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Abstract 

Water sorption and transport through hydrocarbon (HC)-based polymer electrolyte 

membranes (PEMs) and porous electrodes are vital for water management and 

performance improvements of fuel cells. This thesis is the culmination of three research 

projects conducted into an extensive water sorption and transport study, including steady-

state permeation, transient diffusion, and sorption isotherm on a series of novel HC-based 

PEMs. Numerical models, such as the Park model for sorption isotherm and the resistance 

model for steady-state permeation, were chosen and applied to interpret the membranes’ 

chemical and structural features. Conductive atomic force microscope (AFM) and surface 

roughness measurement were applied to examine the membranes’ physical properties. 

Collectively, transport measurements, numerical models, and characterizations were 

integrated to generate an insightful structure-transport correlation. The first project studies 

sulfonated phenylated poly(phenylene) biphenyl (SPPB) and compares it to a HC-based 

reference, sulfonated phenylated poly(arylene ether), and the commercial benchmark, 

Nafion. At thickness > ~30 μm, SPPB is the most permeable due to its lowest internal 

resistance coefficient. The second research involves four structurally controlled, one-

element-variant, pyridyl-bearing sulfonated phenylated polyphenylenes. An increase in 

the number of pyridyl groups increases the fraction of neutralized protons in –SO3H groups, 

and decreases polymer’s ion exchange capacity, proton conductivity, liquid and vaporous 

water sorption, dimensional swelling, steady-state water permeability, and transient 

diffusivity. The third investigation expands the research focus to the catalyst layers 

incorporated with the novel HC-based ionomers. A lower ionomer content of SPPB in the 

catalyst layer favors a larger water vapor uptake and faster transient diffusion rate. 

Specifically, the catalyst layer of 15 wt% ionomer SPPB is found possessing the best 

electrochemical performance with the most hydrophilic and the roughest surface. Insights 

obtained in this thesis can direct further tuning of the HC-based polymer’s structure for 

desirable mass transport through both the membrane and the catalyst layers, which 

subsequently lead to electrochemical performance improvements of the fuel cell. 

Keywords:    hydrocarbon-based polymer; steady-state permeation; transient diffusion; 

catalyst layer; vapor sorption isotherm; fuel cells, electrolysers 
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Chapter 1. Introduction 

Human activities generate some 50 gigatons of carbon dioxide annually.[1] Much of 

the emitted carbon dioxide results from the use of fossil fuels, which currently satisfy over 

85% of global energy demand.[2] As a result of this dependency, current models predict 

an average temperature increase of 3.3-3.9 °C by the end of the century [3], and the 

depletion of fossil fuel reserves in two centuries.[1,4] In response to these challenges, 

Mission Innovation, an international initiative founded in 2015, is working on expediting 

clean energy development.[5] From 2014-15 to 2019-20, Canadian federal departments, 

organizations, and agencies have doubled annual clean energy research, development 

and demonstration (RD&D) investments from 387 million Canadian dollars (CAD) to 775 

million CAD.[6] Within this economic, political, and social context, interest in using fuel 

cells, especially the proton exchange membrane fuel cells (PEMFC), as clean energy 

conversion devices has been rapidly increasing. 

1.1. Proton exchange membrane fuel cell (PEMFC) 

1.1.1. Fuel cell 

The hydrogen economy best represents green fuel production and application with 

the participation of hydrogen gas instead of fossil fuel. Two electrochemical technologies 

are founded on the idea of the hydrogen economy, the water electrolyzer and the fuel cell. 

The water electrolyzer converts electrical energy into chemical energy, producing 

hydrogen and oxygen gas from water.[7] The fuel cell yields electricity from the H2-O2 

catalytic reaction without heat-to-work conversion, or without the reliance of bulky moving 

parts as the traditional internal combustion engine.[7] Compared to the internal 

combustion engine, fuel cells are not restricted to the Carnot principle, and are therefore 

capable of a theoretical fuel efficiency up to 83%.[8,9] Fuel cells are classified by their 

electrolytes, and include alkaline fuel cells (AFCs), solid oxide fuel cells (SOFCs), molten 

carbonate fuel cells (MCFCs), phosphoric acid fuel cells (PAFCs) and proton exchange 

membrane fuel cells (PEMFCs).[10] Among these, proton exchange membrane fuel cells 

have the greatest potential to power commercial vehicles due to its premier power density 

and relatively low operating temperature.[11] 
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Figure 1-1 is an exploded view of an operating proton exchange membrane fuel cell. 

In the center is the hydrated proton exchange membrane, which is sandwiched between 

two catalyst layers (CLs) and two gas diffusion layers (GDLs).[8] On the anode side, H2 

gas is introduced from the flow field plate, which is evenly distributed through the engraved 

channels. After transport through the gas diffusion layer, H2 is dissociated into two protons 

(H+) and two electrons (e-) on the surface of the catalyst (platinum, Pt) in the anodic 

catalyst layer (Equation 1-1). Electrons and protons are transported from the anode to the 

cathode through the electrical circuit and proton exchange membrane, respectively. 

Oxygen is reduced in the cathodic catalyst layer, generating water (Equation 1-2) and 

completing the electrochemical reaction (see Equation 1-3). The equilibrium potential of 

the overall reaction is 1.23 V under standard conditions (1 atm, 298K).[8]  

𝐻2 → 2𝐻+ + 2𝑒−  [8]                                      anodic half-reaction Equation 1-1 

2𝐻+ + 2𝑒− +
1

2
𝑂2 → 𝐻2𝑂 [8]                       cathodic half-reaction Equation 1-2 

𝐻2 +
1

2
𝑂2 → 𝐻2𝑂        𝐸0 = 1.23 𝑉 [8]                      overall reaction Equation 1-3 
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Figure 1-1. Exploded view of the proton exchange membrane fuel cell. 

 The application of PEMFCs in commercial automobiles is promising. To date 

(August 2020), PEMFCs from Ballard Power Systems, a Vancouver-based fuel cell 

company, have powered electric vehicles in predominately medium- and heavy-duty 

commercial applications. Vehicles powered by Ballard Power Systems have operated 

cumulatively for more than 50 million kilometers to date.[12] This is a quintuple increase 

from 2017 and is enough to circle the globe 1250 times.[12] However, larger-scale 

commercialization of PEMFC is still in its infancy and faces many obstacles.  

First and foremost, the mass-production (>500,000 systems) of PEMFCs is 

estimated to cost about 70 USD/kW, higher than 30 USD/kW for current internal 

combustion engines.[13,14] 49% of PEMFC cost originates from the catalyst (21%) and 

the PEM (28%).[15] Expected cost improvements, from the catalyst application, involves 

reduction/replacement of the precious metals, and improving the catalyst’s lifetime and 

catalytic activity.[16,17] Additional challenges for mass production and commercialization 

are related to the water management within PEMFCs. The presence and transport of 

water is crucial and affects proton conductivity, electrochemical performance, and the 
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durability of the fuel cell.[18] Detailed discussions on water sorption and water transport 

will be presented in sections 1.3 and 1.4, respectively.  

1.1.2. Electrochemical interpretation: polarization curve 

To evaluate the electrochemical performance of a fuel cell, the polarization curve 

(Figure 1-2) is ubiquitously used. The polarization curve depicts cell potential against 

current density. Overpotential/polarization (also known as voltage loss in electrical 

engineering) is the difference between the cell potential and the open-circuit voltage 

(OCV). Overpotential is mainly caused by 1) kinetics of the electrochemical reactions 

(activation overpotential); 2) internal electrical and ionic resistance (Ohmic overpotential); 

3) slow mass-transport of reactants to reaction sites (mass-transport/concentration 

overpotential).[19]  

 

Figure 1-2. Polarization curve (black) depicts cell potential against current density. 

The curve is segmented into three overpotential curves: the activation 

overpotential (blue), the Ohmic overpotential (red), and mass-transport 

overpotential (green). 

⚫ Activation overpotential is predominantly due to the activation energy of both 

anodic and cathodic electrochemical reactions. The activation energy of the 

oxygen reduction reaction (ORR) at the cathode is greater than that of the 

hydrogen oxidation reaction (HOR), thus, creates a much larger activation 

overpotential at the cathode.[20] Activation overpotential is responsible for the 
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principal voltage loss at the low current density regime, as seen in Figure 1-2. [20] 

⚫ Ohmic overpotential is caused by the resistance to the flow of protons in the 

proton exchange membrane (ionic resistance) and resistance to the flow of 

electrons through the copper wire (electrical resistance). The electrical resistance 

is negligible when compared to the ionic resistance of the proton exchange 

membrane. Ohmic overpotential is the significant voltage loss at the medium 

current density regime, as shown in Figure 1-2.[21]  

⚫ Mass-transport overpotential monopolizes when reactants are rapidly consumed 

in the catalyst layer, and the reaction rate is limited by the mass-transport of 

reactants to the reaction sites. Namely, there is a concentration difference of 

reactants between the surface of the catalyst and gas outlet. O2 mass-transport 

overpotential is dominant because of the much slower diffusion rate of O2 than 

H2. In Figure 1-2, mass-transport overpotential dominates at the large current 

density regime.[22] 

1.2. Proton exchange membrane 

The key component of the PEMFC (Figure 1-1) is the proton exchange membrane. 

The PEM functions as an electron insulator, proton and water conductor, and reactants 

separator.[23] Ideally, PEM would be mechanically robust, highly proton conductive, 

chemically/thermally stable, durable (> 5,000 h operating hours[24]), and low-cost.[10] In 

1959, the application of a polymer electrolyte membrane in the fuel cell was first proposed 

by Grubb.[25] Initial attempts used hydrocarbon(HC)-based polymers and were 

manufactured by General Electric (GE) for the National Aeronautics and Space 

Administration (NASA) in the 1960s.[26] Because of chemical instability, the HC-based 

polymers used in initial attempts were abandoned. To fortify the chemical strength of the 

PEM, perfluorosulfonic acid (PFSA) ionomers were developed.[26] In 1966, DuPont 

invented Nafion®, a PFSA membrane that remains as state-of-the-art today as when it was 

introduced.[27]  
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1.2.1. Nafion® membrane 

The general chemical structure of Nafion® is provided in Figure 1-3. The resilient 

poly(tetrafluoroethylene) (PTFE) backbone renders the polymer exceptional mechanical 

and chemical strength, and is responsible for Nafion’s market dominance.[28] The 

tethered sidechain with the pendant ionic group results in phase separation upon solvation 

and subsequent ion/solvent transport capacity.[29] Understanding Nafion’s phase-

separated morphology is therefore critical for the study on water sorption and transport of 

PEMs.  

 

Figure 1-3. Chemical structure of Nafion®, m=6-10. 

The morphology of Nafion® has been extensively studied and reviewed by Kusoglu 

and Weber.[29] The most commonly used techniques are small-/wide-angle scattering of 

X-rays and neutrons.[30–42] Gierke et al. first proposed the cluster-network model with a 

spherical diameter of 2 to 4 nanometers, based on water content within the membrane.[30] 

The cluster-network model builds on the variance of small-angle X-ray scattering (SAXS) 

signal with increasing hydration within Nafion®. [30] Gebel further developed this model 

and introduced morphological evolution,[37] which describes structural changes from 

spherical ionic domains to rod-like particles of the Nafion® polymer with higher hydration 

(Figure 1-4).[37] When the water volume fraction (V water/V wet membrane) is below 0.2, ionic 

domains remain as isolated spherical clusters.[30,36] Percolation occurs when the water 

volume fraction reaches over 0.2, leading the originally spherical clusters to grow and 

interconnect, as shown in Figure 1-4.[36,37] Beyond 0.5 water volume fraction, the 

presence of water dominates, and rod-like aggregates start to form in dispersion. This 

process is termed a structure inversion.[37] More models have since been proposed. 

These include the  elongated rod-like model[36,42,43], the cylindrical model[39,44,45], 
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and the flat ribbon model.[46–49] These varying models generally  agree on certain 

properties: 

⚫ There is ionic (hydrophilic) and perfluorinated (hydrophobic) phase separation.  

⚫ Ionic domains develop and start to interconnect (percolate) with further hydration. 

⚫ The presence of ionic/hydrophilic domains facilitates water and proton transport. 

 

 

Figure 1-4. Morphological evolution of the perfluorosulfonic acid membrane with 

increasing water volume fraction.[37] Copyright (2000) with permission 

from Elsevier.  

1.2.2. Novel proton exchange membranes 

Despite the market dominance of Nafion®, the drawbacks of Nafion® as a 

perfluorosulfonic acid membrane do not go unnoticed. First and foremost is its prohibitive 

synthetic procedure cost.[7] Secondly, the presence of a perfluorinated backbone raises 

growing environmental concerns and complicates the recycling of catalysts.[50,51] High 

gas crossover of Nafion® decreases the yield efficiency and facilitates membrane 

degradation.[52,53] Therefore, there is demand for alternative PEMs, especially those that 

are fluorine-free and  hydrocarbon-based.[50,54,55] Hydrocarbon-based polymers are 
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more versatile to functionalize with multiple developed synthesis pathways and are 

comparatively more proton-conductive than their perfluorosulfonic counterparts.[56] 

Structurally, HC-based PEMs are significantly different from Nafion®. In HC-based PEMs, 

ionic groups are directly affixed to the backbone, causing less phase separation.[31] 

Thermodynamically, the sulfonic acid group within HC-based ionomers is less acidic than 

that of the PFSA. The pKa of acid groups in hydrocarbon-based ionomers is -1/-2, less 

acidic than their counterpart in PFSAs, which is -6.[57] Both structural and 

thermodynamical attributes cause a higher water uptake and proton conductivity in HC-

based PEMs.  

Polyaromatic backbones, entirely comprised of sp2 atoms, are thermochemically 

resilient and are an attractive option for incorporation in the HC-based PEMs.[31] Typical 

polyaromatic backbones investigated for HC-based PEMs include sulfonated poly(aryl 

ether sulfone)s,[58,59] sulfonated poly(benzimidazole)s,[60] sulfonated 

poly(phenylene)s,[61–64]and sulfonated poly(arylene ether ketone)s [65,66]. The 

application of these hydrocarbon-based polymers as proton exchange membranes have 

been reviewed extensively.[53,67,68] Representative polyaromatic backbones for proton 

exchange membranes are shown in Figure 1-5. The ionic, hydrophilic moieties in the 

PEMs are bestowed by the sulfonic acid groups introduced via either post-functionalization 

of the polymers’ backbone, or by pre-functionalization of the monomer before 

polymerization. Sulfonic acid groups are employed because of their stability and high 

acidity.[31] The acid content governs the water sorption of the membrane—the greater 

content of sulfonic acid groups in the polymer, the greater the water sorption upon 

hydration. Unfortunately, hydrocarbon-based PEMs typically suffer from excessive 

swelling, given their high acid content. The other common deficiency of hydrocarbon-

based PEMs is the chemical susceptibility to attacks by hydroxyl and hydroperoxyl 

radicals.[69] The radical attacks cause oxidative degradation and decrease life span of 

the membrane.[69] Electron rich heteroatoms (e.g., ether linkage) in the polymer 

backbone tend to increase the neighboring aromatic ring’s electron density and reactivity 

to oxidative radicals.[70–72] Sulfonated phenylated poly(phenylene) (SPPP) comprises of 

a wholly aromatic backbone and displays exceptionally chemical stability (Figure 

1-5).[73,74] Therefore, sulfonated phenylated poly(phenylene) has received particular 

attention as a potential future-generation PEM. 
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Figure 1-5.    Typical polyaromatic backbones investigated for hydrocarbon-based 

proton exchange membranes. 

Early developments of sulfonated phenylated poly(phenylene)s were restricted by 

limitations from the randomized post-functionalization, such as lack of repeatability, 

unknown placement of sulfonic acid groups on the polymer, and non-integer degrees of 

sulfonation per repeat unit.[54,75] In 2015, a precisely functionalized SPPP was 

synthesized by Skalski et al. via pre-functionalization as shown in Figure 1-6.[64] There 

are exactly four acidic moieties per repeat unit and their location was precisely assigned 

for the first time (Figure 1-6).[64] Membranes prepared from this SPPP polymer swell 

excessively at elevated temperature (80 °C), which downgrades their physical integrity 

and dimensional stability. Even though the excessive swelling issue limits the SPPP’s 

application in fuel cells, this pre-functionalized SPPP provided a proof-of-concept for future 

modification in a precise molecular level to tackle with oxidative degradation and 

excessive swelling in hydrocarbon-based PEMs.   
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Figure 1-6. Chemical structure of the sulfonated phenylated poly(phenylene) 

synthesized via pre-functionalization. [64] The number and placement 

of sulfonic acid groups are precisely controlled.  

1.2.3. Catalyst layer 

The catalyst layer comprises agglomerates of carbon-supported platinum particles 

coated with proton exchange ionomers (PEI).[51,76,77] There exists an interface where 

three reactants of the oxygen reduction reaction meet. The interface is named the triple-

phase boundary, and is illustrated in Figure 1-7.[78] The cathodic ORR occurs when 

protons from the hydrated ionomer, electrons from the carbon support, and O2 from the 

gas diffusion layer meet at the surface of Pt particles.[78] The catalyst layer plays an 

essential role in the fuel cell. Both activation overpotential and mass-transport 

overpotential (see section 1.1.2) are associated with the sluggish electrochemical kinetics 

and hindered mass transport, respectively, within the catalyst layer. Each causes a sharp 

drop in cell voltage and power density in the low and high current density regions. The 

catalyst activity, affected by its surface morphology, particle size, and support structure, 

has a crucial influence on the electrochemical performance of the fuel cell.[79–81]  
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Figure 1-7. a) TEM image of the membrane/catalyst layer interface.[82] Copyright 

(2000) with permission from the Electrochemical Society. b) Schematic 

illustration of the cathodic membrane/catalyst layer interface and the 

triple-phase boundary. 

The ionomer serves both as the proton pathway and the binder for the platinum 

agglomerates, influencing the pore structure and, correspondingly, the mass transport 

features and catalyst utilization with the CL.[83] To date, the canonical proton exchange 

ionomer is the PFSA ionomer, Nafion®, because of its high proton conductivity and robust 

chemical strength.[84–103] Significant amounts of studies have been focused on CL with 

Nafion® ionomer. The NafionⓇ ionomer content is found to affect the catalyst layer’s pore 

structure and thickness.[88,104] Excessive presence of ionomer in the CL cripples O2 

transport and egress of H2O, while deficiency of ionomer results in low proton conductivity 

and sluggish reaction rate because of the diminished area of the triple-phase 

boundary.[84–86] Variance in fabrication conditions alters the nature of CL.[105] The 

influence of various solvents on the dispersion state of NafionⓇ ionomer and morphology 

of the CL was also widely studied.[93–98,101–103] 

1.3. Water sorption of PEMs 

As noted above, the presence of water is crucial within the proton exchange 

membrane. Water sorption behavior is a fundamental phenomenon altering membranes’ 

phase-separation morphology, and hence structural and mass-transport features.[29] 

There are many parameters to describe water content within the proton exchange 

membrane. These parameters are usually interrelated.[29] Hydration number, λ (mol 𝐻2𝑂 
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/ mol 𝑆𝑂3
−), is ubiquitously used in PEM research and was first brought up by Springer et 

al.[106] Given large volume of studies and detailed reviews available for the PFSA 

membranes, discussion in this section (section1.3) will be focused on the water sorption 

behavior of Nafion® membranes. 

1.3.1. Liquid water sorption 

The liquid water sorption of PFSA membranes generally decreases with higher 

equivalent weight (EW),[107,108] increasing heat-treatment temperature,[109,110] lower 

solvent temperature,[109] contamination, and aging.[111,112] The liquid water sorption 

process is governed by the solvation of ionic groups by water molecules. Liquid water 

sorption is determined by the acid concentration, and hence by the ion exchange capacity 

(IEC) of the membrane. IEC (mmol SO3H / g dry membrane) represents the number of 

sulfonic acid groups (mmol) in every gram of dry membrane. Higher IEC of a PEM 

represents higher water sorption.  

1.3.2. Water vapor sorption 

Water vapor sorption is more complex than liquid water sorption and is a multiscale, 

multistep process involving an interplay among water molecules, hydrophilic acid groups, 

and the hydrophobic perfluorinated polymer backbone.[29] A non-linear, sigmoidal vapor 

sorption profile against water activity (𝑎 ,  𝑎 = 𝑝𝐻2𝑂 𝑝𝑠𝑎𝑡⁄ = 𝑅𝐻 100⁄  [113]) is expected. 

Water vapor sorption is more relevant to the actual running condition of the fuel cell than 

the liquid water sorption is. To interpret this vapor sorption behaviour, many models were 

invoked and reviewed in 2019 by Vetter et al..[114] The first type of model is the polynomial 

fit. It was initially used by Springer’s[106] and Hinatsu’s[115] research in the 1990s. This 

method is prevalent because of its simplicity and precision. The latest application of the 

polynomial fit for water vapor sorption was by Morin et al. in 2017.[116] The polynomial fit 

is heavily dependent on the polynomial order, and there is no conclusively general 

equation that can be adopted. Regardless of the precision, there is little physical 

significance behind the polynomial equation, which limits its further application to relate 

membranes’ sorption behavior to structure features. Other developed models are built on 

the Flory-Huggins (FH) theory,[115,117,118] Brunauer-Emmett-Teller (BET) theory,[119–
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121] or the elastic swelling model.[122,123] These models often lead to lengthy and 

implicit equations.  

Recently, the Park model has been applied to study the sorption isotherms of proton 

exchange membranes.[124–130] In the Park model, as shown in Figure 1-8 and Equation 

1-4, the water sorption (WS) is made of three independent types of sorption: Langmuir-

type sorption, Henry-type sorption, and clustering-type sorption.[124,127–130] Individually, 

each is the major contributor to increase water content in the low, mid, and high relative 

humidity regimes.  

WS =  WSLangmuir + WSHenry + WSClustering [124–130] Equation 1-4 

 

 

Figure 1-8. Schematic illustration of the Park model depicting the change in 

hydration number, λ, with water activity.[126]  

Langmuir (WSLangmuir), Henry (WSHenry), and clustering-type sorption (WSClustering) 

individually can then be defined as shown in Equation 1-5 to Equation 1-7, respectively.  

𝑊𝑆𝐿𝑎𝑛𝑔𝑚𝑢𝑖𝑟 =  
𝑎𝐿𝐾𝐿𝑎

1+𝐾𝐿𝑎
  [124–130] Equation 1-5 

𝑊𝑆𝐻𝑒𝑛𝑟𝑦 =  𝐾𝐻𝑎  [124–130] Equation 1-6 

𝑊𝑆𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 =  𝑛𝐾𝐴𝑎𝑛  [124–130] Equation 1-7 
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where 𝑎 is the activity of water, 𝑎𝐿 is the specific site capacity, 𝐾𝐿 is the affinity constant, 

𝐾𝐻 is the Henry’ law coefficient, 𝑛 is the aggregate number, and 𝐾𝐴 is the aggregation 

equilibrium constant. The Park model renders an explicit and simple equation, which well 

approximates the sorption isotherm of the PEM. Also, the Park model bestows insightful 

physical significance to the parameters in each type of sorptions to interpret and compare 

membranes’ structural/chemical features.  

