
An efficient approach to pruning
regression trees using a modified Bayesian

information criterion
by

Nikola Surjanovic

B.Sc., Simon Fraser University, 2019

Project Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
Department of Statistics and Actuarial Science

Faculty of Science

© Nikola Surjanovic 2021
SIMON FRASER UNIVERSITY

Spring 2021

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Nikola Surjanovic

Degree: Master of Science (Statistics)

Thesis title: An efficient approach to pruning regression trees
using a modified Bayesian information criterion

Committee: Chair: Joan Hu
Professor, Statistics and Actuarial Science

Thomas M. Loughin
Supervisor
Professor, Statistics and Actuarial Science

Richard Lockhart
Committee Member
Professor, Statistics and Actuarial Science

Lloyd T. Elliott
Examiner
Assistant Professor, Statistics and Actuarial Science

ii

Abstract

By identifying relationships between regression tree construction and change-point detec-
tion, we show that it is possible to prune a regression tree efficiently using properly modified
information criteria. We prove that one of the proposed pruning approaches that uses a mod-
ified Bayesian information criterion consistently recovers the true tree structure provided
that the true regression function can be represented as a subtree of a full tree. In practice,
we obtain simplified trees that can have prediction accuracy comparable to trees obtained
using standard cost-complexity pruning. We briefly discuss an extension to random forests
that prunes trees adaptively in order to prevent excessive variance, building upon the work
of other authors.

Keywords: Regression trees; pruning; information criteria; cross-validation; machine learn-
ing

iii

Acknowledgements

I first have to thank my supervisor, Dr. Tom Loughin, for his constant support over the past
several years while I was completing my undergraduate and master’s degrees at SFU. Tom
has taught me a great deal about how to think like a scientist and how to communicate ideas
clearly. His great sense of humour has also made completing a master’s degree enjoyable.
He has definitely set a great example for me as to what a supervisor should be.

There are too many other members of the department to thank. I would like to express
appreciation towards Dr. Rachel Altman and Dr. Derek Bingham for warmly welcoming me
to the department back in 2015. Conversations with Dr. Richard Lockhart in the past few
years have always been extremely interesting and insightful. Many thanks to all members
of the committee for reading my thesis and providing feedback, including Dr. Lloyd Elliott
and Dr. Joan Hu. To all members of the department: I will definitely miss SFU.

I also have to thank my family and friends. I am grateful for the love and support of my
parents, Ivan and Yatsa. A big thank-you to my older sister, Sonja, for always leading the
way and setting a good example. Many thanks to all of my friends for the nice memories.

iv

Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Figures vii

1 Introduction 1

2 Literature Review 3
2.1 Regression Trees and the CART Algorithm 3
2.2 Information Criteria . 5

2.2.1 Bayesian Information Criterion . 6
2.2.2 Akaike’s Information Criterion . 7
2.2.3 Other Information Criteria . 8

2.3 Change-Point Detection . 8

3 Methods 10
3.1 Cost-Complexity Pruning . 10
3.2 BIC Pruning . 11

3.2.1 Notation . 12
3.2.2 Branch Freezing (BIC-BF) . 14
3.2.3 Accumulated Information (BIC-AI) 15

3.3 AIC Pruning . 16
3.4 Other Pruning Methods . 17

3.4.1 IC-Based Pruning Methods . 17
3.4.2 Other Pruning Methods for Regression Trees 18
3.4.3 Other Pruning Methods for Classification Trees 18

3.5 BIC Pruning: Consistency Results . 18
3.5.1 Theorem and Lemmas: Definitions, Conditions, and Statements . . . 22

v

4 Simulation Study Design 28
4.1 Metrics Used . 29
4.2 Setting 1: Simple Scenarios . 30
4.3 Setting 2: Many Variables and Correlation 31
4.4 Setting 3: Deep Trees . 32
4.5 Setting 4: True Regression Function Is Not a Tree 32

5 Simulation Results 35
5.1 Model Dimension Recovery . 35
5.2 Prediction Accuracy . 40

6 Discussion 45

Bibliography 47

Appendix A Proofs 50
A.1 Lemma 1 . 50
A.2 Lemma 2 . 52
A.3 Theorem 1 . 55
A.4 Consistent Estimators of the Conditional Variance 58

vi

List of Figures

Figure 2.1 An example of a simple regression tree represented as a graph. Pro-
ceed to the left child node if a condition is met. Otherwise, proceed
to the right child node. m denotes the estimated regression function
value in the given region. 4

Figure 2.2 The regression tree from Figure 2.1 represented as a surface. 5

Figure 3.1 A tree-based partition, P, of [0, 1]2. The grey rectangles form the
ε-reduction of P. 20

Figure 3.2 A region A ⊂ [0, 1]2 with Snap(A,G(ε)) displayed as a shaded grey
rectangle. The light grey points form a grid on [0, 1]2 to which regions
can be “snapped”. 21

Figure 3.3 A partition P (rectangles with black borders) of [0, 1]2 and a possible
refinement of P (additional dashed grey lines). 23

Figure 3.4 A partition P (rectangles with black borders) of [0, 1]2 and a possible
ε-perturbation of P (dashed grey lines). 24

Figure 4.1 True regression tree for Setting 1 with p0 = 2. 30
Figure 4.2 True regression tree for Setting 1 with p0 = 5. 31
Figure 4.3 True regression tree for Setting 2. 31
Figure 4.4 True regression tree for Setting 3. For the fixed tree, µk = −2.5 +

5(k − 1)/19, k = 1, 2, . . . , 20 so that −2.5 ≤ µk ≤ 2.5. In the ran-
dom tree, these values are permuted randomly for each simulation
realization. 33

Figure 4.5 The true regression function for Setting 4 restricted to [0, 1]2. . . . 34

Figure 5.1 Setting 1 results for model dimension recovery (fixed trees). For these
settings, X(1) was chosen as the first splitting variable in 100% of
the simulation realizations. 36

Figure 5.2 Setting 1 results for model dimension recovery (random trees). For
the first four settings (reading horizontally), X(1) was chosen as the
first splitting variable in approximately 74% of the simulation real-
izations. In the remaining four settings, X(1) was chosen as the first
splitting variable in approximately 42% of the simulation realizations. 37

vii

Figure 5.3 Setting 2 results for model dimension recovery. In the first two set-
tings (reading horizontally), X(1) was chosen as the first splitting
variable in 100% and 99.8% of the simulation realizations, respec-
tively. In the last two settings, X(1) was chosen as the first splitting
variable in approximately 33% of the simulation realizations. 38

Figure 5.4 Setting 3 results for model dimension recovery. In the first two set-
tings, X(1) was chosen as the first splitting variable in 100% of the
simulation realizations. In the last two settings, X(1) was chosen as
the first splitting variable in approximately 40% of the simulation
realizations. 39

Figure 5.5 Setting 1 results for prediction accuracy (fixed trees). 41
Figure 5.6 Setting 1 results for prediction accuracy (random trees). 42
Figure 5.7 Setting 2 results for prediction accuracy. 43
Figure 5.8 Setting 3 results for prediction accuracy. 43
Figure 5.9 Setting 4 results for prediction accuracy. 44

viii

Chapter 1

Introduction

Predicting the value of a numeric response variable from a given set of explanatory variables
is central to virtually every scientific discipline. This can be achieved using one of many
available regression methods. In this work we will focus on regression trees, a popular type
of statistical learning algorithm, because they are often used as the foundation for more
complex learning algorithms.

The basic premise behind regression trees is relatively simple. Here we present only an
overview and provide more details in Section 2.1. Tree construction is based on a recursive
partitioning (RP) or “splitting” of subsets of the explanatory variable space in order to form
a partition of the entire space. This process continues until some termination criterion is
attained. After a partition is obtained, the regression tree algorithm estimates the regression
surface by taking the mean of the observed response values in each of the regions. The
obtained trees are therefore piecewise constant regression functions and the regions can be
obtained through a sequence of simple rules that can be summarized as a tree diagram. An
example of a tree diagram and the corresponding estimated surface are given in Figures 2.1
and 2.2.

Our work focuses on developing methods for “pruning” regression trees efficiently and
providing theoretical performance guarantees of these methods. Pruning of a regression
tree refers to the process of simplifying the tree in order to offer better predictions and/or
ease of interpretation. The trade-off between bias and variance when pruning a tree is best
illustrated by considering two extreme examples: a tree in which no splits are made and all
predictions for future observations are exactly the same, and a tree in which each observation
in the training set forms its own group so that means for prediction in each group are
estimated using only one response. While hardly any of the features of the true regression
function can be explained by the first tree (high bias) if the true regression function is
complex, refitting the same tree on a new training set would barely cause the tree to change
(low variance). On the other hand, the average of many highly complex trees produced from
independent datasets might approximate the true regression function reasonably well (low
bias), but a new set of training data would drastically change the shape of the estimated

1

regression function obtained from a single tree (high variance). Clearly, there may be a tree
that lies between these two extremes that is optimal (in some sense) for prediction. Often,
large regression trees are built initially and a pruning algorithm is used to find the best
tree, taking into consideration the bias-variance trade-off.

The standard pruning algorithm relies on cross-validation, which can be a computation-
ally expensive procedure. We develop alternative pruning algorithms that are computation-
ally efficient and can easily be extended to tree-based ensemble learning algorithms such
as random forests. The proposed algorithms use a modified Bayesian information criterion
during the pruning process. We obtain simplified trees that have prediction accuracy often
comparable to trees obtained using standard pruning. In some cases, our trees are better in
terms of prediction accuracy. We also offer some theoretical guarantees on the performance
of one of the proposed algorithms. An extension to random forests that prevents the growth
of trees with excessive variance, suggested by [9], is briefly discussed.

In Chapter 2, we review the RP tree-construction algorithm of [1], information criteria,
and the change-point detection problem. Then, in Chapter 3, we outline the standard prun-
ing algorithm, along with other existing pruning algorithms, and introduce the proposed
pruning algorithms based on a modified Bayesian information criterion. The theoretical
consistency results are also provided in this chapter. The design of the simulation study
used to evaluate the performance of the pruning methods is outlined in Chapter 4 and the
results are provided in Chapter 5. We conclude with a brief discussion, along with some
suggestions for future work with tree-based ensemble learning algorithms, in Chapter 6. The
proofs of several results can be found in the Appendix.

2

Chapter 2

Literature Review

In this chapter, we first review the recursive partitioning (RP) algorithm of Breiman et
al. [1] for tree construction. This algorithm, described in Section 2.1, is a very commonly
used method for constructing classification and regression trees via a RP procedure. Next, in
Section 2.2, we give a brief overview of various information criteria, including the Bayesian
information criterion and Akaike’s information criterion. We end the literature review with a
summary of various relevant papers on change-point detection in Section 2.3. The process of
fitting a regression tree is essentially a recursively applied change-point detection procedure,
and work in this research area with information criteria forms the basis of our pruning
procedure.

Throughout this thesis, we write (X1, Y1), (X2, Y2), . . . to denote a sequence of i.i.d. pairs
of random variables. The random variable Xi = (X(1)

i , X
(2)
i , . . . , X

(p)
i)′ takes on values in

X ⊂ Rp and represents a vector of explanatory variables, while the random variable Yi
takes on values in Y ⊂ R and is the response. For a given sample size n, we use lowercase
to denote realizations of these random variables: (x1, y1), (x2, y2), . . . , (xn, yn).

2.1 Regression Trees and the CART Algorithm

We lay out the RP algorithm used by Breiman et al. [1], which we refer to as the CART
(classification and regression tree) construction algorithm, combining notation from [1] and
[22]. We also introduce some new notation that will be useful for describing our own pruning
algorithms in Section 3.2.

The CART algorithm provides a way to estimate the regression function by partitioning
the explanatory variable space and taking the mean of the observed responses in each region
to form a piecewise-constant estimated regression function. During tree construction, CART
provides a systematic way of partitioning X by choosing appropriate splitting hyperplanes
and regions on which to split. At each step, CART searches for a split that reduces the sum
of squared errors the most. Given a region A ⊂ X , j ∈ {1, 2, . . . , p}, and z ∈ R, we define
AL = {x ∈ A : x(j) < z} to be the “left” side of A, and AR = {x ∈ A : x(j) ≥ z} to be the

3

“right” side of A. We also let 1(S) be the indicator function on a set S, and write |S| to
denote the cardinality of a finite set S. For an arbitrary region A we define

Ȳn,A =
n∑
i=1

Yi1(Xi ∈ A)/
∣∣∣∣∣
n∑
i=1

1(Xi ∈ A)
∣∣∣∣∣ .

Finally, we define the random quantity

Ln,A(j, z) =
n∑
i=1

(Yi − Ȳn,A)2
1(Xi ∈ A)

−
[
n∑
i=1

(Yi − Ȳn,AL
)2
1(Xi ∈ AL) +

n∑
i=1

(Yi − Ȳn,AR
)2
1(Xi ∈ AR)

]
, (2.1)

which is the reduction in sum of squares after splitting on region A on the jth variable at
location z and fitting a separate mean in each of the new partition regions.

Starting with the region A = X and the partition P0 = {X}, the CART algorithm selects
the values of j and z so that (2.1) is maximized. Because the value of z that maximizes
this quantity is not unique, it is customary to set it equal to a value halfway between two
consecutive values of the x(j)

i . The optimal pair (j, z) defines a splitting hyperplane, H1,
and a new partition P1 = {AL, AR}. The procedure is then continued within each element
of P1. For each partition, the elements of the partition are referred to as nodes. If a node is
split on with a hyperplane, it becomes the parent of two child nodes.

At some point, depending on the stopping rule used, the algorithm is terminated and a
partition PK of X containing K + 1 elements (or “terminal nodes”) is obtained. From this
partition, we can estimate the regression function with

mn,K(x) =
∑
A∈PK

Ȳn,A1(x ∈ A) (2.2)

for x ∈ X . Given a training set (xi, yi), i = 1, . . . , n, the non-random estimated regression
function, or fitted “tree”, can be used to predict responses for new observations. An example
regression tree, represented both as a graph and as a surface, is presented in Figures 2.1
and 2.2.

x(1) < 0.5

x(2) < 0.5

m = 0 m = 1

x(2) < 0.7

m = 2 m = 3

Figure 2.1: An example of a simple regression tree represented as a graph. Proceed to the
left child node if a condition is met. Otherwise, proceed to the right child node. m denotes
the estimated regression function value in the given region.

4

Figure 2.2: The regression tree from Figure 2.1 represented as a surface.

