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Abstract 

Oxygen fuels aerobic metabolism and as such, plays an important role in the physiology, 

ecology, and evolution of organisms. Traits related to oxygen acquisition (respiratory 

surface area) and use (metabolic rate) or the balance of oxygen supply and demand (or 

its mismatch, termed ‘oxygen limitation’) have been proposed to underlie broad patterns 

such as the temperature-size rule and the geographic distributions of marine species. 

Moreover, traits related to oxygen acquisition and use form the central focus of seemingly 

disparate macroecological theories that aim to explain and predict the structure and 

dynamics of ecological systems and how these systems and their constituents will respond 

to a changing climate. While these existing theories and oxygen-related explanations offer 

a compelling story, the role of oxygen in shaping biological observations, responses, and 

patterns is hotly debated. Further, much work in this area is experimental in nature and 

typically focuses on a single species in laboratory settings. Broader scale, 

macroecological research stemming from meta-analysis and modeling is needed to 

understand the generality of patterns. To that end, this thesis takes a macroecological 

approach and examines the generality of the relationships among traits related to oxygen 

acquisition and use, ecology, and life histories. First, I reveal that respiratory surface area 

explains patterns of metabolic rate across the vertebrate tree of life. Second, I uncover 

that larger-bodied, active, pelagic sharks have greater gill surface areas (respiratory 

surface area in fishes) for a given size compared to their smaller-bodied, less active, 

benthic counterparts. Conversely, the rate at which gill surface area increases with body 

mass is the same for all species, regardless of activity level, habitat type, or maximum 

size. Third, I test a central prediction of the Gill Oxygen Limitation Theory and find that 

across fishes, growth and maximum size more strongly relate to activity level than gill 

surface area. Collectively, my thesis highlights the complexities of integrating data across 

scales and illustrates that oxygen acquisition and use is tightly correlated with activity 

level, but the relationships with life histories are less straightforward. This body of work 

builds on existing theory while empirically testing relationships among oxygen acquisition 

and use, ecological lifestyle, and the life histories among fishes and other vertebrates. 

Keywords:  Metabolic Theory of Ecology; Gill Oxygen Limitation Theory; respiratory 

surface area; von Bertalanffy growth function; Bayesian hierarchical modeling; allometry 
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Introduction 

Oxygen fuels life on Earth. The marked increase in oxygen levels in the atmosphere and 

ocean around the late Neoproterozoic Era (850 – 542 million years ago) is thought to have 

paved the way for the evolution of complex life forms, e.g., metazoans (Nursall 1959; 

Canfield & Teske 1996). Today, most animals respire aerobically and thus rely on oxygen 

to fuel metabolic activities, which broadly function to transform resources from the 

environment into available energy (Brown et al. 2004; Mentel et al. 2016). This energy is 

subsequently allocated to life-sustaining processes, such as survival, growth, and 

reproduction (Brown et al. 2004).  

Although physiologists have long recognized the important role oxygen plays in the 

ecology and evolution of organisms, this role has been largely underappreciated in 

ecology until recently. Traits related to oxygen acquisition (respiratory surface area) and 

use (metabolic rate) or the balance of oxygen supply and demand (or its mismatch, termed 

‘oxygen limitation’) have recently been proposed to underlie broad, macroecological and 

macrophysiological patterns (Forster et al. 2012; Rubalcaba et al. 2020; Deutsch et al. 

2020). For example, oxygen limitation is one suggested explanation for the inverse 

relationship between ectothermic body size and temperature seen in the wild (Bergmann’s 

rule/James’ Rule) and in the laboratory (temperature-size rule; Forster et al. 2012; 

Hoefnagel & Verberk 2015; Verberk et al. 2020). The faster growth to a smaller maximum 

size observed under warmer temperatures (or in warmer waters) is thought to be related 

to the difficulty in obtaining oxygen as temperature increases due to higher metabolic 

demand and decreased oxygen availability (Forster et al. 2012; Hoefnagel & Verberk 

2015). This explanation is particularly relevant to aquatic ectotherms, especially those that 

are large-bodied, as this group must deal with the challenge of extracting oxygen from 

water and not air (Forster et al. 2012; Hoefnagel & Verberk 2015). Other broad patterns, 

such as the geographic distribution of marine species and the body mass- and 

temperature- dependence of metabolic rate in fishes, have also been linked to the balance 

of oxygen supply and demand (e.g., Deutsch et al. 2020; Rubalcaba et al. 2020). Such 

oxygen-related explanations for these broad patterns align well with predictions of 

macroecological and macrophysiological theories that invoke oxygen acquisition and use 
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(i.e., respiratory surface area, metabolic rate) or oxygen limitation to explain and predict 

the dynamics of biological systems and how they will respond to a changing climate 

(Brown et al. 2004; Pauly 2010; Pörtner 2010).  

The Metabolic Theory of Ecology is the cornerstone of metabolic ecology, a field that 

encompasses the theoretical and empirical foundations connecting organismal aerobic 

metabolic rate to biological patterns on multiple scales, from cells to the biosphere (Brown 

et al. 2004). This field ultimately aims to leverage the evolutionary allometry (scaling) of 

metabolic rate, body mass, and temperature to predict patterns and processes across all 

levels of biological organization, including life histories and population dynamics (Gillooly 

et al. 2001; Brown et al. 2004). While the connections among metabolic rate, body mass, 

and temperature were well-established prior to the emergence of this field, this theory 

refined the mathematical relationship among these factors, offered a mechanism to 

explain why metabolic rate may vary with body mass in a predictable way, and proposed 

a framework to scale up metabolic rate to higher-order biological patterns and processes 

(Kleiber 1932; West et al. 1999; Brown et al. 2004). Although the proposed mechanism 

underlying the relationship of metabolic rate and body mass continues to be debated, the 

mathematical relationship refined by this theory, as well as the general framework 

connecting individual metabolic rates to higher-order patterns and processes has proven 

useful (O’Connor et al. 2007; Munch & Salinas 2009; Barneche et al. 2014). However, as 

noted by those who proposed the Metabolic Theory of Ecology, body mass and 

temperature do not explain all variation in metabolic rate across organisms (Gillooly et al. 

2001; Brown et al. 2004). After accounting for temperature, metabolic rate for organisms 

of the same body mass still varies by over five orders of magnitude, suggesting that 

additional factors likely help explain patterns of metabolic rate across species (Gillooly et 

al. 2001; Brown et al. 2004).  

Other traits related to oxygen acquisition, such as respiratory surface area are intimately 

related to metabolic rate and as such, play a large role in metabolic processes. As codified 

in Fick’s law of diffusion, the oxygen required to fuel aerobic metabolism is diffused over 

the respiratory surface (Fick 1855; De Jager & Dekkers 1975; Gillooly et al. 2016). 

Although other factors are also important in determining rates of oxygen flux across a 

membrane (e.g.., the thickness of the respiratory membrane, the partial pressure gradient 

of oxygen), respiratory surface area is the only factor to substantially change, or scale, 

with body size (Fick 1855; De Jager & Dekkers 1975; Gillooly et al. 2016). When the 
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scaling of respiratory surface area with body mass is compared to that of metabolic rate, 

a remarkable similarity is revealed, both within (ontogenetic or static scaling/allometry) 

and across (evolutionary allometry) species (Winberg 1956; De Jager & Dekkers 1975; 

Wegner 2016; Gillooly et al. 2016). The scaling of respiratory surface area and metabolic 

rate, and more broadly, the importance of respiratory surface area in acquiring the oxygen 

required for metabolic processes has led to the proposal of a theory that argues that 

respiratory surface area, specifically in aquatic, water-breathing organisms, imposes a 

physical constraint on oxygen supply and metabolic rate (Pauly 1981, 2010).  

The Gill Oxygen Limitation Theory centers on the idea that the gills of aquatic, water-

breathing ectotherms limit aerobic metabolic rate and ultimately, growth and other 

processes that rely on the energy produced by aerobic metabolism (Pauly 1981, 2010). 

The central tenet of this theory is that the surface area of the gills (as a two-dimensional 

surface) cannot grow as fast as the body it must supply with oxygen (a three-dimensional 

volume; Pauly 1981, 2010). In other words, the ontogenetic scaling of gill surface area 

and body mass should always be less than one, resulting in a mismatch between oxygen 

supply and demand as an organism increases in size (Pauly 1981, 2010). Thus, the ratio 

of gill surface area to body mass will decrease throughout an organism’s lifetime, and 

eventually, will not be able to match the demand of a growing body, at which the maximum 

size of the organism will be reached (Pauly 1981, 2010). Because this theory posits that 

gill surface area constrains aerobic metabolic rate, and thus processes related to or relying 

on metabolism, energy, and oxygen, it is multifaceted and explicitly and implicitly 

generates a range of predictions, including those surrounding growth and other aspects 

of life history and ecology (e.g., maximum size, timing of maturation and reproduction, 

geographic distributions, activity level) and those based more on physiological processes 

(e.g., food consumption and conversion efficiency, the balance of oxidative versus 

glycolytic enzymes; Pauly 2010, 2021). Although originally proposed in the early 1980s, 

the Gill Oxygen Limitation Theory has experienced a resurgence in light of research that 

aims to predict how species will respond to continued environmental change (Cheung et 

al. 2013; Lefevre et al. 2017, 2018; Pauly 2010, 2021; Seibel & Deutsch 2020). Studies 

have invoked the scaling of gill surface area to predict how species will respond to 

increased temperature and reduced oxygen availability (Cheung et al. 2013; Cheung & 

Pauly 2016). In particular, the maximum body size of fishes is expected to decline, or 
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‘shrink,’ due to, in part, the proposed mismatch in oxygen supply and demand as 

temperatures rise (Cheung et al. 2013).  

In addition to the Gill Oxygen Limitation Theory, other, more general theories and 

frameworks surrounding oxygen limitation have been proposed. However, these theories 

differ from the Gill Oxygen Limitation Theory in that they do not propose a specific 

mechanism underlying oxygen limitation and are more focused on either the physiological 

performance of an organism (the Oxygen- and Capacity-Limited Thermal Tolerance, 

OCLTT) or were specifically proposed to explain the temperature-size rule (Maintain 

Aerobic Scope and Regulate Oxygen Supply, MASROS; the Ghost of Oxygen Limitation 

Past; Atkinson et al. 2006; Pörtner 2010; Pörtner et al. 2017; Verberk et al. 2020). The 

Oxygen- and Capacity-Limited Thermal Tolerance concept is primarily focused on how 

the physiological performance of an organism is mediated by temperature and oxygen, 

such that temperature imposes constraints on oxygen supply to tissues, affecting aerobic 

performance and ultimately, determining thermal limits (Pörtner 2010; Pörtner et al. 2017). 

The Maintain Aerobic Scope and Regulate Oxygen Supply and the Ghost of Oxygen 

Limitation Past concepts are related to each other and broadly suggest that reductions in 

maximum size (and thus faster growth, the temperature-size rule) are an adaptive 

response to increasing temperatures to ensure that oxygen supply will meet oxygen 

demand (Atkinson et al. 2006; Verberk et al. 2020).  

While existing theories and oxygen-related explanations for broad scale macroecological 

and macrophysiological patterns present a compelling story, these theories and 

explanations, and more generally, the role of oxygen in shaping proposed biological 

phenomena and species’ responses to climate change are hotly debated (Lefevre et al. 

2017, 2018, 2021; Marshall & White 2019; Seibel & Deutsch 2020). Moreover, most 

studies examining links among oxygen, temperature, physiology, and ecology are 

experimental in nature and focus on observations or responses of a single species in 

laboratory settings (e.g., Clark et al. 2013; Lefevre et al. 2021). While this work is most 

certainly necessary, it generates pieces of a much larger puzzle that can be ‘put together’ 

by meta-analysis and modeling. Doing so will allow us to understand the generality of 

observations or responses and thus identify whether they are consistent across species 

(i.e., the existence of patterns). Identifying whether patterns exist and understanding how 

pervasive an observation or response is will go far in helping identify why a particular 

response or observation may occur (i.e., the underlying mechanism or driver of such a 
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pattern). Such broad scale, macroecological and macrophysiological work has gained 

momentum in recent months, yet much remains to be examined (Audzijonyte et al. 2020; 

Deutsch et al. 2020, Rubalcaba et al. 2020). Specifically, there is a lack of clarity regarding 

the generality of the relationships among traits related to oxygen acquisition and use, 

ecology, and life histories.  

To that end, this thesis takes a largely macroecological approach to examining the 

respiratory basis of metabolic rate and life histories in fishes and other vertebrates.  

Specifically, I couple field collections, laboratory dissections, and meta-analysis and 

modeling to examine the generality of the relationships between traits related to oxygen 

acquisition (respiratory surface area) and use (metabolic rate, Chapter 2), among oxygen 

acquisition (gill surface area) and ecological lifestyle (activity, habitat, and maximum size, 

Chapter 3), and finally, I test a central prediction of The Gill Oxygen Limitation Theory 

centered on the relationship between oxygen acquisition (gill surface area) and life history 

(Chapter 4, Figure 1.1). In doing so, I (along with my collaborators) (1) collect > 200 

individual elasmobranch specimens for gill surface area measurements, (2) measure gill 

surface area for twelve species (> 71 individuals) that previously did not have these data, 

and (3) develop quantitative methods that enable me to address knowledge gaps by 

combining data across scales (individuals, species), multiple size-dependent phenomena 

(metabolic rate, respiratory surface area), and salient covariates including the evolutionary 

history among species.   

1.1. Main objectives of the thesis 

The main objectives of this thesis are: 

1. To assess whether respiratory surface area is important in understanding patterns 

of metabolic rate across the vertebrate tree of life. Specifically, through a novel 

phylogenetic Bayesian hierarchical modeling framework that allowed me to 

combine size-mismatched metabolic rate and respiratory surface area data, as 

well as salient covariates, I test whether respiratory surface area explains 

additional variation in metabolic rate after accounting for body mass and 

temperature (Chapter 2).  
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2. To quantify how gill surface area (respiratory surface area in fishes) relates to 

ecological lifestyle across shark species. Here, I examine how gill surface area in 

the context of its allometry (ontogenetic intercept [gill surface area for a given body 

size] and ontogenetic slope [rate at which gill surface area increases with body 

mass ontogenetically]) varies with activity level, habitat type, and maximum size 

(Chapter 3).  

3. To test a central prediction of the Gill Oxygen Limitation Theory – that gill surface 

area relates to growth and maximum size across fishes. For this chapter, I re-

examine the original dataset used to first establish this relationship over 40 years 

ago, and then conduct a meta-analysis and expand the phylogenetic Bayesian 

hierarchical modeling framework to assess whether gill surface area is closely tied 

to the von Bertalanffy growth model (growth coefficient and asymptotic size, 

Chapter 4).  

1.2. Contributions 

The main data chapters in this thesis (Chapters 2, 3, and 4) are the result of collaborations 

with other researchers. Each chapter is either published (Chapters 2 and 3) or submitted 

for publication (Chapter 4) with other co-authors. For all chapters, I was responsible for 

either conceptualizing the idea or contributing to the conceptualization of the idea with my 

co-authors, writing the manuscript, collecting and analyzing data, writing all code, and 

generating all figures and tables. However, all the various parts of each manuscript greatly 

benefited from collaboration with my committee members and other colleagues (noted in 

the acknowledgements and introductory citation).  
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1.3. Figures 

 

Figure 1.1 The links among oxygen acquisition (respiratory surface area) 
and use (metabolic rate), ecology, and life histories examined in this thesis, 
as well as the corresponding chapters.  
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Respiratory capacity is twice as important as 
temperature in explaining patterns of metabolic rate 
across the vertebrate tree of life1 

2.1. Abstract 

Metabolic rate underlies a wide range of phenomena from cellular dynamics to ecosystem 

structure and function. Models seeking to statistically explain variation in metabolic rate 

across vertebrates are based largely on body size and temperature. Surprisingly, such 

models overlook variation in the size of gills and lungs that acquire the oxygen needed to 

fuel aerobic processes. Here, we assess the importance of respiratory surface area in 

explaining patterns of metabolic rate across the vertebrate tree of life using a novel 

phylogenetic Bayesian multilevel modeling framework coupled with a species-paired 

dataset of metabolic rate and respiratory surface area. We reveal that respiratory surface 

area explains twice as much variation in metabolic rate, compared to temperature, across 

the vertebrate tree of life. Understanding the combination of oxygen acquisition and 

transport provides a significant opportunity to understand the evolutionary history of 

metabolic rate and improve models that quantify the impacts of climate change. 

 

 

 
1 A version of this chapter appears as: Bigman JS, M’Gonigle LK, Wegner NC, & Dulvy NK. 
(2021). Respiratory capacity is twice as important as temperature in explaining patterns of 
metabolic rate across the vertebrate tree of life. Science Advances. Due to the unusual formatting 
of this journal, this chapter is formatted as follows: Introduction, Results, Discussion, and 
Methods, and key elements of the paper, such as the tables, are presented in the Supplementary 
Information.  
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2.2. Introduction 

The power of the Metabolic Theory of Ecology (MTE) is that it uses metabolism to explain 

and predict phenomena at population, community, and ecosystem scales (Brown et al. 

2004). In this theory, organismal metabolic rate is mathematically connected to broader 

ecosystem attributes through its dependence on body mass and temperature (Gillooly et 

al. 2001; Brown et al. 2004). While the mechanism surrounding the body mass component 

of the MTE continues to be debated (i.e., the fractal distribution network), the mathematical 

relationship has proven useful (O’Connor et al. 2007; Munch & Salinas 2009; Barneche et 

al. 2014). However, this relationship seeks to provide only a “zeroth-order” approximation; 

even after accounting for body mass and temperature, a considerable amount of variation 

in metabolic rate across species still remains to be explained statistically (Gillooly et al. 

2001; Brown et al. 2004). Specifically, metabolic rate for organisms of the same body 

mass varies over five orders of magnitude, after accounting for temperature (Gillooly et al. 

2001; Brown et al. 2004). Although the MTE acknowledges that exchange surfaces are 

important in metabolic scaling, the nature of these surfaces is rarely elaborated upon 

(West et al. 1999). One particular trait that may explain variation in the scaling of metabolic 

rate are the surfaces of the respiratory system. Indeed, many have long recognized the 

importance of such respiratory surfaces to metabolism, for example as codified in Fick’s 

law of diffusion (Fick 1855; Hughes 1984; Wegner 2011).  

Respiratory organs—lungs and gills—comprise the exchange surfaces that are used to 

acquire oxygen from the external environment, which is subsequently distributed 

throughout the body via the circulatory system (Nilsson 2010). Two lines of inference have 

shown that metabolic rate and respiratory surface area are highly intertwined both within 

and across species – experimental manipulations and allometric comparisons (i.e., 

comparing body mass-scaling exponents; Hughes 1984; Brown & Shick 1979; Gillooly et 

al. 2016). First, experiments on Rainbow Trout (Oncorhynchus mykiss) and other 

organisms reveal that the physical reduction or blockage of respiratory surface area 

results in concomitant reductions in oxygen uptake and metabolic scope (Brown & Shick 

1979; Duthie & Hughes 1987). Second, allometric inference has revealed that ontogenetic 

body mass-scaling exponents for metabolic rate and respiratory surface area are often 

similar when compared within and across species (Winberg 1956; De Jager & Dekkers 

1975). The same pattern holds when evolutionary body mass-scaling exponents (i.e., 
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estimated across different species that differ in size) are compared (Gillooly et al. 2016; 

Killen et al. 2016). A recent study found that the body mass-scaling exponent of oxygen 

diffusion capacity (combined area and thickness) of the respiratory surfaces matches the 

body mass-scaling exponent of metabolic rate (as measured by oxygen consumption) 

across differing subsets of vertebrate species (Gillooly et al. 2016). However, our 

understanding of the intimate relationship between metabolic rate and respiratory surface 

area both within and across species is largely limited to these experimental manipulations 

and comparisons of body mass-scaling exponents. There has not yet been a robust test 

of whether respiratory surface area explains variation in the scaling of metabolic rate 

across vertebrates, beyond what can be accounted for by body mass, temperature, 

thermoregulatory strategy, and evolutionary history. The lack of an adequate test likely 

stems from the profound analytical challenges as both metabolic rate and respiratory 

surface area are almost never measured at the same body mass in the same species. 

Here, we ask whether respiratory surface area explains additional variation in the scaling 

of metabolic rate across the vertebrate tree of life. To do so, we first compile a dataset 

with paired species’ estimates of metabolic rate and respiratory surface area that includes 

all major vertebrate lineages—fishes, amphibians, reptiles, birds, and mammals. Such 

species-paired datasets have enabled a breakthrough in our understanding of the 

metabolic basis of species’ responses to climate change (e.g., Sunday et al. 2012). 

Second, to solve the problem that traits are often measured at mismatched body sizes—

an unresolved issue in many macroecological analyses, we develop a phylogenetic 

Bayesian multilevel modeling framework. The first level of this model estimates the 

residual effect of respiratory surface area when regressed against the body mass 

associated with respiratory surface area. The second level then examines whether 

residual respiratory surface area explains significant variation in the scaling of metabolic 

rate, while simultaneously accounting for the additional effects of temperature, 

thermoregulatory strategy, and evolutionary history. A strength of our quantitative 

framework is that it propagates uncertainty across levels of the model as each iteration 

happens in succession. Finally, we examine the differences in the scaling relationships of 

metabolic rate and respiratory surface area between species that vary in thermoregulatory 

strategy (i.e., endotherms versus ectotherms), as well as the type of respiratory organ 

(i.e., lungs versus gills). 
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2.3. Results 

We compiled a dataset of metabolic rate, respiratory surface area, body mass 

measurements for both metabolic rate and respiratory surface area, and the temperature 

associated with metabolic rate for 109 species from all major vertebrate lineages: eight 

chondrichthyan and 63 teleost fishes, ten amphibians, four reptiles, six birds, and 18 

mammals. To our knowledge, this is the first extensive vertebrate-wide paired species 

dataset containing all species that have published estimates for both metabolic rate and 

respiratory surface area.  

In compiling this dataset, we found that metabolic rates and respiratory surface areas have 

rarely been measured for individuals of the same body mass in the same species, 

complicating comparison of mean trait values (Fig. 2.1). There were only three species 

with both traits measured at the same body mass (Fig. 2.1a). The mean body masses for 

metabolic rate and respiratory surface area differed by more than a tolerable amount 

(10%) for most (85%) species (n = 93/109; Fig. 2.1a). Further, for approximately one-third 

of species, the mean body masses for both traits differed by over an order of magnitude 

(n = 34/109; Fig. 2.1a-c). Macroecology is founded on analyses of endothermic birds and 

mammals that grow little after fledging or weaning (‘determinate growers’). However, 

generalizing these types of analyses to include ectotherms, resulting in fully comparative 

vertebrate-wide analyses, poses a problem as this group of vertebrates generally grow 

throughout life (i.e., ‘indeterminate growers’). Almost all (84 of 85) ectothermic species in 

our dataset had size-mismatched traits, with 34 of these species (40%) having a mean 

body mass mismatch greater than an order of magnitude (Fig. 2.1 a-c). To overcome this 

mismatch in body mass for metabolic rate and respiratory surface area, we developed a 

Bayesian multilevel analytical framework that enabled a vertebrate-wide comparison of 

multiple size-dependent phenomena (metabolic rate and respiratory surface area) while 

simultaneously accounting for additional covariates (e.g., body mass, temperature, 

thermoregulatory strategy, and evolutionary history).  

2.3.1. Does respiratory surface area statistically explain variation in 
metabolic rate across vertebrates? 

Our results show that the surface area of lungs and gills explains substantial variation in 

metabolic rate across the vertebrate tree of life. First, species with greater respiratory 
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surface areas had higher metabolic rates (Fig. 2.2). This was exemplified by organisms of 

the same body mass—species that had higher relative respiratory surface area (i.e., 

positive residual respiratory surface area) had higher metabolic rates (both observed 

metabolic rate as well as fitted metabolic rate values estimated by the model), even after 

differences in thermoregulatory strategy were accounted for (Fig. 2.2). For example, the 

body mass of the endothermic Kowari Dasyuroides byrnei (a rat-like marsupial) was nearly 

identical to that of the ectothermic White Sucker Catostomus commersonii (a teleost fish), 

yet the Kowari had ~32 times greater relative respiratory surface area and ~16 times 

greater metabolic rate compared to the White Sucker (Fig. 2.2, orange and purple lines). 

Second, the addition of respiratory surface area consistently improved our explanatory 

models of metabolic rate across vertebrates (compare looic and elpdloo for all “MR” models 

and all “C” models; Table S1). Third, the addition of respiratory surface area was 

significant in all six models that included it as a covariate (95% Bayesian Credible Interval 

[BCI] of the effect sizes for respiratory surface area did not include zero; Table S2, column 

“residual RSA”). Fourth, evidence ratios (i.e., the weight of evidence of one model divided 

by that of another) show that including respiratory surface area to explain variation in 

metabolic rate was, on average, 18.5 times more likely than excluding respiratory surface 

area, after accounting for body mass, temperature, thermoregulatory strategy, and 

evolutionary relatedness (this evidence ratio ranged from 12.3 to 22.3 according to model 

run; Table S3). Fifth, the standardized effect size of residual respiratory surface area was 

twice as large as that of temperature, indicating that respiratory surface area is twice as 

important in explaining variation in metabolic rate across vertebrates compared to 

temperature (Fig. 2.3; comparing the absolute value of standardized effect sizes of 

residual respiratory surface area and temperature in Table S4). Collectively, these results 

show that respiratory surface area explains substantial variation in metabolic rate even 

after accounting for body mass, thermoregulatory strategy, temperature, and the 

evolutionary relatedness among species.  

2.3.2. Is respiratory surface area simply a recasting of the known 
difference in metabolic rates between endotherms and 
ectotherms? 

We know empirically that ectotherms have lower metabolic rates for a given size than 

endotherms, which retain metabolically produced heat to maintain their body temperature 

within a narrow thermal range. However, it is unlikely that thermoregulatory strategy alone 
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explains the observed variation in metabolic rate that exists after body mass and 

temperature have been accounted for. First, the inclusion of respiratory surface area in 

models explaining variation in metabolic rate substantially improved the fit of the model, 

even after accounting for thermoregulatory strategy (see previous section).  Second, the 

models that included respiratory organ (i.e., lungs versus gills) in place of 

thermoregulatory strategy (i.e., endotherm versus ectotherm) provided a poor fit to the 

data (Table S5). Third, if respiratory surface area and thermoregulatory strategy were 

interchangeable in explaining the same variance in the scaling of metabolic rate across 

vertebrates, we would expect to see similar body mass-scaling relationships of metabolic 

rate and respiratory surface area across all species, regardless of thermoregulatory 

strategy. However, we see a mismatch in the body mass-scaling of metabolic rate and 

respiratory surface area for endotherms (Fig. 2.4). For endotherms, the mean body mass-

scaling exponent (i.e., allometric slope) of metabolic rate was shallower than the mean 

body mass-scaling exponent of respiratory surface area, although the 95% BCIs 

marginally overlapped (compare Fig. 2.4c and 2.4d and body mass-scaling exponents 

[and their 95% BCIs] for endotherms from models “MR3” and “RSA3” in Table S2). In 

contrast, the body mass-scaling exponent of metabolic rate and respiratory surface area 

was nearly identical for ectotherms (compare Fig. 2.4e and 2.4f and body mass-scaling 

exponents [and their 95% BCIs] for ectotherms from models “MR3” and “RSA3” in Table 

S2). This mismatch in scaling for metabolic rate and respiratory surface area for 

endotherms persisted even when respiratory surface area was included in the model; the 

body mass-scaling exponent for metabolic rate was still shallower than that of respiratory 

surface area (compare metabolic rate and respiratory surface area body mass-scaling 

exponents [and their 95% BCIs] for endotherms and ectotherms from models “C5” and 

“RSA3”, Table S2). Together, these results suggest that respiratory surface area is not 

simply a recasting of thermoregulatory strategy. 

2.3.3. Is respiratory organ (i.e., lungs versus gills) a better 
characterization of the known difference in metabolic rate and 
respiratory surface area between endotherms and ectotherms? 

The difference in the type of respiratory organ—having lungs or gills—does not explain 

the differences in metabolic rate and respiratory surface area between endotherms and 

ectotherms. Specifically, using thermoregulatory strategy (endotherm versus ectotherm) 

as a covariate instead of the type of respiratory organ (lungs versus gills) provided a far 
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better fit for all models (compare the looic of models with thermoregulatory strategy to 

those with respiratory organ instead of thermoregulatory strategy in Table S5). As such, 

the characterization of the differences in respiratory surface area and metabolic rate 

between endotherms and ectotherms is far better explained by thermoregulatory strategy 

than by whether an organism has lungs versus gills (Table S5, S6). See Supplementary 

Information for further results of the respiratory organ analyses. 

2.4. Discussion 

We have shown here that respiratory surface area plays a critical role in understanding 

variation in metabolic rate across the vertebrate tree of life. This is supported by two main 

findings. First, respiratory surface area substantially improved our ability to explain 

variation in metabolic rate across 109 vertebrate species from all major lineages, while 

simultaneously accounting for differences in body mass, temperature, thermoregulatory 

strategy, and evolutionary relatedness. Indeed, we found that respiratory surface area was 

twice as important in explaining variation in metabolic rate compared to temperature. 

Second, we confirmed that respiratory surface area was not simply a recasting of the 

differences in metabolic rate between endotherms and ectotherms. Answering these 

questions was only possible due to our paired dataset in which each species had 

estimates of both respiratory surface area and metabolic rate, as well as a novel Bayesian 

multilevel modeling approach that propagates uncertainty in the effect of body mass on 

respiratory surface area to all levels of the model. This modeling framework offers a 

breakthrough in dealing with multiple size-dependent phenomena while accounting for 

evolutionary relatedness and can be applied to many types of comparative questions. 

Importantly, our paired dataset and modeling framework allowed us to extend the 

mathematical framework of the Metabolic Theory of Ecology by examining whether 

additional size-dependent phenomena—here, respiratory surface area—explain variation 

in metabolic rate across species. Together, our results show that respiratory surface area, 

in addition to body mass, temperature, and thermoregulatory strategy, underpins the 

scaling of metabolic rate across vertebrates. We focus our discussion on three key issues, 

(1) the importance of respiratory surface area and oxygen uptake in ecological and 

physiological phenomena, (2) the differences in the body mass-scaling of metabolic rate 

and respiratory surface area between endotherms and ectotherms, and (3) the limitations 

of modeling studies in uncovering mechanistic relationships. Finally, we lay out a research 
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agenda to further dissect the relationship between metabolic rate and respiratory surface 

area.  

Respiratory surface area appears to play a central role in several ecological and 

physiological phenomena including symmorphosis and oxygen limitation (including the 

temperature-size rule (TSR) and the Gill Oxygen Limitation Theory [GOLT]). First, 

symmorphosis is the hypothesis that organismal structures (e.g., respiratory surface area) 

are perfectly matched to their function (e.g., acquiring oxygen to meet metabolic demand) 

(Weibel et al. 1991; Hillman et al. 2013). While some work has found that the respiratory 

system appears to be ‘over-designed’ for the function of acquiring oxygen, others have 

found that the body mass-scaling of resting metabolic rate and respiratory surface area 

are closely matched across a broad size range of vertebrates (Weibel et al. 1991; Hillman 

et al. 2013; Gillooly et al. 2016). In our study, we found that the body mass-scaling of 

metabolic rate and respiratory surface area matched closely for ectotherms, but not 

endotherms, suggesting the potential importance of additional traits in sculpting this 

relationship. Direct tests of symmorphosis would ideally be conducted within and not 

across species and using maximum rather than resting metabolic rate. Additionally, it is 

important to recognize that oxygen diffusion across the respiratory surface is only one step 

in a series of steps involved in the acquisition of oxygen for aerobic metabolism (‘oxygen 

cascade’). Many other steps – including oxygen binding to hemoglobin, oxygen delivery 

to the tissues through the circulatory system, and the density of mitochondria (the final 

oxygen receptor) – must be considered in a direct test of symmorphosis (Weibel et al. 

1991). Second, oxygen limitation is the idea that geometric and physiological constraints 

on oxygen supply will affect aerobic metabolism, particularly for larger organisms or those 

in warmer waters (Forster et al. 2012; Rubalcaba et al. 2020). This phenomenon is one of 

the proposed explanations that is thought to underlie the widespread inverse relationship 

between rearing temperature and ectothermic body size (Forster et al. 2012; Hoefnagel & 

Verberk 2015; Audzijonyte et al. 2019). Specifically, the smaller maximum size and faster 

growth rate observed under warmer temperatures is thought to be due to the difficulty in 

obtaining oxygen as temperature increases due to higher metabolic demand and 

decreased oxygen availability, particularly for aquatic ectotherms (e.g., Hoefnagel & 

Verberk 2015). The GOLT proposes that respiratory surface area limits metabolic rate in 

fishes and other water-breathing organisms because an individual’s respiratory surface 

area (gill surface area) cannot grow as fast as the body mass it must supply with oxygen 
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(i.e., a hypoallometric ontogenetic scaling of respiratory surface area) (Pauly 2010, 2021). 