Langmuir-type sorption describes hydration of the membrane surface by a monolayer 

of water molecules. As seen in Equation 1-5, Langmuir-type sorption is determined by the 

specific site capacity, 𝑎𝐿, and affinity constant, 𝐾𝐿. The specific site capacity shows the 

density of surficial, hydrophilic Langmuir sites fixing water molecules on the surface, and 

relates to the surficial concentration of ionic moieties of PEMs.[129,131] The other 

parameter, affinity constant (𝐾𝐿), represents the relative strength of water molecules being 

secured by the  surficial, hydrophilic groups of membranes,[29] and relies on the strength 

of H-bonds between sulfonic acid groups and water molecules, and therefore the acidity 

of the sulfonic groups.[124,131] The more acidic the surficial sulfonic group, the larger the 

KL value. As shown in Figure 1-8, Henry-type sorption mainly contributes to the water 

content increase in the mid-relative humidity regime. Henry-type sorption illustrates water 

sorption as being proportional to the relative humidity during further hydration when water 

molecules penetrate and interact with the ionic groups within the bulk membrane. The 

linearity coefficient, 𝐾𝐻 , represents the magnitude of water-sulfonic group 

interactions.[128] Clustering-type sorption is responsible for the sharp increase in water 

sorption in the high relative humidity regime, as seen in Figure 1-8. Clustering-type 

sorption approximates the process of water clusters’ formation and relaxation of the 

polymer backbone when accommodating more incoming water molecules.[127–129,131] 

Indicated in Equation 1-7, clustering-type sorption is featured by both the aggregate 

number, 𝑛, and the aggregation equilibrium constant, 𝐾𝐴. The aggregate number reveals 

the average size of water clusters, which is reliant on the backbone’s flexibility to 

accommodate water molecules. The aggregation equilibrium constant represents the 

extent of the water clustering process, and is affected by backbone’s affinity with water 

molecules.[127–129,131] 

The effect of temperature on the water vapor sorption isotherm of Nafion® is another 

area of considerable discussion. Because of the difficulty in acquiring accurate 

measurements under high temperature and RH, reports on sorption isotherms of PEMs 
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are sparse.[29] In the wide temperature range of 25 to 90 °C, under 70% RH, almost all 

literature reported a similar vapor sorption profile of the Nafion® membrane.[110,132–136] 

Under higher RH near saturation, a general trend of decreasing water content with the 

temperature was observed.[110,132–134,136] So far, there is no definite explanation for 

this diminished water vapor sorption at elevated temperatures under higher RH.[29] 

Studies tend to attribute the reduced water sorption to either the varying surface 

hydrophilicity of Nafion®[133,137,138] or polymer-water interactions.[118,132,133,139–

141]  

1.3.3. Schrӧeder’s paradox 

In the work of Schrӧeder, gelatins were found to swell more in liquid water than in 

saturated water vapor at identical temperature.[142] This observation is controversial from 

the thermodynamic perspective, as in both cases, liquid and saturated water vapor, the 

thermodynamic equilibrium should be identical (water activity=1). The term “Schrӧeder’s 

paradox” is then adopted for similar phenomena observed for other materials. As for 

Nafion® membranes, Schrӧeder’s paradox also exists. The hydration number for Nafion®  

membrane in liquid water, λliquid (22 ±1), is higher than that in saturated water vapor, λvapour 

(14 ±1).[109,133,138,139,143–145] Systematic investigations were conducted by Bass 

and Freger to elucidate the origin of the Schrӧeder’s paradox in the Nafion® 

membranes.[146–148] They related the difference in water sorption between liquid and 

vaporous water to the variance of surficial morphology of the Nafion®  membrane when in 

contact with liquid and water vapor.[147,148] As shown in Figure 1-9a, when subject to 

water vapor, the ionic clusters (micelles) tend to align parallel to the surface, causing a 

hydrophobic membrane surface to oppose water ingress.[148] However, Nafion® 

membrane surface is hydrophilic when exposed to liquid water as the hydrophilic micelles 

are arranged normal to the surface, which favors water transport, as shown in Figure 

1-9b.[148] This change in surficial morphology with varying states of water is widely 

acknowledged by technologies including contact angle measurement,[147,149,150] X-

ray,[46,151] atomic force microscope,[152–161] and electrochemical mass-transport 

measurement.[162] In the end, it must be stated that it is challenging to obtain water vapor 

saturation (water activity=1) without thermal fluctuation and condensation of liquid water 

on the membrane surface.  
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Figure 1-9. Schematic illustration of surficial morphology of Nafion membrane when 

in contact of (a) water vapor and (b) liquid water. Lines in black represent 

hydrophilic, ionic clusters (micelles) for water and proton transport 

pathways.[148] Copyright (2011) with permission from the American 

Chemical Society. 

1.4. Water transport through proton exchange membranes 

Besides water sorption, water transports through the proton exchange membrane and 

the membrane electrode assembly are fundamental for the fuel cell’s efficient and stable 

operation. Water transport phenomena cover a broad scope of mechanisms at different 

time- and length-scales, accompanied with a wide range of diagnostic techniques. 

Common types of water transport through Nafion® membranes and examining techniques 

include[29]:  

1. Steady-state (SS) permeation or diffusion1 under a controlled chemical potential 

gradient as driving force[136,163,166–172] 

2. Transient diffusion measured under a certain relative humidity bias by dynamic 

vapor sorption (DVS)[124,126,173–177] 

3. Local diffusion or self-diffusion by pulsed-field gradient spin-echo (PGSE) nuclear 

 

1  The terms “steady-state permeation” and “steady-state diffusion” are used as 
interchangeable.[29] For consistency and legacy from former published papers in the 
group,[82,126,163–165] the term “permeation” or “permeability” will be used instead of 
“diffusion” and “diffusivity” for steady-state studies.   
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magnetic resonance (NMR)[107,110,138,166,178–182] or quasi-elastic neutron 

scattering (QENS)[49,183–185] 

4. Other indirect probing measurements like time-resolved small-angle X-ray 

scattering (SAXS)/small-angle neutron scattering (SANS),[44,186–188] or 

Fourier transform infrared-attenuated total reflectance (FTIR-ATR)[189–192] 

Due to the expanse of water transport topics and their relevance to this study, only 

the steady-state permeation and the transient diffusion of Nafion® membranes will be 

discussed in detail. 

1.4.1. Steady-state permeation 

Steady-state water permeation primarily measures the molar water flux (𝐽𝑤) though 

the membrane under a controlled chemical potential difference of water (∆𝜇𝑤) that can be 

achieved by regulating the water concentration on both sides of the membrane. Steady-

state water permeation is a crucial phenomenon within the PEM to regain the even 

distribution of water when subject to a water concentration difference in the fuel cell. The 

water concentration difference usually occurs between the higher water concentration at 

the cathode and lower water concentration at the anode. 

In an operating fuel cell (see Figure 1-10), water is produced from the oxygen 

reduction reaction at the cathode. Simultaneously, water within the proton exchange 

membrane moves with protons from the anode to the cathode due to electro-osmotic drag 

in a running fuel cell.[18] Electro-osmotic drag may dehydrate the anode side of the 

membrane while accumulating water at the cathode side. Excessive water at the cathode 

is likely to hinder the supply of oxygen to the reaction sites and deteriorate the 

performance of the fuel cell; this is the so-called “flooding phenomenon”. Within the proton 

exchange membrane, sufficiently high proton conductivity through the membrane is only 

achieved when it is well hydrated, since the transport of protons requires water. Ionic 

resistance of the proton exchange membrane increases when it dries out.[193,194] 

Dehydration within the proton exchange membrane not only increases ionic resistance,  

but it also generates heat in the membrane that further increases dehydration, reducing 

the performance of the fuel cell in a vicious cycle of self-destruction.[18] To avoid the 

flooding phenomenon at the cathode side and dehydration of the anode side, the proton 
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exchange membrane requires regaining a balanced water distribution. Thus, steady-state 

water permeance (𝑝) is a fundamental character of a proton exchange membrane. 

 

Figure 1-10. Schematic illustration of different water fluxes in an operating proton 

exchange membrane fuel cell. 

 Steady-state permeance (𝑝 ), mathematically, can be expressed as shown in 

Equation 1-8, in which ∆𝜇𝑤 is the chemical potential gradient of water and 𝐽𝑤 is the molar 

water flux.[29] Steady-state permeabilities reported for the Nafion® membranes vary but 

are in the same order of magnitude (~ 10-6 cm2 s-1).[29] Steady-state permeability of 

Nafion® membrane increases with water content. The rate of permeability-increase peaks 

at λ=3-5 and slows after further hydration.[106,136,176,190,195] This nonmonotonic rate 

of steady-state permeability with water content has been debated for decades. With low 

hydration (λ: 1-4), strong ionic interactions exist among initial water molecules and sulfonic 

groups, facilitating water permeation.[29] Sparsely connected water clusters start to form 

upon further incoming water and impede water transport when λ>5.[29] 

𝑝 = 𝐽𝑤 ∆𝜇𝑤⁄  Equation 1-8 
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Steady-state permeation measurements are executed by exposing the membrane to 

the controlled chemical potential gradient of water and monitoring molar water flux through 

the membrane.[136,163,166–172] Depending on the physical states of water, there are 

two typical steady-state water permeation experimental set-ups. These are as follows: 

1. Liquid-vapor permeation (LVP): One side of the membrane is in contact with liquid 

water while the other side is facing water vapor under regulated relative humidity.  

2. Liquid-liquid permeation (LLP): While both sides of the membrane are exposed 

to liquid water, external hydraulic pressure is applied to one side as the driving 

force.  

Detailed description of both LVP and LLP experimental set-up are provided in Chapter 2. 

1.4.2. Interfacial water transport and resistance 

The resistance to steady-state water permeation process (𝑅) is equal to the chemical 

potential difference of water across the membrane (∆𝜇𝑤) divided by the molar water flux 

(𝐽𝑤), as shown in Equation 1-9.[29,163,172] The resistance is the sum of the interfacial 

resistances at both sides of the membrane, and the bulk internal resistance proportional 

to the membrane thickness (see Equation 1-10 and Equation 1-11). Therefore, a linear 

plot of steady-state permeation resistance against the membrane thickness provides a 

slope which renders the internal resistance coefficient and the non-zero intercept at the y-

axis, if it exists, as the interfacial resistance. [29,163,172] 

𝑅 = ∆𝜇𝑤 𝐽𝑤⁄   [29,163,172] Equation 1-9 

𝑅 = 𝑅𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑖𝑎𝑙,1 + 𝑅𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝑅𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑖𝑎𝑙,2 Equation 1-10 

𝑅𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑟 × 𝐿 [29,196] Equation 1-11 

Where 𝑟 is the internal resistance coefficient, and 𝐿 is the membrane wet thickness. 

Previous studies revealed that the steady-state permeation can be divided into three 

separate steps: adsorption, internal water transport, and desorption, as shown in Figure 

1-11.[29,196] The vapor/membrane interfacial resistance is considerable for PFSA 

membranes due to the micelle-parallel morphology at the membrane’s surface, as 

discussed in section 1.3.3.[148,150] By contrast, the liquid/membrane interfacial 
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resistance is negligible given the high water activity.[82,163–165,172,197] The water 

vapor/membrane interfacial mass transport has been a popular subject of research. 

Vapor/membrane interfacial resistance decreases almost exponentially with increasing 

relative humidity.[157,168] This observation can be rationalized by invoking a humidity-

dependent surficial morphology which adopts a less hydrophobic configurations with more 

ionic channels under higher RH. The humidity-dependent morphology rearrangement has 

been confirmed with many techniques, including SAXS,[187] Raman spectroscopy,[198] 

conductive AFM,[157], and X-ray tomography.[199]  

 

Figure 1-11. Illustration of three steps involved in water transport within the 

membrane. ① Absorption from liquid water into the membrane. ② 

Internal water transport. ③ Desorption from the membrane into the 

gaseous water. Here “wet” denotes liquid water. “Dry” describes 

water vapor. 

1.4.3. Transient water diffusion 

In the dynamic environment of an operating fuel cell, the membrane’s ability to 

promptly adjust water content within itself is of paramount importance. Transient diffusion 

measures the rate of water diffusing into or out of the membrane under an RH bias. 

Different from the steady-state permeation, transient water diffusion is a more lengthy and 

complicated process, which involves the accommodation of water molecules, relaxation 

of the polymer backbone, and multi-level swelling.[18,29] Measurement of the transient 
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diffusion is accomplished with a dynamic vapor sorption apparatus, which monitors 

instantaneous changes in the mass of the membrane under a given RH interval and 

temperature with time. Transient diffusivity, 𝐷 , is thickness-dependent as shown in 

Equation 1-12, where 𝑘𝑠𝑜𝑟𝑝  is the effective rate constant of diffusion and 𝐿 is the wet 

thickness of the membrane.  

𝐷 = 𝑘𝑠𝑜𝑟𝑝𝐿2 [18,29] Equation 1-12 

The determination of the transient diffusivity or the effective rate constant of diffusion 

can be strenuous. There are multiple mathematical modeling studies published: 

1. Define the characteristic time constant (𝜏) to be the reciprocal of the effective rate 

constant of diffusion (𝜏 = 1 𝑘𝑠𝑜𝑟𝑝⁄ ) and to be the time when the mass gain of water 

reaches 63% (1-1/𝑒, 𝑒 is Euler’s number) of its total mass gain. This method 

renders value of 𝐷 relatively accurate within the same order of magnitude. [173] 

2. By solving Fick’s second law, the transient diffusivity can be determined in 

Equation 1-13, where 𝑀𝑡 represents the instantaneous mass of membrane at tth 

second, 𝑀0  the initial mass, 𝑀∞  the final mass after being equilibrated for an 

extended period, and 𝐿  the membrane thickness.[130,174] This equation has 

been widely used, though it failed to recognize that the water sorption process 

within the membrane is accompanied by the relaxation of the polymer backbone. 

3. The effective rate constant of diffusion was determined by plotting 𝑙𝑛 (
𝑀𝑡−𝑀0

𝑀∞−𝑀0
) 

versus 𝑡, as shown in Equation 1-14. [124] 

4. Weibull model incorporates a visco-elastic coefficient, A, to Equation 1-14 to 

emphasize the influence of the relaxation of the membrane’s backbone, as shown 

in Equation 1-15. [200] 

 𝐷 = (
𝜋𝐿2

16𝑡
) (

𝑀𝑡−𝑀0

𝑀∞−𝑀0
)

2
 [130,174] 

Equation 1-13 

(
𝑀𝑡−𝑀0

𝑀∞−𝑀0
) ≅ 𝑒𝑥𝑝 [−(𝑘𝑠𝑜𝑟𝑝𝑡)] [124] Equation 1-14 
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(
𝑀𝑡−𝑀0

𝑀∞−𝑀0
) ≅ 𝑒𝑥𝑝 [−(𝑘𝑠𝑜𝑟𝑝𝑡)

𝐴
] [200] Equation 1-15 

The transient diffusivity (𝐷) of Nafion® decreases as relative humidity increases 

with a lowest value of ~10-9 cm2 s-1 at saturation.[170,173–175,190] This observation of 

lower transient diffusivity under higher RH is not unexpected, and could be attributed to 

the following facts: 

1. Under higher RH, a slower secondary mechanism pertaining to backbone 

relaxation becomes dominant. This speculation has been verified by 

findings of slower diffusivity in polymers with stiffer backbones.[173] 

2. Under lower RH (0-20%), Nafion® membranes exhibit a faster, non-Fickian 

diffusion behavior.[190,192] 

3. The chemical potential gradient is smaller at a higher RH regime despite 

the fixed RH interval.[29] 

Transient diffusivity is commonly examined for the sorption process (increasing RH). 

However, transient diffusivity of the desorption process (decreasing RH) could also be 

determined and was found to be about one order of magnitude 

faster.[173,176,177,179,186,192,201,202] The difference in transient diffusivity can be 

attributed to interfacial effects.[176,200,203,204] From the thermodynamic perspective, 

the heat of condensation could also explain a lower transient diffusivity in the sorption 

process.[177] During the sorption process, the heat released from the condensation of 

water vapor results in a temperature increase at the membrane surface and subsequently  

lower water activity, both of which diminish the transient diffusivity in the sorption 

process.[177] 

1.5. Water sorption and transport through catalyst layers 

The existence of water is not only critical to the proton exchange membrane, but also 

the catalyst layer. Adequate water content hydrates the catalyst layer and promotes proton 

conductance. Alternatively, too much water causes flooding and stalls oxygen transport to 

the catalytic sites at the cathode. The slow oxygen transport is often responsible for 

decreasing cell voltage and power density of the fuel cell in the high current density 
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regime.[18,26,28,51,201] A stable and more efficient performance of the fuel cell requires 

better knowledge of both water sorption and transport through the catalyst layer, which is 

still scarce. The catalyst layer is composed of a nanometer-thick ionomer film coated on 

the agglomerates of Pt/C particles.[51,83,201] Therefore, ultrathin PFSA film has been 

sought after by researchers to investigate the interfacial effect and behavior of ionomer 

films in the catalyst layer. Kusoglu and Weber reviewed the ultrathin Nafion® film in 

detail.[29] Holdcroft also reviewed the catalyst layer from an ionomer perspective.[51] A 

large selection of factors could alter the structure and properties of the ultrathin Nafion® 

films, including variance in the solvent, substrate, ionomer concentration, post-treatment, 

and thickness.[29] There are contradicting reports on water sorption and transport through 

the catalyst layer, and no definite explanation for this contradiction’s origin. In general, 

ultrathin films of Nafion Ⓡ  were reported to possess reduced water content and 

diffusivity.[29,51] When the thickness of the film decreases to the order of the catalyst 

layer (~20 nm), the cutback in water sorption and transport are exacerbated. [29,51] An 

increase of water content within the nanometer scale film of NafionⓇ was observed by 

Hickner et al.[205] They attributed this finding to the hypothetically lamellar morphology at 

the film surface discovered by Majkrzak et al.[206] The use of different substrates, upon 

which the ultrathin film is coated, was also recognized to increase the water content of the 

film in Hickner’s study. [51] The variance in the carbon support of the catalyst layer could 

cause variations in water uptake, as reported by Holdcroft et al.[207] A larger fraction of 

mesopores (< 20nm) in the catalyst layer leads to a more substantial capillary effect and 

subsequently, a higher water uptake.[207] Electrospray coating, a novel technology for 

catalyst layer fabrication, was reported to increase the water content in the catalyst layer 

even when a superhydrophobic surface (contact angle >150°) was used.[208] 

Due to the porous nature of the catalyst layer, the diffusivity of water vapor is predicted 

to be much higher in the catalyst layer than in the bulk membrane by computational studies. 

[174,209–213] However, only a few experimental examinations exist on water permeation 

through the membrane electrode assembly. An experimental permeation study reported 

no significant influence from the traditional catalyst layer, made from Nafion® ionomer, 

upon the liquid-vapor permeation through the Nafion® membrane.[82] This observation is 

unexpected, considering the Nafion® membrane/vapor interface limits the rate of water 

transport through the membrane.[82,165] 
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1.6. Thesis overview 

The dominance of Nafion®, both as the proton exchange membrane and ionomer in 

the catalyst layer, has remained unchanged for the past five decades.[29,54,56] Many 

studies during this period have built a relatively mature and complete profile of the 

structure-property relationship for the Nafion® membranes. By contrast, research on water 

sorption/transport behavior of emerging hydrocarbon-based polymers is still in its infancy. 

Even scarcer is the effort to correlate water transport through those polymers to their 

chemical/structural features. Insights into this transport-structure relationship of emerging 

HC-based PEMs will shed light on the future synthesis of more desirable materials.  

The objective of this thesis is to investigate water sorption and transport behaviors of 

novel hydrocarbon-based PEMs and to identify the structural features that would affect 

these behaviors. In the work leading up to this thesis, a comprehensive water sorption and 

transport research scheme was executed by the author (Figure 1-12). This included 

steady-state permeation, vapor sorption isotherm, and transient diffusion. Mathematical 

models were applied to interpret the water sorption and transport behavior and gain 

information such as the membrane/vapor interfacial resistance, the transient diffusivity, 

and the surficial site capacity of membranes. Surface characterizations, such as contact 

angle measurement, conductive AFM, and in situ fuel cell analyses, were also carried out 

to explore the physical properties of membranes. Collectively, transport measurements, 

numerical models, and characterizations were integrated to generate an insightful 

structure-transport correlation.  

The membranes studied in this thesis are the second generation of the sulfonated 

phenylated poly(phenylene)s (Figure 1-6), with precise structure modifications as seen in 

Figure 1-13 and Figure 1-14. Figure 1-13 is the sulfonated phenylated poly(phenylene) 

biphenyl (SPPB), which exhibits exceptional chemical stability and electrochemical 

performance both as the membrane[63] and the ionomer[214] with the precise insertion 

of a biphenyl spacer. Figure 1-14 displays a series of sulfonated phenylated 

poly(phenylene)-based polymers containing an increasing number of strategically placed 

N-atoms to reduce acid concentration and swelling. These two modified sulfonated 

phenylated poly(phenylene)s, with precisely controlled structures, provide a precious 

opportunity for an extensive water sorption and transport research on novel hydrocarbon-

based PEMs. 
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Figure 1-12. Research scheme for investigating water transport and structure-

property relationships 

Chapter 2 describes the experimental set-up, material preparation, and data 

processing. 

Chapter 3 reports water sorption isotherms and steady-state permeation study of the 

sulfonated phenylated poly(phenylene) biphenyl (Figure 1-13), and compares it to a HC-

based reference membrane, sulfonated poly(arylene ether) (SPAE), and a commercial 

reference membrane, N211. Sorption isotherms are investigated using a DVS analyzer, 

then fitted and interpreted using the Park model, which provides property information such 

as surficial hydrophilicity and relative acid content of the membranes. Vapor sorption 

isotherm profiles and membrane-vapor interfacial resistance are related to membranes’ 

chemical/structural feature and confirmed with characterizations from conductive AFM 

and contact angle measurement. The motive of this chapter is to relate the difference in 

chemical structure of emerging HC-PEMs to their water sorption and transport features. 

Thus, the findings in this study can aid future structural design and synthesis of 

hydrocarbon-based polymers. 
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Figure 1-13. Chemical structure of the sulfonated phenylated poly(phenylene) 

biphenyl (SPPB). Highlighted in blue is the modified moiety as 

opposed to the original structure in Figure 1-6. 

Chapter 4 then describes the water sorption and transport study on a series of 

sulfonated phenylated poly(phenylene)-based polymers containing identical structures but 

with an increasing number of strategically placed N-atoms, in the form of pyridyl units 

(Figure 1-14). Interactions between the basic pyridyl groups and the sulfonic acid groups 

with the polymer reduce the effective acid content, decrease dissociation of protons, and 

subsequently reduce water swelling at the cost of hindered mass transport. The motive 

behind this study is to examine the influence of regulated acid-base interactions within the 

polymer on water sorption, steady-state water permeability, transient diffusivity, and 

proton conductivity. Therefore, the ideal number and position of the incorporated pyridyl 

units in the SPPP would hopefully be assigned to restrict water swelling of the PEM without 

considerable loss of the proton conductivity. 

 

Figure 1-14. General chemical structure of the sulfonated phenylated 

poly(phenylene) containing precisely placed N-atoms (1-4). 

Highlighted in blue is the modified moiety as opposed to the 

original structure in Figure 1-6. 

Chapter 5 describes studies of water vapor uptake, transient diffusion, and steady-

state permeation through catalyst layers (CL) containing sulfonated phenylated 
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poly(phenylene) biphenyl (Figure 1-13) with different ionomer contents and compares 

them to the traditional CLs containing Nafion® ionomer. The motive is to understand how 

hydrocarbon-based ionomers affect water uptake and mass transport through the catalyst 

layer. In situ fuel cell analyses are performed on membrane electrode assemblies with 

these novel CLs. The polarization curves are approximated with mathematical models, 

and parameters such as the electrochemical surface area (ECSA) and internal protic 

resistance are extracted. Mass transport performance of these catalyst layers are also 

related to surficial characterizations such as surface roughness and contact angle 

measurements.   

 Chapter 6 summarizes and evaluates each of the three projects individually, and 

this thesis work collectively. It also proposes three possible directions for future work 

related to further investigating the structure-transport correlation of hydrocarbon-based 

proton exchange membranes, simplifying the units of steady-state permeability for broader 

applications and modeling purposes, and understanding interfacial transport phenomenon 

by studying ultrathin HC-based membranes.  
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Chapter 2. Materials, techniques, and methods 

2.1. Overview 

This chapter describes material preparation, experimental set-ups, water sorption and 

transport measurements, mathematical processing, and operating parameters applied in 

the research. Variations from the description in this chapter will be specified in the 

experimental section of the latter chapters. 

2.2. Material and preparation 

2.2.1. General materials  

Milli-pore water (18 MΩ cm) was attained from Millipore Gradient Milli-Q. 

