
On the Volume of the Birkhoff Polytope

by

Alexandria Vassallo

B.Sc., McMaster University, 2018

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
Department of Mathematics

Faculty of Science

© Alexandria Vassallo 2021
SIMON FRASER UNIVERSITY

Spring 2021

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Alexandria Vassallo

Degree: Master of Science

Thesis title: On the Volume of the Birkhoff Polytope

Committee: Chair: Nilima Nigam
Professor, Mathematics

Marni Mishna
Supervisor
Professor, Mathematics

Amarpreet Rattan
Committee Member
Associate Professor, Mathematics

Nathan Ilten
Examiner
Associate Professor, Mathematics

ii

Abstract

The Birkhoff polytope was introduced in 1946 to facilitate the study of doubly stochastic
matrices. The volume of the nth Birkhoff polytope is an essential characteristic but meth-
ods to compute this are computationally complex and the volume is only known up to
n = 10. In this thesis, we apply a novel automated method to calculate the relative volume
using analytic combinatorics in several variables. An implementation using Maple and Sage
computes this volume up to n = 6 and we compare to existing methods including interpo-
lation, Euler’s generating function, complex analytic techniques, and Barvinok’s Algorithm
(LattE). The key advantage of this method is its robustness and adaptability to variants of
the initial problem.

Keywords: Birkhoff polytope, doubly stochastic matrices, semi-magic squares, asympo-
totics, polytopes

iii

Acknowledgements

I would like to thank Dr. Marni Mishna for her guidance, support, and encouragement
throughout this process. You have aided in my love of math in so many ways. I would also
like to thank Stefan Trandafir for his invaluable contributions, it has been great working
alongside you these last three years.

I would like to thank my committee, Dr. Amarpreet Rattan and Dr. Nathan Ilten, for
their time to read and examine my thesis.

I would like to thank my parents, Anita and Tony Vassallo, for their unconditional love,
support, and encouragement even though they would much rather have me back home in
Ontario! I would like to thank my best friend Meagan Curtis and her partner Alex Bec-
chetti, even though we are on opposite ends of the country they never let me feel like I was
on this journey alone.

I would like to thank the amazing friends I have made during my time at SFU includ-
ing Hannah Sutton, Jas Dhahan, Trevor Hearty, Dana Mraz, Sam Simon, Danielle Rogers,
Jesse Campion Loth, Alexandra Wesolek, Tabriz Popatia, and Khalil Shivji.

Last but not least I would like to thank my right hand cat, Charlie. His steps across my
keyboard provided critical grammatical corrections.

iv

Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Background 1
1.1 Introduction . 1
1.2 Convex Polytopes . 3

1.2.1 Triangulating a polytope . 6
1.2.2 Coning over a polytope . 6
1.2.3 Proof of Ehrhart’s Theorem . 10

1.3 The Birkhoff Polytope Bn . 11
1.4 Semi-Magic Squares . 12
1.5 Volume of Bn . 14

2 Existing methods to compute the relative volume of Bn 16
2.1 Polynomial interpolation . 17
2.2 Euler’s Generating Function . 19
2.3 Complex Analytic Techniques . 24
2.4 Barvinok’s Algorithm and LattE . 32

2.4.1 Triangulation-determinant method 33
2.4.2 Cone decomposition method . 34
2.4.3 The Ehrhart polynomial . 36
2.4.4 Computation times of LattE . 38

3 New methods to compute the relative volume of Bn 39

v

3.1 Analytic Combinatorics in Several Variables 39
3.1.1 Change of Variables . 40
3.1.2 Multiple Point Asymptotics for Complete Intersection 43
3.1.3 Computing the Chamber Complex 50
3.1.4 Implementations to Speed up Computation Time 53

3.2 Complex Analytic Techniques and LattE . 55

4 Conclusion 58

Bibliography 60

Appendix A Code 64

vi

List of Tables

Table 2.1 Volume and computation time in seconds for calculation of Bn for n ≤ 9
presented in [14] . 32

Table 2.2 Computation time in seconds for the relative volume of Bn for n ≤ 6
using LattE. We use −K to denote when LattE killed the computation. 38

Table 3.1 Computation time in seconds for the relative volume of Bn for n ≤ 6
using different implementations to speed up running time of ACSV
method. 55

Table 3.2 Computation time in seconds for relative volume of Bn for n ≤ 6 using
two different implementations of LattE 57

Table 4.1 Comparison of computation time in seconds for the relative volume of
Bn for n ≤ 6 for two published methods and two new methods. 58

vii

List of Figures

Figure 1.1 The polytope on the left is convex while the one on the right is not. 1
Figure 1.2 The line segment from (0, 0) to (4, 2) shown in blue and its affine

space. 5
Figure 1.3 A polytope and its 3rd dilate. 5
Figure 1.4 Two possible triangulations of a polytope. 6
Figure 1.5 Coning over the polytope shown in the slice of the cone at the hy-

perplane x3 = 1. Figure taken directly from [15]. 7
Figure 1.6 Polytope with vertices (0, 0), (0, 1), (2, 1) and (2, 0) 7
Figure 1.7 The oldest known magic square . 13

Figure 2.1 2-dimensional polytope P = {(x1, x2) ∈ R2
≥0 : 2x1 + 3x2 ≤ 6}. . . . 20

Figure 2.2 Quadrilateral polytope with vertices (0, 0), (2, 0), (0, 2) and (1, 2). . 33
Figure 2.3 A possible triangulation of the polytope Q. 33
Figure 2.4 A possible triangulation of a cone C(P, v) with generatorsw1,w2,w3,w4 ∈

R3. 34
Figure 2.5 Four supporting cones of Q. 35
Figure 2.6 Decomposition of vertex 4 of polytope Q into unimodular cones. . . 37

Figure 3.1 Algorithm for a change of variables 41
Figure 3.2 The blue curves shown on the left intersect at the transverse multiple

point (1,1) of order 2, whereas the blue curves shown on the right
do not. 45

Figure 3.3 Algorithm for algebraic reduction 48
Figure 3.4 Chamber complex for F1. 51
Figure 3.5 Algorithm for finding a chamber in a chamber complex 52
Figure 3.6 Chamber complex for F2. 52

viii

Chapter 1

Background

1.1 Introduction

The study of polytopes has a rich history dating back to 2000 B.C. where it was believed
that the Egyptians knew how to calculate the volume of a truncated square pyramid [37, 32].
A polytope, P, is a geometric object with flat sides existing in any number of dimensions,
with a convex polytope being the convex hull of finitely many points.

Figure 1.1: The polytope on the left is convex while the one on the right is not.

Early mathematicians and philosophers such as Democritus, Eudoxus, Plato, Euclid, and
Archimedes [37], paved the way for the thriving study of polytopes that we see today in many
areas of mathematics including combinatorics, algebraic geometry, linear programming, and
graph theory. While there are many characteristics of the polytope being studied, we will
take a specific interest in the volume. In the 1960’s, French mathematician Eugéne Ehrhart
established the Ehrhart polynomial, LP(t), a counting function for the number of lattice
points in a dilated polytope [12, 29]. He provided two invaluable results: the leading term
of LP(t) is, up to a multiplicative constant, the volume of P, and the degree of LP(t) is
the dimension of P [29, 28]. The first of these results forms a basis for this thesis as we
aim to compute the relative volume of the Birkhoff polytope. The Birkhoff polytope, named
after Garrett Birkhoff, is denoted by Bn and formed from the set of n×n doubly stochastic

1

matrices,

Bn =



x11 · · · x1n
...
xn1 · · · xnn

 ∈ Rn
2 : xjk ≥ 0,

∑
j xjk = 1 ∀ 1 ≤ k ≤ n∑
k xjk = 1 ∀ 1 ≤ j ≤ n

 .
The study of the Birkhoff polytope has since spread to many fields in the sciences and
has applications extending to enumerative combinatorics, optimization, statistics, quantum
mechanics, and representation theory. One interpretation of note that we will consider is
that the number of lattice points in a dilated Birkhoff polytope is equal to the number of
semi-magic squares.

There exists a lot of work dedicated to computing the relative volume of Bn. Due to ground-
breaking work done by Beck and Pixton [14] the relative volume of Bn is known for n ≤ 10
with an asymptotic formula presented by Canfield and McKay [18]. Existing methods to
calculate the relative volume of Bn use a range of different mathematical concepts. Many
methods focus solely on building the Ehrhart polynomial, either by means of interpola-
tion [15, 26, 41, 47, 20], generating functions [15, 24, 9, 23, 31, 7], or complex analysis [14, 11].
An open source software named LattE [4] employs Barvinok’s Algorithm which utilizes mul-
tivariate generating functions and is designed to output the Ehrhart polynomial and the
volume for any given polytope. Though this method is simple and easy to use, it proves
inefficient for the Birkhoff Polytope, due to a very long computation time. The complex
analytic techniques employed by Beck and Pixton are presently the most successful.

In this thesis, we introduce a novel method to compute the relative volume of Bn as well
as a faster implementation of LattE. In their 2004 paper, Baryshnikov and Pemantle [10]
question the feasibility of applying the method of analytic combinatorics in several variables
when compared to complex analytic techniques, though they had not done any conclusive
tests. With this question in mind, our method utilizes existing work involving complex ana-
lytic techniques and analytic combinatorics in several variables to asymptotically compute
the leading term of the Ehrhart polynomial. We use complex analytic techniques and LattE

to provide a more efficient use of the open source software. The remainder of this chapter
will expand on introduced concepts and give necessary notation and definitions. Chapter 2
will provide a survey of four existing methods: interpolation, generating functions, complex
analytic techniques, and Barvinok’s Algorithm. Chapter 3 will showcase two new methods
to calculate the relative volume of Bn, with success for n ≤ 6. We conclude with results
from a series of calculations done in Maple and Sage, along with a comparison, shown in
Table 4.1, to results obtained from various existing methods.

2

1.2 Convex Polytopes

The work of Beck and Robins [15] and Stanley [46] are used as guides for the definitions,
notation, theorems and proofs given in this section. We use the notation z to represent the
real d-dimensional vector (z1, ..., zd) and define the multivariate notation za := za1

1 ·z
a2
2 · · · z

ad
d

for z,a ∈ Rd. Let 〈z,a〉 denote the dot product for z,a ∈ Rd. There are two well known
equivalent representations of a convex polytope both of which we use throughout this thesis
depending on the problem.

Definition (vertex representation). A convex polytope P ⊂ Rd is formed by taking the
convex hull of the finite point set {v1, v2, ..., vn} ∈ Rd, that is

P = conv(v1, v2, ..., vn) :=
{
λ1v1 + λ2v2 + ...+ λnvn : for all λi ≥ 0,

n∑
i=1

λi = 1
}
. (1.1)

One can think of taking the convex hull of a finite set of points as tightening shrink wrap
around the outside of the points. This ensures that the shape formed has flat sides and the
finite set of points are convex.

Definition (half-space representation). A convex polytope P ⊂ Rd is formed by the
bounded intersection of finitely many half-spaces. That is

P := {x ∈ Rd : Ax ≤ b}, (1.2)

for A ∈ Rm×d and b ∈ Rm.

The matrix A and vector b come from a set of linear inequalities. Each half-space that
bounds P ⊂ Rd can be written as

a1x1 + a2x2 + · · ·+ adxd ≤ b1,

thus the polytope is formed by the finite set of solutions to the system of linear equations,

a11x1 + a12x2 + · · · + a1dxd ≤ b1

a21x1 + a22x2 + · · · + a2dxd ≤ b2
...

...
...

...
am1x1 + am2x2 + · · · + amdxd ≤ bm.

(1.3)

A polytope can be translated into a non-negative orthant without changing the number of
lattice points contained in P ⊂ Rd, therefore we can assume that all solutions to Equation
(1.2) are non-negative. Each inequality in Equation (1.3) can be converted into an equality

3

using what is known as a slack variable. For example, the inequality

a1x1 + a2x2 + · · ·+ adxd ≤ b1

can be rewritten as
a1x1 + a2x2 + · · ·+ adxd + xd+1 = b1

for xd+1 ∈ R≥0. We now assume for the remainder of the thesis without loss of generality
that

P := {x ∈ Rd≥0 : Ax = b} (1.4)

for A ∈ Rm×d and b ∈ Rm.
The dimension of a polytope is the dimension of the affine space spanned by P ⊂ Rd, that
is

spanP := {x+ λ(y − x) : x, y ∈ P, λ ∈ R}.

If P has dimension d then we say that P is a d-polytope. We say that the d-polytope P is
full-dimensional if P ⊂ Rd. A hyperplane, H = {x ∈ Rd≥0 : 〈a,x〉 = b}, intersecting P ⊂ Rd

is called a supporting hyperplane if the polytope lies entirely on one side of H. A face of
P is a subset of P of the form P ∩H for H a supporting hyperplane. From this definition
we see that a face of a polytope is itself a polytope. A facet of a d-polytope is a face of
dimension d− 1, an edge has dimension 1, and a vertex 0. A vertex v ∈ P is also called an
extreme point of a polytope and given a supporting hyperplane H is a subset of P of the
form P ∩H = {v}. A convex d-polytope with exactly d+ 1 vertices is called a d-simplex.
A polytope P ⊂ Rd is called integral if all of its vertices have integer coordinates, that is

P = conv{v1, v2, ..., vn} for vi ∈ Zd.

Furthermore, P is called rational if all of its vertices have rational coordinates, that is

P = conv{v1, v2, ..., vn} for vi ∈ Qd.

Example 1.2.1. The line segment in blue in Figure 1.2 is a 1-polytope, however it lies in
R2. A line in R2 is not full dimensional. This line segment is an example of a 1-simplex with
two vertices, (0,0), and (4,2).

A convex polytope can be dilated, meaning that we can either shrink or stretch the polytope
uniformly by a factor t ∈ Z. Written in terms of the vertex representation
tP = conv(tv1, tv2, ..., tvn), or in half-space representation tP = {x ∈ Rd≥0 : Ax = tb}. Given
a dilated polytope tP, we say we are looking at the tth dilate of the polytope.

4

Figure 1.2: The line segment from (0, 0) to (4, 2) shown in blue and its affine space.

Figure 1.3: A polytope and its 3rd dilate.

We define
LP(t) := #(tP ∩ Zd) = #{x ∈ Zd≥0 : Ax = tb}

to be the lattice-point enumerator for the tth dilate of P ⊂ Rd. Its purpose, as the name says,
is to count the number of lattice points contained in tP. The infinite sequence {LP(t)}t≥1

can be encoded in a formal power series as coefficients, this is known as a generating function.
The generating function associated to the infinite sequence {LP(t)}t≥1 is commonly referred
to as the Ehrhart series of P,

EhrP(z) := 1 +
∑
t≥1

LP(t)zt.

We now state an important theorem regarding LP(t) presented by Eugéne Ehrhart in [29].

Theorem 1.2.1 (Ehrhart’s Theorem). If P is an integral convex d-polytope, then LP(t) is
a polynomial in t of degree d.

The polynomial LP(t) is known as the Ehrhart Polynomial. The next two subsections will
not only provide the background needed to prove Ehrhart’s Theorem but also present con-
cepts required for Barvinok’s algorithm discussed in Section 2.4. We will see that the Ehrhart

5

Figure 1.4: Two possible triangulations of a polytope.

polynomial given by Ehrhart’s Theorem is critical in computing the volume of a polytope
therefore the proof is presented in Subsection 1.2.3.

1.2.1 Triangulating a polytope

Recall that a d-simplex is a convex d-polytope with exactly d+ 1 vertices. A method called
triangulation dissects a non-simplex convex d-polytope P into a finite set T = {∆1, ...,∆m}
of d-simplices such that:

1. P =
⋃

∆∈T ∆,

2. for every ∆k,∆j ∈ T , ∆j ∩∆k is a common face of both ∆k and ∆j or empty,

3. if ∆k ∈ T then every face of ∆k is also in T .

If there exists a triangulation T of a polytope P such that the vertices of every ∆ ∈ T are
vertices of P then it is said that P can be triangulated using no new vertices.

Theorem 1.2.2 (Existence of triangulations [15]). Every convex polytope can be triangu-
lated using no new vertices.

Theorem 1.2.2 tells us that we are able to dissect any non-simplicial integral convex
d-polytope into a finite set of integral d-simplices. Ehrhart’s Theorem ensures that each one
of these integral convex d-simplices will have an Ehrhart polynomial. Taking the union of
the finite set of d-simplices and summing their Ehrhart polynomials will give the Ehrhart
polynomial for the entire integral convex d-polytope. Therefore, the proof of Ehrhart’s
theorem will only need to be shown for d-simplicies. It is important to address the over
counting when computing LP(t) as, by definition, many d-simplices will share a common
face, one must take caution and use the principle of inclusion and exclusion to ensure no
lattice point is over counted.

1.2.2 Coning over a polytope

We now discuss how to cone over a convex polytope. The integer point transform of P ⊂ Rd

is defined as the multivariate generating function

σP(z) = σP(z1, z2, ..., zd) =
∑

a∈P∩Zd

za.

6

Figure 1.5: Coning over the polytope shown in the slice of the cone at the hyperplane
x3 = 1. Figure taken directly from [15].

Figure 1.6: Polytope with vertices (0, 0), (0, 1), (2, 1) and (2, 0)

Evaluating σP(z) at the all 1’s vector gives the number of lattice points in P, hence

σP(1, 1, ..., 1) = #(P ∩ Zd) = LP(1).

Example 1.2.2. Consider the polytope P ⊂ R2 with vertices (0, 0), (0, 1), (2, 1), (2, 0)
shown in Figure 1.6. The integer point transform is given by

σP(z) = (z1, z2)(0,0) + (z1, z2)(0,1) + (z1, z2)(1,1) + (z1, z2)(2,1) + (z1, z2)(2,0) + (z1, z2)(1,0)

= 1 + z2
2 + z1z2 + z2

1z2 + z2
1 + z1.

Therefore the number of integer points in P is LP(1) = σP(1) = 1 + 1 + 1 + 1 + 1 + 1 = 6.

Before discussing what it means to cone over a polytope, we first state two important
definitions.

7

Definition. For v,w1,w2, ...,wn ∈ Rd a cone C ⊂ Rd is defined as the set of points

C = {λ1w1 + λ2w2 + ...+ λnwn : λ1, λ2, ..., λn ≥ 0},

and a pointed cone is defined as
v + C.

We call v the apex and wi for i = 1, ..., n the generators. If C ⊂ Rd is generated by at
most d linearly independent generators then C is a simplicial cone.

Definition. The fundamental parallelepiped of a cone C is given by

π = {λ1w1 + λ2w2 + ...+ λnwn : 0 ≤ λ1, ..., λn < 1}

where w1,w2, ...,wn ∈ Rd are the generators of C.

We now have the necessary tools to describe how to cone over a polytope. Given a convex
polytope P = conv(v1, v2, ..., vn) ⊂ Rd, we aim to lift P to dimension d + 1. We set the
origin as the apex and append the value 1 to each vertex of P to build the new generators:

w1 = (v1, 1),w2 = (v2, 1), ...,wn = (vn, 1).

