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Abstract

Many relational datasets, including relational databases, feature links of different types (e.g.,
actors act in movies, users rate movies), known as multi-relational, heterogeneous, or multi-
layer networks. Edge types/network layers are often not explicitly labeled, even when they
influence the underlying graph generation process. For example, IMDb lists Tom Cruise as
a cast member of Mission Impossible, but not as its star. Inferring latent layers is useful for
relational prediction tasks (e.g., predict Tom Cruise’s salary or his presence in other movies).
This thesis discusses Latent LayerGenerative Framework - LLGF, a generative framework
for learning latent layers that generalizes Variational Graph Auto-Encoders (VGAEs) with
arbitrary node representation encoders and link generation decoders. The decoder treats
the observed edge type signal as a linear combination of latent layer decoders. The encoder
infers parallel node representations, one for each latent layer.
We evaluate our proposed framework, LLGF, on eight benchmark graph learning datasets
for this study. Four of the datasets are heterogeneous (originally labeled with edge types);
we apply LLGF after removing the edge labels to assess how well it recovers ground-truth
layers. LLGF increases link prediction accuracy, especially for heterogeneous datasets (up
to 5% AUC), and recovers the ground-truth layers exceptionally well.

Keywords: Variational Graph Auto-Encoder, Latent Edge Type, Node Representation
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Chapter 1

Introduction and Overview

1.1 Definitions

A Graph G is formulated as G = (V, E) with nodes m ∈ V and edges (m,n) ∈ E , where
m and n are two nodes that are connected in the graph. These kinds of graphs are also
known as undirected graphs, where an edge has no order as this represents a symmetric
relation. An example of such a graph is a network of friends on any social media platform,
for example - Facebook friends or Linkedin connections, as shown in Figure 1.1.

Figure 1.1: Example of an undirected graph with six nodes and seven edges

We can extend this simple graph to a more informative version by adding directions of edges
(Directed graphs) or a weighted version of an undirected or directed graph where a positive
value of weight indicates strength or weight of the relation. For example, in a protein-protein
interaction graph, these weights can be the number of hydrogen bonds linked to the protein
molecule; more bonds correspond to a stronger interaction between the two proteins. In the
case of a weighted graph network, the formal definition of the edges changes slightly to the
following form: (m,w, n) ∈ E , where w is the weight of the edge.

Beyond the distinction between undirected, directed, and weighted edges, Hamilton [5]
discusses graphs with different types of edges. These edge/relation types are represented as
T , for example, (m, T , n) ∈ E, for which one adjacency matrix AT is defined per edge type.
These graphs are called multi-relational graphs in the book, and the entire graph can be
summarized by an adjacency tensor A ∈ R|V|×|R|×|V|, where R is the set of relations.
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Two types of these multi-relational graphs are heterogeneous and multi-layer graphs discussed
as follows.

Heterogeneous Graphs. Graph nodes and edges can also have a type. A graph with
a single type of node carrying a single type of edge is called a homogeneous graph. A
graph with two or more types of nodes and/or two or more types of an edge is called a
heterogeneous graph. A citation network with edges of different types, sayAuthor-Conference
and Paper-Author, between nodes of Paper, Conference and Author type is an example of
a heterogeneous network. See Figure 1.2 for an example.

Figure 1.2: An illustrative example of a heterogeneous graph (Citation Network). (a) Three types
of nodes (i.e., paper, conference, author). (b) A heterogeneous graph consists of three types of nodes
and two types of connections.

Multi-Layer Graphs. In multi-layer graphs, we can decompose a graph in a set of l
layers. Every node is assumed to belong to every layer, and each layer corresponds to a
unique relation, representing the intra-layer edge type for that layer as discussed in [5].
They also assume that inter-layer edge types can exist, which connect the same node across
layers. For instance, in a multi-layer social network, each node represents a user, and each
layer might represent a different circle of friendship (e.g., School Friends or Co-workers)
as shown in Figure 1.3. All edges between nodes (users) are assumed to interact on the
friendship layer. However, the friendships in social network may result from relationships
of different origins, such as colleagues in a workplace, members of a club or high school
friends.