This theory—while largely empirically untested—further predicts that respiratory surface 

area in fishes may be related to several metabolism-related phenomena, such as the 

‘shrinking’ of fish body size with climate warming (Pauly 2010, 2021; Cheung et al. 2013). 

However, the GOLT is based on an allometric relationship (the ontogenetic scaling of gill 

surface area with body mass for a fish), and as such, cannot be used to determine 

mechanism by itself (see discussion below; Pauly 2010, 2021). While the role of oxygen 

in the physiology, ecology, and evolution of organisms is debated, broad, cross-species 

studies have shown that oxygen may shape marine species’ geographic distributions and 

affect the relationship among metabolic rate, body mass, and temperature in fishes 

(Rubalcaba et al. 2020; Deutsch et al. 2020). However, many within species studies show 

a much more complicated relationship between oxygen acquisition, distribution, and use 

(Clark et al. 2008; Farrell et al. 2009). While our results show that respiratory surface area 

substantially improves our ability to explain variation in metabolic rate across species, 

further experimental and modeling work—especially work that is able to incorporate 

variation across evolutionary timescales (i.e., selection experiments and additional cross-

species analyses)—is needed to assess if the diffusion of oxygen via the respiratory 

structures is a valid mechanism that underlies the GOLT and TSR. Indeed, a coordinated 

effort among organismal physiologists, macrophysiologists, and comparative evolutionary 

ecologists would greatly enhance our ability to understand the role that oxygen plays in 

ecological and physiological phenomena, both within and across species.  

We found that although respiratory surface area vastly improved our understanding of 

metabolic rate across both endotherms and ectotherms, ectothermic organisms had a 

tighter coupling of the scaling of metabolic rate and respiratory surface area than that 

observed for endotherms. These differences in scaling of metabolic rate and respiratory 

surface area were not explained by the type of respiratory organ itself (i.e., lungs versus 

gills), as all models that included respiratory organ in place of thermoregulatory strategy 

fit the data less well. Instead, our results suggest that attributes related to 

thermoregulatory strategy likely underlie the differences in the relationship of metabolic 

rate and body mass between endotherms and ectotherms. For example, the body mass-

scaling exponent of metabolic rate found here for endothermic organisms may support the 

Heat Dissipation Theory, which suggests that there is an upper limit to metabolic rate in 

endothermic organisms (Speakman & Król 2010). Endothermic organisms maintain their 
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body temperature within a target range and have to dissipate excess heat produced by 

metabolism across their body surface area. Thus, endothermic organisms must balance 

heat production and heat loss, which is constrained by the body mass-to-surface area 

ratio (Speakman & Król 2010). As organisms increase in size, the ratio of body surface 

area to body mass decreases, resulting in a decreased heat dissipation capacity 

(Speakman & Król 2010; Brown & Lasiewski 1972). The Heat Dissipation theory suggests 

that the body mass-scaling exponent of field metabolic rate for endothermic organisms will 

not significantly differ from ~0.63-0.67, following surface area to volume geometry (field 

metabolic rate is a measure of energy expenditure in a free-living organism; Speakman & 

Król 2010). While the mean body mass-scaling exponent for resting metabolic rate—both 

with and without respiratory surface area—for endotherms found in this study was higher 

than 0.63-0.67, the 95% BCIs of both models included the 0.63 value (models “MR3” and 

“C5” in Table S2; these intervals also included the predicted ¾ slope of the MTE; 1). 

Because ectothermic organisms do not retain metabolically produced heat, dissipation is 

not an issue, and hence this may explain the steeper body mass-scaling exponent of 

metabolic rate in ectotherms.  Additionally, some work has shown that the evolutionary 

body mass-scaling exponent of maximum metabolic rate, and not resting metabolic rate 

as used here, is more similar to the evolutionary body mass-scaling exponent of 

respiratory surface area (e.g., Killen et al. 2016). However, we found a match in the body 

mass-scaling of resting metabolic rate and respiratory surface area for ectotherms and not 

endotherms (this is also an evolutionary allometry), and thus, our examination of resting 

metabolic rate versus maximum metabolic rate cannot explain the observed difference in 

body mass-scaling of metabolic rate and respiratory surface area in endotherms.  

We provide compelling evidence that—to a first approximation—respiratory surface area, 

in addition to body size and temperature, explains significant variation in metabolic rate 

across vertebrates. Yet, we have much to learn about the causal relationships between 

metabolic rate and respiratory surface area. Correlative or scaling studies such as ours 

serve to identify broad, general patterns, which can then inspire other studies that aim to 

understand the underlying or driving mechanisms (e.g., experimental or selection studies). 

While our results show that respiratory surface area (in addition to body mass, 

temperature, and thermoregulatory strategy) underlies patterns of metabolic rate across 

vertebrates, we cannot say from our results—or other scaling studies—whether 

organismal metabolic rate constrains or shapes organismal respiratory surface area or 
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vice versa (e.g., Gillooly et al. 2016). A major step forward in understanding the 

mechanistic relationship between organismal metabolic rate and organismal respiratory 

surface area would be to understand the relationships among ontogenetic allometries (i.e., 

within an individual of a single species across its lifetime or, for traits that require lethal 

sampling, across individuals of the same species that span the size range of the species), 

static allometries (i.e., across individuals of the same species of the same life stage), and 

evolutionary allometries (i.e., across different species that differ in size) of both metabolic 

rate and respiratory surface area. For example, a recent study examining the relationships 

among ontogenetic, static, and evolutionary brain and body size allometries suggested 

that developmental constraints governed scaling relationships within and across species 

rather than geometric/physical constraints or physiological mechanisms (Tsuboi et al. 

2018). What are the constraints and causal mechanisms that underlie the relationship 

between metabolic rate and respiratory surface area within and across species? 

To this end, we outline six specific avenues of research that would help us to understand 

causality between organismal metabolic rate and organismal respiratory surface area. 

First, the advance in phylogenetic methods has opened the door to comparing 

evolutionary transitions of metabolic rate to transitions in respiratory mode (Uyeda et al. 

2018). Second, common-garden and long-term selection experiments, particularly of 

aquatic organisms, offer the opportunity to understand the phenotypic and genotypic 

response of organismal metabolic rate and organismal respiratory surface area to food 

availability, temperature, and oxygen (e.g., Audzijonyte et al. 2019). Third, a deeper 

understanding of allometries—including the relationships examined in this study—has 

been profoundly hindered by a lack of available estimates of individual (i.e., raw) data for 

metabolic rate, respiratory surface area, and other traits. We urge experimental scientists 

to publish their raw data alongside means and other summaries. This would allow the 

statistical propagation of uncertainty using the approach we have developed here, which 

can be easily modified to include data at both individual and species scales. Additionally, 

this would also enhance datasets such as ours and facilitate the identification of patterns 

across broad groups of species. Fourth, activity, metabolic rate (both resting and 

maximum, as these two measures are correlated), respiratory surface area, and 

temperature are deeply intertwined (Pauly 2010; Killen et al. 2016; Bigman et al. 2018). 

Are metabolic rate and respiratory surface area simply proxies for activity or are metabolic 

rate and respiratory surface area capturing total energy availability for growth and 
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reproduction in addition to activity? Additionally, which measures of metabolic rate (i.e., 

standard/basal, resting, routine, field, maximum) are suitable to test the interrelationships 

between metabolic rate, respiratory surface area, temperature, and activity? Finally, there 

is an incredible, but widely overlooked, diversity of respiratory systems, modes, and types 

of ventilation. We were unable to tackle this diversity with our dataset beyond examining 

respiratory organ as a potential predictor of metabolic rate. Studies that explore ventilation 

types and the diversity of respiratory modes even within the coarse categorizations of 

respiratory organs (e.g., unidirectional flow of water across fish gills, unidirectional flow of 

air through bird lungs, and tidal air flow in mammalian and reptilian lungs) could begin to 

examine this question. Air-breathing and cutaneous respiration in aquatic organisms and 

amphibians provide further contrasts to explore. Blood flow across these respiratory 

surfaces also differs (i.e., counter-current in fish gills, cross-current in bird lungs, etc.) 

providing another avenue for exploration. Combining more advanced modeling 

approaches such as the one presented here with detailed physiological and ecological 

data both within and across species will allow us to further understand the role that oxygen 

plays in the ecology, physiology, and evolution of organisms.  

2.5. Methods 

2.5.1. Trait data 

We compiled a species-paired dataset of vertebrates that had both metabolic rate and 

respiratory surface area data. To do so, we collated mean estimates of whole-organism 

aerobic metabolic rate (termed here, ‘metabolic rate’), as measured by oxygen 

consumption (mg O2/min, mg O2/g/hr, mg O2/kg/hr, ml O2/hr, ml O2/min, ml O2/g/hr, ml 

O2/kg/h, ml O2/kg/min, joules/hr, and watts), body mass (grams, g, or kilograms, kg) 

associated with the metabolic rate estimates, temperature (˚C) associated with the 

metabolic rate measurements, whole-organism respiratory surface area (cm2 or mm2; 

termed here, “respiratory surface area”), and body mass (g or kg) associated with the 

respiratory surface area measurements for as many vertebrate species as possible. If raw 

data (i.e., measurements for multiple individuals of the same species) were available, 

these estimates were averaged to generate a species mean. Our ability to incorporate raw 

data into our modeling framework was limited because the majority of species in our 

dataset only had published mean estimates of metabolic rate and respiratory surface area 
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(only nine species of the 109 vertebrates have published raw data for both metabolic rate 

and respiratory surface area). 

Much of our data came from two existing datasets: metabolic rate data from (White et al. 

2012) and respiratory surface area from (Gillooly et al. 2016). We searched the primary 

literature to fill gaps for species missing either metabolic rate or respiratory surface area 

estimates. If we found more than one estimate of either mean metabolic rate or mean 

respiratory surface area for a given species, we included the value from the study with the 

larger sample size. Metabolic rate estimates are from individuals at rest (resting or 

standard for ectotherms, basal for endotherms), with the exception of four teleost species 

for which we could only find estimates of routine metabolic rate (oxygen consumption 

during volitional movement): Anabas testudineus Climbing Perch, Brevoortia tyrannus 

Atlantic Menhaden, Channichthys rhinoceratus Unicorn Icefish, and Hoplerythrinus 

unitaeniatus Trahira. These four species, specifically, and other species with routine 

metabolic rates are regularly included in metabolic allometry studies, as the variation of 

metabolic rate among individuals of the same species is substantially smaller than the 

variation across different species (e.g., Bokma 2004). For the purposes of this study, the 

thermoregulatory strategy of five fish species that are regionally endothermic 

(Carcharodon carcharias White Shark, Euthynnus affinis Kawakawa, Isurus oxyrinchus 

Shortfin Mako, Katsuwonus pelamis Skipjack Tuna, and Thunnus albacares Yellowfin 

Tuna) were classified as ectotherms. However, rerunning the three top models (MR3, 

RSA2, and C5 in Table S1) without the five regionally endothermic species did not 

significantly change any coefficient value (i.e., the effect size of any parameter in a model). 

For analyses, all estimates of metabolic rate were converted to watts, respiratory surface 

area to cm2, body mass for both metabolic rate and respiratory surface area to grams, and 

temperature to inverse temperature for model parameterization as the Boltzmann factor 

(see ‘Basic modeling framework and analysis’ section). Metabolic rate, respiratory surface 

area, and both associated body masses were natural log-transformed prior to analyses. 

2.5.2. Phylogeny 

We included a phylogenetic random effect in all models that allowed for a phylogenetic 

signal among residuals (i.e., error). To do so, we first constructed a new supertree from a 

database of molecular phylogenies, TimeTree (Hedges et al. 2006), and a recently 

published molecular phylogeny for Chondrichthyans (Stein et. al. 2018). As the 
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evolutionary position of all species in our dataset has not yet been fully resolved, we opted 

to use a genera-level phylogeny for all species except the Chondrichthyans (as a 

phylogeny for this group was recently published). In the infrequent (n = 7) case that two 

species from the paired dataset were in the same genus, the branch length was split 

equally among those two species. This use of a genera-level tree with a few equally split 

branches to accommodate species from the same genus—as opposed to a tree with all 

species at the tips—will yield the same conclusion, as divergence times between species 

in the paired dataset are quite high across the phylogeny due to the number of species 

included in our dataset relative to all extant vertebrates.  

2.5.3. Modeling framework and statistical analysis 

Metabolic rate and respiratory surface area are mass-dependent traits, meaning that they 

change as an individual grows and increases in size. However, both traits do not increase 

at the same rate as body mass (i.e., the body mass-scaling exponent of an ontogenetic 

allometry for these traits does not equal one) and therefore, the body mass at which these 

traits were measured must be included in all models. Mass-dependent traits are typically 

examined in an allometric context using a power-law, or scaling, relationship such as 

                                                                             𝑡 =  β0𝑀𝛽𝑚𝑎𝑠𝑠,                                                     (1)        

where t is the mass-dependent trait (in this case, either metabolic rate or respiratory 

surface area), β0 is the intercept (i.e., the value of t at a given body mass, often called the 

‘normalization constant’), M is body mass, and β𝑚𝑎𝑠𝑠 is the body mass-scaling exponent 

(i.e., allometric slope; Kleiber 1932). This equation is most often examined on a logarithmic 

scale, resulting in a linear relationship for log-transformed data, 

    ln(𝑡) = ln(𝛽0) + 𝛽𝑚𝑎𝑠𝑠ln (𝑀).                                       (2)                                      

We used the equation above as a starting point and adjusted the parameterization to test 

(1) whether respiratory surface area explained variation in metabolic rate across 

vertebrates, after accounting for body mass, temperature, thermoregulatory strategy, and 

evolutionary relatedness across species and (2) compared the scaling relationships of 

metabolic rate and respiratory surface area, while accounting for differences in 

thermoregulatory strategy to assess whether respiratory surface area was directly related 

to thermoregulatory strategy. We also assessed whether respiratory organ (lungs in 
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amphibians, reptiles, mammals, and birds and gills in fishes) was a better characterization 

of the differences in metabolic rates between endotherms and ectotherms as opposed to 

thermoregulatory strategy. Following the MTE, we used the Boltzmann factor as a 

covariate to examine the effect of temperature on metabolic rate resulting in the classic 

MTE equation: 

 ln(𝑡) = ln(𝛽0) + 𝛽𝑚𝑎𝑠𝑠 ln(𝑀) + 
−𝐸𝑖

𝑘𝑇
                                  (3)                                          

 

where Ei is the activation energy for the biochemical reactions of metabolism, k is the 

Boltzmann constant (8.617 × 10−5 eV) and T is temperature in Kelvin (Gillooly et al. 2001; 

Brown et al. 2004). Temperature is parameterized as the Boltzmann factor (i.e., inverse 

temperature) for metabolic rate scaling relationships as it best approximates how 

temperature affects metabolic reactions (Gillooly et al. 2001; Brown et al. 2004). For 

endotherms, temperature data is body temperature and for ectotherms, temperature data 

is the temperature at which metabolic rate was experimentally measured. Importantly, this 

temperature-dependence does not capture the fundamental differences in metabolic rates 

between endotherms and ectotherms as temperature has the same effect on the 

biochemical reactions of respiration for both groups (Gillooly et al. 2001, 2016).  

All models were fit in a Bayesian framework in Stan with the rstan package in R v.3.5.1 

and v.4.0.1 (R Core Team 2013; Stan Development Team 2019). To ensure our results 

were robust to model run, we ran each model a total of four times. The results of each 

additional model run (after the first one) are in Table S7. We also ran all models without 

one possible outlier, but this did not significantly change any coefficient estimates. A 

detailed outline of all models, their parameterization, and choice of priors is included in the 

Supplementary Information. The results of the models with respiratory organ (lungs versus 

gills) in place of thermoregulatory strategy are expanded upon in the Supplementary 

Information. Below, we detail the parameterization of models specific to each research 

question. 
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2.5.4. Does respiratory surface area explain variation in metabolic 
rate across vertebrates? 

To assess whether respiratory surface area explains variation in metabolic rate across 

vertebrates, above and beyond that explained by the other covariates (e.g., body mass, 

temperature, and thermoregulatory strategy) we compared candidate models that 

described variation in metabolic rate with and without respiratory surface area (Table S1). 

For models that examined variation in metabolic rate without respiratory surface area 

(‘metabolic rate models’), we compared the classic MTE model to that with the addition of 

thermoregulatory strategy as a covariate (Table S1). To do this, we examined models that 

allowed just the intercept to vary by thermoregulatory strategy (i.e., metabolic rate for a 

given body mass differed for endotherms and ectotherms) and models that allowed both 

the slope and intercept to vary by thermoregulatory strategy (i.e., metabolic rate for a given 

body mass differed for endotherms and ectotherms and the effect of body mass varied 

between endotherms and ectotherms). In total, we parameterized three candidate models 

to examine the body mass-scaling of metabolic rate without respiratory surface area (“MR” 

models, Table S1). Second, we built on these three metabolic rate models above (the 

classic MTE model with and without thermoregulatory strategy) by adding in respiratory 

surface area as a covariate (‘combined models’). To do this, we used a multilevel model 

where we first calculated the residual respiratory surface area by regressing respiratory 

surface area against the measurement body mass. We subsequently incorporated this 

residual respiratory surface area as a covariate in the next level, in addition to other 

covariates. This approach allows for the uncertainty in estimated residual respiratory 

surface area to be propagated across levels of the model, as opposed to simply including 

a mean estimate of residual respiratory surface area per species (which does not 

incorporate the uncertainty in that estimate). In total, we parameterized six candidate 

models to examine the body mass-scaling of metabolic rate with respiratory surface area 

(“C” models, Table S1).  

We used model selection to identify a single best model that explains variation in metabolic 

rate without respiratory surface area (termed here, ‘best metabolic rate model’) and a 

single best model with respiratory surface area (termed here, ‘best combined model’). To 

do this, we used Pareto-smoothing Leave-one-out Cross Validation (PSIS-LOO). This 

model selection framework is based on the predictive accuracy of a model, as estimated 

by iteratively leaving out one observation at a time and then predicting that observation 
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based on the model fit to the remaining data (Vehtari et al. 2017). An assumption of using 

PSIS-LOO is that the joint likelihood of the model observed over all observations is 

factorizable, or pairwise conditionally independent, given the model parameters 

(Sundararajan & Keethi 2001; Vehtari et al. 2017; Bürkner et al. 2019). As phylogenetic 

models do not meet this assumption, we instead computed the pointwise log-likelihood for 

non-factorizable models (Sundararajan & Keethi 2001; Bürkner et al. 2019). We then used 

the loo package in R v 5.3.1 to estimate the expected log predictive density (elpdloo), the 

LOO information criterion value (looic), the effective number of parameters (ploo), the 

standard error of the expected log predictive density (seelpd_loo), the difference in the 

expected log predictive density (elpddiff) for a given model compared to the best model, 

and finally, the weight of evidence for each model as estimated by the Bayesian stacking 

method (Vehtari et al. 2017; Yao et al. 2018). The model with the lowest elpdloo value is 

the best fit to the data. Additionally, we used a z-score standardization to standardize the 

predictors of the best combined model to identify and compare the relative importance of 

these predictors in explaining variation in metabolic rate across vertebrates (i.e., 

comparing standardized effect sizes; Gelman & Hill 2007). We also computed evidence 

ratios to measure how much more likely one model is over the other(s). Evidence ratios 

are simply the weight of evidence of the best model divided by the weight of evidence of 

the other model(s) of interest (Burnham & Anderson 2002). 

2.5.5. Is respiratory surface area simply a recasting of the difference 
in metabolic rate between endotherms and ectotherms? 

To assess whether respiratory surface area is simply a recasting of the difference in 

metabolic rate between endotherms and ectotherms, we compared the scaling 

relationships of metabolic rate and respiratory surface area, while accounting for 

differences in thermoregulatory strategy. First, we parameterized three candidate models 

(‘respiratory surface area models’) to examine the body mass-scaling of respiratory 

surface area (“RSA” models, Table S1). We then selected the single best model (termed 

here, ‘best respiratory surface area model’) from these candidate models using PSIS-LOO 

(see above, Table S1). Second, we compared the body mass-scaling of the best metabolic 

rate model (model “MR3”, Table S2) and the best respiratory surface area model (model 

“RSA2”, Table S2) by comparing the 95% Bayesian Credible Interval (BCI).  
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2.5.6. Is respiratory organ (i.e., lungs versus gills) a better 
characterization of the known difference in metabolic rate and 
respiratory surface area between endotherms and ectotherms? 

To examine whether respiratory organ (i.e., lungs versus gills) was a better predictor of 

the differences in metabolic rates between endotherms and ectotherms instead of 

thermoregulatory strategy, we replaced thermoregulatory strategy in all models that 

included it with respiratory organ (Table S5). We did this in favor of simply adding 

respiratory organ as covariate in addition to thermoregulatory strategy, which would not 

be feasible with our dataset as the ectothermic species in our dataset were largely fishes 

and thermoregulatory strategy is almost entirely correlated with respiratory organ (i.e., 

fishes have gills). Specifically, we examined the effect of lungs versus gills in the scaling 

of metabolic rate (models “MR2_LG” and “MR3_LG” in Table S5, S6), the scaling of 

respiratory surface area (models “RSA2_LG”, “RSA3_LG” in Table S5, S6), and how 

respiratory organ affected the scaling of metabolic rate with the effect of residual 

respiratory surface area included (models “C3_LG”, “C4_LG”, “C5_LG”, “C6_LG”, Table 

S5, S6). All model comparison was conducted using PSIS-LOO (see above).  
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2.6. Figures 

 

Figure 2.1. Metabolic rate and respiratory surface area were measured at 
different body masses for the majority of the 109 vertebrate species 
included in this study—a common issue with macroecological studies.  
(a) The absolute percentage difference between mean body mass for mean (whole-organism) 
metabolic rate and mean (whole-organism) respiratory surface area for all species included in this 
study. Only three species had equal mean body masses associated with both metabolic rate and 
respiratory surface area (red data points). The difference between the mean log body mass 
associated with mean metabolic rate (dark orange) and the mean log body mass associated with 
mean respiratory surface area (dark blue) for each species when (b) the body mass associated 
with metabolic rate was larger, and (c) when body mass associated with respiratory surface area 
was larger. For approximately one-third of species, the mean body mass associated with 
metabolic rate and respiratory surface area differed by over an order of magnitude (grey line, a-
c). Species code (y-axis) corresponds to species identity in Table S8. 
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Figure 2.2 Species with high metabolic rates for their body size have 
large respiratory surface areas for their body size. 
Log mean (whole organism) metabolic rate in relation to log mean body mass for 109 vertebrate 
species from all major lineages. Relative respiratory surface area (i.e., residual respiratory 
surface area) is indicated by a gradient of color, with orange indicating species with higher-than-
expected respiratory surface area for their body size, grey indicating expected respiratory surface 
area for their body size, and purple indicating lower-than-expected respiratory surface area for 
their body size. Lines show the estimated metabolic rate (including the effect of body mass, 
temperature, thermoregulatory strategy, respiratory surface area, and evolutionary history) for 
species with exceptionally large and small relative respiratory surface areas, based on two 
species with almost identical body mass: the Kowari Dasyuroides byrnei (orange) and the White 
Sucker Catostomus commersonii (purple). 
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Figure 2.3 Compared to temperature, respiratory surface area explains 
twice as much variation in metabolic rate across the vertebrate tree of life. 
The mean (grey dot) and 95% Bayesian Credible Interval (BCI, black line) of the standardized 
effect sizes for body mass (for both endotherms and ectotherms), relative respiratory surface 
area (i.e., residual respiratory surface area) and temperature (model C5, Table S4). For 
comparison, the standardized effect size of temperature is presented as the absolute value 
because temperature was modeled as the inverse temperature (see text) and thus had a negative 
effect size. The z-score standardization was used to estimate standardized effect sizes. 
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Figure 2.4 The body mass scaling of metabolic rate and respiratory 
surface across the same 109 vertebrate species differed for endotherms 
but was similar for ectotherms. 
While (whole-organism) metabolic rate body mass-scaling exponents (i.e., allometric slopes) 
differed between endotherms (red) and ectotherms (blue; a, c, e, model MR3) the (whole 
organism) respiratory surface area body mass-scaling exponents did not (b, d, f, model RSA3). 
(c-f) The posterior distributions of the metabolic rate (c, e) and respiratory surface area (d, f) body 
mass-scaling exponents for endotherms and ectotherms, respectively. The black dot and line in 
each of the posterior distributions indicates the mean body mass-scaling exponent and 95% 
Bayesian Credible Interval (BCI), respectively. Lines are shown from the model that allowed body 
mass-scaling exponents (i.e., slopes) to vary by thermoregulatory strategy (model “RSA3”, Table 
S1). We note that these body mass-scaling exponents are nearly identical to that from the best 
model that explains variation in respiratory surface area (“RSA2”, Table S1), which did not allow 
for slopes to vary by thermoregulatory strategy. 

 

 

 



33 

2.7. References 

Audzijonyte, A., Barneche, D. R., Baudron, A. R., Belmaker, J., Clark, T. D., Marshall, C. 
T., Morrongiello, J.R., & van Rijn, I. (2019). Is oxygen limitation in warming waters 
a valid mechanism to explain decreased body sizes in aquatic ectotherms? Glob. 
Ecol. Biogeogr., 1–31. 

Barneche, D. R., Kulbicki, M., Floeter, S. R., Friedlander, A. M., Maina, J., & Allen, A. P. 
(2014). Scaling metabolism from individuals to reef‐fish communities at broad 

spatial scales. Ecol. Lett., 17(9), 1067-1076. 

Bigman, J. S., Pardo, S. A., Prinzing, T. S., Dando, M., Wegner, N. C., & Dulvy, N. K. 
(2018). Ecological lifestyles and the scaling of shark gill surface area. J. Morphol., 
279(12), 1716–1724. 

Bigman, J.S., M’Gonigle, L.K., Wegner, N.C., & Dulvy, N.K. (2021). Assessing patterns of 
metabolic rate and respiratory surface area data across the vertebrate tree of life. 
figshare, dataset and code. https://doi.org/10.6084/m9.figshare.13821968. 

Bokma, F. (2004). Evidence against universal metabolic allometry. Funct. Ecol. 18(2), 
184–187.  

Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a 
metabolic theory of ecology. Ecology, 85(7), 1771–1789. 

Brown, J. H. & Lasiewski, R. C. (1972). Metabolism of weasels: the cost of being long and 
thin. Ecology, 53(5), 939–943. 

Brown, W. & Shick, J. M. (1979). Bimodal gas exchange and the regulation of oxygen 
uptake in holothurians. Biol. Bull., 156(3), 272–288. 

Bürkner, P. C., Gabry, J., & Vehtari, A. (2019). Bayesian leave-one-out cross-validation 
for non-factorizable normal models. ArXiv:1810.10559v3. 

Burnham, K. P., and Anderson, D. R. (2002). Model selection and multimodel inference. 
New York, NY: Springer. 

Cheung, W. W., Sarmiento, J. L., Dunne, J., Frölicher, T. L., Lam, V. W., Palomares, M. 
D., Watson, R, & Pauly, D. (2013). Shrinking of fishes exacerbates impacts of 
global ocean changes on marine ecosystems. Nat. Clim. Change, 3(3), 254-258. 

Clark, T. D., Sandblom, E., Cox, G. K., Hinch, S. G., & Farrell, A. P. (2008). Circulatory 
limits to oxygen supply during an acute temperature increase in the Chinook 
salmon (Oncorhynchus tshawytscha). Am J Physiol Regulatory Integrative Comp 
Physiol , 295(5), R1631-R1639. 

De Jager, S. & Dekkers, W. (1975). Relation between gill structure and activity in fish. 
Neth. J. Zool., 25, 276–308. 

Deutsch, C., Penn, J.L., & Seibel, B. (2020). Metabolic trait diversity shapes marine 
biogeography. Nature, 585, 557–-562. 

Duthie, G. & Hughes, G. (1987). The effects of reduced gill area and hyperoxia on the 
oxygen consumption and swimming speed of rainbow trout. J. Exp. Biol., 127, 
349–354. 

https://doi.org/10.6084/m9.figshare.13821968


34 

Farrell, A. P., Eliason, E. J., Sandblom, E., & Clark, T. D. (2009). Fish cardiorespiratory 
physiology in an era of climate change. Can. J. Zool., 87(10), 835-851. 

Fick, A. (1855). Ueber diffusion. Ann. Phys., 170(1), 59-86. 

Forster, J., Hirst, A. G., & Atkinson, D. (2012). Warming-induced reductions in body size 
are greater in aquatic than terrestrial species. Proc. Nat. Acad. Sci., 109(47), 
19310–19314.  

Frishkoff, L. O., de Valpine, P., & M'Gonigle, L. K. (2017). Phylogenetic occupancy models 
integrate imperfect detection and phylogenetic signal to analyze community 
structure. Ecology, 98(1), 198-210. 

Gelman, A. & Hill, J. (2007). Data analysis using regression and multilevelhierarchical 
models (Vol. 1). New York, NY, USA: Cambridge University Press. 

Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., & Charnov, E. L. (2001). Effects 
of size and temperature on metabolic rate. Science, 293(5538), 2248–2251.  

Gillooly, J. F, Gomez, J. P., Mavrodiev, E. V., Rong, Y., & McLamore, E. S. (2016). Body 
mass scaling of passive oxygen diffusion in endotherms and ectotherms. Proc. 
Nat. Acad. Sci., U.S.A., 113(19), 5340–5345. 

Hedges, S. B., Dudley, J., & Kumar, S. (2006). TimeTree: a public knowledge-base of 
divergence times among organisms. Bioinformatics, 22(23), 2971–2972.  

Hillman, S. S., Hancock, T. V., & Hedrick, M. S. (2013). A comparative meta-analysis of 
maximal aerobic metabolism of vertebrates: implications for respiratory and 
cardiovascular limits to gas exchange. J. Comp. Phys. B, 183(2), 167-179. 

Hoefnagel, K. N. & Verberk, W. C. E. P. (2015). Is the temperature-size rule mediated by 
oxygen in aquatic ectotherms? J. Therm. Biol., 54, 56–65. 

Hughes, G. M. (1984). Scaling of respiratory areas in relation to oxygen consumption of 
vertebrates. Experientia, 40(6), 519–524. 

Killen, S. S., Glazier, D. S., Rezende, E. L., Clark, T. D., Atkinson, D., Willener, A. S. T., 
& Halsey, L. G. (2016). Ecological Influences and Morphological Correlates of 
Resting and Maximal Metabolic Rates across Teleost Fish Species. Am. Nat. 
187(5), 592–606.  

Kleiber, M. (1932). Body size and metabolism. Hilgardia, 6(11), 315–353. 

Munch, S. B. & Salinas, S. (2009). Latitudinal variation in lifespan within species is 
explained by the metabolic theory of ecology. Proc. Nat. Acad. Sci., U.S.A., 
106(33), 13860-13864. 

Nilsson, G. E. (Ed.). (2010). Respiratory physiology of vertebrates: life with and without 
oxygen. Cambridge University Press. 

O'Connor, M. P., Kemp, S. J., Agosta, S. J., Hansen, F., Sieg, A. E., Wallace, B. P., 
Mcnair, J. N. & Dunham, A. E. (2007). Reconsidering the mechanistic basis of the 
metabolic theory of ecology. Oikos, 116(6), 1058-1072. 

Pauly, D. (2010). Gasping fish and panting squids: oxygen, temperature, and the growth 
of water-breathing animals. International Ecology Institute. 

Pauly, D. (2021). The gill-oxygen limitation theory (GOLT) and its critics. Sci. Adv., 7(2), 
eabc6050. 



35 

R Core Team (2013). R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-
project.org/. 

Rubalcaba, J. G., Verberk, W. C., Hendriks, A. J., Saris, B., & Woods, H. A. (2020). 
Oxygen limitation may affect the temperature and size dependence of metabolism 
in aquatic ectotherms. Proc. Nat. Acad. Sci. U.S.A., 117(50), 31963-31968. 

Speakman, J. R. & Król, E. (2010). Maximal heat dissipation capacity and hyperthermia 
risk: neglected key factors in the ecology of endotherms. J. Anim. Ecol., 79(4), 
726-746. 