We define the cone over P as

cone(P) = {λ1w1 + λ2w2 + ...+ λnwn : λ1, λ2, ..., λn ≥ 0} ⊂ Rd+1.

The original polytope can be obtained by slicing cone(P) at the hyperplane xd+1 = 1, and
any dilate of P by slicing at xd+1 = t:

tP = cone(P) ∩ {xd+1 = t}.

We define the integer point transform of cone(P) as

σcone(P)(z1, ..., zd, zd+1) = 1 + σP(z1, ..., zd)zd+1 + σ2P(z1, ..., zd)z2
d+1 + ...

= 1 +
∑
t≥1

σtP(x1, ..., zd)ztd+1.
(1.5)

8

We evaluate σcone(P)(z1, ..., zd+1) at (1, ..., 1, zd+1) to get

σcone(P)(1, ..., 1, zd+1) = 1 +
∑
t≥1

σtP(1, ..., 1)ztd+1

= 1 +
∑
t≥1

#(tP ∩ Zd)ztd+1

= 1 +
∑
t≥1

LP(t)ztd+1.

(1.6)

Lemma 1.2.1 ([15, Lemma 3.10]). For a polytope P ⊂ Rd

σcone(P)(1, ..., 1, z) = 1 +
∑
t≥1

LP(t)zt = EhrP(z).

Proof. Follows from Equation (1.5) and (1.6).

We now have the necessary insight for the following theorem.

Theorem 1.2.3 ([15, Theorem 3.5]). Given a d-simplex P = conv(v1, v2, ..., vd+1) ⊂ Rd,
and the generators wi = (vi, 1) for i = 1, ..., d + 1, the integer point transform for cone(P)
is given by

σcone(P)(z) = σπ(z)
(1− zw1)(1− zw2) . . . (1− zwd+1) ,

where
π = {λ1w1 + λ2w2 + ...+ λd+1wd+1 : 0 ≤ λ1, ..., λd+1 < 1}.

Proof. The integer point transform of cone(P) can be written as

σcone(P)(z) =
∑

a∈cone(P)∩Zd+1

za.

As a is an integer point in cone(P), a = λ1w1 + ...+λd+1wd+1 for λ1, ..., λd+1 ≥ 0. Knowing
that the vectors wi for i = 1, ..., d + 1 form a basis of Rd+1 this representation is unique.
Given λi = bλic+ {λi} let

a = ({λ1}w1 + ...+ {λd+1}wd+1) + bλ1cw1 + ...+ bλd+1cwd+1.

As 0 ≤ {λi} < 1 then p = {λ1}w1 + ... + {λd+1}wd+1 ∈ π. Again the vectors wi for
i = 1, ..., d+ 1 form a basis of Rd+1 so this representation is unique. Therefore we have

9

a = p + k1w1 + ...+ kd+1wd+1 for p ∈ π and k1, ..., kd+1 ∈ Z≥0. Hence,

σcone(P)(z) =
∑

a∈cone(P)∩Zd+1

zp+k1w1+...+kd+1wd+1

=

 ∑
p∈π∩Zd+1

zp

∑
k1≥0

zk1w1

 · · ·
 ∑
kd+1≥0

zkd+1wd+1


= σπ(z)

(1− zw1)(1− zw2) . . . (1− zwd+1) .

1.2.3 Proof of Ehrhart’s Theorem

The following lemma will provide the last piece of the puzzle to prove Theorem 1.2.1.

Lemma 1.2.2 ([15, Lemma 3.9]). Let f, g be polynomials in R[t] satisfying

∑
t≥0

f(t)zt = g(t)
(1− z)d+1 .

Then f is of degree d if and only if g is of degree at most d and g(1) 6= 0.

The proof can be done by algebraic manipulation.

Proof of Theorem 1.2.1. By Lemma 1.2.2 and the method of triangulations it suffices to
prove for an integral d-simplex ∆ that

∑
t≥0

L∆(t)zt = g(t)
(1− z)d+1 ,

for g(t) a polynomial of degree at most d and g(1) 6= 0.
By definition ∆ has d+ 1 vertices and cone(∆) is simplicial with the origin as the apex and
the generators

w1 = (v1, 1),w2 = (v2, 1), · · · ,wd+1 = (vd+1, 1).

By Theorem 1.2.3 we have the integer point transform

σcone(∆)(z1, z2, ..., zd+1) = σπ(z1, z2, ..., zd+1)
(1− zw1)(1− zw2) . . . (1− zwd+1) ,

with π = {λ1w1 + λ2w2 + ...+ λd+1wd+1 : 0 ≤ λ1, ..., λd+1 < 1}. The zd+1 coordinate of wi

for i = 1, ..., d+ 1 is 1, hence the zd+1 coordinate of π is λ1 + λ2 + ...+ λd+1. Each λi < 1
therefore λ1 +λ2 + ...+λd+1 < d+ 1 with an integer sum of at most d. Hence, the degree of
zd+1 in σπ(z1, z2, ..., zd+1) is at most d and σπ(1, ..., 1, zd+1) is a polynomial in zd+1 of degree
at most d. The apex of π is a lattice point (the origin) so σπ(1, ..., 1, 1) = #(π ∩ Zd+1) 6= 0.

10

By Lemma 1.2.1 we have

∑
t≥0

L∆(t)zt = σcone(∆)(1, ..., 1, z) = σπ(1, ..., 1, z)
(1− z)d+1 ,

and therefore, by Lemma 1.2.2, L∆(t) is a polynomial in t of degree d.

1.3 The Birkhoff Polytope Bn

The Birkhoff polytope is one of the most intensively studied polytopes and goes by many
names including the assignment polytope, polytope of doubly stochastic matrices, and the
perfect matching polytope of the complete bipartite graph Kn,n. We now formally introduce
the Birkhoff polytope. A stochastic vector is composed of non-negative, real numbers such
that the sum of all of its elements equates to 1. A doubly stochastic matrix, A = (ajk), is
an n× n matrix with both column and row vectors being stochastic,

n∑
j=1

ajk =
n∑
k=1

ajk = 1 and ajk ≥ 0 for all 1 ≤ j, k ≤ n.

The convex hull of all n× n doubly stochastic matrices forms the nth Birkhoff Polytope,

Bn :=



x11 · · · x1n
...
xn1 · · · xnn

 ∈ Rn
2 : xjk ≥ 0,

∑n
j=1 xjk = 1 for all 1 ≤ k ≤ n∑n
k=1 xjk = 1 for all 1 ≤ j ≤ n


= {x ∈ Rn

2
≥0 : Ax = b} for x = (x11, x12,, xnn),

where, for 1 being the all 1’s row vector in Rn and In the n× n identity matrix,

A =



1
1

. . .
1

In In · · · In


∈ Z2n×n2

, and b =


1
1
...
1

 ∈ Z2n. (1.7)

The remaining entries are all 0.

Example 1.3.1. The 2nd Birkhoff polytope is formed by the convex hull of all 2×2 doubly
stochastic matrices,

B2 =
{(

x1 x2

x3 x4

)
∈ R4 : x1, x2, x3, x4 ≥ 0,

x1 + x2 = x3 + x4 = 1
x1 + x3 = x2 + x4 = 1

}
. (1.8)

11

The polytope B2 can be stated in half-space representation as

B2 :=


x ∈ R4

≥0 :


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1




x1

x2

x3

x4

 =


1
1
1
1




.

Problems surrounding the Birkhoff polytope include, but are not limited to: construction
and enumeration of doubly stochastic matrices, and the volume of such a polytope. Birkhoff
[16] and von Neumann [50] presented the following theorem.

Theorem 1.3.1 (Birkhoff-von Neumann Thoerem). The vertices of Bn are the n! permu-
tation matrices.

The proof is out of the scope of this thesis but can be found in [46, 21, 45, 33, 34].

Example 1.3.2. The two vertices of B2 are the extremal points of Equation (1.8) given by
(1, 0, 0, 1) and (0, 1, 1, 0). These two vertices correspond to the 2! possible 2×2 permutation
matrices.

We now state an important theorem regarding the dimension of Bn.

Theorem 1.3.2. Bn is an (n− 1)2-polytope in Rn2.

We denote the lattice point enumerator for the tth dilate of Bn as

Hn(t) = #(tBn ∩ Zn
2) = #{x ∈ Zn

2
≥0 : Ax = tb} = LBn(t).

By Ehrhart’s Theorem 1.2.1 and Theorem 1.3.2 we get that Hn(t) is a polynomial in t of
degree (n− 1)2.

1.4 Semi-Magic Squares

We now present a nice interpretation for the lattice points in Bn. A magic square is an
n × n array of positive, distinct integers such that the sum across each row, column, and
diagonal equals the magic sum or magic constant, denoted by t. They display the beauty
of mathematics accompanied with a very rich history. It is believed that sometime around
2200 BCE there was a village in China that experienced huge floods destroying the crops
and land. The village arranged sacrifices for the River God in hopes that it would calm
their anger. Every time the river would flood a turtle would emerge and walk around the
sacrifice. A pattern was noticed on the back of this turtle; dots had been arranged in a three
by three grid such that the sum across any row, column or diagonal equaled fifteen [3]. This
is believed to be the first magic square and is commonly known as the the Lo Shu Square.

12

(a) The Lo Shu turtle [40] (b) The Lo Shu Square

Figure 1.7: The oldest known magic square

A semi-magic square is an n×n array of positive integers such that the sum across each row
and column equals t. We are able to interpret the number of integral points in the tth dilate
of the nth Birkhoff polytope as the number of n×n semi magic squares with magic sum t.

Example 1.4.1. Recall the set of 2×2 doubly stochastic matrices given in Equation (1.8).
The two extreme points in the undilated B2 are (1, 0, 0, 1) and (0, 1, 1, 0). We can see the
correspondence to semi-magic squares, these two integral points correspond to the only 2×2
semi-magic square with magic sum 1:

1 0
0 1

,
0 1
1 0

.

Example 1.4.2. We will show in Chapter 2 that the Ehrhart Polynomial for B2 is
H2(t) = t + 1. Dilating B2 by a factor of 2 gives H2(2) = 3. These 3 lattice points can be
visualized by the following 2× 2 semi-magic squares with magic sum 2:

2 0
0 2

,
1 1
1 1

,
0 2
2 0

.

Therefore the Ehrhart Polynomial for Bn can be used to count the number of n × n semi-
magic squares with magic sum t, a useful and fun application. Lastly, we notice that any
doubly stochastic matrix with rational entries can be transformed into a semi-magic square
by multiplying by a non-unique positive integer.

Example 1.4.3. Consider the 3× 3 doubly stochastic matrix
0.2 0.3 0.5
0.6 0.2 0.2
0.2 0.5 0.3

 .
We can transform this particular matrix into a semi-magic square by multiplying by a dilate
of 10, producing the following semi-magic square with magic sum of 10,

13

2 3 5
6 2 2
2 5 3

.

Using this interpretation, we identify semi-magic squares to the lattice points of the Birkhoff
polytope.

1.5 Volume of Bn

There are two notions of volume for a polytope that we consider. The discrete volume of
a polytope P ⊂ Rd is the number of points in P ∩ Zd. Thus, LP(t) computes the discrete
volume for the tth dilation of P. In particular, the number of n×n semi-magic squares with
magic sum t is given by the discrete volume of Bn. The continuous volume of a polytope
P ⊂ Rd is given by

vol(P) :=
∫
P

1 dm,

where dm is the integral Lebesgue measure on the affine hull of P. The continuous volume
of P can be thought of intuitively as the volume that we attach to everyday objects. In the
case that P is full dimensional we obtain the following equivalent expression for continuous
volume

vol(P) = lim
t→∞

1
td

#(tP ∩ Zd). (1.9)

It is clear that when computing the continuous volume using Equation (1.9) P must be
full-dimensional, if not we will get a continuous volume of 0. As Bn is not full dimensional
we must extend our notion of volume and consider the relative volume. This is the volume
relative to the sublattice (spanP)∩Zd where spanP is the affine span of P [15]. Instead of
dividing by t to the power of the dimension P lives in, we instead divide by t to the power
of the dimension of P. The relative volume of an m-dimensional polytope P ⊂ Rd is given
by

ν(P) = lim
t→∞

1
tm

#(tP ∩ Zd), (1.10)

for m < d. Therefore the leading coefficient of the Ehrhart polynomial Hn(t) is the relative
volume of Bn.

Example 1.5.1. We will show in Chapter 2 that the Ehrhart Polynomial for the 4-dimensional
polytope B3 is H3(t) = 1

8 t
4 + 3

4 t
3 + 15

8 t
2 + 9

4 t+ 1. Using Equation (1.10) the relative volume
for B3 is

ν(B3) = lim
t→∞

1
t4
·
(1

8 t
4 + 3

4 t
3 + 15

8 t
2 + 9

4 t+ 1
)

= 1
8 .

Relative volume is in units equal to the volume of the fundamental domain of the affine
subspace spanned by P [14, 24] and can be converted back to continuous volume. For the

14

case of the Birkhoff polytope the continuous volume is equivalent to

vol(Bn) = nn−1ν(Bn). (1.11)

The details of this equivalence are in [25] and the Appendix of [20].

In 2007, Canfield and McKay [18, 19] were able to provide the first asymptotic estimate of
the relative volume of Bn by expressing the contingency tables as an integral and then esti-
mating its value using the saddle-point method [19]. For any ε > 0 they give the asymptotic
estimate equivalent to

ν(Bn) = 1
(2π)n−

1
2nn(n−1)

exp
(1

3 + n2 +O(n
−1
2 +ε)

)
(1.12)

as n→∞.
As the relative volume of the Birkhoff polytope is only known for n ≤ 10 the accuracy of
such a formula can only be tested for a small set. For example, using Table 2.1 when n = 3
Equation (1.12) is off by a factor of 1.25 whereas in when n = 10 Equation (1.12) is off by
a factor of 1.11. The asymptotic estimate given by Canfield and McKay proves to be quite
accurate making Equation (1.12) invaluable when estimating the relative volume of Bn for
n > 10.

15

Chapter 2

Existing methods to compute the
relative volume of Bn

This chapter will survey four existing methods used to compute the Ehrhart polynomial
and the relative volume of the Birkhoff polytope given by

Bn = {x ∈ Rn
2
≥0 : Ax = b},

for the matrix A ∈ Z2n×n2 and vector b ∈ Z2n given in Equation (1.7). Section 2.1 will
discuss the straightforward implementation of polynomial interpolation and Section 2.2 will
discuss the use of Euler’s generating function to extract the Ehrhart polynomial. The use
of generating functions will prove more time consuming for smaller values of n but a more
efficient method than polynomial interpolation for n ≥ 4. Both of these sections will take
work from Beck and Robins [14, 15]. We then discuss the groundbreaking work of Beck
and Pixton [11, 14] in Section 2.3. They were able to use complex analytic techniques, in
particular the residue theorem, to calculate ν(B9) and ν(B10), shown in Table 2.1. We end
this chapter with a look at Barvinok’s algorithm which is implemented in the open-source
computer program LattE [4]. This algorithm will be presented in Section 2.4 using the
work of De Loera et al. [22, 23]. For the case of the Birkhoff polytope, LattE proves more
efficient than polynomial interpolation and the use of generating functions, nevertheless, it
cannot compete with complex analytic techniques. The new methods that we will present
in Chapter 3 will prove more efficient than interpolation, generating functions and Barvi-
nok’s algorithm. This comes down to their ability to handle the complexity of the Birkhoff
polytope as n gets larger. We will see that complex analytic techniques prove to be the
most efficient. It is important to note that there are other published methods in circulation
to compute the Ehrhart polynomial of both the Birkhoff polytope and general polytopes,
including but not limited to [6, 47, 20, 27].

16

2.1 Polynomial interpolation

Since we know a priori that Hn(t) is a polynomial, interpolation is a straightforward method
to compute the Ehrhart polynomial but can be inefficient as n gets larger due to the di-
mension of Bn. Given d+ 1 dilates we can interpolate the polynomial

Hn(t) = cdt
d + cd−1t

d−1 + ...+ c1t+ c0

using the well known Vandermonde matrix (2.3) [15]. We describe the mechanics behind
polynomial interpolation and provide an applicable theorem to aid in the computation of
the Ehrhart polynomial of Bn. The method of interpolation requires that the polynomial
pass through all given points thus

Hn(ti) = cdt
d
i + cd−1t

d−1
i + ...+ c1ti + c0 = fi for i = 1, ..., d+ 1. (2.1)

Equation (2.1) can be expressed as the linear system


f1

f2
...

fd+1

 = V


c0

c1
...
cd

 , (2.2)

where V is the well known Vandermonde matrix

V =


1 t1 · · · td−1

1 td1
1 t2 · · · td−1

2 td2
...

...
...

...
1 td+1 · · · td−1

d+1 tdd+1

 . (2.3)

We isolate the coefficients of Hn(t) to retrieve what is commonly referred to as the Lagrange
interpolation formula [15], 

c0

c1
...
cd

 = V−1


f1

f2
...

fd+1

 . (2.4)

Corollary 2.1.1. Given d + 1 distinct real numbers t1, t2, ..., td+1 the inverse of the Van-
dermonde matrix exists.

17

Proof. It is well know that

det(V) =
∏

1≤k<j≤d+1
(tj − tk) 6= 0.

Let us now prove the existence and uniqueness of a polynomial found through interpolation.

Theorem 2.1.1 (Existence and Uniqueness). Given d+1 distinct real numbers x1, x2, ..., xd+1

and arbitrary values f1, f2, ..., fd+1 there exists a unique polynomial p(x) of degree less than
or equal to d such that p(xi) = fi for i = 1, .., d+ 1.

Sketch of Proof. Let p1(x) and p2(x) be polynomials of degree less than or equal to d with

p1(xi) = p2(xi) = fi for i = 1, ..., d+ 1.

Then there exists a polynomial q(x) = p1(x) − p2(x) of degree less than or equal to d

satisfying q(xi) = 0 for i = 1, ..., d + 1. By the Fundamental Theorem of Algebra we know
that the number of roots of a nonzero polynomial is equal to its degree, therefore q(x) must
be the zero polynomial and hence p1(x) = p2(x). Existence is proven by finding such a
polynomial as demonstated at the beginning of this section.

Recall that Hn(t) is a polynomial of degree (n− 1)2 therefore one needs to evaluate Hn(t)
for (n − 1)2 + 1 values in order to interpolate. Through symmetry (Equation (2.5)) and
trivial dilates of Hn(t) (Equation (2.6), Hn(0) = 1, and Hn(1) = n!) the following theorem
reduces the number of evaluations to⌊1

2
(
(n+ 1)2 + 1− (n− 1)− 2

)⌋
=
⌊1

2
(
n2 − 3n+ 1

)⌋
.