There are many implementations of the CART tree-construction procedure, some of
which can be performed with the rpart() function from the rpart package in R. Imple-
mentations can vary, depending on the tree-growing rules and stopping rules used. For
example, trees can be grown in a balanced manner, ensuring that the depth of each tree
branch is roughly equal. Alternatively, the trees can be grown “best first”, meaning that
there is no restriction on tree balance and that all terminal nodes are eligible for splitting in
a given step of the tree construction algorithm. Various parameters can be set, such as the
minimum number of observations required to make a split on a particular node (minsplit)
and the minimum number of observations that can be in a terminal node (minbucket).
Unless otherwise stated, we assume that splits are allowed to occur on nodes with as few as
four observations (minsplit=4) and we must have at least two observations in each terminal
node (minbucket=2).

2.2 Information Criteria

In this section we describe several information criteria used for model selection. Our new
pruning algorithms make use of a modified version of the Bayesian information criterion

5

(BIC) [21] and so we focus on this criterion. However, we also try using a modification of
Akaike’s information criterion (AIC) and examine its performance.

2.2.1 Bayesian Information Criterion

The BIC [21], sometimes referred to as Schwarz’s information criterion, is a tool for model
selection. Despite its name, its use is not limited to Bayesian models. It is only the deriva-
tion of the information criterion that is based on Bayesian principles. In what follows, we
introduce the BIC in a way similar to [11]. The BIC is quite general and its derivation is
not necessarily limited to models of the type to be presented.

Suppose that we have D models: M1,M2, . . . ,MD. For any one of these D models, say
model d, we have an associated set of distributions fθd

that are indexed by some parameter
θd in Θd ⊂ Rpd for some pd. Further, model d specifies a prior, πd, on θd. That is, given
model d, we have

θd|Md ∼ πd,

X1, . . . ,Xn|Md, θd
iid∼ fθd

.

We let πM denote the prior on the D considered models, so that πM (Md) is the prior
probability that the dth model is the “true” model. From here, we can obtain the posterior
probabilities for each of the models conditional on the observed data, x1, . . . ,xn. Applying
Bayes’ rule,

P (M = Md|X1 = x1, . . . ,Xn = xn) =

[∫
Θd

(
∏n
i=1 fθd

(xi))πd(dθd)
]
πM (Md)

P (X1 = x1, . . . ,Xn = xn) . (2.3)

The quantity P (X1 = x1, . . . ,Xn = xn) is used to represent a density if the Xi are contin-
uous, for example.

Intuitively, it seems like a good idea to select the model with the highest posterior
probability. If πM is uniform across the D models, then this is the same as choosing the
model with the highest value of

pd(x1, . . . ,xn) =
∫

Θd

(
n∏
i=1

fθd
(xi)

)
πd(dθd), (2.4)

a quantity often referred to as the marginal likelihood. In contrast, the log-likelihood given
model d evaluated at an arbitrary parameter θ is `n,d(θ) =

∑n
i=1 log(fθ(xi)) and we write

θ̂n,d to refer to the maximum likelihood estimate (MLE) of θd for model d.

6

By using some approximations, such as the Laplace approximation, one can show that
(under some regularity conditions)

−2 log(pd(x1, . . . ,xn)) ≈ −2`n,d(θ̂n,d) + pd log(n).

The BIC for model d is defined as

BICn(Md) = −2`n,d(θ̂n,d) + pd log(n), (2.5)

and we choose the model with the smallest BIC value, thereby choosing the model that
yields approximately the largest marginal likelihood.

Remarkably, the approximation in (2.5) does not depend on the priors πd and contains
quantities that are often quite easily computed. Furthermore, under certain conditions, it
can be shown that the BIC selects the “true” model with probability approaching one as
the sample size goes to infinity.

In Section 2.3 we describe models in which the preceding derivation of the BIC is not
appropriate. The derivation can break down if, for example, the model contains parameters
that take on discrete values, the Fisher information matrix is not invertible, or the parameter
space depends on the sample size. However, it is often still possible to create an information
criterion for models that are not “regular” by properly accounting for the parameters.

2.2.2 Akaike’s Information Criterion

The AIC approaches model selection from a different angle: instead of selecting the model
with the highest posterior probability, it searches for the model with the greatest prediction
accuracy. This is done by searching for a model with the smallest expected Kullback-Leibler
divergence relative to the true model. We present the AIC in a way similar to [4] and [11].
Again, the AIC is not necessarily limited to the models of the type that we will consider.

Let Z be independent of the training dataX but with the same distribution, f , asX. The
discussions in [4] and [11] explain that minimizing the expected value of the Kullback-Leibler
divergence of the estimated model relative to the true model is equivalent to maximizing

E(log f(Z|θ̂n,d(X))), (2.6)

the expectation of the log-likelihood taken over X and Z.
To illustrate the importance of using (2.6) as a model selection criterion compared to

the maximized likelihood alone, consider a collection of models, M1,M2, . . . ,MD, as before.
Suppose that these models are now nested and we use the maximized log-likelihood to
choose from them. Selecting the model with the largest log-likelihood will always favor the
most complex model, simply because `(θ̂n,d1) ≤ `(θ̂n,d2) for d1 ≤ d2, because Θd1 ⊂ Θd2

7

in this case. The reason for this behaviour is that the maximized log-likelihood is a biased
estimate of (2.6) and a penalty is needed that properly accounts for the model size.

We have already seen that the BIC introduces a penalty on model dimension, introducing
a trade-off between maximized likelihood and model size. The AIC does the same, but with
a different penalty. By making asymptotic approximations to quantities related to (2.6), the
information criterion in this framework is

AICn(Md) = −2`n(θ̂n,d) + 2pd. (2.7)

The AIC penalty is smaller than the BIC penalty provided that n ≥ 8, and it therefore
tends to favour larger models than the BIC. In general, the AIC is not guaranteed to select
the “true” model with probability approaching one, in contrast to the BIC.

2.2.3 Other Information Criteria

There is an abundance of other information criteria, including the Focused Information
Criterion [3], the Deviance Information Criterion (DIC) [25, 26], and the Widely Applicable
(Bayesian) Information Criterion [30], among others. A good review of AIC, BIC, DIC, and
some other information criteria can be found in [11]. These information criteria each have
their own merits. However, we will not consider information criteria beyond AIC and BIC
any further.

2.3 Change-Point Detection

For the remainder of this chapter, we focus on change-point detection. Although the litera-
ture on change-point detection and change-point regression is vast, we focus on change-point
detection methods that rely on the use of information criteria. The regression tree construc-
tion algorithm is essentially a recursive change-point detection procedure and we would like
to prune regression trees using information criteria.

Consider a sequence of independent (but not necessarily identically distributed) random
variables Y1, Y2, . . . , Yn. In the simplest setting, one might wish to determine whether the
mean of the responses changes at some point along the sequence. If the mean does change at
some point, we say that there is a change-point present. Otherwise, there is no change-point
(assuming that only the mean can change). In the case of a single change-point, we might
also wish to determine its location. Formally, we wish to know whether there is a k such
that 1 ≤ k < n and

E(Y1) = · · · = E(Yk) 6= E(Yk+1) = · · · = E(Yn).

8

In the single change-point setting, a natural interpretation of this model is that a certain
process was used to generate the data up to time k, at which a change occurred and the
rest of the data was obtained using a different process.

Regression tree construction is essentially a recursive change-point detection procedure
with two main differences. The first difference between tree construction and change-point
detection is that the order of the sequence of responses is determined by the order of one
of the explanatory variables and so there may be several possible orderings to consider.
Second, if the explanatory variables are random, the ordering of the responses can also be
random.

The standard method used to obtain a BIC for regular models does not apply in the
change-point setting. To address this problem, Shen and Ghosh [24] develop a modified
BIC for change-point problems, restricting attention to a certain family of distributions, of
which the normal distribution with unknown mean and known variance is a member. For
our purposes, we will restrict our attention to this single-parameter normal distribution.
The case with unknown variance is described in detail in Section 3.2.

The BIC of [24] is “a lower bound to the marginal likelihood of a model with change
points and has an approximation error up to Op(1) like standard Schwartz BIC” [24]. An
important result is that a change-point parameter should be treated as two regular param-
eters. We let M0 and M1 denote the zero and single change-point models, respectively, and
write k̂n for the estimated change-point location under M1. We also write θ̂n,0 and θ̂n,1 to
denote the estimates of the mean(s) in the zero and single change-point models so that
p0 = 1 and p1 = 2. Using lBIC to denote their “lower bound” BIC (up to a multiplicative
factor of −2), we have

lBICn(M0) = −2`n(θ̂n,0) + p0 log(n), (2.8)

lBICn(M1) = −2`n(θ̂n,1, k̂n) + (p1 + 2) log(n). (2.9)

The analysis in [24] also includes a discussion on multiple change-points, but we focus only
on the single change-point problem.

Other change-point papers that make use of information criteria include [31, 16, 8, 17,
12]. Ninomiya [16, 17] concludes that with the AIC, change-point parameters should be
treated as three regular parameters. In our context,

NAICn(M0) = −2`n(θ̂n,0) + 2p0 (2.10)

NAICn(M1) = −2`n(θ̂n,1, k̂n) + 2(p1 + 3), (2.11)

where p0 = 1, p1 = 2, and we write NAIC to refer to “Ninomiya’s AIC” used in [16, 17].
Both the lBIC and NAIC will be used with our proposed pruning algorithms, to be laid out
in the next chapter.

9

Chapter 3

Methods

In this chapter we first present the standard pruning algorithm of [1]. We then develop
several new pruning algorithms to be used in our simulation study of Chapter 4. We also
present some other existing pruning algorithms for both classification and regression trees
and state a consistency result for one of our proposed pruning algorithms.

3.1 Cost-Complexity Pruning

The cost-complexity pruning algorithm presented by Breiman et al. [1] is a very com-
monly used algorithm for classification and regression tree pruning. After obtaining a large
tree using the CART tree construction algorithm, the cost-complexity pruning algorithm—
hereafter referred to as the CART pruning algorithm—considers a sequence of nested sub-
trees and selects the one with the best estimated error rate using cross-validation.

Suppose that we have used the CART tree-construction algorithm to obtain a (full)
regression tree, TK , after making K splits. The tree TK contains K + 1 terminal nodes and
K internal nodes. Formally, TK is a graph with labelled nodes that provide instructions on
how to create the estimated regression function, mn,K , displayed in (2.2).

We define a subtree Tk of TK to be a tree with k+1 ≤ K+1 terminal nodes that shares
the same root node with TK and has branches that extend to any of the internal or terminal
nodes of TK . With this definition, the full tree TK is considered a subtree of itself. For any
two arbitrary trees T and T ′, if T ′ is a subtree of T , we write T ′ 4 T .

We would like to use the CART pruning algorithm to find a subtree Tk 4 TK that has
the “best” prediction accuracy. For a given subtree Tk of TK with k + 1 terminal nodes
and corresponding estimated regression function mn,k, we define the (training set) sum of
squared errors as

SSE(Tk) =
n∑
i=1

(yi −mn,k(xi))2.

Because Tk is estimated using the training data, SSE(Tk) is a biased estimate of the expected
sum of squared errors on test data. To account for this bias, the CART pruning algorithm

10

introduces a penalized sum of squared errors that adds a penalty term that is proportional
to the number of terminal nodes, k + 1. For a given α ∈ [0,∞), define

SSEα(Tk) = SSE(Tk) + α(k + 1).

From here, the algorithm constructs a sequence of q ≤ K + 1 nested subtrees

T0 = Tk1 4 Tk2 4 · · · 4 Tkq = TK .

The number of subtrees in the sequence, q, depends on some factors such as the structure of
the full tree TK . The sequence is obtained by increasing α, starting from zero, and finding
the subtree of TK that minimizes SSEα. Note that when α = 0, the best tree is the most
complex tree, which is TK itself. On the other hand, as α goes to infinity, terminal nodes
are penalized more heavily and the best tree becomes the one with a single terminal node,
T0, the root of the original tree.

Because α is a tuning parameter, the CART pruning algorithm typically finds the opti-
mal value of α by cross-validation (CV), although a separate test set can also be used. For
each CV fold, we fit a regression tree on the training data in that fold, prune for various
values of α, and evaluate the test error using the CV test data. The optimal value of α is
estimated to be the one that yields the lowest average test error across the CV folds. The
full tree is then pruned using this estimated value of α.

3.2 BIC Pruning

Having laid out the standard regression tree pruning algorithm, we now propose two BIC-
based pruning algorithms: BIC pruning with “branch freezing” (BIC-BF) and BIC pruning
with “accumulated information” (BIC-AI), which borrows the concept of accumulated in-
formation from [9]. We provide an overview of the algorithms and offer a more detailed
description of the algorithms in Sections 3.2.2 and 3.2.3. Starting from the terminal nodes
last created during tree construction, pairs of nodes obtained from a common split are
merged or retained according to a modified BIC. If the difference in means of the observed
responses in the two nodes is not sufficiently large according to the criterion, the two nodes
are merged and a new terminal node is obtained. On the other hand, if the criterion indi-
cates that the difference in means is sufficiently large, then one of two approaches is taken
depending on whether we are using the BIC-BF or BIC-AI algorithm.

With branch freezing (BIC-BF), the split (and hence terminal nodes) are kept and the
branch containing the two nodes is “frozen”. Then, node merges in other parts of the tree
are considered. This process is repeated until either only the root node is left or all of the
branches are frozen. The details are provided in Section 3.2.2.

11

With accumulated information (BIC-AI), if higher parts of the same branch are later
determined to be filled with noise and low information, the entire branch may be removed
at a later point during the pruning process. More details are given in Section 3.2.3.

Both BIC-BF and BIC-AI rely only on quantities that can be easily stored during the
tree construction process, and so pruning can be done quickly in one pass through the tree
after the full tree is constructed. We will also see that a simpler version of these algorithms
is able to recover the true underlying tree structure under certain conditions.

3.2.1 Notation

We first clarify the notation used in the BIC-based pruning algorithms. For a fixed sample
size n, (A0,n, H1,n, . . . , AK−1,n, HK,n) denotes a sequence of nodes and splitting hyperplanes
(perpendicular to one of the axes) that induce a random partition PK,n with K+1 terminal
nodes. Any given hyperplane acts on the region that appears immediately before it in the
sequence. For example, the tree in Figures 2.1 and 2.2 can be represented by the sequence
(A0, H1, A1, H2, A2, H3), where A0 = [0, 1]× [0, 1], A1 = [0.5, 1]× [0, 1], A2 = [0, 0.5]× [0, 1],
H1 splits on X(1) at 0.5, H2 splits on X(2) at 0.7, and H3 splits on X(2) at 0.5.

Such a sequence and partition can be obtained by using a tree construction algorithm
and terminating after exactly K splits have been made. For BIC pruning, we use a “best
first” tree construction approach so that at each step of tree construction we select the
split that reduces the sum of squared errors the most among all current terminal nodes.
The subscripts on the regions and hyperplanes indicate the exact order in which nodes are
selected and splits are made.

For a region A and hyperplane H, we define Cut(A,H) to be the partition of A that is
induced by the hyperplane H. If H = {x ∈ X : x(j) = z} for some j, z, then

Cut(A,H) = {{x ∈ A : x(j) < z}, {x ∈ A : x(j) ≥ z}}.

