mutual intelligibility between speakers of variants of a language; and (ii) existence of a
common literature or of a common ethnolinguistic identity. (Lewis et al., 2013) The criterion for including a
language in the Ethnologue is that it must be “known to have living speakers who learned [it] by transmission
from parent to child as the primary language of day-to-day communication”. (Lewis, 2009)

36These figures are the authors’ calculation based on data from WolframAlpha (www.wolframalpha.com)
and Lewis et al. (2013). Specifically, the world’s land area is 1.4894× 108 km2, that of Papua New Guinea is
462, 840 km2, and of Australia, 7.618× 106 km2. The number of languages currently in use is 836 for Papua
New Guinea and 245 for Australia.

37Following the precedent of Michalopoulos (2012), we use the term linguistic diversity to refer to the
number of languages in a region. Other terms, such as “language diversity” (Nettle, 1998; Pagel, 2000), and
“density of language groups” (Mace and Pagel, 1995), are also used to refer to similar though not necessarily
identical concepts.
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season sustain fewer languages. Michalopoulos (2012) shows that contemporary linguistic
diversity is related to geographic heterogeneity. He finds that variation in land quality (suit-
ability for agriculture) and in elevation are both positively and significantly correlated with
the number of languages in a particular region. Both Michalopoulos (2012) and Nettle (1998)
find that average precipitation is significantly positively correlated with linguistic diversity.

Fact 2: languages change over time. Furthermore, human linguistic diversity changes
over time. Pagel (2000) estimates that between 130,000 and 500,000 languages have been
spoken on this planet, and that linguistic diversity peaked between 20,000 and 50,000 years
ago. Despite this historical plurality, the number of languages is decreasing rapidly. Re-
cent evidence suggests that we are on a trend towards the “hegemony” of a few dominant
languages. It has been estimated that between 50% and 90% of the current languages will
not survive to the next century (Hale et al., 1992; Austin and Sallabank, 2011), although
there are also many examples of linguistic groups in the process of reviving their traditional
languages (Bentahila and Davies, 1993).

Another puzzle is the diversity of trajectory between pairs of languages or dialects. A
living language changes constantly, borrowing words from other languages, developing new
ones, and abandoning others. Each language has many variants, or so-called dialects, over
both space and time, such as Canadian English vs. Australian English, or Modern English vs.
Middle English. Two languages can merge into one. When they merge, within a generation
or two, the daughter language is referred to as a creole (Hall, 1966). A language may also
split and diverge many times. All of the 1, 200 modern Malayo-Polynesian languages, for
example, are believed to have descended from a common linguistic ancestor (Gray et al.,
2009).

There are abundant examples of cooperative incentives resulting in linguistic change.
During the colonial period, many linguistic groups developed new trading relationships with
each other. As a result, hundreds of ’pidgin’ languages emerged (Hall, 1966). Pidgins are
informal linguistic hybrids that arise when two groups of formerly isolated peoples need to
communicate extensively with one other. In subsequent generations, a pidgin may become
a creole, which has a more formal set of vocabulary and grammatical rules and serves as
a first language for many people. Some examples of creoles are the Chavacano language
in the Philippines, Krio in Sierra Leone, and Tok Pisin in Papua New Guinea (Hall, 1966).
Cooperative incentives can also cause linguistic change on a much smaller scale. The English
words “ranch”, “alligator”, and “barbeque”, for example, were borrowed from Spanish with
only slight modification (Simpson et al., 1989).
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There is a great deal of anecdotal evidence that conflict can lead to the invention of
new words in the short run, and to linguistic divergence in the long run. As an example of
the first case, Kulick (1992) reports that a group of Selepet speakers in Papua New Guinea
changed their word for “no” from bia to bune to be distinct from a neighboring group. He
also observed another Papua New Guinean linguistic group switching all of their masculine
and feminine words—the words for mother and father, for example, switched in meaning.
Kulick states that “people everywhere use language to monitor who is a member of their
tribe.” It is very difficult to acquire the ability to speak a non-native language, λ, perfectly.
If a person manages to do so, then she is very likely to have a close relationship with members
of the group whose native language is λ.

Most social groups innovate linguistically, as exemplified by nicknames, slang, and “inside”
jokes. Such terms can be useful in situations of inter-group conflict: for example, teenagers
vs. parents, police vs. criminals, high school A vs. high school B, or government vs.
insurgents. In these cases, a group can gain a strategic advantage by using newly invented
expressions to identify group membership and communicate without revealing information
to outsiders. A well documented and extensive case of this type of linguistic invention began
in East London during the 1840s (Partridge et al., 2008). Speakers of the English dialect
Cockney began generating “rhyming slang” which is relatively easy for insiders to learn but
incomprehensible to outsiders. ’Trouble and strife’ means ’wife’, for example, and ’Jack
Jones’ means ’alone’. Various hypotheses have been proposed to explain the appearance of
Cockney rhyming slang. These include linguistic accident, a form of amusement, to confuse
the authorities, or, as Hotten (1859) believed, by “chaunters and patterers”, i.e. street
traders, possibly to assist with collusion. Developing some group-specific language naturally
facilitates the control of information, and thereby generates a competitive advantage.

On a larger scale, there are many examples of distinct languages that have emerged in
high conflict situations. “Thieves’ Cant”, a term that refers collectively to dozens of dialects of
English which arose during the 17th century in Great Britain, and were primarily spoken by
criminal groups (Coleman, 2008). The Middle East (Goldschmidt and Davidson, 1991), the
northern border area of Italy (Kaplan, 2000), Nigeria (Osaghae and Suberu, 2005; Suberu,
2001) and Papua New Guinea (Johnson and Earle, 2000) are all examples of regions with
both long histories of conflict and according to the Ethnologue, very high current linguistic
diversity.

There are also many cases where groups in a competitive environment invest resources
in maintaining a distinct language. An important category is the revival of indigenous
languages from near extinction, such as Halkomelem in Canada (Galloway, 2007), Welsh in
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a Malayo-Polynesian Languages b Indo-European Languages

Figure 2.5: Estimated Linguistic Divergence in Malayo-Polynesian and Indo-European Lan-
guage Families (Pagel, 2000, p.399–400).

Wales (Aitchison and Carter, 2000), Xibe in China (Jang et al., 2011), and Basque in Spain
(Gardner et al., 2000). Minority groups will often fiercely protect their languages against
assimilation, as is the case for the QuÃ c©bÃ c©cois in Canada (d’Anglejan, 1984) and the
Catalan in Spain (Roller, 2002). When facing conflict with sub-groups, a national government
will sometimes try to eliminate the sub-group’s language or dialect. Some examples of such
elimination include the mandatory residential school system for aboriginal children in Canada
in the 19th and 20th centuries (Milloy, 1999), and the establishment of the L’Académie
française in 1635 with the goal of standardizing the French language (Rickard, 1989). Both
policies arose during periods of conflict, the former over control of land and the latter over
centralization of power.

Fact 3: Languages diverge rapidly when they first diverge. If drift is the only
force affecting rates of linguistic divergence, there should be an upper bound on how quickly
languages can diverge. Assuming a constant or increasing degree of isolation, the rate of
divergence should be roughly constant over time. However, Figure 2.5, taken from Pagel
(2000), show that rates of divergence are particularly high initially when a pair of groups
undergoes a linguistic split, then decrease quickly, and finally flatten out as time progresses.
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Note that the scale on the y axis is logarithmic, so the change over time in the rate of
divergence is significantly more pronounced than it appears.

Although this is beyond the scope of our current model, we hypothesize that a single
language would split into two during a period of high interior conflict. In this paper we
assume a constant underlying probability of conflict to co-operation over time, but it is
reasonable to suppose that this ratio could vary with changes in underlying variables, and
apply to internal conflict as well as external conflict.

During a period of internal conflict then, each faction would find it beneficial to differen-
tiate their language. As the pair of dialects became less mutually intelligible, the incentives
to differentiate them further might reasonably diminish Furthermore, reversion to the mean
suggests that if the initial probability of conflict is high enough to cause a linguistic group to
split, this probability would likely decrease over time. In this case incentives to differentiate
would decrease, and the pair of languages would differentiate more slowly. In both graphs,
the rate of divergence between any pair of languages clearly starts high, decreases quickly
initially and then tapers off slowly.

Under a drift theory, the rates of divergence should be roughly the same for pairs of
groups that are completely isolated from one another. An interesting fact about Figure 2.5
is that there is a large range of divergence rates among Polynesian languages, and a some-
what lesser range of divergence rates among pairs of Indo-European languages. The higher
variance in divergence rates among the Polynesian languages is consistent with strategic in-
centives affecting these rates. The Polynesian islands host a very large variety of political
relationships, with some being intensely and chronically violent, and others almost perfectly
peaceful (Younger, 2008).

2.5.2 Existing Explanations of Linguistic Diversity

Several theories have been put forth to account for the empirical relationship between lin-
guistic diversity and its environmental covariates. Common among these theories is an in-
formal model involving isolation and drift. We understand it to mean the following: random
changes, or mutations, occur all time in language. If populations of a linguistic commu-
nity become isolated, mutations in one group are not copied by the entire community, and
the two populations slowly begin to speak different dialects, and eventually different lan-
guages. Drift in linguistics is therefore a phenomenon analogous to mutation and drift in
population genetics; it is random and unconscious change that occurs in language over time.
Once the dissimilarity passes some threshold of mutual unintelligibility, the dialects would
be considered different languages.
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We do not deny that there is random change in language over time, and that this process
contributes to increased linguistic diversity. It is, however, insufficient to explain a large
portion of it.

For each of the proposed explanations that follow, we would like to point out that it is
relatively easy to make an argument that the geographic variable in question should have
the opposite effect on isolation to the one proposed, and therefore the opposite effect on
linguistic diversity.

Nettle (1998) and Pagel (2000) argue that regions with favorable geographic conditions,
e.g. those that are conducive to steady food supply, tend to sustain small, self-sufficient
groups which seldom interact with each other. Consequently, populations in those regions
are separated into various linguistic communities. In unproductive territories, on the other
hand, survival demands that people cooperate on a large scale, and so language there will
likely be uniform.

Boyd and Richerson (1988) point out another channel through which geography may
increase isolation and therefore linguistic diversity. They maintain that high geographic het-
erogeneity increases migration costs, and thus facilitates isolation of different groups. Then,
due to the force of linguistic drift, the languages of these geographically separate communities
become dissimilar over time. Our challenge to this theory is that high geographic hetero-
geneity also increases the incentives to either travel long distances to harvest resources that
are locally scarce, or to trade for them, thus decreasing isolation.

Closest to our line of thinking is a short article by Pagel (2012). Pagel speculates that
conflict over resources must be part of the reason why there are so many languages. He
further mentions that humans are highly attuned to differences in speech, which helps them
to identify the social group(s) to which individuals belong. (Our model formalizes and
extends the suggestion given by Pagel (2012), that the multitude of languages exists to
prevent people from understanding each other. He does not propose any explanation for
why this might be the case.

2.5.3 Geography and conflict/co-op

The relationship between geography and conflict has received much attention from geogra-
phers and political scientists. Geographic variables that are found to affect regional levels
of conflict include general resource abundance (Kratochwil, 1986; Fairhead, 2000; Le Bil-
lon, 2001; Renner, 2002; Smillie and Forskningsstiftelsen, 2002); high value resources such
as gems, fuel, or narcotics (De Soysa, 2002; Fearon and Laitin, 2003; Buhaug and Lujala,
2005; Buhaug et al., 2009); presence of mountains (Fearon and Laitin, 2003; Buhaug and
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Rød, 2006); forest cover (de Rouen and Sobek, 2004); and whether there is a rainy season
(Buhaug and Lujala, 2005).38

There are several ways in which regional geography can affect potential gains from trade.
Factors such as climate and soil differ across sites in a region, generating comparative ad-
vantages in the production of particular goods. The magnitudes of these comparative ad-
vantages, in turn, affect the potential for gains from trade. Secondly, geography affects the
transaction costs of trading. In small scale societies the costs of travel, and therefore the
costs of trade, depend on geographic variables including ruggedness of terrain, availability
of freshwater, and the location of water bodies (Murrieta-Flores, 2010).

2.6 Discussion

Nothing can be more fundamental than language as a means of transmitting information
between human beings. Yet languages themselves are complex, dynamic and imperfect.
They can have a significant effect on economic variables. Understanding the mechanism
behind linguistic change, therefore, is an interesting and worthwhile undertaking.

In this paper we contrast linguistic change due to incentives with the conventional expla-
nation of change due to isolation and drift. While not explicitly modeling drift, the model
does generate change that might be difficult to distinguish empirically from completely ran-
dom drift. Consider groups i, j and k. i might make changes to its language because of
strategic considerations with respect to k, but these changes also affect the relationship be-
tween the languages of i and j. Depending on the way linguistic similarity is measured, it
might appear that the languages of i and j are ’drifting’ apart. In addition, two groups that
are sufficiently isolated from each other would not learn any of each others’ language. If
there exist closer groups with significant probability of conflict, these original two groups’
language would ’drift’ apart as they each invent new terms every period.