Multi-Layer Graphs with Latent Layers. The starting point of this thesis is the
observation that in many domains, graph data are generated both by observed layers and
by unobserved, or latent layers. A latent-layer graph is a multi-layer graph with some
latent layers. We investigate methods for inferring latent layers from observed layers and
observed node features. Our methods are based on the encoder-decoder framework from
deep learning.
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Figure 1.3: A toy example depicting latent layers in the Facebook social network. While there is
only one observed layer - friendship, the interactions come from different sources; In this example,
three latent layers.

1.2 An Encoder-Decoder Perspective

In the encoder-decoder framework, the graph representation learning problem inculcates
two fundamental operations. First, an encoding operation maps each node within the graph
to a low-dimensional vector or embedding space. Next, a decoding operation utilizes these
low-dimensional node embeddings to reconstruct the neighborhood of each node in the
original graph. This idea is summarized in Figure 1.4. Traditionally, this concept was
introduced to model image data [7]. Recently, this concept has been incorporated for graph-
structured models to map an input graph with adjacency matrix A and feature matrix X to
a distribution of z using the function fθ, which further employs variational approximation
function, gϕ to produce the output Â [8].

Figure 1.4: Overview of the encoder-decoder approach. The encoder map the nodes present in a
graph to a low-dimensional embedding z using the function fθ. The decoder further utilizes z to
reconstruct local neighborhood information of nodes using function gϕ.
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1.3 Background

The power of generative models is used in several fields such as image generation, speech
synthesis, and many other areas. The datasets used in these kinds of tasks are either
structured or unstructured datasets, for example, images and texts. As mentioned in [5],
Graphs are a ubiquitous data structure and a universal language for describing complex
systems. Recently, Variational Graph Auto-Encoders (VGAEs) have emerged as powerful
generative models for graph-structured data, based on inferring latent node representations
to predict the presence of a link between two nodes. The node representations support two
key tasks [5, Sec.1.2]: 1) link or relation prediction: to predict whether two entities/nodes
are related, and 2) node classification: to predict a type or class label for a given node/entity.
For example in a social network, link prediction would allow the platform to recommend
potential friends to a user. An example of node classification would be to infer a user’s
political affiliation from that of her friends. Examples of node classification beyond social
networks include classifying the function of proteins in the interactomes [5] or classifying
the topic of documents based on hyperlink or citation graphs [9]. According to Hamilton,
link prediction has "countless real-world applications: recommending content to users in
social platforms [29], predicting drug side-effects [31], or inferring new facts in a relational
databases [1]-all of these tasks can be viewed as special cases of relation prediction."
Existing models [8, 15, 4] rely on Graph Neural Networks (GNN), in particular, Message
Passing GNN’s which update node representations by iterative message passing between
neighboring nodes.
Most VGAEs are designed for homogeneous networks with a single type of edge. Recent work
has shown that when the data provides edge labels, message-passing models can improve
node representations by incorporating edge type information [20, 22, 16]. Network science
has shown that many complex systems are composed of coupled graphs with different layers,
each representing an edge type with a diverse community structure [27]. Considering multi-
layer graph structure can improve the generative modeling performance. However, in many
cases, the layers are latent and cannot be directly used with existing multi-layer methods
[13]. For example, IMDb lists Tom Cruise as a cast member of Mission Impossible, but not
as its star. To the best of our knowledge, no previous study has explored the possibility of
utilizing latent graph layers to improve generative model capacity.