Stan Development Team. 2019. Stan Modeling Language Users Guide and Reference 
Manual, Version 2.19.2.  http://mc-stan.org. 

Stein, R. W., Mull, C. G., Kuhn, T. S., Aschliman, N. C., Davidson, L. N. K., Joy, J. B., 
Smith, G.J., Dulvy, N. K., & Mooers A. Ø. (2018). Global priorities for conserving 
the evolutionary history of sharks, rays and chimaeras. Nat. Ecol. Evol., 2(2), 288–
298. 

Sundararajan, S. & Keerthi, S. S. (2001). Predictive Approaches for Choosing 
Hyperparameters in Gaussian Processes. Neural Comput., 13, 1103–1118. 

Sunday, J.M., Bates, A.E., & Dulvy, N.K. (2012). Thermal tolerance and the global 
redistribution of animals. Nat. Clim. Change 2, 686–690. 

Tsuboi, M., van der Bijl, W., Kopperud, B. T., Erritzøe, J., Voje, K. L., Kotrschal, A., Yopak, 
K. E., Collin, S. P., Iwaniuk A. N., Kolm, N. (2018). Breakdown of brain-body 
allometry and the encephalization of birds and mammals. Nat. Ecol. Evol., 2(9), 
1492–1500.  

Uyeda, J. C., Zenil-Ferguson, R., & Pennell, M. W. (2018). Rethinking phylogenetic 
comparative methods. Syst. Biol., 67(6), 1091–1109. 

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using 
leave-one-out cross-validation and WAIC. Stat. and Comput., 27(5), 1413–1432. 

Wegner, N. C. (2011). Gill morphometrics. In A. P. Farrell (Ed.), Encyclopedia of fish 
physiology: from genome to environment (Vol. 2, pp. 803–811). San Diego, CA: 
Academic Press. 

Weibel, E. R., Taylor, C. R., & Hoppeler, H. (1991). The concept of symmorphosis: a 
testable hypothesis of structure-function relationship. Proc. Nat. Acad. Sci. 
U.S.A, 88(22), 10357-10361. 

West, G B, Brown, J. H., & Enquist, B. J. (1999). The fourth dimension of life: fractal 
geometry and allometric scaling of organisms. Science, 284(5420), 1677–1679. 

White, C. R., Frappell, P. B., & Chown, S. L. (2012). An information-theoretic approach to 
evaluating the size and temperature dependence of metabolic rate. Proc. R. Soc. 
B., 279(1742), 3616–3621.  

Winberg, G. G. (1956). Rate of metabolism and food requirements of fishes. Res. Bd. Can. 
Transl. Ser. No. 194. 

Yao, Y., Vehtari, A., Simpson, D., & Gelman, A. (2018). Using stacking to average 
bayesian predictive distributions. Bayesian Anal., 13(3), 917-1007. 

 



36 

2.8. Supplementary Information  

2.8.1. Supplementary Results 

Is respiratory organ (i.e., lungs versus gills) a better characterization of the 
known difference in metabolic rate and respiratory surface area between 
endotherms and ectotherms? 

The intercept—the metabolic rate for a given body size—did not differ significantly 

between organisms with lungs versus gills for all models explaining variation in metabolic 

rate without the inclusion of respiratory surface area (compare the overlapping 95% 

Bayesian Credible Intervals [BCIs] for the intercept for organisms with lungs versus gills 

in models “MR2_LG”, “MR3_LG” in Table S6). Similarly, the body mass-scaling exponent 

did not differ between organisms with lungs versus gills when the body mass-scaling 

exponent was allowed to vary between these two groups (compare the overlapping 95% 

BCIs for the “mass” effect size for organisms with lungs versus gills in model “MR3_LG” 

in Table S6). For all models explaining variation in metabolic rate with the inclusion of 

respiratory surface area, neither the intercept, nor the body mass-scaling exponents (if 

allowed to vary, model C6_LG) differed between organisms with lungs and those with gills 

(models “C3_LG”, “C4_LG”, “C5_LG”, and “C6_LG” in Table S6). Thus, the metabolic rate 

for a given body size and the body mass-scaling of metabolic rate did not differ between 

lunged- and gilled-organisms, regardless of the inclusion of respiratory surface area as a 

covariate (Table S6). 

For the models assessing the scaling of respiratory surface area and body size—only the 

intercept, or respiratory surface area for a given size—was significantly different between 

species with lungs versus species with gills (models “RSA2_LG”, “RSA3_LG” in Table S6). 

When the body mass-scaling exponent was allowed to vary between organisms with lungs 

versus gills, the difference was not significant, suggesting that the body mass-scaling of 

respiratory surface area does not differ between lunged- and gilled-organisms (model 

“RSA3_LG” in Table S6). 
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2.8.2. Supplementary Methods 

Model overview 

We constructed and compared phylogenetic Bayesian multilevel linear regression models 

in R v.3.5.1 and v.4.0.1 in Stan using the package rstan (R Core Team 2013; Stan 

Development Team 2019). 

Model parameterization 

Metabolic Rate Models (“MR” models in Table S1) 

We fitted three candidate models to examine the effects of mean body mass, mean 

(inverse) temperature, and thermoregulatory strategy on whole-organism metabolic rate 

(MRi) (see Table S1). 

General model parameterization:  

MRi =  + jjxi,j + i 

𝜀̂ ~ multivariate normal (0̂, 𝜎𝑒
2 * Cphylo) 

Cphylo =  * V + (1 - ) * I 

   ~ student-t (3, 0, 10) 

j    ~ student-t (3, 0, 10) 

𝜎𝑒
2 ~ half-Cauchy (0, 10) 

Here, MRi is the response variable (mean whole-organism metabolic rate),  is the 

intercept, and j is the slope of the jth predictor, and xi,j is species i’s trait value for the jth 

trait (see below for predictors in each model). The priors on the intercept, , slope, j, and 

error, 𝜎𝑒
2, are also reported (see above) and our choice of priors is explained below. 

Following (Frishkoff et al. 2017), we assumed the residual error, i, to be distributed 

according to a multivariate normal distribution, where 0̂ is a vector with length N, 𝜎𝑒
2 is the 

variation in responses to the predictors (jxi,j ), and Cphylo is the N N correlation matrix 

resulting from the phylogeny. The strength of the phylogenetic signal, , in the residuals 
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under a model of evolution of Brownian motion is estimated according to Cphylo =  * V + 

(1 - ) * I, where V is the variance covariance matrix from the phylogeny, and I is an identify 

matrix of N  N values with 𝜎𝑒
2 on the diagonal.  

Model 1: mass * xmass + temp * xtemp 

Model 2: mass * xmass + temp * xtemp + therm * xtherm 

Model 3: mass * xmass + temp * xtemp + therm * xtherm + mass_therm * xtherm * xtmass, 

where mass is the mean body mass associated with metabolic rate, temp is the mean 

inverse temperature associated with metabolic rate (for ectotherms, this is the temperature 

at which metabolic rate was experimentally measured and for endotherms, this is body 

temperature), and therm is thermoregulatory strategy. Following (2), temperature is 

parameterized as the Boltzmann factor (1/(Boltzmann constant * temperature in Kelvin)) 

and thus, temp is the activation energy.  

Respiratory surface area models (“RSA” models in Table S1) 

We fitted three candidate models to examine the effects of mean body mass and 

thermoregulatory strategy on whole-organism respiratory surface area (RSAi) (see Table 

S1).  

General model parameterization:  

RSAi =  + jjxi,j + i 

𝜀̂ ~ multivariate normal (0̂, 𝜎𝑒
2 * Cphylo) 

Cphylo =  * V + (1 - ) * I 

   ~ student-t (3, 0, 10) 

j    ~ student-t (3, 0, 10) 

𝜎𝑒
2 ~ half-Cauchy (0, 10) 
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Here, RSAi is the response variable (mean whole-organism respiratory surface area),  is 

the intercept, and j is the slope of the jth predictor, and xi,j is species i’s trait value for the 

jth trait (see below for predictors in each model). The priors on the intercept, , slope, j, 

and error, 𝜎𝑒
2, are also reported and our choice of priors is explained below.  

The parameterization of the phylogenetic components is the same as above for the 

Metabolic Rate models.  

Model 1: mass * xmass  

Model 2: mass * xmass + therm * xtherm 

Model 3: mass * xmass + therm * xtherm + mass_therm * xtherm * xmass, 

where mass is the mean body mass associated with respiratory surface area and therm 

is as defined above. For the models with respiratory organ, “organ” replaced “therm” and 

was designated as either lung or gill.  

Combined models (“C” models in Table S1) 

We fitted six candidate models to examine the effects of mean body mass, mean 

temperature, residual respiratory surface area, and thermoregulatory strategy on whole-

organism metabolic rate (MRi) (see Table S1). The first level of the model regressed mean 

whole-organism respiratory surface (RSAi) against mean body mass associated with 

respiratory surface area. The residuals from this model indicate whether a species had a 

higher respiratory surface area (positive residual) or lower respiratory surface area 

(negative residual) than would be expected based on its body mass. The second level 

modeled metabolic rate as a function of different combinations of covariates (body mass 

associated with metabolic rate, temperature, thermoregulatory strategy, as well as 

respiratory surface area, see Table S1). The entire posterior distribution of residual 

respiratory surface area estimated in the first level of the model was included as the 

respiratory surface area covariate in the second level of the model. Importantly, each 

iteration of both models happens in succession so estimates and uncertainty of residual 

respiratory surface area are propagated across levels of the model.  

General model parameterization:  
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First level of the model: 

RSAi =  + jjxi,j + i 

𝜀̂ ~ multivariate normal (0̂, 𝜎𝑒
2 * Cphylo) 

Cphylo =  * V + (1 - ) * I 

   ~ student-t (3, 0, 10) 

mass    ~ student-t (3, 0, 10) 

𝜎𝑒
2 ~ half-Cauchy (0, 10) 

Here, RSAi is the response variable (mean whole-organism respiratory surface area),  is 

the intercept, and mass is the slope of the body mass associated with respiratory surface 

area, xmass. The priors on the intercept, , slope, mass, and error, 𝜎𝑒
2, are also reported and 

our choice of priors is explained below. 

Second level of the model: 

MRi =  + jjxi,j + i 

𝜀̂ ~ multivariate normal (0̂, 𝜎𝑒
2 * Cphylo) 

Cphylo =  * V + (1 - ) * I 

   ~ student-t (3, 0, 10) 

j    ~ student-t (3, 0, 10) 

𝜎𝑒
2 ~ half-Cauchy (0, 10) 

Here, MRi is the response variable (mean whole-organism metabolic rate),  is the 

intercept, and j is the slope of the jth predictor, and xi,j is species i’s trait value for the jth 

trait (see below for predictors in each model). The priors on the intercept, , slope, j, and 

error, 𝜎𝑒
2, are also reported and our choice of priors is explained below. 
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The parameterization of the variance and phylogeny is the same as above in the 

“Metabolic Rate Models” and “Respiratory Surface Area Models”.  

Model 1: Rrsa * xRrsa   +  mass * xmass +  temp * xtemp 

Model 2: Rrsa * xRrsa   +  mass * xmass +  mass_Rrsa * xmass * xRrsa +  temp * xtemp  

Model 3: Rrsa * xRrsa   +  mass * xmass +  temp * xtemp +  therm * xtherm 

Model 4: Rrsa * xRrsa   +  mass * xmass +  mass_Rrsa * xmass * xRrsa +  temp * xtemp +  therm * xtherm 

Model 5: Rrsa * xRrsa   +  mass * xmass +  therm * xtherm +  mass_therm * xmass * xtherm +  temp * xtemp 

Model 6: Rrsa * xRrsa   +  mass * xmass +  therm * xtherm +  mass_therm * xmass * xtherm +   

   mass_Rrsa * xmass   * xRrsa   +  temp * xtemp 

Choice of priors 

We used weakly informative regularizing priors based on recommendations for Stan 

(https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations).  

As  (phylogenetic signal) has an equal chance of taking any value within the bounds of 

zero to one, we used a prior with a uniform distribution from zero to one. As 𝜎𝑒
2 (variation 

in responses to the predictors (jxi,j) can only be positive, we used a half-Cauchy prior with 

a location of zero and a scale of ten. Priors are also shown below for each set of models. 

 

 

 

 

 

 

 

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
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2.8.3. Supplementary Tables 

Table S1. Comparison of all models using Pareto-smoothing importance sampling leave-one-out cross validation 
(PSIS-LOO). 
Values reported are for the first model run and include the LOO information criterion value (similar to Akaike Information Criterion [AIC]) looic, the 
effective number of parameters (ploo), the expected log predictive density (elpdloo), the standard error of the expected log predictive density 
(seelpd_loo), the difference in the expected log predictive density (elpddiff) for a given model compared to the best model, and the Bayesian stacking 
weight (similar to Akaike weight). The model with the lowest looic has the most support and is emboldened and highlighted in grey for each group. 
Any model with elpddiff < 2 is also highlighted in grey. PSIS-LOO was conducted using the loo package. 

 Model looic ploo elpdloo seelpd_loo elpddiff Weight 

 Metabolic rate:       

MR1 MR ~ massMR + temperature 299.5 11.6 -149.7 5.9 -9.8 0.230 

MR2 MR ~ massMR + temperature + thermoregulatory strategy 285.9 8.4 -142.9 13.1 -3.0 0 

MR3 MR ~ massMR * thermoregulatory strategy + temperature 279.9 9.9 -140.0 13.9 0.0 0.770 

  

Respiratory surface area:  

      

RSA1 RSA ~ massRSA 346.4 3.0 -173.2 5.6 -46.3 0 

RSA2 RSA ~ massRSA + thermoregulatory strategy 253.8 3.2 -126.8 7.3 0.0 1.00 

RSA3 RSA ~ massRSA * thermoregulatory strategy 255.7 4.0 -127.8 7.2 -0.9 0 

  

Combined:  

      

C1 MR ~ residual RSA + massMR + temperature 277.9 10.6 -139.0 13.5 -7.2 0 

C2 MR ~ residual RSA * massMR + temperature 278.6 12.6 -139.3 12.6 -7.6 0.071 

C3 MR ~ residual RSA + massMR + temperature + thermoregulatory strategy 271.6 11.2 -135.8 13.9 -4.1 0.118 

C4 MR ~ residual RSA * massMR + temperature + thermoregulatory strategy 270.0 12.2 -135.0 14.1 -3.3 0 

C5 MR ~ residual RSA + massMR * thermoregulatory strategy + temperature 263.4 11.7 -131.7 14.6 0.0 0.811 

C6 MR ~ residual RSA * massMR * thermoregulatory strategy + temperature 267.5 13.5 -133.7 14.8 -2.0 0 
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Table S2. Coefficient means and 95% Bayesian Credible Intervals (BCI, in parentheses) for all models examined.  
Model names correspond to those in Table S1. Intercepts are back transformed from the natural log scale. The models with the most support from 
each group are highlighted in grey (see Table S1). The coefficient means reported here are from the first model run. Pagel’s λ indicates the 
strength of the phylogenetic signal in the residuals of the response variable. RSA = respiratory surface area. 

Model  Intercept Mass Temperature Residual RSA Mass: Residual RSA Sigma Pagel's λ 

MR1  0.18 (0.10 to 0.38) 0.89 (0.82 to 0.96) -1.60 (-2.00 to -1.17) NA NA 1.37 (0.90 to 2.24) 0.33 (0.03 to 0.72) 

 

MR2 

Ectotherm 0.12 (0.07 to 0.21) 0.84 (0.77 to 0.90) -0.53 (-1.00 to -0.06) NA NA 0.95 (0.65 to 1.50) 0.29 (0.02 to 0.68) 

Endotherm 0.81 (0.28 to 2.61) 

 

MR3 

Ectotherm 0.13 (0.07 to 0.22) 0.93 (0.84 to 1.02) -0.59 (-1.05 to -0.14) 

 

NA NA 0.89 (0.59 to 1.43) 0.31 (0.02 to 0.70) 

Endotherm 0.95 (0.32 to 3.01) 0.74 (0.53 to 0.95) 

RSA1  1597.59 

 (787.52 to 3201.40) 

1.05 (0.97 to 1.13) NA NA NA 1.74 (1.18 to 2.86) 0.26 (0.01 to 0.70) 

 

RSA2 

Ectotherm 1002.16  

(679.33 to 1524.50) 

0.92 (0.87 to 0.98) NA NA NA 0.70 (0.49 to 1.09) 0.22 (0.01 to 0.63) 

Endotherm 9407.04  

(4428.47 to 20574.87) 

 

RSA3 

Ectotherm 1005.28  

(673.15 to 1611.09) 

0.93 (0.86 to 1.00) NA NA NA 0.71 (0.49 to 1.11) 0.23 (0.01 to 0.62) 

Endotherm 9615.49  

(4404.45 to 22723.31) 

0.91 (0.74 to 1.10) 

C1  0.18 (0.10 to 0.32) 0.93 (0.86 to 1.00) -0.75 (-1.14 to -0.34) 0.63 (0.47 to 0.79) NA 0.77 (0.55 to 1.19) 0.21 (0.01 to 0.58) 

C2  0.18 (0.10 to 0.32) 0.96 (0.88 to 1.04) -0.81 (-1.21 to -0.40) 0.60 (0.44 to 0.76) 

 

0.05 (-0.10 to 0.01) 0.75 (0.53 to 1.13) 0.21 (0.01 to 0.57) 

 

C3 

Ectotherm 0.14 (0.08 to 0.26) 0.90 (0.83 to 0.97) -0.45 (-0.90 to 0.00) 0.46 (0.27 to 0.66) NA 0.75 (0.53 to 1.17) 0.25 (0.01 to 0.63) 

Endotherm 0.37 (0.11 to 1.31) 

 

C4 

Ectotherm 0.14 (0.09 to 0.26)  0.92 (0.84 to 1.00) -0.51 (-0.94 to -0.06) 0.42 (0.22 to 0.61) -0.05 (-0.10 to 0.00) 0.73 (0.51 to 1.12) 0.25 (0.01 to 0.62) 

Endotherm 0.37 (0.12 to 1.33) 

 

C5 

Ectotherm 0.15 (0.09 to 0.26) 0.96 (0.88 to 1.04) -0.51 (-0.92 to -0.07) 0.45 (0.26 to 0.64) NA  0.69 (0.48 to 1.07) 

 

 0.24 (0.01 to 0.62) 

Endotherm 0.44 (0.14 to 1.52) 0.80 (0.60 to 1.01) 

 

C6 

Ectotherm 0.15 (0.09 to 0.28) 0.98 (0.89 to 1.08) -0.50 (-0.91 to -0.08) 0.45 (0.27 to 0.66) 0.02 (-0.06 to 0.09) 0.70 (0.48 to 1.08) 0.24 (0.02 to 0.61) 

Endotherm 0.45 (0.14 to 1.57) 0.77 (0.49 to 1.05) 
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Table S3. Comparison of the best models with and without respiratory surface area that explained variation in 
metabolic rate across 109 vertebrate species (i.e., “best metabolic rate model” and “best combined model”). 
Model names correspond to those in Table S1. Each model was run a total of four times to ensure the robustness of results. All model comparison 
was conducted using Pareto-smoothing importance sampling leave-one-out cross validation (PSIS-LOO) using the loo package. Values reported 
are the LOO information criterion value (similar to Akaike Information Criterion [AIC]) looic, the effective number of parameters (ploo), the expected 
log predictive density (elpdloo), the standard error of the expected log predictive density (seelpd_loo), the difference in the expected log predictive 
density (elpddiff) for a given model compared to the best model, the Bayesian stacking weight (similar to Akaike weight), and the evidence ratio 
(weight of evidence of the best model divided by the weight of evidence of the other model(s) of interest).  

Model Model run looic ploo elpdloo seelpd_loo elpddiff Weight Evidence ratio 

MR3 1  279.9 9.9 -140.0 13.9 -8.2 0.043 22.3 

C5 263.4 11.7 -131.7 14.6 0 0.957 

MR3 2 

 

279.6 9.6 -139.8 13.8 -8.0 0.054 17.5 

C5 263.6 11.8 -131.8 14.7 0 0.946 

MR3 3 

 

279.6 9.7 -139.8 14 -7.8 0.044 21.7 

C5 264 12 -132 14.9 0 0.956 

MR3 4 

 

279.7 9.7 -139.8 13.9 -8.1 0.075 12.3 

C5 263.4 11.7 -131.7 14.8 0 0.925 

       average 18.5 
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Table S4. Standardized coefficient means (i.e., effect sizes) and 95% Bayesian Credible Intervals (BCIs, in 
parentheses) for the top model that explains metabolic rate as a function of body mass, temperature, respiratory 
surface area, thermoregulatory strategy, and the interaction of body mass and thermoregulatory strategy, while 
accounting for evolutionary history. 
The model name corresponds to that in Table S1. Intercepts are back transformed from the natural log scale. Pagel’s λ indicates the strength of 
the phylogenetic signal in the residuals of the response variable. RSA = respiratory surface area. 

Model  Intercept Mass Temperature Residual RSA Sigma Pagel's λ 

 

 

C5 

 

Ectotherm 

 

0.15  

(0.10 to 0.25) 

 

2.66  

(2.42 to 2.90) 

-0.25  

(-0.47 to -0.04) 

0.52  

(0.29 to 0.75) 

0.69  

(0.48 to 1.09) 

0.24  

(0.01 to 0.61) 

Endotherm 0.44  

(0.14 to 1.41) 

2.17  

(1.61-0. to 2.73) 
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Table S5. Comparison of models using thermoregulatory strategy or respiratory organ to characterize the 
differences in metabolic rate and respiratory surface area between endotherms and ectotherms.  
Values reported are the LOO information criterion value (similar to Akaike Information Criterion [AIC]) looic, the effective number of parameters 
(ploo), the expected log predictive density (elpdloo), the standard error of the expected log predictive density (seelpd_loo), and the difference in the 
expected log predictive density (elpddiff) for a given model compared to the best model. The model with the lowest looic of each group has the 
most support and is highlighted in grey. Model comparison was conducted using Pareto-smoothing importance sampling leave-one-out cross 
validation (PSIS-LOO) with the loo package. MR = metabolic rate, RSA = respiratory surface area, massMR = mass associated with the metabolic 
rate estimate and massRSA = mass associated with respiratory surface area estimate.  

 Model looic ploo elpdloo seelpd_loo elpddiff 

MR2 MR ~ massMR + temperature + thermoregulatory strategy 286.8 8.5 -143.3 13 0 

MR2_LG MR ~ massMR + temperature + respiratory organ 302.8 6.9 -151.4 11.7 -8.0 

MR3 MR ~ massMR * thermoregulatory strategy + temperature 281.3 9.9 -140.7 13.9 0 

MR3_LG MR ~ massMR * respiratory organ + temperature 304.1 8.3 -152.1 12.0 -11.4 

RSA2 RSA ~ massRSA + thermoregulatory strategy 253.7 3.2 -126.8 7.3 0 

RSA2_LG RSA ~ massRSA + respiratory organ 269.3 2.7 -134.7 5.8 -7.8 

RSA3 RSA ~ massRSA * thermoregulatory strategy 255.6 4.0 -127.8 5.8 0 

RSA3_LG RSA ~ massRSA * respiratory organ 272.3 4.0 -136.2 5.8 -8.4 

C3 MR ~ residual RSA + massMR + temperature + thermoregulatory strategy 271.6 11.2 -135.8 13.9 0 

C3_LG MR ~ residual RSA + massMR + temperature + respiratory organ 283.3 11.4 -141.6 13.6 -5.9 

C4 MR ~ residual RSA * massMR + temperature + thermoregulatory strategy 270.0 12.2 -135.0 14.1 0 

C4_LG MR ~ residual RSA * massMR + temperature + respiratory organ 284.3 13.8 -142.2 14.4 -7.2 

C5 MR ~ residual RSA + massMR * thermoregulatory strategy + temperature 263.4 11.7 -131.7 14.6 0 

C5_LG MR ~ residual RSA + massMR * respiratory organ + temperature 283.9 12.9 -142.0 13.9 -10.2 

C6 MR ~ residual RSA * massMR * thermoregulatory strategy + temperature 267.5 11.7 -133.7 14.8 0 

C6_LG MR ~ residual RSA * massMR * respiratory organ + temperature 294.0 17.2 -147.0 14.7 -13.3 
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Table S6. Coefficient means and 95% Bayesian Credible Intervals (BCIs, in parentheses) for all models that 
included respiratory organ (i.e., lungs or gills) in place of thermoregulatory strategy (i.e., ectotherm or 
endotherm). 
Model names correspond to those in Table S5. Intercepts are back-transformed from the natural log scale. Pagel’s λ indicates the strength of the 
phylogenetic signal in the residuals of the response. RSA = respiratory surface area.  

Model  Intercept Mass Temeprature Residual RSA Mass: Residual 
RSA 

Sigma Pagel's λ 

 

MR2_LG 

Gills 0.14 (0.07 to 0.27)  

0.89 (0.82 to 0.97) 

 

-1.23 (-1.71 to -0.75) 

 

NA 

 

NA 

 

1.24 (0.84 to 2.00) 

 

0.30 (0.02 to 0.68) Lungs 0.26 (0.09 to 0.82) 

 

MR3_LG 

Gills 0.14 (0.08 to 0.29) 0.94 (0.82 to 1.07)  

-1.31 (-1.81 to -0.80) 

 

NA 

 

NA 

 

1.27 (0.85 to 2.05) 

 

0.31 (0.02 to 0.70) Lungs 0.26 (0.09 to 0.84) 0.86 (0.58 to 1.15) 

 

RSA2_LG 

Gills 820.00  

(395.54 – 1671.05) 

 

 

1.02 (0.96 to 1.07) 

 

 

-0.59 (-1.05 to -0.14) 

 

 

 

NA 

 

 

NA 

 

 

1.17 (0.75 to 1.85) 

 

 

0.49 (0.11 to 0.77) 
Lungs 4147.50  

(1432.91 – 11917.25) 

 

RSA3_LG 

Gills 825.27 

(403.64 – 1706.42) 

1.02 (0.93 to 1.12)  

NA 

 

NA 

 

NA 

 

1.19 (0.76 to 1.89) 

 

0.49 (0.10 to 0.78) 

Lungs 4175.97  

(1454.04 – 12183.13) 

1.01 (0.79 to 1.23) 

 

C3_LG 

Gills 0.19 (0.10 to 0.38)  

0.93 (0.86 to 1.00) 

 

-0.80 (-1.20 to -0.39) 

 

0.67 (0.48 to 0.86) 

 

NA 

 

0.79 (0.55 to 1.21) 

 

 0.23 (0.01 to 0.59) Lungs 0.15 (0.05 to 1.48) 

 

C4_LG 

Gills 0.19 (0.10 to 0.37)   

0.96 (0.88 to 1.05) 

 

 

-0.86 (-1.27 to -0.44) 

 

0.64 (0.45 to 0.83) 

 

-0.05 (-0.10 to 0.01) 

 

0.76 (0.54 to 1.17) 

 

 0.22 (0.01 to 0.58) 
Lungs 0.16 (0.05 to 0.48) 

 

C5_LG 

Gills 0.19 (0.10 to 0.37)  

0.95 (0.85 to 1.06) 

 

-0.84 (-1.27 to -0.39) 

 

0.66 (0.48 to 0.85) 

 

NA 

 

0.79 (0.55 to 1.20) 

  

 0.22 (0.01 to 0.59) 
Lungs 0.15 (0.05 to 0.48) 

 

C6_LG 

Gills 0.18 (0.10 to 0.36) 0.92 (0.80 to 1.04) -0.80 (-1.23 to -0.37) 0.63 (0.45 to 0.82) -0.07 (-0.14 to 0.01) 0.77 (0.54 to 1.17) 0.22 (0.01 to 0.58) 

Lungs 0.16 (0.05 to 0.49) 1.00 (0.70 to 1.29) 
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Table S7. Model comparison for the three additional runs per model. 
Model names correspond to those in Table S1. All model comparison was conducted using 
Pareto-smoothing importance sampling leave-one-out cross validation (PSIS-LOO) using the loo 
package. Values reported are the LOO information criterion value (similar to Akaike Information 
Criterion [AIC]) looic, the effective number of parameters (ploo), the expected log predictive 
density (elpdloo), the standard error of the expected log predictive density (seelpd_loo), the difference 
in the expected log predictive density (elpddiff) for a given model compared to the best model, and 
the Bayesian stacking weight (similar to Akaike weight). The grey shading serves as a 
visualization tool for separating models being compared.  

Model  Model run looic ploo elpdloo seelpd_loo elpddiff Weight 

MR1 1 

 

306.5 14.8 -153.2 6.2 -13.4 0.207 

MR2 286.7 8.8 -143.4 13.3 -3.5 0 

MR3 279.6 9.6 -139.8 13.8 0 0.793 

MR1 2 

 

305.4 14.4 -152.7 6.2 -12.9 0.208 

MR2 286.4 8.7 -143.2 13.2 -3.4 0 

MR3 279.6 9.7 -139.8 14 0 0.792 

MR1 3 302.8 13.1 -151.4 6.1 -11.6 0.219 

MR2 285.9 8.4 -143 13.2 -3.1 0 

MR3 279.7 9.7 -139.8 13.9 0 0.781 

 

RSA1 

1 346.5 3.1 -173.2 5.6 -46.3 0 

RSA2 253.9 3.3 -127 7.3 0 1 

RSA3 255.8 4.1 -127.9 7.3 -0.9 0 

RSA1 2 

 

346.5 3.2 -173.3 5.6 -46.3 0 

RSA2 253.9 3.3 -126.9 7.3 0 1 

RSA3 255.9 4.1 -128 7.2 -1 0 

RSA1 3 

 

346.3 3.1 -173.2 5.6 -46.3 0 

RSA2 253.7 3.2 -126.8 7.2 0 1 

RSA3 255.6 4 -127.8 7.2 -0.9 0 

 

C1 1 

 

276.5 10 -138.2 13.2 -6.5 0.002 

C2 277.4 12 -138.7 14 -6.9 0.08 

C3 271.7 11.4 -135.8 14 -4.1 0.108 

C4 270.7 12.7 -135.4 14.2 -3.6 0 

C5 263.6 11.8 -131.8 14.7 0 0.809 

C6 267.2 13.3 -133.6 14.8 -1.8 267.2 

C1 2 

 

276.6 9.9 -138.3 13.3 -6.3 0 

C2 275.8 11.2 -137.9 13.3 -5.9 0.118 

C3 270.8 11 -135.4 13.9 -3.4 0.138 

C4 269.1 11.7 -134.5 13.7 -2.6 0 

C5 264 12 -132 14.9 0 0.744 

C6 266.8 13.1 -133.4 14.6 -1.4 0 

C1 3 

 

278.1 10.5 -139.1 13.3 -7.1 0 

C2 277.3 11.8 -138.7 13.8 -7 0.069 

C3 270.8 10.8 -135.4 13.8 -3.7 0.14 

C4 271.9 13.3 -136 14.8 -4.3 0 

C5 263.4 11.7 -131.7 14.8 0 0.791 

C6 267 13.3 -133.5 14.6 -1.8 0 
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Table S8. The corresponding species identity to the species code (number) 
along the y-axis in Figure 1. 