Compressed nitrogen gas (purity >90%) was from Praxair Inc. Commercial Nafion® 

D520 dispersion of 1000 g mol-1 equivalent weight (EW) (Ion Power Inc., lot SGA-12-

02CS) was used as-received. Commercial carbon supported platinum particles 

(TEC10E50E, lot 109–0111, 46.4% Pt) were purchased from Tanaka Kikinzoku Kogyo 

(TKK).  

2.2.2. Membranes 

Commercial Nafion® membranes of 1100 g mol-1 equivalent weight with dry thickness 

of 25 μm (N211), 54 μm (N212), 131 μm (N115) and 181 μm (N117) were purchased from 

Sigma-Aldrich and used as-received.  

Sulfonated phenylated poly(phenylene) biphenyl (SPPB) membranes and ionomers 

were obtained from procedures described in the literature,[63] and used as received from 

Dr. Michael Adamski of Simon Fraser University. SPPB membranes of 3.2 mmol g-1 ion-

exchange capacity were provided with dry thickness of 22, 35, 49, and 60 μm. 

Thicknesses of membranes were measured using a micrometer (Mitutoyo Quickmike 

Series MDC-Lite, ± 0.1 μm).  

Sulfonated poly(arylene ether) (SPAE) membranes and ionomers were received from 

Professor Wen -Yao Huang of National Sun Yat-Sen University (Taiwan) and used as 
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received. Sulfonated poly(arylene ether) membranes of 3.2 mmol g-1 ion-exchange 

capacity were provided with dry thickness of 22, 24, 36, and 50 μm. Thicknesses of 

membranes were measured using a micrometer (Mitutoyo Quickmike Series MDC-Lite, ± 

0.1 μm). 

2.2.3. Catalyst ink preparation 

Catalyst inks (1% solids by weight in 1:3 v/v water/methanol) were prepared using 

carbon supported platinum particles and a dispersion of i) Nafion® (EW 1000, DuPont) and 

ii) SPPB ionomer with 5% and 3% w/v ionomer in MeOH, respectively. A third of the 

required water was added initially to the Pt/C solid, and the slurry was sonicated in a 

ultrasonic sonicator (Bransonic B1510R-MTH, 2  kHz, 70  W output power) for 10 min to 

ensure the Pt/C particles were wetted. The slurry was stirred on a stir plate in a fume hood, 

and a third of the required methanol was added dropwise and stirred for 15 min. To the 

resulting dispersion was then added the ionomer solution dropwise till the ionomer content 

in the ink reached 10, 15, 20, 25, and 30 wt%, and the resulting ink was stirred for 10 min. 

The remaining quantity of methanol and water were added dropwise. The resulting 

catalyst ink solution was sonicated for 2 hours. More detailed composition information of 

each catalyst ink is provided in Table C 1 and Table C 2, in Appendix C. 

2.2.4. Preparation of samples for conductive atomic force microscopy  

Carbon-supported Pt (46.4 wt % Pt) was dispersed into a methanol/water (50:50 

vol%) solution, followed by 1 h of sonication. Then, 5 wt % of: a) SPAE, or b) SPPB 

ionomer solution was added dropwise to provide 20 wt % ionomer content of solids in the 

mixture (catalyst ink). After 1 h of sonication, the catalyst ink was deposited onto one side 

of the membrane a) SPAE, or b) SPPB by the automated spray coater (EFD, Nordson Co.) 

with catalyst loading set as 0.4 mg cm-2 (flow rate 0.25 ml/min, idle power 2 Watts, run 

power 0.5 Watt). The one-side-coated membranes were later stored in Milli-pore water 

with 1M H2SO4 for one week before test. Membranes’ coated sides were then affixed to 

the carbon sheets with carbon tape, both of which had been soaked in catalyst ink for at 

least 24 h. 
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2.3. Liquid water sorption 

Membranes were stored in Milli-pore water at 30 °C for 2 days. After being removed 

from water and surface dried with lint-free laboratory wipes, membranes were weighted 

right after to determine the wet weight (𝑊𝑤𝑒𝑡) and wet volume (𝑉𝑤𝑒𝑡). Then membranes 

were dehydrated in vacuum at 80 °C until the weight was constant. Once sample had 

cooled to room temperature under vacuum, dry weight ( 𝑊𝑑𝑟𝑦 ) was immediately 

determined after removal from the vacuum chamber. There was a minimum of 3 replicates 

for each measurement. The water uptake, water percentage, hydration number, and water 

volume fraction were calculated using Equation 2-1 to Equation 2-4, respectively. 𝜌𝑤𝑎𝑡𝑒𝑟 

and 𝐼𝐸𝐶[𝑚𝑚𝑜𝑙𝑔−1] are the density of water and ion exchange capacity of the membrane, 

respectively. 

𝐿𝑖𝑞𝑢𝑖𝑑 𝑤𝑎𝑡𝑒𝑟 𝑢𝑝𝑡𝑎𝑘𝑒, 𝑊𝑈 =  
𝑊𝑤𝑒𝑡−𝑊𝑑𝑟𝑦

𝑊𝑑𝑟𝑦
 × 100% [163] Equation 2-1 

𝐿𝑖𝑞𝑢𝑖𝑑 𝑤𝑎𝑡𝑒𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒, 𝑊𝑡. % = 
𝑊𝑤𝑒𝑡−𝑊𝑑𝑟𝑦

𝑊𝑤𝑒𝑡
 × 100% [163] Equation 2-2 

Hydration number,  𝜆 = 
𝑊𝑎𝑡𝑒𝑟 𝑢𝑝𝑡𝑎𝑘𝑒[%]×10

18[𝑔 𝑚𝑜𝑙−1]×𝐼𝐸𝐶[𝑚𝑚𝑜𝑙 𝑔−1]
 [163] Equation 2-3 

𝑊𝑎𝑡𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛,  𝑋𝑉 =

𝑊𝑤𝑒𝑡−𝑊𝑑𝑟𝑦

𝜌𝑤𝑎𝑡𝑒𝑟

𝑉𝑤𝑒𝑡
 [163] Equation 2-4 

2.4. Steady-state permeation 

2.4.1. Liquid-vapour permeation 

Circular membranes (diameter: 6 cm) were sandwiched between 2 polyethylene (PE) 

laminating films. A round center (diameter: 4 cm) of the membrane was exposed. The 

sandwiched assembly was placed floating on the water in the stainless-steel container, as 

seen in the Figure 2-1. The container was wrapped around by an external heating band 

(Watlow electric Mfg. Co, 100W) to regulate temperature. Then, the container was placed 

in an environmental test chamber (SH-241, ESPEC North America Inc.) with temperature 

set at 70 °C and RH at certain values (30%, 50%, 70%, or 90%). Mass difference between 

the initial and final weight of the apparatus (container, water, and the membrane assembly) 
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after a certain period (3 to 18 hours) was determined as the water flux through the 

membrane. The time interval between the determination of initial and finial weight was 

chosen so that the weight difference was larger than 100 g to reduce errors. There were 

at least 3 replicates conducted for each sample. [82,126,163–165,172,197] 

 

Figure 2-1. Schematic illustration of the custom-made set-up for liquid-vapor 

permeation measurement.[126]  

2.4.2. Liquid-liquid permeation 

Circular membranes (diameter: 2.5 cm) were secured between an O-ring and screen 

support in a flow cell. The flow cell was then connected to a syringe pump and flowmeter 

(see Figure 2-2). The water flux (flow rate) through the membrane was determined by the 

flowmeter (20 µL min-1, µ-FLOW, Bronkhorst HI-TEC), while the applied hydraulic 

pressure (differential pressure) was recorded by the pressure transducer (PX302-100GV, 

Omega Engineering Inc.). There were at least 3 replicates conducted for each 

sample.[82,126,163–165,172,197] 
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Figure 2-2. Schematic illustration of the custom-made set-up for liquid-liquid 

permeation measurement.[126] 

2.4.3. Permeability and resistance 

Chemical potential determination 

At temperature (𝑥), the chemical potentials of water in the liquid and vaporous state 

are defined in Equation 2-5 and Equation 2-6, respectively. 𝜇°𝑙𝑖𝑞_𝑆𝑇𝐷 and 𝜇°𝑣𝑎𝑝_𝑆𝑇𝐷 are the 

standard chemical potentials for liquid water and vapor at 298 K, 1 atm: -237.18 kJ mol-1 

and -228.59 kJ mol-1, respectively.[163] 𝛾𝑙𝑖𝑞 and 𝛾𝑣𝑎𝑝 are temperature coefficients for the 

chemical potential of liquid water and vapor: - 69.9 J mol-1 K-1 and -188.7 J mol-1 K-1, 

respectively.[163] For example, at 70 °C or 343 K, 𝜇𝑙𝑖𝑞_343𝐾 and 𝜇𝑣𝑎𝑝_343𝐾 are -240.33 and 

-237.08 kJ mol-1, respectively.[163] 

𝜇𝑙𝑖𝑞_𝑥𝐾  =  𝜇°𝑙𝑖𝑞_𝑆𝑇𝐷 + 𝛾𝑙𝑖𝑞(𝑇(𝑥) −  𝑇𝑆𝑇𝐷 ) [163] Equation 2-5 

𝜇𝑣𝑎𝑝_𝑥𝐾 =  𝜇°𝑣𝑎𝑝_𝑆𝑇𝐷 + 𝛾𝑣𝑎𝑝(𝑇(𝑥) −  𝑇𝑆𝑇𝐷) [163] Equation 2-6 

At 343 K and relative humidity (𝑦 % RH), the chemical potential of water vapour can 

be determined by Equation 2-7 as shown below. 𝑅 , 𝑇 , 𝑝𝑠𝑎𝑡−𝑣𝑎𝑝  and 𝑝𝑡𝑜𝑡  describe the 

universal gas constant, temperature in Kelvin, saturated water vapor pressure at assigned 

temperature and the total pressure of the ambient environment, respectively.[163] 

𝜇𝑣𝑎𝑝_𝑅𝐻(𝑦%) = 𝜇𝑣𝑎𝑝_343𝐾 + 𝑅𝑇𝑙𝑛 [
(

𝑦

100
)𝑝𝑠𝑎𝑡−𝑣𝑎𝑝

𝑝𝑡𝑜𝑡
]  [163] Equation 2-7 
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At 343 K and under external hydraulic pressure (𝑧 atm), the chemical potential of liquid 

water is defined as seen in Equation 2-8. Here, 𝛿  stands for pressure coefficient of 

chemical potential, 1.990 J mol-1 atm-1.[163] 

𝜇𝑙𝑖𝑞_𝑝(𝑧) = 𝜇𝑙𝑖𝑞_343𝐾 +  𝛿[𝑝(𝑧) − 𝑝𝑆𝑇𝐷]  [163] Equation 2-8 

Therefore, the chemical potential difference between liquid water and water vapour at 

343 K and 𝑦 % RH in liquid-vapor permeation is shown as in Equation 2-9.[163] 

∆𝜇𝐿𝑉𝑃_𝑅𝐻(𝑦)=𝜇𝑙𝑖𝑞_343𝐾 − 𝜇𝑣𝑎𝑝_𝑅𝐻(𝑦) [163] Equation 2-9 

Also, the chemical potential difference in liquid-liquid permeation is shown at 343 K 

and 𝑧 atm is calculated as in Equation 2-10.[163] 

∆𝜇𝐿𝐿𝑃_𝑝(𝑧)=𝜇𝑙𝑖𝑞_𝑝(𝑧) − 𝜇𝑙𝑖𝑞_𝑥𝐾 [163] Equation 2-10 

Water permeability (𝑷) 

Water permeability is defined as in Equation 2-11, the multiplication between the 

water permeance (𝑝, the slope of water flux against chemical potential gradient) and wet 

thickness of the membrane (𝐿).[163] 

𝑃 = 𝑝 × 𝐿 [163] Equation 2-11 

Permeation resistance (𝑹) 

From Equation 2-12, permeation resistance, the molar-normalized energy need for 

water flux though the membrane (𝐽, mol m-2 s-1), is calculated.[163] ∆𝜇 is the chemical 

potential difference between the two sides of the membrane.  

𝑅 =
∆𝜇

𝐽
  [163] Equation 2-12 

2.5. Dynamic vapour sorption 

A dynamic vapour sorption analyzer (DVS-Adventure, Surface Measurement 

Systems, U.K.) was employed in this study, as shown in Figure 2-3. Basically, it is a 

precise microbalance system (UltrabalanceTM, ± 0.1 μg), one sample and one reference 
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balance, in a temperature and RH regulated chamber. The relative humidity was regulated 

by purging a controlled mixture of water saturated and dry nitrogen gases (> 90%, Praxair, 

Inc.) into the chamber. The computer simultaneously monitors the changes in the mass of 

sample (from the microbalance) in response to the RH changes (from the humidity probe) 

against time. All membranes were equilibrated in the Milli-pore water at room temperature 

before measurement. Water vapor uptake measurements started with dehydrating the 

samples in the DVS analyzer under 0% RH and 80 °C for overnight. Then in the operation, 

relative humidity was firstly increased then decreased stepwise (10% RH each step) as 

programed. Sufficient time (> 100 min) was provided for samples to equilibrate in each 

RH stage before further hydration/dehydration. In the time-dependent mode, the 

instantaneous mass of the membrane and relative humidity were recorded every second. 

 

Figure 2-3. Schematic illustration of a dynamic vapor sorption analyzer. 

2.6. Ion exchange capacity  

Approximately 0.1 g of membrane was placed in 1 M HCl solution for more than 12 h. 

Membrane was then transferred and stored in Milli-pore water for 30 mins. The Milli-pore 

water was decanted and refilled every 30 mins, 3 times in total. After, the acidified 

membrane was equilibrated in 50.00 mL of 2.0 M NaCl solution for 2 h with occasional 

agitation. The solution was titrated with the standardized NaOH solution (0.025 M) to pH 

= 7.0. Then, the membrane was transferred into 0.1 M HCl solution for 1 h and rinsed with 
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Milli-pore water. The membrane was dried at 80 °C under vacuum overnight to determine 

its dry weight. Ion exchange capacity (IEC) was calculated as represented in Equation 

2-13. V(NaOH,mL) and C(NaOH,M) are the volume and molarity of titrant used, respectively, and 

Wdry is the mass of a fully dried membrane sample. 

IEC(mmol S𝑂3𝐻/𝑔) =  
𝑉(𝑁𝑎𝑂𝐻,𝑚𝑙)×𝐶(𝑁𝑎𝑂𝐻,𝑀)

𝑊𝑑𝑟𝑦
  [163] Equation 2-13 

2.7. Proton conductivity and mobility 

Membranes of small strips (1.0 × 0.5 cm) were placed onto a conductivity cell in a 

two-probe configuration as shown in Figure 2-4. The cell was placed inside the 

environmental chamber (Espec model SH-241) and equilibrated to assigned temperature 

(30 or 80 °C) and relative humidities. Membrane resistance (𝑅) was determined by the 

impedance analyzer (Solartron 1260 frequency response analyzer) with AC frequencies 

set 10 MHz to 100 Hz. With Equation 2-14, Ionic conductivity () was determined. As 

shown in both Figure 2-4 and Equation 2-14, 𝐴 is the cross-sectional area of membrane 

for the resistance measurement and 𝐿 is the distance between the two electrodes. 

 =  
𝐿

𝑅 × 𝐴
 [194] Equation 2-14 

The effective proton mobility, 𝜇′, was calculated from Equation 2-15, where F is the 

Faraday’s constant, and [−𝑆𝑂3𝐻] is the acid concentration, which was determined as in 

Equation 2-16.[194]  

𝜇′ =  
𝜎

𝐹∙[−𝑆𝑂3𝐻]
 [194] Equation 2-15 

[−𝑆𝑂3𝐻] =  
𝑛( −𝑆𝑂3𝐻)

𝑉𝑤𝑒𝑡
 [194] Equation 2-16 
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Figure 2-4.  Schematic illustration of proton conductivity cell with the membrane 

dimensions. 

2.8. Contact angle measurement 

Before testing membranes were dried in vacuum and equilibrated in a desiccator. The 

OCA 15 Contact Angle Goniometer (FDS future digital scientific co.) was employed at 

room temperature (22 °C) in a dust-free, class 100 clean room with RH regulated at 40%. 

In the measurement, a sessile drop (7 µL) of Milli-pore water was dispensed on the 

membrane by an electronically controlled syringe. The integrated camera focus was 

adjusted to obtain a sharp drop image. The base line of the membrane substrate and 

outline of the droplet were manually determined by eye. Contact angle was then analyzed 

by the OCA 15 Surface Analysis software. There were 10 replicates for each sample for 

repeatability.  

2.9. Conductive atomic force microscopy 

The surficial conductivity examination was executed with the atomic force microscope 

(Dimension Icon, Bruker Corp.) in the “PeakForce-TUNATM mode”. The examination was 

carried out in an ambient environment (22 °C and 40 % to 50 % RH). Figure 2-5 is an 

operating conductive AFM with a Pt/Ir coated silicon tip as a nanoelectrode probe to detect 

regional ionic current on the surface of the membrane. During examination, direct current 

voltage bias is introduced to the sample between the sample holder and the conductive 

tip. Polarization is produced as a result. Subsequently, H2 and O2 evolution reactions occur 

at the AFM tip and sample holder, respectively. Proton produced at the sample holder 
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then transport through the ionic channels, if open, across membrane to form hydrogen at 

the other side. Consequently, the ionic current is sensed.[215] 

Surficial roughness measurements were conducted by atomic force microscope (AFM) 

(Dimension Icon, Bruker Corp.) with tapping mode in area 2 by 2 µm. The examination 

was carried out in an ambient environment (22 °C and 40 % to 50 % RH). 

 

Figure 2-5. Schematic diagram of the conductive AFM.  

2.10. Mechanical stress test 

A standard ASTM D638-4 cutter was employed to cut the polymeric 

membranes into barbell-shape samples. Under ambient conditions (23 oC, 40% 

RH), mechanical stress tests were conducted using an Instron 3344 Series pull 

testing system (crosshead speed at 5 mm min-1). Five membrane samples for each 

polymer were evaluated. Errors are reported as the standard deviation. 
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3.1. Introduction 

In the hydrogen economy era, the future of proton exchange membrane fuel cell is 

promising[11]; and the research on new materials as the proton exchange membrane has 

gained particular attention.[18,29,68] In general, hydrocarbon-based proton exchange 

membranes are less gas-permeable, usually more proton conductive in the hydrated state, 

more environmental friendly, and more versatile to synthesize with multiple developed 

synthetic routes than their perfluorosulfonic acid counterparts.[29,53,68] There is a large 

class of hydrocarbon-based PEMs, which incorporates the sulfonated aromatic groups 

onto the backbone.[21,53,214] Typical statistical copolymers include sulfonated 

poly(arylene ether ketone)s,[65,66] sulfonated poly(aryl ether sulfone)s,[58,59] sulfonated 

poly(phenylene)s,[61–64] and sulfonated poly(benzimidazole)s.[31–34]  

Enormous interest has been focused on the synthesis and increasing proton 

conductance of new hydrocarbon-based PEMs. However, there are few water sorption 

and transport studies on hydrocarbon-based polymers. For instance, there are little 

reported on the water vapor sorption isotherm characters of hydrocarbon-based 

PEMs.[125,127,218] Several publications has focused on the hydrocarbon-based anion 

exchange membranes.[124,128,173,219,220] In the aforementioned studies, a 

phenomenological equation in the Park model, was employed to approximate the 

sigmoidal isotherm curve of water sorption against water activity.[124,127,128,173,219–

221] The Park model, with its distinctive physiochemical coefficients, assists to reveal and 

compare the chemical and structural characters among the hydrocarbon-based PEMs. As 

for the experimental steady-state water permeation study, there is only one that is focused 

on the hydrocarbon-based PEM. In this research, the sulfonated poly(ether ether ketone) 

(SPEEK) is found to possess both a higher internal and interfacial resistance than that of 

the Nafion® membrane.[197] The authors attributed this finding to the less organized ionic 

channels and possibly poorer surficial hydrophilic domain connectivity of the SPEEK 

membrane.[197] Given the limited understanding of water sorption and transport through 

the hydrocarbon-based PEMs, a dedicated study concentrating on vapor sorption 

isotherms and steady-state water permeation is much needed for emerging HC-based 

membranes. 

Recently, a highly stable, proton-conductive hydrocarbon-based membrane - 

sulfonated phenylated poly(phenylene) biphenyl (SPPB) - was reported (Figure 3-1).[63] 



40 

This SPPB polymer (IEC: 3.2 mmol g-1) is the structure-modified second-generation of the 

sulfonated phenylated poly(phenylene) previously from the Holdcroft group,[64] with 

enhanced chemical stability and reduced water swelling by the precise incorporation of 

the biphenyl group (Figure 3-1). SPPB shows proton conductivity of 172 mS cm-1 at 95% 

RH and 80 °C, which is higher than N211 (113 mS cm-1) in the identical environment.[63] 

Regardless of the SPPB’s excellent performance in the in situ fuel cell test,[63] very little 

is known about its water sorption and transport characters. Hence, SPPB allows an 

opportunity for an extensive steady-state permeation and water vapor sorption isotherm 

study on novel hydrocarbon-based PEMs. For comparison, the sulfonated poly(arylene 

ether) (SPAE) with the identical IEC (3.2 mmol g-1) is examined as the hydrocarbon-based 

reference (Figure 3-1), and the perfluorosulfonic acid membrane N211 examined as a 

commercial reference. SPPB, possessing a completely aromatic backbone, probably is 

more hydrophobic than SPAE, even though both membranes’ backbones are densely 

functionalized with sulfonic acid groups.[57]  

In this chapter, water vapor sorption isotherms of SPAE and SPPB were obtained by 

the DVS analyzer and interpreted using the Park model, and compared to Nafion® 

membranes. Moreover, steady-state water permeation measurements were executed and 

membrane/vapor interfacial resistances for both HC-based membranes were determined. 

The water sorption and transport behavior were later compared and correlated with other 

characterization techniques, contact angle measurement and conductive atomic force 

microscope (AFM). The underlying motivation behind this research is to relate the 

difference in chemical structure of emerging HC-PEMs to their water sorption and 

transport features. Therefore, the findings in this study is presumably beneficial to future 

structure design and synthesis of hydrocarbon-based polymers for uses in electrochemical 

devices. 
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Figure 3-1. Chemical structures of sulfonated poly(arylene ether) (SPAE) and 

sulfonated phenylated poly(phenylene) biphenyl (SPPB). 

3.2. Experimental 

3.2.1. Materials 

Detailed information on the deionized water (Milliipore water), commercial Nafion® 

membranes, SPAE membranes, and SPPB membranes are given in section 2.2, chapter 

2.  

3.2.2. Experimental techniques 

Sorption isotherm, liquid-vapour permeation, liquid-liquid permeation, contact angle 

measurement, and conductive AFM are described in detail in chapter 2. Sorption isotherm, 

LVP, and LLP measurement were run at 70 °C. Also, detailed instruction on permeability, 

and resistance determination are provided in chapter 2. 
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3.3. Results and discussion 

3.3.1. Liquid water sorption 

Listed in Table 3-1 are liquid water sorption data for membranes immersed in liquid 

water at 70 °C. For the N211 membrane, the hydration number (19 ± 1) and liquid water 

uptake (31 ± 3) % in this study are consistent with previously reported values.[163–165] 

The liquid water contents in both hydrocarbon membranes SPAE and SPPB are higher 

than that of N211. For instance, water uptake in SPAE and SPPB is approximately 5 and 

6 times greater than N211, respectively. This is not surprising, as both SPAE and SPPB 

membranes possess an obviously higher IEC (approx. 3.5 times greater) than Nafion 211.  

Due to the high IEC of the HC-based membranes, the acid-content normalized hydration 

number, λ, of SPAE (27b± 1) and SPPB (31 ± 1) are just 1.5 times greater than N211 (19 

± 1). 