1.4 Overview

1.4.1 Approach

In this thesis, we propose LLGF, a new variational graph learning approach that unifies
several existing methods and is capable of modeling both observed and latent graph layers.
In particular, if we use L′ and L to denote the number of observed and latent layers
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respectively, setting L = 1 is equivalent to a multi-relational VGAEs, and setting L′ = 1
additionally is equivalent to VGAEs for homogeneous graphs. Whereas prior approaches
do not model latent layers, we introduce a new formulation that accounts for them and
demonstrates its advantages along two dimensions: improved accuracy on link prediction
on observed layers and enhanced quality of edge embeddings.

The key idea is to view latent layers as constituent factors from which observed layers
are generated. We leverage Message-Passing Graph Models, such as Relational Graph
Convolutional Networks (RGCN), to infer L parallel node representations, which are aggrega-
ted into a final bottleneck node representation. Given two input node representations, the
decoder outputs L+L′ scores, one for each latent and observed layer, where observed layer
scores are modeled as a linear combination of latent layer scores. Each observed layer score
is then mapped to a link probability for the input nodes.

1.4.2 Evaluation

We evaluate LLGF on eight benchmark graph learning datasets. Four of the datasets
are heterogeneous (originally labeled with layers). By withholding the edge labels, we
obtain ground-truth layer labels for a homogeneous dataset. For predictive performance,
LLGF outperforms some of the leading Latent Variable Deep Graph Generative models,
referred as VGAEs in this thesis. The improvement is most significant for the (originally)
heterogeneous graphs (up to 5% AUC), which shows the usefulness of exploiting latent
layers when a multi-layer structure underlies the data. On the heterogeneous datasets, we
show that the proposed model can recover the ground-truth latent layers. This result is
based on a novel L-dimensional latent representation for a dyad (pair) of nodes comprising
the L decoders scores for the dyad. Our experiments provide evidence that this dyad
representation captures the latent multi-layer structure better than a simple baseline concate-
nating the dyad’s separate node representations. LLGF offers a new approach to inferring
dyad representations, which can be used for downstream tasks like edge classification,
without the need to store dyad representations during message-passing.

1.4.3 Contributions

The contributions of this thesis can be summarized as follows.

• A new variational deep graph learning framework that generalizes multi-relational
graph learning to infer latent graph layers (edge types).

• A new latent layer decoder structure that decomposes observed layer signals into
latent layer sources.

• A generalization of multi-relational graph convolutional neural networks to latent layer
models.
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Chapter 2

Related Work

To the best of our knowledge, the inference of latent edge types is a new topic in deep graph
learning. While there are various approaches to generative modelling for neural networks
(e.g. based on a GANmodel [25]), most works use a variational graph auto-encoder (VGAEs)
framework [9, 4, 23, 19, 17, 18]. In this thesis, we develop latent layer learning for VGAEs
and leave other generative models for future work.
VGAEs apply the Variational Auto-Encoder (VAE) [7] with an encoder (inference) +
decoder (generative) architecture. They employ high-capacity function approximators, typica-
lly Graph Neural Networks (GNNs) [28]. The encoder outputs a low-dimensional latent
representation for each node in the graph. The decoder is a deterministic function with
signature DEC : Rd

′
× Rd

′
→ R signature to reconstruct the graph edges and/or the

node/edge attributes. Here Rd
′
is the dimension of the node representation space.

Node Representation Learning with Multi-layer VGAEs Most previous VGAEs m-
odels were applied to graphs with a single layer (edge type). A few recent models have shown
the power of incorporating observed layers. R-VGAE [12] is VGAEs architecture that uses
a Relational GCN [20] as encoder. The decoder is a Stochastic Block Model (SBM) that
performs link prediction but does not reconstruct the latent layers separately. O2MAC [3],
proposes multi-view graph decoder function. While O2MAC uses GCN[9] as an encoder, it
extends SBM to a multi-layer decoder by learning different block matrices for each relation.
Although multi-layer SBM as the decoder can reconstruct observed layers of a graph, it is
limited in terms of the model capacity and learning power. The differences to our model
are as follows.

• We utilize a multi-layer RGCN encoder like R-VGAE, but also a multi-layer decoder.