Both theories predict that the languages of a pair of geographically distant groups will
become less similar over time. Further research is needed, particularly empirical research, to
measure the importance of each mechanism in linguistic change.

The context of our model—small scale farming or foraging economies—may cause some
readers to overlook its relevance to contemporary linguistic diversity. It is important, how-

38To our knowledge, no empirical study has been done to examine the effect of local variance in territorial
quality and altitude on conflict. Since Michalopoulos finds these geographic variables to be positively cor-
related with linguistic diversity, we hypothesize that they would also be correlated conflict. Such evidence
would link our theory to the empirical findings of Michalopoulos (2012); i.e. that variance in land quality
and altitude are important determinant of linguistic diversity.
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ever, to note that linguistic change is usually slow (Pagel et al., 2007). Sometimes a gener-
ation may not even be conscious about the changes occurring in their language. Anecdotal
evidence of the English language suggests that it was already close to its present form be-
fore the advent of modern transportation and communication technology. A fluent English
speaker today, for example, has only minimal difficulty in understanding Jonathan Swift’s
Gulliver’s Travels, written in 1726, decades before the industrial revolution.

Despite our focus on small-scale societies, we do believe that cooperative and competitive
incentives are important causes of linguistic change in the modern world. The factors affect-
ing the type and frequency of interaction, however, are more complex and change quickly.

77



Chapter 3

The Economics of Early Warfare over
Land1

1This chapter was previously published as Dow et al. (2017).
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3.1 Introduction
Warfare is commonly defined as lethal conflict between organized groups. Here we

investigate the incidence of early warfare among foragers and farmers in prehistory. Our focus is

specifically on conflict over land, rather than other forms of lethal violence motivated by

revenge, feuding, status competition, or the theft of portable wealth. We believe the insights

derived from relatively simple economies of this kind are likely to have broader applicability to

the study of warfare in general.

In our model, groups consist of individuals who maximize their expected food consumption.

There is a production technology where food is obtained from labor and land, and a military

technology where the probability of a successful attack on another group depends on the relative

sizes of the competing groups. There are two sites or territories where food can be obtained, and

their productivities may differ.

Groups are internally egalitarian in the sense that they share food equally and reach

unanimous collective decisions. Attacks are motivated by a group's attempt to increase the

quantity and/or quality of land it controls. To focus on cases in which wars are actually fought,

we assume a group defends its land when it is attacked, because the alternative of fleeing to

another location is even less attractive. A group that loses a war disappears, and the winning

group spreads into the site or territory of the losing group.

Time periods are the length of a human generation. At the beginning of a period, each site

has a population inherited from the past. Individual agents can move between sites, although this

is generally costly. Once the final group sizes are determined, each group decides whether to

attack the other. Finally, production takes place, agents have children, and fertility-driven

Malthusian dynamics generate a new initial population for each site in the next period. The

process then repeats.

We show that in this framework there are two necessary conditions for warfare. First,

individual migration between sites must be costly enough. Second, there must be large enough

technological or environmental shocks to the ratio of productivities across sites. Together, these

conditions are sufficient.

79



The intuition is as follows. A large group with a poor site is tempted to attack a small group

with a good site, because the large group has a high probability of winning and it gains valuable

land if it does win. However, several forces tend to create a positive relationship between group

size and site productivity, which typically deters attack. First, migration causes agents to

congregate at high quality sites. Second, Malthusian fertility effects lead to higher populations at

better sites. Third, warfare is self-limiting because it reallocates population toward better sites.

These factors tend to promote peace. But war can occur if an exogenous shock creates a

temporary imbalance between group size and productivity, and individual migration cannot

remove this imbalance in the short run.

Our analysis suggests that warfare over land would have been rare among mobile foraging

bands with exogamous marriage, where agents could respond to negative local shocks by

exploiting kinship networks to join more prosperous groups. The analysis also suggests that

warfare over land would have become more common after the emergence of sedentary foraging

or farming groups with endogamous marriage and rigid membership criteria. Even in this case,

exogenous shocks that changed the relative productivities of sites or territories would also have

been necessary.

There is a small economic literature on conflict in prehistory. Baker (2003) develops a

model where groups compete for access to land. In equilibrium there is no actual warfare. North

et al. (2009) and Rowthorn and Seabright (2010) study the effects of early warfare on the

emergence of institutions and agriculture, respectively. Bowles studies the effects of early

warfare on the evolution of cooperation within social groups (Bowles, 2006; Choi and Bowles,

2007; Bowles, 2009; Bowles, 2012).

More generally, a number of economists and political scientists have developed theoretical

models of conflict over resources. In economics, it is common to have a first stage where the

distribution of power is determined by the choices of leaders, and a second stage with war or

peace (see Garfinkel and Skaperdas, 2007; Acemoglu et al., 2012; Bhattacharya et al., 2015). In

political science, the distribution of power is typically exogenous, and the focus is on the issue of

whether bargaining can avert costly warfare (Fearon, 1995; Powell, 1996, 2006). Theorists from

both disciplines agree that if complete contingent contracts were feasible, peace would prevail.
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Fearon (1995) argues that asymmetric information, indivisibilities, or a lack of commitment

devices can make it impossible to negotiate or enforce such contracts.

Relationships among pre-state groups of foragers or farmers are 'anarchic' in much the same

way that relationships among states in the modern world are anarchic. Thus similar commitment

problems arise. As Fearon (1995, 402) points out, repeated game effects cannot deter defections

that will result in the death of one player. When a concession does not alter the prizes at stake or

the probabilities of winning, groups will be tempted to renege after the concession is sunk. At

best, a territorial concession by a weak group might reduce the benefit of an attack to a strong

group and thus forestall it. However, compact sites with highly valued resources create

indivisibility problems that are difficult to resolve in this way.

A key contribution of our paper is to show that even in this unpromising setting, powerful

forces favor peace. In particular, we endogenize the probability of winning a conflict by having

it depend on group sizes. The group sizes are determined in the short run by the migration

decisions of individual agents, and in the long run by the effect of food income on fertility. Both

mechanisms promote peace even without bargaining.

We also show that when individual mobility is costly enough, exogenous shocks can lead to

warfare. Other authors have made related points. Powell (2006) finds that a rapid change in the

distribution of power can induce warfare. In contrast to Powell, we focus on shocks to the value

of the prizes at stake. Chassang and Miguel (2009) show that a temporary negative shock to

labor productivity can cause warfare by reducing the current opportunity cost of fighting relative

to the future value of the assets seized in war. We explore a different causal channel involving

shocks to site-specific productivities, rather than aggregate shocks and intertemporal tradeoffs.

A growing literature supports the idea that environmental shocks can trigger war. Zhang et

al. (2006, 2007) find a positive association between abnormally cold periods and domestic

rebellions in China during AD 1000 - 1911. They argue that the causal mechanism involves

Malthusian population growth during warm periods, followed by a contraction in food output in

cold periods. Tol and Wagner (2010) find a similar pattern for most of Europe during AD 1000 -

1990, where unusually cold periods are associated with more violent conflict. Bai and Kung

(2011) find that droughts are correlated with nomadic invasions of China between 220 BC and
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1839 AD because drought had greater effects on food supply among pastoralists than among the

farmers of central China. In a meta-analysis of econometric research using modern (post-1950)

data, Burke et al. (2015) estimate that a one standard deviation rise in temperature increases

intergroup conflict by 11.3%, with smaller but still substantial effects for drought or extreme

rainfall.

Section 3.2 surveys the archaeological and anthropological evidence on warfare in early

foraging and farming societies. Sections 3.3-3.5 develop the formal model through a process of

backward induction. Section 3.3 treats both group sizes and site productivities as exogenous and

derives conditions under which war or peace occurs. Section 3.4 moves back to the individual

migration stage and characterizes locational equilibrium. Section 3.5 introduces our Malthusian

fertility assumption and presents our necessary and sufficient conditions for warfare. We use the

model to account for empirical evidence in section 3.6, and offer a few closing thoughts in

section 3.7.  Proofs of formal propositions are provided in an online appendix.

3.2 Evidence On Early Warfare
Our model assumes that groups are egalitarian with respect to consumption and

decision-making. Small-scale foraging and farming societies often fit this description. Dow and

Reed (2013) review archaeological evidence about foraging societies without stratification.

Johnson and Earle (2000) provide ethnographic examples of foraging and farming groups with

up to a few hundred members that do not have stratification (some do have war). These authors

maintain that hereditary inequality and coercive leadership arise only in larger-scale chiefdoms

and states, which are beyond the scope of this paper. According to Kelly (2013a, ch. 9), mobile

foragers are generally egalitarian, apart from some gender and age distinctions, while sedentary

foragers are more frequently stratified. Borgerhoff Mulder et al. (2009) show that inequality is

associated with the inheritance of material assets, which is more common in agricultural than in

hunter-gatherer societies.

Two archaeological markers are widely used to infer early warfare: skeletons showing signs

of deadly force, and defensive structures or settlements in easily defended locations. Other
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evidence includes specialized weapons and artistic depictions. The latter are more relevant for

chiefdoms or states than for smaller egalitarian groups.

Even when skeletons provide obvious evidence of violence, it can be difficult to distinguish

warfare from individual homicide, execution, religious sacrifices, and non-warfare-related

cannibalism. Uncertainties in the dating of skeletons can also make it difficult to distinguish

cases in which many deaths occurred simultaneously (a massacre) from cases in which deaths

occurred over decades or centuries (a cemetery).

Defensive structures and defensively located settlements, while evidence of the threat of

warfare, are not evidence of actual warfare. They tend to deter groups that may be considering

an attack. Such investments could have been undertaken in the belief that they would prevent

war or reduce its likelihood. They could also have been motivated by a belief that in the event of

an attack, the defenders would be more likely to prevail.

Ferguson (2013) reviews archaeological data on prehistoric warfare for Europe and the Near

East. For Europe, the Upper Paleolithic shows negligible evidence of war, and barely any

evidence of interpersonal violence. In the Mesolithic, from the onset of the Holocene around

11,600 BP (before present) until the arrival of agriculture, warfare is 'scattered and episodic'.

This period is associated with increasing sedentism, more food storage, more distinctive group

identities, and greater inequality. About 500-1000 years after the Neolithic transition to

agriculture, warfare became widespread, and during the subsequent Copper, Bronze, and Iron

Ages, warfare was the norm.

For the Near East, Ferguson's account begins with early Natufian society around 15,000 BP,

which was pre-agricultural and similar to the European Mesolithic. There is no skeletal evidence

of war in the southern Levant for the next 10,000 years. Likewise, there is no evidence of

fortifications in this period. Peace came to an end in the southern Levant in the early Bronze

Age around 3200 BC, a time that coincided with the formation of the Egyptian state. The

apparent absence of war over this time span is remarkable in light of the intensive archaeological

study the region has received; its history of climate shocks, technological innovation, and

population fluctuation (Dow et al., 2009); and the presence of social stratification during some

periods (Dow and Reed, 2013).
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Ferguson reviews a substantial body of evidence indicating warfare in other parts of the Near

East, including Anatolia and the northern Tigris area, at least as early as the Pottery Neolithic,

beginning around 8400 BP. At some sites, warfare probably goes back to the Pre-Pottery

Neolithic A, from 11,600 - 10,500 BP, when agriculture began to arise in southwest Asia.

Warfare continued through the Copper and Bronze Ages.

The ethnographic literature provides direct evidence on warfare among hunter-gatherers.

Modern hunter-gatherers may differ in important ways from those who lived thousands of years

ago. In particular, contemporary hunter-gatherers generally live in extreme environments, and

behavior in these societies has been influenced significantly by the outside world (Lee and Daly,

1999).

The Standard Cross Cultural Sample, or SCCS, is a representative sample of 186

well-documented and culturally independent pre-modern societies (Murdock and White, 1969,

2006). Two results from this data set stand out (Kelly, 2013a, 2013b). The first is that while

there is evidence for warfare in all types of societies, the incidence of warfare is lower for

egalitarian nomadic foragers than it is for non-egalitarian sedentary foragers. The second (first

reported in Keeley, 1996) is that population pressure is correlated with warfare while population

density is not, where population pressure refers to population relative to total food, and

population density refers to population relative to total land.

Fry and Soderberg (2013) use the SCCS to study 148 episodes of lethal violence in 21

mobile forager bands. They conclude that "most incidents of lethal aggression may be classified

as homicides, a few others as feuds, and a minority as war.” (p. 270). Kelly (2000, ch. 2)

observes that in a sample of 25 foraging societies drawn from the SCCS, war is strongly

associated with segmented social structures that create group identities. Ember and Ember (1992)

use the SCCS to study the effect of ecological variables on war. They find that by far the best

predictor of warfare is a history of natural disasters, and that chronic scarcity has no independent

effect on warfare.

