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Abstract

Given a group G with a finite set of generators, S, it is natural to ask if the product of n
generators from S evaluate to the identity. The enumerative version of this problem, known
as the cogrowth problem, counts the number of such products and studies the associated
counting sequence. Many cogrowth sequences are known. This thesis focuses on the free
products of finite groups: Specifically, cyclic and dihedral groups. Such groups have the
property that their cogrowth generating functions are algebraic functions, and thus, are
solutions to implicit polynomial equations. Using algebraic elimination techniques and free
probability theory, we establish upper bounds on the degrees of the polynomial equations
that they satisfy. This has implications for asymptotic enumeration, and makes it theoreti-
cally possible to determine the functions explicitly.
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Chapter 1

Introduction

The word problem on finitely generated groups is a fundamental problem that is well
studied [4, 18]. The problem is as follows: Given a finitely generated group, G, with a finite
generating set S ⊆ G, not containing the identity, decide if the product of a finite sequence
of elements in S is equal to the identity 1 ∈ G. This problem is decidable for many classes
of groups, meaning that there is an algorithm that correctly checks whether or not a given
sequence of elements evaluate to the group identity. Free groups and free products of free
groups are two example of such classes. Quenell [18] studied the Cayley graphs of these
two classes of groups, and discussed the spectrums of these graphs. There are groups for
which the word problem cannot be solved. One example of a group with an unsolvable word
problem is given by Novikov [15].

Formal language theory gives a useful framework for this problem. We refer to the finite
set of symbols as an alphabet. Here, we shall consider the generating set as an alphabet.
A word is a finite sequence of elements from S. The set of all words on S is denoted as
S∗. A language on S is a subset of S∗. Languages are organized into complexity classes.
These include the regular languages; context free languages; and decidable languages. Given
a language L ⊆ S∗, we say that L is regular if it can be recognized by a finite automata;
L is context free if it can be recognized by a pushdown automata; L is decidable if it can
be decided by a Turing machine. Every regular language is also context free. Every context
free language is decidable. See [10] for more information on languages and automatas. If S
is a generating set for a group G, we consider the language,

L(G,S) := {s1s2 . . . sn : n ≥ 1, si ∈ S, s1 · s2 · . . . · sn = 1 ∈ G}.

Here, we use “·” to denote group multiplication and distinguish it from word concatena-
tion. Thus, we characterize the word problem on groups as a problem of identifying words
in a given language. It is natural to ask: “Is there any connection between the language
complexity of a group, and its group properties?” It is known that L(G,S) is regular if and
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only if G is finite [1]; L(G,S) is context free if and only if G has a finite-index subgroup [13]
isomorphic to a free group, meaning that G is virtually free. We will see in this thesis, that
free products of finitely many finite groups are virtually free. For n ≥ 0, we let Sn denote
the set of words in S∗ of length n.

Given L ⊆ S∗, it is often possible to gain insight into the complexity of L by considering
the generating function for the number of words in L of length n, which is |L ∩ Sn|. Gen-
erating functions, like languages, also have their own complexity classes. The simplest kind
of are rational functions, which are contained in algebraic functions, which are in turn, con-
tained in D-finite series. A series is called D-finite if it solves a linear homogeneous ordinary
differential equation where its coefficients are rational functions. If the language, L(G,S),
is regular, then its generating function is rational. If L(G,S) is context free, then its series
is algebraic. The converse of either statement, however, is not true. The counterexample
below is provided in [4]. The language,

{anbncn : n ≥ 0} ⊆ {a, b, c}∗,

can be proven to be not context free via the well known pumping lemma [10], but however,
has a rational generating function 1

1−t3 .

We now introduce the main problem considered in this thesis. Let G be a finitely gen-
erated group, and S ⊆ G \ {1} be a generating set. The sequence, {|L(G,S) ∩ Sn|}n≥0, is
called the cogrowth, or the cogrowth sequence of G with respect to S. The corresponding
series, ∑

n≥0
|L(G,S) ∩ Sn| tn ∈ Z≥0[[t]],

is known as the cogrowth series of G with respect to S. Asymptotic properties [8] of cogrowth
sequences gives knowledge about the radius of convergence of their associated series. There
exist groups with cogrowth series that are not algebraic, and also ones that are not D-finite.
Bell and Mishna [4] showed that the amenable groups that are not polynomially bounded
do not have D-finite cogrowth series.

In this thesis, we only consider free products of finite groups, which have algebraic
cogrowth series. These are series, F (t), that satisfy P (t, F (t)) = 0 for some nonzero polyno-
mial P (t, z) ∈ Z[t, z]. Once P is determined, we are able to theoretically determine the series,
F (t), via guess and check; and gain some insight on certain asymptotic properties [8, 2] of
F (t). However, such a polynomial, P , is difficult to compute in general. The purpose of this
thesis is to give bounds on P to make it theoretically guessable. We continue the study of
Bell and Mishna [4] on free products of finite groups. We analyze the case where G is a
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free product of finite cyclic and finite dihedral groups. Additional classes of groups such as
amenable groups, and Lamplighter groups have been studied, as well as gap results on radii
of convergence. However, we will not provide these details here.

We briefly summarize the contents of this thesis: Chapter 2 provides some background
knowledge in topics from abstract algebra, enumeration, free probability, computer algebra,
and asymptotic analysis, that are useful for our problem. In Chapter 3, we bound the degree
of the implicit equations of the cogrowth series for free products of finite cyclic groups. This
chapter contains the main results in this thesis: Theorem 3.3 for the case of two distinct
cyclic factors; and Theorem 3.12 for the case of an arbitrary number of distinct cyclic factors.
In Chapter 4, we treat the general case involving a mixture of cyclic and dihedral groups.
We give a major conjecture, Conjecture 4.3, regarding the case of identical dihedral factors,
and end with a conjecture involving the free product of an arbitrary combination of finite
cyclic and finite dihedral groups.
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Chapter 2

Background

Prior to discussing the main topics of this thesis, we first recall some useful background
topics to help us visualize and motivate our problem at hand. The finite groups that we
consider are the cyclic and dihedral groups. We start out in Section 2.1 recalling the struc-
ture of a Cayley graph and explain how it provides a visualization of certain cogrowth
sequences. We then discuss briefly on algebraic generating functions, which help us ana-
lyze the cogrowth generating functions, which are algebraic for the specific class of groups
studied in this thesis. The theory of combinatorial classes [12, 8] is useful in deriving a
system of equations that can be solved for the cogrowth generating function, provided that
the underlying group is finitely generated. Such systems are derived from combinatorial
grammar and can grow rapidly as the group become increasingly complex. For this reason,
we make use of free probability to obtain a system that is structurally much simpler. Upon
obtaining an implicit equation for a cogrowth series, we often wish to seek the dominant
singularities of this system, which gives insight to the radius of convergence of this series.
Using an implicit equation for a cogrowth series, we may use an iterative technique to gen-
erate the first few terms of the underlying sequence of coefficients. This iterative technique
is known [19] to converge to a unique solution under certain assumptions of the constant
term. We also derive a method to verify, at any given iteration, the number of terms that
are correctly approximated. With the help of representation theory, we state a degree bound
which applies to any finite groups, and compare this result to other ones in this section for
cyclic and dihedral groups.

2.1 Cayley Graphs

Products in a group can be visualized as walks on a particular graph. As before, let G
be group, and let S ⊆ G \ {1} be a generating set. We define the Cayley graph of G with
respect to S, denoted χ(G,S), to be the directed graph (V,E), with vertex set V = G and
arc set E = {(g, g · s) : g ∈ G, s ∈ S}. It is important to note that Cayley graphs are vertex
transitive; and since S generates G, χ(G,S) is strongly connected. We consider two main
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types of generating sets: minimal and inverse closed. The generating set S is minimal if for
each s ∈ S, S \ {s} is not a generating set. The set S is inverse closed if the group inverse
of each element in S, is again in S. That is, S = S−1. If S is inverse closed, the χ(G,S)
can be viewed as an undirected graph. A walk on a directed graph is a finite sequence of
arcs, (u1, v1), (u2, v2), . . . , (un, vn), where consecutive arcs are adjacent in the sense that,
vi = ui+1 for each i = 1, 2, . . . , n − 1. Such a walk is said to start at u1 and end at vn.
Observe that elements of S∗ are in bijection with the walks on χ(G,S) starting at 1 ∈ G.
Each s1s2 . . . sn ∈ S∗ corresponds with the walk

(1, s1), (s1, s1 · s2), . . . , (s1 · s2 · . . . · sn−1, s1 · s2 · . . . · sn).

An excursion on χ(G,S) is a walk that starts and ends at the same vertex. We will
only consider excursions that start and end at 1. Such walks are in bijective correspondence
with elements with L(G,S). For the remainder of this thesis, we identify elements of S∗

and the corresponding walk on the Cayley graph. In particular, we use words and walks
interchangeably.

For n ≥ 0, define an := |Sn ∩L(G,S)| as the number of such excursions of length n. For
fixed G and S, we define the associated generating function to this counting sequence

FG;S(t) = F (t) :=
∑
n≥0

ant
n.

If G is finite, then χ(G,S) is a finite automata accepting L(G,S). By classic theory [8,
Proposition V.6.], F (t) is the Taylor series of a rational function. This result on finite groups
can be proven using powers of the adjacency matrices and vertex transitivity of the relevant
Cayley graph. In this case, {an} satisfies a linear recurrence with constant coefficients. We
give the example of a finite cyclic group below.

Example 2.1. Let G = Zn = Z/nZ be the cyclic group of order n > 1 with a set S = {x}
consisting of a single generator. Then L(G,S) = {ε, xn, x2n, x3n, . . .} and ak = δ0,(k mod n)

1.
Thus, F (t) = 1

1−tn . In this case, the Cayley graph, χ(G,S), is a directed cycle of length n.
Figure 2.1 gives a few examples of such Cayley graphs.

1δi,j denotes the Kronecker Delta function; (k mod n) denotes the unique integer 0 ≤ r < n where
k ≡ r (mod n).
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Figure 2.1: Cayley graphs of Zn = 〈x|xn−1〉 with respect to {x} for n = 5, 8, 27 respectively.

Notice that we are using ε to denote the empty word in S∗. For k > 0, we use xk to
denote the word in S∗ that is the concatenation of k occurrences of x, as well as the product
of k occurrences of x, as an element of G.

Another classic example of a finite, noncyclic group is the dihedral group: the group of
symmetries of a regular polygon. For n ≥ 3, let Dn denote the dihedral group on n vertices.
We give Dn with the presentation 〈r, f : rn−1, f2−1, rf−fr−1〉, where r is a basic rotation
by an angle of 2π

n , and f is a flip across an arbitrary axis containing a vertex and the center.
We consider the minimal generating set of Dn, S = {r, f}.2 The following result gives a
formula for the cogrowth series of Dn with generating set S. The example below shows the
Cayley graph of D3 with respect to this generating set.

Example 2.2. Consider the case of n = 3 vertices, G = D3, with S = {r, f} as described
above. In this case, we have

L(G,S) = {ε, ff, rrr, ffff, rfrf, frfr, ffrrr, rrrff, rffrr, rrffr, frrrf, . . .},

where the elements explicitly listed, are all the words of length up to five. In fact, it is true
that L(G,S) = C∗, where

C = {ff, rrr, rfrf, frfr, rrfrrf, rfrrfr, frrfrr}

is the set of all excursions of G with respect to S where the nonempty prefixes evaluate to
distinct elements of G. The Cayley graph, χ(D3, S) has the structures of 2 disjoint directed

2Some authors, such as Dummit and Foote [7], use D2n to refer to this group.
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triangles, with bidirectional arcs across corresponding vertices. Notice that the elements of
C are precisely the directed cycles in χ(G,S) containing 1 ∈ G.

1

r

r2

f

fr

fr2

r

r

r r

r

r

f

f

f

Figure 2.2: The graph, χ(D3, S) with S = {r, f}.

�

The cogrowth series for a dihedral group is the Maclaurin series of a rational function,
of which the explicit formula is given in the proposition below.

Proposition 2.3. For each m ≥ 3, let Fm(t) denote the cogrowth series of Dm with the
generating set S = {r, f}, as described above. Then

Fm(t) = 1
2 + 1

2m

m−1∑
j=0

1
1− 2 cos(2πj

m )t
. (2.1)

Proof. List the elements of Dm in the order,

g1 = 1, g2 = r, g3 = r2, . . . , gm−1 = rm−1, gm = f, gm+1 = frm−1, . . . , g2m = fr.

Let A = (aij)ni,j=1 be the adjacency matrix of the Cayley graph, χ(Dm, S), so that aij = 1
if g−1

i · gj ∈ S, and aij = 0 otherwise. Let Ik denote the k × k identity matrix. Then A has
the block structure,

A =


[
~0 Im−1

1 ~0T

]
Im

Im

[
~0T 1
Im−1 ~0

]
 .

After applying a sequence of row and column operations, each of which correspond to
elementary matrices of unit determinant, to tI2m −A, we obtain the block matrix,[

B Im

O tIm

]
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where O is an all zeros matrix of the appropriate dimensions, and

B =



t −1 0 . . . 0 0 −1

−1 t −1 . . . ...
... 0

0 −1 t
. . . 0

... 0
... . . . . . . . . . . . . 0

...

0 . . . 0 . . . t −1 0
0 . . . . . . 0 −1 t −1
−1 0 0 . . . 0 −1 t


is m×m, with t’s on the diagonal, −1’s on the superdiagonal, subdiagonal, the upper right
corner, the lower left corner, and has 0’s everywhere else. Let ω = e

2πi
m ∈ C. Observe that

B is a circular matrix, as each subsequent row of B can be obtained for the previous row
by rotating each entry one position to the right with the last entry becoming the first entry.
Consequently, detB can be calculated by computing the scalar product of its last row, with
the column vector,

[ωj(m−1), ωj(m−2), . . . , ωj , 1]T

for each j = 0, 1, . . . ,m− 1, and multiplying the m expressions. Hence,

det(tI2m −A) = tm detB

= tm
m−1∏
j=0

(
t− ωj − ωj(m−1)

)

= tm
m−1∏
j=0

(
t− 2 cos

(2πj
m

))
.

This gives us that for n ≥ 1,

trAn =
m−1∑
j=0

2n cosn
(2πj
m

)
.

Since χ(Dm, S) is vertex transitive, we have that the number of length n excursions starting
at 1 ∈ Dm is trAn

|Dm| = trAn
2m , yielding

Fm(t) = 1 + 1
2m

m−1∑
j=0

∑
n≥1

2n cosn
(2πj
m

)
tn,

which simplifies to Equation (2.1) as desired.

The proof technique used above can be used on any finite groups [8]. As mentioned
earlier, for any finite group G and generating set, S ⊆ G \ {1}, we can construct the
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adjacency matrix of χ(G,S) and use vertex transitivity to relate the cogrowth sequence
with traces of matrices. Notice that, for example, Equation (2.1) for m = 3 simplifies to

F3(t) = 1 + t2

(1− 2t)(1 + t) .

The table below documents the cogrowth series of Dm for a few values of m.

m Cogrowth series of Dm, S = {r, f}

3 1− t− t2

(1− 2t)(1 + t)

4 1− 3t2

(1− 2t)(1 + 2t)

5 1− t− 2t2 + t3

(1− 2t)(1 + t− t2)

6 1− 4t2 + 2t4

(1− 2t)(1− t)(1 + t)(1 + 2t)

8 1− 5t2 + 5t4

(1− 2t)(1 + 2t)(1− 2t2)

9 1− t− 4t2 + 3t3 + 3t4 − t5

(1− 2t)(1 + t)(1− 3t2 + t3)

10 (1− 2t2)(1− 4t2 + t4)
(1− 2t)(1 + 2t)(1− t− t2)(1 + t− t2)

12 1− 7t2 + 14t4 − 7t6

(1− 2t)(1− t)(1 + t)(1 + 2t)(1− 3t2)

16 (1− 3t2)(1− 6t2 + 9t4 − 3t6)
(1− 2t)(1 + 2t)(1− 2t2)(1− 4t2 + 2t4)

18 (1− 2t2)(1− 8t2 + 19t4 − 12t6 + t8)
(1− 2t)(1− t)(1 + t)(1 + 2t)(1− 3t2 + t3)(1− 3t2 − t3)

20 1− 11t2 + 44t4 − 77t6 + 55t8 − 11t10

(1− 2t)(1 + 2t)(1− t− t2)(1 + t− t2)(1− 5t2 + 5t4)

24 1− 13t2 + 65t4 − 156t6 + 182t8 − 91t10 + 13t12

(1− 2t)(1− t)(1 + t)(1 + 2t)(1− 3t2)(1− 2t2)(1− 4t2 + t4)

32 1− 17t2 + 119t4 − 442t6 + 935t8 − 1122t10 + 714t12 − 204t14 + 17t16

(1− 2t)(1 + 2t)(1− 2t2)(1− 4t2 + 2t4)(1− 8t2 + 20t4 − 16t6 + 2t8)

36 1−19t2+152t4−665t6+1729t8−2717t10+2508t12−1254t14+285t16−19t18

(1−t)(1+2t)(1−2t)(1+t)(1−3t2)(1−6t2+9t4−3t6)(1−3t2+t3)(1−3t2−t3)

Table 2.1: Cogrowth generating function for the dihedral groups Dm for various values of
m with respect to generating set S = {r, f}.

9



The following corollary is a consequence of the expression given in (2.1) and classical
properties of the cosine function.