Table 3-1. Liquid water uptake, hydration number, and volume fraction of 

membranes at 70 °C 

Membrane IECa 

(mmol g-1) 

Lb 

(μm) 

ρc 

(g ml-1) 

Water Uptake 

(%) 

λd XV
e 

SPAE 3.2 ± 0.2 34 1.28 157 ± 5 27 ± 1 0.67 ± 0.03 

SPPB 3.2 ± 0.1 33 1.29 180 ± 5 31 ± 1 0.70 ± 0.03 

N211 0.91 ± 0.02 33 1.25 31 ± 3 19 ± 1 0.28 ±0.03 

a ion-exchange capacity as determined in section 2.3. 

b wet thickness of membranes, measured after being immersed in liquid water at 70 °C. 

c dry membrane density. 

d hydration number of membranes after being immersed in liquid water at 70 °C. 

e volume fraction of water of membranes after being immersed in liquid water at 70 °C. 
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3.3.2. Mechanical properties 

Table 3-2 reports mechanical properties of the membranes SPPB, SPAE, and 

N211 in an ambient environment (23 oC, 40% RH). Among the three, membrane N211 

possesses the largest elongation at break (148 %), representing N211’s most 

ductile polymer backbone bundles under stress test. Membrane SPPB otherwise 

shows the least elongation at break (17.5 %) possibly due to its wholly 

polyaromatic structure making the polymer backbone least ductile.  

Table 3-2. Mechanical properties of membranes 

Mechanical properties SPPBa SPAEb N211a 

Tensile strength (MPa) 59.6 ± 1.4 41.2 ± 1.0 17.3 ± 0.4 

Elongation at break (%) 17.5 ± 1.3 57 ± 2 148 ± 4 

a Values are reported in reference [63]. 

b Mechanical stress tests were conducted by Dr. Hsu-Feng Lee of National Sun Yat-Sen 

University, Taiwan. 

3.3.3. Vapour sorption isotherm and Park model approximation 

At 70 °C , changes in mass of membranes under different RH were monitored with 

DVS and are graphed as water uptake and hydration number against RH in Figure 3-2 

and Figure 3-3, respectively. As seen in Figure 3-2, throughout the testing RH range (0-

70 %), water uptake of membrane SPPB was the highest, while that of N211 was the 

lowest. This phenomenon is consistent with the order of liquid water sorption of the 

membranes at 70 °C, SPPB > SPAE > N211, as shown in Table 3-1.  
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Figure 3-2. Sorption isotherm of sulfonated phenylated polyphenylene biphenyl 

(SPPB), sulfonated poly(arylene ether) (SPAE), and Nafion (N211) at 

70 °C with y-axis expressed as water uptake (%). 

The hydration number (λ), describing the average number of water molecules around 

each sulfonic group, is more extensively used than the mass-based parameters like water 

uptake to avoid limitations of the latter.[124,222] Figure 3-3 shows λ as a function of 

relative humidity for each polymer examined. Given the observation of typical sigmoidal 

isotherm sorption pattern for each membrane, the Park model was employed. 

Approximation values (± limits  of 95% confidence) were determined by least-square-

fitting analysis, as shown in Table 3-3. The homoscedasticity observed in the residual 

distribution in Appendix A and the relatively small error in Table 3-3 confirm the precision 

in the Park model approximation. Parameter sensitivity analysis was conducted on the 

Park model regression for membrane SPAE (see Table A 1 and Figure A 1). The least 

sum of squared residuals (SSR) is sensitive to the variance (±10% and 20%) in aL, KL, n, 

and KA from the approximated values as listed in Table 3-3.  

In Figure 3-3, Langmuir-type sorption is the major contributor of water sorption 

increase in the low RH regime, attributed to sorption of the first  monolayer of water 

molecules at the surface of the membrane. Given the diameter of water molecule as 0.27 

nm and surface area of the smooth membrane as 4 cm2 (2 cm2 each side), a monolayer 

of water molecules at the membrane surface would be 9.1 ˣ 10-9 mol or 0.16 µg of water, 

which is not measurable with the DVS machine’s precision at ±0.1 µg. However, the 

membrane surface is not smooth, especially at this microscopic scale. The actual surface 

area of the membrane to accommodate the monolayer of water would be much larger than 

4 cm2. Therefore, the mass of the monolayer of water at the membrane surface would be 
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much larger than 0.16 µg and is measurable by the DVS machine. Langmuir-type sorption 

depends on the specific site capacity (aL) and affinity constant (KL) according to Equation 

1-5 in section 1.3.2.[124,129] The specific site capacity shows the concentration of 

surficial, active Langmuir sites interacting with and fastening water molecules onto the 

membrane surface. The value of aL is related to the density of hydrophilic moieties on the 

membrane surface.[129,131] As shown in Table 3-3, the values of aL for N211 and SPPB 

are 6.67 and 7.34, respectively, both lower than that of SPAE, 9.14. This observation 

implies a higher surficial density of hydrophilic moieties on the SPAE 

membrane.[128,129,131] Meanwhile, the affinity constant, KL, for N211 (1.84) is higher 

than both hydrocarbon-based membranes SPPB (1.19) and SPAE (0.58). The affinity 

constant describes the extent of water molecules being anchored by ionic domains at the 

membrane surface.[29] The value of KL heavily relies on the formation of H-bonds between 

sulfonic acid groups and water molecules, which successively is related to the acidity 

strength of the surficial sulfonic group.[124,131] The larger the value of KL means the more 

acidic the surficial sulfonic group is. The highest value of KL in membrane N211 (1.84) 

agrees with that membrane N211’s the pendant perfluorosulfonic acid group is more acidic 

than both the SPAE’s and SPPB’s pendant aromatic sulfonic acid group.[57] Also in the 

low RH regime, no obvious difference in hydration number is seen between N211 and 

SPPB. This could be attributed to the slightly higher specific site capacity of SPPB (7.34) 

is trade off by its lower affinity constant (1.39) when compared to N211. 

Henry-type sorption assumes a linear relationship between water sorption and relative 

humidity. Henry-type sorption describes water molecules penetrating through the 

membrane by interacting with sulfonic acid groups, as depicted in Figure 1-6. Henry’s law 

coefficient, KH, represents the degree of interactions between water and ionic groups 

within the bulk membrane,[128] and therefore relies on IEC, the concentration of ionic, 

sulfonic acid groups within the bulk membrane. As shown in Table 3-3, the KH for N211, 

6.39 × 10-4, is lower than both SPAE and SPPB, 6.72 × 10-4 and 6.74 × 10-4, respectively. 

This observation agrees with the noticeable differences in IEC between PFSA and the 

hydrocarbon membranes (see Table 3-1). 

In Figure 3-3, clustering-type sorption boosts the water content within the membrane 

and leads to a sharp increase in water sorption in the high-RH regime. The clustering-type 

sorption envisions the formation of water aggregates that would plasticize the 

polymer.[127–129,131] Incoming water molecules enlarges the ionic domains, which 
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subsequently increases the mechanical stress of polymer backbone and results in multi-

scale swelling.[124,127] Clustering-type sorption is featured by two coefficients, the 

aggregate number, n, and the aggregation equilibrium constant, KA, as seen in Equation 

1-7. The aggregate number represents the relative size of the water clusters and is 

determined by the backbone’s flexibility to accommodate incoming water molecules, while 

the equilibrium constant shows the degree of water clustering formation, which is affected 

by the backbone’s affinity for water molecules.[127–129,131] In the high-RH regime (after 

50% RH), obviously higher hydration number is observed in N211 than SPPB. The 

concave curve of the membrane N211 is more substantial than in the hydrocarbon 

membranes, represented by higher values of both n (5) and KA (5.32). This agrees with 

that N211 possesses a more flexible polymer backbone (also tested in section 3.3.2 by 

mechanical tests),[57] and its more strongly acidic sulfonic acid groups.[193]  

 

Figure 3-3. Vapor sorption isotherm of sulfonated polyphenylene (SPPB), 

sulfonated polyarylene ether (SPAE), and Nafion (N211) at 70 °C with 

y-axis expressed as hydration number (λ).  Dotted lines were fitted to 

Park model. 

Table 3-3.  Values (± limits  of 95% confidence) of parameters in Park model of 

vapor sorption as expressed in Figure 3-3. Residual distribution is 

provided in Appendix A. 

parameters N211 SPAE SPPB 

aL 6.67±0.13 9.14±0.65 7.34±0.05 
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KL 1.84±0.18 0.58±0.08 1.39±0.05 

KH (× 104) 6.39±0.15 6.72±0.21 6.74±0.05 

n 5±0 5±1 4±0 

KA 5.32±0.22 1.98±0.21 2.34±0.04 

R2 0.99 0.99 0.99 

 

3.3.4. Steady-state permeation 

As seen in Figure 3-4a, molar water fluxes through each membrane (33 µm wet 

thickness) were plotted against RH of water vapor under 70 °C for liquid-vapor permeation 

measurement. LVP was conducted with one side of the membrane sample exposed to 

water vapor, while the other facing liquid water, as shown in Figure 3-4a. For all 

membranes, molar water fluxes decreased with the increasing RH of water vapor. This is 

expected as the driving force, chemical potential difference between the two sides of the 

membrane, decreased with the increasing RH of water vapor. Then, relative humidity in 

Figure 3-4a was converted to the driving force, chemical potential gradient, as the x-axis 

as seen in Figure 3-4b. Water permeance (mol2 m-2 s-1 kJ-1), slope of the linear regression, 

of each membrane was derived and listed in Table 3-4. For membrane N211, the LVP 

permeance in this study, 0.048 mol2 m-2 s-1 kJ-1, agrees well with the reported 

values.[82,172] As shown in Figure 3-4b, the LVP permeance of the three membranes 

with identical wet thickness are in the order: SPPB > SPAE > N211 (0.075 vs. 0.067 vs. 

0.048 mol2 m-2 s-1 kJ-1, respectively).  
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Figure 3-4. Liquid-vapor water permeation of SPAE and N211 with the same 

thickness (33 µm) as a function of: a) relative humidity of the water 

vapor side; b) chemical potential gradient at 70 °C for 3 replicates. 

As shown in Figure 3-5a, molar water fluxes through each membrane (33 µm wet 

thickness) were plotted against applied hydraulic pressure for liquid-liquid permeation. For 

all membranes, LLP water fluxes increased with the increasing differential pressure 

between the two membrane faces. Again, this is due to the increase in driving force, the 

chemical potential difference of water between the two sides of the membrane, increased 

with the increasing pressure applied. Therefore, the external pressure was replaced with 

chemical potential gradient of water to unify the driving force parameter in both LVP and 

LLP, as well as to compare the permeances among the three membranes. LLP water 

permeance (mol2 m-2 s-1 kJ-1), slope of the linear regression, of each membrane was 

derived and listed in Table 3-4. For membrane N211, the LLP water permeance in this 

study (20.5 mol2 m-2 s-2 kJ-1)is consistent with reported values.[82,172] As shown in Figure 

3-5b, LLP water permeance of the three membranes with identical thickness are in the 

order SPPB > N211 > SPAE (23.2, 20.5, and 8.5 mol2 m-2 s-1 kJ-1, respectively). This order 

of LLP water permeance is different from the aforementioned order in LVP water 

permeance that membrane SPAE possesses a higher water permeance than N211 (see 

Table 3-4). Thus, further inspection was essential (see section 3.3.5) to explain the 

difference in the two orders of magnitude of water permeances in LVP and LLP 

experimental setups.  
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Figure 3-5. Liquid-liquid water permeation of SPAE and N211 with the same 

thickness (33 µm) as a function of a) differential pressure and b) 

chemical potential gradient at 70 °C. 

Table 3-4. Summary of water permeance in liquid-vapor permeation and liquid-

liquid permeation at 70 °C  

membrane LVP permeance (mol2 m-2 s-1 kJ-1) LLP permeance (mol2 m-2 s-1 kJ-1) 

SPAE 0.067 ± 0.003 8.5 ± 0.1 

SPPB 0.075 ± 0.003 23.2 ± 0.2 

N211 0.048 ± 0.003 20.5 ± 0.3 

 

3.3.5. Membrane/vapour interfacial resistance 

The obvious discrepancy that membrane SPAE possesses a higher LVP water 

permeance but a lower LLP water permeance versus membrane N211 with identical 

thickness can be attributed to SPAE’s possibly lower gas/membrane interfacial resistance. 

Former studies have found that the LVP process can be divided into 3 separate steps: 

adsorption, internal water transport, and desorption.[29,196] The interfacial resistance of 

vapor/membrane is large for membrane N211, due to the parallel-micelle morphology at 

the Nafion® membrane surface.[148,150] The liquid/membrane interfacial resistance is, 
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however, negligible.[82,163–165,172,197] Therefore, in the case of LLP, internal water 

transport is rate determining while in the case of LVP, the vapor/membrane interfacial 

resistance becomes important. 

To determine the vapor/membrane interfacial resistance, LVP measurements were 

executed for each membrane of different thicknesses, with one side facing water vapor at 

different relative humidities at 70 °C. Molar water flux through each membrane was 

monitored, subsequently resistance was calculated according to Equation 2-12 and 

plotted against corresponding wet thickness as shown in Figure 3-6. In Figure 3-6, the 

intercept at y-axis of the linear regression is the interfacial resistance while the slope is 

the thickness-independent internal resistance coefficient. [29,163,172] The interfacial 

resistance and internal resistance coefficient of SPAE and SPPB in liquid-vapor 

permeation under each relative humidity of water vapor are provided in Table 3-5. The 

LVP resistances of both membrane SPPB and SPAE under different relative humidity are 

plotted in Figure 3-6. The internal resistance coefficients, defined as the slope, for both 

membranes decrease as water vapor RH increases. The decrease is observed because 

of the increasing water content within the membrane that facilitates water transport.[163] 

Meanwhile, the interfacial resistance, for both membranes, decreases with water activity 

possibly due to the reorganization of the surface morphology that favors the ingress and 

egress of water under higher RH, as previously reported for Nafion.[157] When comparing 

membrane SPAE and SPPB, the internal resistance coefficient of SPAE was higher than 

SPPB, although the interfacial resistance of SPAE was smaller than that of SPPB 

throughout the relative humidity range (see Table 3-5). The larger internal resistance 

coefficient of membrane SPAE is the main factor responsible for the lower LLP water 

permeance of SPAE when compared to SPPB.  
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Table 3-5. Internal resistance coefficient and interfacial resistance of SPPB and 

SPAE membranes in liquid-vapor permeation at 70 °C. 

 

Relative 

Humidity 

  SPPB SPAE 

Slope  

(×10-6 kJ m s mol-2) 

Y-intercept  

(kJ m2 s mol-2) 

Slope  

(×10-6 kJ m s mol-2) 

Y-intercept  

(kJ m2 s mol-2) 

30% 0.040 ± 0.001 11.5 ± 0.4 0.36 ± 0.01  2.0 ± 0.2 

50% 0.036 ± 0.001 10.6 ± 0.6 0.32 ± 0.01 1.0 ± 0.1 

70% 0.035 ± 0.001 9.5 ± 0.6 0.26 ± 0.01 0.56 ± 0.04 

90% 0.032 ± 0.001 9.0 ± 0.7 0.19± 0.02 0.35 ± 0.05 

 

 

Figure 3-6. Resistance of liquid-vapor permeation through a) SPPB and b) SPAE 

membranes with one side exposed to water vapor of different relative 

humidities as a function of wet membrane thickness at 70 °C. For each 

membrane, of each different wet thickness, there were 3 replicates. The 

slope of the linear regression yields the internal resistance coefficient, 

while the intercept yields the interfacial resistance. 
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In Figure 3-7, a more detailed comparison of interfacial resistances among the 

three membranes in LVP with water vapor regulated at 30% RH is provided. The interfacial 

resistances of the three membranes are in the order: SPAE < SPPB ≈ N211 (2.03, 11.5, 

and 11.6 kJ m2 s mol-2, respectively), while the internal resistance coefficients of three 

membranes are in the order: SPPB < N211 < SPAE (0.040, 0.084, and 0.36 106 kJ m s 

mol-2, respectively). Here, the interfacial resistance and internal resistance coefficient 

obtained for membrane N211 agree with the reported values, 11.2 to 12.0 kJ m2 s mol-2 

and 0.054 to 0.092 (106 kJ m s mol-2) under 30 to 40% RH and 70 °C, 

respectively.[82,164,165,197] With 95% confidence interval, the interfacial resistance of 

SPAE (2.0 ± 0.7 kJ m2 s mol-2) is obviously lower than those of SPPB (11.5 ± 0.6 kJ m2 s 

mol-2) and Nafion (11.6 ± 1.2 kJ m2 s mol-2). The relatively minimal interfacial resistance 

of membrane SPAE results in the smallest overall resistance (most permeable) in liquid-

vapor permeation when the thickness is below ~30 µm. With 95% confidence interval, the 

internal resistance coefficient of SPPB (0.040 ± 0.004 106 kJ m s mol-2) is obviously lower 

than those of SPAE (0.36 ± 0.03 106 kJ m s mol-2) and Nafion (0.084 ± 0.024 106 kJ m s 

mol-2).  When the thickness is greater than ~30 µm, membrane SPPB possesses the 

lowest overall water transport resistance (most permeable) because of its lowest internal 

resistance coefficient among the three membranes. This phenomenon could be attributed 

to its larger ion-exchange capacity versus membrane N211. However, IEC alone does not 

explain the lower internal transport resistance of SPPB compared to SPAE as both 

membranes share similar IECs (see Table 3-1). It is speculated that internal morphology 

of SPPB is more favorable for water transport because of the subtle effect of the ether 

linkage in SPAE that renders the polymer more flexible and which may result in enhanced 

polymer chain entanglement and potentially increased tortuosity of internal water channels. 

The stiffer backbone of membrane SPPB is also confirmed by the mechanical stress tests 

that SPPB possesses a smaller elongation at break (17.5%) than SPAE (57%) as seen in 

section 3.3.2.  
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Figure 3-7. Water permeation resistance (average ± standard deviation) in LVP at 

70 °C with relative humidity of water vapor controlled at 30%. 

3.3.6. Surficial characterization 

As aforementioned in section 3.3.5, the interfacial resistance of SPAE is the lowest 

among the three, possibly because of its more hydrophilic surface. Hence, surficial 

characterizations were executed. Contact angle measurements, examined on the surface 

of dry membranes at ambient temperature and RH (22 °C and 40 % RH, respectively), are 

presented in Figure 3-8. The contact angle of SPAE (88.8°) is smaller than both of SPPB 

(97.8°) and N211 (98.3°). The contact angle for N211 in this research is consistent with 

previous studies on Nafion® membranes.[147,148] The hydrophobicity on the N211 

surface arises from its fluorine-rich surface.[223] The surficial hydrophobicity of SPPB 

membranes is likely because of its lower fraction of ‘open’ ionic domains at the surface, 

like what was reported for other hydrocarbon-based PEMs.[197]  
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Figure 3-8. Contact angle measurements (10 replicates each) of dry membranes a) 

N211, b) SPAE, and c) SPPB under at 22 °C and 40% RH. 

Also, the surficial features of membranes were tested by conductive AFM. 

Conductive AFM is essential to image regional distribution of hydrophilic, open proton-

conducting channels on surface of PEMs.[157,215] For consistency, identical procedure 

and machine settings were maintained for all three membranes in conductive AFM 

measurements. However, no ionic current signal was detected for membrane N211. In 

Figure 3-9, the bright/dark contrast represents the conductive/insulative or 

hydrophilic/hydrophobic regions at the membrane surface. The scales display the 

magnitudes of the surface current signals detected by the conductive AFM for the 

membranes under identical settings. The focus of this measurement is, however, 

discovering the hydrophilic and conductive domains on the surface of the membrane by 

the bright/dark contrast instead of the magnitudes of the current density. As presented in 

Figure 3-9, at room temperature and RH (22 °C and 40 % RH, respectively), the 

percentage of active area,[157] on which the surficial current was detected by the 

conductive AFM, is 32% for SPAE, much higher than that of SPPB (~4 %) and previously 

reported Nafion 211 under similar circumstances (13.7% at 55% RH).[157] Membrane 

SPAE’s high percentage of hydrophilic area on the surface agrees with the observation in 

section 3.3.3, that SPAE possesses a higher value for the specific site capacity, aL (9.14) 

versus N211  (6.37) and SPPB (7.64).[124,127,129] Similar high percentage of active area 

on the surface of a membrane has also been reported for another highly sulfonated 

poly(arylene ether)-based material with similar structure to SPAE.[9] The hydrophilicity of 

membrane SPAE may be attributed to the random post-functionalization of the polymer, 

and the presence of the ether group.[224,225] 
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Figure 3-9. Peak-Force Tunneling atomic force microscope current image for a) 

SPAE and b) SPPB membranes at ambient relative humidity and 

temperature. With identical procedure and machine settings for both 

SPAE and SPPB, no signal was detected for membrane N211.  

3.4. Conclusion 

Sorption isotherm of the second generation sulfonated phenylated 

poly(phenylene), SPPB, was studied by DVS, interpreted by the Park model, and 

compared to Nafion reference and the HC-based reference, SPAE. In Langmuir-type 

sorption, it was found that SPAE possessed the highest surface site capacity, representing 

a higher surficial hydrophilicity compared to either SPPB or N211. In Henry-type sorption, 

KH values for both SPAE and SPPB were higher than N211 due to their larger IEC. In 

clustering-type sorption, a sharp increase in water sorption was observed for N211 

membranes due to a more flexible backbone, and more acidic sulfonic acid groups. The 

poly(phenylene) SPPB was the most permeable when liquid was on one side and vapor 

the other, when thickness was > ~30 μm, because it possessed the lowest internal 

resistance caused by a large IEC and potentially more contiguous internal morphology 

brought by the wholly aromatic backbone. In stark contrast, when thickness was < ~30 

μm, SPAE was the most permeable as it afforded the lowest membrane/vapor interfacial 

resistance, which was confirmed by contact angle measurements and conductive AFM. 

The more hydrophilic surface of SPAE might possibly allow the membrane to possess a 

higher water retention under dry environment, which helps to maintain the performance of 

a fuel cell under low relative humidity. However, the smaller internal resistance coefficient 
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of SPPB indicates a faster internal water transport within the bulk membrane when subject 

to a water concentration bias. Even though these HC-based PEMs swell excessively 

compared to PFSA membranes, the structure-property relationships found in this study 

provide valuable insight into water sorption and transport that may assist the design of 

next generation solid polymer electrolytes for electrochemical energy storage and 

conversion devices.   
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Chapter 4. Water transport through architecturally 
controlled, pyridyl-bearing sulfonated phenylated 
polyphenylenes: understanding the role of acid-base 
interactions 

The work in this chapter is in part of: S. Xu*, Y. Wu*, M. Adamski, K. Fraser, S. 

Holdcroft, Understanding the role of acid-base interactions using architecturally-controlled, 

pyridyl-bearing sulfonated phenylated polyphenylenes, J. Mater. Chem. A. (2020). 

* These authors contributed equally to this work 

  

 Yang Wu performed all the water vapor sorption, transient diffusion, and steady-

state permeation measurements. Shaoyi Xu undertook synthesis and preparation of all 

proton exchange membranes in this study. Yang Wu and Shaoyi Xu both performed the 

liquid water sorption and conductivity measurements. Michael Adamski synthesized and 

prepared the membranes. Kate Fraser performed the density function theory (DFT) 

calculations. Professor Steven Holdcroft advised and supervised the work conducted. 

 Due to the large scope of this research, only the part concerning water sorption 

and transport with necessary background introduction is included in this chapter. 

Supporting information is provided in Appendix B. 
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4.1. Introduction 

Hydrocarbon-based polymers, functionalized with sulfonic acid groups, often require 

high sulfonic acid content for a contiguous hydrophilic percolation network of protons and 

water. High extent of sulfonation causes a high degree of swelling in water that reduces 

the mechanical integrity. One approach to restrict swelling and improve mechanical 

properties of the polymers is to incorporate basic N-heterocyclic groups. [226,227] The 

incorporation creates the acid-base interaction. The interaction is between the polymer-

bound, pendent sulfonates and polymer-bound, protonated N-heterocyclic 

cations.[226,227] This method has been known to enhance mechanical strength, improve 

chemical and thermal stability, and reduce swelling and membrane water sorption.[228–

231] However, this approach also reduces proton conductivity because the incorporated 

basic group neutralizes –SO3H and binds the originally hydrated, mobile proton.[228–231] 

It is challenging to induce sufficient intermolecular interactions through the acidic-base 

neutralization, and subsequent mechanical strength enhancement with reduction in 

swelling, without causing a large fraction of protons bound and immobile. Solution to this 

challenge would require a range of polymers with varying incorporated base content but 

similar molecular structure and a systematic study of the acid-base interaction.  