 

Species code  Scientific name Common name 

1 Seriola lalandi Yellowtail 

2 Euthynnus affinis Mackerel Tuna 

3 Ctenopharyngodon idella Grass Carp 

4 Sebastes diploproa Rockfish 

5 Carcharodon carcharias White Shark 

6 Morone saxatilis Striped Bass 

7 Pagrus auratus Silver Seabream 

8 Cirrhinus mrigala Mrigal Carp 

9 Brevoortia tyrannus Menhaden 

10 Carassius auratus Goldfish 

11 Conger conger Conger Eel 

12 Isurus oxyrinchus Shortfin Mako 

13 Hoplias malabaricus Wolf Fish 

14 Sander lucioperca Pikeperch 

15 Cottus gobio European Bullhead 

16 Varanus exanthematicus Savannah Monitor Lizard 

17 Tinca tinca Tench 

18 Labeo rohita Rohu Carp 

19 Pseudopleuronectes americanus Winter Flounder 

20 Carcharhinus plumbeus Sandbar Shark 

21 Anguilla anguilla European Eel 

22 Thunnus albacares Yellowfin Tuna 

23 Scomber scombrus Atlantic Mackerel 

24 Merlangius merlangus Whiting 

25 Pomatomus saltatrix Bluefish 

26 Oncorhynchus mykiss Rainbow Trout 

27 Hoplerythrinus unitaeniatus Trahira 

28 Catostomus commersonii White Sucker 

29 Misgurnus fossilis Weatherfish 

30 Gekko gecko Tokay Gecko 

31 Centropristis striata Black Sea Bass 

32 Gymnocephalus cernua Ruffe 

33 Scomber japonicus Chub Mackerel 

34 Seriola quinqueradiata Amberjack 

35 Platichthys flesus European Flounder 

36 Trachemys scripta Pond Slider Turtle 

37 Sander vitreus Walleye 
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Species code  Scientific name Common name 

38 Coryphaena hippurus Dolphinfish 

39 Salmo trutta Brown Trout 

40 Struthio camelus Common Ostrich 

41 Rhinoptera bonasus Cownose Ray 

42 Pollachius virens Coalfish Pollock 

43 Callionymus lyra Dragonet 

44 Channichthys rhinoceratus Unicorn Icefish 

45 Sebastolobus altivelis Longspine Thornyhead 

46 Bos taurus Cow  

47 Mus musculus Mouse 

48 Equus caballus Horse 

49 Heteropneustes fossilis Stinging Catfish 

50 Connochaetes taurinus Blue Wildebeest 

51 Limanda limanda Common Dab 

52 Ameiurus nebulosus Brown Bullhead Catfish 

53 Scyliorhinus stellaris Nursehound 

54 Notophthalmus viridescens Eastern Newt 

55 Camelus dromedarius Camel 

56 Katsuwonus pelamis Skipjack Tuna 

57 Rutilus rutilus Common Roach 

58 Sorex minutus Pygmy Shew 

59 Anguilla rostrata American Eel 

60 Taurotragus oryx Eland Antelope 

61 Perca flavescens Yellow Perch 

62 Opsanus tau Oyster Toadfish 

63 Bufo bufo Common Toad 

64 Larus argentatus Herring Gull 

65 Anabas testudineus Climbing Perch 

66 Oryctolagus cuniculus Rabbit 

67 Esox lucius Northern Pike 

68 Cavia porcellus Guinea Pig 

69 Perca fluviatilis European Perch 

70 Lipophrys pholis Shanny Blenny 

71 Phyllotis darwini Darwin’s Mouse 

72 Scyliorhinus canicula Lesser Spotted Dogfish 

73 Oreochromis niloticus Nile Tilapia 

74 Pleuronectes platessa European Plaice 

75 Channa striata Snakehead Murrel 

76 Zoarces viviparus Eelpout 

77 Ambystoma opacum Marbled Salamander 
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Species code  Scientific name Common name 

78 Taricha granulosa Rough Skinned Newt 

79 Dasyuroides byrnei Kowari Rat 

80 Dromaius novaehollandiae Emu 

81 Gallus gallus Chicken 

82 Echeneis naucrates Sharksucker 

83 Dicamptodon ensatus Giant California Salamander 

84 Vulpes lagopus Arctic Fox 

85 Amphiuma means Two Toed Amphiuma Salamander 

86 Setonix brachyurus Quokka 

87 Torpedo marmorata Marbled Electric Ray 

88 Spheniscus humboldti Chilean Penguin 

89 Balistes capriscus Grey Triggerfish 

90 Hyla arborea European Tree Frog 

91 Channa punctata Spotted Snakehead 

92 Rhyacotriton olympicus Olympic Torrent Salamander 

93 Myoxocephalus scorpius Shortfin Sculpin 

94 Cyprinus carpio Common Carp 

95 Dasyatis sabina Atlantic Stingray 

96 Clarias batrachus Walking Catfish 

97 Homo sapiens Human 

98 Bagre cavasius Gangetic Catfish 

99 Python regius Ball Python 

100 Gadus morhua Cod 

101 Chaenocephalus aceratus Blackfin Icefish 

102 Madoqua kirkii Dik Dik Antelope 

103 Pipistrellus pipistrellus Bat 

104 Anas platyrhynchos Mallard Duck 

105 Rana temporaria Common Frog 

106 Mugil cephalus Grey Mullet 

107 Cynopterus brachyotis Fruit Bat 

108 Rana arvalis Moor Frog 

109 Suncus etruscus Shrew 
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Ecological lifestyles and the scaling of shark gill 

surface area2 

3.1. Abstract 

Fish gill surface area varies across species and with respect to ecological lifestyles. The 

majority of previous studies only qualitatively describe gill surface area in relation to 

ecology and focus primarily on teleosts. Here, we quantitatively examined the relationship 

of gill surface area with respect to specific ecological lifestyle traits in elasmobranchs, 

which offer an independent evaluation of observed patterns in teleosts. As gill surface 

area increases ontogenetically with body mass, examination of how gill surface area 

varies with ecological lifestyle traits must be assessed in the context of its allometry 

(scaling). Thus, we examined how the relationship of gill surface area and body mass 

across 11 shark species from the literature and one species for which we made 

measurements, the Gray Smoothhound Mustelus californicus, varied with three ecological 

lifestyle traits: activity, habitat, and maximum body size.  Relative gill surface area (gill 

surface area at a specified body mass; here we used 5 000 g, termed the ‘standardized 

intercept’) ranged from 4 724.98 to 35 694.39 cm2 (mean and standard error: 17 796.65  

2 948.61 cm2) and varied across species and the ecological lifestyle traits examined. 

Specifically, larger-bodied, active, oceanic species had greater relative gill surface area 

than smaller-bodied, less active, coastal species.  In contrast, the rate at which gill surface 

area scaled with body mass (slope) was generally consistent across species (0.85 ± 0.02) 

and did not differ statistically with activity level, habitat, or maximum body size. Our results 

suggest that ecology may influence relative gill surface area, rather than the rate at which 

gill surface area scales with body mass. Future comparisons of gill surface area and 

ecological lifestyle traits using the quantitative techniques applied in this study can provide 

further insight into patterns dictating the relationship between gill surface area, 

metabolism, and ecological lifestyle traits. 

 
2 A version of this chapter appears as: Bigman, J. S., Pardo, S. A., Prinzing, T. S., Dando, M., Wegner, N. C., & Dulvy, N. 
K. (2018). Ecological lifestyles and the scaling of shark gill surface area. Journal of morphology, 279(12), 1716-1724. 
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3.2. Introduction 

In most fishes, gills function as the primary site of oxygen uptake used to support aerobic 

metabolism, resulting in an intimate relationship between gill surface area and metabolic 

rate (Hughes 1966; Hughes & Morgan 1973; Wegner 2011). The diffusive flux of oxygen 

across the gills is dependent upon their surface area, such that an increase in gill surface 

area augments oxygen uptake (Hughes 1970; Hughes & Morgan 1973; Hughes 1984a). 

Fishes with higher metabolic demands thus have greater gill surface areas, with active 

species in oceanic habitats typically having greater gill surface areas than less active 

species in coastal, benthic habitats (Gray 1954; Hughes 1966; Hughes 1984a). These 

patterns have led to several reviews of gill morphology to categorize fishes into ecological 

lifestyle groupings (i.e., groups of species that have similar habitats and activity) based 

primarily on their gill surface area.   

Such categorizations of gill surface area, activity, and habitat began with Gray (1954), who 

descriptively categorized 31 teleost species into three ecological groups based on relative 

gill surface area (i.e., gill surface area at a specified body mass).  These groups included 

(1) active, pelagic species with the greatest relative gill surface areas, (2) fishes of 

“moderate” activity with “intermediate” relative gill surface areas, and (3) “sluggish,” 

benthic species with the lowest relative gill surface areas. Since then, subsequent reviews 

have further elaborated upon and attempted to define these groups (Hughes 1984a; 

Palzenberger & Pohla 1992; Wegner 2011). However, such comparisons of gill surface 

area across large species groups in relation to ecological lifestyle have mostly been 

descriptive or qualitative in nature, rather than analyzed quantitatively. 

The quantitative assessment of how gill surface area varies across species and with 

respect to ecological lifestyle requires a thorough understanding of how gill surface area 

scales ontogenetically with body growth, or the allometry of gill surface area. This allows 

for both an understanding of the relative gill surface area (gill surface area at a specified 

mass, or the intercept of the allometric relationship) and the rate at which gill surface area 

scales with body mass (slope of the allometric relationship). For many species, gill surface 

area has not been examined for a sufficient size range of individuals to establish such 

relationships. For those species with sufficient gill surface area data across a size range 

of individuals, it is standard practice to estimate and report the regression equation for this 
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scaling relationship (Hughes 1984b; Emery & Szczepanski 1985; Palzenberger & Pohla 

1992). However, comparisons of gill surface area across species or with respect to 

ecological lifestyle are generally discussed in descriptive or qualitative terms (Emery & 

Szczepanski 1985; Palzenberger & Pohla 1992; Wegner 2011). Thus, it remains largely 

untested if observed differences in gill surface area across species with diverse ecological 

lifestyles are statistically significant, and if the intercept, the slope, or both allometric 

regression coefficients vary with specific ecological lifestyle traits.  

This study thus seeks to quantitatively assess how the allometry of gill surface area varies 

with specific ecological lifestyle traits. We focused our efforts on elasmobranch fishes as 

the majority of previous studies examining gill surface area across species and ecological 

lifestyles focus primarily on teleost fishes (De Jager & Dekkers 1975; Palzenberger & 

Pohla 1992; Satora & Wegner 2012). Chondrichthyans, and specifically elasmobranchs, 

offer an opportunity to evaluate the generality of gill surface area patterns as they are one 

of three taxonomic classes of fishes and have evolved separately for over 420 million 

years (Heinicke et al. 2009; Stein et al. 2018).  Additionally, the elasmobranch gill differs 

from that of teleosts in their evolutionary retention of the plate-like interbranchial septum 

that gave rise to their name, “elasmobranch,” which translates into “plate-gill” (Wilson & 

Laurent 2002; Wegner 2016). This structure, which is largely absent from the teleost gill, 

has important consequences for gill function and morphology (Wegner et al. 2010a; 

Wegner et al. 2012; Wegner 2016).  

Here, we examine if specific ecological lifestyle traits are quantitatively related to shark gill 

surface area, and if so, ask if these traits are related to the relative gill surface area 

(standardized intercept), the rate at which gill surface area scales with body mass (slope), 

or both. First, we estimated gill surface area allometries for 11 shark species from the 

literature, and one species for which we made measurements, the Gray Smoothhound 

Mustelus californicus. We then assessed if the allometric regression coefficients 

(standardized intercept and slope) were related to the ecological lifestyle traits of activity 

level, habitat type, or maximum body size, all of which likely influence gill surface area.  



55 

3.3. Methods 

3.3.1. Gill surface area measurement and statistical analysis of the 
Gray Smoothhound 

Eight Gray Smoothhound specimens were collected opportunistically off the coast of 

southern California from anchored benthic gillnet surveys for other scientific studies. For 

each specimen, mass (kg), total length (TL, cm), and fork length (FL, cm) were measured, 

and the gills were fixed in 10% formalin buffered in seawater for later processing. Only 

limited tissue shrinkage is associated with fixation and storage in 10% buffered formalin 

(Wootton et al. 2015).  

Total gill surface area (A) of each specimen was estimated following Muir and Hughes 

(1969) and Hughes (1984c): 

                                                      A = Lfil x 2nlam x Alam,                                                  (1) 

where Lfil is the total length of all the gill filaments, nlam is the average number of lamellae 

per unit length on one side of the filament (lamellar frequency), and Alam is the mean 

bilateral surface area of a lamella. 

First, total filament length was estimated. All filaments on each of the nine hemibranchs 

from the right side of the branchial chamber were counted using a dissecting scope (Zeiss 

Stemi 2000-C) fitted with a digital camera (Lumenera INFINITYLite). Filaments were then 

binned into groups of approximately 10 filaments, beginning at the dorsal margin and 

moving ventrally along the arch. Consistent with previous work, the medial filament of each 

bin was assumed to be representative of all filaments in that bin (Muir & Hughes 1969; 

Wegner 2011). A magnified photograph was taken of each medial filament, and image-

processing software (Image J, NIH) was used to measure the length of the filament from 

its base, embedded under the branchial canopy, to the tip. The total length of all filaments 

in each bin was estimated by multiplying the length of the medial filament by the number 

of filaments in the bin (typically 10). Total filament lengths for each bin were then summed 

to estimate the total filament length of each hemibranch. To determine the total filament 

length of the entire fish, the total filament lengths for each hemibranch were summed, and 

then doubled to account for the filaments from hemibranchs on the other side of the 

branchial chamber. 
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Second, we determined average lamellar frequency and the mean bilateral surface area 

of a lamella from the most representative hemibranch. This was the hemibranch with the 

smallest difference in average filament length compared to the average filament length for 

all hemibranchs. To estimate average lamellar frequency, the medial filament of each bin 

on the representative hemibranch was removed from the interbranchial septum and 

dissected into two sections, a base half and tip half.  Magnified photographs were taken 

of one side of the filament at approximately the midpoint of the base section and midpoint 

of the tip section. The number of lamellae per millimeter at both locations were then 

counted using Image J and averaged to obtain a mean lamellar frequency for each medial 

filament. The mean lamellar frequency of each medial filament was multiplied by the total 

filament length of its respective bin, and each bin was then summed. This number was 

then divided by the total filament length of the representative hemibranch to estimate the 

average lamellar frequency for the entire hemibranch and gills.  

To estimate the mean bilateral surface area of an individual lamella, cross-sections were 

made at the midpoint of the base section and midpoint of the tip section of each medial 

filament on the representative hemibranch.  These cross-sections were then laid flat to 

expose the lamellae, which were photographed under magnification. The surface area of 

one side of these base and tip lamella were measured using ImageJ, averaged, and 

doubled to obtain the mean bilateral lamellar surface area of a lamella in that bin. Each 

mean bilateral lamellar surface area from each medial filament was then multiplied by the 

total number of lamellae within its respective bin, and these measurements were summed 

to estimate the total bilateral lamellar surface area of all lamellae for the entire hemibranch. 

This was then divided by the total number of lamellae on the representative hemibranch 

to determine the mean bilateral surface area for the entire gills.  

The relationships of gill surface area and associated dimensions in the Gray Smoothhound 

(total filament length, average lamellar frequency, and mean bilateral lamellar surface 

area) in relation to body mass were determined by Ordinary Least Squares Regression 

using the lm function in R v. 3.3.2 (R Core Team 2016). To linearize the expected power 

law relationship, body mass, gill surface area, total filament length, average lamellar 

frequency, and the mean bilateral lamellar surface area were log10-transformed.  
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3.3.2. Comparative gill surface area analyses 

Data 

Gill surface area and body mass data for the 11 other shark species were compiled from 

previously published studies (Table 3.1). We conducted a literature search using Google 

Scholar and Web of Science with combinations of the following keywords: “shark,” 

“elasmobranch, “gill surface area,” “respiratory surface area,” “gill surface area allometry,” 

“respiratory surface area allometry,” “gill morphometrics,” and “gill dimensions.” Three 

species (Common Thresher Shark Alopias vulpinus, Shortfin Mako Isurus oxyrinchus, and 

Sandbar Shark Carcharhinus plumbeus) had more than one study reporting gill surface 

area and body mass data, and for these species, data were combined resulting in one 

dataset per species. Raw data were obtained from Wegner et al. (2010a) and Wootton et 

al. (2015) for four species (Pelagic Thresher Alopias pelagicus, Bigeye Thresher Alopias 

superciliosus, Common Thresher Shark, and Shortfin Mako). When raw gill surface area 

and body mass data were not available from the remaining studies, an image-digitizing 

software was used to extract these data points from published graphs (Plot Digitizer: 

http://plotdigitizer.sourceforge.net/). Including the Gray Smoothhound (Table 3.1), we 

know of sufficient data to estimate gill surface area allometric regressions for 12 shark 

species. In three other shark species for which published gill surface area data exist 

(Scalloped Hammerhead Sphyrna lewini, Blacktip Shark Carcharhinus limbatus, and 

Spiny Dogfish Squalus acanthias; Boylan & Lockwood 1962; Emery & Szczepanski 1985; 

Hata 1993), the sample sizes were too low (i.e., three or fewer individual estimates) to 

compute reliable regression coefficients. Rays (superorder Batoidea) were not included in 

this study as there are only three species that have published gill surface area data from 

more than a few individuals, and only one species where this data covers a range of body 

masses (Wegner 2016).  

Estimation of regression coefficients 

Both linear and nonlinear regression frameworks are commonly used to fit power-law 

relationships, such as those between body mass and morphological traits, e.g., gill surface 

area. Linear regression on log-transformed data applies a model with additive error on the 

transformed scale and multiplicative error when back-transformed to the original scale 

(White & Kearney 2014). In contrast, nonlinear regression applies a model with additive 

error on the untransformed or original scale (White & Kearney 2014). To estimate whether 
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a linear or non-linear regression was most appropriate for our particular dataset, we 

compared error structures of a linear regression on log10-transformed data and a nonlinear 

regression on raw data following Xiao et al. (2011). We concluded that the additive error 

structure on a transformed scale (i.e., using linear regression on log10-transformed data) 

provided a better fit to our comparative dataset (Burnham & Anderson 2002; AICc for 

linear regression = -73.2, AICc for nonlinear regression = 3550.4).  Nonlinear regression 

was performed using the nls function in R and linear regressions were performed using 

the lm function (R Core Team 2016). All statistical analyses were performed in R v 3.2.2 

(R Core Team 2016). 

Comparison of coefficients across species 

Allometric regressions estimate the intercept at 1 gram (g) of body mass, but for most 

species, particularly elasmobranchs, 1 g lies far outside the range of body masses of the 

actual specimens measured.  Hence, intercepts and slopes are often correlated and 

centering the data can help reduce this correlation (Quinn & Keough 2002). We thus 

estimated a meaningful intercept of gill surface area at 5 000 g, which we termed the 

“standardized intercept”. The body mass of 5 000 g was chosen as it is approximately the 

midpoint of the range of body masses for all shark specimens compared in this study and 

thus, the log10 of 5 000 g was subtracted from all individual body mass estimates for all 

species. To compare slopes and intercepts across species, the R-language pseudo-code, 

“log10(gill surface area) ~ log10(body mass) * species” was used, where the response 

variable was log10-transformed gill surface area and the explanatory variables were log10-

transformed and centered body mass (i.e., centered around 5 000 g), species identity (as 

a factor), and the interaction term of log10-transformed and centered body mass and 

species. The inclusion of this interaction term allowed us to estimate standardized 

intercepts and slopes for each species. Species-specific coefficients were assessed to be 

significantly different if p <0.05. For further comparison, regression coefficients were 

bootstrapped to estimate the distribution of slopes and standardized intercepts for each 

species; this provided a better idea of the uncertainty for each coefficient. To do this, the 

coefficients and corresponding covariance for each species were extracted from the linear 

models, values were drawn from a multivariate normal distribution, and coefficients were 

bootstrapped 500 times.  
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Comparison of coefficients across ecological traits 

Standardized intercepts and slopes of gill surface area allometries were compared across 

three ecological lifestyle traits: activity level, habitat type, and maximum body size (Table 

3.1). These three traits were chosen based on data availability and their inclusion in 

studies examining differences in gill surface area with respect to ecological lifestyles. Due 

to data limitations in terms of not only gill surface area but also metabolic rate, swimming 

speed, ventilation strategy, etc., we were limited in our ability to assess other ecological 

lifestyle traits as well as how these traits act in concert to shape gill surface area.    

We used caudal fin aspect ratio as a quantitative metric for activity level as this has been 

shown to relate to swimming speed (Thomson & Simanek 1977; Sambilay 1990), daily 

ration (Palomares & Pauly 1989), and metabolic rate (Killen et al. 2016; Campos et al. 

2018).  Caudal fin aspect ratio (A) was calculated for each species as A = h2/s, where h is 

the height and s is the surface area of the caudal fin (Palomares & Pauly 1989, Sambilay 

1990; Table 1). As fresh caudal fins are difficult to obtain, caudal fin aspect ratios are often 

calculated from anatomically correct drawings (Palomares & Pauly 1989; Sambilay 1990; 

Campos et al. 2018). Here, we calculated caudal fin aspect ratios using anatomically 

correct drawings published in Sharks of the World (Ebert et al. 2016). Although we 

recognize there are shortcomings with this approach (e.g. there is potential for modest 

changes to tail shape with growth; caudal fin morphology in the thresher sharks also 

represents specialization to aid in feeding), using caudal fin aspect ratio as a quantitative 

metric to infer activity level improves the rigor of analyses regarding the relationship of gill 

surface area and activity, as most previous gill surface area studies have only examined 

broad, descriptive categories of activity level (i.e. “sluggish,” “moderate activity”) based on 

the perceived activity of each species rather than a quantitative metric. 

For each species, habitat type was assigned based on methodology in Dulvy et al. (2014), 

where species were categorized as coastal and continental shelf, pelagic, or deepwater, 

based on a species-specific depth distribution and to a lesser extent, position in the water 

column (Table 3.1). The 12 species examined in this study did not include any 

representatives from the deepwater habitat type, so only the two habitat types of (1) 

coastal and continental shelf and (2) pelagic were included. To simplify, we used the term 

“coastal” for the coastal and continental shelf habitat type and the term “oceanic” for the 

pelagic habitat type. The maximum body size (mass) for each species (not to be confused 
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with the largest individual for which gill surface was determined) was obtained from 

Fishbase (Table 3.1; Froese & Pauly 2000). As maximum body mass reported for the Gray 

Smoothhound was larger in Castro (2010), this estimate was used in favor of the Fishbase 

estimate. The body mass of the largest individual Nursehound, Scyliorhinus stellaris, 

specimen examined in Hughes et al. (1986) was greater than the maximum body mass 

reported for this species in Fishbase, so it was used in favor of the Fishbase estimate.  

To assess if standardized intercepts and slopes differed with respect to ecological lifestyle 

traits, mixed-effects models were performed using the lme function in the nmle package 

(Pinheiro & Bates 2000). Separate models were performed for each ecological lifestyle 

trait following R-language pseudo-code, “log10(gill surface area) ~ log10(body mass) * 

ecological lifestyle trait + (body mass | species) ”, where the response variable was log10-

transformed gill surface area and the explanatory variables were the fixed effects of log10-

transformed, centered body mass, the ecological lifestyle trait (e.g. caudal fin aspect ratio, 

habitat type, or maximum body size), and the interaction between the two. We also 

included a random effect of “(body mass | species)”, which allowed a separate slope and 

standardized intercept to be estimated for each species, yet the effect of the ecological 

lifestyle trait on the coefficients was the same. Coefficients were assessed to be 

significantly different if p <0.05.  

3.4. Results 

3.4.1. Gray Smoothhound gill surface area 

Gill surface area for the eight Gray Smoothhounds examined in this study ranged from 

1,103.68 to 4,762.70 cm2 over the body mass range of 560 to 2,600 g. The standardized 

intercept, or gill surface area at 5,000 g, was 7,297.94 cm2 and the slope of the relationship 

of gill surface area and body mass was 0.7840 (95 % CI = 0.4784 to 1.0896; Table 3.1, 

Fig. 3.1a). For purposes of comparison with previous studies, the allometric slopes for the 

gill dimensions of filament length, lamellar frequency, and lamellar bilateral surface area 

were 0.2567 (95% CI = 0.1396 to 0.3738), -0.1808 (95% CI = -0.2891 to -0.0724), and 

0.6983 (95% CI = 0.4795 to 0.9171), respectively (Fig. 3.1b – 1d). Complete regression 

equations for gill surface area and associated dimensions are reported in Fig. 3.1a – 1d. 
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3.4.2. Comparison of coefficients across species 

The standardized intercepts varied considerably across species and ranged from 4,724.98 

cm2 in the Nursehound to 35,694.39 cm2 in the Bigeye Thresher, with a mean and 

standard error of 17,796.65  2,948.61 cm2 (Table 3.1, Fig. 3.2). The slopes of gill surface 

area allometries were fairly consistent across species with all species ranging between 

0.7590 in the Shortfin Mako to 0.9555 in the Lesser Spotted Dogfish Scyliorhinus canicula, 

with a mean and standard error of 0.8512  0.0193 (Table 3.1, Fig. 3.2). 

3.4.3. Comparison of coefficients across ecological lifestyle traits 

Standardized intercepts differed with respect to all three ecological lifestyle traits (Fig. 3.3 

a, c, e).  More active species with higher caudal fin aspect ratios had significantly greater 

gill surface area at 5,000 g than less active species (t = 2.54, df = 10, p = 0.03; Fig. 3.3a). 

Oceanic species exhibited a significantly greater gill surface area at 5,000 g than coastal 

species (t = 4.36, df = 10, p = 0.001; Fig. 3.3c). Lastly, larger-bodied species had 

significantly greater gill surface area at 5 000 g than smaller-bodied species (t = 3.92, df 

= 124, p = 0.001; Fig. 3.3e). Slopes of gill surface area allometries did not differ across 

the three ecological lifestyle traits assessed (Fig. 3.3 b, d, f). Specifically, slopes did not 

differ with respect to caudal fin aspect ratio (t = 0.07, df =125, p = 0.94; Fig. 3.3b), habitat 

type (t = -1.49, df = 125, p = 0.14; Fig. 3.3d), or maximum body size (t = -0.45, df = 124, p 

= 0.65; Fig. 3.3f).   

3.5. Discussion 

Our results quantitatively confirm that gill surface area varies with ecological lifestyle traits . 

Specifically, we found that relative gill surface area (i.e., the gill surface area at a specified 

mass; here we used 5,000 g and termed this the standardized intercept) varied with activity 

level, habitat type, and maximum body size. Larger-bodied, oceanic, active species had 

greater relative gill surface area than smaller-bodied, coastal, less active species. 

However, the rate at which gill surface area scaled with body mass (i.e., slope) did not 

differ with the same ecological lifestyle traits. These results suggest that relative gill 

surface area, as opposed to the rate at which gill surface area scales with body mass, is 

influenced by the ecology and environment of a species. First, we compare the relative 
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gill surface area across shark species and ecological lifestyle traits, and then discuss 

these results in the context of other fishes. Second, we consider the consistency of slope 

values across species and ecological lifestyle traits and note exceptions among fishes. 

We then discuss the allometry of gill surface area of the species for which we made new 

measurements, the Gray Smoothhound. Finally, we highlight future questions to consider 

once more gill surface area data are available.  

Relative gill surface area ranged about an order of magnitude across the 12 shark species. 

On average, we found that oceanic species had approximately 2.6 times greater relative 

gill surface area than coastal species, more active species had 1.3 times greater relative 

gill surface area than less active species, and larger-bodied species had 1.6 times greater 

relative gill surface area than smaller-bodied species. The Bigeye Thresher Shark had the 

largest relative gill surface area out of the 12 species examined. In addition to being an 

active and oceanic shark, this species also spends considerable time diving to depth 

where exposure to subsurface hypoxia may also provide selective pressure for increased 

gill surface area (Wootton et al. 2015). The Nursehound had the lowest relative gill surface 

area which reflects its less-active lifestyle, coastal and benthic habitat, and small 

maximum body size.   

The order of magnitude difference in relative gill surface area observed in this study across 

the 12 shark species is considerably less than the two orders of magnitude range in 

relative gill surface area documented in teleost fishes (De Jager & Dekkers 1975; 

Palzenberger & Pohla 1992; Wegner 2011). This appears to partially reflect the more 

diverse ecological roles observed in teleost fishes.  For example, the lowest relative gil l 

surface areas for teleost fishes are found in “sluggish” freshwater or estuarine species that 

have developed facultative or even obligate air-breathing capacities, and thus are not 

solely dependent on the gills for respiration (Palzenberger & Pohla 1992; Graham 1997; 

Graham et al. 2007). In addition to differences in ecological radiations, fundamental 

differences in the gill morphology may also play a role in the more limited range of relative 

gill surface areas observed for sharks. Despite the similarity in ecological lifestyles 

between regionally endothermic teleosts (i.e., tunas) and regionally endothermic sharks 

(i.e., lamnid sharks) in terms of their high activity, oceanic habitat, and streamlined, 

fusiform body types, relative gill surface areas are two to three times greater in tunas 

compared to lamnid sharks (Muir & Hughes 1969; Wegner et al. 2010b). This apparent 

upper limit to elasmobranch gill surface area has been suggested to reflect constraints on 
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water flow imposed by the elasmobranch interbranchial septum that appear to affect 

lamellar spacing and ultimately, limit gill surface area (Wegner et al. 2010a; Wegner et al. 

2012; Wegner 2016). Finally, the more limited range of gill surface areas observed in 

sharks compared to teleosts may also reflect the much smaller number of shark species 

for which gill surface area data have been acquired to date. The addition of gill surface 

area measurements for new elasmobranch species from more diverse habitats (e.g., 

freshwater and estuarine species) and activity levels, may increase the range of relative 

gill surface areas observed for this group.  

The rate at which gill surface area scaled with body mass (slope) did not differ across 

shark species or ecological lifestyle traits examined in this study, and as such, were 

consistent across species that differed in activity level, habitat type, and maximum body 

size. The range of slopes observed in this study (0.76 to 0.96) was relatively small and fell 

within the 0.33 to over 1.00 range exhibited by freshwater and marine teleost fishes (De 

Jager & Dekkers 1975; Palzenberger & Pohla 1992; Wegner 2011). It has long been noted 

that the slope of the gill surface area and body mass relationship mirrors that of the scaling 

relationship of metabolic rate and body mass (Hughes & Morgan 1973; Palzenberger & 

Pohla 1992; Wegner 2011). Accordingly, the mean slope of the relationship of gill surface 

area and body mass determined in this study (0.85  0.02) is strikingly close to the mean 

slope of the scaling relationship of metabolic rate (0.84  0.05), which was estimated for 

a limited number of elasmobranchs with metabolic rate data (six total: four batoids and 

two sharks; Wegner 2016). This similarity in the allometry of metabolic rate and that of gill 

surface area is consistent with the idea that gill surface area and oxygen diffusion capacity 

(i.e. rate of gas transfer across the respiratory surface per unit of gas partial pressure) 

have evolved to match metabolic demand (Wegner 2011; Gillooly et al. 2016; Lefevre et 

al. 2017). Alternatively, it has been suggested that this intimate scaling relationship may 

reflect a constraint of metabolic rate based on geometric constraints of gill surface area 

growth within the space-limited opercular / parabranchial cavities (Pauly 2010; Pauly & 

Cheung 2018), although this hypothesis has been highly contested (see Lefevre et al. 

2017).  

While our results did not show any relationship between the ecological lifestyle traits 

examined and the slope of the gill surface area allometries for the 12 sharks in this study, 

there are clear examples from the teleost literature in which the slope does appear to be 

affected by other underlying physiological and ecological stressors. For example, the 
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blackfin icefish Chaenocephalus aceratus (a hemoglobin-lacking species) has a high gill 

surface area allometric slope of 1.09, which is thought to reflect the need for a 

disproportionately large respiratory surface area to help mitigate the effects of a greatly 

reduced blood-oxygen carrying capacity which becomes increasingly problematic with 

growth (Holeton 1976; Nilsson 2010). On the other end of the spectrum, low gill surface 

area allometric slope values of less than 0.33 have been observed in some air-breathing 

fishes that reflect their increased capacity for breathing air and thus reduced reliance on 

the gills for oxygen uptake as they grow (Hakim et al. 1987; Santos et al. 1994; Perna & 

Fernandes 1996). Thus, while the narrow bounds of the gill surface area allometric slope 

that we found in this study as well as those seen in other studies are likely explained by 

the relationship between gill surface area and metabolic rate, there are clear exceptions. 

Gill surface area data determined in this study for the Gray Smoothhound were similar to 

those of the Nursehound and Lesser Spotted Dogfish from the literature (Hughes 1972; 

Hughes et al. 1986). Despite the broad ecological similarity of these three species being 

coastal, smaller-bodied, and less active, the Gray Smoothhound had the highest 

estimated activity level based on caudal fin aspect ratio, as well as the largest maximum 

body size.  While the Gray Smoothhound had 1.5 times greater relative gill surface area 

than the Nursehound, its relative gill surface area was 0.77 times lower than that of the 

Lesser Spotted Dogfish. Gill surface area data for the Lesser Spotted Dogfish were from 

a more limited size range than for both the Gray Smoothhound and the Nursehound, and 

this may have affected the estimates of regression coefficients (Hughes 1972; Hughes et 

al. 1986). For many species examined in this and other gill surface area allometry studies, 

the sample sizes are small and the body mass ranges do not fully represent the size range 

of the species. Future work should thus focus not only on adding additional species that 

have diverse ecological lifestyles but also ideally incorporate gill surface area 

measurements for the entire size range of the species to provide the most accurate 

comparative data possible.  