• O2MAC does not incorporate observed layers in the encoder. Also, we add latent-layer
specific transformation to the decoder, which substantially increases its expressive
power. We believe that our LLGF, Latent Layer Generative Framework, is the first
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Deep Graph Generative model that utilizes both observed and latent layers in both
the encoder and decoder.

In addition to the multi-layer VGAEs models, other recent GNN models have shown
the power of incorporating observed edge types [26, 6, 20, 14, 16, 30]. Hamilton discussed
on an alternative route [5] called the parameter sharing Relational-GCN. Here observed
layers are represented as linear combinations of a fixed set of basis adjacency matrices. The
work in this thesis can be seen as learning an adjacency matrix basis represented by a set
of latent layers.
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Chapter 3

Method and Approach

We define a graph with different types of edges to be a multi-layer graph in which a layer
is defined by an edge type as discussed in Chapter 1. While the node-set is shared, each layer
of a multi-layer graph contains different interactions1. Mathematically, such graph is a pair
of |V | = N nodes and edge set E. The edge set is divided into layers E = ⋃

{E1, ...., EL′},
where El′ contains the edges in observed layer l′ . A binary adjacency matrixA′

l′
∈ {0, 1}N×N

represents the l′-th observed layer, such that A′
l′mn

= 1 if layer l′ contains an edge between
nodes m and n. The notations L and L′ indicate the number of latent and observed layers
respectively. Typically L′ < L.

3.1 Model Definition

3.1.1 Learning

The training objective of VGAEs is usually the variational lower bound:

L(X,A′) = E
q(Z|X,A′ )[log p(A′ |Z)]−KL[q(Z|X,A′), p(Z)] (3.1)

whereKL[., .] is Kullback-Leibler divergence, Z is the nodes latent representation matrix, X
is the nodes feature matrix, p(Z) is prior distribution of Z, and q(Z|X,A′) and p(A′ |Z) are
variational posterior and generative distribution respectively. The prior distribution p(Z) is
usually taken as a standard Gaussian distribution. The approximate posterior q(Z|X,A′)
is computed by a high-capacity model (the encoder or inference model). The reconstruction
likelihood p(A′ |Z) is computed by another high-capacity model (the decoder or generative
model).

The LLGF plate diagram along with its generative and inference architecture is illustrated
in Figure 3.1, 3.2 and 3.3 respectively. The next two sections describe LLGF’s Generative
and Inference model.

1This definition is often associated with multiplex in Network Theory literature.
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(a) (b)

Figure 3.1: The plate diagram of LLGF . (Left) The generative model/decoder reconstructs L′

observed layer by first generating L latent layers and then integrating them. (Right) The inference
model/encoder, given the adjacency matrix with observed layers A′ and node features X, learns
variational posterior by applying L message-passing NN to infer and utilize the latent interactions.
Here we assume isotropic Gaussian as a prior.

3.1.2 Generative/Decoder Model

The input to the decoder model is a matrix ZN×d′ where d′ is the dimension of the node
latent representations zm where m = 1, . . . , N . The generative model consists of three
blocks.

The Transformation Block reconstructs latent layers. It comprises L deterministic
transformation of node latent representations. The notation fl(zm) ∈ Rd denotes the result
of applying the l-th transformation function to the latent representation of node m. Each
transformation function fl() is implemented by a neural network.

The Reconstruction Block comprises L decoder functions denoted by DECl, one for
each latent layer, with signature DECl : Rd×Rd → R. Each decoder DECl(fl(zm), fl(zn))
returns a real number for two nodes and a latent layer. Any standard multi-relational
decoder can be utilized; for an overview see [5, Sec.4.3].