Kelly (2013a) makes some additional observations about foraging societies that are

particularly relevant to warfare over land. All such societies have ways of assigning individuals

to specific tracts of land and allowing them to gain access to others (pp. 154-161). In some
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instances, individuals can move flexibly across social groups. There is a widespread but not

universal pattern among foragers in which "connections to land are social and permeable rather

than geographic and rigid" (p. 156). Perimeter defense is rare, but the need to ask permission to

use another group's territory is common (it is usually granted). When foragers become sedentary,

however, population is usually so high that residential movement is not possible without

displacing another group; "war appears when mobility is not an option" (p. 205).

3.3 Production and Warfare
Consider two sites, i = A, B. Each agent is risk neutral and maximizes expected food

consumption. Agents regard death as equivalent to being alive without food, where both yield

zero utility (see section 7). Each agent is endowed with one unit of labor time. Agents are of

negligible size relative to the total population at a site.

The production function for food is

(1) Yi = sini
α with 0 < α < 1 i = A, B

where si > 0 is the productivity or quality of site i and ni is the population of site i at the time

of production. Site qualities are affected by permanent geographic features such as lakes, rivers,

good soil, and diverse local ecosystems, as well as transient factors such as weather. The agents

at a site share food equally, so in the absence of warfare each agent at site i receives the average

product

(2) yi = sini
α-1 i = A, B

The two sites together form a region with total population nA + nB = N > 0.

We will develop a model with the following steps in each period: (i) Malthusian dynamics

determine an initial population for each site; (ii) individual agents can migrate between sites; and

(iii) the resulting groups decide whether or not to attack. We proceed by backward induction.

This section provides results for step (iii), treating group sizes (nA, nB) and site qualities (sA, sB)
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as exogenous. Section 4 studies the location decisions at step (ii), and section 5 describes the

population dynamics at step (i).

At step (iii), a war occurs if at least one group chooses to attack. Given that a war takes

place, the probability that group i wins is

(3) pi = ni/(nA + nB) or pi = ni/N i = A, B

The probability of victory for a group is equal to its share in total population. This seems

plausible for small-scale societies without specialized warriors or weapons. The military

technology in (3) assigns no advantage to the attackers or defenders. Our functional form is the

simplest of those considered by Garfinkel and Skaperdas (2007).

We make several other simplifying assumptions (see section 7 for a discussion). The

payoffs are 'winner take all' in the sense that the winning group keeps its own site and gains the

site of the opposing group. The winners suffer no casualties and spread their population across

the two sites to maximize total food output. The losing group is killed or driven away (see

Keeley, 1996) and receives a zero payoff.

When group i with population ni wins the contest, its total food output is

(4) H(ni) = max {sALA
α + sBLB

α subject to LA ≥ 0, LB ≥ 0, LA + LB = ni}

Due to the constant output elasticity, the equalization of marginal products across sites in (4)

also equalizes the average products across sites. Each member of the winning group is

indifferent between sites and there is no need for side payments among the winners.

We express H using the following notation. Define σ as in (5a) and φ as in (5b) below.

Then write H(ni) as in (5c) and the optimal labor allocation as in (5d):

(5a) σ ≡ sA/sB∈ (0, ∞)

(5b) φ(sA, sB) ≡ sA/[1 + σ-1/(1-α)]α + sB/[1 + σ1/(1-α)]α

(5c) H(ni) = φ(sA, sB)ni
α
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(5d) LA(ni; σ) = ni/[1 + σ-1/(1-α)] and LB(ni; σ) = ni/[1 + σ1/(1-α)]

If a war occurs and group i wins, each member of this group has the food consumption

(6) h(ni) = H(ni)/ni = φ(sA, sB)ni
α-1

When group j ≠ i attacks, group i is indifferent between attacking or not because a war

occurs in either case. When group j does not attack, it is optimal for group i to attack if pih(ni) >

sini
α-1 where the left side is expected food per person from war and the right side is food per

person from peace.  A dominance argument implies that

(7) peace occurs if and only if pih(ni) ≤ sini
α-1 for i = A, B

We next consider how war and peace are determined by the group sizes (nA, nB) and site

qualities (sA, sB). Using (6) and (7), the functions defined in (8) give the lower bounds on the

probability of victory that would motivate an attack by each group.

(8) xA(σ) ≡ sA/φ(sA, sB)  ∈ (0, 1)

xB(σ) ≡ sB/φ(sA, sB)  ∈ (0, 1)

These functions depend only on the ratio σ ≡ sA/sB and have the following features.

Lemma 1 (xA and xB as functions of σ).

(9a) xA(σ) + xB(σ) > 1 for all σ > 0

(9b) xA′(σ)  >  0 and xB′(σ)  <  0 for all σ > 0

(9c) xA(0) = 0 and xA(∞) = 1

(9d) xB(0) = 1 and xB(∞) = 0
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Our first proposition uses the lemma to show that the occurrence of war or peace depends

only on the ratio of the site qualities and the ratio of the group sizes.

Proposition 1 (war and peace).  Fix sA/sB ≡ σ ∈ (0, ∞) and nA/nB∈ (0, ∞).

(a) If 0 < nA/N < 1 - xB(σ) then group B attacks and there is war.

(b) If 1 - xB(σ) ≤ nA/N ≤ xA(σ) then neither group attacks and there is peace.

(c) If xA(σ) < nA/N < 1 then group A attacks and there is war.

Groups A and B never attack simultaneously. When average products are equal across sites

(that is, sAnA
α-1 = sBnB

α-1), case (b) holds with strict inequalities and there is peace.

These results are shown in Figure C.1. The productivity ratio σ is on the horizontal axis.

Group A's population share nA/N, which gives the probability that A wins a war if one occurs, is

on the vertical axis. For a fixed productivity ratio σ, a war occurs if either A or B has a large

enough population share. The boundary cases nA/N = 0 and nA/N = 1 lead to warfare in the

trivial sense that the grand coalition attacks an empty site and wins with certainty. Peace occurs

for intermediate population allocations. The dashed curve indicates the locus where average

products are equal across sites, which is always in the interior of the peace region. The utility

functions of the individual agents are

(10) war: uA(nA, nB) = [φ(sA, sB)/N]nA
α and uB(nA, nB) = [φ(sA, sB)/N]nB

α

peace: uA(nA, nB) = sAnA
α-1 and uB(nA, nB) = sBnB

α-1

In wartime, an agent prefers to be in a larger group because this increases the probability of

victory. In peacetime, an agent prefers to be in a smaller group because this increases the

average product of labor.

3.4 Individual Mobility
We now move back to the migration stage and examine the location decisions of the

individual agents. We assume an initial population allocation m = (mA, mB) ≥ 0 with mA + mB =

N. This starting point is exogenous here but will be endogenized in section 5. We want to know
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how individual migration determines a final allocation n = (nA, nB) ≥ 0, which then leads to group

decisions about war or peace as in section 3. Agents observe the site qualities (sA, sB) and ignore

their own influence on the sizes of the groups at each site. Each agent takes the locations of all

other agents as given and correctly anticipates whether war or peace will occur.

An agent initially located at site i who moves to site j ≠ i only receives a fraction η∈ (0, 1]

of the utility uj available to non-movers at j ≠ i. The penalty 1-η may reflect a preference to live

near family and friends, or to remain in a group with familiar customs and beliefs. It may also

reflect a stigma imposed on outsiders by members of the other group. We use a multiplicative

migration cost because under this assumption, only the relative group sizes will be important in

our Malthusian model in section 5.

Equilibrium is defined so that no agent wants to change sites.

Definition 1 (locational equilibrium). Fix σ > 0 and N > 0. Consider allocations n = (nA, nB)

≥ 0 with nA + nB = N. We call n a locational equilibrium (LE) in any of the following cases: n =

(N, 0); n = (0, N); or n > 0 with

(11) uA(n) ≥ ηuB(n) and uB(n) ≥ ηuA(n)

The boundary cases (N, 0) and (0, N) are always equilibria because an agent who moves to

an empty site is attacked by all other agents and loses with certainty, resulting in zero utility. In

such boundary cases, only one of the inequalities in (11) holds because utility is positive at one

site and zero at the other.  In interior cases, both inequalities must hold.

The next task is to identify population distributions that lead to particular war or peace

outcomes (as in Proposition 1) while simultaneously forestalling migration (as in Definition 1).

For example, suppose we want an allocation leading to a war in which B attacks A, while

ensuring that no individual agents flee their current locations. This is clearly true for n = (0, N),

which yields a trivial war and is also a locational equilibrium.

The interesting cases involve interior allocations. Now to have a war in which B attacks, we

must satisfy both Proposition 1(a) and (11). For a given productivity ratio σ, Proposition 1(a)
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requires nA/nB < (1-xB)/xB. We obtain the utility levels for warfare from (10) and substitute these

into (11) to obtain η1/α ≤ nA/nB ≤ (1/η)1/α. Combining these, we require η1/α ≤ nA/nB ≤ min

{(1/η)1/α, (1-xB)/xB}, where nA/nB must be strictly less than (1-xB)/xB. More generally, we obtain

the following restrictions on the ratio nA/nB.

Proposition 2 (interior locational equilibria). Fix σ > 0 and N > 0. An allocation n > 0 is an

LE if and only if it satisfies one of the following (mutually exclusive) conditions.

(a) B attacks:  nA/nB∈ LEB ≡ [η1/α, min {(1/η)1/α, (1-xB)/xB}]

(b)peace: nA/nB∈ LEP ≡ [max {(ση)1/(1-α), (1-xB)/xB}, min {(σ/η)1/(1-α), xA/(1-xA)}]

(c) A attacks:  nA/nB∈ LEA ≡ [max {η1/α, xA/(1-xA)}, (1/η)1/α]

We require nA/nB < (1-xB)/xB strictly in (a), and we require nA/nB > xA/(1-xA) strictly in (c).

Figure C.2 shows a case where LEB exists and LEA does not (the interpretation of the arrows

will be discussed later). Group size ratios nA/nB in the interval (0, (1-xB)/xB) lead to an attack by

B due to Proposition 1(a). To keep agents at A from fleeing to B or vice versa, we also require

η1/α ≤ nA/nB ≤ (1/η)1/α as explained above. In the case depicted in Figure C.2, the upper bound on

LEB is given by (1/η)1/α, but in other situations it could be given by (1-xB)/xB instead.

The peace interval LEP in Proposition 2(b) is always non-empty. When η = 1 so there is no

mobility cost, LEP contains the single point nA/nB = σ1/(1-α) at which the average products are

equal across sites. As η falls and mobility costs rise, the interval LEP grows (see Figure C.2).

When η is close to zero, every peaceful allocation in Proposition 1(b) is an LE and the interval

LEP in Figure C.2 becomes [(1-xB)/xB, xA/(1-xA)].

The warfare intervals LEB and LEA in Propositions 2(a) and 2(c) may or may not exist.

From Proposition 2(a), the interval LEB is non-empty if and only if η1/α < (1-xB)/xB. Using the

properties of xB(σ) from (9), this requires a sufficiently large σ, so site A is a sufficiently valuable

prize for group B. When η = 1 so there is no mobility cost, this reduces to xB(σ) < 1/2.

Similarly, Proposition 2(c) implies that LEA is non-empty if and only if xA/(1-xA) < (1/η)1/α. This

requires a sufficiently small σ, so site B is a sufficiently valuable prize for group A. When η = 1,

this reduces to xA(σ) < 1/2.
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Given a fixed value of σ, and assuming the relevant intervals exist, LEB and LEA both

expand as mobility costs rise. This occurs simply because when migration is more expensive,

agents are less inclined to move despite an impending war. When the warfare intervals exist,

they may either be adjacent to the peace interval or separated from it by an interval of non-LE

allocations. However, the ratios nA/nB in the warfare interval LEB are always less than those in

the peace interval LEP because group B must be strong enough to make an attack worthwhile.

Likewise, the ratios in LEA always exceed those in LEP.

Now consider a given initial (pre-migration) allocation m ≥ 0. We want to know how the

decisions of individual agents lead to a final (post-migration) allocation n ≥ 0. When m = (N, 0)

or (0, N), we already have a locational equilibrium from Definition 1 and no agents change sites.

The same is true for any interior allocation m > 0 such that mA/mB is in one of the three LE

intervals described in Proposition 2.

We therefore focus on cases where m is interior but not an LE. This implies that one of the

conditions in (11) must be violated. Because the other condition in (11) must be satisfied, agents

can only move in one direction. For example, if uB(m) < ηuA(m) then agents migrate from B to

A and no agents migrate from A to B. In this situation we study allocations n = (nA, nB) ≥ 0 with

nA + nB = N such that nA ≥ mA. Migration stops when the system reaches an allocation where

uB(n) = ηuA(n). This implies that uA(n) ≥ ηuB(n) also holds, so we have an LE. If there is no

interior nA ≥ mA at which this occurs, all agents go to site A, and the final allocation is nA = N

and nB = 0. If the initial allocation has uA(m) < ηuB(m), the logic is the same with the roles of A

and B reversed.  This reasoning leads to the following definition.

Definition 2 (initial and final allocations). Fix σ > 0 and N > 0. Also fix an initial

(pre-migration) allocation m ≥ 0.  The final (post-migration) allocation n is as follows.