Corollary 2.4. For each m ≥ 3, there are polynomials p, q ∈ Z[t] with deg p = deg q ≤ dm
so that Fm(t) is the Taylor series of p(t)

q(t) , where p(0) = q(0) = 1 and

dm :=


m+1

2 , m is odd

2dm4 e, m is even
. (2.2)

Proof. We obtain p and q by simplifying Equation (2.1). Let

q∗(t) :=
m−1∏
j=0

(
1− 2 cos

(2πj
m

)
t

)
∈ R[t] (2.3)

be a common denominator of the expression in (2.1). By factoring out the t as before,

q∗(t) = tm
m−1∏
j=0

(
t−1 − 2 cos

(2πj
m

))
= tm det(M + t−1Im)

for some explicit matrix M with integer entries. Thus, q∗ ∈ Z[t, t−1]. Combining this result
with Equation (2.3), we have q∗ ∈ Z[t]. Next, we define

S(t) :=
m−1∑
j=0

1
1− 2 cos(2πj

m )t

as the sum that appears in the right hand side of Equation (2.1). Notice that, applying
classical properties of the cosine function, we can rewrite S(t) as

S(t) =



1
1− 2t + 2

dm−1∑
j=1

1
1− 2 cos(2πj

m )t
, m ≡ 1 (mod 2)

2
1− 4t2 + 4

1
2dm−1∑
j=1

1
1− 4 cos2(2πj

m )t2
, m ≡ 2 (mod 4)

4 + 2
1− 4t2 + 4

1
2dm−1∑
j=1

1
1− 4 cos2(2πj

m )t2
, m ≡ 0 (mod 4)

.

Let q ∈ R[t] be the degree dm polynomial that is the product of all the denominators
that appear in the above expression for S(t) under the appropriate case for m. Notice that
q(0) = 1. It is not difficult to verify that q∗(t) = q(t)a(t), for some a ∈ Q[t], so q ∈ Q[t].
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Recall that the set of algebraic integers, roots of monic polynomials over Z, form a ring.
For each k ∈ Z, let αk = 2 cos

(
2πk
m

)
. Observe that αk = e

2πki
m + e−

2πki
m is a sum of two

m-th roots of unity, and hence αk and α2
k are algebraic integers. Thus, the coefficients of

q are rational algebraic integers, so q ∈ Z[t]. Since Fm ∈ Z[[t]] and Fm(0) = 1, we have
p(t) := Fm(t)q(t) ∈ Z[[t]] and so p(0) = 1. Since Fm(t) = 1

2 + 1
2mS(t) and S(t) is a rational

function of negative degree, and since q(t) is a common denominator of the above expression
for S(t), we have that p(t) ∈ Z[t] with deg p = deg q, which completes our proof.

In the examples given in Table 2.1, the upper bounds, dm, in Corollary 2.4, appear to
hold with equality. Hence, it is unlikely that these upper bound can be tighter. It is apparent
that the cogrowth series for dihedral groups are not as simple as for finite cyclic groups. In
later chapters, we add to the examples of Bell and Mishna [4] by considering the dihedral
groups as factors in a free product.

2.1.1 Cayley Graphs of Free Products of Finite Groups

We start by recalling the definition of a free product, which is stated in [14, Definition
5.8].

Definition 2.5. Let G1, G2, . . . , Gm be groups. The free product, of G1, G2, . . . , Gm, de-
noted as G := G1 ∗G2 ∗ . . . ∗Gm =

∐m
i=1Gi, is the group generated by ∪mi=1Gi, subject to

the relations in each Gi, and the identity element in each Gi is identified with 1 ∈ G.
If K is any group and m ≥ 0, we define K∗m as a shorthand for K ∗K ∗ . . . ∗K︸ ︷︷ ︸

m factors

.

In this thesis, we consider the case where G is a free product of finitely many finite
groups, in which case the Cayley graph has the structure of an infinite fractal. Figure 2.3
provides examples of Cayley graphs in the case where G is a free product of two finite cyclic
groups, where we take S to be the set containing a generator of each cyclic factor as well
as its inverse. Let us consider the case of two cyclic groups. Formally,

G := Zm ∗ Zn = 〈x, y|xm = 1, yn = 1〉 = 〈x|xm = 1〉 ∗ 〈y|yn = 1〉

and S = {x, x−1, y, y−1}. The blue edges indicate the “x” direction, and the orange edges
indicate the “y” direction. Since S is inverse closed, arrows indicating the direction of the
edges are not needed.
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(a) m = 2, n = 3 (b) m = n = 3 (c) m = 3, n = 4

(d) m = 3, n = 5 (e) m = 4, n = 5

Figure 2.3: Cayley graphs for free products of two cyclic groups Zm ∗ Zn = 〈x, y|xm =
1, yn = 1〉 with generating set {x, x−1, y, y−1}.

2.2 Algebraic Generating Functions

The cogrowth series, F (t), for free products of finite groups, converges to an algebraic
function that is analytic around t = 0 [4, 11]. Consequently, F (t), is a solution of a non-trivial
implicit polynomial equation [2]. In other words, there is a polynomial Q(t, z) ∈ Z[t, z]\{0}
so that Q(t, F (t)) = 0 ∈ Z[t]. For convenience, we make the following definition:

Definition 2.6. Let F (t) ∈ Z[[t]] be an algebraic series. Let Q(t, z) ∈ Z[t, z] be a nonzero
polynomial. We say that z = F (t) satisfies Q(t, z), and call Q(t, z) a satisfying polynomial
for F (t), if Q(t, F (t)) ≡ 0 ∈ Z[[t]]. If Q(t, z) is a satisfying polynomial for F (t) that is chosen
such that degz Q is as small as possible, we call Q(t, z) a minimal polynomial for F (t).

The reader should note that minimal polynomials in this setting are unique only up to
multiplication by elements in Z[t]. Since Z[t] is not a field, we cannot necessarily take Q(t, z)
to be monic in z. Throughout the next two sections, we show how to obtain Q(t, z) using
each of two primary methods: Combinatorial grammar, and the theory of free probability.
In later chapters, we present some new result on satisfying polynomials. These polynomials
are believed to be minimal by experiment, but it is not known whether or not minimality
is satisfied.
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2.3 Combinatorial Grammar for the Word Problem

The cogrowth generating function can be described by a system of equations derived
using combinatorial techniques on the prefixes of words with symbols in the generating
set. For a finite free product of finite groups, this system consists of only finitely many
equations. We use the concept of a combinatorial class, which is explained in Flajolet and
Sedgewick [8]. Briefly, a combinatorial class is an ordered pair C = (P, l), where P is a set
of objects, and l : P → Z≥0 associates each object in P to a size. In the case that P = {©}
is a singleton set, we call C the neutral class if l(©) = 0; an atom if l(©) = 1. We define
two combinatorial classes C = (P, l) and C′ = (P ′, l′) to be combinatorially equivalent if
there is a bijection, ψ : P → P ′ so that l′ = l ◦ ψ. If l is clearly understood, we use P alone
to denote the class C. Furthermore, the class, C is naturally associated with the generating
function,

F (t) =
∑
n≥0
|l−1(n)|tn,

where l−1(n) = {s ∈ P : l(s) = n} is the preimage of n with respect to l. If we take our
class to be the language, L(G,S), together with word length, then the associated generating
function is precisely the cogrowth series.

We also define the Cartesian product of two combinatorial classes: For A = (A, lA) and
B = (B, lB), let A × B := (A × B, lAB), where lAB(a, b) = lA(a) + lB(b). If lA and lB are
clearly understood, then we use A×B to denote the class, A× B.

Let G1, . . . , Gm be groups. Let Si be a given generating set for Gi. Consider the free
product G = G1 ∗ G2 ∗ . . . ∗ Gm, with the generating set S = ∪mi=1Si. For each g ∈ G and
X ⊆ G, define Zg,X as the combinatorial class of all words in S∗, with size as the word
length, that for all s1, . . . , sn ∈ S, with s = s1 · . . . · sn = g ∈ G, and for i = 1, 2 . . . , n− 1, it
holds that s1 . . . si /∈ X. That is, all proper nonempty prefixes of s avoid X. Let Fg,X denote
the generating function for Zg,X . Our goal is to compute F (t) := F1,∅(t). Let ι denote the
characteristic function in the sense that, for a property P, we have ι(P) = 1 if P is true,
and ι(P) = 0 otherwise. Also, let τ denote an arbitrary atom, and ε the empty word, as
well as the neutral class. Since all atoms are combinatorially equivalent, we may use τ to
denote any atom in general. Lemma 2.7 below shows a system of equalities in the sense
of combinatorial bijections. This lemma is stated and proved by Bell and Mishna [4]. We
provide a more detailed proof.

Lemma 2.7. Let G = G1 ∗ G2 ∗ . . . ∗ Gm be a (possibly trivial) free product of m finitely
generated groups. Let Si be a finite generating set for Gi so that S = ∪mi=1Si is a generating
set for G. For each 1 ≤ i ≤ m and {g} ∪ X ⊆ Gi, using disjoint unions of combinatorial
classes, the relations below hold.
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1. Zg,X = (ι (g ∈ Si)× τ) ∪
(⋃

s∈Si\X

(
τ × Zs−1g,s−1X

))
, if 1 ∈ X, g 6= 1.

2. Zg,X = Z1,X × Zg,X∪{1}, if 1 /∈ X, g 6= 1.

3. Z1,X = ε ∪
(
Z1,X ×

(
Z1,X∪{1} \ ε

))
, if 1 /∈ X.

4. Z1,X = ε ∪
(⋃

s∈S\Si

(
τ × Zs−1,{s−1}

))
∪
(⋃

s∈Si\X

(
τ × Zs−1,s−1X

))
, if 1 ∈ X.

Proof. We show each relation independently by establishing combinatorial bijections.
(1): If g ∈ Si, then g ∈ Zg,X . Consider any word w = w1 . . . wn ∈ Zg,X such that w 6= g

as words (this is automatic if g /∈ S). That is, w is not the word consisting of exactly the one
character, g, provided that g ∈ S. Note that no proper nonempty prefix of w may evaluate
to an element in Gj where j 6= i, since otherwise, if such a prefix were to belong to Gj , then
some longer prefix must evaluate to 1 ∈ X \ {g}. Write w = w1w

′ with w′ ∈ Zg,X ∩ Sn−1.
We have w1 ∈ Si \X and since w has no proper nonempty prefix in X, w′ has no proper
nonempty prefix in w−1

1 X, so w′ ∈ Zw−1
1 g,w−1

1 X . On the other hand, if s ∈ Si \ X and
w′ ∈ Zw−1

1 g,w−1
1 X , then sw

′ ∈ Zg,X .

(2): Observe that
Z1,X × Zg,X∪{1} ⊆ Z∗1,X × Zg,X ' Zg,X .

Let w = w1 . . . wn ∈ Zg,X . Decompose according to the largest prefix equal to 1. Specifically,
let k ∈ [0, n]∩Z be the largest possible so that w1 . . . wk = 1 ∈ G and write w = w1 . . . wkw

′.
Notice that k 6= n since ε 6= g ∈ G \ {1}. Also, w′ = (w1 · . . . · wk)−1w = 1 · g = g ∈ G.
The proper prefixes of w′ avoid 1X = X, since those of w avoid X. By our choice of k, the
proper nonempty prefixes of w′ also avoid 1, and no other choice of k would satisfy this claim.

(3): Notice that ε ∈ Z1,X∪{1} ⊆ Z1,X . Also, concatenation of any number of words in
Z1,X , is again, in Z1,X . Indeed, if s1, . . . , sm ∈ Z1,X , then s = s1 . . . sm evaluates to 1 in G.
This establishes the right to left containment. Conversely, suppose w = w1 . . . wn ∈ Z1,X

and n > 0. Let k ∈ [0, n) ∩ Z be the largest possible so that w1 · . . . · wn = 1 ∈ G

and write w = w1 . . . wkw
′. By our choice of k, we have that all proper prefixes of w′ avoid

X∪{1}, and so w′ ∈ Z1,X∪{1}. However, since k 6= n, w′ 6= ε, so a set bijection is established.
Furthermore, no other choices of k satisfies our claim for w′, so the decomposition is unique.

(4): It is true that ε ∈ Z1,X . Consider w = sv, with s ∈ S \X, v ∈ S∗, and w evaluates
to 1 ∈ G. We observe 2 cases, noting first that v evaluates to s−1 ∈ G.
Case 1: s ∈ Si. We want to show that w ∈ Z1,X ⇐⇒ v ∈ Zs−1,s−1X . Since the proper
nonempty prefixes of w avoid X if and only if those of v avoid s−1X, the result is immediate.
Case 2: s /∈ Si. We show that w ∈ Z1,X ⇐⇒ v ∈ Zs−1,{s−1}. The ( =⇒ ) direction is
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clear as proper prefixes of w avoid 1 ∈ X. For the converse, if w′ is a proper nonempty
prefix of w that evaluates to an element in X ⊆ Gi, then it has a nonempty prefix that
evaluates to 1 ∈ G. Without loss of generality, assume w′ = 1 ∈ G and write w′ = sv′. Then
v′ = s−1 ∈ G \ {1}, so v′ 6= ε. This directly contradicts the fact that v ∈ Zs−1,{s−1}.

Each of the properties of Theorem 2.7 also has a correspondence with an equation
involving the set of generating functions, Fg,X(t), as stated in corollary 2.8 below. If A,B,C
are combinatorial classes associated with generating functions, A(t), B(t), C(t) respectively,
then C = A ∪ B =⇒ C(t) = A(t) + B(t) if the union is disjoint; and C = A × B =⇒
C(t) = A(t)B(t). Thus, Lemma 2.7 implies Corollary 2.8.

Corollary 2.8. Adopting the same notation used in Lemma 2.7, we have the analogous
equalities for the set of generating function {Fg,X}.

1. Fg,X(t) = ι(g ∈ Si)t+
∑
s∈Si\X tFs−1g,s−1X(t) if 1 ∈ X, g 6= 1.

2. Fg,X(t) = F1,X(t)Fg,X∪{1}(t) if 1 /∈ X, g 6= 1.

3. F1,X(t) = 1 + F1,X(t)(F1,X∪{1}(t)− 1) if 1 /∈ X.

4. F1,X(t) = 1 +
∑
s∈S\Si tFs−1,{s−1}(t) +

∑
s∈Si\X tFs−1,s−1X(t) if 1 ∈ X.

The example below demonstrates an application of Corollary 2.8 with the free product
of a cyclic group and a dihedral group.

Example 2.9. Using the notation given in Lemma 2.7, let m = 2, G1 = Z2 = 〈x|x2 = 1〉,
G2 = D3 = 〈r, f |r3 = f2 = 1, rf = fr−1〉, with corresponding generating sets S1 = {x},
S2 = {r, f}. The number of equations given by Corollary 2.8 in this case is |G1|2|G1| +
|G2|2|G2| = 8 + 6 · 64 = 392. We give a few of these equations here.

g X Corresponding Equation Property #
1 ∅ F1,∅(t) = 1 + F1,∅(t)(F1,{1}(t)− 1) 3
1 {1} F1,{1}(t) = 1 + tFx,{x}(t) + tFr2,{r2}(t) + tFf,{f}(t) 4
x {x} Fx,{x}(t) = F1,{x}(t)Fx,{1,x}(t) 2
r {1, f} Fr,{1,f}(t) = t+ tF1,{r2,r2f}(t) 1
r {1, r, f} Fr,{1,r,f}(t) = t 1
rf {1, r} Frf,{1,r}(t) = tFr2,{f,r2f}(t) 1
1 {1, x} F1,{1,x}(t) = 1 + tFr2,{r2}(t) + tFf,{f}(t) 4
r {f} Fr,{f}(t) = F1,{f}(t)Fr,{1,f}(t) 2
1 {x} F1,{x}(t) = 1 + F1,{x}(t)(F1,{1,x}(t)− 1) 4

Table 2.2: Some equations in Example 2.9.
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Note that by Lemma 2.7, in order to solve for Z1,∅, we only need to consider the
combinatorial classes, Zg,X for which g and X are both entirely contained in one of the
free factors: For some i = 1, . . . ,m, we have {g} ∪X ⊆ Gi. For x ∈ S, a word with proper
prefixes avoiding x to some positive integer exponent also avoid x raised to a higher integer
exponent. That is, for each g ∈ G, x ∈ S, and X ⊆ G, we have

Zg,X∪{x} ⊆ Zg,X∪{x2} ⊆ Zg,X∪{x3} ⊆ . . . .

Under certain additional assumptions on the generating set, S, the above chain of inclusions
becomes equalities. The following lemma gives the necessary details.

Lemma 2.10. Let G be a finitely generated group with finite generating set, S. Let x ∈ S
and X ⊆ G. Assume that for each integer k > 0, every word in S∗ evaluating to xk in G

is of the form uxv, where u, v ∈ S∗ and v evaluates to 1 in G. Suppose 0 < j < i and
xi, xj ∈ X. Then for all g ∈ G, we have Zg,X = Zg,X\{xi}.

Proof. Clearly, Zg,X ⊆ Zg,X\{xi}. To prove equality, assume, for the sake of contradiction,
that w = w1 . . . wn ∈ Zg,X\{xi}\Zg,X . Choose k > 0 as small as possible so that w1 ·. . .·wk =
xi. Then wk = x, so w′ := w1 . . . wk−1 evaluates to xi−1 in G. If i = j + 1, we see that w′

is a proper prefix of w which evaluates to xj , contradiction. Assume j − i > 1 and if j − i
was decreased by 1, then any word evaluating to xi has a proper prefix evaluating to xj .
Immediately, our assumption tells us that w′ has a proper prefix evaluating to xj . Such a
prefix is also a proper prefix of w, so we again get a contradiction.