Overall, our findings indicate that ecological lifestyle differences among species are 

reflected in the relationships of gill surface area and body mass in sharks. Specifically, we 

found that activity level, habitat type, and maximum body size may all act to help shape 

gill surface area. However, such ecological and environmental influences appear to 

primarily affect the gill surface area at a given body mass (intercept), rather than the rate 

at which gill surface area scales with body mass (slope). The rate at which gill surface 
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area scaled with body mass was narrowly-bounded in the 12 shark species examined 

likely reflecting its tight relationship with metabolic rate. Due to the nature of only having 

12 species with sufficient gill surface area data, we were limited in our ability to test other 

hypotheses and ask additional questions. For example, we could not tease apart the 

influence of ecological lifestyle and evolutionary relatedness on gill surface area. 

Phylogenetic analyses are needed to examine if any of the differences in the relative gill 

surface area or lack of differences in the rate at which gill surface area increases with 

body mass are related to shared evolutionary history, but such analyses will only be 

meaningful once more gill surface area data are available from additional species. 

Additional gill surface area data, including from more ecologically diverse shark and 

batoids species (e.g., those inhabiting estuarine environments, or additional species 

dwelling in chronic hypoxia) as well as larger body size ranges within species, should allow 

for a more thorough understanding of how elasmobranch gill surface area allometries 

relate to other fish groups. Additionally, these data could inform how ecological lifestyle 

traits act in concert to shape gill surface area.   
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3.6. Tables 

Table 3.1 Gill surface area allometric regression coefficients and three ecological lifestyle traits (caudal fin 
aspect ratio, habitat type, maximum body mass) for 12 shark species.  

 
Species Common name Standardized 

intercept  
Slope Caudal fin aspect 

ratio 
Habitat type Max. body  

mass (kg) 

Source for 

gill area data 

Alopias 
superciliosus 

Bigeye Thresher  35,694.39 0.8061 4.67 oceanic 363.8 Wootton et al. 2015 

Carcharodon 
carcharias 

White Shark 30,040.00 0.7715 3.12 oceanic 2,080.4 Emery and Szczepanski 1985 

Isurus 
oxyrinchus 

Shortfin Mako  29,248.26 0.7590 2.52 oceanic 505.8 Emery and Szczepanski 1985, 
Wegner et al. 2010a 

Alopias 
pelagicus 

Pelagic Thresher  24,547.09 0.8946 5.63 oceanic 127.7 Wootton et al. 2015 

Galeocerdo 
cuvier 

Tiger Shark 20,141.88 0.9136 3.19 oceanic 807.4  Hata 1993 

Alopias 
vulpinus 

Common Thresher 
Shark  

19,404.39 0.8918 5.54 oceanic 348.0 Emery and Szczepanski 1985, 
Wootton et al 2015 

Carcharhinus 
obscurus 

Dusky Shark 12,336.73 0.8761 3.18 coastal  346.5 Emery and Szczepanski 1985 

Carcharhinus 
plumbeus 

Sandbar Shark 11,040.79 0.9012 3.17 coastal  117.9 Emery and Szczepanski 1985, 
Hata 1993 

Prionace 
glauca 

Blue Shark 9,667.184 0.8820 3.48 oceanic 205.9 Emery and Szczepanski 1985 

Scyliorhinus 
canicula 

Lesser Spotted 
Dogfish 

9,423.24 0.9555 1.63 coastal  1.3  Hughes 1972 

Mustelus 
californicus 

Gray Smoothhound  7,297.94 0.7840 2.14 coastal  4.8 This Study 

Scyliorhinus 
stellaris 

Nursehound  4,724.98 0.7783 1.63* coastal 2.6 Hughes et al. 1986 

Coefficients were re-estimated from log10-transformed gill surface area and log10-transformed and centered body mass data. Intercepts are back-transformed and 
represent the gill surface area (cm2) at 5,000g. 

*The caudal fin aspect ratio for S. canicula was used for S. stellaris 
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3.7. Figures 

 

Figure 3.1 The relationship of (a) gill surface area (cm2), (b) total filament 
length (cm), (c) average lamellar frequency (mm-1), and (d) mean bilateral 
lamellar surface area (mm2) and body mass (g) for eight Gray 
Smoothhounds, Mustelus californicus.  
The fitted regression lines and equations are from linear models of log10-transformed gill surface 
area (and components) data as functions of log10-transformed body mass. Shaded grey region 
indicates the 95% prediction interval. 



68 

 

Figure 3.2 The distribution of regression coefficients and gill surface area allometries for 12 shark species 
showing highly variable standardized intercepts (i.e. gill surface area at 5,000 g) yet consistent slopes. 
(a) The distribution of regression coefficients for the allometry of gill surface area in 12 shark species, as estimated by bootstrapping standardized 
intercepts and slopes from species-specific linear regressions computed with log10-transformed gill surface area and log10-transformed and 
centered body mass data at 5,000 g. (b) The relationship of gill surface area (cm2) and body mass (g) for 12 species of sharks. The fitted 
regression lines are from a linear model of log10-transformed gill surface area as a function of log10-transformed and centered body mass for each 
species. The vertical grey line represents a body mass of 5,000 g. The shaded grey region indicates the 95% confidence interval. 

(a) (b)
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Figure 3.3 Gill surface area allometric standardized intercepts (a, c, e) 
and slopes (b, d, f) for 12 shark species in relation to three ecological 
lifestyle traits: caudal fin aspect ratio as a measure of activity level, habitat 
type, and maximum body mass.  
 

 
 
 

(a)

(c)

(e) (f)

(d)

(b)
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Forty years of gill surface area and growth 

performance across fishes3 

4.1. Abstract 

Life history theory dictates that an organism’s maximum size and its corresponding 

somatic growth rate have evolved to maximize lifetime reproductive output. An intriguing 

theory suggests that in aquatic organisms, maximum size is constrained by the surface 

area of the gills, which largely control oxygen uptake. A central prediction of this theory is 

the tight relationship between the von Bertalanffy growth model (i.e., asymptotic size and 

growth coefficient) and gill surface area. Since first tested in the 1980s, however, the data 

and analytical methods initially used to identify these relationships have greatly advanced 

over the past 40 years. Here, we revisit the relationship of maximum size, growth, and gill 

surface area in fishes, structuring our investigation around six questions that examine 

limitations in the original analysis and leverage the availability of more data and advanced 

statistical techniques. Overall, we find that a weak relationship exists among asymptotic 

size, growth coefficient, and gill surface area across 132 species of fishes. Further, we 

found that the activity level of a fish statistically explained more variation in asymptotic 

size and growth coefficient across species compared to gill surface area. Additionally, we 

found little evidence that gill surface area is related to the variation in growth coefficients 

across species, especially for those who reach the same asymptotic size. Our results 

support the idea that in fishes, growth and maximum size is not simply related to gill 

surface area, and the importance of other covariates—both tractable (e.g., activity, 

temperature) and less tractable (e.g., predation risk, resource availability and variation)—

may explain more variation in the life history traits across species.  

 

 

 
3 A version of this chapter is submitted to Fish and Fisheries as: Bigman, J.S., Wegner, N.C., & 
Dulvy, N.K. Forty years of gill surface area and growth across fishes.  
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4.2. Introduction 

Formalized as life history theory, decades of work have revealed that body size, and other 

life history traits related to growth, survival, and reproduction, are optimized by natural 

selection to maximize fitness (typically measured by reproductive output in fishes; 

Beverton & Holt 1959; Stearns 1992; Hutchings 2002). Maximizing fitness results in 

tradeoffs between traits as competing processes, such as growth and reproduction, draw 

from the same finite pool of internal resources (e.g., time, energy; Roff 1984; Stearns 

1989, Reynolds 2003). One of the classic tradeoffs between life history traits is the inverse 

relationship observed between maximum size (i.e., the observed maximum size of a 

species) and the change in body size over time, or somatic growth (Beverton & Holt 1959; 

Reynolds et al. 2001). For fishes, this inverse relationship is evident when comparing the 

growth parameters (growth coefficient and asymptotic size) estimated from a von 

Bertalanffy growth function fit to size-at-age data (Fig. 4.1; Pauly 1998). Such a 

comparison suggests that an individual generally can grow faster to a smaller asymptotic 

(final) size or grow more slowly to a larger asymptotic size (Beverton & Holt 1959). With 

respect to maximum size and growth trade-offs, life history theory predicts that under high 

mortality (e.g., in an unstable environment or under high predation risk) fitness would be 

maximized through a faster life history strategy, one that results in a higher reproductive 

output earlier in life, which would select for a smaller maximum size, faster growth, and 

earlier maturity (Stearns 1976; Roff 1984; Reznick et al. 1996). On the other hand, under 

low mortality (e.g., a stable environment or one with lower predation risk) fitness would be 

maximized through a slower life history strategy by waiting to reproduce until an organism 

reaches a larger size (as reproductive output increases with increasing size; Bjørkvoll et 

al. 2012; Barneche et al. 2018). This would select for a larger maximum size, slower 

growth, and later maturity (Stearns 1976; Roff 1984). While life history theory and its 

predictions have been widely supported by both theoretical and empirical research over 

the last 70 years, recent work on the effect of oxygen (i.e., balance of supply and demand) 

and temperature on body size and growth, especially for fishes, has inspired the proposal 

of a new causal mechanism that shapes body size (Pauly 2010; Forster et al. 2012; 

Cheung et al. 2013). 

One multifaceted and intriguing theory proposes that the maximum size of aquatic, water-

breathing organisms is mechanistically constrained by oxygen supply (Pauly 2010, 2021). 
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The central tenet of this theory, the Gill Oxygen Limitation Theory, is that the oxygen 

supply acquired over the surface area of the gills—which is (to a first approximation) a 

two-dimensional surface—cannot keep pace with the demand from a continually 

increasing three-dimensional volume (body mass). The proposed consequence of this 

mismatch in geometry is that the ontogenetic slope of the relationship of gill surface area 

and body mass will always be less than one (i.e., hypoallometric). This means that the 

ratio of gill surface area to body mass (i.e., mass-specific gill surface area) will decrease 

with increasing body mass. Thus, when the supply of oxygen diffused over the 

‘diminishing’ gill surface area cannot match the demand from the growing body, the 

organism will stop growing and its maximum size will be reached (Pauly 2010, 2021).  

A central prediction of the Gill Oxygen Limitation Theory is that a tight correlation would 

exist among maximum size, growth, and gill surface area (Pauly 1981, 2010). Specifically, 

Pauly (1981, 2010) predicted that gill area index (a measure of the amount of gill surface 

area for a given body size) and growth performance (an index that integrates the tradeoff 

between the von Bertalanffy growth coefficient and asymptotic size) would be tightly 

correlated. Further, it was suggested that the large amount of variation in von Bertalanffy 

growth coefficients both within and across species was related to gill surface area, such 

that an individual or a species can only grow fast to its asymptotic size if it has a larger 

than expected gill surface area for its body size (Pauly 1981, 2010). Although only a weak 

relationship between gill area index and growth performance existed in the original 42 fish 

species examined by Pauly (1981), this relationship has been used as evidence that gill 

surface area constrains growth and maximum (or asymptotic) size in fishes (Pauly 1981, 

2010, 2021; Cheung et al. 2013; Cheung & Pauly 2016). Indeed, half of the expected 14 

– 24% decline in maximum size for an individual fish (over generations) due to projected 

temperature increases through 2050 has been suggested to be mechanistically linked to 

oxygen limitation, or the mismatch between oxygen supply (gill surface area) and demand 

(metabolic rate; Pauly 1981, 2010; Cheung et al. 2013).  

However, there is much debate surrounding the causal mechanisms underlying oxygen 

limitation, particularly with respect to gill surface area, growth, and the Gill Oxygen 

Limitation Theory (Lefevre et al. 2017, 2018; Marshall & White 2019). For example, many 

argue that the surface area of respiratory organs would evolve to provide the capacity 

needed to meet an organism’s requirements, instead of (aerobic) metabolic rate being 

driven by, and ultimately, limited by the surface area of the gills (Lefevre et al. 2017, 2018; 
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Marshall & White 2019). Relatedly, physiologists have noted that the surface area of gills 

are folded surfaces and thus are not under the same strict geometric constraints as seen 

in spherical objects (i.e., the scaling of gill surface area and body mass could deviate from 

surface area-to-volume ratios; Lefevre et al. 2017, 2021). Notwithstanding these 

criticisms, the Gill Oxygen Limitation Theory has potentially far-reaching consequences if 

empirically supported. In addition to the idea that oxygen limitation and gill surface area 

may be behind the observed declines in maximum size in response to increasing 

temperature (temperature size rule), mounting evidence from broad, cross-species 

studies suggests that oxygen limitation may also shape species’ geographic distributions 

and underlie the mass- and temperature-dependence of metabolic rate (Forster et al. 

2012; Deutsch et al. 2020; Rubalcaba et al. 2020; Bigman et al. 2021).  

To understand if oxygen limitation mediated by gill surface area is indeed occurring, and 

affecting growth and maximum size, predictions generated by the Gill Oxygen Limitation 

Theory must be tested. Yet, few predictions have been tested to-date, including the 

generality of the relationship among maximum size, growth, and gill surface area. 

Additionally, the last 40 years have seen an increase in the availability of gill surface area 

data and von Bertalanffy growth parameters, as well as the advancement of statistical 

techniques that can incorporate additional salient factors, such as phylogenetic 

relationships among species.  

Here, we revisit the interrelationships of maximum size, growth, and gill surface area in 

fishes. Specifically, we ask six questions that examine limitations in the original 

relationship and leverage the availability of more data and advanced statistical techniques 

to examine these relationships in more detail (Table 4.1). For each question, we outline 

the relevant background, detail the data and analysis used, and present and interpret the 

results. 

In Act I, we reconsider Pauly’s (1981) original dataset (hereafter, ‘Pauly dataset’) of gill 

area index and growth performance to ask: 

i. What constitutes an outlier and how sensitive is the relationship of gill area index 

and growth performance to outliers? 
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ii. What is the effect of parameterizing the relationship between gill area index and 

growth performance based on the predictions made by the Gill Oxygen Limitation 

Theory (i.e., testing if gill area index can explain variation in growth performance)? 

In Act II, we build from the Pauly dataset and collate gill surface area (and associated 

body mass) and life history data for additional fish species (teleost, elasmobranch, and 

coelacanth) to ask if the relationship of maximum size, growth, and gill surface area holds 

across more species. Specifically, using this larger dataset, we ask: 

i. Does employing more realistic metrics of gill surface area (i.e., the ontogenetic   

regression coefficients instead of a simplified index) provide new insight into the 

relationship of gill surface area and growth performance?  

ii. Is evolutionary history an important factor in determining how gill surface area and 

growth performance are related?  

iii. Does activity level better characterize the variation in growth performance across 

species compared to gill surface area?  

iv. Do species with faster growth coefficients for their body size have larger gills? 

4.3. Act I: Re-examining Pauly (1981)’s analysis 

I.i. Question 

In the Pauly dataset, what constitutes an outlier and how sensitive is the relationship of 

gill area index and growth performance to outliers? 

I.i. Premise 

When first examining whether a relationship existed between gill area index and growth 

performance, Pauly (1981) identified a compilation of both raw and mean gill surface area 

and (measurement) body mass for 115 fish species (teleost, elasmobranch, and 

coelacanth) compiled from other studies and published by Hughes & Morgan (1973). This 

dataset was chosen by Pauly (1981) for specific reasons: (1) it included a large number 

of fish species, (2) the authors (Hughes & Morgan) had checked and standardized the 
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data presented in a large number of publications, and (3) the use of a single data source 

for analysis by Pauly (1981) was thought to prevent bias. Pauly (1981) subsequently 

chose to only include marine species to reduce the effects of habitat heterogeneity. Of the 

66 marine fish species in this dataset, 42 had published von Bertalanffy growth parameters 

(Pauly 1981). However, Pauly (1981) suspected that the gill surface area data for two 

species, West Indian Ocean Coelacanth Latimeria chalumnae and Atlantic Cutlassfish 

Trichiurus lepturus, were either erroneous or to reflect a specific feature of the species 

and were removed from further analysis. 

For each species, Pauly (1981) calculated gill area index and growth performance. Gill 

area index is somewhat similar to the intercept of the ontogenetic relationship of gill 

surface area and body mass (the predicted gill surface area for a given body size resulting 

from a regression equation; Pauly 1981, 2010). However, gill area index is not estimated 

from a regression relationship but calculated as G/𝑊𝑑, where G = one estimate of a 

species-specific mean gill surface area, W = mean body mass estimate associated with 

the mean gill surface area estimate, and d = the species-specific ontogenetic slope of the 

relationship between body mass and gill surface area (Pauly 1981, 2010). Here, the G 

and W are the mean of gill surface area and body mass measurements, respectively, from 

a (random) sample of fishes for which gill surface area was measured for one study. The 

parameter d must be included (which is why Pauly did so) because gill surface area usually 

scales hypoallometrically with body mass, such that the ratio of gill surface area to body 

mass for a single individual changes throughout its lifetime (De Jager & Dekkers 1975; 

Palzenberger & Polha 1992; Wegner 2011; Bigman et al. 2018). However, an empirical 

estimation of d requires raw gill surface area and body mass data for a number of 

individuals for a given species (ideally spanning the entire body size range). Due to the 

lack of raw data for all species, Pauly (1981) predicted the parameter d for each species 

from a previously estimated linear relationship between the ontogenetic slope of a 

relationship between body mass and gill surface area or metabolic rate and maximum 

observed body mass (Wmax) for 27 species or genera of fishes, as well as average values 

of d for (1) “all freshwater fishes”, (2) “all marine fishes”, (3) two different average values 

for “fishes”, and (4) “Gray’s intermediates [various marine teleosteans]” (see pg. 264 in 

Pauly 1981). Growth performance is calculated as log10(k * 𝑊∞), where k is the growth 

coefficient and 𝑊∞ is asymptotic size, both estimated using the von Bertalanffy growth 

function (Pauly 1981, 1991; Juan-Jordá et al. 2013). If multiple growth functions were 
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available for a given species (and thus a given species had multiple values of k and 𝑊∞), 

a single growth function was chosen based on sample size and data quality (D. Pauly 

pers. comm. August 2020). 

To estimate the relationship between gill area index area and growth performance, Pauly 

(1981) estimated a Reduced Major Axis regression (also called a ‘functional regression’ 

or ‘geometric mean functional regression’) on log10-transformed gill area index (on the y-

axis) and growth performance (already log10-transformed by nature of the calculation; on 

the x-axis) for 40 species of fish (Pauly 1981). He reported that there was a significant 

correlation between gill area index and growth performance, with a r = 0.431 (equivalent 

to an r2 of 0.19) and a p = 0.01 (i.e., the slope does not equal zero; Pauly 1981). Three 

additional apparent outliers were then removed from the analysis and it was reported that 

the removal of these outliers “greatly improves the correlation, which increases to r = 0.661 

[equivalent to an r2 value of 0.44] (with 35 degrees of freedom)” (Pauly 1981).  

Here we ask what constitutes an outlier and how sensitive is the relationship of gill area 

index and growth performance to outliers? 

I.i. Method 

A statistical outlier can be defined as an outlying or extreme observation, one that appears 

to deviate markedly from other members of the sample or fall unusually far from the 

expected value based on the model (Gelman & Hill 2007; Fahrmeir et al. 2013). Although 

checking for outliers is common practice, standardized methods across fields to identify 

and deal with outliers are rare (Hampel 2001; Burnham & Anderson 2002; Fahrmeir et al. 

2013). Historically, outliers have often been removed from datasets to facilitate modeling 

by Ordinary Least Squares (OLS) regression methods or similar (e.g., Reduced Major Axis 

regression), but because there is often no way to non-arbitrarily remove outliers, it is more 

commonly recommended to instead refine the model to accommodate outliers (Hampel 

2001; Kruschke 2014). One way of identifying outliers is to use model diagnostics such as 

Cook’s distance for frequentist models and Pareto k for Bayesian models (Fahrmeir et al. 

2013; Vehtari et al. 2017; Gabry et al. 2019). If a data point’s Cook’s distance or Pareto k 

value is above the threshold (0.5 for Cook’s distance, 0.7 for Pareto k), it is recommended 

to employ robust regression – a category of regression models that relax the assumption 

of normality that is characteristic of the most common OLS regression models, (e.g., 
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Gelman & Hill 2007; Kruschke 2014; Vehtari et al. 2017). Robust regression is commonly 

used to deal with outliers, as influential data points are down-weighted or a fat-tailed 

distribution such as a student-t is used instead of a normal distribution (Gelman & Hill 

2007; Wang & Blei 2016; Anderson et al. 2017). 

While many ways to estimate a robust regression exist, common frequentist methods are 

Quantile regression and Iteratively Reweighting Least Squares (Rousseeuw 1984; Fox & 

Weisberg 2012; Fahrmeir et al. 2013). Quantile regression (as employed in our analysis) 

simply models the median of the response variable as a linear function of the predictor 

variables (Rousseeuw 1984; Fox & Weisberg 2012; Fahrmeir et al. 2013). Iteratively 

Reweighted Least Squares down-weights outliers according to the distance from the best 

fit line, and iteratively refits the model (Rousseeuw 1984; Fox & Weisberg 2012). In a 

Bayesian framework, robust regression simply involves changing the response distribution 

from a normal to a student-t distribution (Lange et al. 1989; Wang & Blei 2016; Gelman et 

al. 2020). The normal distribution is a specific type of the student-t distribution, with the 

degrees of freedom parameter (nu) set to infinity; nu can either be estimated from the 

model directly or set to a specific value (Wang & Blei 2016). 

Here, we first used model diagnostics to identify possible outliers in the Pauly dataset and 

second, we compared model coefficients estimated by different methods of linear and 

robust linear regression. To identify potential outliers using model diagnostics, we used 

Cook’s distance and Pareto k, both of which are measures of the influence of a given 

observation on the model. Cook’s distance values were estimated using OLS and Pareto 

k values were estimated using Bayesian simple linear regression (Fahrmeir et al. 2013; 

Vehtari et al. 2017). Second, we compared Pauly’s reported model coefficients (estimated 

via Reduced Major Axis regression on 40 and 37 data points, respectively) to model 

coefficients estimated with all 42 species using (1) Reduced Major Axis regression 

(lmodel2 function in the lmodel2 package; Legendre 2018), (2) Quantile regression (rq 

function in the quantreg package; Koenker 2020), (3) Iteratively Reweighted Least 

Squares regression (rlm function in the MASS package; Venables & Ripley 2002), and (4) 

Bayesian regression with a student-t response distribution (brm function in the brms 

package; Bürkner 2017, 2018). To aid in comparison, we re-estimated the Reduced Major 

Axis regression for the 37 and 40 data points (reported in Pauly 1981, 2010), respectively. 

For the Bayesian linear regression, we estimated two models; both allowed the degrees 
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of freedom parameter (nu) to be estimated but differed in the strength of the prior on nu: 

one model had a strong prior on nu and the other had a weakly informative prior on nu.   

I.i. Results 

Based on both the Cook’s distance and the Pareto k values, there is no reason to exclude 

any of the 42 species from the analysis of the relationship of gill area index and growth 

performance. This suggests that neither the West Indian Ocean Coelacanth Latimeria 

chalumnae nor the Atlantic Cutlassfish Trichiurus lepturus gill area index value originally 

suspected to be outliers in Pauly (1981) leveraged our estimated regression parameters. 

The West Indian Ocean Coelacanth gill surface area and body mass data were later 

confirmed to be accurate in a subsequent paper (Hughes 1995).  

The mean slope for the relationship of gill area index and growth performance for all 

regression methods was positive but depended on the type of regression (Table 4.2, Fig. 

4.2). Irrespective of sample size, the three Reduced Major Axis regression models yielded 

the greatest mean slope values, (~0.4, 95% Confidence Intervals (CI) did not overlap with 

zero). Although not significantly different, the mean slope estimated by Reduced Major 

Axis regression with all 42 species included was higher than the mean slopes estimated 

for 37 or 40 species. Finally, the slope value from Pauly’s original reported fit estimated 

via Reduced Major Axis regression was also higher than any of the other Reduced Major 

Axis regression models (Table 4.2, Fig. 4.2).  

For all models estimated here, the 95% CIs or the 95% Bayesian Credible Intervals (BCI; 

for the two Bayesian models) did not overlap with zero, with the exception of the lower 

bound of the 95% BCI for the robust Bayesian regression with a weak prior, which was 

equal to -0.02 (Table 4.2, Fig. 4.2). The mean slopes of all models estimated with Reduced 

Major Axis regression were significantly higher than the mean slopes estimated by robust 

regression, which had 95% CIs or BCIs that were only slightly nonzero (or for robust 

Bayesian regression with a weak prior on nu, just overlapping with zero). The four different 

robust regression models almost had identical mean slopes and 95% CIs or BCIs. Further, 

the choice of prior on nu for the Bayesian models did not significantly affect the mean 

slope estimate (Table 4.2, Fig. 4.2).  
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I.i. Discussion 

Broadly, we found—based on Cook’s distance and Pareto k values—that no outliers 

existed in the Pauly dataset (n = 42 species). Instead, the significance of the relationship 

of gill area index and growth performance depended on the type of regression used. Thus, 

the conclusion regarding the significance of this relationship can be drawn from either 

robust regression (using Quantile regression, Iteratively Reweighted Least Squares 

regression, or robust Bayesian regression) or Reduced Major Axis regression. These two 

methods, robust regression and Reduced Major Axis regression, are not typically 

combined (i.e., using a student-t distribution instead of a normal distribution for Reduced 

Major Axis regression). Instead, the measurement error in either the predictor and/or 

response variable in a Bayesian framework would be incorporated directly in the model 

(Bürkner 2017, 2018). However, as the values of gill area index from Pauly (1981) were 

estimated using mean gill surface area and mean body mass, error in these data is 

unknown. Recommendations for deciding between using Reduced Major Axis regression 

or OLS or similar, e.g., robust regression) in the literature are based on the biological 

question(s) at hand (Smith 2009; Klimer & Rodríguez 2017). One key assumption of using 

Reduced Major Axis regression is that the relationship between the predictor(s) (i.e., x-

variable) and response (i.e., y-variable) variable is symmetric—it does not matter which 

variable is the predictor (x) and which is the response (y) as the resulting coefficients and 

relationship will be identical (McArdle 2003; Smith 2009). As the Gill Oxygen Limitation 

Theory makes explicit predictions about directionality—that gill surface area is 

constraining maximum size—we suggest that the relationship between gill area index and 

growth performance should not be tested in a symmetrical manner, and thus favor robust 

regression. We note that to draw conclusions in an asymmetrical manner between gill 

area index and growth performance following the Gill Oxygen Limitation Theory, the 

response variable and predictor variable should be flipped: growth performance would be 

the response variable and gill area index (or other metric of gill surface area) would be the 

predictor variable (we test this question below). Additionally, measurement error in both 

the predictors and response variables, if available, would ideally be incorporated into a 

robust regression.  
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I.ii. Question 

What is the effect of parameterizing the relationship between gill area index and growth 

performance based on the predictions made by the Gill Oxygen Limitation Theory (i.e., 

testing whether gill area index can explain variation in growth performance)? 

I.ii. Premise 

The relationship between gill area index and growth performance in Pauly (1981) was 

estimated by Reduced Major Axis regression (called ‘functional regression’ in Pauly 

(1981). The Gill Oxygen Limitation Theory makes explicit predictions about the cause-

effect relationship between gill area index and growth performance (Pauly 1981, 2010). 

Specifically, this theory argues that gill surface area is constraining growth and maximum 

size (Pauly 1981, 2010). Thus, Reduced Major Axis regression is not an ideal method for 

assessing the relationship between gill area index and growth performance in the context 

of the Gill Oxygen Limitation Theory.  

Here, we ask what is the relationship between gill area index and growth performance if 

the axes are flipped (according to predictions of the Gill Oxygen Limitation Theory): growth 

performance is the response variable and gill area index is the predictor variable? 

I.ii. Method 

Using the Pauly dataset, we ask how the relationship of gill area index and growth 

performance would differ if parameterized according to the prediction of the Gill Oxygen 

Limitation Theory. As this is a different model (and outliers, as well as other diagnostics 

should be checked for any and all model runs), we first estimated both Cook’s distance 

and Pareto k (see above in Question I.i.) to identify any outliers using OLS and Bayesian 

linear regression, respectively. If any observation was an outlier (Cook’s distance > 0.5 or 

a Pareto k value > 0.7), we used robust regression in a Bayesian framework to estimate 

the slope and intercept. We did so in the same manner as in Question I.i.—we used the 

brm function in the brms package to estimate two Bayesian linear models with a student-

t response distribution, one with a strong prior on nu and one with a weak prior on nu 

(Bürkner 2017, 2018). Pareto smoothed importance sampling leave- one-out cross 

validation (PSIS-LOO) was used to compare the two Bayesian models with different priors 

on nu to identify which prior provided the best fit to the data (Vehtari et al. 2017). Finally, 
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we compute an r2 value using the bayes_R2 function in the brms package for the purpose 

of comparing with Pauly’s reported r2 values (Bürkner 2017, 2018).  

I.ii. Results 

One outlier (Latimeria chalumnae) was identified using Cook’s distance, however, the 

Pareto k value of this species was < 0.7. Thus, to be conservative, we compared the 

results from a Bayesian robust regression to those estimated by a Bayesian simple linear 

regression to ask if gill area index can explain variation in growth performance for the 42 

fish species in the Pauly dataset. The model fit was equivalent regardless of the model 

used based on the loo information criterion (looic, similar interpretation as AIC; robust 

regression weak prior = 119.6, robust regression strong prior = 120.9, Bayesian simple 

linear regression = 119.2; Table 4.3, Fig. 4.3).  

I.ii. Discussion 

Overall, we did not find that gill area index explained variation in growth performance for 

the 42 species of fish in the Pauly dataset (Table 4.3, Fig. 4.3). Specifically, the slope of 

the relationship of growth performance and gill area index, when parametrized according 

to the explicit predictions of the Gill Oxygen Limitation Theory—that gill area surface area 

constrains growth—had 95% BCIs that overlapped with zero. We note that there is a great 

deal of uncertainty in the relationship (the standard deviation of the slope ranges from 0.34 

– 0.39, depending on the three models). It may be that with more data, we may see a 

stronger relationship between gill area index (or other measures of gill surface area) and 

growth performance, as well as less variability. This question will be assessed with more 

data in Questions II.i – II.iv below.  

4.4. Act II: A fresh look at the relationship of maximum size, 

growth, and gill surface area 

The foundational relationship between maximum size, growth, and gill surface area has 

not been re-examined in the ~40 years since Pauly (1981). A wealth of gill surface area 

and life history data have been published in this time, with many species possessing raw 

gill surface area data—or measures for multiple individuals of the same species. 
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Additionally, statistical advances have afforded the opportunity to explore the nuances of 

data and the relationship between various parameters. This increase in the availability of 

data and statistical techniques opens the door to a fresh look at the relationship between 

maximum size, growth, and gill surface area. In the following, we ask four questions that 

examine the relationship between gill surface area and growth performance in more detail, 

as well as assess if two salient factors – evolutionary history and activity level – are 

important in explaining variation in this relationship.  

II.i. Question 

Does employing more realistic metrics of gill surface area (i.e., the ontogenetic regression 

coefficients instead of a simplified index) provide new insight into the relationship of gill 

surface area and growth performance?  

II.i. Premise 

The original relationship of maximum size, growth, and gill surface area was estimated 

using gill area index (G/Wd), a simplified metric of gill surface area that does not capture 

the known variability in gill surface area within and across species (see Question I.i.; Pauly 

1981, 2010; Bigman et al. 2018). First, this index is based on mean gill surface area and 

mean (measurement) body mass data, thus likely not representing the realized within-

species relationship between gill surface and body mass (which is known to scale 

hypoallometrically; Palzenberger & Polha 1992; Wegner 2011; Bigman et al. 2018).  

Second, the d value (the ontogenetic slope value for the relationship between gill surface 

area and body mass) would ideally be empirically estimated from individual (i.e., raw) gill 

surface area estimates matched to individual body sizes. Due to a paucity of such data, 

Pauly (1981) first estimated gill area index using a predicted d value for each species from 

a relationship between maximum size and the slope of gill surface area or metabolic rate 

for a mix of species for which it was known (see above in the ‘Premise’ of Question I.i.). 

Later, Pauly (2010) estimated gill area index using the same d value for all species (d = 

0.8). Hence, the gill area indices originally used by Pauly (1981) and (2010) may have 

been biased by the sizes at which gills were measured (i.e., the sizes used to generate 

the species’ means), the prediction of the parameter d, and the assumption that the slope 

of gill surface area was constant across a broad array of species (an assumption we now 

know is false). Thus, comparing the empirically estimated regression coefficients (i.e., the 
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intercept and slope) from an ontogenetic relationship of gill surface area and body mass 

across species as metrics of gill surface area, in place of gill area index, provides a more 

detailed view of how gill surface area varies within species, and underlies the evolutionary 

allometry across species (Palzenberger and Polha 1992; Wegner 2011; Bigman et al. 