We generalize the definition of lBIC from (2.8) and (2.9) to the p-dimensional “tree
stump” problem. Suppose, for the moment, that X ∈ [0, 1]p has a continuous distribution
and let A be a closed, axis-aligned rectangular subset of [0, 1]p. Let

NA =
n∑
i=1

1(Xi ∈ A),

the number of observations in the region (a random quantity), and let

ȲA =
n∑
i=1

Yi1(Xi ∈ A)/NA,

the mean response value in the given region (where 0/0 = 0). When the region A is clear
from the context, the subscript is omitted from both of these quantities. From here, if σ2 is

12

known, we define

lBIC0,NA
(A) = NA log(2πσ2) + 1

σ2

n∑
i=1

(Yi − ȲA)2
1(Xi ∈ A) + log(NA). (3.1)

This is the lBIC evaluated for the “no split” regression tree model. If σ2 is unknown and
replaced with an estimate σ̂2, we define

lBIC0,NA
(A, σ̂2) = NA log(2πσ̂2) + 1

σ̂2

n∑
i=1

(Yi − ȲA)2
1(Xi ∈ A) + 2 log(NA). (3.2)

(A penalty is added for the variance estimate even if it is not the MLE. A description of
possible estimators is given in Sections 3.2.2 and 3.2.3 and an explanation is given in the
Appendix in Lemma 4.) If A = [0, 1]p, then

lBIC0,n([0, 1]p, σ̂2) = n log(2πσ̂2) + 1
σ̂2

n∑
i=1

(Yi − Ȳ)2 + 2 log(n).

The lBIC of the “no split” model is then compared to the lBIC of the “single split”
model with a split-point estimated by the CART tree-construction algorithm. To precisely
state the lBIC for the “single split” or “tree stump” model, we introduce some further
notation. For convenience, we assume that A = [0, 1]p, but the quantities to be defined can
easily be generalized to other regions. Let (X∗j1 , Y

∗j
1), . . . , (X∗jn , Y ∗jn) be the permutation

of (X1, Y1), . . . , (Xn, Yn) such that the j-th coordinates of the Xi are sorted by increasing
value. Then, for nL = 1, . . . , n− 1, define

Ȳ ∗jL,nL
=
Y ∗j1 + . . .+ Y ∗jnL

nL
,

Ȳ ∗jR,nL
=
Y ∗jnL+1 + . . .+ Y ∗jn

n− nL
,

the “left” and “right” averages of the responses, respectively, for a split on X(j) that places
nL observations in the left node. Finally, we define

lBIC1,n([0, 1]p, σ̂2)

= n log(2πσ̂2) + min
nL=1,...,n−1
j=1,...,p

1
σ̂2

 nL∑
i=1

(Y ∗ji − Ȳ
∗j
L,nL

)2 +
n∑

i=nL+1
(Y ∗ji − Ȳ

∗j
R,nL

)2

+ 5 log(n).

(3.3)

The definition can easily be extended to a closed, rectangular region A ⊂ [0, 1]p in which not
all n responses are observed. If σ2 is known, then the penalty is 4 log(n) intead of 5 log(n).

13

3.2.2 Branch Freezing (BIC-BF)

We present the proposed BIC pruning algorithm for regression trees with branch freezing,
which we refer to as BIC-BF. An input to the algorithm is the ordered sequence of re-
gions and hyperplanes that produce the full tree, (A0, H1, . . . , AK−1, HK). The notation is
explained in Section 3.2.1. The order of the nodes being based on “best first” tree con-
struction is important because we will traverse the nodes/regions A in the reverse order
(skipping some if a branch is frozen during pruning), starting with AK−1.

Algorithm 1: BIC-BF: BIC bottom-up pruning algorithm with branch freezing
Input: PK,n, (A0,n, H1,n, . . . , AK−1,n, HK,n), {(xi, yi)}ni=1
Output: PBIC
PBIC ← PK,n;
R← (A0,n, A1,n, . . . , AK−1,n); # Regions to test
while R 6= ∅ do

A← last element of R;
if lBIC1,n(A, σ̂2) < lBIC0,n(A, σ̂2) then

Do not merge: freeze the branch
R← {B ∈ R : A is not a subset of B};

else
Merge nodes
PBIC ← PBIC \ Cut(AK−k,n, HK−k+1,n) ∪ {AK−k,n};
R← R \ {A};

end
end
return PBIC

In practice, σ2, which is used in the calculation of the generalized lBIC, is unknown
and should be replaced with an estimator. Our approach in the BIC-BF algorithm is to use
a different estimate of σ2 at each pruning step by calculating the average sum of squared
errors in the two terminal nodes under consideration. This means that the same estimate is
used in lBIC1,n(A, σ̂2) and lBIC0,n(A, σ̂2) and it is the MLE from the former “single split”
model. Alternatively, one could replace the estimate of σ2 in the latter “no split” model with
its own MLE, but this does not seem to be necessary in light of Lemma 4, which suggests
that one can potentially use the same estimate of σ2 in all lBICs during the entire pruning
process (for the BIC-ET algorithm to be discussed in Section 3.5).

When the algorithm determines that two terminal nodes have sufficiently different means
according to the modified BIC, the branch containing the two terminal nodes is frozen.
The pruning continues by moving to another branch that has not yet been frozen and the
algorithm terminates when either all branches are frozen or only the root node remains.

14

3.2.3 Accumulated Information (BIC-AI)

We now present an alternative BIC-based pruning algorithm that employs a less strict
stopping rule than BIC-BF. The pruning method is based on the concept of “accumulated
information” from [9] and we refer to the algorithm as BIC-AI. Instead of freezing a branch
when two nodes cannot be merged, the pruning process continues to climb up the tree. It
is possible that these two nodes, along with several other nodes, become collapsed into a
single node if it is later determined that their means are collectively not too different from
one another.

We introduce the concept of accumulated information in a way similar to [9], borrowing
some notation used there. Let nA be the number of xi in a given region A, the observed
value of the random quantity NA.

Suppose that the tree to be pruned was constructed by splitting on the regions/nodes
A0, A1, . . . , AK−1 in this exact order using the “best first” construction approach, as ex-
plained in Section 3.2.1. We traverse these nodes and make pruning decisions in exactly
the reverse order, beginning with the node AK−1. We begin by defining the quantity IA for
each node A of the tree to be missing. For a node A that is currently under consideration,
with children AL and AR, if IAL

and/or IAR
are missing, we set the missing values to the

(almost-maximized) log-likelihood of the data in the region multiplied by -2:

IAL
← nAL

log(2πσ̂2) + 1
σ̂2

n∑
i=1

(yi − ȳAL
)2
1(xi ∈ AL), (3.4)

IAR
← nAR

log(2πσ̂2) + 1
σ̂2

n∑
i=1

(yi − ȳAR
)2
1(xi ∈ AR).

It is important to note that the same estimate σ̂2 is used if both IAL
and IAR

are missing.
The estimate σ̂2 that is used is the average of the squared errors from the subtree that
has a root at A and extends to include all nodes directly below A that have not yet been
pruned from the tree. That is, σ̂2 is the weighted average of the estimated variances in each
terminal node below A, with weights equal to the number of observations in each terminal
node. This ensures that for a tree stump with only two terminal nodes, IAL

+ IAR
yields

the maximized log-likelihood (multiplied by -2) based on the “single split” homoscedastic
model. Because A has not yet been traversed, IA is necessarily missing and we assign it the
value

IA ← nA log(2πσ̂2) + 1
σ̂2

n∑
i=1

(yi − ȳA)2
1(xi ∈ A),

where σ̂2 is the same as for AL and/or AR. (This means that IA is not exactly equal to
-2 times the maximized log-likelihood for the “no split” model for observations in A. By
Lemma 4, we can use the same estimate in all lBICs during the entire pruning process for
BIC-ET, a simplified pruning algorithm discussed in Section 3.5. For BIC-AI we update σ̂2

15

in each pruning step for each new node that is traversed, but still apply the same estimate
for any of IAL

, IAR
, and IA that are yet to be defined in the current pruning step.)

To assess whether to merge the subtrees rooted at AL and AR into the single node A,
we add penalties to each of IAL

, IAR
, and IA, exactly as in the lBIC. If

IAL
+ IAR

+ 5 log(nA) < IA + 2 log(nA), (3.5)

the split is kept. Otherwise, the subtrees rooted at AL and AR are merged into a single
terminal node. For a tree stump, this is equivalent to checking whether lBIC1,nA(A, σ̂2) <
lBIC0,nA(A, σ̂2).

If we choose to keep a split, the algorithm does not freeze the entire branch. If we keep
the split on node A, we define

IA ← IAL
+ IAR

+ 3 log(nA), (3.6)

subtracting 2 log(nA) from 5 log(nA) to avoid double-counting parameters in future appli-
cations of (3.5). The pruning algorithm continues to climb up the tree, updating the values
of IA in regions A that have yet to be traversed. For example, if the split on the region
AK−1 was just assessed, we then proceed to assess the split on the region AK−2, and so on.

If at any point the comparison in (3.5) is false and we choose to merge the nodes, the
parent node A becomes a new terminal node with a missing value of IA.

The BIC-AI pruning algorithm is very similar to the one proposed by [9], but there are
three main differences: a modified BIC is used instead of an AIC, penalty values do not
need to be drawn from a table based on simulated values, and it is applied to trees with
homoscedastic responses (instead of heteroscedastic responses).

3.3 AIC Pruning

It is possible to construct AIC-based analogues of the pruning methods from the previous
section by replacing the modified BIC with a modified AIC in which split-point parameters
are counted as three regular parameters, as in [16, 17]. This yields the pruning methods
AIC-BF (branch freezing) and AIC-AI (accumulated information). Analogous to the NAIC
in (2.10) and (2.11), the penalties 2 log(n) and 5 log(n) are replaced with 4 and 12 for the
“no split” and “single split” models, respectively. We introduce them mainly to examine
whether they have the ability to create trees with good prediction accuracy (because this is
what the AIC is designed for) and to compare them to the BIC pruning methods and cost-
complexity pruning. The pruning methods with a modified AIC should yield larger trees
than the BIC-based methods, because the penalty is smaller in the AIC for sufficiently large
n.

16

3.4 Other Pruning Methods

Although the CART pruning algorithm seems to be the main method for pruning trees,
there is a wealth of literature on alternative pruning algorithms. In this section, we review
some of these other existing methods. We start off with a description of pruning algorithms
for regression that make use of information criteria or related measures. After presenting
these, we introduce other pruning algorithms for regression and classification trees.

3.4.1 IC-Based Pruning Methods

Several methods for pruning regression trees using information criteria have been proposed.
For example, [2] introduced regression trees that can be used with various response types.
One of the proposed pruning algorithms first creates a sequence of subtrees and then com-
pares these trees using a version of the AIC that does not account for split-point parameter
estimation. In contrast, our method prunes bottom-up without creating a sequence of sub-
tree candidates and makes use of a modified BIC (that accounts for split-point parameters)
instead of an AIC.

While not a pruning method in the traditional sense, [7] use a genetic algorithm to
construct regression trees using BIC as a measure of the quality of the fit of a tree. However,
they use the number of terminal nodes plus one as the number of parameters in the BIC
penalty. They acknowledge that other researchers have “suggested that the effective number
of parameters estimated is actually much higher ... due to split rule selections made during
the tree construction process”, and conclude that “further research is required to determine
the appropriate adjustment of the model complexity penalty term in the BIC criterion” [7].
Our results suggest that split-point parameters should be treated as two regular parameters
in the BIC, as was obtained for the change-point problem by [24].

Recently, [14] suggested a top-down tree construction algorithm using information cri-
teria that allows one to construct a gradient boosted tree ensemble in an automated way.
By focusing on a single tree in the ensemble, one obtains a construction algorithm that
terminates as soon as a certain condition is met, instead of constructing a full tree and then
pruning. This algorithm is exciting, but we feel that post-pruning (rather than pre-pruning)
allows one to consider a larger number of candidate trees and may be better for individual
trees or ensembles with deep trees such as random forests (we discuss an extension of our
pruning approach to random forests in Chapter 6).

[19] introduced CORE, a regression tree algorithm that can prune trees using minimum
description length (MDL). The CORE algorithm allows for general types of models in the
terminal nodes. An example of a pruning algorithm for regression trees using MDL can be
found in [20]. These authors acknowledge that MDL has been used for pruning decision
trees previously, but provide a method for pruning when responses are numeric.

17

A type of regression tree algorithm based on maximum likelihood was proposed by [27].
Their pruning algorithm makes use of (a choice between) AIC, BIC, and two other informa-
tion criteria. However, the information criteria do not seem to account for the estimation
of split-points in the regression tree construction algorithm, and the authors additionally
use a test set to estimate the sum of squares present in the likelihood. In our opinion, this
approach is slightly counter-intuitive, because the AIC penalty is specifically designed to
account for the bias present in likelihood estimates obtained using a training set.

3.4.2 Other Pruning Methods for Regression Trees

There are, of course, regression tree pruning algorithms that do not rely on information cri-
teria. One such example is that of [13], who considered a shrinkage method that also prunes
trees. [18] proposed the M5 algorithm, which fits linear models in tree nodes. While pruning
bottom-up with this algorithm, an estimate of the test error is obtained by multiplying the
training error by a coefficient that depends on the sample size and the number of parame-
ters. According to [28], [10] prunes using a type of estimator known as an m-estimator. In
their case, the m-estimator is used to obtain a weighted average of the prior and posterior
estimates of the error. Each of these pruning algorithms is interesting, but we feel that there
is room for our pruning approach that makes use of a modified BIC and possesses some
desirable consistency properties.

3.4.3 Other Pruning Methods for Classification Trees

In contrast to regression trees, classification trees seem to have received a considerable
amount of attention for the development of pruning algorithms. Because the focus of this
work is on regression tree pruning, we do not provide many details here. A good review
of some of these pruning algorithms is given by [5, 15]. It is interesting to note that [6]
present a way to classify various pruning algorithms by considering four key properties of
the algorithm that they refer to as “space”, “operators”, “evaluation function”, and “search
strategy”. It might be of interest to categorize various existing regression tree pruning algo-
rithms using their system.

3.5 BIC Pruning: Consistency Results

In this section we present a consistency result for a simpler version of the BIC-BF pruning
algorithm. The modified algorithm terminates earlier than BIC-BF and we therefore refer
to the algorithm as BIC-ET (early termination). BIC-ET is simpler because as soon as we
make the first decision not to merge any two nodes, the algorithm terminates completely.
In order to guarantee consistency, the algorithm also discards observations that lie too close
to the estimated split-point locations.