Observe that if x ∈ S has finite order of at least three in the groupG, then the hypotheses
of Lemma 2.10 implies that x−1 /∈ S, in which case S cannot be inverse closed. On the other
hand, if x is a generator of some Gi ∼= Z, with Si = {x, x−1}, then the conditions of Lemma
2.10 are satisfied. As a result, to solve for F (t), it is sufficient to consider Fg,X(t) only for
(g,X) such that if {g} ∪X ⊆ Gi, then {g} ∪X ⊆ {1, x, x−1}. We formalize such a result in
a theorem.

Theorem 2.11. Let G1, . . . , Gm be finitely generated groups with generating sets S1, . . . , Sm

respectively. Let G = G1 ∗G2 ∗ . . . ∗Gm be the free product of the m groups. Let C ⊆ [m] so
that for each i ∈ C, Gi = 〈xi〉 ∼= Z, and Si = {xi, x−1

i }. Then F (t) depends only on the set
of all series Fg,X(t) where {g}∪X ⊆ Gi for some i ∈ [m], so that whenever i ∈ C, we have

{g} ∪X ⊆ Si ∪ {1}.

In other words, all series Fg,X(t) not satisfying the above condition are either already known,
or have no influence in determining F (t) := F1,∅(t).

Proof. By Lemma 2.7, property 3, F (t) is determined by F1,{1}(t), which in turn, is deter-
mined, due to property 4, if Fs,{s}(t) is known for each s ∈ S \ {1}. The computation of
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each Fs,{s}(t) requires, by property 2, only F1,{s}(t) and Fs,{1,s}(t). Any series Fg,X(t), for
which {g} ∪ X ⊆ Gi depends only on series of the form Fg′,X′(t), where {g′} ∪ X ⊆ Gk,
and k 6= i =⇒ X = {g′} ⊆ Sk. Hence, it is enough to show that if s ∈ Si with i ∈ C,
then Fs,{s}(t) depends only on Fg,X(t), with either {g} ∪ X * Gi or {g} ∪ X ⊆ Si ∪ {1}.
Suppose s and i are as such. Recall that Si = {xi, x−1

i } for i ∈ C. Lemma 2.7 property 3
shows that F1,{s}(t) is determined by F1,{1,s}(t), which, by Lemma 2.7 property 4, depends
only on Fy,{y}(t) for y ∈ S \ Si, and Fy−1,{y−1,y−1s}(t) for y ∈ Si \ {1, s} = {s−1}. The
latter series is Fs,{s,s2}(t), which by Lemma 2.10, is equal to Fs,{s}(t). Lemma 2.7 property
1 shows that Fs,{1,s}(t) is determined by Fy,{y}(t) for y ∈ S \ Si, and Fs2,{s,s2}(t) = 0. We
have shown that each Fs,{s}(t) are independent of every Fg,X(t) with {g} ∪ X ⊆ Gi and
(g,X) /∈ {(1, {s}), (s, {1, s})}. Hence, our proof is complete.

We immediately obtain the following corollary, which imposes a condition when only
finitely many equations are needed to describe our grammar.

Corollary 2.12. Suppose each of the free factors Gi is either the infinite cyclic group or
finite. Then F (t) can be determined by a finite system of algebraic equations, provided that
each copy of the infinite cyclic group is associated to an inversely closed generating set
consisting of two elements.

We remark that, in addition, it is redundant to consider the infinite cyclic group, Z, as a
factor in our free product, as it has the same cogrowth series as Z2∗Z2. To see this, consider
Z = 〈x〉 and Z2 ∗ Z2 = 〈u|u2 = 1〉 ∗ 〈v|v2 = 1〉 with generating sets {x, x−1} and {u, v}
respectively. Notice that a word w = {u, v}∗ is an excursion if and only if w is either the
empty word, or w has two consecutive occurrences of the same character such that, when
these characters are deleted, the resulting word is again, an excursion. Under this reasoning,
we can construct a length preserving bijection ϕ : {x, x−1}∗ → {u, v}∗ as follows: Define
ϕ(ε) = ε, ϕ(x) = u, ϕ(x−1) = v; and if w ∈ {x, x−1}∗ has length at least 1, then define

ϕ(wx) =



ϕ(w)u, if w is an excursion

ϕ(w)u, if ϕ(w) ends with v and w has more occurrences of x than x−1

ϕ(w)u, if ϕ(w) ends with u and w has less occurrences of x than x−1

ϕ(w)v, otherwise

and

ϕ(wx−1) =



ϕ(w)v, if w is an excursion

ϕ(w)v, if ϕ(w) ends with v and w has more occurrences of x than x−1

ϕ(w)v, if ϕ(w) ends with u and w has less occurrences of x than x−1

ϕ(w)u, otherwise

.
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With this construction, we have that φ(w) is an excursion if and only if w is an excursion.
In the remainder of this thesis, we restrict our consideration to only free products of finite
groups. In general, one can also consider including noncylic infinite groups as free factors,
but this case will not be studied here.

The system given in Lemma 2.7 and Corollary 2.8 can be used, along with algebraic
elimination, to obtain a single polynomial equation that satisfies the cogrowth series. How-
ever, the system involved can be quite large, and the elimination process can be inefficient
and time consuming. Using the theory of free probability, we can obtain a system that
involves far fewer equations and is much more efficient to solve.

2.4 Connections to Free Probability Theory

The theory of free probability is closely connected to the free product of groups. With
the help of free probability, we can establish simple and elegant systems of equations that
solve the associated algebraic cogrowth series. In this setting, we rely on the result in [14,
Theorem 12.7] and the theory of Cauchy transforms. We briefly describe the relevant theory
here. We consider the group, G = G1 ∗ . . . ∗Gm, as a basis of the associated group algebra
C[G], consisting of finite C-linear combinations of elements in G. The elements in C[G] are
viewed as non-commutative random variables, equipped with the linear expectation operator
φ : C[G]→ C defined by

φ

∑
g∈G

αgg

 = α1

where each coefficient αg ∈ C, and only finitely many of these coefficients are not zero. If S
is the generating set of G that we consider, then the sequence,{

φ

((∑
s∈S

s

)n)}
n≥0

,

is precisely the cogrowth sequence. To see this, notice that(∑
s∈S

s

)n
=

∑
si∈S, 1≤i≤n

s1 · s2 · s3 · . . . · sn ∈ C[G]

is the sum of the multiset of all group elements corresponding to words in S∗ of length n.
Hence, the number of summands that evaluate to 1 is the coefficient of tn in the cogrowth
series, FG;S(t).
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Let α =
∑
g∈G αgg and β =

∑
g∈G βgg be elements of C[G]. We define the Cauchy

transform of α as
Gα(t) :=

∑
n≥0

φ(αn)t−n−1. (2.4)

Let Kα = G
〈−1〉
α be the compositional inverse of the Gα given in Equation (2.4). If αgβg = 0

for each g ∈ G, then a major result from free probability theory [14, Theorem 12.7] implies

Kα+β(t) = Kα(t) +Kβ(t)− t−1. (2.5)

We now prove a new result below yielding a system of polynomial equations that can
be used to solve for the minimal polynomial of a cogrowth series on the free product of
cyclic groups. Although the new result assumes finite cyclic factors, similar techniques can
be applied to deduce systems of equations for the case of any free product of finitely many
finite groups. Here, we restrict ourselves to the case of cyclic factors because their rational
generating functions are simple compared to those of other finite groups. Later on, we use
this technique with a mixture of dihedral and cyclic factors.

Theorem 2.13 (Cogrowth System for Finite Cyclic Factors). Let

G :=
r∐
i=1

mi∐
j=1
〈xij |xniij = 1〉 = Z∗m1

n1 ∗ Z
∗m2
n2 ∗ . . . ∗ Z

∗mr
nr ,

where each ni ≥ 2 and mi ≥ 1. Let the generating set of G be

S := {xij |i = 1, . . . , r; j = 1, . . . ,mi}.

Let F (t) be the cogrowth series of G generated by S. Then the polynomial system in t, z, z1, . . . , zr

over Z given by

Pi(t, z, z1, . . . , zr) := tzznii − z
ni−1
i − tz = 0, i = 1, . . . , r;

Pr+1(t, z, z1, . . . , zr) := z −

 r∑
j=1

mjtzzj

+

 r∑
j=1

mj

− 1 = 0
(2.6)

solves F (t) in the sense that there are algebraic functions F1(t) . . . , Fr(t), all not zero,
such that

Pi(t, F (t), F1(t), . . . , Fr(t)) = 0

for 1 ≤ i ≤ r + 1.

Proof. We use the sum of generators, apply Cauchy transforms, and employ a few change
of variables to establish the desired system. Let φ : C[G]→ C be the expectation operator,
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and let s ∈ C[G] be the sum of the generators:

s =
r∑
i=1

mi∑
j=1

xij .

As before, for α ∈ C[G], let Gα(t) be its Cauchy transform and Kα(t) be its compositional
inverse. For each i = 1, 2, . . . r, and each j = 1, 2, . . . , ni, it follows that

Gxij (t) = tni−1

tni − 1

and consequently, Kxij (t) is a root of zni−1− tzni + t ∈ (Z[t])[z]. By the property of inverse
Cauchy transforms stated in Eqn (2.5),

Ks(t) =

 r∑
i=1

mi∑
j=1

Kxij (t)

− (( r∑
i=1

mi

)
− 1

)
t−1

=
(

r∑
i=1

miKi(t)
)
−
((

r∑
i=1

mi

)
− 1

)
t−1

where for each fixed i, Ki(t) denotes any of the equivalent series Kxij (t) , with j ranging
over 1, 2, . . . ,mi. The system of equations,

z =
(

r∑
i=1

mizi

)
−
((

r∑
i=1

mi

)
− 1

)
t−1

zni−1
i − tznii + t = 0, i = 1, 2, . . . , r

(2.7)

is solved by z = Ks(t), zi = Ki(t) for each i. Interchanging t and z in (2.7) yields the system

t =
(

r∑
i=1

mizi

)
−
((

r∑
i=1

mi

)
− 1

)
z−1

zni−1
i − zznii + z = 0, i = 1, 2, . . . , r

(2.8)

which has a solution satisfying z = Gs(t). Since Gs(t) = t−1F (t−1), substituting t−1z for z
in (2.8) yields

t =
(

r∑
i=1

mizi

)
−
((

r∑
i=1

mi

)
− 1

)
tz−1

zni−1
i − t−1zznii + t−1z = 0, i = 1, 2, . . . , r

(2.9)

20



which can be satisfied by z = F (t−1). Substituting t−1 for t, we obtain

t−1 =
(

r∑
i=1

mizi

)
−
((

r∑
i=1

mi

)
− 1

)
t−1z−1

zni−1
i − tzznii + tz = 0, i = 1, 2, . . . , r

(2.10)

which has a solution satisfying z = F (t). By multiplying the first equation of (2.10) by tz,
and rearranging, we obtain (2.6).

The reader may notice that the theory of free probability is quite powerful in this set-
ting. The system, (2.6), appears to be far more simple to analyze than the ones given in
Corollary 2.8. The number of equations we obtain using combinatorial grammar can be
exponential order in the number of distinct free factors. Using free probability, this number
of equations required has been reduced to linear in the number of distinct free factors. In a
later chapter, we apply Theorem 2.13 to obtain degree bounds for the implicit polynomial
equation solving the cogrowth series.

2.5 Resultant of Polynomials

Before we analyze implicit equations of cogrowth series, it is useful to recall some pre-
liminary definitions from computer algebra. We take B be an integral domain, for which a
quotient field exists. Since a polynomial ring over an integral domain is again, an integral
domain, the discussion that follows for univariate polynomials can be naturally extended to
multivariate polynomials. For a nonzero univariate polynomial f ∈ B[z], define its valuation
with respect to z as

valz f := max{k ∈ Z≥0 : ∃g ∈ B[z], f = zkg}.

For convenience, we use the convention, valz 0 = ∞. Note that our definition of valuation
is consistent with that of a power series. Consider any f, g ∈ B[z], k ∈ Z≥0. We use [zk]f
to denote the coefficient of zk in f , which is an element of B. The notation, Syl(f, g, z) will
be used to denote the Sylvester matrix [8, Appendix B] of f and g with respect to z, with
coefficients arranged in rows. The determinant of this matrix is called the resultant of f and
g, and is denoted here as Res(f, g, z) := det Syl(f, g, z). If f, g ∈ B[t, z] are both nonzero,
classic properties of the resultant leads to an upper bound on the degree of Res(f, g, z) with
respect to t. Specifically,

degt Res(f, g, z) ≤ (degt f)(degzg) + (degt g)(degz f). (2.11)
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It is possible that Res(f, g, z) = 0. Using the convention that deg 0 = −∞, (2.11) now holds
in cases where fg = 0.

In most circumstances that arise upon investigating our problem of interest, monomial
factors in polynomials are of no significance. Hence, it is convenient to remove them when-
ever needed. For this purpose, we define, for f ∈ B[z] \ {0}, trimz f , to be the unique
polynomial h ∈ B[z], so that f(z) = h(z)zvalz f . By construction, valz h = 0. We call the
polynomial, trimz f , the trim of f with respect to z. In addition, we define trimz 0 := 0. If
f, g ∈ B[z1, . . . , zn] are multivariate, define

trimB f := trimz1 trimz2 . . . trimzn f,

and the reduced resultant,

ResB(f, g, z) := trimB Res(f, g, z)

where z is any of the zi for which (degz f)(degz g) > 0. It is a fact that, for any k ∈ Z>0

and p ∈ B[z], pk and p have the same roots in the algebraic closure of the quotient field
of B. Also, if degz f = 0, then Res(f, g, z) = fdegz g. Hence, if degz g > 0, then we may
set ResB(f, g, z) to trimB f . A similar discussion follows in the case that degz g = 0 but
degz f 6= 0. If both the degrees are 0, then we can set their reduced resultant to 1, the unity
element of B, which is the same as their classic resultant. This discussion leads us to the
definition below.

Definition 2.14. Let f, g ∈ B[z1, . . . , zn], and z = zi for some 1 ≤ i ≤ n. Then the reduced
resultant of f and g with respect to z relative to B is given by

ResB(f, g, z) :=



trimB Res(f, g, z), (degz f)(degz g) > 0 ∨ fg ≡ 0

trimB f, degz f = 0, degz g > 0

trimB g, degz f > 0, degz g = 0

1, degz f = degz g = 0

. (2.12)

We will see, in later chapters, that using the reduced resultant instead of the ordinary
resultant can significantly reduce the degree of the polynomials in our computations.

Finally, for an n× n matrix C = (cij)ni,j=1, with cij ∈ B[z], and σ ∈ Sym(n), denote

C[σ] :=
n∏
i=1

ci,σ(i) ∈ B[z].
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With this notation and a standard definition of determinant, we have

detC =
∑

σ∈Sym(n)
sgn(σ)C[σ].

2.6 Algebraic Elimination

Let ~P be a vector of polynomials. We are interested in solutions of the form ~P = ~0,
where ~P = (Pi)ni=1, with each Pi ∈ B[t, z1, z2, . . . , zn]. For our problem of interest, assume
that there are algebraic functions Fi(t) 6= 0, i = 1 . . . n, so that ~P (t, F1(t), . . . , Fn(t)) ≡ ~0.
The goal of the theory of algebraic elimination is to seek a satisfying bivariate polynomial
Pf (t, z) ∈ B[t, z] for F1(t). In particular, we want to find Pf so that for any sequence of n
nonzero algebraic functions Fi,

~P (t, F1(t), . . . , Fn(t)) = ~0 =⇒ Pf (t, F1(t)) = 0.

One way to find Pf via elimination involves the use the resultant to eliminate one
variable at a time. This method is valid without the nonzero assumption of our algebraic
functions. With this additional assumption, we can instead use the reduced resultant, which
in general, will lower the degree of Pf in the variable z that the algorithm outputs. The
procedure is stated below.

Algorithm 1 polynomial elimination over an integral domain B
Input: n ∈ Z>0; t, z1, . . . , zn indeterminate ordered as given; ~P ∈ B[t, z1, . . . , zn]n.
Assumption: There are algebraic functions F1(t), . . . , Fn(t), all nonzero, suct that
~P (t, F1(t), . . . , Fn(t)) = 0.
Purpose: Find Pf (t, z) ∈ B[t, z], Pf 6≡ 0 so that for any sequence of nonzero algebraic
functions, F1(t), . . . , Fn(t), it holds that ~P (t, F1(t), . . . , Fn(t)) = 0 =⇒ Pf (t, F1(t)) = 0.

1: ~P (0) := ~P .
2: for k = 1, 2, . . . , n− 1 do
3: for i = 1, 2, . . . , n− k do
4: P

(k)
i = ResB(P (k−1)

i , P
(k−1)
n−k+1, zn−k+1) ∈ B[t, z1, . . . , zn−k]

5: end for
6: ~P (k) := (P (k)

i )n−ki=1
7: end for
8: return Pf (t, z) := P

(n−1)
1 (t, z) ∈ B[t, z]
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Ideally, we find Pf so that degz Pf is as small as possible. If we run Algorithm 1 with the
system of equations (2.6), then the output, Pf , is a satisfying polynomial for the associated
cogrowth generating function. The degree, degz Pf , provides an upper bound on minimal
polynomials of this cogrowth generating function. We make use of such upper bounds in
Chapter 3.