(a) If m is an LE then n = m.  Otherwise:

(b) If uB(m) < ηuA(m) then n is the allocation with the smallest nA ≥ mA at which uB(n) = ηuA(n).

When this condition cannot be satisfied, we set n = (N, 0).

(c) If uA(m) < ηuB(m) then n is the allocation with the smallest nB ≥ mB at which uA(n) = ηuB(n).

When this condition cannot be satisfied, we set n = (0, N).
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The intuition behind Definition 2 can be clarified by considering the directions in which

agents flow. Suppose the system is not yet in locational equilibrium. When war is expected, the

utility functions are those for war in (10), and agents flow toward the site with the larger current

population. This process is self-reinforcing and can only end with a boundary equilibrium or a

transition to the peace interval. When peace is expected, the utility functions are those for the

peace case in (10), and agents flow toward the site with the higher average product. This reduces

the difference in average products between the sites, and migration stops when this gap is small

enough relative to the mobility cost. If the average product is initially higher at site A, migration

stops at the lower bound of the peace interval LEP in Proposition 2, and if the average product is

initially higher at site B, migration stops at the upper bound of the peace interval LEP.

For completeness, we need to consider the cases where LEB is empty or not, and where LEA

is empty or not.  The formal results are as follows.

Proposition 3 (migration). Fix σ > 0 and N > 0. Choose an arbitrary initial allocation m ≥ 0.

The final allocation n is well defined and exactly one of the following cases applies.

(a) If m = (0, N), m = (N, 0), mA/mB ∈ LEB, mA/mB ∈ LEP, or mA/mB ∈ LEA, then n = m. In

the rest of the proposition, we limit attention to interior allocations m > 0.

(b) Suppose LEB is empty. If mA/mB is below (1-xB)/xB then n = (0, N). If mA/mB is at least

(1-xB)/xB and below the lower bound of LEP then nA/nB is equal to the lower bound of

LEP.

(c) Suppose LEB is non-empty. If mA/mB is below the lower bound of LEB then n = (0, N). If

mA/mB is strictly between the upper bound of LEB and the lower bound of LEP then nA/nB

is equal to the lower bound of LEP.

(d) Suppose LEA is empty. If mA/mB is above xA/(1-xA) then n = (N, 0). If mA/mB is above the

upper bound of LEP and does not exceed xA/(1-xA) then nA/nB is equal to the upper bound

of LEP.
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(e) Suppose LEA is non-empty. If mA/mB is above the upper bound of LEA then n = (N, 0). If

mA/mB is strictly between the upper bound of LEP and the lower bound of LEA then nA/nB

is equal to the upper bound of LEP.

Figure C.2 shows the migration process for the case where LEB exists and LEA does not,

where the arrows indicate the direction of migration. If mA/mB is below LEB, group B will

attack, we have uA(m) < ηuB(m), and agents flow from site A to site B. Using the war utilities in

(10), this migration process raises uB and lowers uA, reinforcing the initial inequality. Population

continues to flow in the same direction until all agents are at site B and we have n = (0, N).

Next, suppose mA/mB is between LEB and LEP. If mA/mB < (1-xB)/xB so group B will attack,

we use the war utilities from (10). The fact that mA/mB is above LEB implies uB(m) < ηuA(m), so

agents flow from B to A. As long as B will attack, migration raises uA and lowers uB so the

preceding inequality continues to hold. Once the system reaches nA/nB = (1-xB)/xB, we use the

peace utilities from (10). Now migration from site B to site A lowers uA and raises uB. This

continues until uB(n) = ηuA(n) at the lower bound of LEP. Migration then stops and we have a

peaceful LE.

Finally, suppose mA/mB is above LEP. When peace is expected, population flows toward B

and migration ends at the upper bound of LEP. When A is expected to attack, population flows

toward A until all agents are at site A and we have n = (N, 0).

Several implications follow from Proposition 3. First, if the initial allocation m is not an LE,

the system must move to one of four final allocations: (N, 0), (0, N), the lower bound of LEP, or

the upper bound of LEP. None is consistent with non-trivial war. Thus, non-trivial warfare can

only arise if the system starts from an initial population allocation m that is already in LEB or

LEA, and mobility costs keep all agents at their initial sites. If the initial allocation m yields

peace but is not an LE, the final allocation will also yield peace, and migration reduces the gap in

average products across the sites.

The interval LEP is stable in the sense that a small deviation to a point that is not an LE

causes migration flows that bring the system back to LEP. The same is true for the boundary

cases (N, 0) and (0, N). But if the warfare intervals LEA and LEB exist they are unstable, in the
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sense that a small deviation to a point that is not an LE will lead either to a boundary case or an

allocation in the peace interval LEP. Points in the interior of LEB or LEA are neutrally stable

because a small deviation leaves the system in LEB or LEA.

When mobility cost is zero (η = 1), three locational equilibria always exist: the boundary

cases with trivial war, and the peaceful allocation with equal average products. If xB(σ) < 1/2

then LEB contains the single point nA = nB = N/2 and it is empty otherwise. A symmetric result

holds for LEA. At most one of these two interior warfare equilibria can exist. If either one does,

it is unstable. Thus a positive mobility cost is a necessary condition for a stable equilibrium with

non-trivial warfare.

We now pause to summarize the results so far. For an exogenously fixed ratio of site

productivities σ = sA/sB, Proposition 1 derived the group size ratios nA/nB that lead to an attack by

B, peaceful coexistence, or an attack by A. We then added the requirement that individual agents

who foresee these outcomes not change sites. The group size ratios nA/nB consistent with this

individual rationality condition were given by the intervals LEB, LEP, and LEA in Proposition 2.

Next, we examined migration when the initial population allocation is not in one of these

intervals. Proposition 3 showed that if the system is not already at a locational equilibrium with

non-trivial warfare (LEB or LEA), then individual migration cannot take the system to such an

equilibrium. Instead, it either pushes the system to a boundary case with trivial warfare, or to the

boundary of the peace interval LEP. In section 5, we study how migration costs and productivity

shocks can interact to yield non-trivial wars.

3.5 Malthusian Dynamics
This section embeds the model from sections 3 and 4 in a Malthusian framework where

population growth depends on food income. Dow and Reed (2013) use a similar framework to

study inequality in small-scale societies. Ashraf and Galor (2011) provide evidence supporting

the application of a Malthusian model to pre-industrial societies.

Denote periods by t = 0, 1, . . , where a period is one human generation. For an individual

agent, let ρy be the number of that agent's children who survive to be adults, where y is the

agent's food income and ρ > 0 is a constant. This captures the idea that adults with more food
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income are more fertile, have healthier children, or both. Adults in period t produce food, have

children, and then die at the end of the period. The children become adults in period t+1 at the

site where their parents produced food.

Let there be some sequence of productivity ratios σt = sA
t/sB

t for t = 0, 1, . . These are given

exogenously by technological or environmental factors. Each period starts with an initial

allocation of agents mt = (mA
t, mB

t) inherited from the past. The agents can then move from their

birth site to the other site as described in section 4. These moves (if any) give the final allocation

nt = (nA
t, nB

t). Once the final allocation has been determined, the two groups decide whether to

attack, and payoffs are obtained as in section 3.

Suppose first that peace occurs in period t. This can happen only when the final allocation nt

> 0 is interior. The food income of an agent at site A is yA
t = sA

t (nA
t)α-1 and the food income of an

agent at site B is yB
t = sB

t (nB
t)α-1. The Malthusian linkage between food and surviving children

gives mA
t+1 = ρyA

tnA
t and mB

t+1 =  ρyB
tnB

t.  Thus

(12) peace in period t yields mA
t+1/mB

t+1 = σt(nA
t/nB

t)α

Now suppose instead that a war occurs in period t and the winner is W∈ {A, B}. Group W

allocates its population nW
t across sites to maximize total food output as in (4), while the

opposing group disappears. Let the resulting number of agents at each site be LA
t and LB

t where

LA
t + LB

t = nW
t. Due to the fact that the production function from (1) has constant output

elasticity, the equalization of marginal products across sites implies equalization of average

products. Thus every member of W has the same food income yt = H(nW
t; sA

t, sB
t)/nW

t. Using

mA
t+1 = ρytLA

t and mB
t+1 =  ρytLB

t along with (5d) implies that

(13) war in period t yields mA
t+1/mB

t+1 = (σt)1/(1-α)

Notice that (13) applies both when nt > 0 so the war is non-trivial, and also when the war is

trivial because nt = (Nt, 0) or (0, Nt).
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Lemma 2 (group size ratio). Fix σt ∈ (0, ∞) and choose any interior allocation mt > 0. The

pair (σt, mA
t/mB

t) suffices to determine the final allocation nt; whether war or peace occurs in

period t; and the group size ratio mA
t+1/mB

t+1, where mt+1 > 0 is interior.

The lemma shows that the initial group size ratio mA
0/mB

0 and the sequence of productivity

ratios {σt} determine the subsequent group size ratios mA
t/mB

t for all t ≥ 1. This information also

suffices to determine whether war or peace occurs in each period. Accordingly, our results do

not depend on the absolute productivity levels (sA
t, sB

t), the absolute population levels Nt, or the

identities of the winners in particular conflicts.

Now suppose we are given σt and mA
t/mB

t for period t. As in Lemma 2, we can compute

mA
t+1/mB

t+1. We want to know the conditions under which a non-trivial war will occur in period

t+1. This question is readily answered using Proposition 3. Such a war occurs if and only if the

ratio mA
t+1/mB

t+1 is in the set LEB or LEA. If neither is true, then either the ratio is in LEP or mt+1

is not an LE. In the former case, we have peace. In the latter case, migration leads to a peaceful

outcome or to formation of the grand coalition followed by a trivial war. The following

proposition formalizes these ideas.

Proposition 4 (war and peace with Malthusian dynamics). Fix σt ∈ (0, ∞) and mA
t/mB

t ∈

(0, ∞). Compute mA
t+1/mB

t+1 ∈ (0, ∞) as in Lemma 2. There is a non-trivial war in period t+1 if

and only if the following two conditions are satisfied:

(a) η1/α ≤ mA
t+1/mB

t+1 ≤ (1/η)1/α and

(b) σt+1 ∉ [σA
t+1, σB

t+1]

where the bounds σA
t+1 and σB

t+1 are determined using mA
t+1/mB

t+1 to compute mA
t+1/Nt+1, and

implicitly defining σA
t+1 and σB

t+1 using mA
t+1/Nt+1 ≡ xA(σA

t+1) ≡ 1 - xB(σB
t+1). These ratios have

the property σA
t+1 < σt < σB

t+1.

The necessity of (a) is straightforward. We have already established that any time individual

agents migrate from one site to another, a non-trivial war is impossible. Thus we are limited to

cases in which no migration occurs in period t+1. If a war is expected, the utility functions are
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obtained from (10). The absence of migration implies that these utilities must satisfy (11).

Putting these conditions together, the initial population ratio in period t+1 (which is also the final

population ratio) must satisfy Proposition 4(a). In this situation, the mobility costs incorporated

in the parameter η are large enough to prevent migration despite an impending war.

The necessity of (b) has the following intuition. If we use Malthusian dynamics to compute

mA
t+1/mB

t+1 and take this ratio as given, we know the initial population share mA
t+1/Nt+1 for group

A. Because we have ruled out migration as explained in connection with Proposition 4(a), this

must also be the final population share nA
t+1/NA. As shown in Figure C.3, this fixes a horizontal

line that determines an interval of productivity ratios σt+1 consistent with peace. The latter is the

interval [σA
t+1, σB

t+1] in Proposition 4(b). To have a war, the productivity ratio σt+1 must fall

outside this interval, so σt+1 ∉ [σA
t+1, σB

t+1].

The key ideas from Proposition 4 can now be summarized. Malthusian dynamics generate a

population allocation at the beginning of period t+1. If a war is to occur, this allocation cannot

be altered by migration. Moreover, given the probabilities of winning determined by the

population shares, the productivity ratio must be high or low enough that an attack is attractive

for one group or the other. The conditions in Proposition 4 are sufficient because for given initial

group sizes, a war does occur when migration is costly enough and the productivity ratio is

extreme enough.

Proposition 4 has the following important implication.

Corollary. If σt+1 = σt then there is peace in period t+1, regardless of whether there was war or

peace in period t.

This follows from the fact that the productivity ratio σt is an interior point of the interval

[σA
t+1, σB

t+1] as indicated in Figure C.3. In order for war to occur, σt+1 must involve a large

enough shock relative to σt. When σt+1 = σt, Proposition 4 already rules out a non-trivial war.

The corollary strengthens this to exclude trivial wars involving the grand coalition.

The corollary shows that when the productivity ratio is constant over some time interval,

there can be at most one war during this interval. If there is a war, it occurs at the start of the
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interval, and peace prevails thereafter. The reason is that war equalizes average products across

sites, and hence equalizes population growth rates across sites. This maintains the existing group

size ratio, which maintains the equality of the average products. Thus, peace continues. A series

of wars therefore requires a series of shocks.

A useful thought experiment is to shut down individual migration by having η close to zero.