The Aggregation Block reconstructs observed layers by aggregating reconstructed
latent layers. It implements a function with signature AGG : RL → [0, 1]L′ . This function

9



Figure 3.2: An illustration of LLGF generative architecture. The generative model/decoder
retrieves observed layers of the graph by aggregating the generated latent layers. This architecture
consists of three blocks. 1) Transformation Block: Given a node m representation, zm, this block
returns this representation w.r.t. each of the latent layers as fl(zm) where 0 ≤ l ≤ L. The l-th
node representation defines node interactions in the l-th latent layer. 2) Reconstruction Block:
Reconstructs the l-th latent layer given the l-th transformation of node representation, formulated
as fl(Z). 3) Aggregation Block: This block builds the observed layers, A′

l′ where 0 ≤ l
′ ≤ L

′ , given
the generated latent layers.

Figure 3.3: An illustration of LLGF inference architecture. The inference model learns
the variational posterior distribution by utilizing (message-passing) neural nets. The inference
model/encoder is designed to consider both observed and latent layers.
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returns the probability of having an edge in observed layer l′, given the interactions of the
nodes in the latent layers. In our design, the edge reconstruction decoder is a mixture of
the latent-layer decoders:

AGGl′(zm, zn) =
L∑
l=1

wl′lDECl(fl(zm), fl(zn)) (3.2)

p(A′
l′mn

= 1|zm, zn) = σ(AGGl′(zm, zn)) (3.3)

where wl′l are trainable weights and σ(.) denotes the sigmoid activation function.

Our design enforces the interpretation of the latent layers as components of observed
layers. The wl′l weights, which are shared across nodes and links, represent how much of each
latent component is present in the observed layer at the graph level. To encourage sparsity,
it is possible to add L1-penalty on the wl′l weights to the ELBO objective in equation (3.1).
Sparse weights can be interpreted as associating different latent layers to different observed
layers. We leave adding a sparsity term for future work; as we report in Section 4.6.4, we
observe sparse weights even without an explicit penalty term.

The fl() transformations generate node representations specific to a latent layer. For
example, fl(zm) may represent the community memberships of node m in latent layer l,
whereas fl∗(zm) may represent community memberships of the same node in latent layer
l∗. The fl() neural networks increase the model capacity, since standard multi-relational
decoders DECl use a fixed parametric form.

Example Using non-linear node transformation function f(.), SBM as a decoder function,
i.e DECl(fl(zm), fl(zn)) = fl(zm)ᵀΛlfl(zn) , and linear aggregation function, the generative
model will be:

p(A′
l′mn

= 1|zm, zn) = σ(
L∑
l=1

wl′l(fl(zm)ᵀΛlfl(zn))) for l′ ∈ {1..L′} (3.4)

where Λl ∈ Rd×d, |fl(z)| = d, is the block matrix in the Stochastic Block Models [11]. Each
entry Λlty controls the probability of an edge in latent layer l when node n and node m are
assigned to cluster t and cluster y respectively, according to their l-representations fl(zm)
and fl(zn).

3.1.3 Inference/Encoder Model

Several Graph Neural Networks (GNNs) have been proposed for graph data with single or
multiple observed layers, such as the Relational Graph Convolutional Network (RGCN) [20].
To leverage existing GNN encoders for inferring latent layers, we use L parallel inference
models to produce L node representation matrices Z l. The final encoding step aggregates
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the latent-layer node representations into a single one. The proposed encoder comprises two
main blocks.

The Forward Pass Block includes L parallel propagating models for calculating
forward-pass update of each node regarding a latent layer in a graph. Each model is chosen
to be a message-passing neural network. The inputs of each model are the observed layers of
the graph, A′ = {A′1,A

′
2, ...,A

′
L′}, and the node feature matrix X. Model l returns a node

representation matrix for the l-th latent layer, using message passing among the observed
layers.