2.7 Singularity Analysis

Singularities of an algebraic equation give insight to the rate of exponential growth of
the coefficients in its series expansion. In our case, we can gain some insight about the limit
behaviour of |L(G,S)∩ Sn|. The theory of singularity and asymptotic analysis is discussed
extensively in [2, 8, 11]. We provide a brief summary here in this section. In this thesis, we
apply this theory to a few examples of groups. Given a nonzero polynomial f(t) ∈ B[t] with
α = [tdeg f ]f(t) being the leading coefficient, we define the discriminant of f with respect
to t, to be

disct f := α−1 Res
(
f,
df

dt
, t

)
.

Let F (t) be an algebraic function with a series expansion

∞∑
n=0

ant
n ∈ Z≥0[[t]].

Suppose that Q(t, z) ∈ Z[t, z] \ {0} satisfies Q(t, F (t)) = 0. A singularity is said to be
dominant if it has the smallest modulus across all singularities. We are often interested in
finding the modulus of the dominant singularities of F (t), which can be computed by

ρ = lim
n→∞

an
an+1

≥ 0,

provided this limit exists. We say that the sequence, {an}, is p-periodic if for some r, we
have that

lim
n→∞

apn+r
apn+p+r

exists. In this case, we have

ρ = min
r

(
lim
n→∞

apn+r
apn+p+r

)1/p

where r ranges over all non-negative integers so that the inner limit exists. The smallest
p with the given property is known as the period of {an}. It is known [8, 11] that all
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singularities of F (t) appear in

E := {w ∈ C : ([zdegz Q]Q(t, z))(w) = 0} ∪ {w ∈ C : (discz Q)(w) = 0}

The set E, is known as the exceptional set of Q. It is the set of roots of the leading
coefficient of Q ∈ (Z[t])[z], together with the roots of the discriminant of Q with respect to
z. Since F (t) ∈ Z≥0[[t]], the well known Pringsheim’s Theorem [12, 8] in complex analysis
tell us that ρ is a singularity of F (t). Consequently, ρ ∈ E ∩ [0,∞). We hence see that ρ
can approximated by computing ratios involving an for large n. Below defines an outline of
how ρ can be computed.

1. Compute the finite set E. If |E ∩ [0,∞)| = 1 then ρ is that unique element, and we
are done. Otherwise proceed to the next step.

2. Pick a small tolerance parameter ε > 0 satisfying

2ε < min
v 6=w∈E∩[0,∞)

|v − w|.

3. Obtain an approximation, ρ∗, of ρ, by first generating an for large n.

4. Consider the set of elements w ∈ E ∩ [0,∞), where |w − ρ∗| < ε. If this set is empty,
go back to the previous steps and generate more terms to get a more precise approx-
imation ρ∗. Otherwise, output ρ to be this unique element, w.

Finally, if the sequence {an} has period p, then its dominant singularities are precisely
ρe
i 2kπ
p where k = 0, 1, 2, . . . , p− 1.

2.8 Iterative Fixed Point Method on Word Grammar

One can usually generate the first few terms in the counting sequence from the combi-
natorial descriptor [17]. This is useful for verifying any series solution. Initial terms can also
be used to guess equations satisfied by a series in some situations. We know a priori that
our generating functions are algebraic. If we know the polynomial equation, we can generate
a series solution. To do this, an iterative method may be used to generate the initial terms
to arbitrary precision.

We first recall some properties of algebraic systems. Consider the complete metric space,
(C[[t]], d), where d : C[[t]]×C[[t]]→ R is the distance function, such that for f 6= g ∈ C[[t]],
d(f, g) := 2− valt(f−g). Consider an algebraic system of the form ~z = ~P (t, ~z) where

~z = (z1, z2, . . . , zn)T and ~P = (P1, P2, . . . , Pn)T ,
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with each Pi ∈ C[t, ~z]. For ~f = (fi)ni=1, ~g = (gi)ni=1 let

~d(~f,~g) = (d(fi, gi))ni=1

denote the vectors of distances. Also, let E ⊆ C[[t]] be closed under the topology induced
by d such that ~f ∈ En =⇒ ~P (t, ~f) ∈ En. We say that the system, ~z = ~P (t, ~z), is a
contraction in E if there exists some constant κ ∈ (0, 1) such that for each ~f,~g ∈ En, it
holds that ‖~d(~P (t, ~f), ~P (t, ~g))‖ ≤ κ‖~d(~f,~g)‖, where ‖·‖ denotes any fixed arbitrary choice of
the equivalent norms3 on Rn. If the system is a contraction in E, then Banach’s fixed point
theorem implies that the system has exactly one solution in ~z∗ ∈ En, and that any sequence
of the form, ~z(k+1) := ~P (t, ~z(k)), k ≥ 0, as generated by a fixed point iteration, converges to
~z∗. Our objective is to analyze convergence properties of the fixed point iterative method
that results from the system in Corollary 2.8. For this reason, we now recall the definition
of proper algebraic systems and state a commutative version of the definition given in
Stanley [19].

Definition 2.15 ([19, 6, 5]). The algebraic system, ~z = ~P (t, ~z), is said to be proper if the
following conditions are satisfied:

• The polynomials, Pi, 1 ≤ i ≤ n, have no constant terms: ~P (t,~0) = ~0; and

• each Pi has no linear terms except scalar multiples of t: ∀1 ≤ i, j ≤ n, [zj ]Pi(0, ~z) = 0.

In Proposition 2.17 below, we recall the proof that a proper algebraic system is a contrac-
tion on tC[[t]], the maximal ideal in C[[t]] consisting of all power series of nonzero valuation.
As a result, there must a unique vector of n power series, each with no constant term, that
solves a proper algebraic system. Furthermore, the fixed point iteration associated with
the system must converge to that solution regardless to the initial vector of power series,
provided that all components have no constant term. We first state and prove an inequality
involving the valuation of a difference of two products of power series.

Lemma 2.16. Let f1, f2, . . . , fn, g1, . . . , gn ∈ C[[t]], and e1, e2, . . . , en ∈ Z≥0. Then

valt

 n∏
j=1

f
ej
j −

n∏
j=1

g
ej
j

 ≥ n∑
j=1

ej valt(fj − gj). (2.13)

Proof. Without loss of generality, we may assume that each ej = 1. It is sufficient to prove
the inequality for n = 2, as a straightforward induction on n deduces the general case. The
inequality certainly holds if f1f2 = g1g2, so assume this is not the case. For j = 1, 2, let
θj := min{valt fj , valt gj)}, so that fj = ajt

θj + o(tθj ) and gj = bjt
θj + o(tθj ). If a1 = b1 and

3In Flajolet and Sedgewick [8], the supremum norm, ‖ · ‖∞ is used.
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a2 = b2, then we can replace each fj , gj with fj − ajtθj and gj − bjtθj , respectively, which
does not change either side of inequality (2.13), and repeat the argument. Thus, suppose
aj 6= bj for some j = 1, 2. In this case,

f1f2 − g1g2 = (a1a2 − b1b2)tθ1+θ2 + o(tθ1+θ2)

has valuation at least θ1 + θ2 = valt(f1 − g1) + valt(f2 − g2).

We now state and proof the fact that proper algebraic systems are contractions in the
closed subset consisting of power series with no constant terms. Although the proof here
is very standard, it is not found in many literatures4, so we give it here for clarity and
convenience.

Proposition 2.17. Let E = tC[[t]] and let d be the metric equipped on C[[t]] as before.
Then E is closed in the topology induced by d. If ~z = ~P (t, ~z) ∈ C[t, ~z] is a proper algebraic
system of n polynomial equations, then it is a contraction in E.

Proof. Consider a sequence of power series {fn} ⊆ E which converges, under d, to some
f ∈ C[[t]]. Then it must hold that limn→∞ valt(f − fn) = ∞, which implies that f(0) = 0,
so f ∈ E. Thus, E is closed. Since our system is proper, no component of ~P has a constant
term, so ~P is En-invariant in the sense that ~z ∈ En =⇒ ~P (t, ~z) ∈ En. For notational
convenience, let us define the index set,

I :=

α = (αv)v∈{t,z1,z2,...,zn} : αv ∈ Z≥0,
∑
v

αv ≥ 2,
∑
v 6=t

αv ≥ 1

 .
For each α ∈ I, define |α| to be the sum of all the components of α, and

(t, ~z)α := tαtz
αz1
1 . . . zαznn .

For 1 ≤ j ≤ n and α ∈ I, let
c(j)
α := [(t, ~z)α]Pj(t, ~z)

denote the coefficient of the corresponding monomial. In addition, for 1 ≤ j ≤ n, define
Ij := {α ∈ I : c(j)

α 6= 0}, so that Pj(t, z) =
∑
α∈Ij c

(j)
α (t, ~z)α + tfj(t), where fj ∈ C[t]. Let

~x, ~y ∈ En. We take ‖ · ‖ = ‖ · ‖∞ to be the supremum norm, and deduce, for each j,

4For instance, Stanley [19] states this result and gives only a brief idea of the proof.
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valt(Pj(t, ~x)− Pj(t, ~y)) = valt
∑
α∈Ij

c(j)
α ((t, ~x)α − (t, ~y)α)

= valt
∑
α∈Ij

c(j)
α tαt

(
n∏
i=1

x
αzi
i −

n∏
i=1

y
αzi
i

)

≥ min
α∈Ij

[
αt + valt

(
n∏
i=1

x
αzi
i −

n∏
i=1

y
αzi
i

)]

≥ min
α∈Ij

[
αt +

n∑
i=1

αzi valt(xi − yi)
]

where the last inequality follows from inequality (2.13) of Lemma 2.16. Observe that, for
each α ∈ I, max1≤j≤n αzj = 1 =⇒ αt > 0. Since each of the valuations, valt(xi − yi), is
positive, we deduce that, for α ∈ I,

αt +
n∑
i=1

αzi valt(xi − yi) > valt(xk − yk) ≥ min
1≤j≤n

valt(xj − yj),

where k is chosen so that αzk = max1≤j≤n αzj . Consequently,

min
1≤j≤n

valt(Pj(t, ~x)− Pj(t, ~y)) > min
1≤j≤n

valt(xj − yj),

which implies that
‖~d(~P (t, ~x), ~P (t, ~y))‖ ≤ 1

2‖
~d(~x, ~y)‖,

thus showing the contraction property.

The system of equations described in Corollary 2.8 is expressed in the form, ~z = ~P (t, ~z).
Recall from Corollary 2.12, that for a free product of finitely many finite group, only finitely
many equations in the grammar from Corollary 2.8 is required. We are interested in gen-
erating approximate solutions to this system using fixed point iteration. For this reason,
Proposition 3.2 is useful to our problem. In particular, we want to generate a sequence of
vectors, {(

F
(k)
g,X(t)

)
g,X

}
k≥0

,

in the following following way: Set each F (0)
g,X(t) = 0; and for each k ≥ 0, compute F (k+1)

g,X (t)
using the system in Corollary 2.8 after replacing each Fg,X(t) with F

(k)
g,X(t) in the right

hand sides, and replacing each Fg,X(t) with F
(k+1)
g,X (t) in the left hand sides. Notice that

F
(1)
g,X(t) = ι(g = 1). The sequence, (F (k)

g,X(t)), converges to a solution vector (F ∗g,X(t)) of our
algebraic system. This solution vector is unique under the requirement that
F ∗g,X(0) = ι(g = 1). However, we cannot justify this convergence and uniqueness directly by
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Proposition 2.17, since our system is not proper. Instead, we need to make a slight change
of variables, F̄g,X(t) := Fg,X(t) − ι(g = 1). Rewriting the system in Corollary 2.8 in terms
of F̄g,X , we now have a proper algebraic system. We obtain a fixed point iterative method
with the new variables: Set each F̄ (0)

g,X(t) = 0; and for each k ≥ 0, compute F̄ (k+1)
g,X (t) using

our modified version of the system in Corollary 2.8 after replacing each F̄g,X(t) with F̄ (k)
g,X(t)

in the right hand sides, and replacing each F̄g,X(t) with F̄
(k+1)
g,X (t) in the left hand sides.

The properness of our new algebraic system implies that our new system is a contraction in
the space of power series with no constant terms, by Proposition 2.17. Hence, by the fixed
point theorem, the system has a unique solution vector, (F̄ ∗g,X(t)), with F̄ ∗g,X(0) = 0; and
the fixed point iterates converge to this solution. Formally, under the metric, d,

lim
k→∞

F̄
(k)
g,X(t) = F̄ ∗g,X(t).

However, it is not difficult to verify that F̄ (k)
g,X(t) + ι(g = 1) = F

(k+1)
g,X (t), which immediately

implies that
lim
k→∞

F
(k)
g,X(t) = F ∗g,X(t),

justifying the convergence of the iterates based on our original variables. An implementation
of this algorithm, with a minor truncation speedup, is provided in Appendix A.

It is noteworthy to mention that the change of variable trick discussed above can be
generalized to any algebraic system ~z = ~P (t, ~z), that is a constant shift of a proper system
in the sense that that modified system, ~z = ~P (t, ~z) − ~P (0,~0), is proper. Although the
discussion above guarantees convergence of the grammar, it provides no evidence of how
many iterations are needed to approximate the cogrowth generating function to a prescribed
accuracy. Hence, after a given number of iterations, k, we would like to know how many of
the first terms of F (k)

1,∅ (t) matches with that of the true cogrowth generating function, F ∗1,∅(t).
In general we do not know F ∗1,∅(t) precisely. However, we can use a satisfying polynomial to
perform this test of accuracy. This is the topic of the next section.

2.9 Verification of Coefficients

After we compute our satisfying polynomial for the associated cogrowth generating func-
tion, we often want to verify the correctness of this polynomial in case errors are made during
computation. During any given iteration of a iterative method described in the previous sec-
tion, we are interested in knowing which of these terms matches with the precise, unknown,
series expansion of F (t). Algebraic elimination can be used to compute a single satisfying
polynomial for F (t). We discuss below, a method that can be used to test the number of
lowest order terms of the series approximation that agrees with the series expansion of F (t).
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Assume we have a polynomial P (t, z) ∈ C[t, z], with d = degz P . Let pi(t) := [zi]P .
Let F (t) =

∑
n≥0 fnt

n be the generating function for {fn} ⊆ C. For m ∈ Z≥0, write
F (t) = O(tm) to denote that the valuation of F (t) is at least m. Suppose P (t, F (t)) ≡ 0.
Similarly, let G(t) be the series for {gn}, with F (t)−G(t) = O(tm). We see that

P (t, G(t)) = P (t, G(t))− P (t, F (t))

= (G(t)− F (t))
d∑
i=1

pi(t)ψi(t)

= O(tm),

where ψi(t) =
∑i−1
j=0 F

j(t)Gi−1−j(t). Note that ψi(0) =
∑i−1
j=0 f

j
0g

i−1−j
0 . Furthermore, if∑d

i=1 pi(0)ψi(0) 6= 0, then

P (t, G(t)) = O(tm) ⇐⇒ F (t)−G(t) = O(tm). (2.14)

Taking m → ∞ gives us P (t, G(t)) = 0 ⇐⇒ F (t) = G(t). Intuitively, this shows
that the sequence {fn} that we desire, is uniquely determined under certain not too tight
restrictions. For the purpose of analysing cogrowth sequences, we are primarily interested
in the case where f0 = g0 = 1, and so ψi(0) = i. We have established the result below.

Proposition 2.18. Let {fn}, {gn} ⊆ C be sequences with generating function F (t), G(t)
respectively. Let P (t, z) = pd(t)zd + . . . + p1(t)z + p0(t) ∈ C[t, z]. Assume that f0 = g0 = 1
and

d∑
i=1

ipi(0) 6= 0. (2.15)

Then for each m ∈ Z≥0, the following are equivalent:

1. F (t)−G(t) = O(tm);

2. P (t, F (t))− P (t, G(t)) = O(tm).

Proposition 2.18 is useful in the following way: We want to generate the unknown se-
quence {fn} so that F (t) is a root of P (t, ·). We know that this sequence satisfies some
combinatorial system. We run an iterative algorithm that generates {gn} as an approxima-
tion to {fn}. We wish to test the accuracy of this approximation. If the hypothesis of this
theorem holds true, and computing the series expansion of P (t, G(t)) gives the expression
amt

m + am+1t
m+1 + . . ., with am 6= 0. Then we can conclude that the first m terms of the

approximation are correct, and the m + 1-th term is incorrect. Usually, G(t) is a polyno-
mial, so such a series expansion is not difficult to compute. Notice that the hypothesis of
Proposition 2.18 is independent of G(t) apart from g0, so any sequence {gn} can be tested
for accuracy in this way, provided that g0 = 1. We now give an example:
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Example 2.19 (Z2
2 ∗ Z3). Consider the case where

G := Z2
2 ∗ Z3 = 〈x1|x2

1 = 1〉 ∗ 〈x2|x2
2 = 1〉 ∗ 〈y|y3 = 1〉

with the inverse closed generating set S = {x1, x2, y, y
−1}. Using the solve and Minpoly

commands in the Maple programming language, we deduce that a satisfying polynomial for
the cogrowth generation function F (t) := FG;S(t) is

Q(t, z) := 2 t− 2− (t− 1)2 z +
(
8 t3 − 12 t2 − 2 t+ 2

)
z2 + (t− 1) (3 t+ 1) (4 t− 1) z3.

Applying our iterative algorithm described in Section 2.8, we obtain

F
(0)
1,∅ (t) = 0;

F
(k)
1,∅ (t) = 1, k = 1, 2, 3;

F
(4)
1,∅ (t) = 1 + 4t2;

...

F
(9)
1,∅ (t) = 1 + 4 t2 + 2 t3 + 28 t4 + 30 t5 + 200 t6 + 266 t7 + . . .+ 2239488 t29 + 373248 t30.