18

A consistency proof for BIC-ET can likely be adapted for BIC-BF with some small
modifications, but we leave this extension for future work. Importantly, a generalization
for BIC-BF could allow for a considerable weakening of some of the assumptions on the
tree construction algorithm. For example, with BIC-ET, we need to assume that there is a
point in the construction algorithm at which we start to make only unnecessary splits and
assume that all preceding splits are correct. A consistency result for BIC-BF might be able
to weaken this assumption considerably.

Some more definitions are needed in order to precisely state the BIC-ET algorithm.
Some of the conditions and definitions in this section are similar to or have analogues to
those presented in [22].

We first introduce the notion of a tree-based partition of the explanatory variable space.
Tree-based partitions are partitions that can be obtained using a splitting procedure such
as the CART algorithm.

Definition 1. We say that a partition P is a tree-based partition if there exists a sequence
of nodes and hyperplanes (not necessarily unique), A0 = X , H1, A1, H2, . . . , Ak−1, Hk, that
induces this partition (using the notation described in Section 3.2.1).

Consider a tree-based partition P of [0, 1]p. For any A ∈ P, A is necessarily of the form

A = [a1, b1)× · · · × [ap, bp),

for some constants aj , bj ∈ [0, 1]. (The right bracket above is closed for any bj = 1.)
Next, we introduce the notion of an ε-reduction of a region or a partition. These reduc-

tions are used in the BIC-ET algorithm to discard observations that lie too close to region
boundaries in order to ensure the consistency of the pruning algorithm. An example of an
ε-reduction is illustrated in Figure 3.1.

Definition 2. For ε > 0, we define the ε-reduction of A to be the closed set

A(ε) = [a1 + ε, b1 − ε]× · · · × [ap + ε, bp − ε],

provided that ε is small enough for the quantity to be defined. Otherwise, we set A(ε) = ∅.
We define the ε-reduction of the partition P as

P(ε) = {A(ε) : A ∈ P}.

Our final definition before stating the BIC-ET algorithm introduces the “Snap” oper-
ation applied to a given region. It is similar to an ε-reduction, except that it ensures that
the vertices of a reduced rectangular region lie exactly on some predefined grid of points.
The use of the “Snap” makes the proof of BIC-ET consistency relatively simple, because it

19

ε

Figure 3.1: A tree-based partition, P, of [0, 1]2. The grey rectangles form the ε-reduction of
P.

ensures that there are only finitely many possible “snapped” regions on [0, 1]p. An example
is given in Figure 3.2.

Definition 3. For any ε > 0, define G(ε) to be the grid of points {0, 1/d1/εe, 2/d1/εe, . . . , 1},
so that the points are equally spaced and the distance between any two consecutive points is
less than or equal to ε. Given a region A, define

Snap(A,G(ε)) = {The largest B ⊂ A : B = [a′1, b′1]× · · · × [a′p, b′p]; a′j , b′j ∈ G(ε)}.

(As before, if there is no such region B, then we set Snap(A,G(ε)) = ∅.)

For the BIC-ET algorithm, we also need to input the quantities σ2, ε̃, and N . For the
consistency proof of Theorem 1, we assume the true value of σ2 is known, but we show in
the Appendix in Lemma 4 that we can replace σ2 with a weakly consistent estimator σ̂2

n.
The last two quantities ε̃ and N should be chosen to satisfy some properties that will be
given in detail in Section 3.5.1. For now, ε̃ should simply be viewed as a very small number
greater than zero and N as a very large number. In practice, these two quantities should
not impact the performance of BIC-ET but are primarily used to prove consistency of the
pruning algorithm.

Now that we have introduced some definitions, we can state the BIC-ET pruning algo-
rithm precisely in Algorithm 2. As with BIC-BF, an input to the algorithm is the ordered
sequence of regions and hyperplanes that produce the full tree, (A0, H1, . . . , AK−1, HK). The
nodes are ordered according to “best first” tree construction, as explained in Section 3.2.1
and they are traversed in the reverse order, starting with AK−1.

20

ε

A

Figure 3.2: A region A ⊂ [0, 1]2 with Snap(A,G(ε)) displayed as a shaded grey rectangle.
The light grey points form a grid on [0, 1]2 to which regions can be “snapped”.

Algorithm 2: BIC-ET: BIC bottom-up pruning algorithm with early termination
Input: PK,n, (A0,n, H1,n, . . . , AK−1,n, HK,n), {(xi, yi)}ni=1, ε̃, N , σ2

Output: PBIC
k ← 1;
PBIC ← PK,n;
flag ← TRUE;
while k ≤ K AND flag do

A← Snap(AK−k,n(ε̃),G(ε̃/N));
Restrict attention to observations in A and estimate the location of a
split-point within A. (If A has fewer observations than AK−k,n, the split-point
will need to be estimated again.);
if lBIC1,n(A) < lBIC0,n(A) then

Do not merge, end procedure
flag ← FALSE;

else
Merge nodes
PBIC ← PBIC \ Cut(AK−k,n, HK−k+1,n) ∪ {AK−k,n};
k ← k + 1;

end
end
return PBIC

21

3.5.1 Theorem and Lemmas: Definitions, Conditions, and Statements

Having stated the BIC-ET algorithm, we state two lemmas and a theorem that establish the
consistency result for BIC-ET. Some additional definitions and conditions are now presented
in order to state the results precisely.

Definitions

We start off by defining tree-producible functions, which are piecewise constant on regions
that can be obtained with a tree construction algorithm. BIC-ET recovers the correct num-
ber of terminal nodes in a regression tree as well as the approximate structure of the true
tree. It does not make much sense to refer to the “correct” number of terminal nodes if the
true regression function cannot be represented as a tree.

Definition 4. A regression function m : X → R is said to be tree-producible if it can be
written in the form

m(x) =
∑
A∈P

cA1(x ∈ A)

for some tree-based partition P and some constants cA ∈ R.

Next, we introduce the concept of a partition “refinement”. The partitions of the ex-
planatory variable space obtained by a tree construction algorithm after split K are always
more “refined” than the partitions obtained after split k < K. An example is illustrated in
Figure 3.3.

Definition 5. Consider two tree-based partitions: P1 and P2. If for every A2 ∈ P2 there is
a set A1 ∈ P1 such that A2 ⊂ A1, then we say that P2 is a refinement of P1 and we write
P1 4 P2.

Intuitively, P1 4 P2 means that one can combine the elements of P2 to reconstruct P1.
This is essentially what pruning does to the terminal nodes of a regression tree. Note that
the refinement symbol, 4, includes equality.

The next definition, which introduces partition perturbations, is used to quantify the
amount of uncertainty present in the recovered “true” subtree after pruning. Even if the
tree-construction algorithm selects the correct variables to split on in the correct order, the
estimated split-point location is unlikely to be exactly correct. A perturbation of a parti-
tion is one in which the regions have been “squished” or “stretched” without changing the
underlying structure (correct splitting variables) of the original partition (see Figure 3.4).

Definition 6. Consider a tree-based partition P of [0, 1]p and a region A ∈ P. Given
another region A′ ⊂ [0, 1]p of the form [a′1, b′1) × · · · [a′p, b′p) (the right bracket can be closed
if bj = 1), and a constant ε ≥ 0, we say that A′ is an ε-perturbation of A if

max
j
|a′j − aj | and max

j
|b′j − bj | ≤ ε.

22

Figure 3.3: A partition P (rectangles with black borders) of [0, 1]2 and a possible refinement
of P (additional dashed grey lines).

Given another partition P ′, we say that P ′ is an ε-perturbation of P if, for any A′ ∈ P ′,
there is an A ∈ P such that A′ is an ε-perturbation of A, and |P| = |P ′|.

The final definition makes it clear that it may be the case that more than one sequence
of nodes and hyperplanes can produce exactly the same tree-based partition. This definition
allows us to acknowledge the fact that the tree-construction algorithm might arrive at the
same tree through various sequences of variable splits (although this should be unlikely).
For example, consider the partition of [0, 1]2 containing four squares of equal size. It is
unclear (and irrelevant) whether this partition was obtained by splitting on X(1) first or by
splitting first on X(2).

Definition 7. Let P be a tree-based partition of [0, 1]p and suppose that |P| = K+1. Define

Gen(P) = {(A0 = [0, 1]p, H1, A1, . . . , AK−1, HK) that generate P}.

23

ε

Figure 3.4: A partition P (rectangles with black borders) of [0, 1]2 and a possible ε-
perturbation of P (dashed grey lines).

Conditions

There are three types of conditions. An interpretation of the conditions of type (C) is given
below. Note that not all conditions of a given type are always assumed. Instead, this is a list
of conditions that appear at some point in one or more of the lemmas or the main theorem.

Conditions of Type A (Distributional Assumptions)

1. X1 is a continuous random variable with strictly positive density on [0, 1]p with respect
to Lebesgue measure. The density is zero elsewhere.

2. Y1|X1 = x1 ∼ N(m(x1), σ2) for some σ2 > 0.

Conditions of Type B (Regression Function Assumptions)

1. m is tree-producible from P, a tree-based partition induced by a single hyperplane
perpendicular to the standard basis vector ej0 , but is not tree-producible from P0 =
{[0, 1]p}. That is, m is a tree “stump”. This implies that µ1,0 6= µ2,0, where µ1,0 =
E(Y1|X(j0)

1 < z0) and µ2,0 = E(Y1|X(j0)
1 ≥ z0).

2. The true value of z, z0, the location of the split along variable j0, lies in the open
interval (0, 1).

3. For some Kµ > 0, m(x) ∈ (−Kµ,Kµ) for all x ∈ [0, 1]p.

4. m is tree-producible from P but is not tree-producible from any other partition P ′

with |P ′| < |P| .

24

Conditions of Type C (Partition Assumptions)

1. For some random εn, PK,n is a random refinement of an εn-perturbation of P, P∗n,
which is itself random.

2. |PK,n| = K + 1 for all n (K is fixed).

3. There exists a fixed K∗ such that K∗ ≤ K and (A0,n, H1,n, . . . , AK∗−1,n, HK∗,n) ∈
Gen(P∗n) a.s.

4. There exists some ε > 0, such that P (εn < ε) → 1. Let Mn = sup{ε : ∅ /∈ PK,n(ε)}.
Further assume that there exists a constant ε̃ > ε such that P (ε < ε̃ < Mn)→ 1.

5. There exists an N such that P (Snap(AK−k,n(ε̃),G(ε̃/N)) 6= ∅) → 1 for all 1 ≤ k ≤
K −K∗ + 1.

6. The probability that Snap(AK∗−1,n(ε̃),G(ε̃/N)) contains exactly one split-point that
is in the interior of this region approaches one as n→∞.

Conditions of types (A) and (B) are relatively easy to interpret. Condition (C1) says
that the tree-building procedure selects the right splits in approximately the correct loca-
tions, but also makes some unnecessary additional splits. (C2) says that the tree-building
procedure terminates after exactly K splits have been made. (C3) states that the true tree
contains exactly K∗+1 terminal nodes and that the true underlying partition can be recov-
ered by eliminating the last K−K∗ splits in exactly the reverse order of tree-building. (C4)
is a statement on the convergence of the split-point estimators that is similar to conver-
gence in probability, and (C5) says that two split-point locations are not “too close” to one
another and can be enforced, for example, by setting a constraint on how close estimated
split points are allowed to be during tree construction. (C4) and (C5) should be satisfied,
loosely speaking, if the estimators of the split-points are weakly consistent. The last condi-
tion, (C6), roughly says that split-points do not occur on estimated region boundaries. If we
were to know the exact split-point locations, we could try to avoid this by choosing ε̃ and
N so that the “Snap” of a region never has a split-point exactly on the region boundary.

Theorem and Lemma Statements

We introduce two lemmas and a theorem. Lemma 1 is not used in Theorem 1, but is useful for
convincing oneself that the assumptions of condition set (C) are reasonable. Lemma 2 forms
the basis of Theorem 1, which precisely states the consistency of the BIC-ET algorithm. In
general, the proofs provided in this thesis should be considered as sketches and a work in
progress.

Lemma 1 states that the estimator of the split-point is consistent when there is a single
split in the regression function (a tree “stump”). To introduce Lemma 1, we first define the

25

quantity

Mn(θ) = − 1
n

n∑
i=1

(
Yi − µ11(X(j)

i < z)− µ21(X(j)
i ≥ z)

)2
,

where θ = (j, z, µ1, µ2)′.

Lemma 1. Consider a regression function m : [0, 1]p → R, where p ≥ 1. Suppose that
conditions (A1)-(A2) and (B1)-(B3) are satisfied. Define

θ̂n = arg max
θ∈Θ

Mn(θ),

where Θ = {1, 2, . . . , p} × [0, 1] × [−Kµ,Kµ] × [−Kµ,Kµ]. The maximum can clearly be
attained (i.e., it exists), but to ensure uniqueness, let θ̂n = (jn, zn, µ1,n, µ2,n)′ be the value
with zn as the “midpoint” of the first interval among the set of z that maximize the likelihood,
for example. If there are ties among the possible estimates of j, jn, take the minimum value.

Then,
θ̂n

p−→ θ0 = (j0, z0, µ1,0, µ2,0)′.

Consequently, P (jn = j0)→ 1 and zn
p−→ z0.

From this lemma, conditions (C4) and (C5) (consistency of estimated split-point lo-
cations) should seem reasonable assuming that the tree-construction algorithm selects the
right variables to split on. With a large enough sample size, our estimate of the split-point
location should be close to the true split-point location with high probability.

Lemma 2 states that the proposed lBIC from (3.1) and (3.3) selects the appropriate
model (either “no split” or “single split”) asymptotically when one of these is true. This
version of the lemma assumes that σ2 is known. For the case where σ2 is replaced with a
consistent estimator σ̂2

n, see Lemma 4 in the Appendix.

Lemma 2. Consider a regression function m : [0, 1]p → R, where p ≥ 1. Suppose that
conditions (A1)-(A2) are satisfied. From here, we split the lemma into two cases.

Case 1: If, in addition to the conditions above, m is equal to µ0 on [0, 1]p, for some constant
µ0 ∈ (−Kµ,Kµ) with Kµ > 0, then

P (lBIC1,n([0, 1]p) > lBIC0,n([0, 1]p))→ 1

as n→∞. That is, the probability of selecting the model with no splits approaches one.

Case 2: If instead, in addition to conditions (A1)-(A2), conditions (B1)-(B3) are satisfied,
then,

P (lBIC0,n([0, 1]p) > lBIC1,n([0, 1]p))→ 1

as n→∞. That is, the probability of selecting the model with a single split approaches one.

26

Finally, the main theorem states that BIC-ET recovers the true underlying tree struc-
ture, including the correct number of terminal nodes, with a small amount of uncertainty
in the exact split-point locations.

Theorem 1. Suppose that conditions (A1)-(A2), (B3)-(B4) and (C1)-(C6) are satisfied.
Let PBICn be the random partition obtained using BIC-ET with sample size n. Then,

P (PBICn = P∗n)→ 1

as n→∞.