Recently, a novel approach was published to adjust the extent of acid-base 

interactions within the proton-conducting polymer.[232] The approach involves 

incorporating a sterically-hindered pyridine moiety (triphenylated pyridyl, TPPy, see Figure 

4-1) into the sulfonated phenylated poly(phenylene)s (Figure 4-1).[232] Following this 

initial work, incorporation of various pyridyl analogues of the triphenylated phenyl unit into 

sulfophenylated polyphenylenes, as shown in Figure 4-1, would yield a unique series of 

polymers to probe acid-base interactions in PEMs. These polymers with similar molecular 

structure, varying in acid-base content, facilitate the examination on the effects of 

replacing a single carbon atom with a basic nitrogen atom in the polymeric repeating unit. 

This series of polymers also possess the added novelty of introducing steric hindrance 

into selected basic sites, which is an unexplored area in the field of proton exchange 

membranes. 
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Figure 4-1. Sulfonated phenylated poly(phenylene)s (SPPR) containing varying R 

moieties: triphenylated phenyl (TPP), triphenylated pyridyl (TPPy), 

biphenylated bipyridyl (BPBPy), phenylated tripridyl (PTPy), and 

tetrapyridyl (TPy) moieties. Numerical label is written to distinguish the 

nitrogen atoms incorporated internally or externally to the ring. 

Therefore, properties of the series of sulfonated phenylated polyphenylenes 

containing an increasing number of N-atoms within the repeat unit are examined and 

reported (see Figure 4-1). These are sulfonated phenylated polyphenylenes (sPP) 

containing the following linkages: triphenylated phenyl (sTPPPP); triphenylated pyridyl 

(sTPPyPP); biphenylated bipyridyl (sBPBPyPP); phenylated tripridyl (sPTPyPP), and; 

tetrapyridyl (sTPyPP). They are also abbreviated as 0N-H+, (1+0)N-H+, (1+1)N-H+, 

(3+0)N-H+, and; (3+1)N-H+, respectively, in which number of internally-positioned pyridyl 

groups is distinguished from the externally-positioned. For example, (3+1)N-H+ contains 

3 internally-positioned pyridyl groups (terpyridine) and 1 externally-positioned pyridyl. The 

physicochemical properties of the sulfonated phenylated polyphenylenes were 

systematically evaluated and compared. Comparisons were carried out in two areas: (1) 

Water sorption and mass transport properties for the fully hydrated membranes; and (2) 

Water sorption and mass transport properties for the partially hydrated membranes, 
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namely vapour sorption, transient diffusion, and steady-state water permeation, the 

background of which are provided below. 

Dynamic vapor sorption (DVS) analyzer was used to monitor the changes in mass of 

samples exposed to water vapor under different relative humidities. DVS also allowed 

quantification of the transient water diffusion in membranes following a change in relative 

humidity. An abundance of reports of sorption isotherms and transient diffusion 

measurements of PEMs exist, but these focus on perfluorosulfonic acid ionomer 

membranes.[29] There are no reports on transient water diffusion for PEMs that 

incorporate acid-base interactions.  

Steady-state water permeation through a proton exchange membrane, i.e., the rate of 

water transport through a membrane, is a critical parameter for many electrochemical 

devices. Steady-state water permeation through PFSA-based membranes have been 

extensively investigated,[18,29,163–165,197,200,233,234] but only a few experimental 

studies of water permeation through HC-based PEMs have been reported.[197] There are 

no reports on steady-state water permeation through PEMs that incorporate acid-base 

interactions. In response, this chapter reports water permeation under two scenarios: 

mass transport through fully hydrated membranes, and through membranes exposed to 

liquid water on one side and water vapour on the other, as these scenarios are often found 

in aqueous-based electrochemical devices incorporating solid polymer electrolytes. 

The result of this study, drawn from a series of proton conducting, sulfonated polymers 

that possess the same theoretical IEC and molecular architecture, but for which the acid-

neutralizing N-content is systematically increased with precise placement of the N-atoms, 

allow for structure-property relationships of acid-base polymers to be explored with 

unprecedented molecular control. 

4.2. Experimental 

4.2.1. Materials 

Detailed information on the deionized water (Milli-pore water), commercial Nafion® 

membranes are given in section 2.2, chapter 2.  



61 

4.2.2. Experimental techniques 

Sorption isotherm, liquid-vapour permeation, liquid-liquid permeation, transient 

diffusion, and proton conductivity measurement are described in detail in chapter 2. 

Sorption isotherm, LVP, and LLP measurement were run at 80 °C. Also, detailed 

instruction on permeability, and resistance determination are provided in chapter 2. 

Due to the limited accessibility of membranes with identical thickness, the steady-

state permeance (𝑝, mol m-1 s-1) was defined as the product of molar water flux (𝐽, mol m-

2 s-1) and wet thickness of membranes (𝐿, m).  

4.3. Results and discussion 

4.3.1. Mechanical analysis of membranes2 

Stress-strain data for 0N-H+, (1+0)N-H+, (1+1)N-H+, and (3+1)N-H+ membranes 

can be found in Table 4-1. When four N-atoms are introduced into the sulfonated 

polyphenylenes, the (3+1)N-H+ membranes become stronger (tensile strength = 44.9 ± 

0.4 MPa) but less flexible (elongation at break = 7.2 ± 0.1%), compared to (1+0)N-H+ (43.3 

MPa, 55.5 %, respectively). Intermolecular interactions likely dominate in (1+1)N-H+, 

(3+0)N-H+ and (3+1)N-H+ polymers. Intermolecular crosslinking of polymers represents 

the proton of one polymer chain is bound to or may be shared with the pyridine group of 

another polymer chain. Intermolecular crosslinking often increases the interactions 

between polymer chains and inhibits the movement of them. Enhanced tensile strength 

and reduced elongation at break is therefore often observed in polymers with 

intermolecular crosslinking.[235] In contrast, compared to 0N-H+, (1+0)N-H+ is more 

flexible and of lower tensile strength. This change may be attributed to reduced 

intermolecular interactions,[235] because the steric hindrance about the centered pyridine 

may limit or prevent the acid-base interaction between the pyridine lone pair and –SO3H 

proton on other polymer chains. In comparison, the additional pyridine groups contained 

in the (1+1)N-H+ and (3+1)N-H+ polymers are more “exposed”, as they do not possess 

flanking phenyl moieties to provide steric hindrance. Thus, intermolecular crosslinking 

between the pyridine and –SO3H groups is expected to play a dominant role in (1+1)N-H+, 

 

2 Mechanical strength analysis of membranes was mainly carried out by Dr. Shaoyi Xu. 
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and (3+1)N-H+, especially since the externally-exposed pyridines to be fully protonated 

and the resultant pyridiniums more effective as acid-base crosslinking sites. These 

membranes exhibit an expected reduction in elongation at break compared to (1+0)N-H+ 

membranes. (3+0)N-H+ deserves special mention as these particular membranes are 

exceptionally brittle and characterization of this membrane type is limited. The precise 

reason for this is not yet understood but  it lies in the fact that the terpyridium site is multi-

protonated and hence subject to localized acid-base crosslinking, without the added 

advantage of possessing an externally-exposed pyridine that would preferably be 

protonated like (3+1)N-H+, which is film forming. 

Table 4-1. Mechanical propertiesa of polymers measured under ambient conditions. 

Ionomers 0N-H+ (1+0)N-H+ (1+1)N-H+ (3+0)N-H+ (3+1)N-H+ 

Tensile strength 
(MPa) 

54.8 ± 1.9 43.3 ± 1.1 19.9 ± 0.1 
N/A 

44.9 ± 0.4 

Elongation at 
break (%) 

36.8 ± 1.7 55.5 ± 3.1 3.8 ± 0.1 
N/A 

7.2 ± 0.1 

Young’s 
modulus (MPa) 

584 ± 82 402 ± 24 700 ± 1 
N/A 

793 ± 48 

Mechanical 
class 

strong and 
tough 

strong and 
tough 

strong and 
brittle 

brittle strong and 
brittle 

a Mechanical analysis were performed under ambient conditions (23 oC, 50% RH) 

4.3.2. Fully hydrated membranes: liquid water sorption 

Liquid water sorption measurements were executed on membranes by immersing 

them in Millipore water at 30 oC until constant mass had been achieved. Liquid sorption 

data are summarized in Table 4-2and plotted in Figure 4-2. Dimensional swelling of the 

hydrocarbon-based PEMs decrease with the increasing of the number of incorporated N 

atoms: 0N-H+ (82 ± 3 vol%) > (1+0)N-H+ (62 ± 2 vol%) > (1+1)N-H+ (56 ± 6 vol%) > (3+1)N-

H+ (20 ± 2 vol%). This result confirms the success at restricting dimensional swelling via 
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addition of basic pyridyl groups into the polymer to abate the effective concentration of 

sulfonic acid groups within the membrane.  

Table 4-2.   Liquid water sorption of membranes at 30 oC: Liquid water uptake 

(WUliquid), hydration number (λ), dimensional swelling (DS), and water 

volume fraction (Xv). 

Membrane IECexp  

(mmol g-1)a 

WUliquid  

(%)b 

λc DS (%)d Xv(water)e 

0N-H+ 2.90 ± 0.04 80 ± 3 15.3 ± 0.5 82 ± 3 0.83 ± 0.03 

(1+0)N-H+ 1.98 ± 0.08 54.4 ± 0.7 15.2 ± 0.1 62 ± 2 0.64 ± 0.03 

(1+1)N-H+ 1.80 ± 0.20 52 ± 3 16.0 ± 0.5 56 ± 6 0.58 ± 0.05 

(3+0)N-H+ 1.58 ± 0.04 N/A N/A N/A N/A 

(3+1)N-H+ 1.38 ± 0.14 49 ± 3 20 ± 1 20 ± 2 0.51 ± 0.03 

N211 0.9 ± 0.1 37 ± 3 22.8 ± 0.3 24 ± 2 0.36 ± 0.03 

a based on experimental acid-base titration. 
b liquid water uptake at 30 oC. 
c based on the experimental IEC. 
d x-axis (thickness) swelling in dimensional swelling. 
e water volume fraction at 30 oC. 

As see in Figure 4-2, water volume fraction (Xv) of the membranes is proportional 

to the experimentally-determined IEC values of the membranes. Among the four 

hydrocarbon-based membranes, 0N-H+ possesses the highest IEC, 2.90 ± 0.04 mmol g-1, 

as well as the highest WUliquid (79.8 ± 2.6%) and Xv (0.83 ± 0.03). The (3+1)N-H+ 

membrane with the lowest IEC, 1.38 ± 0.14 mmol g-1, shows the lowest liquid water uptake 

(49 ± 3%) and smallest water volume fraction (0.51 ± 0.03). As more N-atoms are 

incorporated into the polymer, the number of free protons decreases and the number of 

ionic crosslinks increases, both of which contribute to a lower water uptake. The hydration 

numbers, λ of the polymers are similar (15-16), with the exception of (3+1)N-H+, which 

shows a slightly higher value, as seen in Table 4-2. λ values, while included for comparison, 

should be treated with caution in these polymers with both acidic and basic functional 
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groups because their calculation excludes water molecules that may be associated with 

hydrophilic protonated pyridyl-sulfonic acid complexes.  

 

Figure 4-2. Correlations between ion exchange capacity and liquid water volume 

fraction at 30 oC, respectively, of 0N-H+, (1+0)N-H+, (1+1)N-H+, (3+1)N-

H+, and N211 polymeric membranes. 

4.3.3. Steady-state liquid-liquid permeation 

 The thickness-normalized water permeance of each fully-hydrated membrane was 

calculated and plotted against the differential pressure and chemical potential gradient of 

water between the two sides of the membrane at 80 °C in Figure 4-3a and Figure 4-3b, 

respectively. Water permeance of each membrane increases linearly with the increasing 

differential pressure (chemical potential gradient). Permeability, the slope of water 

permeance against chemical potential gradient, decreases with the increasing number of 

pyridyl moieties in the polymeric repeat unit (see Table 4-3): 0N-H+ > (1+0)N-H+ > (1+1)N-

H+ > (3+1)N-H+ and is correlated with the water volume fraction as shown in Figure 4-4. 

This observance is consistent with the increasing acid-base interactions within the polymer, 

a reduction of free protons, an increase in ionic crosslinking, and a reduction in the 

percolation network for water transport.[57,232] For reference, water permeability of N211 

is shown in Table 4-3 to be 1.00×10-3 mol2 m-2 s-1 kJ-1 and similar to previously reported 

values.[163–165,172] Of the hydrocarbon-based membranes, the permeability of (3+1)N-

H+ is statistically identical to that of N211.  
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Figure 4-3. Steady-state liquid-liquid permeation plotted against a) the differential 

pressure and b) chemical potential gradient at 80 oC.  

 

 

Figure 4-4.  Liquid-liquid permeability of fully hydrated membranes at 80 °C as a 

function of water volume fraction, Xv.  
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Table 4-3. Liquid-liquid permeability of membranes at 80 oC 

membrane LLP permeability (×103 mol2 m-2 s-1 kJ-1) 

0N-H+ 1.96 ± 0.15 

(1+0)N-H+ 1.52 ± 0.12 

(1+1)N-H+ 1.31 ± 0.08 

(3+0)N-H+ N/A 

(3+1)N-H+ 1.07 ± 0.06 

N211 1.00 ± 0.03 

 

4.3.4. Proton conductivity in fully hydrated state 

Proton conductivities of the 0N-H+, (1+0)N-H+, (1+1)N-H+ and (3+1)N-H+ 

membranes were measured at 30 oC when fully hydrated in liquid water. Conductivities 

and effective mobilities of fully hydrated membranes are plotted in Figure 4-5 and 

summarized in Table 4-4. 

Table 4-4.  Proton conductivity (σ), experimental acid concentration [H+], effective 

mobility (μ) and water volume fraction (Xv) of fully hydrated 

membranes at 30 oC. 

Membrane σ 

(mS cm-1) 

[H+] 

(mol L-1) 

μ  

(10-3 cm2 s-1 V-1) 

Xv 

0N-H+ 210 ± 10 3.0 ± 0.1 0.72 ± 0.03 0.83 ± 0.03 

(1+0)N-H+ 150 ± 10 2.3 ± 0.2 0.68 ± 0.03 0.64 ± 0.03 

(1+1)N-H+ 110 ± 10 2.0 ± 0.1 0.56 ± 0.03 0.58 ± 0.05 

(3+0)N-H+ N/A N/A N/A N/A 

(3+1)N-H+ 78 ± 3 1.4 ± 0.1 0.58 ± 0.03 0.51 ± 0.03 

N211 95 ± 3 1.0 ± 0.1 0.93 ± 0.04 0.36 ± 0.03 

 



67 

 

 

Figure 4-5. (a) in-plane conductivity vs Xv of fully hydrated membranes at 30 oC; (b) 

effective proton mobility vs Xv of fully hydrated membranes at 30 oC. 

To gain insights to proton conduction in fully hydrated state, proton conductivity against 

water volume fraction was plotted in Figure 4-5a. The conductivity shows an increasing 

trend as Xv increases. 0N-H+ exhibits the highest conductivity (210 mS cm-1) and water 

volume fraction (0.83) among the four polymers. Although (3+1)N-H+ membrane shows 

the lowest Xv (0.51), it still is higher than N211 (0.36). Sufficient water content is beneficial 

to acid dissociation for proton mobility among HC-based polymers. Thus, it can be inferred 

that the high Xv of (3+1)N-H+ contributes to efficient proton conducting behavior. 

The effective proton mobility, μ, is plotted against water content in Figure 4-5b. Notably, 

the effective proton mobility of membrane (1+1)N-H+ and (3+1)N-H+ are similar (0.56 ×10-

3 cm2 s-1 V-1 vs 0.58×10-3 cm2 s-1 V-1, respectively), both of which are lower than those of 

(1+0)N-H+ and 0N-H+ (0.68 ×10-3 cm2 s-1 V-1 vs 0.72×10-3 cm2 s-1 V-1, respectively). This 

difference in mobility occurs as a result of the incorporation of an exposed pyridine which 

readily interact with sulfonic acid groups, promoting the intermolecular crosslinking and 

possibly increasing the tortuosity of conducting channels. The obviously higher effective 

proton mobility of N211 (0.93 ×10-3 cm2 s-1 V-1) than the HC-based membranes is not 

unexpected due to the Nafion’s more contiguous morphology as a PFSA membrane, 

which facilitates proton transport. 
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4.3.5. Water vapour sorption isotherm 

As some electrochemical applications (e.g., proton exchange membrane fuel cell) 

require exposure of solid polymer electrolytes to water vapour, not liquid water, water 

vapor uptake values (WUvapor) of each membrane exposed to water vapour were recorded 

at 80 °C under varied RH values. Measurements were conducted both sorption (0 to 70% 

RH) and then desorption (70 to 0% RH). Water vapor uptake decreases substantially with 

the increasing number of N-atoms in the polymers as shown in Figure 4-6, which is 

consistent with water contents found for fully hydrated membranes. Water vapor uptake 

of each membrane during desorption is observed to be higher than that during sorption, 

resulting in a measurable hysteresis. This hysteresis is more pronounced in 0N-H+ and 

(1+0)N-H+ membranes. Hysteresis often stems from surface reorganization of the 

membrane.[29] Under dry environments, dehydration at the surface retards water loss, 

leading to higher water contents for a particular RH when RH decreases. In Nafion®, for 

example, water conducting domains of polymers tend to align parallel to the surface, 

minimizing water transport and preventing water loss.[148] Hence, the hysteresis area 

predicts, qualitatively, the extent of morphological reorganization at the surface of a 

membrane. In this context, reorganization of dehydration of the membrane’s surface is 

more prominent for 0N-H+ and (1+0)N-H+ membranes than for (1+1)N-H+ and (3+1)N-H+ 

membranes. Also, it has previously been reported that there is a more distinctive water-

clustering region, therefore higher likelihood of morphological rearrangement, in 0N-H+ 

than (1+0)N-H+, as evidenced by small-angle X-ray scattering experiments.[232] The 

notably reduced hysteresis in (1+1)N-H+ and (3+1)N-H+ membranes is possibly a result of 

the intermolecular ionic crosslinking which decreases flexibility of the constituent polymer 

chains.[235]  
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Figure 4-6. Sorption isotherm of 0N, (1+0)N-H+, (1+1)N-H+, (3+0)N-H+, (3+1)N-H+, and 

N211 polymer membranes at 80 oC during adsorption (0 – 70% RH) and 

then desorption (70 – 0% RH) relative humidity cycles. 

Shown in Figure 4-7 are plots of hydration number vs RH. Typical sigmoidal sorption 

isotherm patterns are observed for all five membranes. The Park model was applied to 

deconvolute dynamic vapor sorption. Approximation values of the Park model coefficients 

for each membrane are summarized in Table 4-5. According to the Park model,[124,127–

130] typical sorption isotherms consist of three separate, independent processes: 

Langmuir, Henry, and clustering-type sorption. 
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Figure 4-7. Water vapor sorption isothem of membranes at 80 oC expressed as 

hydration number. The dotted lines represent a data fit to the Park 

model. 

Table 4-5. Value of variables (± limits of 95% confidence) in Park model expressed 

in hydration number  

 0N-H+ (1+0)N-H+ (1+1)N-H+ (3+0)N-H+ (3+1)N-H+ N211 

aL 8.53±0.24 5.58±0.04 2.76±0.06 2.06±0.13 1.04±0.01 6.44±0.14 

KL 1.51±0.04 1.83±0.01 3.49±0.03 6.78±0.18 10.3±0.03 1.84±0.18 

KH 

(×104) 
6.34±0.18 5.15±0.03 5.14±0.05 

5.08±0.15 
4.94±0.07 4.97±0.18 

n 4±1 2±0 3±0 2±1 2±0 5±0 

KA 1.68±0.13 2.17±0.04 0.793±0.01 1.06±0.22 0.932±0.02 5.38±0.24 

R2 0.99 0.99 0.99 0.99 0.99 0.99 
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In the low RH regime, Langmuir-type sorption is mainly responsible for the increase in 

water content, wherein formation of a layer of water at the surface of a membrane 

occurs,[124,127] and initial solvation of surficial sulfonic acid groups occurs.[29] This 

correlates with the accessible surface concentration of sulfonic acid groups and is 

quantified by the specific site capacity, aL.[29,193] aL decreases with the increasing 

number of N-atoms 0N-H+ (8.53) > (1+0)N-H+ (5.58) > (1+1)N-H+ (2.76) > (3+0)N-H+ 

(2.06) > (3+1)N-H+ (1.04), as listed in Table 4-5 and is consistent with a decrease in 

surface acidic groups at the membrane surface due to increasing extents of neutralization. 

In the mid-RH region, Henry-type sorption, which is reliant on sulfonic acid groups within 

the bulk membrane that provide solvation, [124,128,130,200,236], and the Henry law’s 

coefficient, KH, is correlated to the IEC of the membranes. KH decreases in the order 0N-

H+ (6.34 × 10-4) > (1+0)N-H+ (5.15 × 10-4) > (1+1)N-H+ (5.14 × 10-4) > (3+0)N-H+ (5.08 × 

10-4) >(3+1)N-H+ (4.94 × 10-4), as the increasing number of pyridyl moieties reduce the 

IEC. 

In the high RH regime, clustering-type sorption becomes a dominant factor to the 

increase in water vapor sorption. In this case, free water and interconnected ionic clusters 

form to accommodate more incoming water molecules,[124,127–131] which leads to 

swelling at various level.[124,127] Both the flexibility of the backbone, and the affinity to 

water molecules are contributing factors in affecting the clustering-type 

sorption.[124,127,128] As shown in Figure 4-7, a more discernible concave of sorption 

was observed in N211, which can also be represented by the highest value in both n and 

KA of clustering-type sorption, 5 and 5.38, respectively (Table 4-5). In the clustering-type 

sorption, n serves as the average number of water molecules per cluster while KA stands 

for the extent of water clustering process.[124,127–131] The value of n is dependent on 

the polymer flexibility, while KA relies on the acidity. Consequently, compared to the 

hydrocarbon-based membranes, both the higher flexibility,[57] and the high acidity of 

Nafion® contribute to its highest value in both n (5), and KA (5.38).[193] 

4.3.6. Transient diffusivity of water vapor 

RH-dependent rates of water transient diffusion in membranes were measured by 

dynamic vapour sorption analyzer. The instantaneous rate of change in mass of water 
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versus time for a given step in relative humidity surrounding the membrane is shown in 

Figure B 1 for each membrane in Appendix B. Rates of change in mass occur only when 

the relative humidity changes. This observation demonstrates that major vaporous water 

uptake or loss occurs mostly within the first few minutes after a change in RH. In addition, 

the peak of instantaneous mass-change rate for each membrane is larger in the lower RH 

regime (e.g., < 30% RH) than in the higher RH regime, as observed in Figure B 1 in 

Appendix B. This observation has also been reported in other transient diffusion 

studies.[173–175,190] At the same relative humidity regime, the peak mass-change rate 

decreases with the increasing number of N-atoms in the polymeric repeat unit: 0N-H+ > 

(1+0)N-H+ > (1+1)N-H+ > (3+0)N-H+ > (3+1)N-H+. For example, for the RH step  0-13%, 

the peak mass-change rate, dm/dt, is 0.062% s-1 for 0N-H+, 0.029% s-1 for (1+0)N-H+, 

0.022% s-1for (1+1)N-H+, 0.017% s-1 for (3+0)N-H+ and 0.011% s-1 for (3+1)N-H+. To 

further illustrate the transient water diffusion process, the normalized water uptake, [(Mt-

Mo)/(Mꝏ-Mo)], was plotted against time for each membrane, as shown in Figure B 2 in 

Appendix B. Mt, M0, and M represent instantaneous mass, initial mass, and equilibrated 

mass, respectively. In agreement with the observation of Figure B 1 that the peak of 

instantaneous mass-change rate is smaller in the higher RH regime, the normalized water 

uptake requires a longer time to reach 1.0 under higher relative humidity than under lower 

RH. Similar to Figure B 1, for the same RH step, the time required for the water uptake to 

reach to the normalized value 1.0 increases with the number of incorporated pyridyl 

moieties within the polymer.  