However, we make the assertion that F (9)
1,∅ (t) is accurate only up to the degree 5 term:

[tk]F (9)
1,∅ (t) = [tk]F ∗1,∅(t) for k = 0, 1, 2, 3, 4, 5; but [t6]F (9)

1,∅ (t) 6= [t6]F ∗1,∅(t). We check this
assertion by noting that Q(t, F (9)

1,∅ (t)) = −204t6 +O(t7), is a series of valuation 6, so Propo-
sition 2.18 implies our assertion. The few 14 terms of the cogrowth sequence of G with
respect to S is precisely

1, 0, 4, 2, 28, 30, 234, 378, 2172, 4538, 21674, 53614, 227922, 631046, 2491374.

These 14 terms can be identified after 24 iterations of our fixed point algorithm. �

Notice that Example 2.19 involves an inversely closed generating set. Nevertheless, in
Chapter 3, we discuss general free products of cyclic groups with respect to minimal gener-
ating sets.

2.10 Finite Groups and Representation Theory

Finite groups have rational cogrowth generating functions, for which the degree of the
numerator and denominator can be effectively bounded by the degrees of their irreducible
representations. These bounds can be shown using the Cayley-Hamilton Theorem. We first
state and prove this result, and then demonstrate the result on the cyclic and dihedral
groups.
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Lemma 2.20 (Bell, U. of Waterloo [3]). Let H be a finite group with degrees of irreducible
representations given by n1, . . . , nd, with T as a generating set. Let α :=

∑
s∈T s ∈ C[H],

and A(t) :=
∑
n≥0 φ(αn)tn. Then A(t) is the power series expansion of a rational function

P (t)/Q(t) where P,Q ∈ Z[t] are polynomials with Q(0) = 1 and

(degP ) + 1,degQ ≤ n1 + · · ·+ nd ≤ |H|.

In particular, if degQ = |H| or degP = |H| − 1, then H is abelian.

Proof. We make use of facts from representation theory and construct a map from our group
ring into a direct product of matrix rings. Let Mk(F ) denote the ring of k×k matrices over
a given field F . Let Q̄ denote the algebraic closure of Q. We have, as a consequence of
Wedderburn’s Theorem [7, Section 18.2, Theorem 10], an isomorphism

Ψ : Q[H]→Mn1(Q)× · · · ×Mnd(Q).

Then Ψ(α) is a d-tuple of matrices (Y1, . . . , Yd) where each Yi ∈ Mni(Q). Observe that Ψ
induces a Q-algebra isomorphism between the power series rings Q[H][[t]] and(

Mn1(Q)× · · · ×Mnd(Q)
)

[[t]]

that sends the series,
∑
n≥0 α

ntn to

∑
n≥0

(Y n
1 , . . . , Y

n
d )tn. (2.16)

By the Cayley-Hamilton theorem, the series, (2.16), has coefficients which satisfy a linear
recurrence of order at most n1 + · · ·+nd. Thus,

∑
n≥0 α

ntn is the Maclaurin series expansion
in t of P (t)/Q(t) with P,Q ∈ Q[t] coprime,Q(0) 6= 0, deg(Q) ≤

∑
ni, and deg(P ) ≤

∑
ni−1.

By rescaling, we may assume that Q(0) = 1. Since A(t) has integer coefficients, P/Q must
be invariant under the action of Gal(Q,Q) and so since Q(0) = 1, we see that P and Q

have rational coefficients. Now notice that Q(t)A(t) = P (t). We can show5 that the roots
of Q(t−1) must be algebraic integers and so Q(t) is an integer polynomial and we can then
have P is an integer polynomial, since P = AQ and A and Q have integer coefficients.

Finally, standard representation theory implies that |H| =
∑d
i=1 n

2
i . Hence, if degQ =

|H| or degP = |H| − 1, then n1 = n2
1 = 1 for each 1 ≤ i ≤ n, which is an equivalent

condition [7] for H being abelian.

5This property can be shown using the series generated by the adjacency matrix of the related Cayley
graph, We leave the reader to fill in the details. See [8].
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Notice that if G = Zn is a finite cyclic group with a generating set S, then Lemma 2.20
implies that the cogrowth generating function, FG;S(t), is the series expansion of a rational
function p(t)/q(t), where p, q ∈ Z[t], with deg p ≤ n − 1 and deg q ≤ n. However, as seen
in Example 2.1, FG;S(t) = 1

1−tn . Thus, in the case, our denominator achieves the bound in
Lemma 2.20 with equality, but our numerator is constant. We now exhibit the example of
dihedral groups.

Example 2.21 (Degree bounds for finite dihedral groups). Consider the dihedral group
G = Dm, with the generating set S = r, f , as described in Section 2.1. In this case, the sum,
r, of the degrees of the inequivalent irreducible representations of G is m+ 2 if m is even;
and m+ 1 if m is odd. Lemma 2.20 tells us that FG;S(t) = p(t)/q(t), where deg p ≤ r − 1,
and deg q ≤ r. However, Corollary 2.4 deduces much tighter restrictions: deg p = deg q ≤ r

2 .

Although Corollary 2.4 provides tighter bounds than Lemma 2.20, Corollary 2.4 only
applies to a specific class of finite groups and generating sets, whereas Lemma 2.20 applies
to any arbitrary finite group and generating set. Nevertheless, the reader should note that
the bounds given in Lemma 2.20 are not necessarily tighter, and that specific cases may
deduce far tighter bounds.

To end this chapter, we briefly elaborate on the case where G is a free product of
finitely many finite groups. Notice that such groups are finitely generated. Unlike for finite
groups, the associated cogrowth generating function for G is not necessarily rational, and
explicit forms are often difficult to obtain. Instead, we work with their minimal polynomials.
The primary goal of the next two chapters is to deduce degree bounds on the minimal
polynomials for cogrowth generating functions of these free products.
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Chapter 3

New Bounds on Free Products of
Cyclic Groups

Minimal polynomials of the cogrowth sequence gives insight to complexity of the cogrowth
generating function. These minimal polynomials are difficult to compute in general, as it
is difficult to verify minimality. Thus, we instead, seek upper bounds on degrees and coef-
ficients of these minimal polynomials. The satisfying polynomials discussed in this chapter
may not be minimal, although most of them are believed1 to be minimal. Instead, we use
such polynomials to obtain upper bounds for the degrees of their minimal polynomials. In
this chapter, we study the case where our group is a free product of finite cyclic groups
with respect to minimal generating set. We adopt the notation used in Theorem 2.13 in this
thesis. In particular, we take, as before,

G :=
r∐
i=1

mi∐
j=1
〈xij |xniij = 1〉 = Z∗m1

n1 ∗ Z
∗m2
n2 ∗ . . . ∗ Z

∗mr
nr ,

where r is the number of distinct cyclic groups appearing in the free product; and we take
our generating set to be S = {xij : 1 ≤ i ≤ r, 1 ≤ j ≤ ni}.

We also adopt notation for Theorem 2.13 and Algorithm 1. Let ~P and Pi for 1 =
1, 2, . . . , r + 1, be as given in Theorem 2.13. Let ~P (k)and P

(k)
i for 1 = 1, 2, . . . , r + 1 and

k = 0, 1, . . . r, be as given in Algorithm 1. We write Res as ResZ for short.

The case, r = 1, where the free factors are identical, has been solved by Bell and Mishna
[4, Example 4.1]. An explicit form of a satisfying polynomial is known in this case. We first
revisit this example below as a starting point.

1These polynomials are computed using the eliminate function in the Maple programming language.
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σ sgn σ M [σ]
(1) 1 tz(z +m− 1)n

(1 2) −1 mtz(z +m− 1)n−1

(1 n+1 n n−1 . . . 2) (−1)n (−1)n+1mntn+1zn+1

Table 3.1: The permutations in Example 3.1 where M [σ] 6= 0.

Example 3.1. Let G = Z∗mn = ∗mj=1〈xj |xnj = 1〉 with m,n ≥ 2 and generating set S =
{x1, x2, . . . , xm}, for which

P
(0)
1 = P1 = tzzn1 − zn−1

1 − tz

and
P

(0)
2 = P2 = z −mtzz1 +m− 1.

Consider the Sylvester matrix, M := Syl(P1, P2, z1) = (Mij)n+1
i,j=1, where the entries are

given by

Mij =



tz, i = j = 1

−1, i = 1, j = 2

−tz, i = 1, j = n+ 1

−mtz, j = i− 1

z +m− 1, i = j > 1

0, otherwise.

(3.1)

For each σ ∈ Sym(n+ 1), we have that M [σ] 6= 0 if and only if

σ ∈ {(1), (1 2), (1 n+ 1 n n− 1 . . . 2)},

as expressed in standard disjoint cycle notation. Table 3.1 summarizes the values of M [σ]
for these three values of σ. Using the permutation formula for determinant, we deduce that
detM = tz

(
(z − 1)(z +m− 1)n−1 −mntnzn

)
, so [tz](detM) = −m+ 1 6= 0. Consequently,

P
(1)
1 (t, z) = (tz)−1 detM = (z − 1)(z +m− 1)n−1 −mntnzn (3.2)

is a satisfying polynomial for the cogrowth generating function, FG;S(t). This result is con-
sistent with the result obtained in Bell and Mishna [4]. �

For the remainder of this chapter, we primarily focus on the case of two distinct cyclic
factors, for which the general satisfying polynomial is not determined explicitly, but tight
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σ(1) σ sgn σ M [σ]
1 Id 1 tz(z −m1tzz1 +m1 +m2 − 1)n2

2 (1 2) −1 m2tz(z −m1tzz1 +m1 +m2 − 1)n2−1

n2 + 1 (1 n2+1 n2 n2−1 . . . 2) (−1)n2 (−1)n2+1mn2
2 tn2+1zn2+1

Table 3.2: The permutations where M [σ] 6= 0

upper bounds on their degrees are known. For cases of three or more distinct factors, we
develop degree bounds using classic properties of resultant.

3.1 Case of Two Distinct Cyclic Factors

We now derive bounds for case where r = 2, that is G := Z∗m1
n1 ∗Z

∗m2
n2 . The computation

is this case is significantly more difficult than the r = 1 case presented in Example 3.1. The
reason for this increase in difficulty is that we require an additional iteration, and after each
iteration, the complexity of the resultants increase. However, the first step can be carried
out in a manner similar to that in the case of identical free factors.

In this case, the three polynomials given in (2.6) in Theorem 2.13 are

P1 = tzzn1
1 − z

n1−1
1 − tz

P2 = tzzn1
1 − z

n1−1
1 − tz

P3 = z −m1tzz1 −m2tzz2 +m1 +m2 − 1.

Let M = Syl(P2, P3, z2) = (Mij), which is an (n2 + 1)× (n2 + 1) matrix. The entries of M
are given by

Mij =



tz, i = j = 1

−1, i = 1, j = 2

−tz, i = 1, j = n2 + 1

−m2tz, j = i− 1

z −m1tzz1 +m1 +m2 − 1, i = j > 1

0, otherwise.

(3.3)

Similar to the observation in Example 3.1, for σ ∈ Sym(n2 + 1), we have that M [σ] 6= 0
if and only if

σ ∈ {(1), (1 2), (1 n2 + 1 n2 n2 − 1 . . . 2)}.

Table 3.2 indicates the value of M [σ] in each of the 3 possible cases.
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By a straightforward computation, and by definition of resultant,

Res(P2, P3, z2) = detM = tz[(z−m1tzz1+m1−1)(z−m1tzz1+m1+m2−1)n2−1−(m2tz)n2 ].

Expanding this resultant, we deduce that [z1] Res(P2, P3, z2) = (m1−1)(m1 +m2−1)n2−1t.
Since m1,m2 ≥ 1, this coefficient is 0 if and only if m1 = 1, in which case we have
[z2] Res(P2, P3, z2) = mn2

2 t(1− tz1) 6= 0. We therefore conclude that

val Res(P2, P3, z2) = 1 + ι(m1 = 1) (3.4)

where ι denotes the characteristic function that was defined in Section 2.3. Recall from
Algorithm 1 that P (1)

2 = Res(P2, P3, z2). Thus,

P
(1)
2 =

(z −m1tzz1 +m1 − 1)(z −m1tzz1 +m− 1)n2−1 − (m2tz)n2 , m1 > 1

(1− tz1)(z − tzz1 +m2)n2−1 −mn2
2 tn2zn2−1, m1 = 1

(3.5)

where m = m1 +m2.

Let us first assume m1 = 1. After the first iteration of Algorithm 1, we have eliminated
z2, so the system has been reduced to two equations given by P (1)

i = 0 for i = 1, 2; where

P
(1)
1 = tzzn1

1 − z
n1−1
1 − tz

P
(1)
2 = (1− tz1)(z − tzz1 +m2)n2−1 −mn2

2 tn2zn2−1
(3.6)

are polynomials in z, z1, with coefficients in Z[t]. The degree of these polynomials are as
follows:

degz P
(1)
1 = 1, degz P

(1)
2 = n2 − 1,

degz P
(1)
2 = n1, degz P

(1)
2 = n2.

Using Equation (2.11), we obtain the inequality

degz Res(P (1)
1 , P

(1)
2 , z1) ≤ n2 + n1(n2 − 1). (3.7)

For notional convenience, let γk(t, z) := [zk1 ]P (1)
2 so that P (1)

2 =
∑n2
k=0 γk(t, z)zk1 . Then

Eqn 3.6 implies
γ0(t, 0) = mn2−1

2 , γn2 = (−1)n2−1tn2zn2−1. (3.8)

Furthermore, for 1 ≤ k ≤ n2 − 1, Eqn (3.6) implies

γk =
(
n2 − 1
k

)
(−tz)k(z +m2)n2−1−k + t

(
n2 − 1
k − 1

)
(−tz)k−1(z +m2)n2−1−k, (3.9)
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with its lowest degree term with respect to z as (−1)k−1tkzk−1(n2−1
k−1

)
mn2−k

2 . Thus, Equations
(3.8) and (3.9) together imply that valz γk = max{0, k − 1} for k ≤ n2.

Now assume m1 > 1. With an argument similar to the m1 = 1 case above, we get

degz P
(1)
1 = 1, degz P

(2)
1 = n2,

degz P
(1)
2 = n1, degz P

(2)
2 = n2.

As a result,

degz Res(P (1)
1 , P

(1)
2 , z1) ≤ n2(n1 + 1)− n2 + 1 = n1n2 + 1. (3.10)

The resultant in Equation (3.10) is a satisfying polynomial for the corresponding cogrowth
sequence and it has positive valuation with respect to z. Hence, we can adopt a stronger
bound for the corresponding reduced resultant, P (2)

1 , the satisfying polynomial obtained in
the final iteration of Algorithm 1. We give the specifics in the proposition below regarding
this valuation.

Proposition 3.2. Using the standard order in R̄ := R ∪ {±∞}, for any m1,m2 ≥ 1,

min
σ∈Sym(n1+n2)

valz Syl(P (1)
1 , P

(1)
2 , z1)[σ] = n2 − 1. (3.11)

Proof. Let M = Syl(P (1)
1 , P

(1)
2 , z1). Let Mij denote its ij-th entry indexed from 1. It is

sufficient to consider only the permutations σ for which M [σ] 6= 0. As before, write P (1)
2 =∑n2

k=0 γk(t, z)zk1 . If none of theMiσ(i) are −1, then we have thatM [σ] is a multiple of (tz)n2 ,
so valzM [σ] ≥ n2. Otherwise, let i∗ be the smallest index so that Mi∗σ(i∗) = −1. Then
i∗ ≤ n2, σ(i∗) = i∗ + 1 and for i < i∗, Miσ(i) ∈ {±tz}. Also, there is some index ī ≤ i∗ such
that σ−1(̄i) > i∗. Thus, Mσ−1 (̄i),̄i = γk for some k > n2 − ī. We have that

valzM [σ] ≥ valz((tz)i
∗−1γk(t, z)) ≥ (i∗ − 1) + (n2 − ī) ≥ n2 − 1.

Finally, if σ(i) = i+ 1 for each i 6= n2 + 1, then we have that

M [σ] = (−1)n2γn2γ
n1−1
0

so valzM [σ] = n2 − 1 and the result follows.

Our discussion throughout this section proves the theorem below.

Theorem 3.3. Let F (t) be the cogrowth generating function for

G = Z∗m1
n1 ∗ Z

∗m2
n2 =

2∐
i=1

mi∐
j=1
〈xij |xniij = 1〉
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m2 = 1 m2 > 1
m1 = 1 1 + n1n2 −max{n1, n2} 1 + n1(n2 − 1)
m1 > 1 1 + n2(n1 − 1) 1 + n1n2

Table 3.3: Upper Bounds for degz Q for r = 2 based on the values of m1,m2.

with respect to the minimal generating set S = {x1j : 1 ≤ j ≤ m1} ∪ {x2j : 1 ≤ j ≤ m2}.
Then there is a satisfying polynomial Q ∈ Z[t, z] \ {0} for the cogrowth series FG;S(t) such
that, under the appropriate conditions of m1,m2, it holds that degz Q is at most the upper
bound given in Table 3.3.

The upper bounds in Theorem 3.3 are not necessarily tight. Computations suggest that
these bounds can be further improved. Conjectures 3.4 and 3.5 are the improvements.

Conjecture 3.4. The valuation of the resultants of the polynomials yielded after the first
iteration satisfy the inequality

valz Res(P (1)
1 , P

(1)
2 , z1) ≥ n2.

That is, if we take the products, sgn(σ) Syl(P (1)
1 , P

(1)
2 , z1)[σ] with valuation n2 − 1, and add

up their lowest order terms, they all cancel out to zero.