Theorem 2.1.2 ([15, Theorem 6.3]). The polynomial Hn(t) satisfies

Hn(−n− t) = (−1)(n−1)2
Hn(t) (2.5)

and
Hn(−1) = Hn(−2) = ... = Hn(−n+ 1) = 0. (2.6)

Proof. The proof is based on the Ehrhart-Macdonald reciprocity law

LP(−t) = (−1)dim(P)LP◦(t),

18

where P◦ denotes the interior of P. The proof of this law can be found in [15, 36]. Therefore
we have

Hn(−t) = (−1)(n−1)2
H◦n(t). (2.7)

In the case of Bn the points of the interior are those n × n doubly stochastic matrices in
which all entries are greater than 0 [13]. Consider an n × n semi-magic square with all
integer entries greater than 0 and magic sum t, removing 1 from each entry gives an n× n
semi-magic square with magic sum t − n. This bijection proves that H◦n(t) = Hn(t − n).
Plugging this into the Equation (2.7) and substituting t = n + t proves Equation (2.5).
When considering the relative interior of Bn, the construction of the n × n semi-magic
squares (and hence the interior lattice points of Bn) requires that the row and column sum
be greater than or equal to n. Therefore H◦n(t) = 0 for t = 1, ..., n−1, and by Equation (2.7),
Hn(−1) = Hn(−2) = ... = Hn(−n+ 1) = 0.

Example 2.1.1. To interpolate H3(t) = c4t
4 + c3t

3 + c2t
2 + c1t + c0, for ci unknown for

i = 0, ..., 4, we evaluate H3(t) at 5 different values. Using Theorem 2.1.2 and the trivial
solutions we have H3(−3) = (−1)(2)2

H3(0) = 1, H3(−2) = H3(−1) = 0, H3(0) = 1, and
H3(1) = 3!. Substituting the ti values into Equation (2.4) gives



c0

c1

c2

c3

c4


=



0 0 0 1 0
−1
12

1
2

−3
2

5
6

1
4

−1
24

1
6

1
4

−5
6

11
24

1
12

−1
2 1 −5

6
1
4

1
24

−1
6

1
4

−1
6

1
24





1
0
0
1
6


=



1
9
4
15
8
3
4
1
8


. (2.8)

Therefore
H3(t) = 1

8 t
4 + 3

4 t
3 + 15

8 t
2 + 9

4 t+ 1 and ν(B3) = 1
8 .

This method, along with some ingenuity, was used by Chan and Robbins [20] to calculate
ν(Bn) for n ≤ 8. Nevertheless the time needed to evaluate Hn(t) for arbitrary values of t
when n ≥ 4 makes polynomial interpolation an inefficient method to calculate the Ehrhart
polynomial and relative volume of Bn.

2.2 Euler’s Generating Function

Generating functions are a better suited tool than polynomial interpolation to study larger
cases of Bn. Specifically, we use Euler’s generating function to compute Hn(t) and in turn
the relative volume of the Birkhoff polytope. We denote by F (z) the series

F (z) =
∑
n≥0

fnz
n,

19

Figure 2.1: 2-dimensional polytope P = {(x1, x2) ∈ R2
≥0 : 2x1 + 3x2 ≤ 6}.

and use the convention that [zn]F (z) denotes the coefficient of zn in the Taylor series
expansion of F (z),

[zn]F (z) = [zn]
(∞∑
n=0

fnz
n

)
:= fn.

Let constz(F (z)) denote [z0]F (z).

Example 2.2.1. Consider the 2-dimensional polytope

P = {(x1, x2) ∈ R2
≥0 : 2x1 + 3x2 ≤ 6},

shown in Figure 2.1. We aim to determine the lattice point enumerator for P:

LP(t) = #{(x1, x2, x3) ∈ Z3
≥0 : 2x1 + 3x2 + x3 = 6t}

= #{x ∈ Z3
≥0 : (2, 3, 1)x = 6t}.

(2.9)

To do this, we take the product of the geometric sequences for each term in the expression
2x1 + 3x2 + x3, (1

1− z2

)(1
1− z3

)(1
1− z

)
=
∑
n1≥0

z2n1
∑
n2≥0

z3n2
∑
n3≥0

zn3

=
∑
n1≥0

∑
n2≥0

∑
n3≥0

z2n1+3n2+n3

=
∑
n≥0

LP(n)zn.

(2.10)

The left side of the Equation (2.10) is the generating function for the infinite sequence
{LP(n)}n≥1. We care specifically about the coefficient when n = 6t so we rewrite Equa-
tion (2.10) as ∑

n≥0
LP(n)zn−6t =

(1
(1− z2)(1− z3)(1− z)

) 1
z6t .

20

Taking the constant with respect to z of both sides gives

LP(6t) = constz
(1

(1− z2)(1− z3)(1− z)z6t

)
.

When dealing with the Birkhoff polytope, we require multivariate generating functions
which are multivariate Taylor series of the form

G(z1, ..., zd) =
∑

n1,...,nd≥0
gn1,...,nd

zn1
1 ...znd

d ,

where gn1,...,nd
∈ N. A multivariate generating function allows us to encode Hn(t) in the

ring Z[[z1, z2, ..., zd]]. Now that we have a general understanding of the generating function
manipulations relevant to our problem we state the theorem of Euler’s generating function.

Theorem 2.2.1 (Euler’s generating function [15]). Suppose the convex polytope P is given
by P = {x ∈ Rd≥0 : Ax = b} for some matrix A ∈ Zm×d and vector b ∈ Zm. Then the
lattice point enumerator of P can be computed as follows:

LP(t) = constz
(1

(1− zc1)(1− zc2) · · · (1− zcd)ztb
)
, (2.11)

where c1, c2, ..., cd denotes the columns of A.

Proof. Expand the generating function given in Equation (2.11) in terms of its geometric
series,

1
(1− zc1)(1− zc2) · · · (1− zcd)ztb =

∑
n1≥0

zn1c1

∑
n2≥0

zn2c2

 · · ·
∑
nd≥0

zndcd

 1
ztb

=
∑
n1≥0

∑
n2≥0

· · ·
∑
nd≥0

zn1c1+n2c2+...+ndcd−tb

=
∑
n1≥0

∑
n2≥0

· · ·
∑
nd≥0

zAn−tb.

(2.12)

Extracting the constant term with respect to zi for i = 1, .., d gives the number of integer
vectors n such that An = tb, hence the number of lattice points contained in tP.

Beck and Robins [15] show how to use partial fraction decomposition and singularity analysis
to decompose Theorem 2.2.1 into a clean and concise generating function expression for
Hn(t) presented in Theorem 2.2.2. Note that a singularity is a point where a functions fails
to be defined. Recall the Birkhoff polytope given by Bn = {x ∈ Rn2 : Ax = b} for the

21

matrix A ∈ Z2n×n2 and vector b ∈ Z2n given in Equation (1.7). Let the variables z1, ..., zn

denote the first n rows of A and w1, ..., wn the last n rows. Using Theorem 2.2.1 we get the
following generating function for Hn(t),

Hn(t) = constz1···znw1···wn

(
1∏

1≤j,k≤n(1− zjwk)(
∏

1≤j≤n zj
∏

1≤k≤nwk)t

)
. (2.13)

Example 2.2.2. Consider the polytope

B2 =


x ∈ R4

≥0 :


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1




x1

x2

x3

x4

 =


1
1
1
1




.

Using Theorem 2.11 and Equation (2.13) we have the following generating function for
H2(t):

H2(t) = constz1z2w1w2

(1
(1− z1w1)(1− z1w2)(1− z2w1)(1− z2w2)(z1z2w1w2)t

)
(2.14)

where z1, z2 denotes the first two rows of A and w1, w2 the last two.

Placing an ordering on the constant term computation simplifies Equation (2.14) to

H2(t) = constz1z2
(1

(z1z2)t constw1

(1
(1− z1w1)(1− z2w1)wt1

)
× constw2

(1
(1− z1w2)(1− z2w2)wt2

))
.

Note that w1, w2 are “dummy” variables so we set w = w1 = w2 and simplify,

H2(t) = constz1z2

(
1

(z1z2)t
(
constw

1
(1− z1w)(1− z2w)wt

)2
)
.

The ordering and simplification used in Example (2.2.2) works for all n therefore Equa-
tion (2.13) can be written as,

Hn(t) = constz1···zn

(1
(z1z2 · · · zn)t

(
constw

1
(1− z1w)(1− z2w) · · · (1− znw)wt

)n)
.

(2.15)

22

The innermost expression can be rewritten using partial fraction decomposition and isolat-
ing the singularities with respect to w as follows,

constw
1

(1− z1w)(1− z2w) · · · (1− znw)wt = constw

(
A1

w − 1
z1

+ A2

w − 1
z2

+ ...+ An

w − 1
zn

+
t∑

k=1

Bk
wk

)

= constw

(
A1

w − 1
z1

+ A2

w − 1
z2

+ ...+ An

w − 1
zn

)
.

(2.16)

To solve for Ak we multiply both sides of Equation (2.16) by w − 1
zk

resulting in

− 1
(1− z1w)(1− z2w) · · · zk · · · (1− znw)wt =(

w − 1
zk

)
A1

w − 1
z1

+

(
w − 1

zk

)
A2

w − 1
z2

+ ...+Ak + ...+

(
w − 1

zk

)
An

w − 1
zn

,

and take the limit as w → 1
zk

to isolate Ak and obtain

Ak = − 1(
1− z1

zk

)
· · · zk · · ·

(
1− zn

zk

)
1
zt

k

= − zt−1
k(

1− z1
zk

)
· · ·

(
1− zn

zk

) = − zt+n−2
k∏

j 6=k(zk − zj)
.

(2.17)
For k = 1, ..., n substitute the values of Ak into Equation (2.16) to get

constw
1

(1− z1w)(1− z2w) · · · (1− znw)wt = constw

(
A1

w − 1
z1

+ A2

w − 1
z2

+ ...+ An

w − 1
zn

)
= −A1z1 −A2z2 − ...−Anzn

=
n∑
k=1

zt+n−1
k∏

j 6=k(zk − zj)
.

(2.18)

Plugging Equation (2.18) into Equation (2.15) gives the following theorem.

Theorem 2.2.2 ([15, Theorem 6.6]). The Ehrhart polynomial Hn(t) of the nth Birkhoff
polytope satisfies

Hn(t) = constz1···zn

(
1

(z1z2 · · · zn)t

(
n∑
k=1

zt+n−1
k∏

j 6=k(zk − zj)

)n)
.

Proof. Follows directly from Equation (2.15) and Equation (2.18).

23

Example 2.2.2 (Continued). Using Theorem 2.2.2 we have

H2(t) = constz1z2

(z1z2)−t
(

zt+1
1

(z1 − z2) + zt+1
2

(z2 − z1)

)2
 .

Taking the constant with respect to z1 then z2 gives the Ehrhart polynomial for H2(t):

H2(t) = constz2

(
constz1

(
zt+2

1 z−t2
(z1 − z2)2 −

2z1z2
(z1 − z2)2 + z−t1 zt+2

2
(z2 − z1)2

))

= constz2

constz1
∑
k≥0

k + 1
zk+t+2

2
zk+t+2

1 − 2
∑
k≥0

k + 1
zk+1

2
zk+1

1 +
∑
k≥0

k + 1
zk−t2

zk−t1


= constz2(0− 2(0) + (t+ 1))

= t+ 1.

Therefore the relative volume of B2 is

ν(B2) = 1.

It is straightforward to see that for small values of n the method of Euler’s generating
function is more complex than that of polynomial interpolation. When n = 4 the method
of interpolation requires the evaluation of H4(t) at 2 different values, and more so for larger
values of n. This is a difficult task when computing by hand, whereas one could work
out H4(t) by pen and paper using the method of Euler’s generating function. Therefore,
for n ≥ 4 we believe this method is more efficient than polynomial interpolation.

2.3 Complex Analytic Techniques

The presentation of this strategy was originally given by Beck [11] and again in terms of
its application to Birkhoff polytopes alongside Pixton [14]. They were able to use complex
analysis, specifically the residue theorem, to compute the Ehrhart polynomial for B9 and
the relative volume of B10. The main result presented and proved by Beck in [11] will now
be stated.

Theorem 2.3.1 ([11, Theorem 8]). Suppose the convex polytope P is given by
P = {x ∈ Rd≥0 : Ax = b} for a matrix A ∈ Zm×d and vector b ∈ Zm, and denote the columns
of A by c1, ..., cd. Then

Lp(t) = 1
(2πi)m

∫
|z1|=ε1

· · ·
∫
|zm|=εm

z−tb1−1
1 · · · z−tbm−1

m

(1− zc1) · · · (1− zcd)dz, (2.19)

where 0 < ε1, ..., εm < 1 are distinct real numbers.

24

Corollary 2.3.1 will show why we require ε1, ..., εm to be distinct real numbers. Before we
prove Theorem 2.3.1 we cover some key definitions.

Definition. A function is analytic in a region if it is complex differentiable at every point
in that region.

If a function f(z) is analytic everywhere inside of a simple, closed, positively oriented
contour γ in the complex plane, then ∫

γ
f(z)dz = 0.

Let f(z) be analytic except for the points z1, z2, ..., zn inside of γ, these points are called
poles. f(z) has a pole of order 1 at z0 if its Laurent series centred at z0 can be written as
f(z) =

∑∞
n=0 an(z−z0)n+ b1

(z−z0) for b1 6= 0. Then the residue of f(z) at z0 can be computed
as

Res(f(z); z0) = lim
z→z0

(z − z0)f(z) = b1.

Furthermore, f(z) has a pole of order k at z0 if its Laurent series centred at z0 can be
written as f(z) =

∑∞
n=0 an(z − z0)n + b1

(z−z0) + ...+ bk

(z−z0)k for bk 6= 0. Then

Res(f(z); z0) = 1
(k − 1)! lim

z→z0

dk−1

dzk−1 {(z − z0)kf(z)} = b1.

Theorem 2.3.2 (Residue Theorem). If γ is a simple, closed, positively oriented contour in
the complex plane and f(z) is analytic except for the points z1, z2, ..., zn inside the contour γ,
then ∫

γ
f(z)dz = 2πi

n∑
k=1

Res(f(z); zk).

These definitions can be extended naturally to the multivariate case.

Proof of Theorem 2.3.1. Let cj denote the jth column of A and rk the kth row. The hyper-
plane equalities of the a dilated polytope tP can be written as

〈r1,x〉 = tb1

〈r2,x〉 = tb2

... (2.20)

〈rm,x〉 = tbm.

25

where x ∈ Rd≥0. Consider

f(z) = f(z1, ..., zm) = z−tb1−1
1 · · · z−tbm−1

m

(1− zc1) · · · (1− zcd) ,

and integrate f(z) with respect to each variable over small, simple, closed, positively oriented
contours: ∫

|z1|=ε1
· · ·

∫
|zm|=εm

f(z)dz. (2.21)

Choose 0 < ε1, ..., εm < 1 so that we can expand each 1
1−zcj into its power series around 0.

Expanding f(z) around 0 gives the following Laurent series,

z−tb1−1
1 · · · z−tbm−1

m

(1− zc1) · · · (1− zcd) = z−tb1−1
1 · · · z−tbm−1

m

∑
v1≥0

zv1c1
∑
v2≥0

zv2c2 · · ·
∑
vd≥0

zvdcd .

Upon expansion, each term will have the form

z
〈v,r1〉−tb1−1
1 · · · z〈v,rm〉−tb1−1

m ,

where v = (v1, ..., vd). Therefore, by the residue theorem, the integral given in Equa-
tion (2.21) will not evaluate to 0 only for those terms in which v satisfies the equalities
in (2.20).

We will present how Beck and Pixton used the residue theorem to simplify Theorem 2.3.1
to a more efficient integral, presented in Theorem 2.3.3. We will then use Theorem 2.3.3 to
calculate H3(t). We then discuss their important result, Corollary 2.3.1, as this corollary
will form the basis for the novel methods discussed in Chapter 3. We end this section by
discussing the methods Beck and Pixton implemented to increase efficiency and present
their computation times.
To begin, recall the Birkhoff polytope given by Bn = {x ∈ Rn2 : Ax = b} for the matrix
A ∈ Z2n×n2 and vector b ∈ Z2n given in Equation (1.7). Let the variables z1, ..., zn denote
the first n rows of A and w1, ..., wn the last n rows and apply Theorem 2.3.1, taking each
integral over a circle of radius less than 1 centered at 0:

Hn(t) = 1
(2πi)2n

∫
· · ·

∫ (z1 · · · znw1 · · ·wn)−t−1

(1− z1w1) · · · (1− z1wn) · · · (1− znw1) · · · (1− znwn)dwdz.

(2.22)

26

Just as in Section 2.2 we place an ordering on the integrals, noting the symmetry that
presents itself,

Hn(t) = 1
(2πi)n

∫
· · ·

∫
(z1 · · · zn)−t−1

((
1

2πi

∫
w−t−1

1
(1− z1w1) · · · (1− znw1)dw1

)
· · ·(

1
2πi

∫
w−t−1
n

(1− z1wn) · · · (1− znwn)dwn

))
dz. (2.23)

Recall that wk is a dummy variable and simplify

Hn(t) = 1
(2πi)n

∫
· · ·

∫
(z1 · · · zn)−t−1

(
1

2πi

∫
w−t−1

(1− z1w) · · · (1− znw)dw
)n

dz. (2.24)

The innermost integral of Equation (2.24) is taken around the smallest simple, closed,
positively oriented curve and the integrand

f(w) = w−t−1

(1− z1w) · · · (1− znw) ,

is analytic everywhere inside the curve except for w = 0, therefore by the residue theorem∫
f(w)dw = 2πi Res(f(w); 0).

The residue of f(w) at 0 is equal to the negative of the sum of the residues of f(w) at the
singularities outside of the curve: w1 = z−1

1 , .., wn = z−1
n . Therefore,

Res(f(w); 0) = −
(
Res

(
f(w); 1

z1

)
+ ...+ Res

(
f(w); 1

zn

))

= −

 lim
w→ 1

z1

(
w − 1

z1

)
f(w) + ...+ lim

w→ 1
zn

(
w − 1

zn

)
f(w)


= −

 lim
w→ 1

z1

w − 1
z1

1− z1w

w−t−1

(1− z2w) · · · (1− znw) + ...

+ lim
w→ 1

zn

w − 1
zn

1− znw
w−t−1

(1− z1w) · · · (1− zn−1w)


= 1
z1

zt+1
1(

1− z2
z1

)
· · ·

(
1− zn

z1

) + ...+ 1
zn

zt+1
n(

1− z1
zn

)
· · ·

(
1− zn−1

zn

)
= zt+n−1

1
(z1 − z2) · · · (z1 − zn) + ...+ zt+n−1

n

(zn − z1) · · · (zn − zn−1)

=
n∑
k=1

zt+n−1
k∏

j 6=k(zk − zj)
.

27

Substituting this result back into Equation (2.24) gives the following theorem.

Theorem 2.3.3 ([14, Theorem 2]). The Ehrhart polynomial Hn(t) of the nth Birkhoff
polytope satisfies

Hn(t) = 1
(2πi)n

∫
|z1|=ε1

· · ·
∫
|zn|=εn

(z1...zn)−t−1
(

n∑
k=1

zt+n−1
k∏

j 6=k(zk − zj)

)n
dz

for distinct 0 < ε1, ..., εn < 1.