The proof of the theorem relies on a small extension of Lemma 2 that remains to be
proven. A comment is provided in the proof of the theorem in the Appendix.

27

Chapter 4

Simulation Study Design

In this chapter we lay out the design of our simulation study, which is used to assess
the performance of several pruning algorithms from Chapter 3. We are interested in two
properties of the pruning algorithms: their ability to recover the correct model dimension
(number of terminal nodes) and the prediction accuracy of the pruned trees.

For the first property, model dimension recovery, we wish to assess whether our pro-
posed BIC-based pruning algorithms, BIC-AI and BIC-BF, can consistently recover the
correct number of terminal nodes, as suggested by Theorem 1 for BIC-ET. To determine
the proportion of times that the correct number of terminal nodes is recovered under vari-
ous circumstances, we consider three different settings each with multiple sub-settings. The
settings are obtained by varying the distributions, the underlying tree structure, the sample
size, and the maximum number of splits in the regression tree construction algorithm.

The second property, prediction accuracy, is important because the pruning algorithms
are often used before making predictions (either with single trees or in ensembles such as a
random forest). To study prediction accuracy, we use the same three settings as for model
dimension recovery and include an additional setting: one in which the true underlying
regression function cannot be represented as a tree.

Unless otherwise stated, the explanatory variables X1, . . . ,Xn are i.i.d. and drawn from
a uniform distribution on [0, 1]p. The responses Y1, . . . , Yn are independent and normally
distributed with variance σ2 and a mean that is dependent on the true underlying regression
function. Due to the current implementation of the algorithms, if x(j)

1 , . . . , x
(j)
n are not all

unique for any j, the observations are drawn again. We write p and p0 to denote the
number of variables available and the true number of variables related to the response,
respectively. Similarly, we let K and K0 denote the number of splits made by the tree
construction algorithm and the true number of splits in the tree, so that the true regression
tree contains K0 + 1 terminal nodes. Additionally, we vary n ∈ {100, 200, 400, . . . , 6400}.
During tree construction, the settings minsplit=4 and minbucket=2 are used. The first
parameter controls the minimum number of observations required in order to be able to
make a split in a terminal node, whereas the second parameter controls the minimum

28

number of observations that are allowed to be in a terminal node. This choice of parameter
values means that splits are never made on nodes with less than four observations and
terminal nodes must contain at least two observations. For each simulation sub-setting,
2500 realizations are produced. The simulation study is implemented in R.

4.1 Metrics Used

To assess each pruning algorithm’s ability to recover the correct number of terminal nodes
in Settings 1 to 3, we consider two metrics. For the following definitions we write P ′ to
denote a partition that is obtained after using any one of the pruning algorithms. The first
metric of interest is P (|P ′| = K0 + 1), the probability that the pruning algorithm recovers
the correct number of terminal nodes. Ideally, this quantity should approach one as the
sample size goes to infinity. The second metric is E(|P ′|), the expected number of terminal
nodes in the pruned tree. We will use this quantity in the graphical displays of Chapter 5
because it provides more information about the size of the pruned trees when these do not
have the same number of terminal nodes as the true tree. Note that E(|P ′|)→ K0 + 1 does
not necessarily imply that P (|P ′| = K0 + 1) → 1, and so one should be cautious when
making conclusions based on the plots.

It is important to note that if a pruning algorithm does not recover the correct number
of terminal nodes, this can indicate an issue with the construction algorithm. For example,
this can occur if the wrong variable is selected for the first split. In such cases, it is reasonable
to expect the pruning algorithms to select trees with a larger number of terminal nodes in
order to compensate for the wrong split and to recover the approximate tree structure. A
rough check for whether the construction algorithm is on the right track can be made by
recording the proportion of simulation realizations in which the variable X(1) was chosen
for the first split during construction (the first split should always be on this variable in the
simulation settings considered). We use this measure because it is easier to assess than a
record of whether all splits were made on the right variables in locations close to the true
split-points in the entire tree.

To assess the predictive performance of trees obtained using a given pruning algorithm, a
natural measure is the mean squared prediction error (MSPE). For the following definition,
we write m(x) to denote the prediction at x from a tree obtained using one of the pruning
algorithms. This pruned tree is random and dependent on the data (X1, Y1), . . . , (Xn, Yn).
We let (X∗, Y ∗) be independent of the data but with the same distribution as (X, Y) and
define

MSPE = E((Y ∗ −m(X∗))2),

where the expectation is taken over all of (X1, Y1), . . . , (Xn, Yn), and (X∗, Y ∗). We approx-
imate this quantity conditional on the true regression function (which may change in some
settings) and (x1, y1), . . . , (xn, yn) by drawing 2500 independent observations of (X∗, Y ∗)

29

distributed according to (X, Y) for each simulation realization. The estimated MSPE con-
ditional on (x1, y1), . . . , (xn, yn) is then averaged over the 2500 simulation realizations to
obtain an estimate of the full expectation. We also consider the relative MSPE (rel-MSPE),
which is estimated by taking the estimated MSPE conditional on (x1, y1), . . . , (xn, yn) di-
vided by the smallest such estimated MSPE obtained by all pruning algorithms and aver-
aging the fractions over the 2500 simulation realizations.

4.2 Setting 1: Simple Scenarios

For Setting 1, we consider a variety of simple sub-settings that can be used to assess the
performance of the pruning algorithms in well-behaved scenarios. We consider p = 5, p0 ∈
{2, 5}, K ∈ {7, 15}, K0 = 5, and σ2 ∈ {0.01, 1}. In this and other settings, the values of
K are always chosen to be one less than a power of two to allow for a fair comparison
between our tree construction algorithm (which uses the “best first” approach) and that of
rpart(), because the latter can be controlled with a parameter, maxdepth, that specifies
the maximum depth of the tree instead of the number of splits.

The true trees for p0 = 2, 5 are displayed in Figures 4.1 and 4.2, respectively. The means
in the terminal nodes are chosen so that (at least) the first split can be easily located when
σ2 = 0.01, but splitting on the correct first variables is potentially more difficult when
σ2 = 1. We additionally consider settings in which the mean values in the terminal nodes
are randomly permuted for each simulation realization, which we refer to as random trees,
in contrast to the fixed trees displayed in the figures. The random trees are important to
include in the simulation study because they allow conclusions based on the simulation
results to be drawn to a wider range of tree structures. In particular, the random trees
include trees that can make it difficult for the tree construction algorithm to recover the
true tree structure. Note that the means in the terminal nodes of the fixed trees are strictly
increasing from left to right, potentially making it easier to select the correct first variable
to split on.

x(1) < 0.5

x(2) < 0.5

x(1) < 0.25

µ = −2.5 µ = −1.5

µ = −0.5

x(1) < 0.75

µ = 0.5 x(2) < 0.5

µ = 1.5 µ = 2.5

Figure 4.1: True regression tree for Setting 1 with p0 = 2.

30

x(1) < 0.5

x(2) < 0.5

x(4) < 0.5

µ = −2.5 µ = −1.5

µ = −0.5

x(3) < 0.5

µ = 0.5 x(5) < 0.5

µ = 1.5 µ = 2.5

Figure 4.2: True regression tree for Setting 1 with p0 = 5.

4.3 Setting 2: Many Variables and Correlation

Setting 2 considers the effects of correlation on the tree construction and pruning algorithms
when only a few of the explanatory variables are related to the response. In the most
extreme case with only two variables that are perfectly correlated, it is impossible to know
which variable is the “correct” one to split on. Asymptotically, we believe that a correlation
between variables that is less than one in magnitude should not cause issues during tree
pruning. However, we wish to know whether an effect of correlation on tree construction or
pruning is noticeable in finite samples. (Note that Lemmas 1 and 2 and Theorem 1 allow for
correlated explanatory variables. However, we do require a non-degenerate density function,
which implies that the variables are not allowed to be perfectly correlated.)

Each Xi is drawn from a p-dimensional multivariate normal distribution with mean equal
to 0.5 in each dimension. The marginal variance of each component is set equal to 1/16—
this results in observed values xi that are mostly in [0, 1]p—and the correlation between
each pair of components is set equal to ρ = 0.9.

A relatively large number of variables is used, with p = 25. Only p0 = 5 of these are
related to the response. We use K = 15 and set K0 = 7, with σ2 ∈ {0.01, 1}. The regression
tree is given in Figure 4.3. As in Setting 1 with the simple trees, we also try a random
version of the tree in which the means in the terminal nodes are randomly permuted for
each simulation realization.

x(1) < 0.5

x(2) < 0.5

x(4) < 0.5

µ = −3.5 µ = −2.5

x(5) < 0.5

µ = −1.5 µ = −0.5

x(3) < 0.5

x(1) < 0.75

µ = 0.5 µ = 1.5

x(2) < 0.5

µ = 2.5 µ = 3.5

Figure 4.3: True regression tree for Setting 2.

31

4.4 Setting 3: Deep Trees

Next, we consider deep trees. The BIC-ET and BIC-BF algorithms repeatedly makes deci-
sions whether to merge two nodes. If the fitted tree is much deeper than the true tree, a large
sample size might be required until all merge decisions are successfully passed. For example,
if 40 unnecessary splits have been made by the regression tree construction algorithm and
a merge decision is made correctly 95% of the time, the probability of recovering the true
tree exactly is less than 12.2%. In contrast, the BIC-AI and CART pruning algorithms do
not face this issue and we expect them to perform quite well.

We set p = p0 = 5, K = 63, K0 = 19, and use σ2 ∈ {0.01, 1}. The tree is displayed in
Figure 4.4. We again use a random version of the tree with permuted terminal node means.
We omit the sub-settings with n = 100 because it is not possible to construct a tree with
64 terminal nodes and at least two observations in each terminal node in this case.

4.5 Setting 4: True Regression Function Is Not a Tree

Finally, Setting 4 considers the case where the tree underlying regression function cannot be
represented by a tree. This setting is relevant primarily for the evaluation of the prediction
accuracy of the trees obtained with the various pruning algorithms. We set p = p0 = 2 and
vary K ∈ {31, 63}, with σ2 ∈ {0.01, 1/9}. A different choice of values for σ2 is used in this
setting, because the regression function is now

m(x) = sin(2πx(1)) · sin(2πx(2)),

a surface with two peaks and two troughs on [0, 1]2, as can be seen in Figure 4.5. With
enough data and a large enough regression tree, it is possible to approximate the true
surface to an arbitrary level of precision [1]. However, we believe that it will not be easy
for a single regression tree to achieve this with only a moderate sample size. As in Setting
3 with deep trees, we omit the sub-settings where both K = 63 and n = 100.

32

x
(1

)
<

0.
5

x
(2

)
<

0.
5

x
(4

)
<

0.
5

x
(3

)
<

0.
5

x
(1

)
<

0.
25

µ
1

µ
2

µ
3

x
(4

)
<

0.
75

x
(2

)
<

0.
25

µ
4

µ
5

µ
6

x
(5

)
<

0.
5

x
(5

)
<

0.
25

µ
7

µ
8

x
(1

)
<

0.
25

µ
9

µ
10

x
(3

)
<

0.
5

x
(1

)
<

0.
75

x
(2

)
<

0.
5

µ
11

µ
12

x
(3

)
<

0.
25

µ
13

µ
14

x
(2

)
<

0.
5

x
(4

)
<

0.
5

µ
15

x
(3

)
<

0.
75

µ
16

µ
17

x
(5

)
<

0.
5

µ
18

x
(4

)
<

0.
5

µ
19

µ
20

Fi
gu

re
4.
4:

Tr
ue

re
gr
es
sio

n
tr
ee

fo
r
Se

tt
in
g
3.

Fo
r
th
e
fix

ed
tr
ee
,µ

k
=
−

2.
5

+
5(
k
−

1)
/1

9,
k

=
1,

2,
..
.,

20
so

th
at
−

2.
5
≤
µ
k
≤

2.
5.

In
th
e
ra
nd

om
tr
ee
,t
he

se
va
lu
es

ar
e
pe

rm
ut
ed

ra
nd

om
ly

fo
r
ea
ch

sim
ul
at
io
n
re
al
iz
at
io
n.

33

Figure 4.5: The true regression function for Setting 4 restricted to [0, 1]2.

34

Chapter 5

Simulation Results

In this chapter we present the results of the simulation study that was laid out in Chapter 4.
First, we assess each pruning algorithm’s ability to recover the true model dimension (num-
ber of terminal nodes). Then, we compare the prediction accuracy of the trees obtained
with each of the pruning algorithms in terms of their relative mean squared prediction er-
ror (rel-MSPE). We compute pairwise differences of the rel-MSPEs between BIC-AI and
CART pruning and compare the two-sided p-values from a paired z-test to 0.05/7 ≈ 0.0071
or 0.05/6 ≈ 0.0083 to account for multiple comparisons with different sample sizes in any
given sub-setting.

5.1 Model Dimension Recovery

In Setting 1 we consider simple trees. The simulation results are provided in Figure 5.1 for
fixed trees and in Figure 5.2 for random trees. Empirically, the expected number of terminal
nodes in the trees pruned with BIC-AI converges to the true value of K0 + 1 = 6 in all
settings with the fixed true trees (where means in the terminal nodes are fixed). For smaller
samples, BIC-AI produces trees with more than six terminal nodes, on average. With the
fixed trees, the CART pruning algorithm performs similar to BIC-AI when the sample size
is large. For smaller sample sizes, CART pruning favours smaller trees than BIC-AI, on
average. Here, BIC-BF is similar in performance to BIC-AI for the smaller value of K = 7,
but convergence is questionable and considerably slower for BIC-BF when K = 15.

In the random tree sub-setting for Setting 1 (where means in the terminal nodes are
permuted), the true tree structure seems to be difficult to recover during the tree con-
struction process (the first split was made on the correct variable approximately 42% or
74% of the time) and all pruning algorithms tend to favour larger trees. In all cases in the
random setting, CART pruning prefers slightly smaller trees or trees equal in size to those
obtained with BIC-AI. The AIC-based pruning algorithms perform quite poorly in terms
of recovering the true model dimension in all cases.