Notice that if Conjecture 3.4 is correct, then all the entries in Table 3.3 can be decreased
precisely by one. Further improvements may be possible in the case where m1 = m2 = 1,
which we specify in a second conjecture below.

Conjecture 3.5. Let G = Zn1 ∗ Zn2 = 〈x1|xn1
1 = 1〉 ∗ 〈x2|xn2

2 = 1〉 with the minimal
generating set S = {x1, x2}. Then the cogrowth series, FG;S(t), has a minimal polynomial,
Q(t, z) ∈ Z[t, z], with degree (in z) satisfying the inequality,

degz Q ≤ 1 + n1n2 −max{n1, n2} −min{n1, n2}+ 1 = 2 + n1n2 − n1 − n2.

Notice that Conjecture 3.5 is true if n1 = n2, since in this case, Example 3.1 already
yields n1 as an upper bound. We now present some tables and plots to back up our conjec-
tures.

In Figures 3.1 and 3.2, it is evident that our theoretical bound and the degree of the
actual satisfying polynomials differ by a constant when n1 < n2. By symmetry, this principle
is true for n1 6= n2. If m1 = m2 = 1, this constant appears to increase with the value of n1.
If m1,m2 > 1, this constant appears to be independent with n1. In Table B.1 below, the
computed degrees, excluding the case n1 = n2, satisfy Conjecture 3.5 with equality. In Table
B.2, the computed degrees for n1 6= n2 are each exactly one less than the corresponding
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(a) n1 = 2 (b) n1 = 3 (c) n1 = 4

(d) n1 = 5 (e) n1 = 7 (f) n1 = 10

Figure 3.1: Plots of actual degrees and upper bounds vs. n2 = n1, n1 + 1, . . . , 20 for various
fixed n1, in the case m1 = m2 = 1.

theoretical upper bounds obtained based on Table 3.3. Hence, these computations support
Conjecture 3.4.

Two tables, Table B.1 and Table B.2, provide in Appendix B, provide the computed
degrees and the theoretical upper bounds for various n1, n2. We remark that the values
shown in the two tables of computed degrees does not necessarily match with the degree of
P

(2)
1 , computed from Algorithm 1. However, degz P

(2)
1 is necessarily at least as large as the

corresponding degree value shown in the table. This is evident in the case that n1 = n2, for
which the variables z1, z2 are identical in our initial system of equations, with P1 = P2. By
classic properties of resultants [8], the polynomial, P (2)

1 , must have a factor that is a perfect
square of a polynomial in Z[t, z] that is not a monomial. To help the reader visualize this
property, we give an example below.

2In order to save computation time and memory, the experiment in Maple was done by setting m1 =
m2 = 2 rather than keeping them symbolic.
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(a) n1 = 2 (b) n1 = 3 (c) n1 = 4

(d) n1 = 5 (e) n1 = 6 (f) n1 = 7

Figure 3.2: Plots of actual degrees and upper bounds vs. n2 = n1, n1 + 1, . . . , 20 for various
fixed n1, in the case2 m1,m2 > 1.

Example 3.6 (n1 = n2 = 3). Consider the case of G = Z3 ∗Z3. If we run algorithm 1 with
r = 2 and m1 = m2 = 2, we obtain

P
(2)
1 = (8t3z3 − z3 − z2 + z + 1)(t3z + z + 1)2,

a satisfying polynomial for the cogrowth generating function, with degree 5 in z. Using a
built-in algebraic elimination function in the Maple programming language starting with
the system in Theorem 2.13 and r = 2, we obtain the satisfying polynomial,

Q := (8t3z3 − z3 − z2 + z + 1)(t3z + z + 1),

which is of degree 4, as displayed in the cell of Table B.1 with a cyan background. We can
make a further improvement: Set r = 1 and following Example 3.1 with m = 1. Equation
(3.2) gives us

P
(1)
1 = −(8t3z3 − z3 − z2 + z + 1),

a satisfying polynomial of degree 3.
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We further remark that the computed degrees given in the two tables above are not
minimal for n1 = n2, since the degree values exceed the bound obtained in Example 3.1.

If n1 6= n2, then the above computation appear to suggest that P (2)
1 achieves the com-

puted degree. However, we have not proven whether or not this statement is true in general.

3.2 Free Products of at Least Three Distinct Factors

In this section, we discuss the case where our group, G, have at least 3 distinct cyclic
factors. The steps carried out in previous sections apply similarly here during the first two
iterations of Algorithm 1. As mentioned in the beginning of this chapter, we continue to
adopt the notation for polynomials and vectors of polynomials as given in Theorem 2.13
and Algorithm 1. We make an important observation that after any given iteration, only the
last polynomial changes, and the other polynomials remain the same as before. Specifically,
during the k-th iteration, we eliminate the variable, zr+1−k. As a result, we have, for i =
1, 2, . . . r − k, that

P
(k)
i = P

(k−1)
i = P

(k−2)
i = . . . = P

(1)
i = P

(0)
i .

This chain of equalities hold if we view these polynomials with respect to the natural
inclusion of polynomial rings:

Z[t, z, z1, . . . , zr−k] ⊆ Z[t, z, z1, . . . , zr−k+1] ⊆ . . . ⊆ Z[t, z, z1, . . . , zr−1] ⊆ Z[t, z, z1, z2, . . . , zr].

Such a observation holds since we defined our reduced resultant piecewise according to
(2.12) in Definition 2.14. If we instead defined Res naively only to avoid extra monomial
factors, then Algorithm 1 would introduce redundant exponents after each iteration, un-
necessarily adding to our degree count. The last polynomial that appears in the system
after the k-th iteration is P (k)

r+1−k, which is different from P
(k−1)
r+1−k that appears in the pre-

vious iteration. Also, if k < r so that we are not at the final iteration, then the degree of
P

(k)
r+1−k, with respect to any variable depends on k and nr, nr−1, . . . , nr+1−k in the same

way regardless of the value of r. We now formalize this last property in a proposition.

Proposition 3.7. Let k ∈ Z≥0. Then for integers r > k, 0 < j ≤ r − k, and d ≥ 0, there
is a unique function3 fk;v;d;j : Zk≥2 → Z≥0 such that

degv
(
[zdj ]P (k)

r−k+1

)
= fk;v;d;j(nr, nr−1, . . . , nr−k+1) (3.12)

in the sense that this degree is independent of n1, . . . , nr−k. Furthermore, the function,
fk;v;d;j, is independent of r.

3We use the convention that Z0
≥2 = {()} is the singleton set consisting of the empty sequence.
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Proof. We proceed with induction on k. If k = 0, we obtain the original polynomial Pr+1

and the claim is true since the degrees given in (3.12) are either 0 or 1. Suppose k > 0 and
the claim is true with k − 1 in place of k. Let i = r − k + 1 and consider the resultant,
Rk := Res(P (k−1)

i , P
(k−1)
i+1 , zi). It can be verified that Rk = ηk(m1z1 +m2z2 + . . .+mi−1zi−1)

for some ηk(s) ∈ (Z[t, z])[s]. Observe that P (k−1)
i = Pi depends only on ni, zi, t, z, and

in particular, is independent of r. By the induction hypothesis, for every d ∈ Z≥0, the
polynomial, [zdi ]P (k−1)

i+1 , has degrees with respect to every variable that are independent of
r. Although Rk is not completely determined by nr, nr−1, . . . , ni without knowledge of r,
the polynomial, ηk(s), is completely determined without knowledge of r. Assume v ∈ {t, z}.
For each 0 < j < i, and d ≥ 0, the polynomial, [zdj ]Rk is a Z[z1, z2, . . . , zj−1, zj+1, . . . , zi−1]-
linear combination of the coefficients of ηk(s). Thus, degv[zdj ]Rk can be expressed as a
function of nr, nr−1, . . . , ni without explicit knowledge of r. We now consider the case of
v /∈ {t, z}. Without loss of generality, we can assume v = z1 and j = 2. It is evident
that degv[zdj ]Rk = degv[zd2 ]ηk(m1z1 + m2z2) can be expressed in terms of a polynomial
independent of r. We have shown that all the degree, degv[zdj ]Rk, can be expressed as a
function of nr, nr−1, . . . , ni without explicit knowledge of r. In remains to show that the same
is true for all the valuations of [zdj ]Rk. The ring, Z[t, z, z1, z2, . . . , zi−1], can be interpreted
as a Z[t, z]-module, for which the set,

∑
j∈A

mjzj

d : d ∈ Z≥0

 ,
for any nonempty subset A ⊆ {1, 2, . . . , i−1}, forms a basis for a Z[t, z]-submodule. If v = z1

and j = 2, then valv[zd2 ]Rk = valv[zd2 ]ηk(m1z1 + m2z2) is completely determined without
knowing r. If v ∈ {t, z}, then valv Rk = valv ηk is independent of r. Hence, the claim in the
proposition is now shown for our choice of k, completing our induction step.

An immediate consequence of Proposition 3.7 is that a similar statement holds upon
dropping the coefficient of zdj of (3.12). Since v 6= zj , we can write

degv
(
P

(k)
r−k+1

)
= fk;v(nr, nr−1, . . . , nr−k+1)

where fk;v := maxd≥0 fk;v;d;j . To help the reader make sense of the statement in Proposition
3.7, we provide a brief example: Suppose r = 7, k = 3, and degv P

(3)
5 = n3

7 + n3
6 + n3

5. In
this hypothetical scenario, Proposition 3.7 implies that increasing r to 1000 gives us that
degv P

(3)
998 = n3

1000 +n3
999 +n3

998. That is, if we shift all the subscripts by the same index and
keep all else the same, we preserve the validity of the equation.

The reader must be cautious here and observe that Proposition 3.7 applies only up to the
second to last iteration of Algorithm 1. Indeed, after the final iteration, the only remaining
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variables are t and z, so it is senseless to extract those coefficients. However, if we skip the
coefficient extraction, then a analogous statement can be formulated even after the final
iteration. We give this formulation in the corollary below.

Corollary 3.8. For each r ≥ 2, consider the polynomial P (r)
1 as generated by Algorithm 1

during the final iteration. Then for each variable v ∈ {t, z}, and for each d ∈ Z≥0, we have
that

degv
(
P

(r)
1

)
= f(v,d);r(nr, nr−1, . . . , n1) (3.13)

for a unique function f(v,d);r : Zr≥2 → Z≥0. Furthermore, adopting the notation in Propo-
sition 3.7, it follows that for 2 ≤ k < r and 0 < j ≤ r− k, we have the following inequality:

f(v,d);k ≤ max
d≥0

fk;v;d;j . (3.14)

Proof. For each r ≥ 2, define R∗r := Res(P (r−1)
1 , P

(r−1)
2 , z1) according to the last iteration of

Algorithm 1 given r distinct factors. Now, we fix r, and define, for 2 ≤ k < r, the resultant,
Rk, as in the proof of Proposition 3.7. Notice that R∗k = η∗k(0) and

Rk = ηk(m1z1 +m2z2 + . . .+mr−kzr−k),

where η∗k(s), ηk(s) ∈ (Z[t, z])[s] are nearly identical except of the fact that, in order to con-
struct η∗k, we need to take the expression for ηk, and substitute the parameters, nr, nr−1, . . . ,

nr−k+1, with nk, nk−1, . . . , n1 respectively. We have seen from the proof of Proposition 3.7,
that

degv Rk = max
d≥0

degv[zdj ]Rk

and 4

valv Rk = min
d≥0

valv[zdj ]Rk

can both be computed from the coefficients of ηk as a function of nr, nr−1, . . . , nr−k+1 inde-
pendent of r. In addition, by the argument made in the proof of Proposition 3.7 regarding
submodule bases, we have

degv Rk = max
d≥0

degv([sd]ηk) and valv Rk = min
d≥0

valv([sd]ηk). (3.15)

Since R∗k = η∗k(0), it follows that

degv R∗k = degv([s0]η∗k) and valv R∗k = valv([s0]η∗k). (3.16)

4Recall that we are using the convention: valv 0 = +∞.
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Consequently, by construction of ηk and η∗k, the inequality, (3.14), follows immediately
from equations (3.15) and (3.16).

We also obtain degree bounds for the last polynomial obtained in the first and second
iterations.

Corollary 3.9. For r ≥ 1, degt P
(1)
r = degz P

(1)
r = nr.

For r ≥ 2, it holds that degz P
(2)
r−1 ≤ 1 + nr−1nr.

Proof. A direct computation shows that P (1)
r = γnr −mrγ

nr−1 − (mrtz)nr , where

γ(t, z, z1, z2, . . . , zr−1) = z − tz
r−1∑
j=1

mjzj +
r∑
j=1

mj − 1.

The bound on P (2)
r−1 is verified for r = 2 in Theorem 3.3. By Proposition 3.7 and Corollary

3.8, this bound must hold for any arbitrary r ≥ 2.

In order to establish upper bounds on the degree of minimal polynomials, we would like
to use the symmetry of our system form Theorem 2.13 to our advantage. It is evident that,
for any upper bound expressed in terms n1, n2, . . . , nr, permuting these parameters in our
expressions gives us another upper bound. For our convenience, we recall the definition of
a symmetric function, and then define symmetric closures.

Definition 3.10. Let D ⊆ Zm be a set and let f : D → R be a real-valued5 function. The
set, D, is considered to be symmetric if each (k1, k2, . . . , km) ∈ D and σ ∈ Sym(m), we have
(σ(k1), σ(k2), . . . , σ(km)) ∈ D.
For a symmetric set D,

• the function, f , is considered to be symmetric if

f(k1, k2, . . . , km) = f(σ(k1), σ(k2), . . . , σ(km))

for each σ ∈ Sym(m); and

• we define the minimum symmetric closure, minCl(f), of f (which may or may not be
symmetric), to be the map

(k1, k2, . . . , km) ∈ D 7→ min
σ∈Sym(m)

f(σ(k1), σ(k2), . . . , σ(km)).

5In our setting, we only need to consider functions that map to non-negative integers, but we use R here
as a generalization.
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Similarly, the maximum symmetric closure, maxCl(f), of f is defined as

(k1, k2, . . . , km) ∈ D 7→ max
σ∈Sym(m)

f(σ(k1), σ(k2), . . . , σ(km)).

�

Notice that minCl(f) and maxCl(f) are symmetric functions; and f is symmetric ⇐⇒
f = minCl(f) ⇐⇒ f = maxCl(f). In the previous section, we have obtained, from Table
3.3 of Theorem 3.3, symmetric upper bounds for the degrees of minimal polynomials. In
the case where r ≥ 3, Algorithm 1 requires at least three iterations before terminating
with the satisfying polynomial. In this case, the resultant computations gets increasingly
complicated after each iteration, making tight degree bounds difficult to establish. However,
we can compute loose upper bounds using a classic property of resultants given in Equation
(2.11). We give an example below with r = 3.

Example 3.11 (r = 3 case). Consider the case where G = Z∗m1
n1 ∗ Z

∗m2
n2 ∗ Z

∗m3
n3 with our

usual minimal generating set. Using the notation of polynomials given in Algorithm 1, we
get, after the second iteration, that P (2)

1 = P1, and P (2)
2 is a polynomial with the properties:

degz P
(2)
2 ≤ 1 + n2n3 by Theorem 3.3, and

degz1 P
(2)
2 ≤ (degz1 P

(1)
1 )(degz2 P

(1)
2 ) + (degz2 P

(1)
1 )(degz1 P

(1)
2 ) = n2n3

by the inequality in (2.11). After the third and final iteration, we obtain our satisfying
polynomial, Pf := P

(3)
1 with

degz Pf ≤ (degz P
(2)
1 )(degz1 P

(2)
2 ) + (degz1 P

(2)
1 )(degz P

(2)
2 ) = n1 + n2n3(1 + n1),

giving us an upper bound for a minimal polynomial of the associated cogrowth series that
is not symmetric in n1, n2, n3. Thus, a valid symmetric upper bound is

minCl((n1, n2, n3) 7→ n1 + n2n3(1 + n1)).

Since n1, n2, n3 ≥ 2, it can be shown, using straightforward algebra, that the minCl expres-
sion above can be simplified to

max{n1, n2, n3}+ n1n2n3

(
1 + 1

max{n1, n2, n3}

)
.

�

We can similarly obtain a naive upper bound with any number of distinct cyclic factors
by repeatedly applying Equation (2.11). We now state and prove a major theorem below. By
computing the upper bounds in each iteration of Algorithm 1, it is evident that Proposition
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3.7 and Corollary 3.8 both apply. However, using these two results, we are able to give a
more concise proof.

Theorem 3.12. For r ≥ 3, consider the group,

G :=
r∐
i=1

mi∐
j=1
〈xij |xniij = 1〉 = Z∗m1

n1 ∗ Z
∗m2
n2 ∗ . . . ∗ Z

∗mr
nr ,

with the generating set, S := {xij : 1 ≤ i ≤ r, 1 ≤ j ≤ ni}, where each ni ≥ 2 and each
mi ≥ 1. Let P (k)

i , for 0 ≤ k ≤ r and 1 ≤ i ≤ r−k+1, denote the polynomial generated after
k iterations of Algorithm 1 with input as the system of equations, (2.6), given in Theorem
2.13. Then we have

degz P
(r)
1 ≤ (n1n2 . . . nr)

(
1 + 1

nr−1nr
+

r−2∑
k=1

1
nk

)
< (n1n2 . . . nr)

(
1 +

r∑
k=1

1
nk

)
, (3.17)

and for 0 ≤ k < r, 1 ≤ j ≤ r − k: degzj P
(k)
r−k+1 ≤ nr−k+1 . . . nr−1nr.