This guarantees that (a) in Proposition 4 is satisfied. However, (b) is also necessary for war. In a

stationary productivity environment, Malthusian fertility effects ensure that (b) never holds.

Even without migration, this is enough to preserve peace.

Any exogenous variable that can alter the relative productivities of the sites can serve as a

trigger for warfare. One such variable is production technology. To cause a series of wars,

technical innovations must repeatedly change the productivity ratio. A candidate for such a

process is the diffusion of agriculture across Europe, which was associated with increased

warfare (see section 2).

Climate provides another source of exogenous shocks. Such shocks can easily change the

relative productivities of sites or territories. For example, decreased rainfall may reduce

productivity substantially at sites far from lakes or rivers but only slightly at sites with good

access to surface water. Historical linkages between climate shocks and warfare are well

documented (see section 1).

We close this section with some remarks on the relationship between our theory and that of

Malthus (1798 [2004]). Our framework is 'Malthusian' only in the sense that we rely on a

positive linkage between food per capita and fertility (or a negative linkage with child mortality).

This is the operative check on population growth. We do not rely on mortality from warfare as a

check on population. In fact, our model predicts that in a stationary productivity environment,

regional population will converge to an equilibrium level without warfare.

Some anthropologists argue that warfare will occur in a demographic steady state. For

example, Harris (1977, 60) suggests that reproductive pressure leads to both warfare and female

infanticide, and that infanticide is "a savage but uniquely effective solution to the Malthusian

dilemma". In contrast, we believe fertility effects can restrain population growth even without

any mortality effects derived from warfare or infanticide.
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3.6 Empirical Implications
Three mechanisms tend to promote peace in our model: mobility between groups,

Malthusian fertility effects, and reallocation of population after a war. All three assign larger

populations to better sites. The resulting positive association between group size and site quality

tends to deter attacks. A productivity shock can trigger a war by creating a temporary imbalance

between group size and site quality, provided that the imbalance cannot be undone through

individual migration.

Our theory helps explain Ferguson's (2013) finding that in Europe, warfare was rare or

non-existent in the Upper Paleolithic, sporadic in the Mesolithic, and common in the Neolithic

and later. The small foraging bands of the Upper Paleolithic probably had fluid social

boundaries, with easy individual mobility across groups through exogamous marriage and

kinship networks. At very low population densities it would also have been difficult to exclude

outsiders from a territory, leading to open access conditions (Dow and Reed, 2013). Moreover,

the foraging bands of the Upper Paleolithic almost certainly had Malthusian fertility dynamics.

Together, these factors would make warfare unlikely.

The shift to the Mesolithic and the Neolithic was associated with rising sedentism (Dow and

Reed, 2015) and social segmentation (Kelly, 2000, ch. 4). This would make it harder for

individuals to move among groups. In addition, community sizes were rising. Research on

recent small-scale societies suggests that this probably made endogamous marriage more

common (Dow et al., 2016), reducing kinship linkages across groups and increasing mobility

costs for individuals. In combination with the shocks resulting from technological and

environmental change, this would have made warfare more common.

Our results are also consistent with stylized facts from anthropology. The model accounts

for the empirical finding that warfare is a function not of population density but rather of

pressure on food resources. Individual migration or Malthusian dynamics can create high

densities at good sites without leading to war. However, the model supports the idea that warfare

occurs when a group has many mouths to feed and few resources with which to feed them. The

99



model correctly predicts that war will be more common when shocks from natural disasters or

climate change are larger and more frequent. And finally, our prediction that higher individual

mobility costs make warfare more likely is consistent with ethnographic evidence that warfare

occurs more often in societies with strict enforcement of group identities.

3.7 Concluding Remarks
We have made a number of assumptions about warfare that could be questioned. In many

cases, altering our assumptions would make war less likely. For example, one could assume that

winning groups suffer injuries or deaths; that winning groups may not gain full control over the

losing group's land; that attackers are risk averse rather than risk neutral; that groups preparing

an attack incur an opportunity cost in the form of lost food output; that defenders have

advantages due to familiarity with local geography; that the defenders can build fortifications;

that defenders may flee rather than stand and fight; that potential attackers may have kinship

connections with defenders; and so on. Because our assumptions often stack the deck in favor of

war, this strengthens our view that war was rare among small egalitarian groups in prehistory.

Another assumption that could be modified involves the utility function. We treat death

as equivalent to being alive without food. But having no food may be better than death (perhaps

more food will arrive tomorrow, and one has a chance of surviving until then). This 'happy to be

alive' utility function makes the prospect of death seem worse in relative terms and would

discourage warfare, much as risk aversion would. On the other hand, a minimum amount of

food is necessary for life, so positive amounts of food below this subsistence threshold would be

useless. This 'nothing to lose' utility function would make agents more inclined to attack when a

food shortage looms, much as risk seeking would. Furthermore, it captures some additional

Malthusian intuition about the causes of war. The question is whether these ideas have empirical

implications. For example, the 'happy to be alive' case might apply when agents can smooth

consumption by storage or pooling, while the 'nothing to lose' case might apply when expected

food is low, variance is high, and smoothing is infeasible.

In principle, our framework applies both to hunter-gatherers and early farmers. One could

argue that farmers make greater site-specific investments in land clearance, irrigation systems,
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terracing, and so on, in addition to actual planting of crops, and thus are more inclined to defend

their sites. Our model already assumes that groups defend their sites when attacked, and such

investments reinforce the incentive to do so. But if mobile hunter-gatherers are attacked, they

may be more likely to flee, encouraging an attack. One could also argue that farmers and

sedentary foragers who stay in a single location for many years have greater opportunities to

make defensive investments that deter attack. Nevertheless, the evidence from section 2

suggests that warfare is more common among farmers than among mobile hunter-gatherers. This

appears to be true even for egalitarian farming groups, although warfare undoubtedly increases

when such groups develop into stratified chiefdoms or states.

We close with a remark on institutions. As discussed in section 2, the southern Levant

enjoyed about 10,000 years during which warfare was almost non-existent. From the perspective

of our theory, this might seem surprising, given the many environmental and technological

shocks affecting the region in this period, including an early transition to agriculture. One

possible explanation is that commitment problems were solved via third-party enforcement.

However, this would have required something resembling a state, and there is no evidence for

state formation during the period in question.

Our theory suggests an alternative: perhaps institutions of a more decentralized kind helped

to transfer population across communities in response to shocks. Examples could include

exogamous marriage, shared language, shared religion, or shared norms. Regional networking

among local elites could also have facilitated individual migration when relative productivities

changed. This is a possibility even for an agrarian society where warfare might otherwise have

been expected. More generally, we believe good institutions can help to promote peace even

when third party enforcement is absent.
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A.1 The long-run distribution of fitness depression

This appendix proves that limε→0 limt→∞ P [δit = 0] → 0. The order of the limits is impor-
tant; without letting the population reach a steady state for a given ε there is no guarantee
that the limit is meaningful. For example limε→0 P [δi0 = 0] does not converge and is simply
P [δi0 = 0].

Lemma A.1. ∀ λ s.t. F
(
θ̄ (λ)

)
∈ [0, 1), the distribution of fitness depression converges to

a unique steady state regardless of initial conditions: limt→∞ pt (λ, ε) = p (λ, ε).

For F
(
θ̄ (λ)

)
= 0, the Lemma follows directly from the same line of argument as Propo-

sition 1.2. The population has no fitness depression at all after D+1 periods, and so pt (λ, ε)
converges to a steady state, degenerate, distribution.

For F
(
θ̄ (λ)

)
∈ (0, 1), recall that ε = D−1. Let pj,t (λ, ε) = P [δit = Dj|λ, ε]. We can then

define pt (λ, ε) = [p0,t (λ, ε) , p1,t (λ, ε) , . . . , pD,t (λ, ε)]. I proceed by defining the transition
matrix for fitness depression, M (λ, ε).

I begin with the transition dynamics of fitness depression at the population level, outside
the steady state. ∀j ∈ {1, ...D}:

pj,t =

2(1−(j−1)ε)
(
E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

)
F(θ̄) ´ θ̄0 θdF (θ)+2(1−(j−1)ε)

(
E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

)pj−1,t−1+

F(θ̄) ´ θ̄0 θdF (θ)

F(θ̄) ´ θ̄0 θdF (θ)+2(1−(j+1)ε)
(
E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

)pj+1,t−1

(A.1)

That is, the fraction of groups with fitness depression level jε at time t is equal to the sum
of a) the fraction of groups with fitness depression level (j − 1) ε at time t-1 who marry en-
dogamously (after accounting for fitness depression), multiplied by the proportion of groups
with fitness depression level (j − 1) ε at time t− 1and b) the fraction of groups with fitness
depression level (j + 1) ε at time t-1 who marry exogamously, multiplied by the proportion
groups with fitness depression level (j + 1) ε at time t− 1. For j = 0, the formula is slightly
different:

p0,t =

2ε
(
E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

)
F(θ̄) ´ θ̄0 θdF (θ)+2ε

(
E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

)p0,t−1+

F(θ̄) ´ θ̄0 θdF (θ)

F(θ̄) ´ θ̄0 θdF (θ)+2(1−ε)
(
E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

)p1,t−1

(A.2)

Together, equations (A.1) and (A.2) allow me to define the a transition matrix for fitness
depression. Let
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A (λ, ε, j) =
F
(
θ̄
) ´ θ̄

0 θdF (θ)

F
(
θ̄
) ´ θ̄

0 θdF (θ) + 2 (1− (j − 1) ε)
(
E [θ]− F

(
θ̄
) ´ θ̄

0 θdF (θ)
)

B (λ, ε, j) =
2 (1− (j − 1) ε)

(
E [θ]− F

(
θ̄
) ´ θ̄

0 θdF (θ)
)

F
(
θ̄
) ´ θ̄

0 θdF (θ) + 2 (1− (j − 1) ε)
(
E [θ]− F

(
θ̄
) ´ θ̄

0 θdF (θ)
)

A (λ, ε, j)is the probability of moving down one level of fitness depression (less depressed),
while B (λ, ε, j) is the probability of a group moving up one level of fitness depression.

For completeness, M (λ, ε) is the D + 1×D + 1 matrix:
M (λ, ε) =

A (λ, ε, 0) B (λ, ε, 0) 0 · · · 0 0 0 · · ·
A (λ, ε, 1) 0 B (λ, ε, 1) · · · 0 0 0 · · ·

...
...

... . . . ...
...

... . . .

0 0 0 · · · A (λ, ε, j) 0 B (λ, ε, j) · · ·
...

...
...

...
...

...
... . . .


Provided that F

(
θ̄ (λ, ε)

)
∈ (0, 1), the probability of a group moving down one level of

fitness depression, A (λ, ε, j), is strictly positive, which implies that the probability of moving
from fitness depression level j to j − k in k periods is strictly positive ∀j ∈ {0..D} , k ∈
{1, ..., j}. Because the probability of a group moving down one level, A (λ, ε, j) , is also
strictly positive, the same argument applies to moves from fitness depression level j to j− k
in k periods for k ∈ {1, ..., D − j}. Finally, the probability of moving up one level and
then down one level within two periods is strictly positive, so the probability of returning to
fitness depression level j in 2 periods is also strictly positive. It may appear that groups can
only return to a fitness depression level j in k periods if k is even, but because groups can
get “stuck” at δit = 0 they can also return if k is odd provided k > 2j + 1. Together, these
results imply that for some k > 2D+ 1, (M (λ, ε))k has only positive entries, and so M (λ, ε)
is a regular stochastic matrix. This in turn implies that p (λ, ε) converges to a unique steady
state, p (λ, ε) .

Lemma A.2. limε→0 limt→∞ P [δit = 0]→ 0

In what follows, θ̄is used as shorthand for θ̄ (λ) .The rest of the proof divides into two cases
depending whether or not F

(
θ̄
) ´ θ̄

0 θdF (θ) ≥ 1
2E [θ]. Intuitively, this condition describes

whether the mass of groups becoming more inbred is greater than the mass become less
inbred, before accounting for losses due to fitness depression. Towards a contradiction,
suppose first that the inequality holds weakly. Rearranging, I get:
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2
(
E [θ]− F

(
θ̄
) ´ θ̄

0 θdF (θ)
)

F
(
θ̄
) ´ θ̄

0 θdF (θ)
≤ 1

I now turn to the steady state population wide level of fitness depression:

δ (λ, ε) = E [δi|λ, ε]

δ (λ, ε) =
D∑
j=0

pjεj

where pj is the j + 1th element of p (λ, ε). In the steady state, the fraction of groups
moving from state i to state i+ 1 must be equal to the fraction moving from i to i− 1.