Proof. Follows from Theorem 2.3.2, 2.24, and 2.3.

Example 2.3.1. Consider B3, by Theorem 2.3.3 with 0 < ε3 < ε2 < ε1 < 1

H3(t) = 1
(2πi)3

∫
|z1|=ε1

∫
|z2|=ε2

∫
|z3|=ε3

(z1z2z3)−t−1
(

zt+2
1

(z1 − z2)(z1 − z3) +

zt+2
2

(z2 − z1)(z2 − z3) + zt+2
3

(z3 − z1)(z3 − z2)

)3

dz.

After expanding the cubic polynomial we have

H3(t) = 1
(2πi)3

∫∫∫ (
z2t+5

1 z−t−1
2 z−t−1

3
(z1 − z2)3(z1 − z3)3 −

3zt+3
1 z2z

−t−1
3

(z1 − z2)3(z1 − z3)2(z2 − z3)

)
dz, (2.25)

as the rest of the terms evaluate to 0. For example, the term

z−t−1
1 z−t−1

2 z2t+5
3

(z3 − z2)3(z3 − z1)3

is analytic at the z3-origin and |z1|, |z2| > ε3 therefore integrating this term with respect to
z3 gives 0. Similar explanations are given for the rest of the terms not in the integrand of
Equation (2.25). We can evaluate the first integral in Equation (2.25) using symmetry and
the residue theorem as follows,

1
(2πi)3

∫∫∫
z2t+5

1 z−t−1
2 z−t−1

3
(z1 − z2)3(z1 − z3)3dz = 1

(2πi)2

∫∫
z2t+5

1

(
z−t−1

(z1 − z)3

)2

dzdz1

= 1
2πi

∫
z2t+5

1

(
−1

2(−t− 1)(−t− 2)z−t−3
1

)2
dz1 =

(
t+ 2

2

)2

.

Using similar tactics we calculate the second integral:

− 3
(2πi)3

∫∫∫
zt+3

1 z2z
−t−1
3

(z1 − z2)3(z1 − z3)2(z2 − z3)dz = −3
(
t+ 3

4

)
.

28

Adding the two integrals together gives

H3(t) =
(
t+ 2

2

)2

− 3
(
t+ 3

4

)
= 1

8 t
4 + 3

4 t
3 + 15

8 t
2 + 9

4 t+ 1,

and therefore
ν(B3) = 1

8 .

We noted in Example (2.3.1) that not all the terms in the integrand will contribute to the
final polynomial. This idea can be expressed more rigorously with the following proposition.

Proposition 2.3.1 ([14]). Assume p1, ..., pn are integers, qjk are nonnegative integers
(1 ≤ j, k ≤ n), 0 < εn < · · · < ε1 < 1, and

f(z1, ..., zn) =
∏

1≤j≤n z
pj

j∏
1≤j,k≤n(zj − zk)qjk

. (2.26)

If 1 ≤ r ≤ n and dr(f) < −r where dr(f) represents the degree of f in the variables z1, ..., zr,
then ∫

|z1|=ε1
· · ·

∫
|zn|=εn

f(z)dz = 0.

Proposition 2.3.1 can be proved by induction on r. As n gets larger the number of terms
that evaluate to 0 increases, this in turn increases computation time as one must detect
each one of them beforehand or use time to calculate them out to 0. The following corollary
ensures that integrals that evaluate to 0 are omitted.

Corollary 2.3.1 ([14, Corollary 4]). For 0 < εn < · · · < ε1 < 1 and t ≥ 0,

Hn(t) = 1
(2πi)n

∫
|z1|=ε1

· · ·
∫
|zn|=εn

(z1 · · · zn)−t−1

∗∑
a1+...+an=n

(
n

a1, ..., an

)
n∏
k=1

(
zt+n−1
k∏

j 6=k(zk − zj)

)ak

dz.

where
∑ ∗ denotes the sum over those n-tuples of non-negative integers satisfying

a1 + ...+ an = n and a1 + ...+ ar > r for 1 ≤ r < n.

The constraint placed on the values of a1, .., an are known as lecture hall partitions. They
can be visualized as a lattice path from (0, 0) to (n, n) taking the steps (1, a1) to (1, an) so
the path stays strictly above the diagonal.

29

Proof. By Theorem 2.3.3 we have

Hn(t) = 1
(2πi)n

∫
· · ·

∫
(z1 · · · zn)−t−1

(
n∑
k=1

zt+n−1
k∏

j 6=k(zk − zj)

)n
dz.

which is equivalent to

Hn(t) = 1
(2πi)n

∫
· · ·

∫
(z1 · · · zn)−t−1 ∑

a1+...+an=n

(
n

a1, ..., an

)
n∏
k=1

(
zt+n−1
k∏

j 6=k(zk − zj)

)ak

dz.

(2.27)
We use Proposition 2.3.1 to show that the integral of a term in Equation (2.27) is 0 unless∑r
j=1 aj > r for the partition a1 + ...+an = n. Using the notation given in Proposition 2.3.1

a term with partition a1 + ...+ an = n will have the following exponent for the numerator
and denominator respectively for 1 ≤ j, k ≤ n:

pj = t(aj − 1) + (n− 1)aj − 1 and qjk = aj + ak.

Suppose 1 ≤ r < n and calculate the degree of the given term in z1, ..., zr. The degree of
the numerator is

r∑
j=1

pj = t
r∑
j=1

(aj − 1) + (n− 1)
r∑
j=1

aj − r,

and the denominator,

r∑
j=1

n∑
k=j+1

(aj + ak) = (n− 1)
r∑
j=1

aj + r
n∑

j=r+1
aj

= (n− 1)
r∑
j=1

aj + r
n∑
j=1

aj − r
r∑
j=1

aj

= (n− 1)
r∑
j=1

aj − r
r∑
j=1

(aj − 1) + rn− r2.

Therefore

dr(f) = t
r∑
j=1

(aj − 1) + (n− 1)
r∑
j=1

aj − r − (n− 1)
r∑
j=1

aj + r
r∑
j=1

(aj − 1)− rn+ r2

= (t+ r)
r∑
j=1

(aj − 1)− r − r(n− r).

It is clear that r(n − r) > 0 and t ≥ 0, hence by Proposition 2.3.1 the integral of a given
term in Equation (2.27) is 0 unless

∑r
j=1(aj − 1) > 0.

30

Example 2.3.2. The only lecture hall partitions of 3 are (3, 0, 0) and (2, 1, 0). Using Corol-
lary 2.3.1 we have

H3(t) = 1
(2πi)3

∫
|z1|=ε1

...

∫
|z3|=ε3

(z1z2z3)−t−1

((
3

3, 0, 0

)
z3t+6

1
(z1 − z2)3(z1 − z3)3 +

(
3

2, 1, 0

)
z2t+4

1 zt+2
2

(z1 − z2)2(z1 − z3)2(z2 − z1)(z2 − z3)

)
dz,

which agrees with our findings in Example 2.3.1.

Corollary 2.3.1 is more efficient than Theorem 2.3.3, but as n gets larger the use of lecture
hall partitions does little to cut down on computation time. That is because the number of
lecture hall partitions equals the (n− 1)th Catalan number

1
n

(
2(n− 1)
n− 1

)
= (2n− 2)!
n!(n− 1)! ,

which grows exponentially with n: ∼ 4nn−
3
2π−

1
2 . Each integral must be evaluated a variable

at a time, for larger values of n this has adverse effects on computation time. Beck and Pixton
feel that once n = 7 or 8 that this is equivalent to interpolating the polynomial. There are
four implementations put forth and applied by Beck and Pixton in their C++ program to
increase efficiency:

1. Identify when a function is analytic at the zk origin.

2. Choose the most efficient order of integration.

3. Factor the integral if some of the variables appear in a symmetric fashion.

4. Suppress a particular integral if it does not contribute to the leading term (useful if
you only want the relative volume).

With these implementations, they were able to compute the relative volume of the Birkhoff
polytopes for n ≤ 10, a value that was unattainable before. Their results for n ≤ 9 are given
in Table 2.1, note that the volumes provided are the relative volume of Bn multiplied by
the constant nn−1. The relative volume of B10 multiplied by 109 is equal to

727291284016786420977508457990121862548823260052557333386607889
828160860106766855125676318796872729344622463533089422677980721388055739956270293750883504892820848640000000

which, scaled down to a 1GHz processor, took 6160 days to compute [14]. We believe this
method to be superior to interpolation due to its automated properties. The use of generat-
ing functions could be close in computation time given similar implementations to automate
and speed up the constant value computations, though this was not tested conclusively.

31

n volume of Bn time

1 1 <.01 sec

2 2 <.01 sec

3 9
8 <.01 sec

4 176
2835 <.01 sec

5 23590375
167382319104 <.01 sec

6 9700106723
1319281996032·106 .18 sec

7 77436678274508929033
137302963682235238399868928·108 15 sec

8 5562533838576105333259507434329
12589036260095477950081480942693339803308928·1010 54 min

9 559498129702796022246895686372766052475496691
92692623409952636498965146712806984296051951329202419606108477153345536·1014 317 hr

Table 2.1: Volume and computation time in seconds for calculation of Bn for n ≤ 9 presented
in [14]

2.4 Barvinok’s Algorithm and LattE

The final method to compute the relative volume of the Birkhoff polytope we will survey
is the mechanics behind the open source software LattE (Lattice Point Enumeration) [4].
In 2001 De Loera and his team released the first version of LattE in which Barvinoks
algorithm is used to count the number of integral points in a fixed dimensional polytope [8];
this was the first ever implementation of Barvinoks algorithm. Not only could LattE count
the number of integral points in a polytope but was also able to compute the Ehrhart
polynomial among other features. In 2010 LattE integrale was released with the ability
to compute the volume of a rational polytope [2]. This calculation can be done in two ways:
the triangulation-determinant method and the cone decomposition method.
This section will first discuss how LattE implements the triangulation-determinant method
followed by the cone decomposition method to compute the volume of a d-polytope P ⊂ Rd.
We then discuss how LattE computes the Ehrhart polynomial. This may seem valueless but
when n ≥ 5 our results lead us to believe it is computationally faster to compute the
Ehrhart polynomial to obtain the volume of P than the aforementioned volume methods. It
is important to note that the following calculations are done for full dimensional polytopes.
When given a non full dimensional polytope P ⊂ Rd, LattE will first transform P into a full
dimensional polytope of fewer variables such that there exists a one-to-one correspondence
between integer points to preserve the characteristics of P [23]. For us, this means that
LattE will compute the relative volume of Bn. To aid in our understanding we will instead
use the quadrilateral polytope Q, presented in Figure 2.2, as a running example.

32

Figure 2.2: Quadrilateral polytope with vertices (0, 0), (2, 0), (0, 2) and (1, 2).

Figure 2.3: A possible triangulation of the polytope Q.

2.4.1 Triangulation-determinant method

It is well known [5, 22, 42] that the volume of a d-simplex, ∆, is given by

vol(∆) = 1
d!

∣∣∣∣∣det
(

1 1 · · · 1
v1 v2 · · · vd+1

)∣∣∣∣∣,
where vi ∈ Rd are the vertices of ∆ for i = 1, ..., d+1. For a non-simplex d-polytope P ⊂ Rd

we have
vol(P) =

∑
∆∈T

vol(∆),

for T the finite set of triangulations of the polytope P as defined in Section 1.2.1.

Example 2.4.1. The quadrilateral polytope is not a simplex but can be triangulated into
two 2-simplices, ∆1 and ∆2, shown in Figure 2.3. Therefore

vol(Q) = vol(∆1) + vol(∆2)

= 1
2!

∣∣∣∣∣∣∣∣det


1 1 1
0 0 1
0 2 2


∣∣∣∣∣∣∣∣+

1
2!

∣∣∣∣∣∣∣∣det


1 1 1
0 2 1
0 0 2


∣∣∣∣∣∣∣∣

= 3.

33

Figure 2.4: A possible triangulation of a cone C(P, v) with generators w1,w2,w3,w4 ∈ R3.

The efficiency of this method is directly correlated to how complex the triangulation of the
polytope is.

2.4.2 Cone decomposition method

De Loera et al. [22] describe how LattE Integrale computes the integral of a polynomial
f ∈ Q[z1, ..., zn] over a rational convex d-polytope P ⊂ Rd. This is denoted by

vol(P) =
∫
P
f dm,

where dm is the integral Lebesgue measure on the affine hull of P. We are interested solely
in the volume of a polytope therefore we take the integral of 1 over the polytope P ⊂ Rd

as presented in Section 1.5. We let V (P) denote the vertex set of a polytope P. Recall the
definition of a cone C and let C(P, v) denote the supporting cone of P at vertex v such
that for all generators wi, v + εwi ∈ P for some ε > 0. Let πC denote the fundamental
parallelepiped of the cone C. We will work with simplicial cones, i.e. a d-dimensional cone
with d linearly dependent generators, so if C(P, v) is not simplicial we triangulate the cone
to form a finite set Tv of simplicial d-cones.

Theorem 2.4.1 ([15, Theorem 3.2]). Every pointed cone can be triangulated into simplicial
cones using no new generators.

Figure 2.4 depicts one possible triangulation of the supporting cone C(P, v) with 4 gener-
ators in R3. We now state two important corollaries without proof.

Corollary 2.4.1 ([22, Corollary 6]). Let P be a bounded polytope with vertex set V (P) and
Tv a triangulation of the cone C(P, v). Then

vol(P) =
∑

v∈V (P)

∑
C∈Tv

vol(C(P, v)).

34

Figure 2.5: Four supporting cones of Q.

Corollary 2.4.2 ([22, Corollary 5]). For a simplicial cone C generated by w1, ...,wd, ver-
tex v ∈ Rd and a linear form ` such that 〈`,wi〉 6= 0 for i = 1, ..., d we have

vol(C(P, v)) = 1
d! vol(πC) (〈`, v〉)d∏d

i=1〈−`,wi〉
, (2.28)

where
vol(πC) =

∣∣∣det
(
w1 w2 · · · wd

)∣∣∣.
We will not consider case when 〈`,wi〉 = 0.

Example 2.4.2. To compute the volume of the polytopeQ using Equation (2.28) we choose
the vector ` = (1, 1) so that 〈`,wi〉 6= 0 for i = 1, 2. The four supporting cones of Q shown
in Figure 2.5 are simplicial so we do not need to triangulate them. Therefore,

vol(Q) =
∫
Q
〈`, x〉0dm

= L(C1(P, (0, 0))) + L(C2(P, (0, 2))) + L(C3(P, (1, 2))) + L(C4(P, (2, 0)))

= 0!
2!

∣∣∣∣∣det
(

1 0
0 1

)∣∣∣∣∣01 + 0!
2!

∣∣∣∣∣det
(

0 1
−1 0

)∣∣∣∣∣ 22

(−1) + 0!
2!

∣∣∣∣∣det
(
−1 1
0 −2

)∣∣∣∣∣32

1

+ 0!
2!

∣∣∣∣∣det
(
−1 −1
0 2

)∣∣∣∣∣ 22

(−1) .

= 3

As LattE Integrale can use either the triangular-determinant method or the cone decom-
position method to compute the volume of a polytope it is important to discuss when one
method is more efficient than another. A d-polytope is simple if every vertex in V (P) is con-
nected by an edge to exactly d other vertices and simplicial if every facet of P is a d-simplex.
If P is a simple polytope then is it more efficient to use the cone decomposition method. If P
is almost simplicial then it is more efficient to use the triangular-determinant method. In the

35

case of the Birkhoff polytope Table 2.2 leads us to believe that the triangular-determinant
method is more efficient.

2.4.3 The Ehrhart polynomial

The following method describes Barvinok’s algorithm [8] to compute the multivariate gen-
erating function of a d-polytope P ⊂ Rd and, through a change of variables, the Ehrhart
polynomial. This section will follow the work presented by De Loera et al. [23]. Recall the
lattice point enumerator of P ⊂ Rd is

σP(z) =
∑

a∈P∩Zd

za,

which computes the multivariate generating function of P. One could stop here but this
method is infeasible as the number of integer points in P can be extremely large. We instead
call upon a theorem put forth by Brion [17] and independently Lawrence [35].

Theorem 2.4.2 (Brion [17], Lawrence [35]). Let P ⊂ Rd be a bounded rational polyhedron
and let V (P) be the vertex set of P. Then

σP(z) =
∑

v∈V (P)
σC(P,v)(z),

for C(P, v) the supporting cone of P at vertex v.

Again, we would like to work with simplicial cones, so if C(P, v) is not simplicial we trian-
gulate the cone to form a finite set of simplicial d-cones. Therefore, just as with the cone
decomposition method, the first step of Barvinok’s algorithm is to decompose all support-
ing cones at vertex v ∈ V (P) into simplicial supporting cones by triangulation. Stanley [46]
gave the following well known equation for the lattice point enumerator of a simplicial cone
C ⊂ Rd with generators w1,,wd,

σC(z) =
∑

β∈C∩Zd

zβ =

 ∑
τ∈πC∩Zd

zτ
 d∏
i=1

1
1− zwi

,

where πC is again the fundamental parallelepiped of the cone C.

The number of lattice points in the fundamental parallelepiped πC(P,v) can be quite large,
therefore Barvinok’s algorithm then decomposes each supporting cone into a signed sum
of unimodular cones. A simplicial cone is said to be unimodular if its generators w1, ...,wd

form a basis for Zd [15]. This means that there is exactly one lattice point in πC(P,v) and
hence the numerator of σC(P,v)(z) is a monomial.

36

Figure 2.6: Decomposition of vertex 4 of polytope Q into unimodular cones.

Example 2.4.3. We see in Figure 2.5 that the supporting cone of C4(Q, (2, 0)) is not uni-
modular as both the points (1,1) and (2,0) are contained in its corresponding parallelepiped.
This simplicial cone can be decomposed as follows,

cone
{(
−1
0

)
,

(
−1
2

)}
= cone

{(
−1
0

)
,

(
0
1

)}
	 cone

{(
0
1

)
,

(
−1
2

)}
⊕ cone

{(
−1
2

)}
.

This decomposition can be seen in Figure 2.6.

We notice a pressing issue in Example 2.4.3, the vector (−1, 2) was subtracted and thus was
re-added. One needs to keep track of these lower-dimensional cones to apply the principle
of inclusion and exclusion in the decomposition of C(P, v) into a signed sum of unimodular
cones which can be computationally infeasible. Latte applies Brion’s polarization trick to
remedy this issue, the details of this trick can be found in [23, 9]. Therefore the generating
function for each supporting cone is of the form

σC(P,v) =
∑
k∈K

E[k] zv∏d
i=1 1− zwk,i

(2.29)

where K is the set of unimodular cones decomposed from the supporting cone, wk,i the
generators for each unimodular cone k, and E[k] = {−1, 1}.