Transient diffusion represents how quickly water sorption within the membrane 

responds to the humidity changes. This is an important parameter of a PEM, as it must 

readily adjust to the dynamic environment within an operating fuel cell.[173] To extract 

information on transient diffusion of membrane, the Weibull model was employed, see 

Equation 4-1. The rate constant of diffusion, ksorp, for each membrane under the RH 

interval was determined by plotting the normalized water uptake against time as shown in 

Figure B 2 and summarized in Table B 1. 

(
𝑀𝑡−𝑀0

𝑀∞−𝑀0
) ≅ exp [−(𝑘𝑠𝑜𝑟𝑝𝑡)

𝐴
] [200]      Equation 4-1 

Transient diffusivity, D, was then calculated, and plotted in Figure 4-8 with data given 

in Table B 2 in Appendix B. Due to limitations of the single exponential fitting (simple 

exponential smoothing) in Weibull model, discrepancies do exist between the regression 
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and experimental data after 3000 seconds, especially under high RH steps. The transient 

diffusivity obtained in this study for N211 lie in the 10-6 to 10-8 cm2 s-1 range throughout the 

RH range examined, at 80 oC. This is in good agreement with other reports of 

N211.[173,174] As seen in Figure 4-8, D of each membrane is smaller under high relative 

humidity, possibly because: i) there may exist a secondary mechanism such as a slower 

relaxation of the polymer backbone becoming dominant at high relative humidity;[29] ii) 

there is an increased amount of water present at high RH than in low RH;[29] iii) the 

enthalpy of solvation that represents the driving force of transient diffusion reduces under 

high RH;[29,173] iv) a faster non-Fickian diffusion occurs in the lower RH regime.[29,190]  

 

Figure 4-8. Water transient diffusivity, D, of each membrane at each relative 

humidity interval at 80 oC. Data are also provided in Table B 2. 

In Figure 4-8, it is found that the transient diffusivity at each RH step decreases with 

increasing number of nitrogen atoms in the polymer repeating unit. Membranes of 0N-H+ 

possesses the highest transient diffusivity in all RH intervals, whereas membranes of 

(3+1)N-H+ possesses the lowest. This is likely due to the change in water diffusion and 

relaxation of the backbone caused by the incorporation of pyridyl groups. The diffusion of 

water into the membrane mainly depends on interactions between water and sulfonic acid 

groups within the bulk membrane.[29,175,190] Incorporation of N atoms tends to diminish 

the transient diffusivity since the effective acid content decreases due to acid-base 

interactions between sulfonic acid groups and incorporated pyridines. Secondly, the 
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relaxation time would be extended, and therefore transient diffusivity reduced for polymers 

with stiffer backbones during the hydration process.[29,200] Incorporation of pyridine 

moieties is likely to retard the movement of the polymer backbones within a membrane 

via intermolecular crosslinking,[235] extending the relaxation time and in-turn decreasing 

the transient diffusivity. 

4.3.7. Steady-state liquid-vapor permeation 

Measurements of the liquid-vapor permeation (LVP) of membranes were executed 

with one side exposed to water vapor under various RH and the other side exposed to 

liquid water, both at 80 °C. The driving force for water transport is controlled by varying 

the RH of the vapour, which subsequently determines the chemical potential gradient 

formed across the membrane. Water permeance of the membranes is plotted below as a 

function of both the RH and the chemical potential gradient of water. As shown in Figure 

4-9b, water permeance of each membrane increases linearly with increasing chemical 

potential gradient. Water permeability, derived from the slope of each linear fit and 

summarized in Table 4-6, decreases with increasing number of incorporated N-atoms in 

the polymeric repeat unit, and is correlated with a decreasing water uptake in both liquid 

and vaporous states (see Table 4-6). For comparison, the permeability of (3+1)N-H+, 3.3 

×10-6 mol2 m-2 s-1 kJ-1, is similar to that of N211, but 0N-H+ (4.9×10-6 mol2 m-2 s-1 kJ-1) is 

much higher. 
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Figure 4-9. Steady-state liquid-vapor permeation plotted as a function of a) the 

relative humidity and b) the chemical potential gradient of membranes 

at 80 oC. 

 

Table 4-6. Steady-state liquid-vapour permeability and water uptake (WU) of 

membranes at 80 oC 

membrane LVP permeability  

(×106 mol2 m-2 s-1 kJ-1) 

WUliquid (%)a WUvapour (%)b 

0N-H+ 4.9 ± 0.2 80 ± 3 16.8 ± 0.1 

(1+0)N-H+ 4.4 ± 0.1 54.4 ± 0.7 13.8 ± 0.1 

(1+1)N-H+ 3.7 ± 0.1 52 ± 3 8.82 ± 0.01 

(3+0)N-H+ N/A N/A 7.55 ± 0.01 

(3+1)N-H+ 3.3 ± 0.1 49 ± 3 5.71 ± 0.01 

N211 3.2 ± 0.1 37 ± 3 4.07 ± 0.01 

a liquid water uptake at 30 oC. 

b vaporous water uptake at 30% RH, 80 oC. 
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4.3.8. Proton conductivity of water vapour humidified state 

Proton conductivities of the four HC-based PEMs and N211 reference were measured 

under different relative humidities at 80 oC and were plotted in Figure 4-10. Proton 

conductivity of each membrane increases with the relative humidity from 35% to 95%. This 

increase is because water content increases with RH and water facilitates proton transport. 

The proton conductivities of both 0N and (1+0)N-H+ are similar throughout the mid-RH 

range, and similar to N211, but much higher than (1+1)N-H+ and (3+1)N-H+. According to 

previous work,[232] the adjacent phenyl rings on the central pyridine of (1+0)N-H+ provide 

appreciable steric hindrance, which lowers the pKa (to 3.25) of the pyridine-H+ conjugate 

acid, and hence facilitates proton dissociation compared to an unhindered pyridine moiety. 

Thus, the addition of one sterically hindered pyridine ((1+0)N-H+ vs. 0N-H+) does not lead 

to a significant reduction in proton conductivity (119 mS cm-1 vs 155 mS cm-1 at 95% RH 

and 80 oC, respectively (see Figure 4-10). The addition of a second pyridine (exposed), 

e.g., (1+1)N-H+, imparts a significant reduction in conductivity: 13 mS cm-1, compared to 

that of (1+0)N-H+ (119 mS cm-1). pKa of the conjugate acid of pyridine is 5.25, which 

means the additional protonated pyridine exists in its un-dissociated form in water.[235] 

The difference in proton conductivity between (1+1)N-H+ and (3+1)N-H+ membranes is, 

however, minimal (13 vs. 12 mS cm-1) which implies the additional two internally-facing 

pyridines exert little influence on proton conductivity, and that the presence of the 

externally exposed pyridine moiety is the determining factor affecting proton conductivity.  

 

Figure 4-10. Proton conductivity of membranes at 80 oC as a function of RH. 
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To gain additional insight on the effect of membrane hydration, proton conductivity of 

each membrane is plotted against DVS-determined water vapor uptake at 80 °C (Figure 

4-11a). The increasing water content in this plot is achieved by varying the relative 

humidity from 40% RH to a maximum of 95% RH. The water contents of (1+0)N-H+ are 

marginally lower than its pyridine-free counterpart, 0N-H+ for a given RH (e.g., 37 vs 43 

wt%, respectively, at 95% RH). The proton conductivity of (1+0)N-H+ is, hence, lower (119 

mS cm-1 for (1+0)N-H+ vs. 155 mS cm-1 for 0N-H+ at 95% RH/80 °C ). Moreover, the 

experimental IEC (yielding available protons) is lower as illustrated previously in Table 4-2. 

However, upon further addition of an externally-directed pyridine, (1+1)N-H+) and (3+1)N-

H+, vaporous water contents 80 °C are significantly reduced (18 and 13 wt%, respectively 

at 95% RH. Similarly, proton conductivities diminished to 13 and 12 mS cm-1, respectively. 

It becomes clear that the presence of exposed basic pyridine groups markedly abate water 

uptake and proton conductivity compared to internally-facing basic pyridine groups in 

which the hindered N-atom is sterically hindered. 
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Figure 4-11. In-plane proton conductivity of membranes at 80 oC versus (a) water 

vapor uptake, (b) vaporous hydration number and (c) vaporous water 

content. 

In Figure 4-11b conductivity is plotted against λ. Proton conductivities of all membranes 

are relatively low (< 20 mS cm-1) when λ <5 due to the diminished proton transport when 

insufficient free water exists within the membrane.[18] Due to the relatively low λ, even at 

95 %RH, for both (1+1)N-H+ (5.5) and (3+1)N-H+ (5.2), proton conductivities remained 

comparatively low at 95% RH and 80 oC (13 mS cm-1 and 12 mS cm-1, respectively). In 
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membranes where larger λ values are observed to exist (λ > 5), unbound water is assumed 

to be present and proton conductivity increases substantially. In this regime, conductivity 

may be attributed to the Grotthus mechanism, which depicts proton transport via a series 

of hydrogen-bond formation and breaking with water molecules.[18,237] The rate of 

increase in proton conductivity with hydration number for (1+0)N-H+ is slower that 0N-H+ 

(see Figure 4-11b) which could be due to the weaker surface mechanism for proton 

transport, in which the sulfonic acid group participates in the H-bond formation/breaking 

process with adjacent water molecules.[18,237]  

Proton conductivity against water content is plotted in Figure 4-11c. Proton conductivity 

increases for each sulfonated polyphenylene as water content increases. Xv, 0.56 and 

0.48, is observed for 0N-H+ and (1+0)N-H+ at their highest conductivities, 155 and 119 

mScm-1, respectively. However, for (1+1)N-H+
 and (3+1)N-H+ the water content, Xv, is only  

0.26 and 0.19, respectively, and hence their highest conductivities are reduced to low 

values, 13 and 12 mScm-1, respectively. With an increase in the externally exposed 

nitrogen groups, inter-molecular acid-base crosslinking is enhanced, which also leads to 

a reduced water content and reduces proton conductivity.  

4.4. Conclusion 

A series of novel sulfonated phenylated phenylene polymers containing increasing 

numbers of nitrogen atoms (0 to 4), 0N-H+, 1N, (1+1)N-H+, (3+0)N-H+, and (3+1)N-H+, 

were synthesized to undertake a comparative study of nearly identical structures wherein 

the only variance was a systematic replacement of carbon atoms with nitrogen atom. As 

the number of N atoms is increased from 0 to 4 in 0N-H+ to (3+1)N-H+, proton conductivity 

decreases due to acid-base neutralization between the basic pyridine group and acidic –

SO3H group. The effect of self-neutralization on the membranes is to restrict water content 

through acid-base crosslinking. Liquid and vaporous water sorption, steady-state water 

permeability, and transient diffusivity decrease in the order: 0N-H+ > (1+0)N-H+ > (1+1)N-

H+ > (3+1)N-H+. When four pyridyl groups are introduced, dimensional swelling of the 

resulting polymer (3+1)N-H+ is reduced from 82% to 20%, similar to that of the N211 

reference (24%). At 80 oC, the steady-state water permeabilities and transient diffusivity 

of (3+1)N-H+ are not significantly reduced, compared to N211.  
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Proton conductivities of fully hydrated membranes, where water volumes remained 

high and when correlated to water volume, are equal to twice that of N211, depending on 

water content. This high conductivity is because of the much higher proton carrier 

concentration as the effective proton mobility were much lower than N211 despite their 

higher water content. Under reduced RH, proton conductivities are commensurate with 

water sorption of those polymers containing 2 or more pyridines having lower water 

content and much lower proton conductivities. Under these conditions (1+1)N-H+ and 

(3+1)N-H+ possess very low proton conductivity as result of a diminished hydration 

number caused by restricted water uptake, which in turn was the result of the externally-

exposed pyridines, which are preferentially protonated and form stronger acid-base 

crosslinks.  

These studies provide insight into the design of proton exchange membranes and 

transport properties. They serve to direct further optimal placement of atoms to control 

acid-base interaction, to control the extent of ionic crosslinking, and to maximize transport 

properties with minimal water content. Future work will be directed to extending these 

correlations to transport properties in catalyst layers because the requirements for water 

sorption and proton conductivity are often different from those of membranes. Polymer’s 

interactions with catalysts and support materials in the catalyst layer’s formation of porous 

network adds further complexity of analyzing water sorption and transport through the 

catalyst layer.   
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Chapter 5. Influence of the hydrocarbon-based 
ionomer in the catalyst layer on the mass transport 

The work in this chapter has been in preparation as Y. Wu, E. Balogun, S. Holdcroft, 

Influence of the hydrocarbon-based ionomer in the catalyst layer on the mass transport. 

Yang Wu performed all water transport examination, surface characterization, and 

mathematical modelling approximation. Emmanuel Balogun undertook the membrane 

electrode assembly preparation and performed the in-situ fuel cell tests.  Professor Steven 

Holdcroft supervised the work conducted. 

This chapter will focus on mass transport examination, surficial characterization, 

mathematical approximation, and interpretation, which were executed by the author of this 

thesis. Supporting information is provided in Appendix C. 
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5.1. Introduction 

Large scale commercialization of proton exchange membrane fuel cell (PEMFC) 

demands further reduction in cost (to $30/ kW) and better fuel efficiency (60%).[51,67] To 

achieve these goals, catalyst layer within the fuel cell received particular attention. 

Catalyst layer, where the electrochemical reactions develop, comprises agglomerates of 

carbon-supported platinum particles coated with the proton exchange ionomers 

(PEI).[51,76,77] Currently, the benchmark ionomer is Nafion®, a perfluorosulfonic acid 

(PFSA) ionomer. PFSA ionomer facilitates the decay and complicates the recycling of Pt 

catalyst.[51] Fluorine-free hydrocarbon(HC-)based polymers are easier to functionalize 

and comparatively more proton-conductive than their perfluorosulfonic counterparts. 

Subsequently, HC-based ionomers are intensively sought after as alternatives.[56]  

Structure-property study on the free-standing hydrocarbon-based membrane is in 

its infancy.[53,67,68] Reviews on the HC-based ionomers integrated into catalyst layers 

are even rarer, so far only one by Peron et al.[56] They found that i) polyaromatic polymers 

are more prone to form true solutions compared to PFSA ionomers in the catalyst ink; ii) 

lack of phase aggregation and ionic network in the HC-based catalyst layer may cause 

poor proton conduction; iii) increasing the content of sulfonated HC-based ionomer 

decreases catalyst layer’s porosity and impedes gas diffusion; iv) strong interactions 

between HC-based ionomer and Pt/C results in the densification of the catalyst layer and 

impact the fuel cell performance; v) the higher the degree of sulfonation in the ionomer, 

the higher the water uptake, subsequently the lower gas permeability, and higher the 

probability of flooding.[56]  

Some studies investigated water uptake and transport in catalyst layers containing 

Nafion® ionomer. Holdcroft et al. reported a larger fraction of mesopores (< 20nm) caused 

higher water uptake in the catalyst layer because of the more substantial capillary 

effect.[207] Weber et al. fabricated catalyst layers with superhydrophobic surfaces 

(contact angle >150°) and increased water content by using electrospray coating  

technology.[208] Computational studies predicted a higher diffusivity of water vapor in the 

catalyst layer than the bulk membrane based on porous nature of the former.[174,209–

213] An experimental research examined the influence of catalyst layers containing 

Nafion® ionomer on the liquid-vapor permeation through  Nafion® membranes and 

detected no significant difference.[82] 
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To date, water transport studies on catalyst layers containing HC-based ionomers 

are still tentative and are seldom related to the catalyst layer’s surficial features or fuel cell 

performance. No research has been reported on how HC-based ionomers affect water 

uptake and transport through the catalyst layer. Understanding the influence of HC-based 

ionomers on water transport within the catalyst layer may assist to bridge fuel cell 

performance and catalyst layer composition.  

Lately, a chemically stable, proton-conductive sulfonated polyaromatic polymer - 

sulfonated phenylated poly(phenylene) biphenyl (SPPB) was reported (Figure 5-1).[63] In 

situ fuel cell test showed promising results for polymer SPPB both as a free-standing 

membrane[63] and as proton conductive ionomer in the catalyst layer (> 1 W cm-2 peak 

power density).[214] Yet, little is known about how this novel proton exchange ionomer 

would affect the water uptake and electrochemical performance of the catalyst layer. The 

proton conductive ionomer, SPPB, therefore provides an opportunity to characterize the 

water uptake and transport behavior of the HC-based catalyst layer. In this chapter, water 

vapor uptake, transient diffusion, and steady-state permeation through the catalyst layer 

containing SPPB with differing ionomer content were tested and compared to the 

reference CL of Nafion® ionomer. Electrochemical performances were examined by 

running in situ fuel cell test on membrane electrode assemblies of catalyst layers 

incorporated with differing content of SPPB. Surficial characterizations such as contact 

angle and surficial roughness were also executed on the catalyst layers. The chemical 

composition (ionomer content) was later correlated to surficial features, water transport, 

electrochemical performance of the catalyst layer. Such correlation enables an essential 

understanding of the relationship between catalyst layer composition and fuel cell 

operation, of the origins behind the cathode flooding phenomenon, and possible the 

enhancement of water management of the fuel cell. 
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Figure 5-1. Chemical structures of sulfonated phenylated poly(phenylene) biphenyl 

(SPPB). Identical to Figure 1-13 

5.2. Experimental 

5.2.1. Material 

Membrane and ionomer SPPB, catalyst ink, Milli-pore water, commercial Nafion® 

membranes were obtained as described in section 2.2, chapter 2. 

5.2.2. Catalyst coated membranes (CCM) 

Catalyst inks containing i) Nafion® and ii) SPPB of various ionomer contents (10, 15, 

20, 25, and 30 wt%) were applied onto pristine N211 membranes via spray coating using 

a Sono-tak ExactaCoat spray coater (flow rate 0.25 ml/min, Idle power 2 Watts, run power 

0.5 Watts), respectively. The catalyst loading was ≅ 0.4 mg Pt cm-2 on each side over an 

area of 5 cm2 (2.24 x 2.24 cm).  

5.2.3. Influence on steady-state water permeation 

Detailed information of steady-state liquid-vapor permeation measurement is provided 

in section 2.4.1, chapter 2. 

Catalyst inks containing 20 wt% of Nafion® and SPPB were used in this section. The 

catalyst inks were spray coated on the membrane substrate, pristine N211, as stated in 

section 5.2.2 with modifications mentioned below. For each type of catalyst layer (CL 

Nafion®, or CL SPPB), three experimental groups were prepared: 1) catalyst layer on the 

desorption side; 2) CL on the sorption side; and 3) CL on both sides of the membrane. 
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These were compared to a control group, the pristine Nafion® membrane (N211). The 

membrane with catalyst layers coated on both sides was designated a catalyst-coated 

membrane (CCM), while the membrane with catalyst layer coated only on the desorption 

side, facing the water vapor, was denoted hCCMd; and the membrane with catalyst layer 

coated only on the sorption side, facing the liquid water, was symbolled hCCMs. Five 

replicates in each group were measured for repeatability and t-test. 

5.2.4. Water vapor uptake and transient diffusion 

Catalyst inks containing i) Nafion® and ii) SPPB of various ionomer contents (10, 15, 

20, 25, and 30 wt%) were applied onto polytetrafluoroethylene (PTFE) sheet (0.2 µm, 

Sartorius Stedium) following the protocol as mentioned in section 5.2.2. Samples were 

initially dried in the dynamic vapor sorption (DVS) apparatus (Advance, Surface 

Measurement Systems, U.K.) at 80 °C and 0 % RH for 6 h, after which the initial dry mass 

of the sample, Mdry, was determined. Then, relative humidity within the sample was 

regulated to increase from 0 to 70 %, in 10 % increment (± 1.0 %) at 80 °C. Changes in 

mass of samples, resulted from uptake of water vapor, under established relative humidity 

were measured with the integrated UltrabalanceTM (± 0.1 μg) in the DVS apparatus. At 

each set relative humidity, enough time interval was provided (> 120 mins) for the sample 

to equilibrate to a stabilized mass, Mhydrated, before further hydration. Water vapor uptake 

under each relative humidity was then determined as shown in Equation 5-1.  

𝑤𝑎𝑡𝑒𝑟 𝑢𝑝𝑡𝑎𝑘𝑒 =
𝑀ℎ𝑦𝑑𝑟𝑎𝑡𝑒𝑑−𝑀𝑑𝑟𝑦

𝑀𝐶𝐿,𝑑𝑟𝑦
 [208] Equation 5-1 

where MCL,dry is the weight of dry catalyst layer of the sample. 

Effective rate constant of transient diffusion was determined after being approximated 

to  Equation 5-2.[200] 

(
𝑀𝑡,𝐶𝐿−𝑀0,𝐶𝐿

𝑀∞,𝐶𝐿−𝑀0,𝐶𝐿
) ≅ exp [−𝑘𝑠𝑜𝑟𝑝𝑡] [200] Equation 5-2 
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Here, Mt,CL, M0,CL, M,CL, and t are instantaneous mass, initial mass, equilibrated mass of 

the catalyst layer, and instantaneous time, respectively.   

5.2.5.  In situ fuel cell test  

The fuel cell performance of 5 cm2 active area membrane electrode assemblies was 

evaluated using the fuel cell test station (Scribner 890CL). The resulting catalyst-coated-

membranes were sandwiched between two 5 cm2 gas diffusion layers (GDL) and 

compressed using a torque wrench, with the adequacy of compression determined by 

pressure-sensitive paper. The membrane electrode assembly was conditioned at 80 °C 

and 100 % relative humidity with constant inlet gas flows of 0.5 standard liters per minute 

(slpm) hydrogen at the anode and 1.0 standard liters per minute oxygen at the cathode. 

The cells were conditioned, then equilibrated at open circuit voltage (OCV) prior to 

subsequent measurements. Polarization curves were taken from the OCV to a shutoff 

potential of 0.3 V over 200 mA steps, measuring 5 min per point. The resolution of the 

kinetic region was determined by a current scan from 0.00 – 0.20 A via 0.01 A steps at 1 

min per point. Similarly, the ohmic region scan was scanned from 0.50 A – 1.50 A, with 

0.50 A steps at 5 min each point. The mass transfer region of the polarization curve was 

obtained by scanning through 2 A – 15 A, using 1 A steps at 5min point-1. The polarization 

curve were approximated using 0-dimensional (0-D) equation as shown in Equation 

5-3:[208] 

𝑉 = 𝐸′ − 𝑏 ∙ 𝑙𝑜𝑔
𝑗

𝐿𝑃𝑡𝐴𝑃𝑡∙𝑗0
− j ∙ 𝑅𝑑𝑐 [208] Equation 5-3 

in which 𝑉 is the cell voltage, j the current density, 𝐸′ the thermodynamic potential, 𝑏 the 

Tafel slope, 𝐿𝑃𝑡  the platinum loading (0.4 mg cm-2), 𝐴𝑃𝑡  the effective electrochemical 

surface area, 𝑗0 the catalyst area-normalized exchange current density (8.5 ˣ 10-9 A cm-2 

Pt [79]), and 𝑅𝑑𝑐 (𝑑𝑖𝑟𝑒𝑐𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡) the internal resistance. The values of 𝐴𝑃𝑡  and 𝑅𝑑𝑐  were 

determined by the least-square analysis (smallest square residual analysis).[208] Only 

points below 0.8 A cm-2 were approximated to Equation 5-3 avoid oxygen transport 

limitations, which the equation did not include.[208]  
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5.2.6. Determination of the experimental electrochemical surface 
area3 

A VersaStat 4 Potentiostat/Frequency Response Analyzer (FRA) was used for all 

subsequent electrochemical characterizations. Cyclic voltammograms (CV) of fuel cells 

were measured by sweeping the potential between 0.04 V and 0.80 V vs. reversible 

hydrogen electrode (RHE) at a scan rate of 50 mV/s, after an initial potential hold at 0.4 V 

vs. RHE for 45 sec. The current peaks observed in the CV was used to determine the 

relative rates of reactions in the PEMFC using different CCMs. Measurement conditions 

were 80 °C and 100 % RH, with inlet gas flows of 0.5 slpm H2 at the anode and 0.5 slpm 

O2 at the cathode until stable potential of less than 0.15 V was achieved, after which the 

gas flow at the cathode was set to zero. The electrochemical surface area associated to 

the hydrogen adsorption can be evaluated by the following equation: 

𝐸𝐶𝑆𝐴 =  
𝑄

𝐿𝑃𝑡 × 𝜇𝑃𝑡
 Equation 5-4 

where Q is the charge density of the atomic hydrogen adsorption, 𝐿𝑃𝑡 is the Pt loading (0.4 

mg Pt/cm2) and µpt is a constant (210 mC cm-2 Pt), which is the charge required to reduce 

a monolayer of protons on a polycrystalline Pt surface of 1 cm2. The Q for desorption and 

adsorption is extracted by fitting the CV data with the aid of a Core view software. 