F(θ̄) ´ θ̄0 θdF (θ)

2(1−jε)
(
E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

)
+F(θ̄) ´ θ̄0 θdF (θ)

pj =

2(1−(j−1)ε)
(
E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

)
2(1−(j−1)ε)

(
E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

)
+F(θ̄) ´ θ̄0 θdF (θ)

pj−1

Rearranging:

pj =

2(1−jε)
(
E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

)
+F(θ̄) ´ θ̄0 θdF (θ)

2(1−(j−1)ε)
(
E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

)
+F(θ̄) ´ θ̄0 θdF (θ)

×

2(1−(j−1)ε)
(
E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

)
F(θ̄) ´ θ̄0 θdF (θ)

pj−1

Let ψ = max
j∈{1...D}

2(1−jε)
(
E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

)
+F(θ̄) ´ θ̄0 θdF (θ)

2(1−(j−1)ε)
(
E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

)
+F(θ̄) ´ θ̄0 θdF (θ)

2(1−(j−1)ε)
(
E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

)
F(θ̄) ´ θ̄0 θdF (θ)

. Be-

cause the two fractions are strictly less than 1 for all j, ψ must also be strictly less than 1.
1

Therefore,.∀j > 0, pj < ψpj−1.We can now turn to limD→∞ δ (λ,D−1), where δ (λ,D−1) =
limt→∞ E [δit|λ,D−1]

lim
D→∞

δ
(
λ,D−1

)
= lim

D→∞

D∑
j=0

pjjε = lim
D→∞

D∑
j=0

pj
j

D

1This is maximized at the smallest possible value of j, 1
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< lim
D→∞

D∑
j=0

j

D
ψjp0

= p0 lim
D→∞

D∑
j=0

jψj lim
D→∞

1
D

= p0

(
ψ

(ψ − 1)2

)
lim
D→∞

1
D

= p0

(
ψ

(ψ − 1)2

)
× 0 = 0

Because fitness depression cannot be negative, it must be the case that:

lim
D→∞

δ
(
λ,D−1

)
= 0

But if population level fitness depression is zero, even if all other groups were marrying
exogamously, a group would only want to marry exogamously if θ̄ < 1

2E [θ] (See section X).
This result, assumption (X) (that the c.d.f. of F is concave), and the requirement for a
PBNE, implies that F

(
θ̄
) ´ θ̄

0 θdF (θ) < 1
2E [θ], which contradicts our original assumption

that F
(
θ̄
) ´ θ̄

0 θdF (θ) > 1
2E [θ].

The only alternative is that F
(
θ̄
) ´ θ̄

0 θdF (θ) < 1
2E [θ]. Towards a contradiction, assume

limD→∞ p0 (λ,D−1) > 0.
Choose k =

⌈
(p0)−1

⌉
2

We want to show that limD→∞ p0 (λ,D−1) > 0 implies that limD→∞
∑k
j=0 pj → K > 1,

which violates the definition of p (λ, ε) as a vector of probabilities. Recall that:

pj =

2(1−jε)
(
E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

)
+F(θ̄) ´ θ̄0 θdF (θ)

2(1−(j−1)ε)
(
E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

)
+F(θ̄) ´ θ̄0 θdF (θ)

×

2(1−(j−1)ε)
(
E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

)
F(θ̄) ´ θ̄0 θdF (θ)

pj−1

Taking the limit with fixed j:

2This implies that D ≥
⌈
(p0)−1

⌉
, but because I take the limit as D → ∞, this implication is not

restrictive.
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lim
D→∞

pj = lim
ε→0

2(1−jε)(E[θ]−x(θ̄))+F(θ̄) ´ θ̄0 θdF (θ)

2(1−(j−1)ε)(E[θ]−x(θ̄))+F(θ̄) ´ θ̄0 θdF (θ)
×

2(1−(j−1)ε)
(
E[θ]−F(θ̄) ´ θ̄0 θdF (θ)

)
F(θ̄) ´ θ̄0 θdF (θ)

pj−1

lim
D→∞

pj =
2
(
E [θ]− F

(
θ̄
) ´ θ̄

0 θdF (θ)
)

F
(
θ̄
) ´ θ̄

0 θdF (θ)
pj−1

But the fraction must be greater than zero by the assumption made above. So

lim
D→∞

pj > pj−1

And this is true ∀ k ≤ j. Therefore, by induction:

lim
D→∞

pj =
2
(
E [θ]− F

(
θ̄
) ´ θ̄

0 θdF (θ)
)

F
(
θ̄
) ´ θ̄

0 θdF (θ)
pj−1 > p0

Summing the first k probabilities, we get:

lim
D→∞

k∑
j=0

pj > (k + 1) p0

lim
D→∞

k∑
j=0

pj >
(⌈

(p0)−1
⌉

+ 1
)
p0 > 1

Therefore limD→∞ p0 = 0. This completes the proof.
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B.1 Justification for the Reduced Form Expected Payoffs

In this section we provide a justification for the two reduced form expected payoffs, (Equa-
tion 2.2) and (Equation 2.3), described in subsection 2.3.3. In particular, we show how
communication in games of cooperative and competitive natures can lead to the specific
forms of these payoff functions.

Our argument is developed in a framework of two-player extensive form games, whose
payoff structure is of either cooperative or competitive nature. The game begins with nature
choosing a state and one randomly selected player to observe it. This player, referred to as
the sender, then decides whether to transmit a message regarding the state. If a message is
sent, then the other group, called the receiver, has an opportunity to choose an action based
on the sender’s message.

Each group is endowed with a set of messages that refer to a subset of the states. Elements
in the intersection of the two spaces are understood by both groups, while those unique to
one group’s message space are understood only by that group. We derive a group’s expected
payoffs in the subgame perfect equilibria, and show that they are related to the sizes of
intersection and relative complement of the two message spaces in the way specified by
(Equation 2.2) and (Equation 2.3).1

B.1.1 General Environment

Suppose at the beginning of each period t, a two dimensional state (τ, a) is drawn to deter-
mine a game Γt(τ, a) played by groups i and j. The parameter τ ∈ {coop, comp} determines
the strategic nature of the interaction, and a ∈ A = [0, 1] determines the optimal action(s)
for each group. The two parameters are drawn independently of each other: τ = coop with
probability p

p+q and τ = comp with probability q
p+q ; a is drawn uniformly from A. Let σk,

k = i, j, denote group k’s action in Γt(τ, a). The payoffs in Γt(coop, a) are

πi(σi, σj) = πj(σi, σj) =

1 if σi = σj = a

0 otherwise,
∀a ∈ A; (B.1)

1While we interpret a group’s message space to be its dialect, the framework proposed in this section
does not integrate perfectly with the model presented in the paper. Specifically, in this section, the measure
of the intersection of the message spaces is assumed to be smaller than the measure of the action space. For
this to hold every period in the main sections of the paper, the action space would have to grow exogenously
every period at a rate no smaller than the growth rate of the intersections.
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and the payoffs in Γt(comp, a) are

πi(σi, σj) =

2 if σi = a 6= σj

−2 if σi = σj = a
and πj(σi, σj) = −πi(σi, σj), ∀a ∈ A. (B.2)

Let Mk = [xk, yk], where 0 ≤ xk < yk ≤ 1 and k = i, j, be the set of messages that
group k can use to refer to actions in A. Note that Mi ∩Mj need not be empty, and that
Mi and Mj need not have the same size. Each message m ∈ Mk refers to one and only one
action a ∈ A. More precisely, let µk : Mk → A be a measure-preserving injection that maps
elements in Mk to those in A. Thus, the meaning (or referent) of a message m ∈Mk is given
by µk(m). Further, let µi, µj satisfy the property that µi(m) = µj(m) for all m ∈ Mi ∩Mj,
so that messages in the intersection of the two message spaces refer to the same actions.
Denote by ma

k a message sent by k that refers to action a; thus ma
k = µ−1

k (a). We say that
group j understands a message mi sent by group i if and only if mi ∈Mi ∩Mj.2

Let Γ̃t be an extensive form game based on Γt(τ, a):

1. With equal probability, nature chooses either i or j to be the sender.

2. The sender, say i, observes the states (τ, a).

• If the state a is such that there exists no mi ∈ Mi with µi(mi) = a, the game
ends and both i and j get zero payoff.

• If there exists mi ∈ Mi with µi(mi) = a, then i decides whether to engage the
receiver, j, in Γt(τ, a).

– If i chooses not to engage, then the game ends with both groups getting zero
payoff.

– If i chooses to engage, then it sends ma
i and chooses σi = a in Γt(τ, a). Both

τ and ma
i are then observable to j.

3. Based on τ and ma
i , j chooses an action σj ∈ A.

4. The payoffs are determined by σi and σj according to (Equation B.1) and (Equa-
tion B.2).

The game Γ̃t can be interpreted as follows. The leader of group i discovers an interaction
opportunity characterized by (τ, a) that would involve another group j. Group i’s optimal

2We assume that messages in Mi ∩Mj is common knowledge.
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payoff is a function of a. If group i does not have the requisite language (i.e. ma
i ) to

communicate a among its members, then it cannot take advantage of this opportunity.
Hence there is no change in either group’s payoff. Suppose i has a message ma

i that refers to
a. The the leader of i can still decide whether to take advantage of the opportunity based
on the anticipated response of j. If she decides not to, then there is no change in either
group’s payoff. If she decides to take the opportunity, then she sends ma

i , which serves as
a coordination signal for members of group i. Group j can also observes ma

i with some
probability, and for simplicity, we assume this probability to be 1. Based on whether j
understands ma

i and the observed nature of the interaction, j responds (optimally).
In the next two subsections, we focus on the case where the sender has a message for

the drawn state a, and analyze a group’s expected payoff in a subgame perfect equilibrium
(SPE).

B.1.2 Cooperative Interaction

Suppose τ = coop, and i is the sender. The following is an SPE of Γ̃t:

• i always engages, sends ma
i and chooses σi = a;3

• j chooses σj = a if ma
i ∈Mi ∩Mj, and chooses uniformly from A if ma

i ∈Mi \Mj.

In this SPE, the payoff of both groups are positive whenever a is such that ma
i ∈ Mi ∩Mj.

This event occurs with probability |Mi ∩Mj|, since |A| = 1. Therefore, the expected payoff
of i is

|Mi ∩Mj|.

In fact, it is easy to verify that all SPEs (except a subset of measure zero of them) have the
same derived expected payoffs. If we interpret Mi = Li∪Eij, then (Equation 2.2) is derived.

B.1.3 Competitive Interaction

Suppose τ = comp, and i is the sender. The following is an SPE of Γ̃t:

• i engages, sends ma
i , and chooses σi = a if and only if a is such that ma

i ∈Mi \Mj;

• j chooses σj = a if ma
i ∈Mi ∩Mj, and chooses uniformly from A if ma

i ∈Mi \Mj.

3Note that this is a weakly dominant strategy for i.
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In this SPE, the sender guarantees a non-negative payoff. The payoff is positive whenever
a is such that ma

i ∈ Mi \Mj. As a result, the ex ante (before the identity of the sender is
determined) expected payoff of group i is

1
2

[
Pr
(
{a : ma

i ∈Mi \Mj}
)
(2) + Pr

(
{a : ma

j ∈Mj \Mi}
)
(−2)

]
= |Mi \Mj| − |Mj \Mi|.

Again, all SPEs (except a subset of measure zero of them) have the same derived expected
payoffs. If we interpret Mk = Lk ∪ Ek ∪Nk, k = i, j, then (Equation 2.3) is derived.

B.2 Proofs

B.2.1 Proof of 2.2

Proof. Let {Lti}i be symmetric and localized. We want to show that {Lt+1
i }i is also sym-

metric and localized, namely, it satisfies conditions (Equation 2.14), (Equation 2.15), and
(Equation 2.10).

It is obvious that {Lt+1
i }i satisfies condition (Equation 2.14) by 2.1 and Corollary 2.

Next, to see that {Lt+1
i }i satisfies condition (Equation 2.15), consider i, j, k such that

dij = dik. If dij = dik ≤ dt∗, where dt∗ is determined by (Equation 2.13) for every t ≥ 1, then
we know by Corollary 1 that Lti ∪ Et

i = Ltj ∪ Et
j = Ltk ∪ Et

k. From the definition of Lt+1, it
follows that |Lt+1

i ∩ Lt+1
j | = |Lt+1

i ∩ Lt+1
k |. Suppose dij = dik > dt∗. There are two cases to

consider. First, if dij = dik > dt∗+ 1, then i will learn nothing from either j or k (nor would
the latter two learn anything from i). So |Lt+1

i ∩Lt+1
j | = |Lt+1

i ∩Lt+1
k | = |Lti∩Ltj| = |Lti∩Ltk|.