We convert the multivariate generating function σP(z) to the Ehrhart polynomial, LP(t),
by first multiplying each vertex v in the exponent of the numerator of Equation (2.29)
by a factor of t ∈ Z to represent the dilation of the polytope. Then, for each term in
Equation (2.29) apply the following exponential change of variables

z = eϕc

for c = (c1, c2, ..., cd) such that for each supporting cone in P 〈c,wi〉 6= 0 for i = 1, ..., d [9].
Each term in σP(t, ϕ) is then written in terms of its power series around ϕ = 0 and the
constant terms with respect to ϕ are summed to give the Ehrhart polynomial.

37

n # of vertices # of unimodular
cones at a vertex
cone

Triangular-
determinant
method

Cone
decomposition
method

Barvinoks
algorithm

3 6 3 <0.01 <0.01 0.01
4 24 16 0.02 0.18 0.19
5 120 125 16198.33 −K 22249 −K 24.76
6 720 1296 17302.30

Table 2.2: Computation time in seconds for the relative volume of Bn for n ≤ 6 using LattE.
We use −K to denote when LattE killed the computation.

Example 2.4.4. Applying Barvinok’s algorithm to the polytope Q gives the following
Ehrhart polynomial,

LQ(t) = constϕ(σQ(t, ϕ)) = 3t2 + 3t+ 1.

Again, we get a volume of 3.

2.4.4 Computation times of LattE

We present the computation time to compute the relative volume for the Birkhoff polytope
up to n ≤ 6 in Table 2.2. We have also included the number of vertices and total unimodular
cones at each vertex. For n ≥ 5 LattE Integrale is unable to compute the relative volume
via triangular-decomposition or the cone decomposition method, we note in the table by −K
how long the software ran before killing the computation. Therefore, based off of this small
sample set, computing the Ehrhart polynomial by the use of Barvinok’s algorithm seems to
be the most efficient method to compute the relative volume for larger n.

38

Chapter 3

New methods to compute the
relative volume of Bn

So far, we have explored four methods to calculate the relative volume of the Birkhoff
polytope for a specified n, given by

Bn = {x ∈ Rn
2
≥0 : Ax = b}

for the matrix A ∈ Z2n×n2 and vector b ∈ Z2n given in Equation (1.7). How can we
make this more efficient so as to succeed for values of n greater than 10? This section
will describe two new methods to obtain the leading term of the Ehrhart polynomial, and
hence the relative volume of Bn. Pemantle and Wilsons book, “Analytic Combinatorics in
Several Variables” [44], among others [30, 39, 1] summarizes comprehensive machinery to
compute the coefficient asymptotics of multivariate generating functions. This is commonly
known as the analytic combinatorics in several variables (ACSV) methodology. Section 3.1
presents the first method which asymptotically estimate the leading term of the Ehrhart
polynomial for Bn. We provide a detailed description of this method, implementations to
speed up computation time, and our results. The second method, presented in Section 3.2,
uses complex analytic techniques and LattE to calculate the leading term of the Ehrhart
polynomial exactly. Though this method is not faster than the first it demonstrates an
efficient use of Barvinok’s algorithm.

3.1 Analytic Combinatorics in Several Variables

In Section 2.3 we explored a method for computing polytope volume that involved complex
analytic techniques. We recall that the largest allocation of time was spent on integral eval-
uation. It turns out we can use this integral, but rather than evaluate it, we can estimate it.
Since we can control the error bound there is an efficient method to compute the asymptotic

39

evaluation of the Ehrhart polynomial that agrees on the first term. Hence, it computes the
relative volume of Bn exactly. We use an estimate for integrals of the Fourier-Laplace type;
that is we find a multivariate function so that

1
(2πi)d

∫
T
z−tb−1F (z)dz ∼ Φ(t). (3.1)

In this expression, F (z) is rational, T is a d-dimensional torus in Cd, and Φ(t) is elementary.
In the ACSV methodology, this is the case of multiple point asymptotics for complete
intersections. The first part of Section 3.1 will describe a change of variables to take it to
this case. We then provide a literature review of definitions, theorems, and algorithms from
multiple point asymptotics that aid specifically in our application taken from [44]. We end
with the implementations applied to speed up computation time and the results obtained
using our automated program, given in Table 3.1.

3.1.1 Change of Variables

Recall the final corollary from Section 2.3.

Corollary 3.1.1. For 0 < εn < · · · < ε1 < 1 and t ≥ 0,

Hn(t) = 1
(2πi)n

∫
|z1|=ε1

· · ·
∫
|zn|=εn

(z1...zn)−t−1

∗∑
a1+...+an=n

(
n

a1, ..., an

)
n∏
k=1

(
zt+n−1
k∏

j 6=k(zk − zj)

)ak

dz. (3.2)

where
∑ ∗ denotes the sum over those n-tuples of non-negative integers satisfying a1 + ...+

an = n and a1 + ...+ an > r for 1 ≤ r < n.

For the most straightforward application of the ACSV method we require that the function
F (z) = G

H be a generating function in whichH is a product of polynomials of the form 1−zw

for w, z ∈ Rd, and G is analytic. In order to rewrite Equation (3.2) in this form the change
of variables given in Algorithm 1 is applied.

Example 3.1.1. In Example 2.3.2 the following integral was computed:

H3(t) = 1
(2πi)3

∫∫∫
(z1z2z3)−t−1

(
z3t+6

1
(z1 − z2)3(z1 − z3)3 + −3z2t+4

1 zt+2
2

(z1 − z2)3(z1 − z3)2(z2 − z3)

)
dz.

We apply the change of variables given in Algorithm 1.

40

Algorithm 1: Change of variables
Input: Integral of the form given in Equation (3.2).
Output: Integral of the form

1
(2πi)n−1

∫
T
x−tb−1 G(x)∏n

w∈W
i=1

(1− xw)mi
dx (3.3)

for W, a set of (n− 1)-dimensional vectors and G(x) an analytic function.
1 Take the change of variables z1 := z1 and zr := z1x1x2...xr−1 for r ∈ {2, .., n} and

calculate the determinate of the Jacobian matrix

J =


∂z1
∂z1

∂z1
∂x1

· · · ∂z1
∂xn−1

∂z2
∂z1

∂z2
∂x1

· · · ∂z2
∂xn−1

...
...

∂zn
∂z1

∂zn
∂x1

· · · ∂zn
∂xn−1

 .

2 Substitute the change of variables into Equation (3.2) and multiply by the absolute
value of the determinant of J .

3 Simplify the denominator of the integrand to obtain the form

n∏
w∈W
i=1

(1− xw)mi

for W, a set of (n− 1)-dimensional vectors.
4 Using the residue theorem, take the integral with respect to z1.

Figure 3.1: Algorithm for a change of variables

41

1) We set z1 := z1, z2 := z1x1, z3 := z1x1x2 and compute the the Jacobian matrix:

J =


∂z1
∂z1

∂z1
∂x1

∂z1
∂x2

∂z2
∂z1

∂z2
∂x1

∂z2
∂x2

∂z3
∂z1

∂z3
∂x1

∂z3
∂x2

 =


1 0 0
x1 z1 0
z1x2 z1x2 z1x1

 .
Therefore we have det(J) = z2

1x1.

2) We then substitute the change of variables into H3(t) and multiply by |det(J)|:

H3(t) = 1
(2πi)3

∫∫∫
(z3

1x
2
1x2)−t−1

(
z3t+6

1
(z1 − z1x1)3(z1 − z1x1x2)3

+ −3z2t+4
1 (z1x1)t+2

(z1 − z1x1)3(z1 − z1x1x2)2(z1x1 − z1x1x2)

)
|z2

1x1| dz1dx1dx2.

We can assume that z1, x1 ≥ 0 so we are able to drop the absolute value sign.

3) We simplify the denominator to obtain a product of the form

3∏
w∈W
i=1

(1− xw)mi

for W a set of 2-dimensional vectors:

H3(t) = 1
(2πi)3

∫∫∫
(x2

1x2)−t−1
(

z−1
1 x1

(1− x1)3(1− x1x2)3

+ −3z−1
1 xt+1

1 x1
(1− x1)3(1− x1x2)2(1− x2)

)
dz1dx1dx2

42

4) Lastly, using the residue theorem, we take the integral with respect to z1 and simplify:

H3(t) = 1
(2πi)3

∫∫
(x2

1x2)−t−1
(

x1
(1− x1)3(1− x1x2)3

+ −3xt+1
1 x1

(1− x1)3(1− x1x2)2(1− x2)

)(∫ 1
z1
dz1

)
dx1dx2

= 1
(2πi)3

∫∫
(x2

1x2)−t−1
(

x1
(1− x1)3(1− x1x2)3

+ −3xt+1
1 x1

(1− x1)3(1− x1x2)2(1− x2)

)
(2πi) dx1dx2

= 1
(2πi)2

∫∫ (
x−2t−1

1 x−t−1
2

1
(1− x1)3(1− x1x2)3

)
dx

− 3 1
(2πi)2

∫∫ (
(x1x2)−t−1 x1

(1− x1)3(1− x1x2)2(1− x2)

)
dx.

(3.4)

Given an integral of the form presented in Equation (3.3) we can apply the ACSV method
in a straightforward manner. Nevertheless, the size of intermediary expressions will grow
exponentially limiting the maximum n for which the relative volume of Bn can be computed
using this method.

3.1.2 Multiple Point Asymptotics for Complete Intersection

The estimate in Equation (3.1) is made precise in Theorem 10.3.3 of [44]. However, to verify
the hypothesis we require some additional notation and background therefore this section
walks through necessary results from Chapter 10 of [44] in the context of our problem.
Directly following the statement of the theorem, we will define what it means for divisors
to intersect transversely at a point p and provide an Algorithm (Algorithm 2) to ensure
this transverse intersection. We end this section by defining the Lognormal matrix ΓΨ. All
calculations are done in the local ring of germs of analytic functions at a point p which we
denote Rp. Let m be a positive, integral k-dimensional vector where

(m-1)! =
k∏
j=1

(mj − 1)!.

We now state the relevant theorem.

43

Theorem 3.1.1 ([44, Theorem 10.3.3]). Let F = G
H = G∏k

j=1 H
mj
j

in Rp with each Hj

squarefree and all divisors intersecting transversely at p. Suppose that G is holomorphic in
a neighborhood of p and G(p) 6= 0. Then

1
(2πi)d

∫
T

x−tb−1F (x)dz ∼ Φ(t) (3.5)

with
Φ(t) := 1

(m-1)!
p−tbG(x)
|(det ΓΨ)|((tb)Γ−1

Ψ)m-1. (3.6)

The proof of Theorem 3.1.1 is out of the scope of this paper due to its reliance on advanced
algebraic geometry. In ACSV, the simplest case reduces to the analysis of singular points
of rational functions with a single irreducible polynomial factor in the denominator. In
the case of Bn for n ≥ 3, there are multiple polynomials of the form (1 − xw), and the
singular point (1, 1, · · · , 1) is a root of each of them. This is an example of multiple point
asymptotics. The most straightforward case of multiple point asymptotics is when we have
a complete intersection. Rather than define this, which would require a detour into algebraic
geometry, we will use the results of the following proposition which identifies this case. Let
V(H) denote the variety where H vanishes, and Vj = V(Hj) denote the variety where Hj

vanishes.

Proposition 3.1.1 ([44, Proposition 10.1.9]). The point p ∈ V(H) is a multiple point if
and only if there is a factorization

H =
k∏
j=1

H
mj

j (3.7)

in Rp for each Hj irreducible with ∇Hj(p) 6= 0 and Hj(p) = 0. The point p is a transverse
multiple point of order k if and only if the gradient vectors {∇Hj(p) : 1 ≤ j ≤ k} are
linearly independent.

Let d be the dimension of the vector space containing the gradient vectors
{∇Hj(p) : 1 ≤ j ≤ k}. We then say that all divisors of F (x) intersect transversely at p if p is
a transverse multiple point of order d. If p is a transverse multiple point of order k < d then
one says that the divisors of F (x) intersect transversely on a stratum, S := ∩kj=1Vj(Hj),
containing the point p. Figure 3.2 depicts on the left a graph with a transverse multiple
point at (1,1) of order 2 in R2 - a complete intersection. The graph on the right shows a
multiple point at (1,1) that is not transverse because the perpendicular lines to the gradient
vectors of the three curves at the point (1,1), shown in red, are not linearly independent.
This is a consequence of 3 lines in 2 dimensions. When k = 1, the divisor will, by default,
intersect transversely at p, this is the case for B2.

44

Figure 3.2: The blue curves shown on the left intersect at the transverse multiple point (1,1)
of order 2, whereas the blue curves shown on the right do not.

We say that H is square free when mj = 1 for all j in the decomposition of Equation (3.7)
with all Hj ’s distinct.

Example 3.1.2. We treat the two terms of H3(t) separately,

H3(t) = 1
(2πi)2

∫ (
x−2t−1

1 x−t−1
2

1
(1− x1)3(1− x1x2)3

)
dx

− 3 1
(2πi)2

∫ (
(x1x2)−t−1 x1

(1− x1)3(1− x1x2)2(1− x2)

)
dx, (3.8)

and let F1 := 1
(1−x1)3(1−x1x2)3 , so H1 = (1− x1) and H2 = (1− x1x2). The point p=(1,1) is

the only point satisfying H1(p) = H2(p) = 0 and

{∇Hj(1, 1) : 1 ≤ j ≤ 2} =
[
∇H1(1, 1)
∇H2(1, 1)

]
=
[
∂H1(1,1)
∂x1

∂H1(1,1)
∂x2

∂H2(1,1)
∂x1

∂H2(1,1)
∂x2

]
=
[
−1 0
−1 −1

]
.

Not only is the point (1,1) a multiple point but the gradient vectors are linearly independent,
making (1,1) a transverse multiple point of order 2 in R2. The graph on the left of Figure 3.2
shows the varieties for each Hj in blue and in red are the perpendicular lines to the gradient
vectors, ∇Hj , at (1,1) which span the 2-dimensional space.
Let F2 := x1

(1−x1)3(1−x1x2)2(1−x2) , so H1 = (1 − x1), H2 = (1 − x1x2), and H3 = (1 − x2).
Again, p=(1,1) is the only point that satisfies H1(p) = H2(p) = H2(p) = 0 and

{∇Hj(1, 1) : 1 ≤ j ≤ 3} =


∇H1(1, 1)
∇H2(1, 1)
∇H3(1, 1)

 =


∂H1(1,1)
∂x1

∂H1(1,1)
∂x2

∂H2(1,1)
∂x1

∂H2(1,1)
∂x2

∂H3(1,1)
∂x1

∂H3(1,1)
∂x2

 =


−1 0
−1 −1
0 −1


Therefore (1,1) is a multiple point of F2 but the gradient vectors are not linearly independent
thus p=(1,1) is not a transverse point. The graph on the right of Figure 3.2 shows the
varieties in blue for each Hj and in red are the perpendicular lines to the gradient vectors,

45

∇Hj , at (1,1). It is easy to see that the gradient vectors do not span the 2-dimensional
space, but instead form a linearly dependent set.

The asymptotic evaluation provided by Theorem 3.1.1 requires p be a transverse multiple
point of order d. We describe a procedure (Algorithm 2) to reduce F (x) down to a sum of
summands, F (z) =

∑
j fj , for which p is a transverse multiple point of order d. To begin,

let colj(D) denote the j’th column of a matrix D, and define

F (x) = G∏k
j=1H

mj

j

= G∏k
j=1(1− xcolj(D))mj

. (3.9)

Hence, each Hj in F (x) corresponds to a column vector of the matrix D.

Lemma 3.1.1. Given the factorization

H =
k∏
j=1

H
mj

j =
k∏

w∈W
j=1

(1− xw)mj

for W a set of d-dimensional vectors, the point p=1 is a transverse multiple point of order k
if and only if the column vectors of the matrix D given by Equation (3.9) are linearly
independent.

Proof. Given Hj(x) = (1− xw1
1 xw2

2 ...xwd
d) we calculate the gradient vector

∇Hj(x) = (−w1x
w1−1
1 xw2

2 · · ·x
wd
d ,−w2x

w1
1 xw2−1

2 · · ·xwd
d , ...,−wdxw1

1 xw2
2 · · ·x

wd−1
d).

Hence, evaluated at 1:

∇Hj(1) = (−w1,−w2, ...,−wd) = −(w1, w2, ..., wd) = −colj(D). (3.10)

By Proposition 3.1.1, if 1 is a transverse multiple point of order k then the gradient vectors
∇Hj(1) for 1 ≤ j ≤ k are linearly independent. Thus, by Equation (3.10) the column vectors
of the matrix D are linearly independent. By the same reasoning, if the column vectors of
matrix D are linearly independent then by Equation (3.10) the gradient vectors ∇Hj(1)
for 1 ≤ j ≤ k are linearly independent and 1 is a transverse multiple point of order k.

Given Lemma 3.1.1, our objective is now to decompose the set of linearly dependent column
vectors ofD into maximally independent subsets because of the central importance of linear
independence. We can use matroid theory to facilitate this decomposition. A matroid is an
ordered pair consisting of a ground set, E, and the set of independent subsets of E, denoted
by I [43]. They satisfy the following properties:

46

1) ∅ ∈ I.

2) Every subset of an independent set is independent.

The ground set, E, are the column vectors of the matrixD labeled using the column indices.
A circuit, denoted C, is a minimally dependent subset of E and a base is a maximally
independent subset of E.

Definition. We let the broken circuits, BC, be the set formed by removing the largest
element, i, from each set in C, BC = C\i.

Example 3.1.3. Let F be the following multivariate generating function and D be the
corresponding matrix as defined in Equation (3.9):

F = 1
(1− x1)(1− x2

2)(1− x1x2
2)(1− x1x2

2x
3
3)2(1− x3)3 =⇒ D =


1 2 3 4 5

1 0 1 1 0
0 2 2 2 0
0 0 0 1 1

.
Let E be the columns ofD numbered using the column indices, E={1, 2, 3, 4, 5}. The circuits
of E are C={1, 2, 3}, {1, 2, 4, 5}, {3, 4, 5} and I = {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4},
{2, 5}, {3, 4}, {3, 5}, {4, 5}, {1, 2, 4}, {1, 2, 5}, {2, 3, 4}, {2, 3, 5}. For the purpose of this thesis
we will ignore the empty set. By removing the last element from each set in C we get
BC = {1, 2}, {1, 2, 4}, {3, 4}. Hence, (E, I) forms a matroid, denoted by M[D].

Example 3.1.4. Consider F2 from H3(t),

F2 = x1
(1− x1)3(1− x1x2)2(1− x2) = 1

H3
1H

2
2H3

=⇒ D2 =
[1 2 3

1 1 0
0 1 1

]
.

The only circuit is C={1, 2, 3} and the broken circuit is BC={1, 2}.

Definition. The support of a summand is the set of j’s in the order they appear from
H =

∏k
j=1H

mj

j for which mj > 0.

Example 3.1.5. The summand f = 1
H2

1H3H6
has support {1, 3, 6}.

For the largest element i in each set of C one is guaranteed to find a set of pj ’s such that
Hi =

∑
j∈BC pjHj , this is called the Nullstellensatz certificate.