5.2.7. Characterization tests 

Contact angle measurements and surficial roughness measurements are described 

in section 2.8 and section 2.9 in chapter 2, respectively. 

5.3. Results and discussion 

5.3.1. Water vapor uptake 

Water vapor uptake of each catalyst layer, with differing ionomer content (10 to 30 

wt%), was measured with DVS analyzer at 80 °C and plotted in Figure 5-2. As a reference, 

 

3 Measured and calculated by Emmanuel Balogun.  
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water vapor uptake curve of the pristine membrane was added in the graph to each 

catalyst layer containing the respective ionomer. Generally, water vapor uptakes in CLs 

containing the hydrocarbon-based ionomer, SPPB, are higher than those in the CL 

Nafion® throughout the examining ionomer content range (10 to 30 wt%). This is not 

unexpected due to the higher ion exchange capacity (3.3 vs 0.9 mmol g-1) of ionomer 

SPPB compared to Nafion®.[126]  

In Figure 5-2a, water vapor uptake of CL SPPB (10 to 20 wt%) is not significantly 

different from that of the membrane SPPB throughout the testing RH range. The catalyst 

layer with 30 wt% of SPPB has lower water vapor uptake than the two catalyst layers with 

lower ionomer contents. The similarity of water vapor uptake between the pristine 

membrane and catalyst layers containing the HC-based proton exchange ionomer (PEI) 

is likely due to the polyaromatic polymers are prone to form true solutions in the catalyst 

ink.[56] The ultra-thin SPPB film in the CL is likely similar to the bulk membrane SPPB 

with minimal interfacial effect between SPPB ionomer/vapor given the high ion exchange 

capacity of the HC based ionomer. On the contrary, water vapor uptake of CL Nafion®, for 

all the ionomer content tested, is lower than the respective membrane N211 as seen in 

Figure 5-2b. Water vapor uptake of CL Nafion® (10 vs. 20 wt%) are not significantly 

different, and both higher than that of CL Nafion® with 30 wt% ionomer content. The water 

vapor uptake of membrane N211 at 80 °C is consistent with published literature.[29,200] 

Similar observation was reported that catalyst layer containing Nafion® ionomer 

possesses diminished water vapor uptake than Nafion® membrane.[201,208] This 

observation would be explained by the large interfacial effect between Nafion®/ vapor 

given its hydrophobic fluorine-rich surface[163,165,197] that has been exacerbated when 

thickness of Nafion® film gets to order of nanometer in the CL.[29,201] The lower water 

vapor uptake in both CL SPPB and CL Nafion with 30 wt% ionomer content could be 

attributed to the decreased accessibility of platinum particles.[201] 
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Figure 5-2. Water vapor uptake as a function of relative humidity of (a) CL SPPB and 

(b) CL Nafion® with different ionomer content at 80 °C. 

5.3.2. Influence of catalyst layer on liquid-vapor permeation 

Liquid vapor permeation measurements were carried out on each sample group for 

each type of catalyst layer. The molar water fluxes through each group are presented in 

Figure 5-3. The asterisks in the graph denote groups that are deemed statistically different 

from the control group (N211) under the same relative humidity, with confidence level 

larger than 95% obtained from the t-test. 

In Figure 5-3a, as shown for CL SPPB, catalyst layer does not influence water 

permeation through the membrane regardless of the direction (see Table C 3, Appendix 

C). Even for a fully coated CCM, the CL SPPB on both sides of the membrane do not 

influence the molar water flux through the assembly significantly. When deposited on the 

desorption side of the membrane, CL SPPB does not influence the water permeation 

through the assembly, hCCMd. This is potentially due to the high porosity and 

hydrophilicity of catalyst layer cancelling out the influence from addition of membrane/CL 

and CL/vapor interfaces and wet thickness.[82] Insignificance from the addition of CL on 

the sorption side, hCCMa, could be attributed to high activity of water outweighs interfacial 

effect.   

A 3-D, multicomponent, multiphase transport computational fluid dynamics study,[238] 

predicted that water transport limitations associated with the catalyst layer would 

negatively affect fuel cell performance by retarding O2 from reaching reaction sites and 

producing larger ohmic losses.[239] However, in our experimental measurements, the 

molar water fluxes of liquid-vapor permeation through hCCMd and hCCMs for CL Nafion® 
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(Figure 5-3b) are not significantly different from that through the control group, indicating 

that depositing CL Nafion on either the desorption (hCCMd) or sorption side (hCCMs) of 

the membrane does  not influence the liquid-vapor permeation within the RH range tested, 

as reported previously.[82] This can conceivably be explained by the high porosity of the 

catalyst layer. However, for catalyst-coated membranes (CCM), with catalyst layers 

coated on both sides of the membrane, the molar water fluxes were approximately 10% 

lower compared to those of the control group, a pristine N211 membrane, between 30% 

to 70% RH. No significant differences were found between all three experimental groups 

and the control group at 90% relative humidity, though. This is may be due to experimental 

difficulties in obtaining data with enough precision under such high relative humidity.  

 

Figure 5-3. Effects of catalyst layers a) CL SPPB and b) CL Nafion® with 20 wt% 

ionomer content on liquid-vapor permeation through membrane N211 

under various relative humidities at 80 °C. hCCMd represents the 

catalyst layer facing the water vapor while hCCMs means the catalyst 

layer facing the liquid water. The asterisks denote groups that are 

statistically different from the control group (N211) under the same 

relative humidity (with the confidence level larger than 95%) 
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5.3.3. Transient diffusion in the catalyst layer 

In time-dependent DVS, the instantaneous change in mass of a sample under certain 

RH gradient was monitored and recorded. For example, the instantaneous mass-change 

rate, dm/dt, of CL SPPB (10 wt% ionomer content) under differential RH intervals at 80 °C 

was plotted against time in Figure C 1, Appendix C. First, the major mass change only 

occurred in the first 600 s after RH change triggered, which is much shorter than the time 

interval monitored in this study (>6000 s). This observation demonstrates that enough time 

was given for each catalyst layer to equilibrate for stable mass before subject to the next 

RH gradient. Secondly, as seen in Figure C 1, the instantaneous mass change rate for CL 

SPPB (ionomer content, 10 wt%) is larger when exposed to lower RH intervals than that 

to higher RH intervals. To quantitatively analyze transient diffusion of water vapor into 

catalyst layers, the normalized mass gain of CL SPPB (ionomer content, 10 wt%) resulted 

from hydration against time was plotted in Figure 5-4 as an example. In the normalized 

mass gain, (Mt - M0) / (M - M0), Mt, M0, and M are instantaneous mass, initial mass, and 

equilibrated mass, respectively. Under higher RH intervals, it takes a longer period for the 

normalized mass gain to reach to 1 than under lower RH intervals. Reasons behind this 

observation could possibly be the following: i) driving force of transient diffusion, i.e., the 

enthalpy of solvation, decreases under higher RH;[29,173] or ii) there exists a faster non-

Fickian diffusion under lower RH.[29,190]  

 

Figure 5-4. Normalized water uptake, [Mt – M0] / [Mꝏ - M0], over time in sorption 

period of CL SPPB with 10% ionomer content at 80 °C. 
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After approximating the normalized mass gain to Equation 5-2, the value of effective 

rate constant of transient diffusion under each RH interval was determined and plotted in 

Figure 5-5 for each catalyst layer. In Figure 5-5, the data of a reference membrane N211, 

was added. The effective rate constants of diffusion for N211 membrane in this research 

lie within the same order of magnitude of the reported values.[29,200,201] Transient 

diffusion is a complex process involving accommodation of water molecules into pore 

structure of the catalyst layer and relaxation of backbone of the CL matrix. The rate 

constant of transient diffusion represents how promptly the material responds to the 

dynamic humidity change in an operating fuel cell. In Figure 5-5a, ksorp of CL SPPB with 

10% and 20 wt% ionomer content are not statistically different and close to the reference 

membrane N211 throughout the examining RH intervals at 80 °C. When ionomer content 

increases to 30 wt%, ksorp of CL SPPB becomes lower compared to the reference or CLs 

SPPB with smaller ionomer content. Therefore, a lower ionomer content (<30 wt%) favors 

a larger water vapor uptake in CL SPPB, as mentioned in section 5.3.1, and faster 

transient diffusion rate. In contrast, ionomer Nafion® is found to slow down transient 

diffusion in the catalyst layer compared to the pristine membrane N211, throughout the 

testing range of ionomer content (Figure 5-5b). Similar hindered transient diffusion was 

previously reported in catalyst layer with ionomer Nafion®.[201] This observation is 

attributed to the CL/vapor interfacial effect restricts mass transport within Nafion® ionomer 

thin film because of Nafion’s more hydrophobic perfluorinated chemical composition.[201] 
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Figure 5-5. Effective rate constant of transient diffusion, ksorp, of (a) CL SPPB and 

(b) CL Nafion® under different relative humidity intervals at 80 °C. 

5.3.4. Surficial characterization 

Contact angle measurements were conducted in a class-100 dust free room (less 

than 100 particles per cubic foot) under ambient environment (20 °C and 40% RH) to 

discover surficial hydrophobicity of catalyst layers with different ionomers and ionomer 

content (Figure 5-6). CL SPPB with 10 wt% ionomer content was so wettable that the 

contact angle could not be measured as seen in Figure 5-6a. Exact contact angle values 

for each catalyst layer were plotted against ionomer content in Figure 5-7 as the primary 

y-axis. In the meantime, surface roughness of each catalyst layer was measured with AFM, 

and the root mean square roughness, Rq, was plotted as the secondary y-axis against 
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ionomer content in Figure 5-7. In Figure 5-7a, CL SPPB possesses a hydrophilic surface 

with contact angle smaller than 50°. Increase in ionomer content of SPPB results in an 

increasing contact angle and decreasing surficial roughness after 15 wt% (contact 

angle:7°; Rq: 377 nm). The observation of a less rough surface of the CL SPPB with 

increasing ionomer content could be because the catalyst ink containing more 

polyaromatic ionomer behaves more like true solution,[56] and renders a smoother 

surface in spray coating process. The less rough surface (higher ionomer content of SPPB) 

would then decrease the surficial hydrophilicity (larger contact angle) due to the Cassie-

Baxter effect: surface roughness increases the surface hydrophilicity of an already 

hydrophilic surface.[240] On the contrary, CL Nafion® has a hydrophobic surface as the 

contact angle is larger than 120° (see Figure 5-7b). The surficial roughness of CL Nafion® 

varies with the ionomer content in a “V-shape” with the lowest value (221 nm) at 20 wt% 

as shown in Figure 5-7b. Same as surficial roughness, the contact angle of CL Nafion® 

changes with the ionomer content in a “V-shape” with the lowest value (126°) at identical 

ionomer content (20 wt%). The same pattern observed in both contact angle and root 

mean square roughness changing with ionomer content could be explained by the Cassie-

Baxter effect: surface roughness increases the surficial hydrophobicity for an already 

hydrophobic surface like CL Nafion.[240] 

Surficial hydrophilicity/hydrophobicity is not only dependent on the chemical 

composition of the catalyst layer but also physical characters such as surface roughness. 

The high ion exchange capacity of ionomer SPPB bestows hydrophilicity to the catalyst 

layer; the perfluorinated backbone of ionomer Nafion® provides a hydrophobic surface on 

the catalyst layer. Ionomer content within the catalyst layer governs the extent of 

hydrophilicity/hydrophobicity by altering the surficial roughness as guided by the Cassie-

Baxter effect: increase in ionomer content within the CL SPPB decreases the hydrophilicity 

by smoothing the surface. 
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Figure 5-6. Contact angle measurements of (a) CL SPPB and (b) CL Nafion with 

different ionomer percent (10 to 30 w/t % in 5 % gradient) under ambient 

environment (20 °C, 40% RH). 

 

 

Figure 5-7. Contact angle (primary axis) and root mean square roughness 

(secondary axis), Rq, of (a) CL SPPB and (b) CL Nafion® with different 

ionomer content under ambient environment (20 °C, 40% RH). 

5.3.5. Fuel Cell Analyses 

In situ electrochemical fuel cell tests were executed on membrane electrode 

assembly equipped with CL SPPB in different ionomer contents coated on the benchmark 

membrane N211. All tests were operated at 80 °C, 100% RH, 0.5 standard liters per 

minute H2, and 1.0 standard liters per minute O2. As shown in Figure 5-8, cell voltage 

(primary axis) and power density (secondary axis) of membrane N211 coated with CL 

SPPB containing various ionomer content (10 to 30 wt%) were plotted against current 
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density. In Figure 5-8, the MEA with CL SPPB (15 wt% ionomer content) displays the least 

voltage loss and the highest power density. The peak power density of this MEA is over 

1000 mW cm-2.  

 

Figure 5-8.  Polarization (black lines, primary axis) and power density (red lines, 

secondary axis) curves showing the performance of sPPB ionomer 

CCMs with 10, 15, 20, 25 and 30 wt% ionomer in the catalyst layer. 

Nafion (N211) membrane thickness was 25 µm. Operated at 80 ◦C, 100% 

RH, 0.5 standard litres per minute H2, 1.0 standard litres per minute 

O2. 

 To decipher the electrochemical performance of these MEAs with CL SPPB, the 

polarization curves in Figure 5-8 were approximated to the 0-D equation (Equation 5-3). 

Only points below 0.8 A cm-2 were taken in approximation to avoid limitations from the 

oxygen transport which the Equation 5-3 did not consider.[208] Approximated values, 

determined by the least square analysis (Table 5-1), for the effective electrochemical 

surface area (APt) and internal resistance (Rdc) were then plotted against ionomer content 

as the primary and secondary y-axis, respectively in Figure 5-9. In Figure 5-9, large limits 

(95% confidence) are observed for the APt values. This observation corresponds to the 

seemingly heteroscedasticity in residual distribution shown in Appendix C. The loss of 

precision in approximating polarization curve to the 0-D equation possibly originates from 
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its over-simplification in 1) omitting the influence of oxygen transport overpotential and 2) 

merely assuming the exchange current density proportional to the ECSA without 

considering the other reactants’ concentration and catalyst’s reactivity. Thus, the 

approximation values showing the general trend against the ionomer content do not 

necessarily represent the exact magnitude of APt and Rdc. To further support the trend of 

ECSA against ionomer content predicted by the 0-D equation, the experimental ECSA 

values (APt_exp) determined by the cyclic voltammograms were added in Table 5-1 and 

plotted in Figure 5-10. Indeed, both APt and APt_exp display a similar pattern against ionomer 

content in Figure 5-9 and Figure 5-10, respectively. 

In Figure 5-9, CL SPPB (15 wt% ionomer content) has highest effective 

electrochemical surface area for the catalyst (93.8 m2 g-1) and the lowest internal 

resistance (0.099 Ω cm2). The internal resistance, when less than15 wt%, decreases with 

the ionomer content because the presence of more ionomer increases the proton 

conductance. When greater than 15 wt%, internal resistance increases with the ionomer 

content. The increase in internal resistance with ionomer content is likely caused by the 

increase in thickness of the CL as reported before.[208] The effective electrochemical 

surface area generally decreases with the ionomer content (Figure 5-9 and Figure 5-10). 

This is probably because the higher ionomer content diminishes the exposure of the 

catalyst. Interestingly, trend of the effective electrochemical surface area with ionomer 

content is in accordance with the surface roughness as discussed in section 5.3.4. The 

increase in surface roughness, generally, corresponds to the increase in the effective 

ECSA. The rougher the surface of the CL, the greater the exposed area of the platinum 

particles and, therefore not unexpectedly the higher effective ECSA.  
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Table 5-1. Value of variables (± limits of 95% confidence) in 0-D equation. Residual           

distribution is provided in Appendix C. 

Ionomer 

content (%) 

b APt (m2 g-1) Rdc (Ω cm2) APt_exp (m2 g-1)a 

10 0.077±0.005 77.6±22.1 0.143±0.018 65.3 

15 0.078±0.001 93.8±42.7 0.099±0.016 66.2 

20 0.067±0.006 35.2±9.1 0.125±0.006 50.7 

25 0.075±0.008 34.4±7.8 0.131±0.005 38.9 

30 0.077±0.003 38.3±19.4 0.195±0.016 37.5 

a Experimental electrochemical surface area determined by the cyclic voltammograms, by 

Emmanuel Balogun. 

 

  

Figure 5-9.          Approximated effective electrochemical surface area (primary axis) 

and internal resistance (secondary axis) extracted from 0-D 

equation of CL SPPB with various ionomer contents. 
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Figure 5-10. Experimental effective electrochemical surface area of CL SPPB with 

various ionomer contents. Similar trend of APt_exp against ionomer 

content is observed in APt vs ionomer content. 

Meanwhile, it has been widely acknowledged that CL containing ionomer Nafion® with 

30 wt% ionomer content renders the best electrochemical performance.[88,101,241] 

Therefore, the in situ fuel cell test was also run on the MEA with CL Nafion® (30 wt%) as 

seen in Figure 5-11. 0-D approximation of the polarization curve provides APt and Rdc as 

12.7±4.1 m2 g-1 and 0.088±0.002 Ω cm2, respectively. When comparing the two catalyst 

layers with their respective best performance ionomer content, CL SPPB (15 wt%) and CL 

Nafion® (30 wt%), it was found that both the effective ECSA (93.8 vs 12.7 m2 g-1) and 

internal resistance (0.099 vs 0.088 Ω cm2) of CL SPPB are higher than CL Nafion®. The 

lower internal resistance of CL Nafion® (30 wt%) reveals a more conductive catalyst layer 

composed of Nafion® ionomer that is more phase-segregated and less tortuous 

transporting protons.[56] However, the high effective ECSA for CL SPPB (15 wt%) 

demonstrates a more efficient utilization of the platinum catalyst, which is crucial to further 

cut down cost of the fuel cell.  
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Figure 5-11.   Polarization (black lines, primary axis) and power density (red lines, 

secondary axis) curves showing the performance of Nafion® ionomer 

CCMs with 30 wt% ionomer in the catalyst layer. Nafion (N211) 

membrane thickness was 25 µm. Operated at 80 ◦C, 100% RH, 0.5 

standard litres per minute H2, 1.0 standard litres per minute O2. 

5.4. Conclusion 

Catalyst layer composed of the novel hydrocarbon-based proton exchange ionomer, 

SPPB, was studied for a series of mass transport properties, which were later related to 

surface characterizations (contact angle and surface roughness) and in situ fuel cell tests. 

In the study, a lower ionomer content in CL SPPB favors a larger water vapor uptake and 

faster transient diffusion rate. The CL SPPB does not significantly affect the liquid vapor 

permeation through the membrane electrode assembly, unlike the CL Nafion® deceasing 

the molar water fluxes by ~10% when coated on both sides of the membrane N211. 

Noteworthily, surficial hydrophilicity/hydrophobicity is found to be dependent on both the 

chemical composition (ionomer content) and roughness of the CL. HC-based SPPB with 

higher IEC makes the catalyst layer hydrophilic. Increase in the ionomer content 

smoothens the surface, therefore decreases the surface hydrophilicity increases the 

contact angle of the surface of CL SPPB.  
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In the in situ fuel cell test, CL SPPB (15 wt%) shows the best electrochemical performance 

with the highest effective ECSA (93.8 m2 g-1) and lowest internal resistance (0.099 Ω cm2). 

Interestingly, the effective ECSA and the surficial roughness both decrease with the 

ionomer content. Also, the internal resistance of the MEA rises with the SPPB ionomer 

content because the presence of more ionomer likely increases the thickness of the 

catalyst layer. In summary, future development of HC-based catalyst layer ought to tune 

ionomer content to decrease internal resistance and increase surface roughness therefore, 

increase the effective ECSA for premium electrochemical performance. 
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Chapter 6. Conclusion and future work 

6.1. Conclusion 

Understanding water transport through innovative polymer electrolyte membranes 

and porous electrodes is crucial for water management and performance improvements 

of fuel cells. This thesis expands application of the steady-state permeation protocol, 

previously for the PFSA membranes, to the novel HC-based polymers, namely the second 

generations of the sulfonated phenylated poly(phenylene) from the Holdcroft group. 

Barring the steady-state permeation measurements, this work incorporates transient 

diffusion to examine the membrane’s ability to adjust water content to a dynamic 

environment. Vapor sorption isotherm, coupled with the Park model, is utilized to correlate 

vapor sorption behavior to the chemical/structural features such as surficial hydrophilicity 

and backbone flexibility of the HC-based PEMs. Conductive AFM and surface roughness 

are also conducted to collectively complete the structure-transport correlation. 

 Three specific projects are executed and reported. Potential structure features 

affecting water sorption and transport behaviors are identified. A wholly aromatic and stiff 

backbone with high degree of sulfonation in SPPB renders a contiguous morphology, high 

ion exchange capacity and therefore, a low internal resistance coefficient. The stiffer 

backbone of SPPB is confirmed by its shorter elongation at break than both the HC-based 

and commercial reference (SPAE and N211, respectively). Sulfonated phenylated 

poly(phenylene) with the basic pyridyl incorporated exhibits reduced water sorption, water 

and proton transport, which is more phenomenal when the pyridyl is exposed rather than 

encumbered. It is because the acid-base interaction induces intermolecular crosslinking 

among polymer backbones, stiffens the backbone shown in the stress tests, diminishes 

the morphological rearrangement observed in sorption isotherm, and prolongs the 

relaxation process shown in transient diffusion. Ionomer SPPB with high acid content 

bestows the catalyst layer hydrophilicity with higher vapor sorption and transient diffusion 

than the traditional CL with Nafion® ionomer. Decrease in ionomer content of SPPB 

roughens the CL’s surface and favors vapor sorption and transport. These insights will 

assist in modifying the structure of future generations of the sulfonated phenylated 

poly(phenylene) for desirable mass transport through both the membrane and the catalyst 
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layer, which subsequently leads to electrochemical performance improvements of fuel 

cells. Detailed summarization of the three projects is provided below. 

Initiating the structure-transport correlation for hydrocarbon-based proton 

exchange membranes 

Vapor sorption isotherm and steady-state water permeation of the second generation 

of sulfonated phenylated poly(phenylene), SPPB, are reported and compared to the HC-

based reference (SPAE) and the commercial reference (N211) in chapter 3. Sorption 

isotherms were investigated using dynamic vapor sorption analyzer, then fitted and 

interpreted using the Park model. In Langmuir-type sorption, SPAE possesses the highest 

surface site capacity, representing higher surficial hydrophilicity compared to either SPPB 

or N211. In Henry-type sorption, KH values for both SPAE and SPPB are higher than N211 

due to their larger ion exchange capacity. In clustering-type sorption, a sharp increase in 

water sorption is observed for N211 membranes due to a more flexible backbone and 

more acidic sulfonic acid groups. In steady-state liquid-vapor permeation, SPPB is the 

most permeable when the thickness is > ~30 μm, as it possesses the lowest internal 

resistance caused by a large ion exchange capacity and potentially more contiguous 

internal morphology brought by its wholly aromatic backbone. When thickness is < ~30 

μm, SPAE is the most permeable due to its lowest membrane/vapor interfacial resistance, 

which is confirmed by contact angle measurements and conductive AFM. 

 From the practical perspective, the hydrophilic surface of SPAE may allow the 

membrane higher water retention under the dry environment, and subsequently a more 

stable fuel cell performance under low RH. Meanwhile, the SPPB possesses a quicker 

response to water concentration bias with its smaller internal resistance coefficient, 

therefore a faster internal water permeation.  