35

0 1000 2000 3000 4000 5000 6000

6
.0

6
.5

7
.0

7
.5

8
.0

E(|P’|) vs. n (tree = fixed , p0 = 2 , K = 7 , σ
2

= 0.01)

Sample Size (n)

E
(|

P
’|
)

AIC−BF

AIC−AI

BIC−BF

BIC−AI

CART

0 1000 2000 3000 4000 5000 6000

5
.0

6
.0

7
.0

8
.0

E(|P’|) vs. n (tree = fixed , p0 = 2 , K = 7 , σ
2

= 1)

Sample Size (n)

E
(|

P
’|
)

0 1000 2000 3000 4000 5000 6000

6
8

1
0

1
2

1
4

E(|P’|) vs. n (tree = fixed , p0 = 2 , K = 15 , σ
2

= 0.01)

Sample Size (n)

E
(|

P
’|
)

0 1000 2000 3000 4000 5000 6000

6
8

1
0

1
2

1
4

E(|P’|) vs. n (tree = fixed , p0 = 2 , K = 15 , σ
2

= 1)

Sample Size (n)

E
(|

P
’|
)

0 1000 2000 3000 4000 5000 6000

6
.0

6
.5

7
.0

7
.5

8
.0

E(|P’|) vs. n (tree = fixed , p0 = 5 , K = 7 , σ
2

= 0.01)

Sample Size (n)

E
(|

P
’|
)

0 1000 2000 3000 4000 5000 6000

5
.0

6
.0

7
.0

8
.0

E(|P’|) vs. n (tree = fixed , p0 = 5 , K = 7 , σ
2

= 1)

Sample Size (n)

E
(|

P
’|
)

0 1000 2000 3000 4000 5000 6000

6
8

1
0

1
2

1
4

E(|P’|) vs. n (tree = fixed , p0 = 5 , K = 15 , σ
2

= 0.01)

Sample Size (n)

E
(|

P
’|
)

0 1000 2000 3000 4000 5000 6000

6
8

1
0

1
2

1
4

E(|P’|) vs. n (tree = fixed , p0 = 5 , K = 15 , σ
2

= 1)

Sample Size (n)

E
(|

P
’|
)

Figure 5.1: Setting 1 results for model dimension recovery (fixed trees). For these settings,
X(1) was chosen as the first splitting variable in 100% of the simulation realizations.

36

0 1000 2000 3000 4000 5000 6000

6
.0

6
.5

7
.0

7
.5

8
.0

E(|P’|) vs. n (tree = random , p0 = 2 , K = 7 , σ
2

= 0.01)

Sample Size (n)

E
(|

P
’|
)

0 1000 2000 3000 4000 5000 6000

5
.5

6
.5

7
.5

E(|P’|) vs. n (tree = random , p0 = 2 , K = 7 , σ
2

= 1)

Sample Size (n)

E
(|

P
’|
)

0 1000 2000 3000 4000 5000 6000

6
8

1
0

1
2

1
4

E(|P’|) vs. n (tree = random , p0 = 2 , K = 15 , σ
2

= 0.01)

Sample Size (n)

E
(|

P
’|
)

0 1000 2000 3000 4000 5000 6000

6
8

1
0

1
2

1
4

E(|P’|) vs. n (tree = random , p0 = 2 , K = 15 , σ
2

= 1)

Sample Size (n)

E
(|

P
’|
)

0 1000 2000 3000 4000 5000 6000

6
.0

6
.5

7
.0

7
.5

8
.0

E(|P’|) vs. n (tree = random , p0 = 5 , K = 7 , σ
2

= 0.01)

Sample Size (n)

E
(|

P
’|
)

0 1000 2000 3000 4000 5000 6000

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

E(|P’|) vs. n (tree = random , p0 = 5 , K = 7 , σ
2

= 1)

Sample Size (n)

E
(|

P
’|
)

0 1000 2000 3000 4000 5000 6000

6
8

1
0

1
2

1
4

1
6

E(|P’|) vs. n (tree = random , p0 = 5 , K = 15 , σ
2

= 0.01)

Sample Size (n)

E
(|

P
’|
)

0 1000 2000 3000 4000 5000 6000

6
8

1
0

1
2

1
4

1
6

E(|P’|) vs. n (tree = random , p0 = 5 , K = 15 , σ
2

= 1)

Sample Size (n)

E
(|

P
’|
)

Figure 5.2: Setting 1 results for model dimension recovery (random trees). For the first four
settings (reading horizontally), X(1) was chosen as the first splitting variable in approxi-
mately 74% of the simulation realizations. In the remaining four settings, X(1) was chosen
as the first splitting variable in approximately 42% of the simulation realizations.

37

The results from Setting 2 with many correlated predictors, few of which are actually
related to the response, are displayed in Figure 5.3. With fixed trees, BIC-AI performs quite
well but is outperformed by CART pruning in small samples. When we make recovery of
the tree structure more difficult with the random trees so that the first splitting variable
is chosen correctly approximately 33% of the time, both pruning algorithms select large
trees with CART pruning preferring slightly smaller trees. The size of tree that is best for
prediction remains to be determined in the next section on prediction accuracy, however.

0 1000 2000 3000 4000 5000 6000

8
1

0
1

2
1

4
1

6

E(|P’|) vs. n (tree = fixed , p0 = 5 , K = 15 , σ
2

= 0.01)

Sample Size (n)

E
(|

P
’|
)

0 1000 2000 3000 4000 5000 6000

4
6

8
1

0
1

2
1

4
1

6

E(|P’|) vs. n (tree = fixed , p0 = 5 , K = 15 , σ
2

= 1)

Sample Size (n)

E
(|

P
’|
)

0 1000 2000 3000 4000 5000 6000

6
8

1
0

1
2

1
4

1
6

E(|P’|) vs. n (tree = random , p0 = 5 , K = 15 , σ
2

= 0.01)

Sample Size (n)

E
(|

P
’|
)

0 1000 2000 3000 4000 5000 6000

4
6

8
1

0
1

4

E(|P’|) vs. n (tree = random , p0 = 5 , K = 15 , σ
2

= 1)

Sample Size (n)

E
(|

P
’|
)

Figure 5.3: Setting 2 results for model dimension recovery. In the first two settings (reading
horizontally), X(1) was chosen as the first splitting variable in 100% and 99.8% of the
simulation realizations, respectively. In the last two settings, X(1) was chosen as the first
splitting variable in approximately 33% of the simulation realizations.

In Setting 3 we fit very deep trees. The model dimension recovery results are presented
in Figure 5.4. In the fixed tree setting, BIC-AI performs reasonably well asymptotically.
However, for the setting with σ2 = 0.01, CART seems to recover the correct number of
terminal nodes better than BIC-AI. BIC-BF performs moderately well but with quite slow
convergence. In the random setting, BIC-AI favours quite large trees, while CART pruning
selects smaller trees. Again, which size of tree is better for prediction in this case remains
to be assessed in the next section.

38

0 1000 2000 3000 4000 5000 6000

2
0

3
0

4
0

5
0

6
0

E(|P’|) vs. n (tree = fixed , p0 = 5 , K = 63 , σ
2

= 0.01)

Sample Size (n)

E
(|

P
’|
)

0 1000 2000 3000 4000 5000 6000

1
0

2
0

3
0

4
0

5
0

6
0

E(|P’|) vs. n (tree = fixed , p0 = 5 , K = 63 , σ
2

= 1)

Sample Size (n)

E
(|

P
’|
)

0 1000 2000 3000 4000 5000 6000

2
0

3
0

4
0

5
0

6
0

E(|P’|) vs. n (tree = random , p0 = 5 , K = 63 , σ
2

= 0.01)

Sample Size (n)

E
(|

P
’|
)

0 1000 2000 3000 4000 5000 6000

1
0

2
0

3
0

4
0

5
0

6
0

E(|P’|) vs. n (tree = random , p0 = 5 , K = 63 , σ
2

= 1)

Sample Size (n)

E
(|

P
’|
)

Figure 5.4: Setting 3 results for model dimension recovery. In the first two settings, X(1)

was chosen as the first splitting variable in 100% of the simulation realizations. In the last
two settings, X(1) was chosen as the first splitting variable in approximately 40% of the
simulation realizations.

39

5.2 Prediction Accuracy

We revisit the simple trees from Setting 1. The plots for prediction accuracy in this setting
are provided in Figure 5.5 (fixed trees) and Figure 5.6 (random trees). In all sub-settings
with fixed trees, BIC-AI is on par with CART pruning in terms of rel-MSPE when the
sample size is sufficiently large. For small sample sizes, CART seems to perform better
in terms of rel-MSPE. For example, the relatively small difference in rel-MSPEs between
CART pruning and BIC-AI with p0 = 2, K = 7, σ2 = 0.01, and n = 800 is highly significant
with a two-sided p-value based on the paired z-test that is less than 1× 10−5 (a description
of the testing procedure is given at the beginning of Chapter 5). However, BIC-AI has an
estimated rel-MSPE less than or equal to 1.01 around n = 1000, if not earlier. BIC-BF also
exhibits fairly good performance in the settings with the fixed trees.

With random trees in Setting 1, BIC-AI can drastically outperform CART pruning,
particularly when σ2 is small. With p0 = 2, K = 7, σ2 = 0.01, and n = 6400, the average
rel-MSPE of trees obtained with CART pruning was around 8, which is a remarkably
poor score (two-sided p-values comparing BIC-AI and CART rel-MSPEs are less than 3×
10−16 for all values of n). In the two settings with K = 15 and σ2 = 1, CART had
acceptable or favourable performance. The AIC pruning algorithms have relatively poor
MSPE performance but can outperform or perform as well as CART pruning in the random
trees setting.

The findings for Setting 2 with correlated variables are similar to the results from Setting
1. The Setting 2 results for prediction accuracy are displayed in Figure 5.7.

The prediction accuracy results with deep trees in Setting 3 are displayed in Figure 5.8.
With fixed trees, CART pruning outperforms BIC-AI for small and moderate sample sizes,
but the relative MSPE of BIC-AI decreases to around one for large sample sizes (approxi-
mately n = 6400 and n = 3200 for σ2 = 0.01 and σ2 = 1, respectively). With the fixed trees,
all pairwise comparisons are significant with p-values less than 3×10−16. On the other hand,
in the random tree setting, CART pruning performs incredibly poorly for large sample sizes
and small σ2 (all 12 two-sided p-values for random trees are less than 3 × 10−16). This is
similar to what we observed in Setting 1. We offer an explanation of this phenomenon in
Chapter 6.

Finally, we assess the performance of the pruned regression trees when the true re-
gression function is not a tree. The results are presented in Figure 5.9. We see that the
information-based pruning algorithms outperform CART pruning provided that the sample
size is sufficiently large (around n = 800 or earlier). All 26 two-sided comparisons in rel-
MSPEs between CART pruning and BIC-AI are significant with all p-values being less than
2.2× 10−5. CART pruning seems to be inadequate in this case, but a more in-depth study
is necessary to properly assess its performance in such settings. Interestingly, AIC pruning
seems to be better than BIC pruning in this setting.

40

0 1000 2000 3000 4000 5000 6000

1
.0

0
0

1
.0

1
0

1
.0

2
0

Rel−MSPE vs. n (tree = fixed , p0 = 2 , K = 7 , σ
2

= 0.01)

Sample Size (n)

R
e

l−
M

S
P

E

AIC−BF

AIC−AI

BIC−BF

BIC−AI

CART

0 1000 2000 3000 4000 5000 6000

1
.0

0
1

.0
4

1
.0

8

Rel−MSPE vs. n (tree = fixed , p0 = 2 , K = 7 , σ
2

= 1)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

0
1

.0
4

1
.0

8

Rel−MSPE vs. n (tree = fixed , p0 = 2 , K = 15 , σ
2

= 0.01)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

0
1

.1
0

1
.2

0

Rel−MSPE vs. n (tree = fixed , p0 = 2 , K = 15 , σ
2

= 1)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

0
0

1
.0

1
0

1
.0

2
0

Rel−MSPE vs. n (tree = fixed , p0 = 5 , K = 7 , σ
2

= 0.01)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

0
1

.0
4

1
.0

8

Rel−MSPE vs. n (tree = fixed , p0 = 5 , K = 7 , σ
2

= 1)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

0
1

.0
2

1
.0

4
1

.0
6

Rel−MSPE vs. n (tree = fixed , p0 = 5 , K = 15 , σ
2

= 0.01)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

0
1

.1
0

1
.2

0
1

.3
0

Rel−MSPE vs. n (tree = fixed , p0 = 5 , K = 15 , σ
2

= 1)

Sample Size (n)

R
e

l−
M

S
P

E

Figure 5.5: Setting 1 results for prediction accuracy (fixed trees).

41

0 1000 2000 3000 4000 5000 6000

2
4

6
8

Rel−MSPE vs. n (tree = random , p0 = 2 , K = 7 , σ
2

= 0.01)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

0
1

.0
4

1
.0

8

Rel−MSPE vs. n (tree = random , p0 = 2 , K = 7 , σ
2

= 1)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

0
1

.0
2

1
.0

4
1

.0
6

Rel−MSPE vs. n (tree = random , p0 = 2 , K = 15 , σ
2

= 0.01)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

0
1

.1
0

1
.2

0

Rel−MSPE vs. n (tree = random , p0 = 2 , K = 15 , σ
2

= 1)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

1
.1

1
.2

1
.3

1
.4

Rel−MSPE vs. n (tree = random , p0 = 5 , K = 7 , σ
2

= 0.01)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

0
1

.0
2

1
.0

4
1

.0
6

Rel−MSPE vs. n (tree = random , p0 = 5 , K = 7 , σ
2

= 1)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

1
.4

1
.8

2
.2

Rel−MSPE vs. n (tree = random , p0 = 5 , K = 15 , σ
2

= 0.01)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

0
1

.0
5

1
.1

0
1

.1
5

Rel−MSPE vs. n (tree = random , p0 = 5 , K = 15 , σ
2

= 1)

Sample Size (n)

R
e

l−
M

S
P

E

Figure 5.6: Setting 1 results for prediction accuracy (random trees).

42

0 1000 2000 3000 4000 5000 6000

1
.0

0
1

.1
0

1
.2

0

Rel−MSPE vs. n (tree = fixed , p0 = 5 , K = 15 , σ
2

= 0.01)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

1
.2

1
.4

Rel−MSPE vs. n (tree = fixed , p0 = 5 , K = 15 , σ
2

= 1)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

1
.2

1
.4

Rel−MSPE vs. n (tree = random , p0 = 5 , K = 15 , σ
2

= 0.01)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

1
.1

1
.2

1
.3

1
.4

Rel−MSPE vs. n (tree = random , p0 = 5 , K = 15 , σ
2

= 1)

Sample Size (n)

R
e

l−
M

S
P

E

Figure 5.7: Setting 2 results for prediction accuracy.

0 1000 2000 3000 4000 5000 6000

1
.0

0
1

.0
5

1
.1

0
1

.1
5

1
.2

0

Rel−MSPE vs. n (tree = fixed , p0 = 5 , K = 63 , σ
2

= 0.01)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

1
.2

1
.4

1
.6

Rel−MSPE vs. n (tree = fixed , p0 = 5 , K = 63 , σ
2

= 1)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Rel−MSPE vs. n (tree = random , p0 = 5 , K = 63 , σ
2

= 0.01)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

0
1

.1
0

1
.2

0
1

.3
0

Rel−MSPE vs. n (tree = random , p0 = 5 , K = 63 , σ
2

= 1)

Sample Size (n)

R
e

l−
M

S
P

E

Figure 5.8: Setting 3 results for prediction accuracy.