Lemma 3.1.2 ([44, Lemma 10.2.9]). There is a collection {pi : i ∈ C} of invertible elements
of Rp such that

∑
i∈C piHi = 0.

47

Sketch of Proof. We first prove the existence of such elements. This can be done using the
fact that Hi, for i ∈ C, is in the radical of the ideal generated by {Hj : j 6= i} in Rp, and
that this ideal is also radical [44]. Then we prove invertibility by showing that pj(p) 6= 0
for j 6= i and p ∈ S = ∪i∈CVi(Hi).

The Nullstellensatz certificate provides the basis of the algebraic reduction, as one uses
this certificate to rewrite F (x) until the support of each summand, f , no longer contains
a broken circuit. Define I(f) to be the ideal generated by 〈Hm1

1 , ...,Hmn
n 〉 of Rp for each

denominator H of f .

Algorithm 2: Algebraic Reductions [44]
Input: A function F (x) = G∏k

j=1 H
mj
j

and a point p being a multiple point in the

stratum S of V.
Output: An expression of F (x) as the sum of summands with nonvanishing (at p)

numerators and p a transverse multiple point.
1 If any summand in the current sum has a support containing a broken circuit from

BC, use the Nullstellensatz certificate to rewrite the summand. Repeat until no
longer possible.

2 Collect summands with the same H’s.
3 For each summand f , check whether the numerator is in I(f). If there are such

terms, choose one among them whose denominator has maximum degree, and
replace it by a sum of terms with smaller support. Repeat until no longer possible.

4 For each summand f , check whether its numerator vanishes on the stratum defined
by the support of f, and if so, write it as the sum of terms with the same support
but small degrees in the denominator. Repeat until no longer possible.

Figure 3.3: Algorithm for algebraic reduction

As each summand in the reduction of a function F (x) can only be reduced a finite number
of times the algorithm is guaranteed to terminate. The Nullstellensatz certificate ensures
that the support of each summand no longer contains a circuit. Hence, the column vectors
of the matrix D formed from the divisors of the summand form a basis. By Lemma 3.1.1,
the point p is now a transverse multiple point of order d. Step 4 ensures that each summand
has nonvanishing (at p) numerators.

Remark. The use of Lemma 3.1.1 only proves correctness of Algorithm 2 in our polytope
context. A general proof can be found in [44].

48

Example 3.1.4 (Continued). We begin by computing the Nullstellensatz certificate of the
only circuit for the term F2, C={1, 2, 3}:

H3 = p1H1 + p2H2 = −x2H1 +H2.

We then apply Step 1 of Algorithm 2 until the support of each summand no longer contains
the broken circuit {1, 2}. For the sake of simplicity we will ignore the x1 term from the
numerator for now, so we have

1
H3

1H
2
2H3

= p1
H2

1H
2
2H

2
3

+ p2
H3

1H2H2
3

= p2
1

H1H2
2H

3
3

+ p1p2
H2

1H2H3
3

+ p1p2
H2

1H2H3
3

+ p2
2

H3
1H

3
3

= p3
1

H2
2H

4
3

+ p2
1p2

H1H2H4
3

+ p2
1p2

H1H2H4
3

+ p1p
2
2

H2
1H

4
3

+ p2
1p2

H1H2H4
3

+ p1p
2
2

H2
1H

4
3

+ p2
2

H3
1H

3
3

= p3
1

H2
2H

4
3

+ p3
1p2

H2H5
3

+ p2
1p

2
2

H1H5
3

+ p3
1p2

H2H5
3

+ p2
1p

2
2

H1H5
3

+ p1p
2
2

H2
1H

4
3

+ p3
1p2

H2H5
3

+ p2
1p

2
2

H1H5
3

+

p1p
2
2

H2
1H

4
3

+ p2
2

H3
1H

3
3
.

(3.11)

We collect terms with the same denominator leaving the following five summands, note
that we multiply through by the numerator term x1 before moving on to steps 3 and 4 of
Algorithm 2,

x1
H3

1H
2
2H3

= x1p
3
1

H2
2H

4
3

+ 3x1p
3
1p2

H2H5
3

+ 3x1p
2
1p

2
2

H1H5
3

+ 2x1p1p
2
2

H2
1H

4
3

+ x1p
2
2

H3
1H

3
3

= −x1x
3
2

H2
2H

4
3

+ −3x1x
3
2

H2H5
3

+ 3x1x
2
2

H1H5
3

+ −2x1x2
H2

1H
4
3

+ x1
H3

1H
3
3

= f1 + f2 + f3 + f4 + f5.

(3.12)

Observe that the numberator of the summand f1 = −x1x3
2

H2
2H

4
3
is not in the ideal generated by

〈H2
2 , H

4
3 〉. The stratum defined by the support of f1 is V2 ∪ V3=(1,1) and −x1x

3
2 does not

vanish here. We now check if p=(1,1) is a transverse multiple point of f1.
We have H2(p) = H3(p) = 0 and

{∇Hj(1, 1) : j ∈ {2, 3}} =
[
∇H2(1, 1)
∇H3(1, 1)

]
=
[
∂H2(1,1)
∂x1

∂H2(1,1)
∂x2

∂H3(1,1)
∂x1

∂H3(1,1)
∂x2

]
=
[
−1 −1
0 −1

]
.

The gradient vectors are linearly independent so p=(1,1) is a transverse multiple point of
order 2 in R2.

49

Let ΓΨ denote the augmented lognormal d×d-matrix whose rows are the lognormal vectors
∇logHj(p) for 1 ≤ j ≤ d. Given our constraints and transverse multiple point 1, ΓΨ is
defined as

F (x) = G∏k
j=1H

mj

j

= G∏k
j=1(1− xrowj(ΓΨ))mj

. (3.13)

where rowj(ΓΨ) denotes the j’th row of the matrix ΓΨ.

Example 3.1.6. Consider

F (x) = 1
(1− x2

1x2x3)2(1− x1x2
2x

2
3)2(1− x1x2x3)2

with the multiple point (1,1,1). The corresponding augmented lognormal 3× 3 matrix is

ΓΨ =


2 1 1
1 2 2
1 1 1

 .

We have now covered the necessary notations and definitions to understand Theorem 3.1.1.
For the ACSV method there is a final condition to be satisfied regarding the vector b in

1
(2πi)d

∫
T
x−tb−1F (x)dx.

Theorem 3.1.1 is unable to distinguish whether or not the output is valid based on the
vector b. For example say we wished to find the volume of the 0-polytope

P =
{
x, y ∈ R≥0 :

(
1 1
0 1

)(
x

y

)
=
(

1
2

)}
,

we know that there is no possible vectors (x, y) that satisfy the given vector b = (1, 2)
and hence no volume but Theorem 3.1.1 gives an asymptotic evaluation and volume of 1.
Therefore we must use caution and ensure that the vector b is valid, meaning that is falls
into the chamber complex given by F (x). This concept is developed in the following section.

3.1.3 Computing the Chamber Complex

Recall the definition of a cone, C = {λ1w1+...+λdwd : λ1, ..., λd ≥ 0}. For any subset of the
ground set E, σ, we let the matrix Dσ be the submatrix of M [D] obtained by taking only
the columns who indices are in σ. For a matrix B, we define pos(B) to be the cone generated
by the columns of B. We define the chamber complex of D as the common refinement of
the set {pos(Dσ) : σ a base of M [D]}, and a chamber of D to be a maximal element of the
chamber complex of D.
The chamber complex will be calculated for each term of Hn(t) for n ≥ 3 and the chamber

50

Figure 3.4: Chamber complex for F1.

of importance will be the one that contains the vector b. For a term of Hn(t), if no such
chamber exists in its chamber complex, the asymptotics of the term will not be calculated
as they are not valid. For the summands of a term, their chamber complex must contain the
chamber of importance from the parent term for Theorem 3.1.1 to be applied. This condition
ensures we sum only the necessary and valid asymptotic evaluations. It is important to note
that in the case of B2 we have a setting in which the output is valid based on the vector b.

Example 3.1.7. Consider the first term for H3(t):

1
(2πi)2

∫∫ (
x−2t−1

1 x−t−1
2

1
(1− x1)3(1− x1x2)3

)
dx.

The chamber complex corresponding to F1 = 1
(1−x1)3(1−x1x2)3 , shown in Figure 3.4, is com-

posed strictly from the cone built by {pos(Dσ) : σ a base of D1} where D1 =
[
1 1
0 1

]
. The

vector b = (2, 1) falls into the only chamber of the chamber complex therefore we apply
Theorem 3.1.1. Recall the transverse multiple point (1,1): G = 1 is holomorphic in the
neighbourhood of (1,1) and G(1, 1) = 1 6= 0. The multiplicity vector is m = (3, 3) and

ΓΨ(1, 1) =
[
1 0
1 1

]
. Therefore,

1
(2πi)2

∫∫ (
x−2t−1

1 x−t−1
2

1
(1− x1)3(1− x1x2)3

)
dx ∼ 1

2!2!
(1, 1)(−2t,−t) · 1
|(det ΓΨ)|

(
[2t, t]

[
1 0
−1 1

])(2,2)

= 1
4

(
[2t, t]

[
1 0
−1 1

])(2,2)

= 1
4[t, t](2,2)

= 1
4 t

4

51

Algorithm 3: Finding a chamber
Input: The vector b and a chamber complex.
Output: A chamber of the chamber complex.

1 Compute the normal vector, n, in any direction to b.
2 Divide the normal vector by a small factor, ε > 0, to ensure that 1

εn+ b ∈ c, where
c is a chamber containing the face b falls onto.

3 Create a new vector that connects the base of the chamber with the end of the
normal vector.

4 If this new vector falls into a chamber then terminate, else repeat the algorithm
with the new vector.

Figure 3.5: Algorithm for finding a chamber in a chamber complex

Figure 3.6: Chamber complex for F2.

If b does not fall into a chamber but instead falls on a face of the chamber complex then
Algorithm 3 is applied to compute the chamber of importance.

Example 3.1.8. Consider F2 from H3(t):

−3 1
(2πi)2

∫∫ (
(x1x2)−t−1 x1

(1− x1)3(1− x1x2)2(1− x2)

)
dx.

The chamber complex corresponding to F2 = x1
(1−x1)3(1−x1x2)2(1−x2) , shown in Figure 3.6,

is composed strictly from the cone built by {pos(Dσ) : σ a base of D2} where D2 =[
1 1 0
0 1 1

]
. The vector b = (1, 1) falls directly on a face of the chamber complex so we

have to apply Algorithm 3 to calculate the chamber of importance.
We choose the normal vector (1, -1) and divide by 1

2 giving the vector (1.5, 0.5). This vector
falls into chamber 1 shown in Figure 3.6 making chamber 1 the chamber of importance.
Recall the summands computed for F2 given in Equation (3.12), we now check the chamber
complex of each summand to ensure it contains the chamber of importance. For example,

52

the chamber complex corresponding to

f1 = −x1x
3
2

H2
2H

4
3

= −x1x
3
2

(1− x1x2)2(1− x2)4

does not contain chamber 1, therefore the asymptotic evaluation of f1 is not pertinent.
Upon further calculations, one can see that only the chamber complexes of f3, f4, and f5

contain chamber 1.

Example 3.1.9. We now calculate the leading term of the Ehrhart polynomial for F2 of
H3(t):

− 3 1
(2πi)2

∫
(x1x2)−t−1F2dx = −3

(1
(2πi)2

∫
(x1x2)−t−1f3dx

+ 1
(2πi)2

∫
(x1x2)−t−1f4dx + 1

(2πi)2

∫
(x1x2)−t−1f5dx

)
.

The term containing the summand f3 gives us the leading term 1
8 t

4, f4 the leading term −1
3 t

4,
and f5 gives 1

4 t
4 therefore,

−3
(1

8 t
4 − 1

3 t
4 + 1

4 t
4
)

= −1
8 t4.

We now have the asymptotic evaluation for both terms of H3(t), summing them will give
the leading term of the Ehrhart polynomial,

H3(t) = 1
4 t

4 − 1
8 t

4 = 1
8 t

4,

and hence the relative volume for B3,

ν(B3) = 1
8 .

3.1.4 Implementations to Speed up Computation Time

Which steps of the ACSV method require the most time? It turns out that Algorithm 2
Algebraic Reductions becomes extremely inefficient for values of n > 4 as shown in Table 3.1.
The number of summands of a given term in Hn(t) grows exceedingly fast as n increases,
and hence, so does the number of calculations. With this in mind, Stefan Trandafir [49] and
I have implemented four techniques to speed up to Algorithm 2:

1) Presort the Hj ’s before Step 1 from lowest to highest multiplicities mj .

2) Combine Steps 1 and 2 collecting terms with the same H’s at each round.

53

3) At each round of Step 1 check if the summands chamber complex contains the neces-
sary chamber, if it does not remove the summand.

4) Before running Steps 3 and 4 check that the summand vanishes at the multiple point.

Presorting the Hj ’s is one of the largest time savers. Before calculating the matroid M [D],
the Hj ’s of a term should be organized based on their multiplicities, from lowest to high-
est. Then M [D] is formed with the alteration that the ground set is labeled based on the
new ordering of the Hj ’s. The element of C corresponding to the column with the highest
multiplicity is then removed to create the broken circuit and used for the Nullstellensatz cer-
tificate. With these changes Step 1 in Algorithm 2 will require significantly less calculations
as the Hj ’s with the lowest multiplicities will now be the Hj ’s removed by the Nullstel-
lensatz certificate. Combining steps 1 and 2 stops repeated rounds of step 1 for summands
with the same denominators.

Example 3.1.10. Recall

F2 = x1
(1− x1)3(1− x1x2)2(1− x2) = 1

H3
1H

2
2H3

and presort the Hj ’s to create D2:

1
H3H2

2H
3
1

=⇒ D2 =
[3 2 1

0 1 1
1 1 0

]
.

The only circuit of D2 is C = {3, 2, 1} with the broken circuit now being BC={3, 2}. The
new Nullstellensatz certificate is slightly different than before,

H1 = p1H3 + p2H2 = −x1H3 +H2.

We run both Step 1 and 2 simultaneously:

x1
H3H2

2H
3
1

= x1p1
H2

2H
4
1

+ x1p2
H3H2H4

1

= x1p1
H2

2H
4
1

+ x1p1
H2H5

1
+ x1p2
H3H5

1
.

(3.14)

The support of our summands no longer contain the broken circuit {3, 2}. It is hard not to
notice the decrease in the number of calculations from Example 3.1.4.

Checking if a summands chamber complex contains the chamber of importance in each step
can help save unnecessary computations. If the chamber complex of f does not contain
the chamber of importance then there is no possibility that the summands computed from
f will have a chamber complex containing the chamber of importance. This is because

54

with each round of Step 1 in Algorithm 2 the support either stays the same with different
multiplicities, or depletes in size. Looking at Table 3.1 we see that this implementation does
not improve efficiency for small n. This can be attributed to the time it takes to check that
each chamber complex contains the chamber of importance. For larger n it is clear that this
step improves efficiency as the time saved not applying step 1 to a summand outweighs the
time taken to check if the chamber of importance is in the summands chamber complex.
As for the fourth implementation, if the summand does not vanish at the multiple point
then the numerator is not in the ideal formed from the denominator of f . This saves time
checking if the numerator of every summand is in the ideal.
Table 3.1 shows the computation time using the method of multiple point asymptotics
with no implementations to speed up computation time (original). This is compared to the
method with each of the implementations applied separately, with the final column showing
the running time with all four implementations. These times were gathered by running a
program we wrote in Maple [38] and Sage [48] that can be found in Appendix A. Note that
these times do not include the computation time of Algorithm 1.

n Original Speed up #1 Speed up #2 Speed up #3 Speed up #4 All speed ups

3 0.02 0.03 0.04 0.04 0.02 0.01
4 0.70 0.51 0.68 1.98 0.25 0.19
5 17262.01 7101.97 8022.01 8739.65 13615.82 8.87
6 944.02

Table 3.1: Computation time in seconds for the relative volume of Bn for n ≤ 6 using different
implementations to speed up running time of ACSV method.

It can be seen from Table 3.1 that the four implementations vastly improve the computation
time but were unable to compute Bn for n ≥ 7 with the time and equipment at hand. Once
n ≥ 7, the computation time of the Reduction Algorithm 2 proves infeasible even with
implementations to improve computation time.

3.2 Complex Analytic Techniques and LattE

We can also use the software LattE introduced in Section 2.4 to compute the Ehrhart
polynomial of the Birkhoff polytope given by

Bn = {x ∈ Rn
2
≥0 : Ax = b},

for the matrixA ∈ Z2n×n2 and vector b ∈ Z2n given in Equation (1.7). Barvinok’s algorithm
accepts both the hyperplane and vertex description of a polytope. We will work with the
hyperplane description.

55

We learned in Section 2.4 that using the Ehrhart polynomial seemed to be the fastest
method to compute the relative volume of Bn when compared to other LattE commands
but still had a high computation time. To try and speed up the computation we apply the
the complex analytic techniques from Section 2.3 to reduce the integral down to the terms
which contribute to the Ehrhart polynomial. These terms will then be put into the correct
format and run through LattE where the leading coefficient of each Ehrhart polynomial
will be summed to give the leading coefficient of Hn(t), and hence the relative volume of
Bn. We start again from the final corollary from Section 2.3.

Corollary 3.2.1. For 0 < εn < · · · < ε1 < 1 and t ≥ 0,

Hn(t) = 1
(2πi)n

∫
|z1|=ε1

· · ·
∫
|zn|=εn

(z1...zn)−t−1

∗∑
a1+...+an=n

(
n

a1, ..., an

)
n∏
k=1

(
zt+n−1
k∏

j 6=k(zk − zj)

)ak

dz. (3.15)

where
∑ ∗ denotes the sum over those n-tuples of non-negative integers satisfying a1 + ...+

an = n and a1 + ...+ an > r for 1 ≤ r < n.

We apply the same change of variables given in Algorithm 1 of Subsection 3.1.1 to Equa-
tion (3.15).

Example 3.2.1.

H3(t) = 1
(2πi)2

∫ (
x−2t−1

1 x−t−1
2

1
(1− x1)3(1− x1x2)3

)
dx

− 3 1
(2πi)2

∫ (
(x1x2)−t−1 x1

(1− x1)3(1− x1x2)2(1− x2)

)
dx (3.16)

The matrix A is formed from augmenting the vectors w ∈W as column vectors, each one
with multiplicity mi.

Example 3.2.1 (Continued). Take the first term of H3(t),

1
(2πi)3

∫
x−2t−1

1 x−t−1
2

(1
(1− x1)3(1− x1x2)3

)
dx.

We build the 2× 6 matrix A

A =
[
1 1
0 1

]
=⇒ A =

[
1 1 1 1 1 1
0 0 0 1 1 1

]
,

56

and note that b = (2, 1). We run this polytope through LattE and receive the polynomial

1 + 3t+ 13
4 t

2 + 3
2 t

3 + 1
4 t

4.