2018).  

Here, we ask three sub-questions that examine how sensitive the relationship of gill 

surface area and growth performance is to the metric of gill surface area used. First, we 

compare the relationship of gill area index and growth performance for the 42 species in 

the Pauly dataset to the same relationship estimated across a larger number of fishes (full 

dataset, all with mean data). Next, we take advantage of the raw gill surface area and 

body mass data available and examine the relationship of gill surface area and growth 

performance across species with two different metrics of gill surface area: the predicted 

gill surface area at a given size (the intercept of the ontogenetic relationship between gill 

surface area and body mass) and the rate at which gill surface area increases with body 

mass (the slope of the ontogenetic relationship between gill surface area and body mass). 

Finally, we examine – using those species with raw data – if gill area index, estimated with 

an empirically estimated d (as opposed to a predicted d value or one set to 0.8 for all 

species), explains variation in growth performance. We additionally assess how the 

method used to estimate gill area index affects the relationship between gill area index 

and growth performance. Specifically, we compare the effect of estimating gill area index 

in the two ways employed in Pauly (1981) and Pauly (2010) (predicting d from Pauly’s 

relationship and setting d = 0.8, respectively) with our method of using an empirically 

estimated d. 

II.i.a. Question 

Does the relationship between gill area index and growth performance originally estimated 

by Pauly (1981) and again reported in Pauly (2010) still hold when examined across more 

species? 

  



87 

II.i.a. Method 

Additional data collection and sources 

We compiled a dataset of fish (teleost, elasmobranch, and coelacanth) gill surface area, 

(measurement) body mass associated with gill surface area, and von Bertalanffy growth 

parameters. An initial dataset was collated for those fish species with both gill surface 

areas and growth parameters in Fishbase (Froese and Pauly 2019). This initial dataset 

was then supplemented with species with published gill surface area data from other 

sources (if they also had published growth data). These other sources of gill surface area 

data were: Bigman et al. (2021), Gray (1954), Hughes & Morgan (1973), De Jager and 

Dekkers (1975), and Palzenberger & Pohla (1992) and references therein. 

Gill surface area data 

Raw and mean gill surface area estimates (cm2 or mm2) and associated body mass (g) 

were extracted from the original paper in which they were reported, if possible, otherwise 

they were extracted from Fishbase (for three species, the original paper could not be 

accessed). Both raw (i.e., estimates for multiple individuals of a species) and mean gill 

surface area data were included in our dataset. If more than one study reported raw data 

for a number of individuals for a given species, we included both datasets (this was only 

the case for three species: Alopias vulpinus Common Thresher, Carcharhinus plumbeus 

Sandbar Shark, Isurus oxyrinchus Shortfin Mako Shark). If a given species had both 

published raw and mean data, we preferentially chose the study that included raw data. 

All raw data were averaged per species to generate a species-specific mean of gill surface 

area and body mass (for analyses with raw data, see Question II.i.b.). If more than one 

study reported mean data (this was the case for four species), we chose the study with 

the largest sample size. Any gill surface area estimate that was not directly measured 

(e.g., predicted from geometric relationships) was not included in this study (for further 

discussion see Satora and Wegner 2012). Additionally, all species in Pauly’s dataset were 

included in our dataset with the exception of four species for which the gill surface area 

data could not be verified (Engraulis encrasicolus European Anchovy, Hippocampus 

hudsonicus = Hippocampus erectus Lined Seahorse, Scorpaena porcus Black 

Scorpionfish), or the gill surface area was predicted from a regression equation and not 

empirically measured (Spiny Dogfish Squalus acanthias). For the remaining 38 species, 
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25 of these did not have more recent or higher quality gill surface area data available (e.g., 

larger sample size, raw data) and thus the data from Hughes & Morgan (1973) was 

included in our dataset. For the remaining 13 species, either raw data were acquired, or 

as Pauly’s dataset included averaged mean gill surface area data (i.e., means of means), 

only one mean was included in the full dataset (the mean from the study with the largest 

sample size). All gill surface area and body mass estimates were log10-transformed prior 

to analyses. 

Life history data 

Using the ‘rfishbase’ package for Fishbase, we extracted all observations (i.e., studies 

reporting parameters of a von Bertalanffy growth function for a species) for each species 

in our dataset of k (year-1), the growth coefficient and 𝐿∞ (cm), the asymptotic length or 

mean length the individuals in a population would reach if they were to grow indefinitely 

(Froese and Pauly 2000; Boettiger et al. 2012). If reported, we also extracted 𝑊∞ (g), the 

asymptotic mass or mean mass the individuals in a population would reach if they were to 

grow indefinitely. If the length type (i.e., total length, TL, fork length, FL, etc.) was not 

reported for an observation of 𝐿∞, that observation (both k and 𝐿∞) was removed from the 

dataset. If growth data were not available in Fishbase for any species, the primary 

literature was searched for published age and growth data. For most species, the 

asymptotic size was often reported as 𝐿∞ and not 𝑊∞ and thus 𝑊∞ was estimated for each 

observation using length-weight regressions matched by length measure and sex 

downloaded from Fishbase using the ‘rfishbase’ package (Boettiger et al. 2012). For eight 

species, growth parameters were not available in Fishbase but were published in the 

literature. For seven species, sex-specific length-weight coefficients were not available for 

sex-specific growth parameters, and so available length-weight coefficients were 

averaged and then used to estimate 𝑊∞. For 14 species, length-weight coefficients for the 

same length type as was used to estimate growth parameters was not available, and thus 

matching type-specific length-weight regressions were collated from the literature. Finally, 

the published estimates of 𝑊∞ for two species were used instead of estimating them with 

length-weight regressions.  

Growth performance was calculated for each observation as log10(k * 𝑊∞) following Pauly 

(1981). For analyses, a mean of growth performance was taken for each species.  
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In total, our dataset (hereafter, “full dataset”) included 708 observations of gill surface area 

and body mass for a total of 132 fish species (teleost, elasmobranch, and coelacanth), as 

well as von Bertalanffy growth parameters for each of these species (species listed in 

Table S1). There are two considerations that necessitated generating two subsets of data 

to ensure our results were not biased: (1) the growth of ‘aquacultured’ species differs from 

wild fishes (due to food ad libitum, little predation, and aeration of aquaculture ponds, all 

which possibly result in faster growth; Pauly 2010), and (2) fishes that breath air (either by 

possessing an air-breathing organ or passive oxygen diffusion through the skin) as they 

have lower gill surface area for a given size compared to their non-air-breathing 

counterparts (Wegner 2011). Excluding aquaculture and airbreathing species had no 

effect on our results (for more detail, see Tables S3 – S9 in the Supplementary 

Information).  

Estimating gill area index 

The gill area index first estimated in Pauly (1981) was calculated for each species using 

mean gill surface area and body mass data, as well as a species-specific predicted d value 

based on a previously estimated linear relationship between d and maximum observed 

body mass (Wmax; see earlier text in the ‘Premise’ of Question I.i. and Pauly (1981). 

Subsequently, Pauly (2010) estimated gill area index with a value of d = 0.8 for all species. 

For this question (assessing whether the relationship between gill area index and growth 

performance still holds with more data), we chose to set d = 0.8 (but also examined 

sensitivity to different d values to estimate gill area index in Question II.i.c. below). For 

those species with raw gill surface area and raw body mass data, a species-specific mean 

of both were calculated prior to estimating gill area index following Pauly (1981, 2010). 

Thus, one gill area index value is estimated for each species.  

Statistical analysis 

We used simple linear regression estimated in a Bayesian framework using the brm 

function in the brms package to estimate regression coefficients for the relationship of gill 

area index and growth performance for the Pauly dataset and the full dataset (Bürkner 

2017, 2018; R Core Team 2020). For these models, growth performance was the 

response variable and gill area index was the predictor variable (see Question 2 above). 
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We examined the existence of outliers in all models using Cook’s distance (as estimated 

by OLS) and Pareto k (see Question I.i. above).  

II.i.a. Results 

In Pauly’s dataset of 42 species, one outlier was identified (Latimeria chalumnae, Cook’s 

distance > 0.5, but Pareto k value < 0.7). Thus, to be conservative, we compared the 

results from two Bayesian robust regressions (differed only in prior on nu; see above) to 

those estimated by a Bayesian simple linear regression (i.e., a linear regression in brms 

using the Gaussian distribution). All three models were equivalent, and thus, we compared 

the results from a Bayesian simple linear regression using Pauly’s dataset of 42 species 

and the full dataset of 132 species. No outliers were identified in the relationship of gill 

area index and growth performance estimated using the full dataset. 

The relationship of gill area index (as estimated by setting d = 0.8) and growth 

performance parametrized according to the predictions of the Gill Oxygen Limitation 

Theory was positive and significant irrespective of the number of species included in a 

dataset (Fig. 4.4). For the Pauly dataset, the mean slope = 0.83 (95% BCI 0.19 – 1.47) 

and for the full dataset, the mean slope = 0.87 (95% BCI 0.52 – 1.23). The slopes were 

statistically indistinguishable from each other as the slopes of both models fell within the 

95% BCI of the other (Fig. 4.4).  

II.i.a. Discussion 

Overall, we found a positive and significant relationship between gill area index and growth 

performance, irrespective of the number of species included in the analysis. We note that 

the r2 value is still low (0.16 for the full dataset, 0.15 for the Pauly dataset) and that there 

remains a great deal of uncertainty in the relationship, as indicated by the range of growth 

performance values for a given gill area index.  

In Question II.i.a., we still used gill area index, which relies on mean data and a predicted 

(or set) value of d. However, the raw gill surface area and body mass data now available 

through the updated data acquired herein allow us to further examine the relationship of 

gill surface area and growth performance using two different metrics of gill surface area, 

both estimated on individual-level data: (1) the predicted gill surface area at a given body 

size (the intercept of the ontogenetic relationship between gill surface area and body mass 
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for a single species) and (2) the rate at which gill surface area increases with body mass 

(the slope of the ontogenetic relationship between gill surface area and body mass for a 

single species). We can thus ask: 

II.i.b. Question 

Does growth performance vary with gill surface area at a given size (ontogenetic intercept) 

and the rate at which gill surface area increases with body mass (ontogenetic slope)? 

II.i.b. Method 

Data filtering 

We filtered our full dataset (see previous section) for those species that had raw gill 

surface area data for at least eight individuals (hereafter, “raw dataset”). This threshold of 

eight individuals was based on simulations (see SI) and other studies that have assessed 

the effect of sample size on regression parameters (Jenkins & Quintana-Ascencio 2020). 

In order to facilitate comparison across models with and without a phylogeny (Question 

II.ii., see below), we further restricted our dataset to include only those species that have 

a resolved phylogenetic position on the Fish Tree of Life or on a recently published 

Chondrichthyan phylogeny (Rabosky et al. 2018; Stein et al. 2018; Chang et al. 2019). Of 

the 132 species that have published gill surface area and life history traits in our full 

dataset, only 32 species met our criteria (raw gill surface area data with at least eight 

individuals, known growth parameters, and resolved position on the phylogeny) and were 

included in the raw dataset (Table S2, used in this analysis and the analysis for Questions 

II.ii. and II.iv.). To ensure our results were not sensitive to the choice of estimating gill 

surface area allometric coefficients (ontogenetic intercept and slope) using only species 

with at least 8 individuals, we also created an additional raw dataset in which we filtered 

for those species that had a body size range of at least an order of magnitude. Using this 

additional raw dataset had no effect on our results (Table S6).  

Statistical analysis 

To assess whether growth performance varied with gill surface area at a given size and 

the rate at which gill surface area increased with body mass, we employed a Bayesian 

multilevel modeling framework that included two levels of models. The first level of the 

model estimated the ontogenetic allometry of gill surface area and body mass for each 
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species, resulting in a species-specific posterior distribution of the intercept and a species-

specific posterior distribution of the ontogenetic slope. To ensure that intercepts are 

estimated accurately across the broad size range of species included in the dataset, body 

mass data were centered on the mean value of body mass for all 32 species in the dataset 

(300 g). The second level of this model then examined whether the species-specific gill 

surface area at a given body size (intercept of the ontogenetic allometry) or the species-

specific rate at which gill surface area increases with body mass (slope of the ontogenetic 

allometry) explained variation in growth performance across species. Thus, two multilevel 

models were run – one with growth performance as the response variable and the species-

specific intercepts as the predictor variable and one with growth performance as the 

response variable and the species-specific slopes as the predictor variable. In both 

models, the species-specific slopes and intercepts were standardized using the z-score 

transformation for input in the second level of the model, which facilitated model 

convergence and parameter estimation. The strength of using such a multilevel modeling 

approach is that the uncertainty in the species-specific intercepts and ontogenetic slopes 

estimated in the first level of the model are propagated across levels of the model as each 

iteration of all levels of the model happens in succession (Bigman et al. 2021). All models 

were fit in R using rstan (Stan Development Team 2019; R Core Team 2020; see the SI 

for more detail on our modeling approach.  

II.i.b. Results 

The relationship of gill surface area and growth performance was not significant for either 

metric of gill surface area– the ontogenetic intercept (i.e., the species-specific gill surface 

area at 300 g of body mass) or the ontogenetic slope (i.e., the species-specific rate at 

which gill surface area increased with body mass; Table 4.4, Fig. 4.5a, b). Both 

relationships yielded similar mean slope values and the 95% BCIs overlapped with zero: 

the mean slope for the relationship of growth performance and the ontogenetic intercept 

= 0.36 (95% BCI -0.11 to 0.83) and for the ontogenetic slope, the mean slope = 0.33 (95% 

BCI -0.20 to 0.83, Table 4.4, Fig. 4.5a, b).  

II.i.b. Discussion 

The finding that there was no relationship between gill surface area and growth 

performance when considering gill surface area decomposed into its allometric 
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components, the ontogenetic intercept and the ontogenetic slope, is in stark contrast to 

Pauly’s originally estimated relationship. These results are also in contrast to those in 

Question II.i.a. (the relationship of gill area index and growth performance across more 

species [132 species in full dataset] parameterized as growth performance ~ gill area 

index). This relationship (II.i.a.) was significant, such that species with a higher growth 

performance had a higher gill area index. The fact that we did not find a significant 

relationship with growth performance and either the ontogenetic intercept or ontogenetic 

slope may be due to the amount of uncertainty in the ontogenetic-level regression 

coefficients or the variation in ontogenetic regression coefficients across species. 

Although estimating a regression with eight individuals has been found to be suitable for 

our purposes, ensuring that the size range of each species is broad may decrease the 

uncertainty in the allometric coefficients. In addition, analyses across a larger number of 

species (i.e., > 32) would also help us understand how gill surface area and growth 

performance are related. 

Last, with raw data, we can now calculate an ‘empirical’ value of gill area index (i.e., not 

use a set d value or one predicted from a relationship). While this gill area index calculation 

still employs mean data, comparing gill area indices estimated using different values of d 

provides insight into understanding how variable this metric of gill surface area can be: 

II.i.c. Question 

When estimating gill area index with the empirically estimated d, do we still see a 

significant relationship between gill area index and growth performance?  

II.i.c. Method 

To assess if growth performance varied with gill area index as calculated with empirically 

estimated slope values, we built on the approach used in the previous question (Question 

II.i.b.). We again used the raw dataset and altered the Bayesian multilevel model to 

estimate gill area index using the species-specific slopes estimated in the first level and 

then altered the second level of the model to examine whether the species-specific gill 

area index explained variation in growth performance. Thus, this model estimated species-

specific slopes in the first level, calculated gill area index for each species (using the 

species-specific mean gill surface area, mean body mass associated with the mean gill 

surface area, and slope estimated in the first level of the model), and then estimated a 
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model in the second level that examined if gill area index explains variation in growth 

performance. The gill area index was log10-transformed and standardized (using a z-

score) prior to the second level of the model. Importantly, this approach allowed us to not 

fit subsequent models as each iteration of each model happens in succession. Thus, the 

uncertainty in the species-specific slopes, and thus in gill area index, is propagated to all 

levels of the model. See the SI for more detail on our modeling approach. To ensure our 

results were not sensitive to the choice of estimating gill surface area ontogenetic slopes 

(and thus gill area indices) using only species with at least 8 individuals, we also ran the 

same model on the additional raw dataset that only included those species that had a 

body size range of at least an order of magnitude. Our model output did not change when 

using this additional raw dataset (Table S6).  

Finally, we compared the results from these models – where gill area index was calculated 

using empirically estimated d values – to models in which gill area index was estimated 

(1) following Pauly (1981; d predicted from Pauly’s relationship between d and maximum 

observed body mass, see Question I.i.) and (2) following Pauly (2010; using d = 0.8). 

These models differed from those in Question II.i.a. only by the number of data points – 

here, we only used species in the raw dataset for purposes of comparison with the model 

that calculates gill area index using empirically estimated d values (which can only be 

done for species with raw (individual) gill surface area and body mass data).  

II.i.c. Results 

The relationship of gill area index and growth performance was not significant, regardless 

of how the gill area index was estimated (the 95% BCI of the slope overlapped with zero 

for all models Table 4.4, 4.5, Fig. 4.5c, 4.6). In other words, choosing different forms of d 

did not affect significance. When gill area index was estimated with empirically estimated 

d values (using the multilevel model), the mean slope = 0.13 (95% BCI -0.40 to 0.65; Table 

4.5, Fig. 4.6a). When gill area index was estimated with d = 0.8, the mean slope = 0.44 

(95% BCI 0.00 to 0.88; Table 4.5, Fig. 4.6b), and when the gill area index was estimated 

using the relationship of d and maximum size for other species, the mean slope = 0.06 

(95% BCI -0.43 to 0.54; Table 4.5, Fig. 4.6c). We note that for the relationship where gill 

area index was estimated with d = 0.8, the slope was slightly higher when excluding those 

species that are traditionally used in aquaculture (Table S7).  
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II.i.c. Discussion 

The finding that there was no relationship of gill area index and growth performance is 

again in contrast to Pauly’s original estimated relationship. These results are also in 

contrast to those in Question II.i.a. (the relationship of gill area index and growth 

performance across more species [132 species in full dataset] parameterized as growth 

performance ~ gill area index). This relationship (II.i.a) was significant, such that species 

with a higher growth performance had a higher gill area index. The fact that we did not 

find a significant relationship with gill area index and growth performance when estimating 

gill area index using species-specific empirically estimated d values – or the other two 

ways gill area index has been estimated in the past –suggests that the relationship of gill 

area index and growth performance is sensitive to the composition of a dataset. However, 

all results for species with raw data align, suggesting that growth performance is not simply 

(or only) related to gill surface area – whether gill surface area is measured by the 

ontogenetic intercept, ontogenetic slope, or gill area index (Fig. 4.5).  

II.ii. Question 

Is evolutionary history an important factor in determining how gill surface area and growth 

performance are related?   

II.ii. Premise 

When examining a relationship across different species, it is important to take into account 

their shared evolutionary history (Freckleton 2009). Species are not statistically 

independent from one another; instead, they share varying parts of evolutionary 

trajectories that can be traced back through deep time, and thus closely related species 

share more evolutionary history than more distantly related ones (Freckleton 2009). Thus, 

using typical linear regression methods (OLS, robust regression) to assess a relationship 

between traits across species violates the assumption that observations are independent 

of each other (Freckleton 2009; Revell 2010). Phylogenetic comparative methods were 

designed to account for the shared evolutionary history among species and can now be 

implemented with relative ease (Freckleton 2009; Symonds & Blomberg 2014; Bürkner 

2017, 2018). These methods estimate parameter values that account for the interspecific 

autocorrelation due to relatedness (Symonds & Blomberg 2014). When phylogenetically 
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correcting a linear regression, the phylogenetic component is typically included in the 

model as a random effect, thus accounting for any pattern among the residuals as (i.e., 

residual error) as opposed to the trait itself (Symonds & Blomberg 2014). As the 

relationship of gill surface area and growth performance is being assessed across species 

(i.e., an evolutionary allometry at the second level of the model), the phylogenetic structure 

of the data may be an important aspect to consider. Here, we add a phylogeny to the 

analyses of gill surface area and growth performance to account for species’ shared 

evolutionary history.  

II.ii. Method 

To incorporate a phylogeny into our analyses of gill surface area and growth performance, 

we built on the Bayesian multilevel modeling framework used in previous questions above. 

Specifically, we incorporated a random effect of phylogeny in the second level of each 

model, when examining whether the species-specific regression coefficients (i.e., the 

slope or intercept) of gill surface area explains variation in growth performance (the 

evolutionary allometry). To do so, we first constructed a new supertree with species from 

our dataset using two published phylogenies -- one for teleosts (Rabosky et al. 2018; 

Chang et al. 2019) and one for Chondrichthyans (Stein et al. 2018). Then, we reran three 

models: both multilevel models in Question II.i.b (first level estimates the species-specific 

gill surface area ontogenetic slopes and intercepts and the second level estimates if either 

the slopes or intercepts explain variation in growth performance) and the multilevel model 

in Question II.i.c (first level estimates the species-specific gill surface area ontogenetic 

slopes and intercepts, the slopes are used to estimate gill area index, and the second level 

estimates if gill area index explains variation in growth performance) with an addition of a 

phylogenetic random effect (see SI for more details on the modeling approach).  

II.ii. Results 

Overall, we found that including a phylogeny in the three models of growth performance 

and gill surface area, specifically as measured by the (1) the ontogenetic intercept, (2) the 

ontogenetic slope, and (3) gill area index (using empirically estimated d values) did not 

change the resulting parameter estimates of the respective models (Table 4.4, Fig. 4.5, 

compare panels a-c with d-f). The effect size of the phylogenetic signal (Pagel’s lambda, 
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) for all three models was approximately equal to 0.5, with wide 95% BCIs that nearly 

spanned the entire range of possible values (0 to 1, Table 4.4).  

II.ii. Discussion 

The finding that including a random effect of phylogeny in our analyses of gill surface area 

and growth performance did not change our results suggests that including a phylogenetic 

effect, while prudent, does not affect the relationship between growth performance and gill 

surface area (as parameterized here and on the set of species included in the analysis). 

The apparent lack of an underlying phylogenetic structure in this relationship could be for 

two reasons. First, commonly implemented methods to account for underlying 

phylogenetic structure in datasets rely on the Brownian motion model of trait evolution to 

model the expected variance and covariance between species (Felsenstein 1985; 

Freckleton 2009; Harmon 2018). This model of evolution assumes that traits evolve along 

the phylogeny through a random-walk process (Harmon 2018). Thus, species that are 

more closely related have had less time to diverge and thus will have trait values that are 

more similar (i.e., they co-vary) compared to distantly related species, whose trait values 

have been randomly drifting for a longer period of time (Symonds & Blomberg 2014). 

Other, and perhaps better, models of trait evolution exist, yet implementing them in 

practice is nontrivial (Harmon 2018). However, rapid advancements in the implementation 

of more complex comparative methods are occurring, which will undoubtedly open the 

door to exploring trait evolution in a broader sense, to include employing other models of 

trait evolution (Pennell & Harmon 2013). Second, it may be that evolutionary history truly 

does not explain remaining variation in growth performance after gill surface area has 

been accounted for. It could be that variation in growth performance across species may 

be entirely related to ecological and physiological processes that are independent of 

shared ancestry. Few studies examine patterns of growth across a large number of 

species; of those that have, it seems that whether or not phylogeny is important may be 

related to the taxa in question (Grady et al. 2014; van Denderen et al. 2020). Future work 

comparing growth patterns across species could examine this in more detail, as well as 

identify if other models of trait evolution are more relevant to explaining patterns of growth 

or gill surface across species.  
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II.iii. Question 

Does activity level better characterize the variation in growth performance across species 

compared to gill surface area?  

II.iii. Premise 

In addition to growth performance, other factors have been suggested to relate closely to 

gill surface area and growth across species. For example, Pauly (2010) flagged that ‘fish 

can either grow a lot or swim a lot, but not both’. Indeed, the activity level of a fish has 

historically been thought of as the most important predictor of a species’ gill surface area 

(Gray 1954; Hughes 1966). As more and more gill surface area data have been published, 

it is now well known that active, pelagic species have larger gill surface areas for a given 

size than their less active, benthic counterparts (Palzenberger & Pohla 1992; Wegner 

2011; Bigman et al. 2018). Further, it has been suggested that no relationship exists 

between growth performance and gill area surface area – as measured by gill area index 

– when activity level is accounted for. Blier et al. (1992) re-examined Pauly’s original 

dataset of growth performance and gill area index and found that when excluding species 

designated as ‘good swimmers,’ no relationship of growth performance and gill area index 

existed. When Pauly (2010) subsequently added activity level, as measured by the 

‘swimming capacity index’ (the sustained swimming speed of a fish multiplied by its body 

length), into his examination of the relationship of gill area index and growth performance, 

he found that both gill area index and the swimming capacity index explained variation in 

growth performance across fishes. However, the (unstandardized) effect size of his metric 

of activity level (= 0.049) was larger than the effect size of gill area index (= 0.011; Pauly 

2010). Thus, it remains unclear if gill surface area explains significant variation in growth 

performance across species, above and beyond what can be attributed to activity level.  

Here, we ask if gill surface area, as measured by the ontogenetic intercept of the 

relationship of gill surface area and body mass, the ontogenetic slope of the relationship 

of gill surface area and body mass, and gill area index (calculated with an empirically 

estimated d value), explains more variation in growth performance compared to activity 

level. For this question, we again use species with raw gill surface area and body mass 

data, which allows us to estimate species-specific ontogenetic intercepts and slopes.  
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II.iii. Method 

Data collection  

To include a standardized, objective, and quantitative metric of activity level in our 

analyses, we followed established methods and estimated the caudal fin aspect ratio – a 

morphological correlate of swimming speed and activity – of each species in the raw 

dataset (Palomares & Pauly 1989; Sambilay 1990; Bigman et al. 2018). Caudal fin aspect 

ratio (A) was calculated for each species as A = h2/s, where h is the height and s is the 

surface area of the caudal fin from anatomically correct field guide illustrations (Palomares 

& Pauly 1989; Sambilay 1990, Bigman et al. 2018). We obtained anatomically correct field 

guide illustrations from Sharks of the World (Ebert et al. 2016) for elasmobranch species 

and from FAO field guides for teleost species. For some teleost species, FAO images 

were not available (n = 7) and thus alternative field guides were used. If alternative guides 

were used, we generated an average of CFAR from up to four field guide illustrations (if 

available). Of the 32 species used in previous analyses, CFAR could only be estimated 

for 30 species as one species was a batoid and one was an eel (both do not have 

traditional caudal fin morphology).   

Although shortcomings exist with this approach (e.g., tail shape may change slightly with 

growth), using caudal fin aspect ratio as a quantitative metric for activity level improves 

the rigor of analyses regarding the relationship of gill surface area and activity, as most 

previous gill surface area studies have only examined broad, descriptive categories of 

activity level (e.g., ‘sluggish,’ ‘moderate activity’) based on the perceived, subjective 

activity of each species (e.g., Gray 1954; Wegner 2011). 

Statistical analysis 

To assess whether activity level explained more variation in growth performance 

compared to gill surface area, we fit three multilevel Bayesian models in which all 

predictors in the second level (which examined what factors explained variation in growth 

performance) were standardized for inferring the relative importance of each predictor. 

The first level of all three models estimated the species-specific posterior distribution of 

the ontogenetic intercepts and slopes of the relationship of gill surface area and centered 

body mass (at 300 g, see Question II.i.b.). The second level of the three models examined 
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whether caudal fin aspect ratio or the ontogenetic gill surface area intercept (model 1), 

ontogenetic gill surface area slope (model 2), or gill area index (model 3) explained more 

variation in growth performance. We estimated the correlation and variance inflation 

factors (VIF) for all three models to ensure that activity level and gill surface area, as 

parameterized in our models, were not colinear or correlated. Additionally, we compared 

models with and without the inclusion of a phylogenetic random effect.  

II.iii. Results 

In all three models, caudal fin aspect ratio explained more variation in growth performance 

across fishes compared to the ontogenetic intercept, the ontogenetic slope, or gill area 

index, respectively (Table 4.6, Fig. 4.7). As with the previous models in Questions II.i and 

II.ii, gill surface area, regardless of metric, did not explain variation in growth performance 

across species as the 95% BCI for all three overlapped with zero (Table 4.6). Based on 

the mean effect size estimates (slope values in Table 4.6) caudal fin aspect ratio explained 

5.5 times more variation than the ontogenetic intercept, 3.3 times more variation than the 

ontogenetic slope, and 16 times more variation than gill area index (calculated using 

empirically estimated d values, Table 4.6, Fig. 4.7). Additionally, no multicollinearity or 

correlation was detected for any model that included both caudal fin aspect ratio and gill 

surface area based on VIFs or correlation indices (whether measured by the gill surface 

area ontogenetic intercept, the gill surface area ontogenetic slope, or gill area index, Table 

4.6). Finally, the inclusion of a phylogeny did not change parameter estimates for any 

model (Table 4.6).  

II.iii. Discussion 

Our results highlight that activity – as measured by the caudal fin aspect ratio of a species 

– better explains variation in growth performance compared to gill surface area, regardless 

of the gill surface area metric used (intercept, slope, or gill area index). Thus, activity level, 

and not gill surface area, appears to be a better predictor of variation in growth and 

maximum size across species. Of course, gill surface area is highly intertwined with 

activity, as decades of work have uncovered that more active species have larger gill 

surface areas than their less active counterparts (Gray 1954; Palzenberger & Pohla 1992; 

Wegner 2011; Bigman et al. 2018). Thus, it is non-trivial to partition variance between 

activity and gill surface area, which may be reflected in our results despite the low 



101 

correlation found between the specific predictors used for gill surface area and growth 

performance used in our models. Further work examining other, possibly more refined 

measures of both activity level, such as swimming speed or even aerobic scope, and 

growth (we used von Bertalanffy growth coefficients) may shed more light on the 

relationship of gill surface area, activity, and growth. Additionally, other factors not 

considered here (e.g., environmental temperature, diet and food availability) are known to 

affect growth and size in fishes (Morais & Bellwood 2018; van Denderen et al. 2020). 

Exploring the relationships among gill surface area in conjunction with these other salient 

factors are fruitful avenues for future inquiry that may help us understand how other factors 

(e.g., temperature, food, and oxygen) affect growth across species.  

II.iv. Question 

Do species with faster growth rates for their size have larger gills (does gill surface area 

explain the variation in growth coefficients for fishes that grow to the same asymptotic 

size)? 

II.iv. Premise 

One inherent prediction resulting from the assertion that maximum size, growth, and gill 

surface area are tightly correlated is that fishes with large gills will grow rapidly to their 

maximum size (Pauly 2010). In other words, variation in growth (as measured by the von 

Bertalanffy growth coefficient in fishes, k) for individuals or species that grow to the same 

asymptotic sizes (𝑊∞) may be explained by differences in gill surface areas across 

species. When examining this relationship using gill area index across 52 species, Pauly 

(2010) found that gill area index did indeed explain variation in growth performance across 

species, above and beyond what can be attributed to asymptotic size (Pauly 2010). Now 

that more gill surface area data is available, we can test to what extent this relationship 

still holds.  

II.iv. Method 

To assess whether gill surface area, in addition to asymptotic size, explained variation in 

growth coefficients across species, we fit three multilevel Bayesian models. The first level 

of all three models estimated the species-specific posterior distribution of the ontogenetic 
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intercepts and slopes of the relationship of gill surface area and body mass (centered at 

300 g, see above). The second level of the three models examined if the ontogenetic 

intercept (model 1), ontogenetic slope (model 2), or gill area index (model 3) explained 

additional variation in the relationship between the von Bertalanffy growth coefficient and 

asymptotic size across species. Both predictors (the gill surface area metric and 

asymptotic size) in the second level of the model were standardized (by z-score) in order 

to facilitate comparison among them and infer the relative importance of a given predictor 

in explaining variation in growth coefficients. We estimated the correlation and variance 

inflation factors (VIF) between gill surface and asymptotic size for all three models to 

ensure that these traits, as parameterized in our models, were not colinear or correlated. 

Additionally, we compared models with and without the inclusion of a phylogenetic random 

effect. For more details on our modeling approach, see the SI.  

II.iv. Results 

Gill surface area did not explain variation in growth coefficients across species, regardless 

of which gill surface area metric was used: the ontogenetic intercept, the ontogenetic 

slope, or gill area index (Table 4.7, Fig. 4.8). Specifically, the 95% BCI of the gill surface 

area metric in each of the three models overlapped with zero (Table 4.7). In contrast, 

asymptotic size did explain variation in growth coefficients across species in all three 

models (Table 4.7). Based on the mean effect size estimates (slope values in Table 4.7) 

asymptotic size explained 3.25 times more variation than the ontogenetic intercept, 5.4 

times more variation than the ontogenetic slope, and 9.33 times more variation than gill 

area index (estimated using empirically estimated d values, Table 4.7). Additionally, no 

multicollinearity or correlation was detected between gill surface area and asymptotic size 

in any of the three models (Table 4.7). Finally, the inclusion of a phylogeny did not 

significantly change parameter estimates for any model (Table 4.7).  