Second, suppose dij = dik = dt∗ + 1. Observe that

|Lt+1
i ∩ Lt+1

j | = |Lti ∩ Ltj|+ |Et
ij|+ |Et

ji|+ |Et
i−j ∩ Et

j−i|

|Lt+1
i ∩ Lt+1

k | = |Lti ∩ Ltk|+ |Et
ik|+ |Et

ki|+ |Et
i−k ∩ Et

k−i|,

where Em−n = Em \ Emn. By 5, |Et
ij| = |Et

ik|. Since the decision problem is symmetric, it
must be that |Et

ji| = |Et
ki| as well. Moreover, that both j and k are i’s degree d∗+1 neighbors

implies that j and k are within the same d∗ neighborhood. By 6, all groups within a d∗

neighborhood learn the same subset of elements from their degree d∗+1 neighbors. It follows
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that Et
j−i = Et

k−i up to a subset of measure zero. Therefore, |Et
i−j ∩ Et

j−i| = |Et
i−k ∩ Et

k−i|.4

As a result, condition (Equation 2.15) holds in t+ 1.
Lastly, condition (Equation 2.10) says that if an element ` is learnable by i from a degree

d neighbor, then it cannot be in the dialect of a neighbor of degree greater than d. Suppose,
for contradiction, that {Lt+1

i }i violates condition (Equation 2.10), i.e. there exists an element̂̀ such that ̂̀∈ Lt+1
j \ Lt+1

i ∧ ̂̀∈ Lt+1
k

for some i, j, k such that dij < dik. Since {Lti}i is localized and Lt+1
k = Ltk ∪Et

k ∪N t
k, it must

be the case that either ̂̀ ∈ Et
jk \ Et

ik or ̂̀ ∈ Et
k . ̂̀ ∈ Et

jk \ Et
ik contradicts the assumption

that when dik = djk, i and j learn the same set from k.̂̀∈ Et
k and ̂̀∈ Lt+1

j \ Lt+1
i imply that

̂̀∈ (Et
k ∩ (Ltj ∪ Et

j)) ∧ ̂̀ /∈ (Et
i ∩ (Ltj ∪ Et

j)).

But this is inconsistent with 2.1 and 2.2. If dij ≤ dt∗, then there is no element in Ltj∪Et
j that

i does not know, hence contradicting the second conjunct. If dij > dt∗, k will not choose to
learn anything from j. This is true because when dij < dik, we have dki = dkj. By dij < dik

and dij ≤ dt∗, it must be the case that dik > dt∗ + 1. Combining this fact with 2.1, k will
not learn anything from i, and so neither will k learn from j. Hence we have a contradiction
with the first conjunct. Therefore, condition (Equation 2.10) must hold for {Lt+1

i }i.
This completes the proof.

B.2.2 Proof of 2.3

To prove this proposition, it is helpful to first introduce the following lemma:

Lemma B.1. Let {Lti}i∈G be symmetric and localized. Then, dt∗ ≤ d, where dt∗ is determined
by (Equation 2.13) for every t ≥ 1.

Proof. First, observe that, for all t ≥ 1, all i ∈ G ,

d∑
k=1
|P t
i (k)| ≥ (2d − 1)|N∗|, ∀d ∈ {1, . . . , D}. (B.3)

4We do not actually need 6 to prove that |Eti−j ∩Etj−i| = |Eti−k ∩Etk−i|; 5 alone is enough, although the
exposition will be more complicated.
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This is true because, from 2.1, we know that each group invents a measure of |N∗| new
linguistic elements in every t − 1 (t = 1, 2, . . . ). Hence in t, the set of learnable elements
within a degree d neighborhood for group i,

⋃d
k=1 P

t
i (k), must contain at least, and potentially

more than, a measure of (2d − 1)|N∗| elements. Recall that dt∗ and d are determined by
conditions (Equation 2.13) and (Equation 2.18), respectively. According to (Equation 2.18),
|P t
i (d)| = 2d−1|N∗| for d ≤ d, and so (Equation B.3) holds with equality for d ≤ d. Therefore,

conditions (Equation 2.13) and (Equation 2.18) imply that dt∗ ≤ d for all t ≥ 1.

This lemma says that regardless of initial linguistic composition, no group will ever learn
the all the learnable elements of all of its d+ 1 degree neighbors.

Now we are ready to prove 2.3 itself.

Proof. First, consider i, j such that dij > d+ 1. From B.1, dt∗ ≤ d. Trivially, dt∗+ 1 ≤ d+ 1.
Therefore, if dij > d+ 1, then dij > d∗ + 1. According to Corollary 1, i will never learn any
elements of j’s language. Every period, |Lj \ Li| increases by exactly |N∗|.

Next, consider i, j such that dij = d+ 1 and d∗ < d. Since d∗ + 1 < dij, by Corollary 1 i
will not learn any element of j’s language.

Next consider i, j such that dij = d+1 and d∗ = d. From Equation 2.8, |Pi(d)| ≥ 2d−1|N∗|
for all d. From Corollary 1, i learns |E∗i |−

∑d∗

k=0 |Pi(k)| from its d∗+1 neighbors. The amount
that i learns from its degree d+1 neighbors, |E∗i |−

∑d
k=0 |Pi(k)|, is maximized when |Pi(d)| =

2d−1|N∗| for all d ≤ d. Since d∗ = d it must be true by 2.2 that |E∗i | <
∑d+1
k=0 2k−1|N∗|.

According to 5, i learns an equal measure of each of its degree d + 1 neighbor’s languages,
soi will not learn more than |N∗| of any single one of its degree d+ 1 neighbors’ languages.
Therefore |E∗ij| < |Nj| and |Lj \ Li| increases every period.

B.2.3 Proof of 2.4

Proof. According to 2.6, we need to show that if condition (Equation 2.19) holds for t then
it also holds for t+ 1.

Suppose (Equation 2.19) is true for t. We know from 2.1 that between t and t + 1,
each group invents a set of new elements of measure |N∗|. Therefore, within a degree d
neighborhood, a measure of 2d|N∗| new elements will have been invented by the end of
period t. For d = 0, it is trivially true that (Equation 2.19) holds for t+ 1, because a dialect
is always the same as itself. Consider d ≥ 1. At t+ 1, dialects within a d neighborhood will
stay as one language—i.e. Lt+1

i ∪ Et+1
i = Lt+1

j ∪ Et+1
j for all i, j such that dij ≤ d—if and

only if the marginal benefit at |E∗| = (2d − 1)|N∗| outweighs the marginal cost. But this is
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true by how d is determined in (Equation 2.18). Therefore, condition (Equation 2.19) holds
for t+ 1.

B.2.4 Proof of 2.5

One additional lemma will be useful in proving 2.5.

Lemma B.2. For any t ≥ 1 and d ≥ 1, we have

dt∗ < d ⇒ |Et∗| > (2d − 1)|N∗|,

and
dt∗ = d ⇒ |Et∗| ≥ (2d − 1)|N∗|.

Proof. Let |E| denote the measure of elements learned by a group in the steady state Λ.
From 2.4, we know that |E| is at least (2d − 1)|N∗|. Consider the first implication. Suppose
dt∗ < d, so that the region’s linguistic composition is out of the steady state. Then the
marginal benefit of learning elements on the interval

[
(2d− 1)|N∗|, |E|

]
is at least r+β

1+rπ(dt∗),
which is strictly higher than the marginal benefit of the elements on the same interval if
a group were learning in the steady state. This is illustrated in Figure B.1. In the top
panel, the linguistic composition if out of steady state (d∗ = 2); in the bottom panel,
the linguistic composition is in steady state (d = 3).5 On the interval

[
(2d − 1)|N∗|, |E|

]
,

the marginal benefit in the top panel is higher than that in the bottom panel. Since the
marginal cost of learning is the same both in and out of the steady state, it follows that a
group must learn a strictly larger measure of elements out of steady state. As a consequence,
|Et∗| > |E| ≥ (2d − 1)|N∗| and the first implication is established. The second implication
follows trivially from the fact that when dt∗ = d, the lower bound in 2.2 applies to both |Et∗|
and |E|. But since the latter is bounded below by (2d − 1)|N∗| according to 2.4, so must
|Et∗|.

Now we are ready to prove 2.5 itself.

Proof of 2.5. If d = 0, then by (Equation 2.13) and (Equation 2.18) we have dt∗ = 0 for all
t ≥ 1. Consequently, the steady state Λ is achieved at the end of the first period at the
latest. Suppose {L0

i }i is such that L0
i = L0

j for all i, j ∈ G̃ ⊆ G . Then, at the beginning of
t = 1, each Lk will differ by at least a measure of |N∗| elements. Since dt∗ = 0 for all t, we

5To simplify the drawing, we assumed that the marginal benefit of learning has only one step for each
dij . See footnote 28 for more detail.
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|Et∗i |

|Ei|(2d − 1)|N∗|

MC = |Ei|

MB

MC,MB

|Ei|

Out of steady state Λ

MC = |Ei|

MB

MC,MB

|Ei|

In steady state Λ

Figure B.1: Marginal Benefit of Learning in and out of Steady State
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must have |E1∗
i | < |N∗|. Thus, for all t ≥ 2, it must be the case that Lti 6= Ltj for all i, j ∈ G .

If, on the other hand, not all of the initial set of dialects are identical and dt∗ = 0, then a
fortiori, Lti 6= Ltj for any i, j ∈ G and any t ≥ 1.

For the remainder of the proof, we assume d ≥ 1, and the proof proceeds as follows:
First we show that after the initial period, all pairs of groups i and j with dij > d will never
speak the same language. Then, we show that all groups within a degree d neighborhood
will eventually share a common language as defined in 2.2.

Let {L0
i }i be symmetric and localized, and consider a pair of groups i, j with dij > d.

By B.1, we know that dij > dt∗. This implies that, for each t, the measure of i’s set of
learnable elements is strictly greater than the measure of the set that i actually learns:∑dij
k=0 |P t

i (k)| > |Et∗
i |. According to 2.1, therefore, it is never optimal for i to learn the entire

set of Ltj \ Lti for every t ≥ 0. As a consequence, we have

dij > d ⇒ Lti ∪ Et
i 6= Ltj ∪ Et

j, ∀t ≥ 1.

Next, consider a pair of groups i, j for which dij ≤ d. In each period t, i’s closest 2d − 1
neighbors invent a measure of (2d− 1)|N∗| new linguistic elements. B.2 shows that when dt∗

is less than (or equal to) d, the size of the set of elements learned by i is strictly (or weakly)
greater than the number of elements newly invented by the closest 2d − 1 neighbors. Since
each Li is of a finite measure, and the rate of linguistic convergence (i.e. size of acquired
elements from existing dialects) is higher than the rate of linguistic divergence (i.e. size of
invented elements) within a degree d neighborhood, dialects within such a neighborhood will
attain Li ∪Ei = Lj ∪Ej in finitely many periods and will remain that way thereafter. As a
result, there exists a T < ∞ such that for all t ≥ T , we have Lti ∪ Et

i = Ltj ∪ Et
j for all i, j

with dij ≤ d. This completes the proof.

B.3 Figures

128



F
ig
ur
e
B
.2
:
D
is
tr
ib
ut
io
n
of

La
ng

ua
ge
s
in

th
e
W
or
ld

E
ac
h
re
d
do

t
in
di
ca
te
s
th
e
ge
og

ra
ph

ic
ce
nt
er

of
a
la
ng

ua
ge
.
So

ur
ce
:
Le

w
is

(2
00

9,
ht

tp
:/

/a
rc

hi
ve

.e
th

no
lo

gu
e.

co
m/

16
/

sh
ow

_m
ap

.a
sp
?n

am
e=

Wo
rl

d&
se

q=
10

).

129

http://archive.ethnologue.com/16/show_map.asp?name=World&seq=10
http://archive.ethnologue.com/16/show_map.asp?name=World&seq=10
http://archive.ethnologue.com/16/show_map.asp?name=World&seq=10
http://archive.ethnologue.com/16/show_map.asp?name=World&seq=10


Appendix C

Chapter 3 Appendix

C.1 Proofs of Formal Propositions
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Lemma 1 (xA and xB as functions of σ).

(a) From (8) xA(σ) + xB(σ) = (sA + sB)/φ(sA, sB), where φ(sA, sB) ≡ sA/[1 + σ-1/(1-α)]α + sB/[1 +

σ1/(1-α)]α from (5b). Using σ ≡ sA/sB > 0 from (5a), some algebra shows that xA(σ) + xB(σ)

> 1 iff the following expression is positive:

σ[(2 + σ-1/(1-α) + σ1/(1-α))α - (1 + σ1/(1-α))α]

+ (2 + σ-1/(1-α) + σ1/(1-α))α - (1 + σ-1/(1-α))α

This is true because each line is strictly positive.

(b) From (8) we have xA(σ) ≡ sA/φ(sA, sB).  From (4) and (5c) this can be rewritten as

xA(σ) = sA / max {sALA
α + sBLB

α subject to LA ≥ 0, LB ≥ 0, LA + LB = 1} or

xA(σ) = 1 / max {LA
α + (1/σ)LB

α subject to LA ≥ 0, LB ≥ 0, LA + LB = 1}

The right hand side is increasing in σ due to the envelope theorem. Thus xA′(σ) > 0 for all σ

> 0.  A similar argument shows that x B′(σ) < 0 for all σ > 0.

(c) Write xA(σ) = 1 / max {LA
α + (1/σ)LB

α subject to LA ≥ 0, LB ≥ 0, LA + LB = 1} as in (b).

Because multiplication of the objective function by the constant (1/sA) has no effect on

the solution, the optimal LA and LB in the denominator are given by (5d) for n = 1.

Making this substitution, it can be shown that the denominator of xA(σ) approaches

infinity as σ → 0 and approaches 1 as σ → ∞.  This gives xA(0) = 0 and xA(∞) = 1.

(d) The proof parallels (c).