Take the second term of H3(t),

1
(2πi)3

∫
(x1x2)−t−1

(−3x1
(1− x1)3(1− x1x2)2(1− x2)

)
dx..

We build the 2× 6 matrix A

A =
[
1 1
0 1

]
=⇒ A =

[
1 1 1 1 1 0
0 0 0 1 1 1

]
,

and note that b = (1, 1). We run this polytope through LattE and receive the polynomial

1 + 25
12 t+ 35

24 t
2 + 5

12 t
3 + 1

24 t
4

We add the leading coefficient from each polynomial to give relative volume of B3,

ν(B3) = 1
8 .

This vastly improves LattE’s computation time when n ≥ 5 as shown in Table 3.2 where
Quick LattE represents this more efficient method. The time recorded for quick LattE

includes the computation time of Algorithm 1, the time to convert each integrand in Equa-
tion (3.3) to the hyperplane format necessary for LattE, and the time to sum up all of the
leading coefficients.

n LattE Quick LattE

2 <0.01 -
3 0.01 0.10
4 0.19 0.41
5 24.76 13.37
6 17302.30 1413.38

Table 3.2: Computation time in seconds for relative volume of Bn for n ≤ 6 using two
different implementations of LattE

57

Chapter 4

Conclusion

We have now considered multiple methods to compute the relative volume of the nth Birkhoff
polytope. We compare the computation time of two published methods, complex analytic
techniques and Latte, alongside our new methods titled ACSV and Quick Latte. The
time for the ACSV method and quick LattE includes the computation time of Algorithm 1
Change of variables. The time recorded for quick LattE includes the time taken to convert
each integrand to the correct format necessary for LattE and to sum up all of the leading
coefficients.

n Complex Analytic Techniques LattE ACSV Quick LattE

2 <0.01 <0.01 - -
3 <0.01 0.01 0.07 0.10
4 <0.01 0.19 0.30 0.41
5 <0.01 24.76 9.12 13.37
6 0.18 17302.30 945.09 1413.38

Table 4.1: Comparison of computation time in seconds for the relative volume of Bn for
n ≤ 6 for two published methods and two new methods.

The last three columns are results using a Windows 10 Pro with an Intel(R) Core(TM)
i7-8665U CPU @ 1.90GHz 2.11 GHz processor. As we were unable to compile the C++ code
for the complex analytic method we have included the results given by Beck and Pixton in
which they state were scaled down to a 1GHz machine [14].
Baryshnikov and Pemantle [10] question in their 2004 paper the feasibility of the ACSV
method when compared to complex analytic techniques, though they had not done any
conclusive tests. We feel comfortable stating that the ACSV method is inefficient when
compared to the complex analytic method. Not only can this be seen through computation
time but through the complexity of the method, namely Algorithm 2 Algebraic Reductions

58

and ensuring you are only summing terms with a valid vector b. Nevertheless, we believe
the ACSV method has a rightful place among the other existing methods used to compute
the relative volume of the Birkhoff polytope as it provides a strong geometric insight into
why the computation slows down.
Baryshnikov and Pemantle pose a different theorem to compute asymptotic evaluation
in [10], this theorem was not implemented in this thesis but it would be interesting to
see how the feasibility of their proposed theorem compares to the method of ACSV pro-
posed here. Another possible direction for future work involves implementing changes to the
ACSV method to be able to compute the volume of any face of the Birkhoff polytope. This
problem is of specific interest because Chan and Robbins [20] state that if we can calculate
the volumes of each face of Bn, then one can generate doubly-stochastic matrices uniformly
at random. De Loera, Liu, and Yoshida [24] were able to use their generating function for
the Ehrhart polynomial of Bn to compute the Ehrhart polynomials of the facets of Bn for
n ≤ 7. A third possible direction is the use of the asymptotic estimate for the relative vol-
ume of Bn provided by Canfield and McKay, presented here in Equation (1.12), to eliminate
unnecessary calculations in the ACSV method to cut down on computation time.

59

Bibliography

[1] Asymptotics of multivariate sequences. URL: https://www.cs.auckland.ac.nz/
~mcw/Research/mvGF/asymultseq/index.html.

[2] Installing LattE. URL: https://www.math.ucdavis.edu/~latte/software.php.

[3] Magic squares: A simple webquest. Accessed: 2020-04-13. URL: http://plaza.ufl.
edu/ufkelley/magic/history.htm.

[4] V. Baldoni, N. Berline, J.A. De Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto,
M. Vergne, and J. Wu. A User’s Guide for LattE integrale v1.7.2, 2013. URL:
http://www.math.ucdavis.edu/~latte/.

[5] Velleda Baldoni, Nicole Berline, Jesús A. De Loera, Matthias Köppe, and Michele
Vergne. How to integrate a polynomial over a simplex. Math. Comp., 80(273):297–325,
2011. doi:10.1090/S0025-5718-2010-02378-6.

[6] Welleda Baldoni-Silva and Michèle Vergne. Residues formulae for volumes and ehrhart
polynomials of convex polytopes. 2001. arXiv:math/0103097.

[7] Alexander I. Barvinok. Computing the Ehrhart polynomial of a convex lattice polytope.
Discrete Comput. Geom., 12(1):35–48, 1994. doi:10.1007/BF02574364.

[8] Alexander I. Barvinok. A polynomial time algorithm for counting integral points in
polyhedra when the dimension is fixed. Math. Oper. Res., 19(4):769–779, 1994. doi:
10.1287/moor.19.4.769.

[9] Alexander I. Barvinok and James E. Pommersheim. An algorithmic theory of lattice
points in polyhedra. In New perspectives in algebraic combinatorics (Berkeley, CA,
1996–97), volume 38 of Math. Sci. Res. Inst. Publ., pages 91–147. Cambridge Univ.
Press, Cambridge, 1999.

[10] Yuliy Baryshnikov and Robin Pemantle. Convolutions of inverse linear functions via
multivariate residues. preprint, 48, 2004.

[11] Matthias Beck. Counting lattice points by means of the residue theorem. Ramanujan
J., 4(3):299–310, 2000. doi:10.1023/A:1009853104418.

[12] Matthias Beck. Stanley’s major contributions to Ehrhart theory. In The mathematical
legacy of Richard P. Stanley, pages 53–63. Amer. Math. Soc., Providence, RI, 2016.
doi:10.1090//mbk/100/03.

60

https://www.cs.auckland.ac.nz/~mcw/Research/mvGF/asymultseq/index.html
https://www.cs.auckland.ac.nz/~mcw/Research/mvGF/asymultseq/index.html
https://www.math.ucdavis.edu/~latte/software.php
http://plaza.ufl.edu/ufkelley/magic/history.htm
http://plaza.ufl.edu/ufkelley/magic/history.htm
http://www.math.ucdavis.edu/~latte/
https://doi.org/10.1090/S0025-5718-2010-02378-6
http://arxiv.org/abs/math/0103097
https://doi.org/10.1007/BF02574364
https://doi.org/10.1287/moor.19.4.769
https://doi.org/10.1287/moor.19.4.769
https://doi.org/10.1023/A:1009853104418
https://doi.org/10.1090//mbk/100/03

[13] Matthias Beck, Moshe Cohen, Jessica Cuomo, and Paul Gribelyuk. The number of
“magic” squares, cubes, and hypercubes. Amer. Math. Monthly, 110(8):707–717, 2003.
doi:10.2307/3647853.

[14] Matthias Beck and Dennis Pixton. The Ehrhart polynomial of the Birkhoff polytope.
Discrete Comput. Geom., 30(4):623–637, 2003. doi:10.1007/s00454-003-2850-8.

[15] Matthias Beck and Sinai Robins. Computing the continuous discretely. Under-
graduate Texts in Mathematics. Springer, New York, second edition, 2015. Integer-
point enumeration in polyhedra, With illustrations by David Austin. doi:10.1007/
978-1-4939-2969-6.

[16] Garrett Birkhoff. Three observations on linear algebra. Univ. Nac. Tucumán. Revista
A., 5:147–151, 1946.

[17] Michel Brion. Points entiers dans les polyèdres convexes. Scientific annals of the
École Normale Supérieure, 21(4):653–663, 1988. URL: http://www.numdam.org/item/
ASENS_1988_4_21_4_653_0/, doi:10.24033/asens.1572.

[18] E. Rodney Canfield and Brendan D. McKay. The asymptotic volume of the Birkhoff
polytope. Online J. Anal. Comb., (4):4, 2009.

[19] E. Rodney Canfield and Brendan D. McKay. Asymptotic enumeration of integer ma-
trices with large equal row and column sums. Combinatorica, 30(6):655–680, 2010.
doi:10.1007/s00493-010-2426-1.

[20] Clara S. Chan and David P. Robbins. On the volume of the polytope of doubly
stochastic matrices. Experiment. Math., 8(3):291–300, 1999.

[21] Vašek Chvátal. Linear programming. A Series of Books in the Mathematical Sciences.
W. H. Freeman and Company, New York, 1983.

[22] J. A. De Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto, and J. Wu. Software for
exact integration of polynomials over polyhedra, 2013. doi:10.1016/j.comgeo.2012.
09.001.

[23] Jesús A. De Loera, Raymond Hemmecke, Jeremiah Tauzer, and Ruriko Yoshida. Ef-
fective lattice point counting in rational convex polytopes. J. Symbolic Comput.,
38(4):1273–1302, 2004. doi:10.1016/j.jsc.2003.04.003.

[24] Jesús A. De Loera, Fu Liu, and Ruriko Yoshida. A generating function for all
semi-magic squares and the volume of the Birkhoff polytope. J. Algebraic Combin.,
30(1):113–139, 2009. doi:10.1007/s10801-008-0155-y.

[25] Persi Diaconis and Bradley Efron. Testing for independence in a two-way table: new
interpretations of the chi-square statistic. Ann. Statist., 13(3):845–913, 1985. With
discussions and with a reply by the authors. doi:10.1214/aos/1176349634.

[26] Persi Diaconis and Anil Gangolli. Rectangular arrays with fixed margins. In Discrete
probability and algorithms (Minneapolis, MN, 1993), volume 72 of IMA Vol. Math.
Appl., pages 15–41. Springer, New York, 1995. doi:10.1007/978-1-4612-0801-3_3.

61

https://doi.org/10.2307/3647853
https://doi.org/10.1007/s00454-003-2850-8
https://doi.org/10.1007/978-1-4939-2969-6
https://doi.org/10.1007/978-1-4939-2969-6
http://www.numdam.org/item/ASENS_1988_4_21_4_653_0/
http://www.numdam.org/item/ASENS_1988_4_21_4_653_0/
https://doi.org/10.24033 / asens.1572
https://doi.org/10.1007/s00493-010-2426-1
https://doi.org/10.1016/j.comgeo.2012.09.001
https://doi.org/10.1016/j.comgeo.2012.09.001
https://doi.org/10.1016/j.jsc.2003.04.003
https://doi.org/10.1007/s10801-008-0155-y
https://doi.org/10.1214/aos/1176349634
https://doi.org/10.1007/978-1-4612-0801-3_3

[27] Ricardo Diaz and Sinai Robins. The Ehrhart polynomial of a lattice polytope. Ann.
of Math. (2), 145(3):503–518, 1997. doi:10.2307/2951842.

[28] Eugène Ehrhart. Sur les polyèdres rationnels homothétiques à n dimensions. C. R.
Acad. Sci. Paris, 254:616–618, 1962.

[29] Eugène Ehrhart. Sur un problème de géométrie diophantienne linéaire. I. Polyèdres et
réseaux. J. Reine Angew. Math., 226:1–29, 1967. doi:10.1515/crll.1967.226.1.

[30] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge University
Press, Cambridge, 2009. doi:10.1017/CBO9780511801655.

[31] Christoph Glanzer. Integer programming and lattice point enumeration. 2014.

[32] Peter M. Gruber. Convex and discrete geometry, volume 336 of Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer, Berlin, 2007.

[33] A. J. Hoffman and H. W. Wielandt. The variation of the spectrum of a normal matrix.
Duke Math. J., 20:37–39, 1953.

[34] Glenn Hurlbert. A short proof of the birkhoff-von neumann theorem. 2012.

[35] Jim Lawrence. Rational-function-valued valuations on polyhedra. In Discrete and
computational geometry (New Brunswick, NJ, 1989/1990), volume 6 of DIMACS Ser.
Discrete Math. Theoret. Comput. Sci., pages 199–208. Amer. Math. Soc., Providence,
RI, 1991.

[36] Ian G. MacDonald. Polynomials associated with finite gell-complexes. s2-4:181–192,
1971. doi:10.1112/jlms/s2-4.1.181.

[37] Joseph Malkevitch. Milestones in the history of polyhedra. In Shaping space, pages
53–63. Springer, New York, 2013. doi:10.1007/978-0-387-92714-5_4.

[38] Maplesoft, a division of Waterloo Maple Inc.. Maple 2020.2. URL: https://www.
maplesoft.com/.

[39] Marni Mishna. Analytic Combinatorics: A Multidimensional Approach. Chapman and
Hall/CRC, 2019. doi:10.1201/9781351036825.

[40] Cleve Moler. Experiments with MATLAB. mathworks, 2011. URL:
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/
moler/exm/book.pdf.

[41] John Mount. Application of Convex Sampling to Optimization and Contingency Table
Generation/counting. CMU-CS. School of Computer Science, Carnegie Mellon Univer-
sity, 1995. URL: https://books.google.ca/books?id=LcaSoAEACAAJ.

[42] H. L. Ong, H.C. Huang, and W. M. Huin. Finding the exact volume of a poly-
hedron. Advances in Engineering Software, 34(6):351–356, 2003. URL: https://
www.sciencedirect.com/science/article/pii/S0965997803000309, doi:https:
//doi.org/10.1016/S0965-9978(03)00030-9.

62

https://doi.org/10.2307/2951842
https://doi.org/10.1515/crll.1967.226.1
https://doi.org/10.1017/CBO9780511801655
https://doi.org/10.1112/jlms/s2-4.1.181
https://doi.org/10.1007/978-0-387-92714-5_4
https://www.maplesoft.com/
https://www.maplesoft.com/
https://doi.org/10.1201/9781351036825
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/moler/exm/book.pdf
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/moler/exm/book.pdf
https://books.google.ca/books?id=LcaSoAEACAAJ
https://www.sciencedirect.com/science/article/pii/S0965997803000309
https://www.sciencedirect.com/science/article/pii/S0965997803000309
https://doi.org/https://doi.org/10.1016/S0965-9978(03)00030-9
https://doi.org/https://doi.org/10.1016/S0965-9978(03)00030-9

[43] James Oxley. Matroid theory, volume 21 of Oxford Graduate Texts in Mathematics.
Oxford University Press, Oxford, second edition, 2011. doi:10.1093/acprof:oso/
9780198566946.001.0001.

[44] Robin Pemantle and Mark C. Wilson. Analytic combinatorics in several variables,
volume 140 of Cambridge Studies in Advanced Mathematics. Cambridge University
Press, Cambridge, 2013. doi:10.1017/CBO9781139381864.

[45] Joseph V. Romanovsky. A simple proof of the Birkhoff-von Neumann theorem on
bistochastic matrices. In A tribute to Ilya Bakelman (College Station, TX, 1993),
volume 3 of Discourses Math. Appl., pages 51–53. Texas A & M Univ., College Station,
TX, 1994.

[46] Richard P. Stanley. Enumerative combinatorics. Volume 1, volume 49 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second
edition, 2012.

[47] Bernd Sturmfels. Equations defining toric varieties. In Algebraic geometry—Santa
Cruz 1995, volume 62 of Proc. Sympos. Pure Math., pages 437–449. Amer. Math. Soc.,
Providence, RI, 1997. doi:10.1016/0040-9383(96)00016-x.

[48] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.2),
2020. URL: https://www.sagemath.org.

[49] S. Trandafir. personal communication, 2018-2021.

[50] John von Neumann. A certain zero-sum two-person game equivalent to the optimal
assignment problem. In Contributions to the theory of games, vol. 2, Annals of Mathe-
matics Studies, no. 28, pages 5–12. Princeton University Press, Princeton, N. J., 1953.

63

https://doi.org/10.1093/acprof:oso/9780198566946.001.0001
https://doi.org/10.1093/acprof:oso/9780198566946.001.0001
https://doi.org/10.1017/CBO9781139381864
https://doi.org/10.1016/0040-9383(96)00016-x
https://www.sagemath.org

Appendix A

Code

The computations for the results presented in Table 4.1 were done in Maple [38] and SageMath [48].

The following code computes the integrands of the integral presented in Corollary 3.2 for the nth Birkhoff
polytope for n ≥ 3. The terms of the integrand are placed in an array.

lecturehallpartitions := proc(n) local i, partition_n, lecturepartition_n, L, dummy, k, r;
INPUT:
n - the Birkhoff polytope we want to work with
OUTPUT:
lecturepartition_n - the lecture hall partitions of n

partition_n := partition(n):

for i to nops(partition_n) do
if evalb(nops(partition_n[i])<n) = true then

partition_n[i] := [op(partition_n[i]), seq(0, i = 1 .. n -
NumElems(partition_n[i]))];↪→

fi;
partition_n[i] := permute(partition_n[i]);

od:

L := [seq(i, i = 1 .. n)]:
lecturepartition_n := Array([]):

for k to nops(partition_n) do
for i to nops(partition_n[k]) do

dummy := Array([]);
for r to n - 1 do

if L[r] < sum(partition_n[k][i][h], h = 1 .. L[r]) then dummy :=
Append(dummy, 1); else dummy := Append(dummy, 0); fi;↪→

od;
if has(dummy, 0) = false then lecturepartition_n := Append(lecturepartition_n,

partition_n[k][i]); fi;↪→

od;
od;

return lecturepartition_n:
end proc:

Calculate the lecture hall partitions of n, put them in a sequence in a list
seqLHP:= [seq(lecturehallpartitions(n))];

64

size_a := numelems(seqLHP);
for i from 1 to size_a do

a[i]:=seq(seqLHP[i][j], j = 1 .. n);
od;

Create denominator of integrand
base:=[]:
for k from 1 to n do;

basefactors:=1:
for j from 1 to n do;

if k<>j then basefactors := basefactors*(z[k]-z[j]); fi;
od:
base:=[op(base), basefactors];

od;

Create z^(-bt-1) using standard 1's vector for b
outside:=z[1]:
for i from 2 to n do;

outside := outside*z[i];
od:
outside := (outside)^(-t-1);

Create each integrand as per Corollary 3.15
term := Array([seq((outside)*(multinomial(n,

a[r])*simplify(product(((z[v]^(t+n-1))/base[v])^(a[r][v]), v=1..n))), r=1..size_a)]);↪→

The following computations apply Algorithm 1 Change of Variables to each term. Only the computations of
n equaling 3 are shown below.

x := [x1, x2, x3, x4, x5, x6]:

changeofvariables := proc(n, term) local Jacob, detJ, aterm;
INPUT:
n - the number of the Birkhoff polytope we want to work with
term - a term
OUTPUT:
aterm - a term with the change of variables applied

aterm:=term:
aterm:=simplify(simplify(subs({z[2]=z[1]*x[1], z[3]=z[1]*x[1]*x[2],

z[4]=z[1]*x[1]*x[2]*x[3], z[5]=z[1]*x[1]*x[2]*x[3]*x[4],
z[6]=z[1]*x[1]*x[2]*x[3]*x[4]*x[5], z[7]=z[1]*x[1]*x[2]*x[3]*x[4]*x[5]*x[6]},
aterm), power, symbolic)):

↪→

↪→

↪→

if (n=3) then
Jacob, detJ := Jacobian([z[1], z[1]*x[1], z[1]*x[1]*x[2]],[z[1], x[1],

x[2]],'determinant');↪→

fi:

aterm:= simplify(aterm*detJ):
aterm:= residue(aterm, z[1]=0);

return aterm;
end proc:

changedterm := Array([seq(changeofvariables(n, term[i]), i = 1 .. size_a)]);

65

The following computations create a list of leading coefficients and another for the vector b for each term
in the integrand.