II.iv. Discussion 

These results suggest that gill surface area does not explain the variation in the von 

Bertalanffy growth coefficient for individuals or species that grow to the same asymptotic 

sizes. As such, we do not find evidence in support of the idea that fishes with large gills 

grow rapidly to their maximum size. Our results show that asymptotic size explained more 

variation in growth coefficients across fishes compared to gill surface area. As stated 
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earlier, other factors – such as activity (as examined in this study), temperature, or food 

availability – are likely more important predictors of growth and maximum size across 

fishes.  

4.5. Overall discussion 

Overall, we found that gill surface area explained little variation in growth and maximum 

size across fishes, and that other variables – particularly activity, were more important in 

explaining variation in these life history traits. While we used many approaches in this 

study to assess whether gill surface area explained variation in growth and maximum size 

across species, all the models were in agreement and supported the idea that variation in 

growth and maximum size across fishes cannot simply be explained by gill surface area 

alone. We note that all models were quite noisy and had a great deal of residual error. 

This may provide support that activity level (as tested here), as well as other factors 

(environmental temperature, food availability) likely play a larger role in fish growth 

compared to gill surface area (Morais & Bellwood 2018; Audzijonyte et al. 2019; van 

Denderen et al. 2020). From a life history perspective, our study thus suggests that gill 

surface area likely does not determine maximum size in fishes, as predicted by the Gill 

Oxygen Limitation Theory. Instead, other mechanisms may underlie the suggested pattern 

of oxygen limitation on growth under warmer temperatures or in larger species (Hoefnagel 

& Verberk 2015; Audzijonyte et al. 2019, Rubalcaba et al. 2020). By extension, our work 

suggests that the hypoallometric scaling of gill surface area does not confer a limitation 

on the oxygen supply required for aerobic metabolism. However, we caution that the Gill 

Oxygen Limitation Theory is multifaceted (Pauly 1981, 2010). Our work only tested one 

prediction of this theory, leaving much to be done to evaluate this theory in its entirety 

(Pauly 1981, 2010). We focus the remainder of our discussion on the importance of 

recognizing data types and choosing statistical analyses, as well as lay out a path forward 

to further understand the interplay among gill surface area (and more broadly, oxygen) 

and life histories across fishes.  

A strength of this study and general approach is the comparison of 

ontogenetic/intraspecific relationships across species. The central tenet of the Gill Oxygen 

Limitation Theory is that the hypoallometric ontogenetic scaling of gill surface area and 

body mass limits the supply of oxygen for growth as an organism increases in size, 
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ultimately determining its maximum size (Pauly 1981, 2010, 2021). Thus, it is necessary 

to examine the relationship of growth and maximum size in the context of an allometry (or 

scaling), as opposed to simply using a metric such as gill area index or a mass-specific 

measure of gill surface area (Pauly 1981, 2010, 2021). Another important reason why a 

scaling approach is necessary is evident when considering scale: the Gill Oxygen 

Limitation Theory is focused on how the scaling of gill surface area within species drives 

patterns across species, while other theories surrounding the role that oxygen plays in 

structuring life histories, population dynamics, and ecosystem functioning, among other 

processes, are largely centered on species-level mean data (i.e., the Metabolic Theory of 

Ecology; Brown et al. 2004). A combined approach that has the flexibility to incorporate 

raw and mean data, such as the modeling approach developed here, will help us to 

understand how raw data, and the ontogenetic scaling relationships they confer, scale up 

to structure patterns across species, communities, and ecosystems. Indeed, 

understanding the role that oxygen plays in the ecology, physiology, and evolution of 

fishes will require an integrated approach that allows us to scale up individual-level 

physiological and ecological data to species- and ecosystem-level patterns.  

To this end, we outline three areas for future research that would help us to understand 

the role that gill surface area, and more broadly, oxygen, may play in structuring the 

growth, maximum size, and more broadly, the life histories of fishes. First, there is an 

underappreciated complexity in estimating accurate and reliable ontogenetic regression 

slopes. Ideally, species-specific raw data that spans the entire body size range of a 

species would be used to estimate an ontogenetic slope, yet these data are rarely 

available. Estimating accurate slope values is central to testing whether the scaling of gill 

surface area (or other size-dependent traits such as metabolic rate) affect ecological, 

physiological, and evolutionary patterns across species. Here, we took care to identify the 

number of individuals of a given species that were required to produce a reliable and 

reasonable slope estimate, and only used data to estimate regression coefficients for 

species that had the minimum number of individuals. We urge other researchers to take 

a similar approach when estimating ontogenetic slope values. Future work could build off 

of our simulations to identify the minimum proportion of a species’ size range needed to 

estimate a reliable and reasonable slope value. Second, future studies should examine 

other factors (e.g., temperature, food availability, metabolic rate) that may underlie life 

history traits and maximum size across species and assess whether and how oxygen 
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plays a role in structuring these processes (Audzijonyte et al. 2019; Verberk et al. 2020). 

Indeed, we have not dealt with environmental temperature, a factor known to be important 

in explaining variation in growth across fishes (van Denderen et al. 2020). Future work 

could examine the relationships among gill surface area, environmental temperature, and 

growth to assess whether gill surface area varies with environmental temperature (as does 

metabolic rate), and whether this interaction explains variation in growth. Third, without 

complementary experimental studies that can manipulate abiotic factors such as oxygen, 

temperature, and food availability, it is difficult to identify the mechanisms that confer the 

observed correlational patterns (Audzijonyte et al. 2019, Bigman et al. 2021). Marrying 

correlational and experimental work will help us understand the role that oxygen plays in 

structuring growth and other life history characteristics, and more broadly, the ecology, 

physiology, and evolution of organisms (Audzijoynte et al. 2018). Such work is incredibly 

timely in light of the uncertainty regarding how the physiology and ecology of fishes will 

determine the response of species to continued global environmental change (Verberk et 

al. 2020, Lefevre et al. 2021).  
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4.6. Tables 

Table 4.1 The six questions we ask to examine the relationship of 
maximum body size, growth, and gill surface area in fishes.  

 

Research question 

 

Act I 

  

In the original dataset Pauly (1981) uses to examine the relationship between gill surface 
area and growth: 

 

i. What constitutes an outlier and how sensitive is the relationship of gill area index 
and growth performance to outliers? 

ii. What is the effect of parameterizing the relationship between gill area index and 
growth performance based on the predictions made by the Gill Oxygen Limitation 
Theory (i.e., testing if gill area index can explain variation in growth performance)? 

 

Act II 

 

When including the gill surface area and growth data that has become available in the 40 
years since this relationship was first tested (i.e., broadly across fishes): 

 

i. Does employing more realistic metrics of gill surface area (i.e., the ontogenetic 
regression coefficients instead of a simplified index) provide new insight into the 
relationship of gill surface area and growth performance (note there are three sub 
questions within this question)? 

 

ii. Is evolutionary history an important factor in determining how gill surface area and 
growth performance are related?   

iii. Does activity level better characterize the variation in growth performance across 
species compared to gill surface area?  

 

iv. Do species with faster growth rates for their body size have larger gills? 
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Table 4.2 Comparison of model coefficients estimated by various 
regression methods. The number of species used in each model is 
indicated by ‘n =’.  

 

Model name Regression 
method 

Intercept  

(95% CI) 

Slope 

(95% CI) 

n = 

 

Pauly (1981) reported fit with 
no outliers  

 

Reduced major axis 
(i.e., “functional”) 
regression” 

 

-0.53 

(not given) 

 

0.57 

(not given) 

 

37 

Pauly (1981) reported fit with 
2 outliers excluded  

Reduced major axis not given not given 40 

Reduced major axis: 37 
species 

Reduced major axis 
regression 

-0.06 

(-0.40 – 0.19) 

0.40 

(0.31– 0.53) 

37 

Reduced major axis: 40 
species 

Reduced major axis 
regression 

0.02 

(-0.34 – 0.28) 

0.40 

(0.30 – 0.54) 

40 

Reduced major axis: 42 
species 

Reduced major axis 
regression 

-0.26 

(-0.71– 0.08) 

0.47  

(0.35 – 0.65) 

42 

Quantile regression Robust regression 0.63 

(0.38 – 0.86) 

0.17 

(0.05 – 0.24) 

42 

Iteratively reweighted least 
squares 

Robust regression 

 

0.64 

(0.31 – 0.98) 

0.14 

(0.02 – 0.26) 

42 

Robust Bayesian regression 
weak prior on nu 

Bayesian robust 
regression  

0.68 

(0.29 – 1.08) 

0.13  

(-0.02 – 0.27) 

42 

 

Robust Bayesian regression 
strong prior on nu 

Bayesian robust 
regression 

0.63 

(0.27 – 1.00) 

0.15  

(0.02 – 0.28) 

42 
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Table 4.3 Comparison of Bayesian model coefficients and their 95% 
Bayesian Credible Intervals (BCI) estimated for the relationship of gill area 
index and growth performance, as parameterized according to the 
predictions made by the GOLT (growth performance ~ gill area index).  
Model selection was conducted using Pareto-smoothing importance sampling leave-one-out 
cross validation (PSIS-LOO) using the loo package in R v.5.3.1 and v.4.0.1. looic = LOO 
information criterion value (similar to Akaike Information Criterion [AIC]). 

Regression method Intercept  

(95% BCI) 

Slope 

(95% BCI) 

looic 

Bayesian robust regression with strong 
prior on nu 

2.03  

(1.20 – 2.86) 

0.58  

(-0.19 – 1.34) 

120.9 

Bayesian robust regression with weak 
prior on nu 

2.16  

(1.38 – 2.91) 

0.48  

(-0.21 – 1.20) 

119.6 

Bayesian regression with gaussian 
distribution 

2.22  

(1.50 – 2.95) 

0.43  

(-0.23 – 1.10) 

119.2 
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Table 4.4 Comparison of all coefficients and their 95% Bayesian 
Credible Intervals (BCI) estimated from models parameterized with growth 
performance as the response variable and either the species-specific slope 
or intercept as the response variable (differentiated in the ‘Model 
parameterization’ column) with and without the inclusion of a phylogeny.  
A Bayesian multilevel modeling framework was used to estimate all parameters in Stan using the 
package rstan in R v.4.0.2. All intercepts and slopes were standardized in the model prior to the 
second level (see text and SI). 

Model parameterization Intercept 

(95% BCI) 

Slope  

(95% BCI) 

Phylogenetic signal 

() 
    

Growth performance ~ intercept  3.08  

(2.63 to 3.53) 

0.36 

(-0.11 to 0.83) 

-- 

    

Growth performance ~ intercept 3.08 

(2.62 to 3.52) 

0.36 

(-0.13 to 0.83) 

0.50 (0.03 to 0.98) 

    

Growth performance ~ slope 3.08 

(2.63 to 3.53) 

0.33 

(-0.20 to 0.83) 

-- 

    

Growth performance ~ slope 3.08 

(2.63 to 3.52) 

0.33 

( -0.21 to 0.84)  

0.50 (0.03 to 0.98) 

Growth performance ~ gill area 
index 

3.08 

(2.61 to 3.54) 

0.13 

(-0.40 to 0.65) 

-- 

Growth performance ~ gill area 
index 

3.08 

(2.62 to 3.54) 

0.13 

(-0.39 to 0.63) 

0.50 (0.03 to 0.97) 
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Table 4.5 Comparison of coefficients and their 95% Bayesian Credible 
Intervals (BCI) for the relationship of growth performance and the gill area 
index as calculated using (1) empirically estimated d values, (2) d = 0.8, and 
(3) d predicted from the relationship of d and maximum size in Pauly (1981).  
The model where gill area index was calculated using empirically estimated ontogenetic slope 
values was estimated using a Bayesian multilevel modeling framework in rstan in R v.4.0.2 and 
the models where gill area index was calculated using either d = 0.8 or d predicted from Pauly 
(1981) were estimated using a Bayesian linear regression using the brms package in R.v.4.0.2. 
All slopes were standardized in the model prior to estimating gill area index, which was log10-
transformed prior to the second level of the (see text and SI). 

Estimation of gill area index in model for 

growth performance ~ gill area index 

Intercept 

(95% CI) 

Slope 

(95% CI) 

 

Empirically estimated 

 

3.08 

(2.61 to 3.54) 

 

0.13 

(-0.40 to 0.65) 

d = 0.8 3.08 

(2.64 to 3.53) 

0.44  

(0.00 to 0.88) 

Predicted d 3.08  

(2.62 to 3.54) 

0.06 

(-0.43 to 0.54) 
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Table 4.6 Comparison of coefficients and their 95% Bayesian Credible 
Intervals (BCI) for the relationship of growth performance, activity level (as 
measured by caudal fin aspect ratio), and gill surface area, as measured by 
(1) the ontogenetic intercept, (2) the ontogenetic slope, and (3) gill area 
index. 
All models were estimated using a Bayesian multilevel modeling framework in Stan using the 
package rstan in R v.4.0.2. All predictors in the second level of the model were standardized and 
thus the effect sizes for the slopes are relative to each other (see text and SI). GP = growth 
performance, CFAR = caudal fin aspect ratio, GSA = gill surface area, VIF = variance inflation 
factor, and COR = correlation matrix value. 

Model 
parameterization  

of the second 
level 

Intercept 

(95% CI) 

CFAR 
Slope 

(95% CI) 

GSA slope 
(95% CI) 

Phylogenetic 

signal () 

Relative 
importance 
of CFAR vs. 
gill surface 
area  

VIF COR 

growth performance ~ activity level + 

intercept 2.95 

(2.51 to 3.38) 

0.60  

(0.21 to 1.00) 

0.11  

(-0.35 to 0.58) 

-- 0.60/0.11 = 5.5 1.16 0.29 

intercept 2.95  

(2.52 to 3.39) 

0.60  

(0.20 to 1.00) 

0.11  

(-0.38 to 0.58) 

0.50  

(0.03 to 0.98) 

-- -- -- 

slope 2.95  

(2.52 to 3.38) 

0.62  

(0.25 to 0.99) 

0.19  

(-0.29 to 0.67) 

-- 0.62/0.19 = 3.3 1.02 0.25 

slope 2.95 

(2.52 to 3.39) 

0.62  

(0.24 to 0.99) 

0.19  

(-0.29 to 0.65) 

0.50  

(0.02 to 0.98) 

-- -- -- 

gill area index 2.95  

(2.51 to 3.39) 

0.64 

 (0.27 to 1.02) 

-0.04  

(-0.52 to 0.43) 

-- 0.64/0.04 = 16 1.05 0.09 

gill area index 2.94  

(2.52 to 3.38) 

0.64  

(0.26 to 1.03) 

-0.04  

(-0.52 to 0.44) 

0.50  

(0.03 to 0.97) 

-- -- -- 
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Table 4.7 Comparison of coefficients and 95% Bayesian Credible 
Intervals (BCI) for the relationship of the growth coefficients (k), asymptotic 
size (𝑾∞), and gill surface area, as measured by (1) the ontogenetic 
intercept, (2) the ontogenetic slope, and (3) gill area index. 
All models were estimated using a Bayesian multilevel modeling framework in Stan using the 
package rstan in R v.4.0.2. All predictors in the second level of the model were standardized and 
thus the effect sizes for the slopes are relative to each other (see text and SI). GSA = gill surface 
area, VIF = variance inflation factor, and COR = correlation matrix value.  

Model 
parameterization  

of the second 
level 

Intercept 

(95% CI) 

𝑾∞ Slope 

(95% CI) 

GSA slope 
(95% CI) 

Phylogenetic 

signal () 

Relative 
importance of 
𝑾∞  vs. gill 
surface area  

VIF COR 

 k ~ 𝑊∞+  

intercept -0.55 

(-0.68 to -0.42) 

-0.26 

(-0.38 to -0.13) 

-0.08  

(-0.22 to 0.06) 

-- -0.26/-0.08 = 3.25 1.14 0.35 

intercept -0.55 

(-0.68 to -0.42) 

-0.26 

(-0.39 to -0.14) 

-0.06 

(-0.20 to 0.07) 

0.50  

(0.03 to 0.97) 

-- -- -- 

slope -0.55  

(-0.68 to -0.42) 

-0.27 

(-0.40 to -0.14) 

-0.05  

(-0.19 to 0.09) 

-- -0.27/-0.05 = 5.4 1.08 0.27 

slope -0.55 

(-0.68 to -0.41) 

-0.28 

(-0.40 to -0.15) 

-0.03 

(-0.17 to 0.12) 

0.50  

(0.03 to 0.97) 

-- -- -- 

gill area index -0.55 

(-0.69 to -0.41) 

-0.28  

(-0.40 to 0.15) 

-0.03 

(-0.17 to 0.11) 

-- -0.28/-0.03=9.33 1.02 0.13 

gill area index -0.55 

(-0.68 to -0.41) 

-0.28 

(-0.40 to -0.15) 

-0.03 

(-0.17 to 0.11) 

0.50  

(0.02 to 0.98) 

-- -- -- 
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4.7. Figures 

 

Figure 4.1 The somatic growth coefficient and asymptotic weight from the von Bertalanffy growth function are 
inversely related across the 132 fish species included in our reanalysis of the relationship between growth 
performance and gill surface area. 
Each data point represents a single species-specific estimate of the (log10) growth coefficient and (log10) asymptotic weight and all estimates for 
each of the 132 species recorded in Fishbase are plotted separately (thus a given species could have multiple data points). Colors indicate the 
category or type of species: species traditionally used in aquaculture (blue), species that are known to be capable of air-breathing (yellow), 
species included in the original analysis of Pauly (1981; light purple), and species that were added to Pauly (1981)’s dataset (green).  
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Figure 4.2 The significance of the relationship of growth performance and gill area index is dependent upon the 
type of regression used. 
(a) A coefficient plot of the mean slope (black dot) and 95% intervals (confidence intervals for all non-Bayesian models, credible intervals for all 
Bayesian models) for all models examined. The vertical grey line indicates zero. (b) The relationship of (log10) growth performance and (log10) gill 
area index depending on various regression methods.  
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Figure 4.3 The relationship of growth performance and gill area index for the 42 fish species in the Pauly (1981) 
dataset as parameterized according to the GOLT’s prediction that gill surface area constrains growth in fishes. 
(a) A coefficient plot of the mean slope (black dot) and 95% Bayesian Credible Intervals (BCIs) for both Bayesian robust regression models (weak 
versus strong prior on nu) and the Bayesian regression with a Gaussian distribution. The vertical grey line indicates zero. (b) The relationship of 
(log10) gill area index and (log10) growth performance for those three same models. The model fit is equivalent regardless of model; the 95% BCIs 
for all three models overlap with zero.  
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Figure 4.4 The relationship bwtween (log10) growth performance and (log10) gill area index does not 
significantly differ between the (a) 42 fish species in the Pauly (1981) dataset and the (b) 132 fish species in 
which gill surface area data has become available in the forty years since this relationship was first examined. 
The model was parameterized according to the GOLT’s prediction that gill surface area constrains growth in fishes and with gill area index 
estimated using d = 0.8. The model fits were estimated Bayesian linear regression using the brm function in the brms package in R.v.4.0.2. 
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Figure 4.5 Little to no relationship of (log10) growth performance and gill surface area exists when 
decomposing the allometry of gill surface area into the (a) ontogenetic intercept (the species-specific gill surface 
area at 300 g of body mass) and (b) the ontogenetic slope (the species-specific rate of increase in gill surface 
area with body mass), (d,e) with or (a,b) without a phylogeny. 
There is also no relationship between (log10) growth performance and the gill area index regardless of whether a phylogeny is included (c,f). 
Species-specific ontogenetic regression coefficients and their relationships with growth performance were estimated in a Bayesian multilevel 
model where the first level estimated the ontogenetic regression coefficients, and the second level estimated the relationship of growth 
performance and the ontogenetic intercept or the ontogenetic slope. The relationship between growth performance and gill area index was also 
estimated using a Bayesian multilevel model in which gill area index for each species was estimated from the ontogenetic slope (and mean gill 
surface area and mean body mass data) resulting from the first level of the model, and then the second level estimated the relationship between 
growth performance and those gill area index estimates. Intercepts and slopes were standardized in the model prior to the second level and the 
gill area index was log10-transformed (see text and SI for more detail). The fit lines represent the fitted growth performance for each value of the 
respective gill surface area measure, and the grey shaded region represents the 95% Bayesian Confidence Interval. The 95% BCIs for all models 
overlapped with zero (see Table 4). The phylogenetic tree in the lower left corner of the bottom row indicates the model incorporated a 
phylogenetic tree.  



118 

 

Figure 4.6 The relationship between (log10) growth performance and (log10) gill area index is not significant 
regardless of how gill area index is calculated: (a) gill area index calculated from empirically estimated d values, 
(b) gill area index calculated using d = 0.8, and (c) gill area index calculated from the relationship of d and 
maximum size from Pauly (1981). 
All models were estimated using the ‘raw dataset’ of 32 species with raw gill surface area and body mass data. The relationship in (a) was 
estimated using a Bayesian multilevel modeling framework (see text), and the relationship in (b) and (c) was estimated using Bayesian linear 
regression (see text). The fit lines represent the fitted growth performance for each value of gill area index and the grey shaded region represents 
the 95% Bayesian Confidence Interval. The 95% BCIs for all models overlapped with zero.  
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Figure 4.7 Activity level (as measured by caudal fin aspect ratio) explains more variance in growth performance 
compared to gill surface area as measured by the ontogenetic intercept, ontogenetic slope, or gill area index 
The mean (black dot) and 95% Bayesian Credible Interval (BCI, black line) of the standardized effect sizes for the slope values in all three models 
as estimated by a Bayesian multilevel modeling framework (see text and SI). In all three models, the slope value for the metric of gill surface area 
overlapped with zero, but the slope value for activity did not.  
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Figure 4.8 Gill surface area, as measured by the species-specific (a) ontogenetic intercept or (b) ontogenetic 
slope of the relationship of gill surface area and body mass, or the (c) gill area index, does not differ across 
fishes that differ in von Bertalanffy growth coefficients (k) and asymptotic sizes (𝑾∞). 
Gill surface area is indicated by a gradient of color, with darker blue indicating a higher intercept, slope, or gill area index, and lighter blue 
indicating a lower intercept, slope, or gill area index. Species-specific ontogenetic regression coefficients and their relationships with k and 
𝑊∞were estimated in a Bayesian multilevel model where the first level estimated the ontogenetic regression coefficients, and the second level 
estimated the relationship of k, 𝑊∞, and the ontogenetic intercept or the ontogenetic slope. The relationship between k, 𝑊∞, and gill area index 

was also estimated using a Bayesian multilevel model in which gill area index for each species was estimated from the ontogenetic slope (and 
mean gill surface area and mean body mass data) resulting from the first level of the model, and then the second level estimated the relationship 
between growth performance and those gill area index estimates. Intercepts and slopes were standardized in the model prior to the second level 
and the gill area index was log10-transformed (see text and SI for more detail.
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4.9. Supplementary Information  

4.9.1. Supplementary Methods 

Model overview 

Model parameterization 

We constructed and compared phylogenetic Bayesian multilevel (i.e., hierarchical) linear 

regression models in R v.4.0.2 in Stan using the package rstan (Stan Development Team 

2019; R Core Team 2020). 

All multilevel models constructed in this study shared the same foundation and then were 

built upon to either add additional covariates (e.g., activity level) or a phylogenetic random 

effect. After the first level of the model, the relevant gill surface area metric was extracted 

(ontogenetic intercept or ontogenetic slope of gill surface area for each species) or 

calculated (gill area index). See text for a more detailed overview of how gill area index is 

estimated. 

Basic parametrization 

First level of the model: 

GSAi =  + jjxi,j + i 

 

𝜀̂ ~ normal (0, 𝜎𝑒
2) 

   ~ student-t (3, 0, 10) 

mass    ~ student-t (3, 0, 10) 

𝜎𝑒
2 ~ half-Cauchy (0, 10) 

Here, GSAi is the response variable (mean whole-organism gill surface area),  is the 

intercept, and mass is the slope of the body mass associated with gill surface area, xmass. 
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The priors on the intercept, , slope, mass, and error, 𝜎𝑒
2, are also reported and our choice 

of priors is explained below. 

Second level of the model: 

Yi =  + jjxi,j + i 

 

𝜀̂ ~ multivariate normal (0, 𝜎𝑒
2 ) 

   ~ student-t (3, 0, 10) 

j    ~ student-t (3, 0, 10) 

𝜎𝑒
2 ~ half-Cauchy (0, 10) 

Here, Yi is the response variable (growth performance for Questions II.i. – II.iii., k for 

Question II.iv.),  is the intercept, and j is the slope of the predictor (either the ontogenetic 

intercept or the ontogenetic slope of gill surface area, or, the gill area index for each 

species), xi,j for each species. The priors on the intercept, , slope, j, and error, 𝜎𝑒
2, are 

also reported and our choice of priors is explained below. 

Other covariates (caudal fin aspect ratio for question II.iii. and asymptotic weight for 

question II.iv.) were added on as needed.  

 

Models with phylogenetic parameterization 

Second level of the model: 

Yi =  + jjxi,j + i 

 

𝜀̂ ~ multivariate normal (0, 𝜎𝑒
2 ∗ Cphylo) 

Cphylo =  * V + (1 - ) * I 
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   ~ student-t (3, 0, 10) 

j    ~ student-t (3, 0, 10) 

𝜎𝑒
2 ~ half-Cauchy (0, 10) 

Here, the first level of the model does not change, but the second level does. The second 

level of the model is as described above with the change in the residual error structure. 

Following (Frishkoff et al. 2017), we assumed the residual error, i, to be distributed 

according to a multivariate normal distribution, where 0̂ is a vector with length N, σe
2 is the 

variation in responses to the predictors (jxi,j ), and Cphylo is the NN correlation matrix 

resulting from the phylogeny. The strength of the phylogenetic signal, , in the residuals 

under a model of evolution of Brownian motion is estimated according to Cphylo =  * V + 

(1 - ) * I, where V is the variance covariance matrix from the phylogeny, and I is an identity 

matrix of NN values with σe
2 on the diagonal.  

Choice of priors 

We used weakly informative regularizing priors based on recommendations for Stan 

(https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations). As  

(phylogenetic signal) has an equal chance of taking any value within the bounds of zero 

to one, we used a prior with a uniform distribution from zero to one. As 𝜎𝑒
2 (variation in 

responses to the predictors (jxi,j) can only be positive, we used a half-Cauchy prior with 

a location of zero and a scale of ten. Priors are also shown below for each set of models. 

Simulations 

To assess the number of individuals required to estimate a reliable slope estimate for the 

relationship between gill surface area and growth, we simulated how the estimated slope 

(and intercept) value varied with the number of individuals included in its estimation, based 

on a simple linear regression (𝑦 =  𝛽0 +  𝛽1 ∗ 𝑥1 +  𝜀).  

To do so, we first defined a dataset of 100 individuals that ranged in body mass over four 

orders of magnitude (10g – 100000g). Next, we simulated the gill surface area data for 

these individuals at their given body mass based on simulated random errors and defined 

regression coefficients. For this, we simulated random errors for each unique observation 

(n = 100) from a normal distribution with a mean of zero and a standard deviation of 0.08. 
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This value for the standard deviation was chosen as it was the mean standard deviation 

(sigma) for all gill surface area – body mass regressions for all species in our dataset with 

at least eight individuals (this threshold was chosen based on Jenkins & Quintana-

Ascencio 2020). Similarly, we set the regression coefficients (intercept and slope) to the 

mean values estimated from these same regressions (mean slope = 0.85, mean intercept 

= 0.90). Next, we simulated the regression using the body mass and gill surface area data 

1000 times and assessed the accuracy of the predicted regression coefficients (i.e., did 

the estimated regression coefficients match the defined regression coefficients?).  

Second, we repeated these simulations 1000 times each on subsets of the dataset where 

a specified number of individuals (0 – 97) were dropped. In other words, we simulated a 

regression 1000 times on a random subset of three individuals (the minimum number to 

obtain a standard error on the regression coefficients), then four individuals, then five, etc., 

all the way up to 100 individuals. Finally, we plotted the standard error of the mean slope 

and intercept for each of these regressions (Fig. S1).  

Our simulations suggested that a threshold of eight individuals was sufficient for estimating 

reliable ontogenetic slope coefficients. We note, however, that this threshold of eight 

individuals, at least in our data simulations, is for a random spread of gill surface area and 

body mass (e.g., selecting individuals at random) as opposed to selecting a range of body 

size (e.g., individuals that span at least 33% of size range of species). Thus, a threshold 

of eight individuals of the same species to estimate an ontogenetic slope is likely 

conservative (i.e., fewer individuals may also result in a reliable slope based on the size 

range encompassed) yet produced reliable slope estimates that are within the known 

range of gill surface area slope values. 
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4.9.2. Supplementary Figures 

 
Figure S1. The change in the standard error of the slope (top row) and intercept (bottom 
row) resulting from simulations of the ontogenetic relationship between gill surface area 
and body mass with an increasing number of data points (individuals) included. The 
vertical red line on each plot indicates the threshold of eight individuals. For more detail, please 
see the Supplementary Methods. 
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4.9.3. Supplementary Tables 

Table S1. The list of the 132 species in the full dataset (see text).  