Example Using the two-layer version of Relational Graph Convolutional Networks (RGCN)
[20], and Tanh activation function, the l-th propagating model will be:

LRGCN (A′ ,X) = Z l =

Tanh(
L′∑
l′′=1

A′l′′(Tanh(
L′∑
l′=1

A′
l′
XW 0

ll′
))W 1

l′′) for l ∈ {1..L}. (3.5)

This expression can be read as follows. 1) The matricesW 0
ll′

linearly transform the input
features in observed layer l′ to a node representation for inferring the l-th latent layer. 2)
For each node, the transformed features of its l′-neighbors are aggregated. 3) The latent
l-representations are aggregated across observed layers l′ , with a final non-linearity. These
aggregation operations are repeated based on another set of weight matrices W 1. Thus the
Wll′ generalize the multi-relational GCN approach of introducing a separate weight matrix
per observed layer.

For another example, generalizing the single layer Graph Attention Networks [2] with
ReLU activation function leads to l-th node representation:

LGA(A′ ,X) = Z l = ReLU(
L′∑
l′=1

(A′
l′
�Gll′ )XWll′ ) (3.6)

Gll′mn = Fll′ (xm‖xn) for l ∈ {1..L}. (3.7)

Here Fll′ () represents learnable attention weights computed by a neural network. The
symbols � and ‖ denote element-wise multiplication and concatenation respectively.

The Aggregation Block aggregates the L node representations to compute the paramet-
ers of the variational posterior distribution parameters.
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Example In our experiments we assume a posterior Gaussian distribution q(zm|X,A
′) =

N (zm|µm,σ
2
m), and weighted linear aggregation function:

µm =
L∑
l=1

zlmWµl (3.8)

log σm =
L∑
l=1

zlmWσl, (3.9)

where

• µm and σm are mean and standard deviation vectors for the node m posterior,

• zlm is the node m representation for latent layer l,

• and Wµl and Wσl are |zlm| × d
′ learnable matrices.

3.2 LLGF as a General Framework and its Special Cases

We can deploy existing benchmarks for the graph-structured data as special cases of our
model. We believe the proposed model can be considered as a generalized Variational Deep
Graph Generative Framework, and previous VGAEs can be used as special cases of it.
Below, we show how some of the popular VGAEs can be derived from the proposed model
as an example.

VGAE. For this setting, we ignore that there are latent layers existing in the graph by
setting L = 1 and stick to the following setting.

1. Propagation Model as a single layer GCN,

2. Encoder’s Aggregation Block formulated as equations 4.1 and 4.2,

3. Inner product normalized by sigmoid function for Reconstruction Block,

4. Identity function as decoder’s Aggregation Block, then we recover the VGAE model [8].

DGLFRM. We apply the same encoder setting we used for VGAE combined with

1. Adding stick-breaking process prior,

2. Two layer Neural Net as the node transformation model,

3. Normalized inner product as Reconstruction Block,

4. Identity function for decoder’s Aggregation Block to recover DGLFRM model [15].
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R-VGAE. We set L = 1 ignoring the latent layer existing in the graph with the following
setting.

1. A 2-layer RGCN as a propagating model,

2. Equations 4.1 and 4.2 as the encoder’s Aggregation Block,

3. Identity function for decoder’s Aggregation Block with node transformation model,

4. SBM as Reconstruction Block,

5. Identity function for decoder’s Aggregation Block to recover R-VGAE model [12].
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Chapter 4

Experiments and Results

4.1 Datasets

Based on the composition of graphs, we categorize our datasets into two categories, homo-
geneous and heterogeneous networks. The statistics of the datasets used for our experiments
are shown in Table 4.1. Homogeneous graphs includes Les Misérables, Citeseer, Cora,
and Pubmed [10][21]. This study treats links present in these datasets as undirected edges.
Heterogeneous graphs are IMDb, DBLP, ACM and IMDb - F [30] which all consist of
three different types of nodes and two types of undirected edges. In all the experiments,
the edge types are hidden, and a symmetric adjacency matrix A′, is given to the models,
including LLGF.

Table 4.1: Statistics of the Datasets.