Understanding the effect of acid-base interactions using architecturally-controlled, 

pyridyl-bearing sulfonated phenylated polyphenylenes  

Chapter 4 reports water and proton transport through polymers with similar chemical 

structure but with an increasing number of strategically-placed N-atoms in the form of 

pyridyl units. As the number of N-atoms increases, the fraction of immobilized protons of 

–SO3H is increased, and the material’s ion exchange capacity, proton conductivity, liquid 

and vaporous water sorption, dimensional swelling, steady-state water permeability, and 
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transient diffusivity all decrease. With four N-atoms per repeating unit ((3+1)N-H+), 

dimensional swelling and steady-state water permeability of the fully hydrated polymer are 

similar to the N211 reference. However, proton conductivity of (3+1)N-H+ is substantially 

reduced, compared to N211, due to its low water sorption. 

The addition of basic pyridyl groups increases the likelihood of intermolecular 

crosslinking among polymer backbones, thereby stiffening the backbone and prolonging 

its relaxation process during hydration. Since the addition of pyridyl groups lead to 

enhanced intermolecular crosslinking, polymers containing more nitrogen atoms – (1+1)N-

H+ and (3+1)N-H+ – appear to avoid appreciable water uptake and exhibit decreased 

hydration numbers. (3+1)N-H+ exhibited a low proton conductivity of only 12 mS cm-1 with 

a diminished hydration number (λ = 5.2). For all four membranes, proton conductivity 

exponentially grows only when λ > 5 (0N-H+ and (1+0)N-H+), where the Grotthus 

mechanism becomes dominant for proton transport. Collectively, an ideal HC-based PEM 

should maintain a hydration number above 5 and possess a favorable feature, such as 

limited acid-base interactions (and hence crosslinks) to enhance overall membrane 

strength, whilst simultaneously preventing a sacrifice in mass transport. This research 

provides insight to direct further synthesis for optimal placement of atoms to control acid-

base interaction, control the extent of ionic crosslinking, to maximize transport properties 

with minimal swelling.  

Understanding the effect of hydrocarbon-based ionomer on water transport 

through the catalyst layer 

Chapter 5 tested water vapor uptake, transient diffusion, and steady-state permeation 

through the CL containing SPPB with differing ionomer contents and compared them to 

the reference CL of Nafion® ionomer. Both vapor uptake and the effective rate constant of 

transient diffusion of CL SPPB are higher than those of CL Nafion®. Addition of the SPPB-

containing catalyst layer would not hinder liquid vapor permeation (LVP)e through the 

membrane-electrode-assembly (MEA). However, an approx. 10% decrease of LVP was 

measured when both sides of the membrane were coated with Nafion®-containing catalyst 

layers.  

The CL of 15 wt% SPPB possesses the most hydrophilic and roughest surface, which 

agrees with the highest effective electrochemical surface area (93.8 m2 g-1) and lowest 
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internal protic resistance (0.099 Ω cm2) described by the 0-D equation. Surficial 

hydrophilicity was found dependent on both the chemical composition and roughness of 

the CL. HC-based ionomer SPPB makes the catalyst layer hydrophilic with high ion 

exchange capacity. Increasing the ionomer content smoothens the surface, decreases 

surface hydrophilicity, and increases the contact angle of the surface of CL SPPB.  

This research initiated an extensive experimental analysis of mass transport in the 

catalyst layer containing novel HC-based ionomer. It demonstrates ionomer in the catalyst 

layer alters not only its chemical composition but also physical features like surficial 

roughness. Future development of HC-based catalyst layer ought to tune ionomer content 

to decrease internal resistance and increase surface roughness, therefore higher effective 

electrochemical surface area, for the premium electrochemical performance and efficient 

utilization of the catalyst. 

6.2. Future work 

Understanding of water sorption and transport through emerging hydrocarbon-based 

polymer electrolyte membranes is limited, compared to that of the Nafion® membranes. 

Better knowledge of the structure-transport relationship is urgent to modify the structure 

of future HC-based polymers for desirable water transport properties. Therefore, 

electrochemical performance of fuel cells could be enhanced. Future work on water 

transport through polymer electrode membranes and the porous electrodes can be 

conducted in three different areas.  

Further profiling the structure-property-transport relationship 

Given the success at obtaining essential insights from this structure-transport 

relationship study, it is critical to continue similar water transport studies on other 

generations of the sulfonated phenylated poly(phenylene). For example, Figure 6-1 

shows another structure modification on the tunable SPPB to reduce backbone 

linearity, promote macromolecular entanglement and therefore, further decrease 

water sorption.[125] A larger coverage of the structure-transport study renders more 

insights on future structure-modification to facilitate water and proton transport, abate 

volume swelling, and increase mechanical robustness of novel HC-based proton 

exchange membranes. 
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Figure 6-1. Chemical structure of the sulfonated phenylated 

poly(phenylene)containing a branching unit, where x is the 

degree of branching in moles. [125] 

Simplifying units of the steady-state permeation model  

In this thesis, steady-state permeation (diffusion) takes chemical potential 

gradient (kJ mol-1) as the driving force, which causes relatively complicated units of 

the permeability (mol2 m-1 s-1 kJ-1), the interfacial resistance (kJ m2 s mol-2) and the 

internal resistance coefficient (kJ m s mol-2). Complex units of those parameters make 

the steady-state permeation model less appealing and hard to compare with other 

water transport studies. Therefore, future work can also focus on simplifying the units 

reported for steady-state permeation models. Some initial efforts have been reported 

and are shown below.[126] 

Liquid-vapor permeation data for the three membranes in chapter 3 under 30% RH 

and 70 °C were converted to the Fickian diffusion coefficient, DFickian, and are 

presented in the first row of Table 6-1.[164] The diffusion coefficient was calculated 

as 𝐷𝐹𝑖𝑐𝑘𝑖𝑎𝑛 = 𝐽𝐿𝑉𝑃 × 𝐿 ∆𝐶⁄ , where 𝐽𝐿𝑉𝑃  is the molar water flux of liquid-vapor 

permeation, 𝐿   is the wet thickness (33 µm), and ∆𝐶  the concentration difference 

between liquid water and water vapor under 30% RH and 70 °C.[164] Molar 

concentration of liquid water at 70 °C is 54.3 M (density of liquid water: 0.978 g/mL). 

Molar concentration of water vapor 30% RH at 70 °C is 0.00328 M (saturated water 

vapor pressure: 0.308 atm, 30% RH vapor pressure: 0.0923 atm). The Fickian 

diffusivity of N211 derived in this study agrees with the reported values in the same 
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order of magnitude (10-6 cm2 s-1) under similar conditions, 70 °C and 30 to 50 % 

RH.[171,176,242]  

Permeability, P, is the multiplication of permeance and the wet thickness of the 

membrane. The liquid-vapor permeabilities of the three membranes under 30% RH 

and 70 °C were included in the second row of Table 6-1. The liquid-vapor permeability 

of N211 in this study agrees with the reported values, 1 to 4 ˣ10-6 mol2 m-1 s-1 kJ-1.[163–

165] To facilitate literature comparisons of permeability, the units kJ was replaced with 

106 g m2 s-2, and mol was replaced with 18 g, the molar mass of water. These values 

are shown in the third row of Table 6-1.  

These attempts are primitive, and therefore more attention and thoughts should 

be concentrated on simplifying the steady-state model, making it more relevant and 

convenient for future water transport studies.  

 

Table 6-1. Water diffusion coefficient and Permeability for the SPPB, SPAE, and 

N211 membranes under 30% RH and 70 °C  

membrane SPPB SPAE N211 

DFickian (ˣ106 cm2 s-1) 1.63 ± 0.05 1.43 ± 0.03 1.11 ± 0.05 

P (ˣ106 mol2 m-1 s-1 
kJ-1)a 

2.4 ± 0.1 2.2 ± 0.1 1.6 ± 0.1 

P (ˣ1010 g m-3 s)b
 7.8 ± 0.3 7.1 ± 0.3 5.2 ± 0.2 

a Permeability, multiplication of permeance and the wet thickness, of membranes 
b Permeability converted to base units 
 

 

Studying ultrathin hydrocarbon-based polymers  

Membrane/vapor and membrane/CL interfacial effect are crucial in mass 

transport. However, understanding of this interfacial effect and characterization 

techniques are not always available. In chapter 3, interfacial resistance was examined 

and correlated to the results obtained from conductive AFM, contact angle 

measurement, and Park model approximation. Chapter 5 tested influence of the 
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membrane/CL interface on water transport. However, much more could be done if 

ultrathin (hundreds of nanometers scale) hydrocarbon-based polymer was available.  

In the ultrathin films, spatial confinement affects the morphological pattern and 

backbone interactions, causing an anisotropic ionic domain orientation, and 

subsequently a significant difference from the bulk membrane.[243–247] Interfacial 

effect of phase-segregated polymers has been an attractive research 

topic.[204,205,248–260] Symbolizing the interface of bulk membrane, ultrathin films 

receive a lot of attention.[243–247] Investigating water sorption and transport through 

ultrathin hydrocarbon-based polymers, if available, would benefit development of the 

fuel cell in two aspects. 

1) To gain better understanding of surficial morphology features and interfacial mass 

transport properties of bulk membranes. Therefore, the rate-limiting 

membrane/vapor interface in liquid-vapor permeation can gain extra insights to 

be possibly ameliorated.  

2) To study the structure and behavior of ionomer films in the catalyst layers of 

electrochemical devices. A better understanding of ionomer/catalyst and 

ionomer/vapor interactions is the key element to increase the triple-phase 

boundary, catalyst efficiency, and ultimately electrochemical performance of fuel 

cells.    
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Appendix A: Supporting information for chapter 3 

Table A 1. Sensitivity analysis of the Park model regression for membrane SPAE by 

setting integer value of 𝒏 from 1 to 10. The least sum of squared residuals 

(LSSR) is sensitive to the change in the value of n.  

Set 

value 

of 𝑛 

𝑎𝐿 𝐾𝐿 𝐾𝐻 𝐾𝐴 LSSRa 

 

Δ(LSSR)%b 

1 855.33 2.58E-07 1.06E-03 5.24 0.459 6.31E+03 

2 749.31 4.42E-03 1.06E-03 1.72 0.129 1.71E+03 

3 2.46 2.91 6.61E-04 2.49 0.0153 114.2 

4 4.98 1.18 6.69E-04 2.10 0.0104 45.74  

5c 9.14 0.58 6.72E-04 1.98 0.0072 0 

6 14.60 0.35 6.70E-04 2.11 0.0109 52.12  

7 36.20 0.13 6.92E-04 2.26 0.0121 69.62  

8 113.86 0.041 7.85E-04 2.65 0.0140 95.58  

9 404.48 1.16E-02 9.71E-04 3.33 0.0168 1.34E+02 

10 895.06 5.27E-03 1.06E-03 4.35 0.0210 1.93E+02 

a Least sum of squared residuals (LSSR) for each set value of 𝑛 in the least-square 
analysis 
b Percent change of the least sum of squared residuals against the best fit (n=5). 
Δ(LSSR)% = 100% ˣ (LSSR-0.0072)/0.0072 

c the best fit from the global least-square analysis (n=5) 
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Figure A 1. Parameter sensitivity analysis of the Park model regression for 

membrane SPAE with the aggregate number (n) set at 5. What-if 

scenario was run for each parameter change ±10% and ±20% from the 

best fit: aL (9.14), KL (0.58), KH (0.000672), KA (1.98). The least sum of 

squared residuals are listed and graph against to changes in each 

parameter.  
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Figure A 2. a) Residual distribution and b) calculation value against experimental 

value in the Park model approximation for vapor sorption of 

membrane SPAE at 70 °C. 
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Figure A 3. a) Residual distribution and b) calculation value against experimental 

value in the Park model approximation for vapor sorption of membrane 

SPPB at 70 °C. 
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Figure A 4. a) Residual distribution and b) calculation value against experimental 

value in the Park model approximation for vapor sorption of membrane 

N211 at 70 °C. 
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Appendix B: Supporting information for chapter 4 

 

Figure B 1.  Time-dependent transient water diffusion of membranes in a full 

isotherm cycle under 80 ℃ , instantaneous mass-change rate 

(primary axis), dm/dt, and relative humidity steps (secondary axis) 

over time. 
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Figure B 2. Normalized water uptake, [Mt – M0] / [Mꝏ - M0], over time in sorption 

period under 80 °C. 
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Table B 2. Effective rate constant of diffusion, ksorp, for membranes under 80 °C 

RH  range                   

ksorp (s-1) 

0N (1+0)N (1+1)N (3+0)N (3+1)N  N211 

0-13% 0.81 0.52 1.3 0.67 0.69 0.71 

13-26% 0.56 0.27 0.54 0.29 0.29 0.49 

26-36% 0.39 0.12 0.30  0.16 0.17 0.28 

36-44% 0.099 0.086 0.19 0.096 0.10 0.14 

44-50% 0.077 0.069 0.17 0.065 0.056 0.045 

50-56% 0.042 0.051 0.11 0.031 0.018 0.024 

56-61% 0.033 0.045 0.061 0.016 0.0079 0.014 

61-66% 0.019 0.032 0.026 0.0080 0.0050 0.0082 

66-71% 0.0067 0.013 0.018 0.0050 0.0027 0.0053 
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Table B 3. Transient diffusivity, D, for membranes under 80 °C. 

 

a thickness at 0-36% RH was 35 μm, 36-50% RH was 37 μm, 50-61% RH was 44 μm, 
61-66 % RH was 46 μm, and 66-71 %RH was 49 μm.  

b thickness at 0-26% RH was 32 μm, 26-44% RH was 33 μm, 44-61% RH was 34 μm, 
61-71% RH was 35 μm. 

c thickness throughout RH range was 20 μm. 

d thickness throughout RH range was 27 μm. 

e thickness throughout RH range was 26 μm. 

f thickness throughout RH range was 25 μm. 

  

RH 

step 

D (cm2/s) 

0N a  (1+0)N b (1+1)N c (3+0)N d (3+1)N e N211f 

0-13% 9.9 × 10-6 5.3 × 10-6 5.2 × 10-6 4.9 × 10-6 4.7 × 10-6 4.4 × 10-6 

13-26% 6.9 × 10-6 2.8 × 10-6 2.2 × 10-6 2.1 × 10-6 2.0 × 10-6 3.1 × 10-6 

26-36% 4.8 × 10-6 1.3 × 10-6 1.2 × 10-6 1.2 × 10-6 1.2 × 10-6 1.8 × 10-6 

36-44% 1.4 × 10-6 9.4 × 10-7 7.6 × 10-7 7.0 × 10-7 6.8 × 10-7 8.8 × 10-7 

44-50% 1.0 × 10-6 8.0 × 10-7 6.8 × 10-7 4.8 × 10-7 3.8 × 10-7 2.8 × 10-7 

50-56% 8.1 × 10-7 5.9 × 10-7 4.4 × 10-7 2.3× 10-7 1.2 × 10-7 1.5 × 10-7 

56-61% 6.4 × 10-7 5.2 × 10-7 2.4 × 10-7 1.2 × 10-7 5.3 × 10-8 8.7 × 10-8 

61-66% 4.1 × 10-7 3.9 × 10-7 1.0 × 10-7 5.8 × 10-8 3.4 × 10-8 5.1 × 10-8 

66-71% 1.6 × 10-7 1.6 × 10-7 7.2 × 10-8 3.7 × 10-8 1.8 × 10-8 3.3 × 10-8 
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Appendix C. Supporting information for chapter 5 

 

Table C 1. Catalyst layer with Nafion D520 ionomer. 

For Nafion D520 Ionomer 

- Percentage mass of solid polymer in dispersion = 5% Nafion 

Percentage 

Ionomer 

(%) 

Percentage 

Pt/C (%) 

Solid weight 

Ionomer (g) 

Solid weight 

Pt/C (g) 

Pt 

loading 

(mg/cm2) 

CL X 2 

weight(mg) 

30 70 0.5131 1.197 0.4076 12.55 

25 75 0.4276 1.282 0.4095 11.77 

20 80 0.3421 1.368 0.4076 11.07 

15 85 0.2565 1.454 0.4108 10.42 

10 90 0.171 1.539 0.4065 9.734 
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Table C 2. Catalyst layer with SPPB ionomer. 

For SPPB Ionomer 

- Percentage mass of solid polymer in dispersion = 3% SPPB 

Percentage 

Ionomer 

(%) 

Percentage 

Pt/C (%) 

Solid weight 

Ionomer (g) 

Solid weight 

Pt/C (g) 

Pt loading 

(mg/cm2) 

CL X 2 

weight(mg) 

30 70 0.5131 1.197 0.4049 12.47 

25 75 0.4276 1.282 0.4077 11.72 

20 80 0.3421 1.368 0.4061 10.94 

15 85 0.2565 1.454 0.4112 10.42 

10 90 0.171 1.539 0.4058 9.717 

 

 

Table C 3. Molar water fluxes (mol m-2 s-1) through membrane electrode assembly 

with catalyst layer composed of ionomer SPPB in liquid-vapor 

permeation at 80 °C. 

 30% RH 50% RH 70% RH 90% RH 

N211 0.183 ± 0.014 0.107 ± 0.015 0.077 ± 0.012 0.029 ± 0.003 

hCCMd 0.185 ± 0.016 0.106 ± 0.005 0.070 ± 0.010 0.026 ± 0.004 

hCCMs 0.182 ± 0.014 0.106 ± 0.007 0.078 ± 0.006 0.030 ± 0.009 

CCM 0.184 ± 0.011 0.107 ± 0.006 0.080 ± 0.004 0.031 ± 0.004 



142 

 

Table C 4. t-value of comparing experimental groups to the control group 

(membrane N211) for membrane electrode assembly with catalyst layer 

composed of ionomer SPPB. 

RH N211 vs. hCCMd N211 vs. hCCMs N211 vs. CCM 

30% 0.19064 0.60555 0.81053 

50% 0.11729 0.052673 0.00475 

70% 0.91281 0.16004 0.53649 

90% 0.9384 0.25277 1.22235 

 

 

Table C 5.  Confidence level of comparing experimental groups to the control group 

(membrane N211) for membrane electrode assembly with catalyst layer 

composed of ionomer SPPB.  

RH N211 vs. hCCMd N211 vs. hCCMs N211 vs. CCM 

30% N/A N/A N/A 

50% N/A N/A N/A 

70% 80% N/A N/A 

90% 80% N/A 85% 
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Table C 6. Molar water fluxes (mol m-2 s-1) through membrane electrode assembly 

with catalyst layer composed of ionomer Nafion in liquid-vapor 

permeation at 80 °C 

 30% RH 50% RH 70% RH 90% RH 

N211 0.183 ± 0.014 0.107 ± 0.015 0.077 ± 0.012 0.029 ± 0.003 

hCCMd 0.180 ± 0.009 0.105 ± 0.012 0.075 ± 0.005 0.028 ± 0.006 

hCCMs 0.179 ± 0.012 0.106 ± 0.009 0.076 ± 0.007 0.029 ± 0.006 

CCM 0.159 ± 0.004 0.095 ± 0.004 0.058 ± 0.001 0.030 ± 0.004 

 

 

Table C 7. t-value of comparing experimental groups to the control group 

(membrane N211) for membrane electrode assembly with catalyst layer 

composed of ionomer Nafion. 

RH N211 vs. hCCMd N211 vs. hCCMs N211 vs. CCM 

30% 0.5223 1.1103 3.5715 

50% 0.3905 0.2246 2.1806 

70% 0.6005 0.3667 4.1498 

90% 0.2017 0.1995 0.4215 
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Table C 8. Confidence level of comparing experimental groups to the control group 

(membrane N211) for membrane electrode assembly with catalyst layer 

composed of ionomer Nafion 

 

RH N211 vs. hCCMd N211 vs. hCCMs N211 vs. CCM 

30% N/A 85% 99% 

50% N/A N/A 95% 

70% N/A N/A 99.9% 

90% N/A N/A N/A 

 

 

 

 

Figure C 1. Instantaneous mass-change rate, dm/dt, over time in each relative 

humidity intervals of CL SPPB with 10% ionomer content at 80 °C 
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Table C 9. Effective rate constant of transient diffusion, ksorp, of CL SPPB with 

different ionomer contents under different RH steps at 80 °C. 

RH step 
[%]                   

CL SPPB ksorp [s-1] Membrane 
N211 10% 20% 30% 

0-10 0.53 ± 0.09 0.51 ± 0.07 0.42 ± 0.07 0.51 ± 0.09 

10-20 0.38 ± 0.07 0.38 ± 0.06 0.34 ± 0.07 0.39 ± 0.08 

20-30 0.15 ± 0.04 0.15 ± 0.04 0.13 ± 0.03 0.18 ± 0.05 

30-40 0.076 ± 0.009 0.077 ± 0.008 0.062 ± 0.008 0.082 ± 0.008 

40-50 0.037 ± 0.007 0.040 ± 0.006 0.029 ± 0.005 0.038 ± 0.006 

50-60 0.024 ± 0.004 0.023 ± 0.005 0.019 ± 0.004 0.024 ± 0.003 

60-65 0.012 ± 0.003 0.012 ± 0.003 0.0089 ± 0.0009 0.014 ± 0.003 

65-70 0.0062  ± 0.0008 0.0059 ± 0.0009 0.0060 ± 0.0008 0.0082 ± 0.0009 

70-75 0.0036 ± 0.0005 0.0036 ± 0.0005 0.0032 ± 0.0005 0.0053 ± 0.0006 

 

 

Table C 10. Effective rate constant of transient diffusion, ksorp, of CL Nafion with 

different ionomer contents under different RH steps at 80 °C. 

RH step 
[%]                   

CL Nafion ksorp [s-1] Membrane 
N211 10% 20% 30% 

0-10 0.41 ± 0.06 0.40 ± 0.08 0.39 ± 0.07 0.51 ± 0.09 

10-20 0.32 ± 0.05 0.33 ± 0.06 0.31 ± 0.09 0.39 ± 0.08 

20-30 0.12 ± 0.04 0.11 ± 0.03 0.10 ± 0.03 0.18 ± 0.05 

30-40 0.053 ± 0.008 0.056 ± 0.006 0.050 ± 0.007 0.082 ± 0.008 

40-50 0.026 ± 0.006 0.031 ± 0.005 0.021 ± 0.004 0.038 ± 0.006 

50-60 0.020 ± 0.004 0.020 ± 0.004 0.016 ± 0.005 0.024 ± 0.003 

60-65 0.0094 ± 0.0009 0.011 ± 0.005 0.0073 ± 0.0009 0.014 ± 0.003 

65-70 0.0042 ± 0.0006 0.0045 ± 0.0007 0.0042 ± 0.0005 0.0082 ± 0.0009 

70-75 0.0024 ± 0.0004 0.0024 ± 0.0005 0.0023 ± 0.0004 0.0053 ± 0.0006 
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Figure C 2. a) Residual distribution and b) calculation value against experimental 

value in 0-D equation approximation for CL SPPB with 10 wt.% ionomer 

content. Heteroscedasticity is observed in residual distribution. 
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Figure C 3. a) Residual distribution and b) calculation value against experimental 

value in 0-D equation approximation for CL SPPB with 15 wt.% 

ionomer content. Heteroscedasticity is observed in residual 

distribution. 
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Figure C 4. a) Residual distribution and b) calculation value against experimental 

value in 0-D equation approximation for CL SPPB with 20 wt.% 

ionomer content. Heteroscedasticity is observed in residual 

distribution. 
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Figure C 5. a) Residual distribution and b) calculation value against experimental 

value in 0-D equation approximation for CL SPPB with 25 wt.% 

ionomer content. Heteroscedasticity is observed in residual 

distribution. 
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Figure C 6. a) Residual distribution and b) calculation value against experimental 

value in 0-D equation approximation for CL SPPB with 30 wt.% ionomer 

content.  
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Figure C 7. a) Residual distribution and b) calculation value against experimental 

value in 0-D equation approximation for CL Nafion with 30 wt.% ionomer 

content. Heteroscedasticity is observed in residual distribution. 