Proposition 1 (war and peace).

Attack is a dominant strategy for A iff pAh(nA) > sAnA
α-1 or equivalently nA/N > xA(σ).

Attack is a dominant strategy for B iff pBh(nB) > sBnB
α-1 or equivalently nB/N > xB(σ). When

neither inequality holds, there is peace as in (7). If both A and B attack, then nA/N + nB/N >

xA(σ) + xB(σ) > 1 where the second inequality is obtained from (9a). This is impossible because

nA + nB = N. Thus A and B cannot both attack. The results in (a), (b), and (c) follow from the

first three sentences above.

To show that equality of marginal products implies peace, fix N > 0 and σ > 0. Write LA* =

N/[1 + σ-1/(1-α)] and LB* = N/[1 + σ1/(1-α)] as in (5d), where LA* + LB* = N. This is the unique labor
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allocation that equates marginal products across sites, and it is also the unique allocation that

equates average products across sites.  Let the total food output from (LA*, LB*) be

Y* = sA(LA*) α + sB(LB*)α

= H(N) = max {sALA
α + sBLB

α subject to LA ≥ 0, LB ≥ 0, LA + LB = N}.

Because the average products are equal, we have Y*/N = sA(LA*)α-1 = sB(LB*)α-1. Peace is strictly

better than war for group A when Y*/N = sA(LA*)α-1 > (LA*/N)h(LA*) = H(LA*)/N. This holds

because LA* < N gives H(LA*) < H(N) = Y*. The proof is similar for B. This shows that peace

is strictly better for each group, so case (b) holds with strict inequalities.

Proposition 2 (interior locational equilibria).

For any given allocation n there are three possibilities: (a) B attacks; (b) there is peace; or (c)

A attacks.  Using Proposition 1, we consider each case in turn.

(a) B attacks iff nA/N < 1-xB or equivalently nA/nB < (1-xB)/xB. The utility functions are those

from the warfare case in (10). The inequalities in (11) yield η1/α ≤ nA/nB ≤ (1/η)1/α.

Together this gives Proposition 2(a).

(b) There is peace iff 1-xB ≤ nA/N ≤ xA or equivalently (1-xB)/xB ≤ nA/nB ≤ xA/(1-xA). The utility

functions are those from the peace case in (10). The inequalities in (11) yield (ση)1/(1-α) ≤

nA/nB ≤ (σ/η)1/(1-α).  Together this gives Proposition 2(b).

(c) A attacks iff xA < nA/N or equivalently xA/(1-xA) < nA/nB. The utility functions are those

from the warfare case in (10). The inequalities in (11) yield η1/α ≤ nA/nB ≤ (1/η)1/α.

Together this gives Proposition 2(c).

Proposition 3 (migration).

(a) Follows from Definition 1, the construction of LEB, LEP, and LEA in Proposition 2, and

Definition 2(a).

(b) Suppose LEB is empty and consider two possibilities:

(i) mA/mB < (1-xB)/xB, which yields war; and

(ii) (1-xB)/xB ≤ mA/mB with mA/mB below LEP, which yields peace.
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In case (i), the utility functions for war in (10) give uA(n) = [φ(sA, sB)/N]nA
α and uB(n) =

[φ(sA, sB)/N]nB
α for all n with nA ≤ mA. The fact that LEB is empty implies (1-xB)/xB ≤ η1/α

so we have nA/nB < η1/α for all such n. This gives uA(n) < ηuB(n) in (11) for all such n.

From Definition 2(c) we obtain the final allocation n = (0, N).

In case (ii), the utility functions for peace in (10) give uA(n) = sAnA
α-1 and uB(n) = sBnB

α-1 for

all n with nA ≥ mA and nA/nB below LEP. From the construction of LEP, this implies

ηuA(n) > uB(n) for all such n. The allocation n with the smallest nA ≥ mA such that ηuA(n)

= uB(n) is the one where nA/nB equals the lower bound of LEP.

(c) Suppose LEB is non-empty and consider two possibilities:

(i) mA/mB is below the lower bound of LEB, which yields war;

(ii) mA/mB is between the upper bound of LEB and the lower bound of LEP, which

may yield either war or peace.

In case (i), the argument is the same is in (b)(i) above, except that now nA/nB < η1/α follows

from the fact that all allocations under consideration have nA/nB below the lower bound of

LEB.

In case (ii), suppose (1/η)1/α < mA/mB < (1-xB)/xB, which yields war. The utility functions for

war in (10) give uA(n) = [φ(sA, sB)/N]nA
α and uB(n) = [φ(sA, sB)/N]nB

α for all n with nA ≥

mA and nA/nB < (1-xB)/xB. From (1/η)1/α < mA/mB ≤ nA/nB, at any such n we have uB(n) <

ηuA(n). This includes the allocation m. From Definition 2(b), no such n can be a final

allocation. Now consider n with nA/nB ≥ (1-xB)/xB where nA/nB is below the lower bound

of LEP. Any such n yields peace. At nA/nB = (1-xB)/xB the function uB(n) is continuous

while uA(n) has an upward jump. This maintains uB(n) < ηuA(n). From the construction

of LEP, the allocation n with the smallest nA ≥ mA such that uB(n) = ηuA(n) is the one

where nA/nB equals the lower bound of LEP. If instead the initial allocation has mA/mB ≥

(1-xB)/xB and mA/mB is below the lower bound of LEP, we repeat the last part of the

argument above.

(d) The argument is symmetric to case (b) above.

(e) The argument is symmetric to case (c) above.
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Lemma 2 (group size ratio).

Fix σt∈ (0, ∞) and mA
t/mB

t∈ (0, ∞).  We proceed in the following steps.

(a) Recall the definitions of xA(σ) and xB(σ) in (8). From Proposition 2, the pair (σt, mA
t/mB

t)

determines whether mA
t/mB

t is in one of the sets LEB, LEP, or LEA. If it is, then from

Definition 2(a) we have nA
t/nB

t = mA
t/mB

t.

(b) If mA
t/mB

t is not in one of the sets LEB, LEP, or LEA, this and the fact that mt is interior

implies that one of the four cases (b)-(e) in Proposition 3 applies. From Proposition 2, σt

determines whether LEB is empty or non-empty and likewise for LEA. The ratios (σt,

mA
t/mB

t) together determine which of (b)-(e) in Proposition 3 applies, and also the final

allocation nt, where nt must be (Nt, 0), (0, Nt), the lower bound of LEP, or the upper bound

of LEP.

(c) If step (a) applies with mA
t/mB

t∈ LEP, or step (b) applies and nt is the lower or upper bound

of LEP, there is peace in period t. This follows because all ratios in the LEP interval

satisfy the conditions for peace in Proposition 1 by construction. We then obtain

mA
t+1/mB

t+1 from (12), where the new allocation mt+1 is interior.

(d) If step (a) applies with mA
t/mB

t∈ LEB or mA
t/mB

t∈ LEA, there is a non-trivial war in period

t and we obtain mA
t+1/mB

t+1 from (13), where mt+1 is interior. If step (b) applies and nt is

(Nt, 0) or (0, Nt), there is a trivial war in period t, and again we obtain mA
t+1/mB

t+1 from

(13), where mt+1 is interior.

Proposition 4 (war and peace with Malthusian dynamics).

From Proposition 3, a non-trivial war occurs in period t+1 iff mA
t/mB

t∈ LEB or mA
t/mB

t∈ LEA.

In all other cases, either nt+1 = (Nt+1, 0) or nt+1 = (0, Nt+1) so there is a trivial war; or nA
t+1/nB

t+1∈

LEP so there is peace.

(a) Proposition 2(a) shows that a necessary condition for mA
t+1/mB

t+1∈ LEB is η1/α ≤ mA
t+1/mB

t+1

≤ (1/η)1/α. Proposition 2(c) shows that the same condition is necessary for mA
t+1/mB

t+1∈

LEA.
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(b) Proposition 2(a) shows that a necessary condition for mA
t+1/mB

t+1 ∈ LEB is mA
t+1/mB

t+1 <

[1-xB(σt+1)]/xB(σt+1). Proposition 2(c) shows that a necessary condition for mA
t+1/mB

t+1 ∈

LEA is mA
t+1/mB

t+1 > xA(σt+1)/[1-xA(σt+1)].

When the necessary condition in (a) is combined with the necessary condition for LEB in (b), by

Proposition 2 this suffices for mA
t+1/mB

t+1∈ LEB. The result for LEA is the same.

We want to show that one of the inequalities in (b) holds iff σt+1 ∉ [σA
t+1, σB

t+1] as in

Proposition 4(b). The solutions for σA
t+1 and σB

t+1 exist and are unique due to the continuity of xA

and xB; the monotonicity of these functions from (9b); and the limit properties of these functions

from (9c) and (9d). We next show σA
t+1 < σB

t+1. Suppose σA
t+1 = σB

t+1. From (9a) we have

xA(σA
t+1) + xB(σB

t+1) > 1, which contradicts the definition of σA
t+1 and σB

t+1. Suppose σA
t+1 > σB

t+1.

From (9b), xA is an increasing function, so this gives xA(σA
t+1) + xB(σB

t+1) > xA(σB
t+1) + xB(σB

t+1) >

1, which again contradicts the definition of σA
t+1 and σB

t+1.  Thus σA
t+1 < σB

t+1.

We now establish σA
t+1 < σt < σB

t+1. Using the monotonicity of xA and xB in (9b), this holds

iff xA(σA
t+1) < xA(σt) and 1 - xB(σt) < 1 - xB(σB

t+1). From the definitions of σA
t+1 and σB

t+1, these

inequalities hold iff 1 - xB(σt) < mA
t+1/Nt+1 < xA(σt). We will show that the latter pair of

inequalities is always satisfied.

(i) Suppose there is a (trivial or non-trivial) war in period t. This implies LA
t/LB

t = (σt)1/(1-α)

where (LA
t, LB

t) is obtained from (5d). From (13), mA
t+1/mB

t+1 = (σt)1/(1-α). We know

LA
t/LB

t equalizes average products at the productivity ratio σt so the same is true for

mA
t+1/mB

t+1.  Proposition 1 gives 1-xB(σt) < mA
t+1/Nt+1 < xA(σt).

(ii) Suppose there is peace in period t. From Proposition 3, this implies nA
t/nB

t ∈ LEP. First

consider the case in which nA
t/nB

t > (σt)1/(1-α) so nA
t/nB

t exceeds the group size ratio that

equalizes average products in period t. By (12), mA
t+1/mB

t+1 = σt(nA
t/nB

t)α. This gives

nA
t/nB

t > mA
t+1/mB

t+1 > (σt)1/(1-α). Due to nA
t/nB

t ∈ LEP and the fact that (σt)1/(1-α) is in the

interior of LEP in period t, mA
t+1/mB

t+1 is in the interior of the set LEP defined by σt in

period t. Proposition 2(b) then gives 1-xB(σt) < mA
t+1/Nt+1 < xA(σt). A parallel argument

yields the same result for the case in which nA
t/nB

t < (σt)1/(1-α). The only other case is

nA
t/nB

t = (σt)1/(1-α), which gives mA
t+1/mB

t+1 = (σt)1/(1-α). Again, mA
t+1/mB

t+1 is in the interior

of the set LEP defined by σt and Proposition 2(b) gives 1-xB(σt) < mA
t+1/Nt+1 < xA(σt).
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This concludes the proof that σA
t+1 < σt < σB

t+1.

When σt+1 < σA
t+1, the monotonicity of xA gives xA(σt+1) < xA(σA

t+1) ≡ mA
t+1/Nt+1 or

xA(σt+1)/[1-xA(σt+1)] < mA
t+1/mB

t+1. When σt+1 > σB
t+1, the monotonicity of xB gives 1-xB(σt+1) > 1-

xB(σB
t+1) ≡ mA

t+1/Nt+1 or [1-xB(σt+1)]/xB(σt+1) > mA
t+1/mB

t+1. When σA
t+1 ≤ σt+1 ≤ σB

t+1, we have

[1-xB(σt+1)]/xB(σt+1) ≤ mA
t+1/mB

t+1 ≤ xA(σt+1)/[1-xA(σt+1)]. Thus one of the inequalities in (b) of the

proof holds iff σt+1 ∉ [σA
t+1, σB

t+1] as in Proposition 4(b).

Corollary.

From Proposition 4, σA
t+1 < σt = σt+1 < σB

t+1 implies that there cannot be a non-trivial war in

period t+1 regardless of whether there is war or peace in period t. A trivial war can be ruled out

using (i) and (ii) in the proof of Proposition 4 and substituting σt = σt+1 to show that mA
t+1/mB

t+1

∈ LEP for period t+1.  Proposition 3(a) then yields peace in period t+1.
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C.2 Figures
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Figure C.1: War and Peace Determined by the
Ratio of Site Productivities and the Ratio of
Group Sizes
(AP = average product)
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Figure C.2: Migration and Locational Equi-
librium (Example where LEB Exists But LEA
Does Not)

Figure C.3: Productivity Ratios for War and
Peace in Period t+1 Given Initial Group Sizes
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