Proof. We apply induction on r. If r = 3, the theorem is already deduced in Example 3.11.
Let r0 > 3 be a fixed integer and suppose the result is true for r = r0−1. We show that the
result holds for r = r0. Suppose 0 ≤ k < r, 1 ≤ j ≤ r − k. If k = 0, then degzj P

(k)
r−k+1 = 1,

so assume k > 0. Observe that

degzj P
(k)
r−k+1 ≤ degzjP

(k−1)
r−k+1 degzr−k+1P

(k−1)
r−k+2 + degzjP

(k−1)
r−k+2 degzr−k+1P

(k−1)
r−k+1

≤ 0 · (nr−k+2 . . . nr−1nr) + (nr−k+2 . . . nr−1nr) · nr−k+1

= nr−k+1 . . . nr−1nr,

where the first inequality follows from Eqn 2.11, and the second inequality follows from the
induction hypothesis and Corollary 3.8. Again, by the induction hypothesis and Corollary
3.8, it holds that degz P

(r−1)
2 ≤ (n2n3 . . . nr)

(
1 + 1

nr−1nr
+
∑r−2
k=2

1
nk

)
. Hence,

degz P
(r)
1 ≤ degz P

(r−1)
1 degz1 P

(r−1)
2 + degz1 P

(r−1)
1 degz P

(r−1)
2

≤ 1 · (n2n3 . . . nr) + n1 · degz P
(r−1)
2

≤ (n1n2 . . . nr)
(

1 + 1
nr−1nr

+
r−2∑
k=1

1
nk

)
,

establishing the first inequality in (3.17). The second equality follows for the fact that
nr, nr−1 ≥ 2.

An interesting observation is that, if we fix the orders of all the distinct cyclic factors
except one of them, then the degree bound given in Eqn (3.17) suggests that the degree
of our minimal polynomial is bounded linearly by the one varying factor. Specifically, let
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∆(n1, n2, . . . , nr) denote the degree in z of any minimal polynomial, Q(t, z) ∈ Z[t, z], for
our cogrowth series, FG;S(t), of which Q(t, FG;S(t)) = 0. Then for each i = 1, 2, . . . , r, we
deduce that

∆(n1, n2, . . . , nr) ≤ β0(n1, n2, . . . , ni−1, ni+1, . . . , nr) + niβ1(n1, n2, . . . , ni−1, ni+1, . . . , nr)

for some functions β0, β1 : Zr−1
≥2 → Z≥0. Theorem 3.12 tells us that β0, β1 can be chosen

independently from i. To help us visualize this linear relationship, we provide a plot in
Figure 3.3. The plotted upper bounds are calculated based the minimum symmetric closure
of the bound given by the first inequality in (3.17). The computed degrees in the plot
provide further evidence that the relationship between the minimal degree and the order
of the varying cyclic factor is linearly bounded. By observing the computed degrees, we
may further conjecture that this relationship is precisely linear. However, we are unable to
prove such a conjecture since we do not know whether or not the computed degree is truly
minimal.

Figure 3.3: Plots of Actual Degrees and Upper Bounds vs. n3 = 3, 4, . . . , 20 for fixed n1 =
2, n2 = 3 with m1,m2,m3 as parameters.

We conclude this section by comparing Theorem 3.12 to a theorem regarding irreducible
representations of general finite groups.

Theorem 3.13 (Bell [3]). Let G1, . . . , Gr be finite groups with generating sets S1, S2, . . . , Sr

respectively. Let ∆i denote the sum of the degrees of the irreducible representations of Gi for
i = 1, . . . , r. Then the cogrowth series F (t) of

∐s
i=1G

∗mi
i with respect to the generating set

S := ∪ri=1Si, is algebraic and satisfies Q(t, F (t)) = 0, where Q(t, z) ∈ Z[t, z] with degt(Q)
and degX(Q) both at most (

s∏
i=1

∆i

)(
1 +

s∑
i=1

1
∆i

)
.

In the case of free product of cyclic groups, Theorem 3.13 is implied by the second
inequality of (3.17). In our setting, we takeG to be a free product of cyclic groups with orders
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n1, n2, . . . , nr. Hence, to satisfy the hypothesis of Theorem 3.13, if we let each Gi = Zni
and each Si ⊆ Gi a generating set consisting of one element, then standard results from
representation theory [7] tells us that each ∆i = ni. Consequently, Theorem 3.12 deduces
this special case of Theorem 3.13. Theorem 3.13 applies to any free product of finitely many
finite groups, each equipped with arbitrary, and thus, is far more powerful than Theorem
3.12. However, the first inequality in (3.17) of Theorem 3.12 provides a non-symmetric upper
bound, that is an improvement compared to that of Theorem 3.13. This improved bound is
significantly tighter on examples where nr and nr−1 are large.
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Chapter 4

Free Products of Cyclic and
Dihedral Groups

In this chapter, we discuss the free product of finite cyclic groups and finite dihedral
groups. We perform singularity analysis on specific examples, and then obtain degree bounds
on the case where the free factors are identical dihedral groups.

4.1 An Example with One Cyclic and One Dihedral Factor

In order to motivate our problem, we start with the example below regarding the free
product of a cyclic factor and a dihedral factor.

Example 4.1 (Z2 ∗D3). Consider the free product

G = Z2 ∗D3 = 〈x|x2 = 1〉 ∗ 〈r, f |r3 = 1, f2 = 1, rf = fr−1〉

with the minimal generating set S = {x, r, f}. Figure 4.1 below gives the Cayley graph,
χ(G,S), for this example. The black edges represent a walk in the direction of x. Amongst
the blue edges, the directed ones correspond to the rotation r ∈ D3 ∩ S, and undirected
ones corresponds to the flip, f ∈ D3 ∩ S.
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Figure 4.1: Cayley graph of Z2 ∗D3 with generating set S = {x, r, f}.

Applying the free probability method to prove Theorem 2.13, we deduce that z = F (t) :=
FG;S(t) is a solution to the system

−tzz1 − tzz2 + z + 1 = 0

tzz1
2 − tz − z1 = 0

(tzz2 − 1)
(
z2

2 − z2 − 2
)
− 1 = 0.

(4.1)

Using the algebraic elimination procedure described in Algorithm 1, we deduce that a
satisfying polynomial for F (t) is defined by Q(t, z):

Q(t, z) :=


(3t− 1)(2t+ 1)(t+ 1)(t− 1)2

(t− 1)(t+ 1)(t3 − 3t2 − t+ 1)
(t− 1)(2t− 1)(t+ 1)

−t2 − t+ 1


T 

z3

z2

z

1

 ∈ Z[t, z].

We perform singularity analysis on both the implicit and explicit solutions, following
the technique described in Section 2.7. The explicit solution of the cogrowth series, F (t), as
computed using the solve and eliminate commands in the Maple programming language,
is given by
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F (t) =
3
√
H2 (t)

6 (3 t− 1) (2 t+ 1) 3√t+ 1 (t− 1)

+ 2 3√t+ 1
(
t6 − 6 t5 − 29 t4 + 56 t3 − 8 t2 − 14 t+ 4

)
3 3
√
H2 (t) (t− 1) (3 t− 1) (2 t+ 1)

− t3 − 3 t2 − t+ 1
3 (t− 1) (3 t− 1) (2 t+ 1)

(4.2)

where
H1(t) =

√
−3(4t4 − 48t3 + 20t2 + 13t− 5)(t3 + 3t2 + 2t− 4)2

t− 1

and

H2(t) =12t(t− 1)(3t− 1)(2t+ 1)H1(t)− 8t7(t3 − 8t2 − 39t− 288)

+ 1140t6 − 6348t5 + 788t4 + 2588t3 − 504t2 − 272t+ 64.

The possible singularities of F (t) are computed by setting each expression that appears
in (4.2) either as a denominator, or underneath a square root. This process may yield some
values that are not singularities since cancellations may occur upon simplifying the given
expression for F (t). Upon implementing the procedure described above in Maple, we obtain
the set of possible singularities,

P := {−4.18554,−1,−0.5, 1
3 , 0.36392, 0.49578, 0.796321903, 1,

− 1.89816− 1.19167i,−1.89816 + 1.19167i,

− 0.5054897169, 0.3497985349, 0.612422133, 11.54326905} ⊆ C.

The set, P , suggests that the dominant singularity of F (t) is 1
3 . However, we will see

shortly that this is not the case.

We now perform singularity analysis on the implicit satisfying polynomial, Q(t, z). To do
this, we first compute the exceptional set, the union of the roots the leading coefficient of Q
in z, and the discriminant of Q with respect to z. In this case, we computed the exceptional
set to be

E := {−1,−0.506,−0.5, 0, 0.3333, 0.3498, 0.6124, 0.7963, 1, 11.543,−1.898−1.192i,−1.898 + 1.192i}.

It is a known fact [12, 8, 2] that the set, E, contains the dominant singularities of the
cogrowth series, F (t). The modulus of a dominant singularity of F (t) satisfy the equation
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ρ = lim
n→∞

[tn]F (t)
[tn+1]F (t) (4.3)

provided the given limit exists, as stated in Section 2.7.
We use Maple to generate the coefficients [tn]F (t) for large n and concluded the approxi-
mation ρ ≈ 0.3497985381 ∈ E. �

Although Example 4.1 above demonstrates properties of asymptotic singularities, the
main objective of this thesis is not to analyze singularities, but to discuss algebraic and
enumerative properties of cogrowth generating functions.

4.2 Free Product of Identical Finite Dihedral Groups

We now consider the case where G = D∗mn is the free product of m ≥ 2 identical
copies of the group Dn. Unlike the cyclic case in Example 3.1, obtaining the satisfying
polynomial explicitly in the case of identical dihedral groups is more difficult, since rational
generating functions for dihedral groups are more complex than the geometric series for
cyclic groups. However the results in Corollary 2.4 yield upper bounds on degrees of the
satisfying polynomial. We formalize this result below, using the definition,

dn :=


n+1

2 , n is odd

2dn4 e, n is even

as stated in Equation (2.2) of Corollary 2.4.

Proposition 4.2. Let G = D∗mn =
∐m
i=1〈ri, fi|rni = 1, f2

i = 1, rifi = fir
−1
i 〉 with the

generating set, S = {r1, f1, r2, f2, . . . , rm, fm}. Then the cogrowth series, F (t) := FG;S(t),
has a satisfying polynomial P (t, z) ∈ Z[t, z] with degt P ≤ dn and degz P ≤ dn + 1.

Proof. We know from Corollary 2.4 that F (t) is the Taylor series of p(t)q(t) for some p, q ∈ Z[t]
with p(0) = q(0) = 1 and deg p = deg q ≤ dn. Let s =

∑
x∈S x ∈ C[G], and let Gs(t) denote

its Cauchy transform. It follows that

Gs(t) = t−1F (t−1) = p̄(t)
q̄(t) ,

where p̄(t) := tdeg qp(t−1) ∈ Z[t, t−1] and q̄(t) := t(deg q)+1q(t−1) ∈ Z[t, t−1].
Hence, p̄, q̄ ∈ Z[t] with deg p̄ = deg q = deg q̄ − 1. The compositional inverses, K(t), K̄(t),
of the Cauchy transforms of s and ri + fi, respectively, for any i = 1, . . . , n, satisfy the
following relations:

p̄(K̄(t)) = tq̄(K̄(t)); K(t) = mK̄(t)− (m− 1)t−1.
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In particular, the polynomial system,

z = mz1 − (m− 1)t−1

p̄(z1) = tq̄(z1)
(4.4)

has a solution with z = K(t). Upon performing elementary algebraic manipulations on
Eqn (4.4), we get that the system,

z = mtzz1 − (m− 1)

p̄(z1) = tzq̄(z1)
(4.5)

has a solution with z = F (t). The first equation in (4.5) yields z1 = z+m−1
mtz . After performing

a substitution and clearing denominators, we deduce that a satisfying polynomial for F (t)
is

Q(t, z) :=
(deg q)+1∑
k=0

(z +m− 1)k(mtz)(deg q)+1−k
(
([tk]p̄)− tz([tk]q̄)

)
∈ Z[t, z]. (4.6)

Note that q̄(0) = 0 and [t1]q̄ 6= 0, which implies that degz Q = (deg q) + 2 and degtQ =
(deg q) + 1. Since [t(deg q)+1]p̄ = 0, we have valz Q ≥ 1 and valtQ ≥ 1. Hence, taking

P (t, z) := (tz)−1Q(t, z)

=

deg q∑
k=0

m(z +m− 1)k(mtz)(deg q)−k
(
([tk]p̄)− tz([tk]q̄)

)− (z +m− 1)(deg q)+1

∈ Z[t, z]
(4.7)

gives us the desired bound.

If follows from Equation (4.7) that P (0, 0) = (m − 1)deg q 6= 0, where q ∈ Z[t] is the
denominator of the relevant cogrowth generating function selected according to Corollary
2.4. Consequently, P has zero valuation in both t and z, so in fact, P = trimZQ. Table 4.1
documents some properties of the satisfying polynomials computed in the proof of Propo-
sition 4.2 for some specific values of n, the number of vertices in each dihedral factor. The
number of free factors, m, is held as a general parameter.

The data provided in Table 4.1 is consistent with the statement of Proposition 4.2, and
the given degree bounds are satisfied with equality in these examples.

We make a few observations on the properties of the satisfying polynomial, P (t, z), based
on Table 4.1. Notice that the leading coefficient of P (t, z) with respect to z has maximal
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n dn Degree
in z

Degree
in t

Leading coefficient in za Constant term in z

3 2 3 2 (mt+ 1)(2mt− 1) (m− 1)2

4 2 3 2 (2mt− 1)(2mt+ 1) (m− 1)2

5 3 4 3 −(2mt− 1)(m2t2 −mt− 1) (m− 1)3

6 4 5 4 −(2mt− 1)(2mt+ 1)(mt− 1)(mt+ 1) (m− 1)4

7 4 5 4 −(2mt− 1)(m3t3 + 2m2t2 −mt− 1) (m− 1)4

8 4 5 4 −(2mt− 1)(2mt+ 1)(2m2t2 − 1) (m− 1)4

9 5 6 5 (2mt− 1)(mt+ 1)(m3t3 − 3m2t2 + 1) (m− 1)5

10 6 7 6 (2mt− 1)(2mt+ 1)O((mt)4) (m− 1)6

11 6 7 6 (2mt− 1)O((mt)5) (m− 1)6

12 6 7 6 (3m2t2−1)(2mt−1)(2mt+1)(mt− 1)(mt+ 1) (m− 1)6

13 7 8 7 −(2mt− 1)O((mt)6) (m− 1)7

14 8 9 8 −(2mt− 1)(2mt+ 1)O((mt)6) (m− 1)8

15 8 9 8 −(mt+ 1)(2mt− 1)(m2t2 −mt− 1)O((mt)4) (m− 1)8

16 8 9 8 −(2mt− 1)(2mt+ 1)(2m2t2 − 1)O((mt)4) (m− 1)8

17 9 10 9 (2mt− 1)O((mt)8) (m− 1)9

18 10 11 10 (2mt− 1)(2mt+ 1)(mt− 1)(mt+ 1)O((mt)6) (m− 1)10

19 10 11 10 (2mt− 1)O((mt)9) (m− 1)10

20 10 11 10 (2mt− 1)(2mt+ 1)(5m4t4 − 5m2t2 + 1)O((mt)4) (m− 1)10

30 16 17 16 −(mt− 1)(mt+ 1)(2mt− 1)(2mt+ 1)O((mt)12) (m− 1)16

aThe notation, O((mt)d), represents a polynomial in Z[mt] of degree d with positive leading coefficient.

Table 4.1: Properties of satisfying polynomials P (t, z) over Z for the cogrowth series of G =
D∗mn =

∐m
i=1〈ri, fi|rni = 1, f2

i = 1, rifi = fir
−1
i 〉 generated by S = {r1, f1, r2, f2, . . . , rm, fm}.

degree and depends solely on mt. That is, [zdegz P ]P (t, z) is a polynomial1 in Z[mt] of
degree degt P (t, z). The linear factor, 2mt + 1, appears in all the leading coefficients. The
factor, mt+ 1, appears whenever n is a multiple of 3. Finally, even though only the leading
coefficient is shown in Table 4.1, we suspect that P (t, z) = P (−t, z) whenever n is even2.
We now summarize our observations as a conjecture.

Conjecture 4.3. Let G = D∗mn =
∐m
i=1〈ri, fi|rni −1, f2

i −1, rifi−fir−1
i 〉 with the generating

set, S = {r1, f1, r2, f2, . . . , rm, fm}. Then the cogrowth series, F (t) := FG;S(t), has a satis-
fying polynomial P (t, z) ∈ Z[t, z] as defined in Equation (4.7). Let L(t) := [zdegz P ]P (t, z)
be the leading coefficient of P with respect to z. Then the following properties hold:

1. The polynomial, L(t) ∈ Z[t], belongs to Z[mt];

2. degL = degt P ;

3. 2mt− 1|L(t);

1Warning: [zd]P (t, z) is a polynomial in t, and is, in general, not the same as [t0zd]P (t, z).

2This property was verified using Maple for n ∈ {4, 6, 8, . . . , 20} ∪ {30, 36, 40}.
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4. if n is even, then P (t, z) = P (−t, z); and

5. if 3|n, then mt+ 1|L(t).