 

Taxon Binomial Common name 

Chondrichthyan Alopias pelagicus Pelagic Thresher 

Chondrichthyan Alopias superciliosus Bigeye Thresher 

Chondrichthyan Alopias vulpinus Common Thresher Shark 

Chondrichthyan Carcharhinus acronotus Blacknose Shark 

Chondrichthyan Carcharhinus isodon Finetooth Shark 

Chondrichthyan Carcharhinus limbatus Blacktip Shark 

Chondrichthyan Carcharhinus obscurus Dusky Shark 

Chondrichthyan Carcharhinus plumbeus Sandbar Shark 

Chondrichthyan Carcharodon carcharias White Shark 

Chondrichthyan Galeocerdo cuvier Tiger Shark 

Chondrichthyan Galeorhinus galeus Tope Shark 

Chondrichthyan Isurus oxyrinchus Shortfin Mako 

Chondrichthyan Prionace glauca Blue Shark 

Chondrichthyan Rhinoptera bonasus Cownose Ray 

Chondrichthyan Rhizoprionodon terraenovae Atlantic Sharpnose Shark 

Chondrichthyan Scyliorhinus canicula Lesser Spotted Dogfish 

Chondrichthyan Sphyrna lewini Scalloped Hammerhead 

Chondrichthyan Sphyrna tiburo Bonnethead Shark 

Chondrichthyan Torpedo marmorata Marbled Electric Ray 

Chondrichthyan Triakis semifasciata Leopard Shark 

Chondrichthyan Raja clavata Thornback Ray 

Lobe-finned fish Latimeria chalumnae Coelacanth 

Teleost Acanthocybium solandri Wahoo 

Teleost Acipenser transmontanus White Sturgeon 

Teleost Ameiurus nebulosus Brown Bullhead 

Teleost Anabas testudineus Climbing Perch 

Teleost Anguilla anguilla European Eel 

Teleost Anguilla rostrata American Eel 

Teleost Anoplopoma fimbria Sablefish 

Teleost Archosargus probatocephalus Sheepshead 

Teleost Balistes capriscus Grey Triggerfish 

Teleost Barbatula barbatula Stone Loach 

Teleost Boleophthalmus boddarti Boddart's Goggle-Eyed Goby 

Teleost Brevoortia tyrannus Atlantic Menhaden 

Teleost Callionymus lyra Common Dragonet 

Teleost Caranx crysos Blue Runner 
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Taxon Binomial Common name 

Teleost Carassius auratus Goldfish 

Teleost Careproctus melanurus Blacktail Snailfish 

Teleost Catostomus commersonii White Sucker 

Teleost Centropristis striata Black Sea Bass 

Teleost Chaenocephalus aceratus Blackfin Icefish 

Teleost Channa punctata Spotted Snakehead 

Teleost Channa striata Striped Snakehead 

Teleost Cirrhinus mrigala Mgrial Carp 

Teleost Clarias batrachus Philippine Catfish 

Teleost Clupea harengus Atlantic Herring 

Teleost Cobitis taenia Spined Loach 

Teleost Comephorus dybowskii Little Baikal Oilfish 

Teleost Conger conger European Conger 

Teleost Coryphaena hippurus Dolphinfish 

Teleost Cottocomephorus grewingkii Baikal Yellowfin 

Teleost Cottus gobio European Bullhead 

Teleost Ctenopharyngodon idella Grass Carp 

Teleost Cynoscion regalis Weakfish 

Teleost Echeneis naucrates Sharksucker 

Teleost Glyptocephalus zachirus Rex Sole 

Teleost Esox lucius Northern Pike 

Teleost Euthynnus affinis Mackerel Tuna 

Teleost Euthynnus alletteratus False Albacore 

Teleost Eutrigla gurnardus Grey Gurnard 

Teleost Gadus morhua Atlantic Cod 

Teleost Gobius niger Black Goby 

Teleost Gymnocephalus cernua Ruffe 

Teleost Heteropneustes fossilis Stinging Catfish 

Teleost Hoplias malabaricus Trahira 

Teleost Hyperoglyphe perciformis Barrelfish 

Teleost Kajikia audax Striped Marlin 

Teleost Katsuwonus pelamis Skipjack Tuna 

Teleost Labeo rohita Rohu 

Teleost Labrus merula Brown Wrasse 

Teleost Limanda limanda Common Dab 

Teleost Lipophrys pholis Shanny 

Teleost Lophius piscatorius Angler 

Teleost Lota lota Burbot 

Teleost Merlangius merlangus Whiting 

Teleost Micropterus dolomieu Smallmouth bass 
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Taxon Binomial Common name 

Teleost Microstomus pacificus Dover Sole 

Teleost Misgurnus fossilis Weatherfish 

Teleost Mistichthys luzonensis Sinarapan 

Teleost Mola mola Ocean Sunfish 

Teleost Mormyrus kannume Elephant-snout Fish 

Teleost Morone saxatilis Striped Bass 

Teleost Mugil cephalus Jumping Mullet 

Teleost Myoxocephalus scorpius Shorthorn Sculpin 

Teleost Nezumia liolepis Smooth Grenadier 

Teleost Oncorhynchus mykiss Rainbow Trout 

Teleost Opsanus tau Oyster toadfish 

Teleost Oreochromis niloticus Nile Tilapia 

Teleost Paralichthys dentatus Summer Flounder 

Teleost Peprilus triacanthus Atlantic Butterfish 

Teleost Perca flavescens American Yellow Perch 

Teleost Perca fluviatilis European Perch 

Teleost Periophthalmus barbarus Atlantic Mudskipper 

Teleost Petrocephalus catostoma Churchill 

Teleost Platichthys flesus European Flounder 

Teleost Pleuronectes platessa European Plaice 

Teleost Pollachius virens Saithe 

Teleost Pomatomus saltatrix Bluefish 

Teleost Prionotus carolinus Northern SeaRobin 

Teleost Prionotus evolans Striped Searobin 

Teleost Pseudopleuronectes americanus Winter Flounder 

Teleost Rutilus rutilus Roach 

Teleost Salmo trutta Brown Trout 

Teleost Sander lucioperca Pike-perch 

Teleost Sander vitreus Walleye 

Teleost Sarda chiliensis Eastern Pacific Bonito 

Teleost Sarda sarda Atlantic Bonito 

Teleost Scomber japonicus Pacific Chub Mackerel 

Teleost Scomber scombrus Common Mackerel 

Teleost Scomberomorus maculatus Spanish Mackerel 

Teleost Sebastes diploproa Splitnose Rockfish 

Teleost Sebastolobus alascanus Shortspine Thornyhead 

Teleost Seriola lalandi Yellowtail Amberjack 

Teleost Seriola quinqueradiata Yellowtail 

Teleost Sphoeroides maculatus Northern Puffer 

Teleost Spicara maena Blotched Picarel 
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Taxon Binomial Common name 

Teleost Stenotomus chrysops Scup 

Teleost Symphodus melops Corkwing Wrasse 

Teleost Taurulus bubalis Longspined Bullhead 

Teleost Tautoga onitis Tautog 

Teleost Tenualosa ilisha Hilsa shad 

Teleost Thunnus albacares Yellofin Tuna 

Teleost Thunnus thynnus Bluefin Tuna 

Teleost Tinca tinca Tench 

Teleost Trachurus trachurus Atlantic Horse Mackerel 

Teleost Trichiurus lepturus Largehead Hairtail 

Teleost Xiphias gladius Swordfish 

Teleost Zeus faber John Dory 

Teleost Zoarces viviparus Eelpout 

Teleost Bathygobius soporator Frillfin Goby 

Teleost Mancopsetta maculata Antarctic Armless Flounder 

Teleost Periophthalmus chrysospilos Mudskipper 
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Table S2. The 32 species for which raw gill surface area and body mass 
data is available for at least 8 individuals (see text).   
All models using this raw dataset were also compared with and without the inclusion of those 
species traditionally used in aquaculture (Table S3) and with and without those species capable 
of air-breathing (Table S4). +Aquaculture, *Air-breather. 

Scientific name Common name 

Acanthocybium solandri Wahoo 

Acipenser transmontanus White Sturgeon 

Alopias superciliosus Bigeye Thresher 

Alopias vulpinus Common Thresher 

Anabas testudineus* Climbing Perch 

Anguilla anguilla* European Eel 

Barbatula barbatula Stone Loach 

Boleophthalmus boddarti* Boddart's Goggle-Eyed Goby 

Carcharhinus acronotus Blacknose Shark 

Carcharhinus isodon Finetooth Shark 

Carcharhinus limbatus Blacktip Shark 

Carcharhinus obscurus Dusky Shark 

Carcharhinus plumbeus Sandbar Shark 

Carcharodon carcharias White Shark 

Cirrhinus mrigala+ Mgrial Carp 

Cobitis taenia* Spined Loach 

Galeocerdo cuvier Tiger Shark 

Gymnocephalus cernua Ruffe 

Heteropneustes fossilis* Stinging Catfish 

Hoplias malabaricus Trahira 

Isurus oxyrinchus Shortfin Mako  

Lipophrys pholis* Shanny 

Micropterus dolomieu Smallmouth Bass 

Opsanus tau Oyster Toadfish 

Oreochromis niloticus+ Nile Tilapia 

Petrocephalus catostoma Churchill 

Prionace glauca Blue Shark 

Rhizoprionodon terraenovae Atlantic Sharpnose Shark 

Scomber japonicus Pacific Chub 

Sphyrna tiburo Bonnethead Shark 

Tinca tinca+ Tench 

Torpedo marmorata Marbled Electric Ray 
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Table S3. The 10 species determined to be those often used in aquaculture. 
The results of all models using the full dataset, or the raw dataset were 
compared with and without the inclusion of the species in this table to 
ensure that our results were not biased. 

 

Scientific name Common name 

Ameiurus nebulosus Brown Bullhead 

Channa punctata Spotted Snakehead 

Channa striata Snakehead Murrel 

Cirrhinus mrigala Mrigal 

Clarias batrachus Walking Catfish 

Ctenopharyngodon idella Grass Carp 

Oncorhynchus mykiss Rainbow Trout 

Oreochromis niloticus Nile Tilapia 

Salmo trutta Brown trout 

Tinca tinca Tench 
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Table S4. The 15 species determined to be capable of air-breathing. The 
results of all models using the full dataset, or the raw dataset were 
compared with and without the inclusion of the species in this table to 
ensure that our results were not biased. 

 

Scientific name Common name 

Anabas testudineus Climbing Perch 

Anguilla anguilla European Eel 

Anguilla rostrata American Eel 

Boleophthalmus boddarti Boddart's Goggle-Eyed Goby 

Channa punctata Spotted Snakehead 

Channa striata Striped Snakehead 

Clarias batrachus Philippine Catfish 

Cobitis taenia Spined Loach 

Heteropneustes fossilis Stinging Catfish 

Lipophrys pholis Shanny 

Misgurnus fossilis Weatherfish 

Periophthalmus barbarus Atlantic Mudskipper 

Periophthalmus chrysospilos Gold-spotted Mudskipper 

Taurulus bubalis Longspined Bullhead 

Zoarces viviparus Eelpout 
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Table S5. Comparison of coefficients and their 95% Bayesian Credible 
Intervals (BCI) for the relationship of growth performance and gill area 
index estimated for (1) all species in the full dataset, (2) the full dataset 
excluding those species that are used in aquaculture, and (3) the full 
dataset excluding those species that are capable of air-breathing. 
Both models were estimated using Bayesian linear regression using the brm function in the brms 
package in Rv.4.0.2. 

Model parameterization Dataset Intercept 

(95% CI) 

Slope 

(95% CI) 

Sample 
size 

growth performance ~ 
log gill area index 

full 1.92 

(1.53 to 2.32) 

0.87 

(0.52 to 1.23) 

132 

growth performance ~ 
log gill area index 

excluding 
aquaculture 
species 

1.88  

(1.47 to 2.30) 

0.90  

(0.53 to 1.27)  

122 

growth performance ~ 
log gill area index 

excluding air-
breathing species 

2.08 

(1.62 to 2.54) 

0.78  

(0.39 to 1.17) 

117 
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Table S6. Comparison of coefficients and their 95% Bayesian Credible 
Intervals (BCI) for the relationship of growth performance and the (1) 
ontogenetic intercept, (2) ontogenetic slope, and (3) gill area index 
estimated with the (a) full dataset, (b) full dataset excluding those species 
that are used in aquaculture, and the (c) full dataset excluding those 
species that are capable of air-breathing. 
The gill area index here was empirically estimated (see text). Both models were estimated using 
a Bayesian multilevel modeling framework in Stan using the package rstan in R v.4.0.2 All 
intercepts were standardized in the model prior to the second level (see text and SI). 

Model parameterization of 
the second level 

Intercept 

(95% CI) 

Slope (95% CI) Dataset Sample 
size 

GP ~  
    

intercept 3.08  

(2.63 to 3.53) 

0.36  

(-0.11 to 0.83) 

full 32 

intercept 3.06  

(2.56 to 3.55) 

0.35 

(-0.18 to 0.87) 

excluding aquaculture 
species 

29 

intercept 3.40 

(2.94 to 3.87) 

-0.05 

(-0.56 to 0.46) 

excluding air-breathing 
species 

26 

intercept 3.22 

(2.81 to 3.63) 

0.40 

(-0.05 to 0.83) 

species with a body size 
range of at least an order of 
magnitude 

34 

slope 3.08 

(2.63 to 3.53) 

0.33  

(-0.20 to 0.83) 

full 32 

slope 3.05 

(2.56 to 3.54) 

0.32 

(-0.27 to 0.88) 

excluding aquaculture 
species 

29 

slope 3.40 

(2.94 to 3.84) 

0.23 

(-0.33 to 0.78) 

excluding air-breathing 
species 

26 

slope 3.22 

(2.79 to 3.65) 

0.20 

(-0.29 to 0.67) 

species with a body size 
range of at least an order of 
magnitude 

34 

gill area index 3.08 

(2.61 to 3.54) 

0.13 

(-0.40 to 0.65) 

full 32 

gill area index 3.06 

(2.56 to 3.55) 

0.16  

(-0.41 to 0.72) 

excluding aquaculture 
species 

29 

gill area index 3.40 

(2.94 to 3.85) 

-0.17  

(-0.69 to 0.35) 

excluding air-breathing 
species 

26 

gill area index 3.21 

(2.78 to 3.64) 

0.21 

(-0.28 to 0.67) 

species with a body size 
range of at least an order of 
magnitude 

34 
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Table S7. Comparison of coefficients and their 95% Bayesian Credible 
Intervals (BCI) for the relationship of growth performance and the gill area 
index as estimated using (1) empirically estimated d values, (2) d = 0.8, and 
(3) d predicted from the relationship of d and maximum size in Pauly (1981) 
estimated with and without those species that are used in aquaculture.  
The models where gill area index was estimated using empirically estimated ontogenetic slope 
values were estimated using a Bayesian multilevel modeling framework in Stan using the 
package rstan in R v.4.0.2. For the models where gill area index was estimated using either d = 
0.8 or d predicted from Pauly (1981), a Bayesian linear model was estimated using the brm 
function in the brms package in R v.4.0.2. All slopes were standardized in the model prior to the 
second level (see text and SI).  

Estimation of gill area 
index 

Intercept 

(95% CI) 

Slope 

(95% CI) 

Dataset Sample 
size 

empirically estimated 3.08 

(2.61 to 3.54) 

0.13 

(-0.40 to 0.65) 

full 32 

empirically estimated 3.06 

(2.56 to 3.55) 

0.16  

(-0.41 to 0.72) 

excluding 
aquaculture species 

29 

empirically estimated 3.40 

(2.94 to 3.85) 

-0.17  

(-0.69 to 0.35) 

excluding air-
breathing species 

26 

d = 0.8 3.08 

(2.64 to 3.53) 

0.44  

(0.00 to 0.88) 

full 32 

d = 0.8 3.06 

(2.60 to 3.52) 

0.51 

(0.05 to 0.97) 

excluding 
aquaculture species 

29 

d = 0.8 3.41 

(2.95 to 3.87) 

0.05 

(-0.42 to 0.51) 

excluding air-
breathing species 

26 

predicted d 3.08  

(2.62 to 3.54) 

0.06 

(-0.43 to 0.54) 

full 32 

predicted d 3.06 

(2.56 to 3.56) 

0.10 

(-0.41 to 0.62) 

excluding 
aquaculture species 

29 

predicted d 3.40 

(2.98 to 3.82) 

-0.42  

(-0.86 to 0.02) 

excluding air-
breathing species 

26 
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Table S8. Comparison of coefficients and their 95% Bayesian Credible 
Intervals (BCI) for the relationship of growth performance, caudal fin aspect 
ratio, and gill surface area, as measured by (1) the ontogenetic intercept, 
(2) the ontogenetic slope, (3) gill area index for models with the (a) full 
dataset, (b) full dataset excluding those species that are used in 
aquaculture, and the (c) full dataset excluding those species that are 
capable of air-breathing. 
All models were estimated using a Bayesian multilevel modeling framework in Stan using the 
package rstan in R v.4.0.2 All predictors in the second level of the model were standardized and 
thus the effect sizes for the slopes are relative to each other (see text and SI). GP = growth 
performance, CFAR = caudal fin aspect ratio, GSA = gill surface area, and GAI = gill area index.  

Model 
parameterization 
of the second level 

Intercept 

(95% CI) 

CFAR Slope 

(95% CI) 

GSA metric 
slope (95% CI) 

Dataset Sample 
size 

GP ~ CFAR + 
     

intercept 2.95 

(2.51 to 3.38) 

0.60  

(0.21 to 1.00) 

0.11  

(-0.35 to 0.58) 

full 30 

intercept 2.88  

(2.41 to 3.35) 

0.63  

(0.22 to 1.05) 

0.11  

(-0.41 to 0.62) 

excluding 
aquaculture species 

27 

intercept 3.19  

(2.71 to 3.64) 

0.50  

(0.13 to 0.89) 

-0.15 

(-0.62 to 0.33) 

excluding air-
breathing species 

25 

slope 2.95  

(2.52 to 3.38) 

0.62  

(0.25 to 0.99) 

0.19  

(-0.29 to 0.67) 

full 30 

slope 2.87  

(2.42 to 3.33) 

0.65  

(0.28 to 1.02) 

0.21  

(-0.30 to 0.70) 

excluding 
aquaculture species 

27 

slope 3.20 

(2.75 to 3.64) 

0.48  

(0.10 to 0.86) 

0.20 

(-0.29 to 0.70) 

excluding air-
breathing species 

25 

gill area index 2.95  

(2.51 to 3.39) 

0.64 

 (0.27 to 1.02) 

-0.04  

(-0.52 to 0.43) 

full 30 

gill area index 2.86  

(2.39 to 3.34) 

0.68  

(0.28 to 1.08) 

-0.05  

(-0.56 to 0.45) 

excluding 
aquaculture species 

27 

gill area index 3.19 

(2.74 to 3.64) 

0.51 

(0.14 to 0.87) 

-0.23 

(-0.71 to 0.23) 

excluding air-
breathing species 

25 
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Table S9. Comparison of coefficients and their 95% Bayesian Credible 
Interval (BCI) for the relationship of the growth coefficients (k), asymptotic 
size (𝑾∞), and gill surface area, as measured by (1) the ontogenetic 
intercept, (2) the ontogenetic slope, (3) gill area index for models with the 
(a) full dataset, (b) full dataset excluding those species that are used in 
aquaculture, and the (c) full dataset excluding those species that are 
capable of air-breathing. 
All models were estimated using a Bayesian multilevel modeling framework in Stan using the 
package rstan in R v.4.0.2 All predictors in the second level of the model were standardized and 
thus the effect sizes for the slopes are relative to each other (see text and SI). GSA = gill surface 
area. 

Model 
parameterization 
of the second 
level 

Intercept 

(95% BCI) 

𝑾∞ slope 
(95% BCI) 

GSA slope 
(95% BCI) 

Dataset Sample 
size 

k ~ 𝑊∞+ 
     

intercept -0.55 

(-0.68 to -0.42) 

  -0.26 

  (-0.38 to -0.13) 

-0.08  

(-0.22 to 0.06) 

full 30 

intercept -0.62  

(-0.71 to -0.52) 

-0.26  

(-0.35 to -0.17) 

-0.06  

(-0.17 to 0.04) 

excluding 
aquaculture 
species 

27 

intercept -0.50 

(-0.67 to -0.33) 

-0.34  

(-0.50 to -0.18) 

-0.07  

(-0.22 to -0.08) 

excluding air-
breathing 
species 

25 

slope -0.55  

(-0.68 to -0.42) 

-0.27 

(-0.40 to -0.14) 

-0.05  

(-0.19 to 0.09) 

full 30 

slope -0.61  

(-0.71 to -0.52) 

-0.27  

(-0.36 to -0.18) 

-0.01  

(-0.12 to 0.11) 

excluding 
aquaculture 
species 

27 

slope -0.50 

(-0.67 to -0.33) 

-0.34 

(-0.50 to -0.18) 

-0.01 

(-0.17 to 0.15) 

excluding air-
breathing 
species 

25 

gill area index -0.55 

(-0.69 to -0.41) 

-0.28  

(-0.40 to -0.15) 

-0.03 

(-0.17 to 0.11) 

full 30 

gill area index -0.62  

(-0.71 to -0.52) 

-0.27  

(-.36 to -0.18) 

-0.04 

 (-0.14 to 0.06) 

excluding 
aquaculture 
species 

27 

gill area index -0.50 

(-0.67 to -0.33) 

-0.35 

(-0.51 to -0.19) 

-0.05 

(-0.21 to 0.11) 

excluding air-
breathing 
species 

25 
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Discussion 

This thesis aimed to contribute to our understanding regarding the generality of the 

relationships among oxygen, ecology, and life history in fishes and other vertebrates. In 

doing so, I have built on and empirically tested existing theory, as well as examined the 

relationships among oxygen acquisition and use, ecological lifestyle, and life histories. In 

the following, I review the main findings of each chapter, highlight the significance of the 

thesis (with an emphasis on the novelty of each chapter as the relevance of each chapter’s 

main findings are detailed in each chapter’s respective discussion section), outline future 

directions, and end with concluding thoughts.  

5.1. Main findings 

Broadly speaking, my thesis took a macroecological approach to examining the links 

among traits related to oxygen acquisition (respiratory surface area) and use (metabolic 

rate), ecology (activity, habitat), and life histories (somatic growth, maximum size). While 

the approach and analyses were indeed macroecological, I coupled field collections, 

laboratory dissections, and meta-analysis and modeling to understand the generality of 

patterns related to oxygen, ecology, and life histories. In doing so, I (along with my 

collaborators) (1) collected > 200 individual elasmobranch specimens for gill surface area 

measurements, (2) measured gill surface area for twelve species (> 71 individuals) that 

did not have these data previously, and (3) developed novel quantitative methods that 

enabled me to address knowledge gaps by combining data across scales (individuals, 

species), multiple size-dependent phenomena (metabolic rate, respiratory surface area), 

and salient covariates including the evolutionary history among species.   

In Chapter 2, I revealed that respiratory surface area explained patterns of metabolic rate 

across the vertebrate tree of life. For this chapter, I developed the initial phylogenetic 

Bayesian hierarchical modeling framework, which allowed me to combine size-

mismatched metabolic rate and respiratory surface area data for over 100 vertebrate 

species from all major lineages. I found that despite the difference in the scaling of 

metabolic rate between endotherms and ectotherms, the scaling of respiratory surface 
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area did not differ between the two groups, and compared to temperature, explained twice 

the variation in metabolic rate across vertebrates. 

In Chapter 3, I brought gill surface area comparisons across species into a scaling context 

and quantified how gill surface area related to ecological lifestyles across shark species. 

Here, I uncovered that larger-bodied, active, and pelagic species had greater gill surface 

areas for a given size (ontogenetic intercept) compared to their small-bodied, less active, 

benthic counterparts. Conversely, the rate at which gill surface area increased with body 

mass (ontogenetic slope) was the same for all species, regardless of activity level or 

habitat type.  

In Chapter 4, I tested a central prediction of the Gill Oxygen Limitation Theory – that gill 

surface area is related to growth and maximum size across fishes, as parametrized by the 

von Bertalanffy growth model. For this chapter, I first re-examined an original dataset used 

to first establish this relationship over 40 years ago. Second, I conducted a meta-analysis 

that included data from over 130 fish species to assess if gill surface area – in a scaling 

context – explained the incredible variation in growth and maximum size observed across 

fishes. To do so, I expanded the phylogenetic Bayesian hierarchical modeling framework 

from Chapter 2 to include both individual- and species-level data. I found that gill surface 

area, regardless of the metric used for this trait, was not strongly correlated to growth and 

maximum size, and instead, was more related to activity level. 

Collectively, this body of work highlights the complexities of integrating data across scales 

and illustrates that oxygen acquisition and use are tightly corelated with activity level, but 

the relationships with life histories are less straightforward, not least due to the size-

dependent nature of metabolic rate and respiratory surface area. 

5.2. Significance 

There are three distinct areas in which I feel that my thesis made significant advancements 

and contributions to the fields of ecology and physiology. First, I filled in knowledge gaps 

regarding the relationship among traits related to oxygen acquisition (respiratory surface 

area) and use (metabolic rate), ecological lifestyle (activity, habitat), and life history 

(somatic growth and maximum size). In Chapter 2, I bridged the gap between physiology 

and macroecology by incorporating respiratory surface area and thermoregulatory 
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strategy into metabolic scaling (Bigman et al. 2021). As originally proposed, metabolic 

scaling was thought to be explained by the effects of body mass (through the fractal nature 

of distribution networks) and temperature (West et al. 1999; Gillooly et al. 2001; Brown et 

al. 2004). However, physiologists, and more recently, macroecologists and 

macrophysiologists have recognized the importance of respiratory structures to metabolic 

rate (e.g., Hughes 1978, 1984; Gillooly et al. 2016; Rubalcaba et al. 2020). Yet, 

incorporating respiratory surface area – a size-dependent trait – into metabolic scaling 

(inherently dependent on size) was complicated by these size-dependencies and other 

necessary covariates (e.g., thermoregulatory strategy, evolutionary history). Solving this 

issue with a bespoke modeling framework allowed me to reveal that respiratory surface 

area explained twice the variation, compared to temperature, in metabolic scaling across 

the vertebrate tree of life (Bigman et al. 2021). In Chapter 3, I brought gill surface area into 

a scaling context to identify patterns of gill surface area and ecological lifestyle among 

shark species (Bigman et al. 2018). Prior to this work, gill surface area was often quantified 

as a mass-specific measure (gill surface area per gram of body mass). While a mass-

specific metric is suitable for traits that scale isometrically with body mass, it is not suitable 

for traits that have hypoallometric scaling (e.g., gill surface area, metabolic rate). I 

examined how both components of an ontogenetic allometry – the slope (rate at which gill 

surface area increases with body mass) and the intercept (the gill surface area for a given 

size) – varied with activity level, habitat type, and maximum size. In addition, I improved 

upon metrics of activity level used in analyses with gill surface area. Specifically, I 

employed caudal fin aspect ratio as a quantitative metric of activity level instead of the 

qualitative, subjective categories (e.g., “sluggish” or “intermediate”) used previously (Gray 

1954; Wegner 2011). Finally, in Chapter 4, I tested a central prediction of the Gill Oxygen 

Limitation Theory – that gill surface area is tightly correlated to somatic growth and 

maximum size. I collated the largest database of high-quality teleost and elasmobranch 

gill surface area (in addition to measuring gill surface area to supplement this dataset) that 

will be published to-date. I emphasized the importance of choosing appropriate analytical 

methods and considering the scaling of traits, instead of a simplified metric. Additionally, I 

expanded the modeling framework developed in Chapter 2 to be flexible enough to include 

data across scales—both within and across species.  

Second, the phylogenetic Bayesian hierarchical modeling framework developed and 

expanded upon herein solved two (related) problems inherent in macroecological and 
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macrophysiological analyses. First, this modeling framework offers the opportunity to more 

appropriately extend both traditional and novel macroecological and macrophysiological 

questions to ectothermic organisms. Historically, most macroecological work has been 

focused on mammals and birds, which grow determinately (Gaston & Blackburn 2008). 

Thus, employing species-mean data (i.e., a mean metabolic rate and mean body mass for 

a given species) is not too problematic, as long as the trait or factor was measured at or 

after a stage in which it was relatively stable (i.e., maturity). However, most ectothermic 

species continue to grow throughout their lifetimes and thus species-mean data becomes 

problematic. This problem is often overlooked in macroecological analyses and is 

exacerbated when working with traits or factors that also change with body size 

ontogenetically (e.g., metabolic rate, respiratory surface area). It is ideal to examine these 

traits in the context of their ontogenetic allometries, and then assess how these allometries 

vary across species. However, doing so requires raw data (i.e., estimates of a trait value 

for multiple individuals of the same species) that spans almost the entire size range of a 

species. These data are rarely available, resulting in the second problem. When one must 

use mean data, examining multiple size-dependent traits (metabolic rate, respiratory 

surface area) simultaneously is problematic unless the traits (or factors) were measured 

in the same individuals. For the majority of macroecological analyses, this will not be the 

case. The modeling framework presented here allows for the incorporation of both body 

size estimates by accounting for the effect of body mass on one trait or factor in one level 

of the model and propagating the uncertainty in this relationship to the other levels. 

Additionally, a random effect of phylogeny is also incorporated into the hierarchical 

models, further advancing the field of macroecology. Notably, the development of such a 

modeling framework would not have been possible without the advancement of statistical 

techniques in recent years, particularly Stan, which has offered a platform for solving these 

(and many other) analytical problems (Stan Development Team 2019). 

Last, prior to this thesis, only 14 shark species had published estimates of gill surface 

area, with only 10 having enough data (at least 8 individuals) to estimate an ontogenetic 

allometry of gill surface area and body mass (Hughes 1972; Emery & Sczcepanski 1985; 

Hughes et al. 1986; Hata 1993; Wegner et al. 2010; Wootton et al. 2015; Wegner 2016; 

Bigman et al. 2018). Now, following my thesis work, 25 shark species have gill surface 

area estimates, with at least seven additional species having enough data to estimate an 
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ontogenetic allometry. While this may not seem like much, comparatively, over 100 teleost 

species have published gill surface area data.  

5.3. Future directions 

My thesis has generated more questions than I have answered, but alas, that is science. 

Although each chapter spawned multiple research questions (most of which are in the 

discussion section of each chapter and not repeated here), the one big question that 

lingers is the directionality between metabolic rate and respiratory surface area – which is 

driving which? Unfortunately, this thesis cannot answer that question, nor should it. Broad 

scale work such as that presented in this thesis cannot identify mechanisms by itself; 

instead, it serves to test predictions generated by theory and identify broad patterns. Such 

work must be coupled with other work that can identify the causal mechanisms underlying 

such patterns. In the context of oxygen’s role in the physiology, ecology, and evolution of 

organisms, this would require a collaboration among experimental physiologists and 

macroecologists (and macrophysiologists). As my thesis work has placed me somewhere 

in the middle of these fields and perspectives, I can appreciate the challenging nature of 

such a collaboration. Yet, it will be necessary to understand the intricacies surrounding 

the interplay among oxygen, physiology, ecology, and evolution.  

There are almost infinite opportunities for future research in the context of the role of 

oxygen in the physiology, ecology, and evolution of organisms, some of which were 

generated by this thesis and some by the data or modeling frameworks made available 

by this thesis. First, it is somewhat paradoxical that gill surface area, as it is related to 

metabolic rate, did not relate to growth and maximum size across fishes (and that my 

colleague generally found weak relationships among metabolic rate and life histories 

across fishes, Wong et al. 2021). Theoretically, metabolic rate (and other traits related to 

oxygen acquisition and use) should be tightly correlated to life histories as metabolic rate 

governs the available energy for growth, survival, and reproduction (e.g., Brown et al. 

2004). After all, this is an assumption of many macroecological theories – Metabolic 

Theory of Ecology, Gill Oxygen Limitation Theory, Oxygen- and Capacity-Limited Thermal 

Tolerance, as well as other general theories of oxygen limitation (Brown et al. 2004; Pauly 

2010; Forster et al. 2012; Pörtner et al. 2017; Verberk et al. 2020). While stronger 

relationships between metabolic rate (or respiratory surface area, presumably) have been 
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found in other taxa, particularly birds and mammals, fewer such connections have been 

documented for fishes (e.g., Henneman 1983; White & Seymour 2004; Ton & Martin 

2016). Continuing down this path of exploring the relationships among gill surface area, 

metabolic rate, and life histories in fishes will no doubt prove useful and enlightening, not 

least due to the continued increase in availability of data and advancement of statistical 

techniques. One of the main challenges that remains (and perhaps why I and my 

colleagues have not found strong relationships among gill surface area, metabolic rate, 

and life histories) is due to the difficulty in partitioning variance among size as a life history 

trait and measurement size (the size at which metabolic rate/gill surface area was 

measured).  

Second, this thesis is largely agnostic to environmental temperature. While I did not intend 

this to be the case, extracting meaningful and accurate environmental temperature data 

is no small task. It is clear that environmental temperature (and environmental oxygen) 

would relate to patterns of metabolic rate, respiratory surface area, and life histories, and 

this will be a fruitful avenue of future research (e.g., Morais & Bellwood 2018; van 

Denderen et al. 2020; Pardo & Dulvy 2021). These relationships also may provide a 

cohesive link from oxygen limitation (if it is occurring) and the temperature-size rule to 

James’ Rule and Bergmann’s Rule (Audzijonyte et al. 2019). Third, a natural extension of 

life histories is population dynamics. Temperature is linked to the maximum intrinsic rate 

of population increase (rmax) and extending the scope of such a relationship to include 

metabolic rate and respiratory surface area may help identify whether oxygen relates to 

population dynamics (Pardo & Dulvy 2020). Finally, employing the modeling framework 

developed herein offers the opportunity to bridge experimental physiology and macro- 

ecology and macrophysiology—an endeavor that is sorely needed. At present, studies 

focusing on the interrelationships of oxygen, physiology, and ecology within species are 

largely disconnected from those across species and often, draw divergent conclusions. 

Broader, macroecological scale studies often do find evidence for oxygen limitation 

(although not all of them; Forster et al. 2012; Audzijonyte et al. 2020; Rubalcaba et al. 

2020). However, within species studies show a much more complicated relationship 

among oxygen acquisition and use, physiological performance, and life histories (e.g., 

Clark et al. 2008; Lefevre et al. 2017; Prinzing et al. in prep). Integrating individual-level 

data into analyses across species to understand how responses at the individual level 
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scale up to create patterns across species will be key to predicting species’ responses to 

climate change.  

5.4. Concluding thoughts 

Understanding the role that oxygen plays in the physiology, ecology, and evolution of 

organisms is paramount to predicting how aquatic species, particularly those in the marine 

realm, will respond to a changing climate. While it is an especially exciting time to be part 

of such an endeavor due to the recent resurgence of research in this area, it is also a 

frustrating one. There are seemingly infinite avenues one could take to contribute to 

understanding the role of oxygen and aerobic metabolism in explaining species’ 

observations and responses, as well as higher-level patterns. Further, work in this area is 

disconnected (experimental physiology, meta-analysis and modeling) and at best, 

polarizing (e.g., Metabolic Theory of Ecology, Gill Oxygen Limitation Theory; Brown et al. 

2004; Pauly 2010). It was extremely difficult to choose what avenues to pursue and which 

puzzle pieces to fit together. Yet, I had the opportunity to not only work on these questions 

myself but guide other graduate students in the lab to other questions that could not be 

part of my own PhD but would contribute to the greater question at hand. It is my hope 

that my work (and other collaborations on this topic in the Dulvy lab) contributes a small 

part to our understanding regarding how oxygen may relate to ecology and life histories in 

fishes and other vertebrates. 
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