Create a list of the numerator, and one of the leading coefficients, for each term
numerator := [seq(numer(changedterm[i]), i=1..size_a)]:
lnumerator := [seq(lcoeff(numerator[i]), i=1..size_a)]:
numerator := [seq(numer(changedterm[i])/lnumerator[i], i=1..size_a)]:

powernumerator := proc(numerator, n, w) local b, a, c, j;
INPUT:
numerator - the numerator the term
n - the Birkhoff polytope we want to work with
w - the amount of times to try finding the numerator. It is set to 200 to to ensure all

entries of the vector b are computed.↪→

OUTPUT:
the vector b

b:= []:
try

for j from 1 to w+1 do
if type(op([j], numerator),rational) = false then

a:= op([j], numerator);
c:= op(2,a);
b:=[op(b), -lcoeff(c)];

fi;
od;

catch: Error
end try;
if nops(b) < (n-1) then: b:=[op(b), 1]; fi:

return b;
end proc:

calculate b using powernumerator. Note that b will be denoted by chambvect.
chambvect:=[]:
for i from 1 to size_a do;

chambvect:=[op(chambvect), powernumerator(numerator[i], n, 200)];
od:

The following code extracts x−tb−1 from Equation (3.5) in Theorem 3.1.1 leaving F (x) = G
H
. We then place

the information regarding G into two arrays. Again we only show this for n = 3.

remove x^bt+1 to leave G from F=G/H
if (n=3) then

G:=[seq(simplify((x[1]^(chambvect[i][1]*t+1)*x[2]^(chambvect[i][2]*t+1))*numerator[i]),
i=1..size_a)];↪→

fi:

Place the information for G in two arrays. Gbase provides the entry of the vector x and
Gpower provides the power of that entry.↪→

Gbase := Array([seq(0, i = 1 .. size_a)]):
Gpower := Array([seq(0, i = 1 .. size_a)]):

for i from 1 to size_a do:
w := 0:
if has(G[i], x[1]) then Gbase[i]:= [1]; fi;
while has(G[i], x[1]) do:

newG := G[i]/x[1];
G[i] := newG;

66

w := w+1;
od:
Gpower[i]:= [w]:

w := 0:
if has(G[i], x[2]) then Gbase[i]:= [op(Gbase[i]), 1]; fi;
while has(G[i], x[2]) do:

newG := G[i]/x[2];
G[i] := newG;
w := w+1;

od:
Gpower[i]:= [op(Gpower[i]), w]:

od:
Gpower[i]:= [op(Gpower[i]), w]:

od:

Gbase[-1]:= [Gbase[-1]]:

The following code calculates the multiplicity vector, m, in the form of a list.

Create a list of the denominator H
H:=seq(denom(changedterm[i]), i=1..size_a):

powerH := proc(H, w) local m, j, a;
INPUT:
denominator - H from F=G/H
n - the number of the Birkhoff polytope we are working with
w - the amount of times to try finding the numerator. It is set to 200 to to ensure all

entries of the m are computed.↪→

OUTPUT:
m - the multiplicity vector

m:=[];
try

for j from 1 to w+1 do
a:=op(j, H);
if op(2,a) <> -1 then m:=[op(m), op(2,a)]
else m:=[op(m), 1] fi;

od;
catch: Error
end try;

return m;
end proc:

#calculate the multiplicity vector m for each term
multiplicity:=[]:
for i from 1 to size_a do;

powerH(H[i], 200);
multiplicity:=[op(multiplicity), powerH(H[i], 200)];

od:

The following code calculates the matrix D from Equation (3.9). The columns are the matrix are stored as
entries in a list.

INPUT:
H - H from F=G/H
w - the amount of times to try finding the power of each x in H_j.

67

OUTPUT:
Mat - list of the columns of the matrix D

MatrixD := proc(H, n, w) local Mat, j, L, a, k,i;
Mat:=[]:
try

for j from 1 to w+1 do;
L:=[seq(0,i=1..n-1)]:
a:=op(j, H):

for k from 1 to n-1 do;
if has(a, x[k]) = true then L[k]:=1 fi;

od:
Mat:=[op(Mat), L]:

od:
catch: Error
end try;

return Mat
end proc:

create a list of the columns of the matrix D for each term
MatB:=[]:
for i from 1 to size_d do;

MatD:=[op(MatD), MatrixB(denominator[i], n, nops(multiplicity[i]))];
od:

Example A.0.1. The following is the Maple output for n = 3,

L:=[n, MatB, multiplicity, chambvect, lnumerator, convert(Gbase, list, nested), convert(
Gpower, list, nested)];↪→

L := [3, [[[1, 0], [1, 1], [0, 1]], [[1, 0], [1, 1]]], [[3, 2, 1], [3, 3]], [[1, 1], [2,
1]], [-3, 1], [[1], [0]], [[1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]]]↪→

Notice that the arrays for Gbase and Gpower are converted to lists. When n = 7 the number of entries is
too large for Maple therefore an array must be used. SageMath reads L in list form so Gbase and Gpower
must be converted to lists.

The following code is done in SageMath. This work is done alongside Stefan Trandafir [49] who wrote the
base of this code for us to develop for the case of the Birkhoff polytope when n ≥ 3.

The data given as output by Maple is read by SageMath as follows.

Lnew = [x for x in L]
n, A, multiplicity, chambvect, lnumera, Gbase, Gpower = Lnew

Implement the first speed up to Algorithm 2, "Presort H_j's"
def column_rearrange(A, mult):

""""
INPUT:
A - input matrix
mult - the multiplicity of each column vector in A

OUTPUT:
Anew - the Matrix A such that the columns are ordered from lowest multiplicity to

highest↪→

multnew - the multiplicity of each column vector in Anew
"""
permutes = [Word(mult[i]).standard_permutation().inverse() for i in

range(_sage_const_0, len(mult))]↪→

68

multnew = [sorted(mult[i]) for i in range(_sage_const_0, len(mult))]
A = [[A[j][i - _sage_const_1] for i in permutes[j]] for j in range(len(permutes))]
Anew = [Matrix(A[u]) for u in range(len(A))]

return Anew, multnew

A, multiplicity = column_rearrange(A, multiplicity)

This following code is run for every term given in the integrand of Algorithm 1 Change of variables, each
term will be denoted by the counter w. The final answer for each term is then summed up to obtain the
relative volume of Bn.

The following pre-processing is slightly different from the ASCV method discussed in Section 3.1.2. Propo-
sition 3.1.1 will not be used to test whether p is a transverse multiple point, instead the circuits and broken
circuits of D (in the code these matrices are referred to as A) are calculated, if there are no broken circuits
then p is a transverse multiple point by Lemma 3.1.1.

def circuit_permute_lift(circuit, h_j, p):
"""
INPUT:
circuit - a set of circuits for the matrix A
h_j - a list of H_j's that form H
p - transverse multiple point
OUTPUT:
circuit_rule - a circuit rewriting rule for the Nullstellensatz certificates (a list of

'coefficients')↪→

"""
polys = []

try to find rewriting rule in standard way (max polynomial in terms of rest)
broken_circuit_polys = [h_j[elem-1] for elem in circuit[:-1]]
circuit_max_poly = h_j[circuit[-1]-1]
try:

polys = circuit_max_poly.lift(broken_circuit_polys)
except ValueError:

pass
if polys:

good = 1
for k in polys:

if k.subs(p) == 0:
good = 0

if good == 1:
circuit_rule = polys
return circuit_rule

try rewriting for every other element in the circuit until a way is found
for elem in circuit[:-1]:

circuit_poly = h_j[elem-1]
torn_circuit_polys = [h_j[c-1] for c in circuit if c != elem]
try:

polys = circuit_poly.lift(torn_circuit_polys)
except ValueError:

pass
if polys:

good = 1
for k in polys:

if k.subs(p) == 0:
good = 0

69

if good == 1:
d = -polys[-1]
i = circuit.index(elem)
polys = polys[:i] + [-h_j[0]**0] + polys[i:-1]
circuit_rule = [p/d for p in polys]
return circuit_rule

return []

def nullstellensatz_certificates(circuits, h_j, p):
"""
INPUT:
circuits - a set of circuits of the matrix A
h_j - list of H_j's that form H
p - transverse multiple point
OUTPUT:
circuit_rewriting_rules - a dictionary of the Nullstellensatz certificates for each

circuit (key: list of non-negative integers in 1..NC, val: list of elements from
ring)

↪→

↪→

"""

circuit_rewriting_rules = {}
problematic_circuits = []

for circuit in circuits:
circuit_rule = circuit_permute_lift(circuit, h_j, p)
if not circuit_rule:

problematic_circuits.append(circuit)
print('There is an problem with circuit {}. The polynomial {} is not in the

ideal generated by the polynomials {}'.format(circuit, circuit_max_poly,
broken_circuit_polys))

↪→

↪→

sys.exit()
else:

circuit_rewriting_rules[Set(circuit)] = circuit_rule

return circuit_rewriting_rules

def pre_processing(A, multipl, gbase, gpower):
""""
INPUT:
A - the matrix A formed from H
multipl - multiplicities of the columns of A
gbase - entries of the vector x in each H_j
gpower - power of the entries of the vector x in each H_j
OUTPUT:
rank - rank of matrix A
nr - number of rows of A
circuits - circuits of the matrix A
broken_circuits - broken circuits of A
circuit_rewriting_rules - a dictionary of the Nullstellensatz certificates for each

circuits↪→

p - the transverse multiple point
g - G from F=G/H
H - H from F= G/H
"""
rank, nc, nr = A.rank(), A.ncols(), A.nrows()
M = Matroid(A)

70

compute the circuits of M
circuits1 = [list(sorted([elem+1 for elem in circuit])) for circuit in M.circuits()]
circuits = sorted(circuits1, key=lambda c: [-c[-1]] + c[-1:0:-1])

compute the broken circuits of M
broken_circuits1 = [set(circuit[:-1]) for circuit in circuits]
broken_circuits = []
for broken_circuit in broken_circuits1:

if broken_circuit not in broken_circuits:
broken_circuits.append(broken_circuit)

intialize ring and create the vector x
P = PolynomialRing(QQ, nr, 'x', order='lex', implementation='singular')
X = list(P.gens())

create H as a dictionary
H = {i: multipl[k] for i, k in zip(range(_sage_const_1, nc + _sage_const_1),

range(_sage_const_0, len(multipl)))}↪→

create the H_j's and place in a list as to coincide with the dictionary H
H_j = [_sage_const_1 - reduce(lambda p, q: p * q, [X[i] ** col[i] for i in range(nr)])

for col in A.columns()]↪→

create G
g = _sage_const_1
for i in range(len(gbase)):

if gbase[i] == 1:
g=g*(X[i] ** (gpower[i]))

compute Nullstellensatz certificates
p = {y: _sage_const_1 for y in X}
circuit_rewriting_rules = nullstellensatz_certificates(circuits, H_j, p)

return rank, nr, circuits, broken_circuits, circuit_rewriting_rules, p, g, H, H_j, P

A_matrix = A[w].transpose()
multipl = multiplicity[w]
rank, nr, circuits, broken_circuits, circuit_rewriting_rules, p, g, H, H_j, P =

pre_processing(A_matrix, Gbase[w], Gpower[w]↪→

The following calculations computes the chamber of importance and if necessary uses Algorithm 3 Finding
a chamber if the vector b falls on a face of the chamber complex.

def proj_a_faces(A):
"""
INPUT:
A - the matrix A formed from H
OUTPUT:
projected_a_faces - a list of all faces of the chamber complex
"""
A_matroid = Matroid(A)
a_faces = list(A_matroid.bases())
projected_a_faces = [Cone([A.column(i) for i in a_face]) for a_face in a_faces]

return projected_a_faces

def git_chamber(v, A_gamma, projected_a_faces):

71

"""
INPUT:
v - a vector
A_gamma - the chamber complex of A
projected_a_faces - a list of all faces of the chamber complex
OUTPUT:
nothing - this occurs if v is not in the chamber formed by the cones
chamber - a chamber (in the form of a cone) containing the vector v
"""
chamber = A_gamma

if v not in chamber:
return

for projected_a_face in projected_a_faces:
if v in projected_a_face:

chamber = chamber.intersection(projected_a_face)
return chamber

def b_chamber(b, A):
"""
INPUT:
A - the matrix A formed from H
b - a vector
OUTPUT:
chamber - the chamber of importance (hence the chamber that contains b)
"""
b = vector(b)
projected_a_faces = proj_a_faces(A)
A_gamma = Cone([A.column(i) for i in range(A.ncols())])

chamber = git_chamber(b, A_gamma, projected_a_faces)

set a counter so that we do not end up in an endless loop is no chamber exists
max_iter = 1000
counter = 0
d = len(b)
c = 1/512

Algorithm 2 Finding a chamber
while (not chamber or chamber.dim() != chamber.lattice_dim()) and counter < max_iter:

compute a random normal vector.
normal_vector = vector([0 for i in range(d)])
for i in range(d-1):

normal_vector[i] = randint(0,10)
normal_vector[d-1] = (-1//b[d-1])*sum([a*b for a,b in zip(b[:-1],

normal_vector)])↪→

b_new = tuple(b + c*normal_vector)
counter = counter+1

chamber = git_chamber(b_new, A_gamma, projected_a_faces)

return chamber

compute chambers complex
vec = chambvect[w]

72

chamber_list = [b_chamber(vec, A_matrix)]

The following calculations run Algorithm 2 Algebraic Reductions. Some of the smaller calculations will not
be displayed.

def algebraic_reduction(rank, circuits, broken_circuits, circuit_rewriting_rules, p, g, h,
h_polys, chamber, A):↪→

"""
OUTPUT:
summands - the list summands of the term F
"""
summands = []
G = 1
summand_queue = [Summand(h, G)]
while summand_queue:

summand = summand_queue.pop(0)

implementation to speed up algorithm number 2, collect terms with the same H
before each round of reduction↪→

summand.sum_queue(summand_queue)

implementation to speed up algorithm number 3, check if summands chamber complex
contains the chamber of importance↪→

if summand.contains_the_chamber(chamber, A):
Step 1 of Algorithm 2
if len(summand.h) > rank or summand.contains_broken_circuit(broken_circuits):

circuit = summand.find_circuit(circuits)
if circuit:

children = summand.circuit_reduce(circuit, circuit_rewriting_rules)
summand_queue1 = summand_queue + children
summand_queue = summand_queue1

else:
print('No circuits associated to {} have Nullstellensatz

certificates'.format(summand.support()))↪→

sys.exit()

else:
summands.append(summand)

Step 2 of Algorithm 2
new_summands = []
i = 0
while i < len(summands):

summand = summands.pop(0)
summand.sum_queue(summands)

multiply by our numerator g before steps 3 and 4 of Algorithm 2.
summand.numerator = summand.numerator*g
new_summands.append(summand)

summands = new_summands

for summand in summands:
if summand.numerator == 0:

summands.remove(summand)

Step 3 Of Algorithm 2
i = 0
while i < len(summands):

summand = summands[i]

73

implementation to speed up algorithm number 4, check if summand vanishes at
multiple point↪→

if summand.vanish(p):
new_summands = summand.split3(h_polys)

if new_summands:
for summand in new_summands:

if summand.contains_the_chamber(chamber, A):
summands = summands + summand

summands.pop(i)

else:
i = i + 1

else:
i = i + 1

Step 4 Of Algorithm 2
i = 0
while i < len(summands):

summand = summands[i]

if summand.vanish(p):
new_summands = summand.split4(h_polys)

if new_summands:
for summand in new_summands:

if summand.contains_the_chamber(chamber, A):
summands = summands + summand

summands.pop(i)

else:
i = i + 1

else:
i = i + 1

return summands

Perform algebraic reduction
finalsummands = algebraic_reduction(rank, circuits, broken_circuits,

circuit_rewriting_rules, p, g, H, H_j, chamber_list[0], A_matrix)↪→

The following calculations compute Equation (3.6) of Theorem 3.1.1.

def asymptotics(self, A_matrix, vectr, p):
"""
INPUT:
A_matrix: input matrix
vectr: b*t
p: transverse multiple point in vector form

OUTPUT:
phi - asymptotic evaluation of the summand
"""

gamma_psi = A_matrix.matrix_from_columns([a - 1 for a, b in
self.ordered_denominator()]).transpose()↪→

74

if gamma_psi.ncols() != len(vectr):
sys.exit()

gp_inverse = gamma_psi.inverse()

r = vector(vectr)
n = self.numerator
Gp = Rational(n.subs(p))
multiplicities = self.multiplicities()
numerator = Gp * product([a ** (m - 1) for a, m in zip(r * gp_inverse,

multiplicities)])↪→

denominator = product([factorial(m - 1) for m in multiplicities]) *
abs(gamma_psi.determinant())↪→

phi = (numerator * lnumera[w]) / denominator
return phi

T = PolynomialRing(QQ, 't', names=('t',));
(t,) = T._first_ngens(1)
vectr = [t * vec[j] for j in range(_sage_const_0, len(vec))]
asymptotics = _sage_const_0
for summand in finalsummands:

if summand.contains_the_chamber(chamber_list[0], A_matrix):
asymptotics = asymptotics + summand.asymptotics(A_matrix, vectr, p)

75

	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Background
	Introduction
	Convex Polytopes
	Triangulating a polytope
	Coning over a polytope
	Proof of Ehrhart's Theorem

	The Birkhoff Polytope Bn
	Semi-Magic Squares
	Volume of Bn

	Existing methods to compute the relative volume of Bn
	Polynomial interpolation
	Euler's Generating Function
	Complex Analytic Techniques
	Barvinok's Algorithm and LattE
	Triangulation-determinant method
	Cone decomposition method
	The Ehrhart polynomial
	Computation times of LattE

	New methods to compute the relative volume of Bn
	Analytic Combinatorics in Several Variables
	Change of Variables
	Multiple Point Asymptotics for Complete Intersection
	Computing the Chamber Complex
	Implementations to Speed up Computation Time

	Complex Analytic Techniques and LattE

	Conclusion
	Bibliography
	Appendix Code