Throughout this thesis, we have focused on groups of the form

G = Z∗r1
n1 ∗ Z

∗r2
n2 ∗ . . . ∗ Z

∗rk
nk
∗D∗s1

m1 ∗D
∗s2
m2 ∗ . . . ∗D

∗sl
ml

with each nj ≥ 2, mj ≥ 3, ri ≥ 1, si ≥ 1, and k + l > 0. The case where l = 0 was
discussed in the previous chapter. Section 4.2 discussed the case where k = 0, l = 1, for
which G is the product of identical dihedral groups. More such cases can be analyzed as
possible future work. Based on the results we obtained, we conjecture that, in the general
case, a possible degree bound for G with a minimal generating set, in z, is

degz P ≤ (n1n2 . . . nkdm1dm2 . . . dml)

1 +
k∑
i=1

n−1
i +

l∑
j=1

d−1
mj

 .
where dn is defined, as before, in Proposition 4.2 at the beginning of this section.
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Chapter 5

Conclusion

We have made effective, a known fact, that finite free products of finite groups have
algebraic cogrowth generating functions. That is, they satisfy polynomial equations in two
variables with integer coefficients. This fact was established using two different methods:
constructing combinatorial grammar using formal language theory; and using the theory
of free probability. We first construct a system of polynomial equations over the integers,
then use a standard elimination technique in computer algebra to reduce the system down
to one equation, yielding the desired satisfying polynomial.

The system we generate using grammar involves a number of equations that is expo-
nential to the sum of the order of the free factors. The process of variable elimination can
be reasonably carried out computationally but can be difficult to analyze in theory. Using
free probability, we get that the number of equations involved is linear to the number of
free factors. In both scenarios, identical free factors can be considered together. Thus, the
formulation of our algebraic system can be reduced so that the number of variables and
equations involved depends only on the number of distinct free factors.

As observed throughout this thesis, the difficulty the of computational analysis involved
increases significantly as the number of distinct free factors increases by one. The case of
identical cyclic factors yielded an simple explicit satisfying polynomial. For the case of two
distinct cyclic factors, it was not easy to compute an explicit satisfying polynomial, but we
did, however, establish upper bounds on their degrees, which are quadratic in the two cyclic
orders. We also noticed that the usage of dihedral factors produced more complications,
compared to using only cyclic factors. Unlike in the cyclic case, we were unable to produce
explicit formulas for the satisfying polynomials for cases involving dihedral factors, using
only integer coefficients.

Notice that we only considered cyclic and finite dihedral free factors in this thesis. Since
the infinite cyclic group, Z, has the same cogrowth sequence as a free product of two copies
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of Z2, we observed that it is sufficient to consider only finite cyclic factors. In general, one
can also consider other types of groups as free factors, such as symmetric groups, general
Abelian groups, special linear groups, etc.

Finally, we remark that Section 5 of Bell and Mishna [4] mentions a theorem stating
that if our group is finitely generated and the generating set is inverse closed, then radius of
convergence of the cogrowth series lies in

(
0, 1

2
√

2

)
∪{1

2 , 1}. Since the majority of cases used
in this thesis involves minimal generating sets, it may be of interest to develop a similar
result of the minimal case.
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Appendix A

Maple Code

# user de f ined he lpe r f i l e s
read " maple_helper / l i s t u t i l s . mpl " ;
read " maple_helper / s t r i n g u t i l s . mpl " ;
read " maple_helper / po l y t o o l s . mpl " ;
read " maple_helper / s i n gu l a r i t y_ana l y s i s . mpl " ;

# Maple standard packages
with ( F i l eToo l s ) ;
with ( St r ingToo l s ) ;
with ( cominat ) ;
with ( gfun ) ;
gfun :− ve r s i on ; # load 3 .76

# func t i on s

get_approx_inverse_exp_seqs :=
proc ( aseq , p , r , num_apprs , ratio_method )

# ratio_method should be ’ s i n g l e ’ or ’ double ’
# f o r ana lyz ing cogrowth sequence , we only need r=0
# aseq should be passed as a l i s t
l o c a l nth_ratio , N, nmax ;
nth_rat io := n −> eva l f ( i f e l s e ( ratio_method = ’ s i n g l e ’ ,
( aseq [ r + p∗n + 1 ]/ aseq [ r + p∗(n + 1) + 1 ] ) ^(1/p) ,

( aseq [ r + 2∗p∗n + 1 ]∗ aseq [ r + p∗(n + 1) + 1 ]/ ( \
aseq [ r + p∗n + 1 ]∗ aseq [ r + 2∗p∗(n + 1) + 1 ] ) ) ^(1/p) ) ) ;

N := nops ( aseq ) ; nmax := f l o o r ( i f e l s e ( ratio_method = ’ s i n g l e ’
,

(N − r − 1) /p − 1 , 1/2∗(N − r − 1) /p − 1) ) ;
return map( nth_ratio , [ seq (nmax + 1 − num_apprs . . nmax) ] ) ;
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end proc

# reduce the complexity o f code output by Maple ’ s b u i l t in ’ l a t e x
’ f unc t i on

s imple_latex := proc ( aexpr )
l o c a l tmp ;
tmp := l a t ex ( aexpr , output = s t r i n g ) ;
# s t r i n g sub t i t u t i on
return Subs ( [ " \\ l e f t " = " " , " \\ r i g h t " = " " , " \\ , " = " " ] , tmp)

;
end proc

# Use dynamic programming to implement a procedure
## ge t t i ng the cogrowth s e r i e s o f a f i n i t e d ih ed ra l group
_Dm_memo_table := tab l e ( [ ] ) ;
Dm_cogrowth_series := proc (m, t t := ’ t ’ )

l o c a l j , F , N, cs , i , D, c ;
global _Dm_memo_table ;
i f not as s i gned (_Dm_memo_table [m, t t ] ) then

# formula f o r Dm
F := 1/2 + 1/2∗add(1/(1−2∗ cos (2∗Pi∗ j /m) ∗ t t ) , j = 0 . .m−1)/

m;
F := s imp l i f y (F) ;

# expre s s i t as a r a t i o o f i n t e g e r po lynomia ls
N := expand (numer (F) ) ;
c s := c o e f f s (N, tt , ’ tv ’ ) ; c s := map( s imp l i f y , [ c s ] ) ;
c s := map( a −> convert (round( a ) , i n t e g e r ) , map( eva l f , c s )

) ;
N := add ( cs [ i ]∗ tv [ i ] , i = 1 . . nops ( cs ) ) ; D := c o l l e c t (

denom(F) , t t ) ;
c s := c o e f f s (D, tt , ’ tv ’ ) ;
c s := map( s imp l i f y , [ c s ] ) ;
c s := map( a −> convert (round( a ) , i n t e g e r ) , map( eva l f , c s )

) ;
D := add ( cs [ i ]∗ tv [ i ] , i = 1 . . nops ( cs ) ) ; c := subs ( t =

0 , N) ;
N := expand (N/c ) ; D := expand (D/c ) ; F := N/D;

# memoization technique
_Dm_memo_table [m, t t ] := F ;

end i f ;
return _Dm_memo_table [m, t t ] ;

end proc ;
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# cogrowth system f o r the c y c l i c case
## der ived from f r e e p r obab i l i t y
cogrowth_system := proc (n , m, r )

l o c a l v a r l i s t , i , syst , x ;
v a r l i s t := [ t , z , seq (x [ i ] , i = 1 . . r ) ] ;
s y s t := [ seq ( t ∗z∗x [ i ]^n [ i ] − x [ i ] ^ ( n [ i ] − 1) − t ∗z , i = 1 . .

r ) ] ;
s y s t := [ seq ( sy s t ) , z + add(−t ∗z∗x [ i ]∗m[ i ] + m[ i ] , i = 1 . . r

) − 1 ] ;
return v a r l i s t , s y s t ;

end proc

# Do we want our gene ra t ing s e t to be i nv e r s e c losed , or minimal ?
inv_closed := true

get_input_f i l e := proc ( )
l o c a l d i r l o c ;
d e s c r i p t i o n

" ge t s the name o f the f i l e to read conta in ing the FD
va r i a b l e s and system o f equat ions " ,

" the f i l e to read conta in s 2 items " ,
" s y s t : system o f eqns , v a r l i s t : l i s t o f v a r i ab l e names

used in the system " ,
" the f i r s t va r i ab l e , v a r l i s t [ 1 ] , g i v e s the cogrowth

sequence " ;
d i r l o c := " maple_data_fi les / " ;
return s p r i n t f ( "%sZ2_m1__Z3_m2__Z5_m3__%s−dat . maple " , d i r l o c ,

i f e l s e ( inv_closed , " i c " , " " ) ) ;
end proc

# Ft c o e f f s : the guessed cogrowth sequence
# Q: a s a t i s f y i n g polynomial
# p r i n t s a message check ing i f a l l the terms match
check_cogrowth_seq := proc ( Ftcoe f f s , Q)

l o c a l N, P, i , odr ;
N := nops ( F t c o e f f s ) ; P := add ( F t c o e f f s [ i + 1 ]∗ t^ i , i = 0 . . N

− 1) ;
print ( s o r t ( rem(P, t ^16 , t ) , t , ascending ) ) ;
odr := get_ser i e s_order ( s e r i e s ( expand ( subs ( z = P, Q) ) , t = 0 ,

1) ) ;
p r i n t f ( " computed order , %d , i s %sequa l to the number o f terms

found\n" , odr ,
i f e l s e ( odr = N, " " , " not " ) ) ;
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p r i n t f ( "Hence , the terms found are %saccura t e \n " , i f e l s e ( odr
= N, " " , " not " ) ) ;

end proc

# Fixed−po int i t e r a t i v e a lgor i thm :
# Speedup #1: t runcate the i t e r a t e s down to the degree o f

accuracy o f the cogrowth approximation
FP_iter_deg_trunc := proc (Kmax, trunc_tol , syst , v a r l i s t , Q,

cg_seq_f i le , verbose )
l o c a l i f v e rb , pr intv , p r in t fv , indexed_syst ,

cur , v , F i ter , Fterms , Ft coe f f s , k ,
has_mismatch , dacc , mpft ;
d e s c r i p t i o n " " ;

i f v e r b := proc ( write , verbose )
return proc ( ) i f verbose then wr i t e ( _passed ) ; end i f ; end

proc ;
end proc ;
p r in tv := i f v e r b (print , verbose ) ;
p r i n t f v := i f v e r b ( p r i n t f , verbose ) ;
unass ign ( ’ j ’ ) ;
indexed_syst := map(X −> lh s (X) [ j + 1 ] = eval ( subs ( seq (v = v [

j ] , v = v a r l i s t ) , rhs (X) ) ) , s y s t ) ;
cur [ 0 ] := [ seq (v [ 0 ] = 0 , v = v a r l i s t ) ] ; F i t e r [ 0 ] := tab l e ( cur

[ 0 ] ) [ v0 [ 0 ] ] ;
Fterms := terms ( F i t e r [ 0 ] ) ; p r i n t f v ( "________\n" ) ;
F t c o e f f s := load_cogrowth_seq ( cg_seq_f i l e ) ;
i f Ft c o e f f s = ’FAIL ’ then F t c o e f f s := 1 ; end i f ;
for k from 0 to Kmax − 1 do

p r i n t f v ( " I t e r a t i o n %d − " , k + 1) ;
cur [ k + 1 ] := expand ( subs ( cur [ k ] , subs ( j = k ,

indexed_syst ) ) ) ;
F i t e r [ k + 1 ] := tab l e ( cur [ k + 1 ] ) [ v0 [ k + 1 ] ] ;
F i t e r [ k + 1 ] := so r t ( c o l l e c t ( F i t e r [ k + 1 ] , t ) , t ,

ascending ) ;
Fterms := terms ( F i t e r [ k + 1 ] ) ; has_mismatch := f a l s e ;
for dacc from 0 to nops ( [ F t c o e f f s ] ) − 1 do

i f not ( [ F t c o e f f s ] [ dacc + 1 ] = c o e f f ( F i t e r [ k + 1 ] , t ,
dacc ) ) then

dacc := dacc − 1 ; has_mismatch := true ;
break ; end i f ;

end do ;
i f not has_mismatch then
p r i n t f v ( " subbing in to minimal polynomial Q( t , z ) :

computing " ) ;
mpft := s e r i e s ( expand ( subs ( z = F i t e r [ k + 1 ] , Q) ) , t = 0 ,

10) ;
dacc := get_ser i e s_order (mpft , t ) − 1 ; end i f ;
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p r i n t f v ( "Number o f ex cu r s i on s accurate up to l ength %d\n"
, dacc ) ;

while nops ( [ F t c o e f f s ] ) <= dacc do
F t c o e f f s := Ftcoe f f s , c o e f f ( F i t e r [ k + 1 ] , t , nops ( [

F t c o e f f s ] ) ) ;
end do ;
cur [ k + 1 ] := map( eqn −> lh s ( eqn ) = rem( rhs ( eqn ) , t ^( dacc

+ 21 + trunc_tol ) , t ) , cur [ k + 1 ] ) ;
F i t e r [ k + 1 ] := tab l e ( cur [ k + 1 ] ) [ v0 [ k + 1 ] ] ;
p r i n t f v ( "________\n" ) ;

end do ;
return Ft c o e f f s ;

end proc
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Appendix B

Tables of Computed and
Theoretical Degrees
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Computed Degrees (m1 = m2 = 1)

n1

n2 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 3 4 a 7 9 11 13 15 17 19 21 23 25 27 29
4 4 7 7 13 16 19 22 25 28 31 34 37 40 43
5 5 9 13 11 21 25 29 33 37 41 45 49 53 57
6 6 11 16 21 16 31 36 41 46 51 56 61 66 71
7 7 13 19 25 31 22 43 49 55 61 67 73 79 85
8 8 15 22 29 36 43 29 57 64 71 78 85 92 99
9 9 17 25 33 41 49 57 37 73 81 89 97 105 113
10 10 19 28 37 46 55 64 73 46 91 100 109 118 127
11 11 21 31 41 51 61 71 81 91 56 111 121 131 141
12 12 23 34 45 56 67 78 89 100 111 67 133 144 155
13 13 25 37 49 61 73 85 97 109 121 133 79 157 169
14 14 27 40 53 66 79 92 105 118 131 144 157 92 183
15 15 29 43 57 71 85 99 113 127 141 155 169 183 106

Theoretical Upper Bounds for Degrees (m1 = m2 = 1)

n1

n2 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 4 7 9 11 13 15 17 19 21 23 25 27 29 31
4 5 9 13 16 19 22 25 28 31 34 37 40 43 46
5 6 11 16 21 25 29 33 37 41 45 49 53 57 61
6 7 13 19 25 31 36 41 46 51 56 61 66 71 76
7 8 15 22 29 36 43 49 55 61 67 73 79 85 91
8 9 17 25 33 41 49 57 64 71 78 85 92 99 106
9 10 19 28 37 46 55 64 73 81 89 97 105 113 121
10 11 21 31 41 51 61 71 81 91 100 109 118 127 136
11 12 23 34 45 56 67 78 89 100 111 121 131 141 151
12 13 25 37 49 61 73 85 97 109 121 133 144 155 166
13 14 27 40 53 66 79 92 105 118 131 144 157 169 181
14 15 29 43 57 71 85 99 113 127 141 155 169 183 196
15 16 31 46 61 76 91 106 121 136 151 166 181 196 211

Table B.1: Actual computed degrees and the theoretical upper bounds from Theorem 3.3
for n1, n2 = 2, 3, . . . , 15: m1 = m2 = 1.

aThis cell is coloured with a cyan background for ease of reference in Example 3.6.
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Computed Degreesa (m1,m2 > 1)

n1

n2 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 6 8 10 12 14 16 18 20 22 24 26 28 30
3 6 6 12 15 18 21 24 27 30 33 36 39 42 45
4 8 12 10 20 24 28 32 36 40 44 48 52 56 60
5 10 15 20 15 30 35 40 45 50 55 60 65 70 75
6 12 18 24 30 21 42 48 54 60 66 72 78 84 90
7 14 21 28 35 42 28 56 63 70 77 84 91 98 105
8 16 24 32 40 48 56 36 72 80 88 96 104 112 120
9 18 27 36 45 54 63 72 45 90 99 108 117 126 135
10 20 30 40 50 60 70 80 90 55 110 120 130 140 150
11 22 33 44 55 66 77 88 99 110 66 132 143 ? ?
12 24 36 48 60 72 84 96 108 120 132 78 ? ? ?
13 26 39 52 65 78 91 104 117 130 143 ? ? ? ?
14 28 42 56 70 84 98 112 126 140 ? ? ? ? ?
15 30 45 60 75 90 105 120 135 150 ? ? ? ? ?

aThe cells with the “?” represent values that are not computed due to taking too long.

Theoretical Upper Bounds for Degrees (m1,m2 > 1)

n1

n2 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 5 7 9 11 13 15 17 19 21 23 25 27 29 31
3 7 10 13 16 19 22 25 28 31 34 37 40 43 46
4 9 13 17 21 25 29 33 37 41 45 49 53 57 61
5 11 16 21 26 31 36 41 46 51 56 61 66 71 76
6 13 19 25 31 37 43 49 55 61 67 73 79 85 91
7 15 22 29 36 43 50 57 64 71 78 85 92 99 106
8 17 25 33 41 49 57 65 73 81 89 97 105 113 121
9 19 28 37 46 55 64 73 82 91 100 109 118 127 136
10 21 31 41 51 61 71 81 91 101 111 121 131 141 151
11 23 34 45 56 67 78 89 100 111 122 133 144 155 166
12 25 37 49 61 73 85 97 109 121 133 145 157 169 181
13 27 40 53 66 79 92 105 118 131 144 157 170 183 196
14 29 43 57 71 85 99 113 127 141 155 169 183 197 211
15 31 46 61 76 91 106 121 136 151 166 181 196 211 226

Table B.2: Actual computed degrees and the theoretical upper bounds from Theorem 3.3
for n1, n2 = 2, 3, . . . , 15: m1,m2 > 1.
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