43

0 1000 2000 3000 4000 5000 6000

1
.0

1
.2

1
.4

1
.6

Rel−MSPE vs. n (p0 = 2 , K = 31 , σ
2

= 0.01)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

0
1

.0
5

1
.1

0
1

.1
5

Rel−MSPE vs. n (p0 = 2 , K = 31 , σ
2

= 0.11)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

1
.2

1
.4

1
.6

1
.8

Rel−MSPE vs. n (p0 = 2 , K = 63 , σ
2

= 0.01)

Sample Size (n)

R
e

l−
M

S
P

E

0 1000 2000 3000 4000 5000 6000

1
.0

0
1

.0
4

1
.0

8
1

.1
2

Rel−MSPE vs. n (p0 = 2 , K = 63 , σ
2

= 0.11)

Sample Size (n)

R
e

l−
M

S
P

E

Figure 5.9: Setting 4 results for prediction accuracy.

44

Chapter 6

Discussion

In this work, we developed and presented several regression tree pruning algorithms that do
not rely on cross-validation and can serve as effective alternatives to the standard CART
cost-complexity pruning algorithm. In particular, one of these—the BIC-AI (accumulated
information) pruning algorithm—proved to be an efficient alternative that produces pruned
trees that can have comparable (and sometimes favourable) prediction accuracy in some of
the considered settings when compared to standard CART pruning.

We built upon the work of previous authors and also introduced some new develop-
ments. Using an existing modified BIC for change-point detection [24], we proposed a slight
generalization of this BIC for regression tree pruning and proved its consistency in this new
setting. We also incorporated this modified BIC into the accumulated information pruning
algorithm of [9] to create the BIC-AI pruning algorithm. Along the way, we introduced the
simpler pruning algorithms BIC-BF (branch freezing) and BIC-ET (early termination) that
make use of the modified BIC and provided a consistency result for BIC-ET. We also pro-
posed AIC-based pruning algorithms by using another change-point detection result from
[16] and [17].

In the “random trees” simulation results of Chapter 5, we saw that trees pruned with
BIC-AI can outperform trees obtained with CART pruning by a considerable margin in
terms of relative MSPE when the sample size is sufficiently large and σ2 is small. However,
when the sample size is small and the true regression function can be represented by a
tree, we found that CART pruning outperforms BIC-AI in the “fixed tree” settings. We
also saw with the fixed trees that the expected number of terminal nodes in trees pruned
with BIC-AI is asymptotically close to the true number of terminal nodes when the true
regression function can be represented by a tree and the tree construction algorithm begins
by splitting on the correct variable.

The poor relative MSPE performance of trees obtained with standard CART pruning in
settings with random trees and small σ2 (= 0.01) is an unexpected finding of the simulation
study. In these cases, pruning approaches such as the proposed BIC-based algorithms should
be able to make very good pruning decisions because the noise is small relative to the signal

45

and pruning decisions can be made at a local level. In contrast, CART pruning chooses an
optimal cost-complexity parameter that is applied directly to an entire tree. It is possible
for the impact of a true pattern that is captured by a terminal node to be diluted by noise
present in terminal nodes belonging to the same branch, resulting in an over-pruned tree
with CART pruning.

There are several directions for future research. It would be favourable to generalize
the BIC-ET consistency proof to show consistency of the BIC-BF pruning algorithm under
weaker assumptions on the tree construction algorithm. In general, the proofs provided
in this thesis should be considered as sketches and a work in progress. As was mentioned
previously, Theorem 1 relies on a small generalization of Lemma 2 that remains to be proven.
Therefore, some more work is needed to firmly establish the theoretical results.

The proposed information-based pruning algorithms can easily be incorporated into the
α-pruning algorithm of [9] for random forests. This algorithm uses an information criterion
to prune individual trees and obtains forests of slightly pruned trees. A tuning parameter,
α, is introduced to control the extent to which the trees are pruned. These pruned trees offer
predictions with decreased variability but should not introduce a considerable amount of
bias. While [9] used simulated penalty tables to estimate the appropriate information value
to attach to nodes or branches of a tree, these values can now be calculated easily with the
closed form of our modified BIC. In future work, we plan to examine the performance of
BIC-AI with α-pruning in order to tune tree-based ensembles such as random forests.

46

Bibliography

[1] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification
and Regression Trees. CRC Press, 1984.

[2] Antonio Ciampi. Generalized regression trees. Computational Statistics & Data Anal-
ysis, 12(1):57–78, 1991.

[3] Gerda Claeskens and Nils Lid Hjort. The focused information criterion. Journal of the
American Statistical Association, 98(464):900–916, 2003.

[4] Jan deLeeuw. Introduction to Akaike (1973) information theory and an extension of the
maximum likelihood principle. In Breakthroughs in Statistics, pages 599–609. Springer,
1992.

[5] Floriana Esposito, Donato Malerba, and Giovanni Semeraro. A comparative analysis
of methods for pruning decision trees. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(5):476–491, 1997.

[6] Floriana Esposito, Donato Malerba, Giovanni Semeraro, and Valentina Tamma. The
effects of pruning methods on the predictive accuracy of induced decision trees. Applied
Stochastic Models in Business and Industry, 15(4):277–299, 1999.

[7] Guangzhe Fan and J Brian Gray. Regression tree analysis using TARGET. Journal of
Computational and Graphical Statistics, 14(1):206–218, 2005.

[8] Alexis Hannart and Philippe Naveau. An improved Bayesian information criterion for
multiple change-point models. Technometrics, 54(3):256–268, 2012.

[9] Andrew James Dennis Henrey. Statistical Learning Tools for Heteroskedastic Data.
PhD thesis, Science: Department of Statistics and Actuarial Science, 2016.

[10] Aram Karalic and Bojan Cestnik. The Bayesian approach to tree-structured regression.
In Proceedings of ITI, volume 91, pages 155–160, 1991.

[11] Sadanori Konishi and Genshiro Kitagawa. Information criteria and statistical modeling.
Springer Science & Business Media, 2008.

[12] Colin H LaMont and Paul A Wiggins. The development of an information criterion for
change-point analysis. Neural Computation, 28(3):594–612, 2016.

[13] Michael LeBlanc and Robert Tibshirani. Monotone shrinkage of trees. Journal of
Computational and Graphical Statistics, 7(4):417–433, 1998.

47

[14] Berent Ånund Strømnes Lunde, Tore Selland Kleppe, and Hans Julius Skaug. An infor-
mation criterion for automatic gradient tree boosting. arXiv preprint arXiv:2008.05926,
2020.

[15] John Mingers. An empirical comparison of pruning methods for decision tree induction.
Machine Learning, 4(2):227–243, 1989.

[16] Yoshiyuki Ninomiya. Information criterion for Gaussian change-point model. Statistics
& Probability Letters, 72(3):237–247, 2005.

[17] Yoshiyuki Ninomiya. Change-point model selection via AIC. Annals of the Institute
of Statistical Mathematics, 67(5):943–961, 2015.

[18] John R Quinlan. Learning with continuous classes. In 5th Australian Joint Conference
on Artificial Intelligence, volume 92, pages 343–348. World Scientific, 1992.

[19] Marko Robnik-Šikonja. CORE-a system that predicts continuous variables. In Pro-
ceedings of ERK’97, pages B145–148, 1997.

[20] Marko Robnik-Šikonja and Igor Kononenko. Pruning regression trees with MDL. In
Proceedings of the 13th European Conference on Artificial Intelligence, John Wiley &
Sons, Chichester, England, pages 455–459, 1998.

[21] Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics,
6(2):461–464, 1978.

[22] Erwan Scornet, Gérard Biau, and Jean-Philippe Vert. Consistency of random forests.
The Annals of Statistics, 43(4):1716–1741, 2015.

[23] Shayle R Searle and Marvin HJ Gruber. Linear Models. John Wiley & Sons, Incorpo-
rated, 2016.

[24] Gang Shen and Jayanta K Ghosh. Developing a new BIC for detecting change-points.
Journal of Statistical Planning and Inference, 141(4):1436–1447, 2011.

[25] David J Spiegelhalter, Nicola G Best, Bradley P Carlin, and Angelika Van Der Linde.
Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 64(4):583–639, 2002.

[26] David J Spiegelhalter, Nicola G Best, Bradley P Carlin, and Angelika Van der Linde.
The deviance information criterion: 12 years on. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), pages 485–493, 2014.

[27] Xiaogang Su, Morgan Wang, and Juanjuan Fan. Maximum likelihood regression trees.
Journal of Computational and Graphical Statistics, 13(3):586–598, 2004.

[28] Luís Fernando Raínho Alves Torgo. Inductive learning of tree-based regression models.
PhD thesis, Universidade do Porto. Reitoria, 1999.

[29] Aad W Van der Vaart. Asymptotic Statistics. Cambridge University Press, 2000.

[30] Sumio Watanabe. A widely applicable Bayesian information criterion. Journal of
Machine Learning Research, 14(Mar):867–897, 2013.

48

[31] Yi-Ching Yao. Estimating the number of change-points via Schwarz’ criterion. Statistics
& Probability Letters, 6(3):181–189, 1988.

49

Appendix A

Proofs

We lay out the proofs of four lemmas and a theorem. If not provided here, the lemma and
theorem statements can be found in Section 3.5.1. Lemma 1 states the consistency of the
estimators of the splitting variables and split locations in the case of a “tree stump”. It is
independent of the three other lemmas and the theorem. Lemma 2 shows that the modified
BIC consistently selects either the “no split” or “single split” (tree stump) model, when one
of these is the correct model. Theorem 1 then shows that BIC-ET recovers the true subtree
under appropriate conditions. Lemma 2 and Lemma 3 are important tools used in the proof
of the theorem. Lemma 4 shows that one can replace an unknown σ2 with a consistent
estimate and still have consistency of the lBIC. As was mentioned in Chapter 6, the proofs
provided in this thesis should be considered as sketches and a work in progress.

A.1 Lemma 1

Lemma 1 is independent of the other lemmas and the theorem. It is only used to justify
some of the conditions from Section 3.5.1 and plays no role in the consistency of the lBIC.

Proof of Lemma 1. We make use of Theorem 5.7 from [29] and use the same notation and
proof approach that is presented there. Without loss of generality, assume j0 = 1. Clearly,
Θ is compact. Fix θ ∈ Θ and let

f((x, y), θ) = −
(
y − µ11(x(j) < z)− µ21(x(j) ≥ z)

)2
.

Further, let M(θ) = E(f((X, Y), θ)).

We first show that
sup
θ∈Θ
|Mn(θ)−M(θ)| as∗−−→ 0.

To this end, let F = {f((x, y), θ) : θ ∈ Θ}. We simply have to show that F is P-Glivenko-
Cantelli. The argument is essentially the same as for Example 19.8 of [29], with a very slight

50

weakening of the continuity assumption. Note that

|f((x, y), θ)| ≤ (|y|+ |µ1|+ |µ2|)2 ≤ (|y|+ 2Kµ)2 ,

so F has an integrable envelope function, F ((x, y)) = (|y| + 2Kµ)2. Further, observe that
for any θ∗ ∈ Θ, the map θ 7→ f((x, y), θ) is continuous at θ∗ for all (x, y) provided that
x(j∗) 6= z∗. Because X has positive density with respect to Lebesgue measure on [0, 1]p,
this set has probability zero. (The main point is that the exceptional set of x is allowed to
depend on θ∗.) Verifying each of the steps in the mentioned example, we have the desired
uniform convergence.

Next, we show that for all ε > 0,

sup
θ:‖θ−θ0‖≥ε

M(θ) < M(θ0),

where ‖θ − θ0‖ is the Euclidean distance between the vectors θ and θ0. First, some work
shows that

−M(θ) =


−M1(θ), j = j0, z = z0

−M2(θ), j = j0, z < z0

−M3(θ), j = j0, z > z0

−M4(θ), j 6= j0,

where

−M1(θ) = P (X(j0) < z0)(µ1 − µ1,0)2 + P (X(j0) ≥ z0)(µ2 − µ2,0)2 + σ2,

−M2(θ) = P (X(j0) < z)(µ1 − µ1,0)2 + P (z ≤ X(j0) < z0)(µ2 − µ1,0)2

+ P (X(j0) ≥ z0)(µ2 − µ2,0)2 + σ2,

−M3(θ) = P (X(j0) < z0)(µ1 − µ1,0)2 + P (z0 ≤ X(j0) < z)(µ1 − µ2,0)2

+ P (X(j0) ≥ z)(µ2 − µ2,0)2 + σ2,

−M4(θ) = P (X(j) < z,X(j0) < z0)(µ1 − µ1,0)2 + P (X(j) < z,X(j0) ≥ z0)(µ1 − µ2,0)2

+ P (X(j) ≥ z,X(j0) < z0)(µ2 − µ1,0)2 + P (X(j) ≥ z,X(j0) ≥ z0)(µ2 − µ2,0)2

+ σ2.

Clearly,M(θ) ≤ −σ2 for any θ andM(θ0) = −σ2. Let ε > 0 and consider θ with ‖θ−θ0‖ ≥ ε.
Some tedious work (after checking finitely many cases) shows that the supremum of M(θ)
over these θ is strictly less than M(θ0) by (A1), (B1), and (B2).

Finally, by definition, we have Mn(θ̂n) ≥Mn(θ0), and therefore θ̂n
p−→ θ0. This implies that

each of the components converge in probability to their true values and that P (jn = j0)→ 1,
because j takes on finitely many values.

51

A.2 Lemma 2

Proof of Lemma 2. We split the proof into the two cases. This proof is for the version of the
lBIC where σ2 is known. For the (more realistic) case where σ2 is replaced with a consistent
estimator σ̂2

n, see Lemma 4. For properties of quadratic forms, see [23].

Case 1
We define a few quantities. The notation is presented in Section 3.2. Let

VnL,j =
n∑
i=1

(Yi − Ȳ)2 −
nL∑
i=1

(Y ∗ji − Ȳ
∗j
L,nL

)2 −
n∑

i=nL+1
(Y ∗ji − Ȳ

∗j
R,nL

)2,

S =

3 log(n) ≤ max
nL=1,...,n−1
j=1,...,p

1
σ2VnL,j

 ,
SnL,j =

{
3 log(n) ≤ 1

σ2VnL,j

}
.

We know

P (lBIC0,n([0, 1]p) ≥ lBIC1,n([0, 1]p)) = P (S)

= P

 ⋃
nL=1,...,n−1
j=1,...,p

SnL,j


≤

∑
nL=1,...,n−1
j=1,...,p

P (SnL,j).

Now, if Z ∼ N(0, 1),

P (SnL,j) = P (Z2 ≥ 3 log(n))

= P

(
|Z| ≥

√
3 log(n)

)
≤ exp(−3/2 log(n)))
= n−3/2.

This implies that

P (lBIC1,n([0, 1]p) > lBIC0,n([0, 1]p)) ≥ 1− (n− 1)p
n3/2 → 1,

as n→∞ for fixed p. This completes the proof for Case 1.

Case 2
We introduce some notation for this case. Let

NL =
n∑
i=1

1(X(j0)
i < z0),

52

the number of observations to the “left” of z0 along the j0-th variable (a random quantity).
Define

ȲL,z0 =
∑n
i=1 Yi1(X(j0)

i < z0)
NL

,

the average of the responses to the “left”. We define ȲR,z0 analogously, but the inequality
in the indicator function is not strict in the latter case. Now, let

D =
n∑
i=1

(Yi − Ȳ)2 −
n∑
i=1

(Yi − ȲL,z0)2
1(X(j0)

i < z0)−
n∑
i=1

(Yi − ȲR,z0)2
1(X(j0)

i ≥ z0).

Then,

P (lBIC0,n([0, 1]p) > lBIC1,n([0, 1]p)) ≥ P ({D/σ2 > 3 log(n)} ∩ {NL /∈ {0, n}}).

Clearly, P (NL /∈ {0, n}) → 1 by (A1) and (B2), so we need to show that P (D/σ2 >
3 log(n))→ 1. For convenience, we examine the reverse inequality. Let

G =
{
NL <

√
n
}
∪
{
NL > n−

√
n
}
.

Then,

P (D/σ2 ≤ 3 log(n)) = P
(
{D/σ2 ≤ 3 log(n)} ∩G

)
+ P

(
{D/σ2 ≤ 3 log(n)} ∩Gc

)
. (A.1)

We first show that the left term in (A.1) goes to zero, and then later show the same for
the right term, which requires a bit more work. Note that because X has strictly positive
density on [0, 1]p, and because z0 ∈ (0, 1), by the weak law of large numbers,

P

(∣∣∣∣NL

n
− c
∣∣∣∣ > ε

)
→ 0,

for any ε > 0, where c = P (X(j0)
1 < z0) > 0. This immediately implies that P (NL/n >

c+ ε)→ 0 and P (NL/n < c− ε)→ 0 for all ε > 0. Thus,

P (NL ≤
√
n) = P (NL/n ≤ 1/

√
n)→ 0.

Similarly,
P (NL ≥ n−

√
n) = P (NL/n ≥ 1− 1/

√
n)→ 0.

Therefore, P (G)→ 0. We now only have to show that the right term in (A.1) goes to zero.
To this end, observe that for nL ∈ {1, . . . , n− 1},

P (D/σ2 ≤ 3 log(n))|NL = nL) = P (Qλ(nL) ≤ 3 log(n)),

where Q ∼ χ2
1(λ(nL)), a non-central chi-square distribution with one degree of freedom and

non-centrality parameter

λ(nL) = nL(n− nL)
2nσ2 (µ1,0 − µ2,0)2,

53

using the parameterization presented in [23]. Note that for nL ∈ [
√
n, n−

√
n], the minimum

of λ(nL) is

λmin = λ(
√
n) = λ(n−

√
n) =

√
n(n−

√
n)

2nσ2 (µ1,0 − µ2,0)2.

Therefore, for any sufficiently small t > 0, using the moment generating function of the
non-central chi-square distribution (see [23]),

P ({D/σ2 ≤ 3 log(n)} ∩Gc)
= P ({D/σ2 ≤ 3 log(n)} ∩ {NL = d

√
ne})

+ . . .+ P ({D/σ2 ≤ 3 log(n)} ∩ {NL = bn−
√
nc})

≤ P (Qλmin
≤ 3 log(n))

= P (−tQλmin
≥ −3t log(n))

= P (exp(−tQλmin
) ≥ n−3t)

≤ E(exp(−tQλmin
)) · n3t

= 1
(1 + 2t)1/2 exp

{
−
√
n(n−

√
n)

2nσ2 (µ1,0 − µ2,0)2[1− (1 + 2t)−1] + 3t log(n)
}

= 1
(1 + 2t)1/2 exp

{
− 1

2σ2
√
n

(
1− 1√

n

)
(µ1,0 − µ2,0)2[1− (1 + 2t)−1] + 3t log(n)

}
→ 0,

as n→∞, because (µ1,0−µ2,0)2 and 1−1/(1+2t) are both strictly greater than zero. This
completes the proof for Case 2.

54

A.3 Theorem 1

In this section we prove the main result, presented in Theorem 1: BIC-ET recovers the true
tree structure under appropriate conditions. Before this, we introduce a somewhat trivial
lemma that is used in the proof.

Lemma 3. Consider sequences of events An, Bn such that P (An)→ 1. Then,

P (Bn)− P (An ∩Bn)→ 0.

Proof.

|P (Bn)− P (An ∩Bn)| = P (Acn ∩Bn)
≤ P (Acn)
→ 0.

We can now prove the main theorem (for which we assume σ2 is known). For the extension
to unknown σ2 replaced with a consistent estimator σ̂2

n, see Lemma 4.

Proof of Theorem 1. With the above assumptions, there are only finitely many possibilities
for the region Snap(AK−k,n(ε̃),G(ε̃/N)) across all n, for any given 1 ≤ k ≤ K. This is
because G(ε̃/N) contains finitely many points and X has support on [0, 1]p.

With this in mind, let
CK−k,n = Snap(AK−k,n(ε̃),G(ε̃/N))

for each k and n. The region CK−k,n is random. As was just mentioned, the set of possible
values of CK−k,n across all k, n is finite. Let CK−k be this finite set of possible values across
n for a fixed value of k. For a rectangular, axis-aligned, and closed region A ⊂ [0, 1]p, using
the definitions given by equations (3.1) and (3.3), let

B(A) = {lBIC0,n(A) > lBIC1,n(A)}.

Case 1 (K∗ = K):
If K∗ = K, we already have the correct tree structure and we do not want to prune the tree
any further. Therefore,

P (PBICn = P∗n)
≥ P (B(CK−1,n))
=

∑
C∗

K−1∈CK−1

P (B(CK−1,n) ∩ {CK−1,n = C∗K−1})

= 1 +
∑

C∗
K−1∈CK−1

[
P (B(C∗K−1) ∩ {CK−1,n = C∗K−1})− P ({CK−1,n = C∗K−1})

]
.

55

From here, we split the sum into two parts. Consider the set S1 of (non-random) regions
in CK−1 that contain exactly one true split-point (no more and no less), the split-point is
in the interior of the region, and the region is not the empty set. By a generalization of
Lemma 21, it follows that for any fixed C∗K−1 ∈ S1, P (B(C∗K−1)) → 1. If it can be shown
that P (CK−1,n ∈ S1) → 1, then it follows from Lemma 3 that P (PBICn = P∗n) → 1 in this
case, because the above sum contains only finitely many terms. It therefore remains to show
that P (CK−1,n ∈ S1)→ 1 as n→∞.

That CK−1,n contains exactly one split-point in the interior of the region with probability
approaching one is given by (C6). It can also be seen that the probability of at most a
single split-point approaches one by (C4) in combination with (C1). That the probability
that the region is not the empty set approaches one is given by (C5). (Loosely speaking,
these should all be satisfied if split-point estimators are weakly consistent for the location of
the split-point and an appropriate grid G(ε̃/N) is chosen.) Therefore, P (CK−1,n ∈ S1)→ 1
as n→∞ and this case is complete.

Case 2 (K∗ < K):
Suppose now thatK∗ < K. This means that we need to prune the full tree to recover the true
tree structure. We first show that the result holds for K∗ = K − 1, from which it becomes
clear that it is true for all K∗ < K. For convenience, we denote the set {lBIC0,n(A) <
lBIC1,n(A)} by B(A)c. (The complement would normally include the possibility of equality,
but we do not need to refer to this possibility in any part of our proof.) When K∗ = K − 1,

P (PBICn = P∗n)
≥ P (B(CK−1,n)c ∩B(CK∗−1,n))
=

∑
C∗

K−1∈CK−1
C∗

K∗−1∈CK∗−1

P (B(CK−1,n)c ∩ {CK−1,n = C∗K−1} ∩B(CK∗−1,n) ∩ {CK∗−1,n = C∗K∗−1}).

We now split the sum into four parts. Let S1 in this case be the set of all (non-random)
regions in CK−1 that contain no true split-points and the region is not the empty set. Let
S2 be the set of all (non-random) regions in CK∗−1 that contain exactly one true split-point
(no more and no less), the split-point is in the interior of the region, and the region is
not the empty set. The sum is split into four parts indexed by S1 ∩ S2, (CK−1 \ S1) ∩ S2,
S1 ∩ (CK∗−1 \S2), and (CK−1 \S1)∩ (CK∗−1 \S2). We show that P (CK−1,n ∈ S1, CK∗−1,n ∈
S2)→ 1 to conclude that P (PBICn = P∗n)→ 1 in this case.

We start with CK−1,n. The probability that this region contains no split-points approaches
one by (C4) and (C1). That the set is nonempty with probability approaching one is given
by (C5). Therefore, P (CK−1,n ∈ S1)→ 1.

1This is the generalization of Lemma 2 referred to after the statement of Theorem 1. In the generalized
version of the lemma, the region A considered in the lBIC and the support of X do not have to be the same
(the support of X is allowed to be larger, so that we effectively discard a certain random proportion of the
observations in the calculation of the lBIC). The proof should be very similar to the proof of Lemma 2, but
it is left for future work.

56

For CK∗−1,n, we see that the probability that the region contains exactly one split-point in
the interior of the region approaches one by (C6). That the set is nonempty with probability
approaching one is again given by (C5). Therefore, P (CK∗−1,n ∈ S2)→ 1.

From here, P (CK−1,n ∈ S1, CK∗−1,n ∈ S2)→ 1 and hence P (PBICn = P∗n)→ 1, completing
the proof for both cases.

57

A.4 Consistent Estimators of the Conditional Variance

We briefly explain why it is possible to replace the true (unknown) value of σ2 with a
consistent estimator σ̂2

n in the BIC-ET algorithm and still consistently recover the true tree
structure. Because traditional tree-construction algorithms do not depend on any inputs to
the estimated or true value of σ2 (they simply seek to minimize the sum of squares), what
needs to be shown is that Lemma 2 holds when σ2 is replaced with a consistent estimator,
σ̂2
n.

Lemma 4. If σ2 is replaced with σ̂2
n in the lBIC of Lemma 2, the same conclusions still

hold provided that σ̂2
n

p−→ σ2 and σ2 > 0. (Note that the same estimate σ̂2
n is used in all steps

of the pruning algorithm.)

Proof. For clarity, we write lBICd,n([0, 1]p, σ2) and lBICd,n([0, 1]p, σ̂2
n) for d = 0, 1 to distin-

guish between the two cases (using the true and estimated value of σ2, respectively). By
assumption, σ̂2

n
p−→ σ2 and so 1/σ̂2

n
p−→ 1/σ2 because σ2 > 0.

From here, let ε = 0.2/σ2 (any sufficiently small ε will work). Now, P (|1/σ̂2
n−1/σ2| ≤ ε)→ 1.

Case 1
We already know that with known σ2,

P (lBIC1,n([0, 1]p, σ2) > lBIC0,n([0, 1]p, σ2))→ 1.

Let

V = max
nL=1,...,n−1
j=1,...,p

 n∑
i=1

(Yi − Ȳ)2 −
nL∑
i=1

(Y ∗ji − Ȳ
∗j
L,nL

)2 −
n∑

i=nL+1
(Y ∗ji − Ȳ

∗j
R,nL

)2

 .
Note that V ≥ 0. Then,

P (lBIC1,n([0, 1]p, σ̂2
n) > lBIC0,n([0, 1]p, σ̂2

n))

≥ P
({ 1

σ̂2
n

V < 3 log(n)
}
∩ {|1/σ̂2

n − 1/σ2| ≤ ε}
)

= P

({(1
σ2 + 1

σ̂2
n

− 1
σ2

)
V < 3 log(n)

}
∩ {|1/σ̂2

n − 1/σ2| ≤ ε}
)

≥ P
({(1

σ2 + ε

)
V < 3 log(n)

}
∩ {|1/σ̂2

n − 1/σ2| ≤ ε}
)

= P

({ 1
σ2V < 2.5 log(n)

}
∩ {|1/σ̂2

n − 1/σ2| ≤ ε}
)

→ 1,

because the probability of both events approaches one (the argument for the first event
is the same as in Case 1 of Lemma 2). Note that as long as the same penalty is applied
to lBIC0,n and lBIC1,n for the estimated variance, the penalty on the variance cancels in
lBIC0,n − lBIC1,n.

58

Case 2
Let D ≥ 0 be as in the proof of Lemma 2. Note that P (NL /∈ {0, n})→ 1. From here,

P (lBIC0,n([0, 1]p, σ̂2
n) > lBIC1,n([0, 1]p, σ̂2

n))

≥ P
({ 1

σ̂2
n

D > 3 log(n)
}
∩ {NL /∈ {0, n}} ∩ {|1/σ̂2

n − 1/σ2| ≤ ε}
)

= P

({(1
σ2 + 1

σ̂2
n

− 1
σ2

)
D > 3 log(n)

}
∩ {NL /∈ {0, n}} ∩ {|1/σ̂2

n − 1/σ2| ≤ ε}
)

≥ P
({(1

σ2 − ε
)
D > 3 log(n)

}
∩ {NL /∈ {0, n}} ∩ {|1/σ̂2

n − 1/σ2| ≤ ε}
)

= P

({ 1
σ2D > 3.75 log(n)

}
∩ {NL /∈ {0, n}} ∩ {|1/σ̂2

n − 1/σ2| ≤ ε}
)

→ 1,

by the same argument as in Case 2 of Lemma 2. This completes the proof for both cases.

59

	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Literature Review
	Regression Trees and the CART Algorithm
	Information Criteria
	Bayesian Information Criterion
	Akaike's Information Criterion
	Other Information Criteria

	Change-Point Detection

	Methods
	Cost-Complexity Pruning
	BIC Pruning
	Notation
	Branch Freezing (BIC-BF)
	Accumulated Information (BIC-AI)

	AIC Pruning
	Other Pruning Methods
	IC-Based Pruning Methods
	Other Pruning Methods for Regression Trees
	Other Pruning Methods for Classification Trees

	BIC Pruning: Consistency Results
	Theorem and Lemmas: Definitions, Conditions, and Statements

	Simulation Study Design
	Metrics Used
	Setting 1: Simple Scenarios
	Setting 2: Many Variables and Correlation
	Setting 3: Deep Trees
	Setting 4: True Regression Function Is Not a Tree

	Simulation Results
	Model Dimension Recovery
	Prediction Accuracy

	Discussion
	Bibliography
	Appendix Proofs
	Lemma 1
	Lemma 2
	Theorem 1
	Consistent Estimators of the Conditional Variance