Dataset Nodes Edges #Node Type #Edge Type

Les Misérables 77 254 1 1
Citeseer 3,327 4,732 1 1
Cora 2,708 5,429 1 1

Pubmed 19,717 44,338 1 1
IMDb 12,772 19,120 3 2
DBLP 18,405 47,283 3 2
ACM 8,993 18,929 3 2

IMDb-F 52,234 70,623 3 2

1. Homogeneous graphs

Citation networks. We consider three citation network datasets: Citeseer, Cora
and Pubmed[21]. The dataset contains paper as nodes and citations as edges. This
thesis treats the citation links as (undirected) edges and constructs a binary, symmetric
adjacency matrix similar to the methodology followed in [8]. The text attributes in
the papers correspond to node-level features in the graph.
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Les Misérables. Here we use an undirected network of co-occurrences of characters
in the Victor Hugos classic novel Les Misérables [10] where the network nodes represent
the characters, and the edges represent whether two characters appeared in the same
chapter of the novel or not.

2. Heterogeneous graphs
For the experiments present in this study, heterogeneous data is converted to a sparse
matrix for efficient arithmetic operations.

IMDb. Here we extract a subset of IMDb, which contains movies, actors, and
directors. The edges contain interactions between movies and actors, and, movies
and directors.

DBLP. We use a subset of DBLP, which contains three types of nodes: papers,
authors, and conferences.

ACM. We utilize papers published in KDD, SIGMOD, SIGCOMM, MobiCOMM,
and VLDB. We construct a heterogeneous graph that comprises papers, authors, and
subjects.

IMDb-F. This version of IMDb is an abundant version where we extract a network
with a larger number of movies, actors, and directors.

4.2 Data-Preprocessing

For each originally heterogeneous dataset with N number of nodes, we define a N×N
adjacency matrix A′ such that its element A′mn = 1 if there is an edge from node m to node
n and 0 otherwise.
We also define a node feature matrix X, which is of size N by the number of features for
each node.

4.3 Baselines

We compare the proposed model against four baselines:

VGAE. Comprises two-layer GCN as encoding procedure. The decoder has no learnable
parameters and the reconstruction is done through an inner product operation [8].

VGAE-SBM. This is a variation of the model discussed above. The decoder in this
baseline is replaced with SBM to add learnable parameters for reconstruction.
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Figure 4.1: Venn diagram showing the overlapping characteristics of each baseline. Each circle
represents the baselines (ARGA, VGAE, VGAE-SBM, and DGLFRM) alongside the proposed model
- LLGF. Each intersection contains the features common amongst baselines. Refer to section 3.2 to
see how we can extend our framework to existing models

ARGA. Proposes an adversarial training scheme to regularize a GCN-based graph auto-
encoder and enforces it to match a prior distribution [17].

DGLFRM. Combines stochastic block model with a deep generative model to generate
latent community structures and links within a graph. The inference/encoder model is a
graph convolutional network similar to the VGAE model. However, this model applies a non-
parametric before learning the number of latent communities (node embedding dimensionali-
ty) for each dataset. This model also employs a nonlinear learnable transformation in the
decoder [15].

Figure 4.1 provides a visual understanding of baselines used in this thesis, illustrating
the shared features amongst them using a Venn diagram.

4.4 Experimental Setup

4.4.1 LLGF Setup

In all experiments, we use the following architecture to implement our model.

Inference Model We use two layer GCN as the propagating model in the Forward Pass
Block. We also assume isotropic Gaussian prior with parameters

µ = GCNµ(A′ , ‖Ll=1Z
l) and (4.1)
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log σ = GCNσ(A′ , ‖Ll=1Z
l). (4.2)

Generative Model We use two layer fully connected neural network with Tanh activation
function as the nodes transformation function, i.e

fl(zm) = Tanh(Tanh(zmWl0 + bl0))Wl1 + bl1), (4.3)

We also use simple Inner Dot Product for Reconstruction Block and linear aggregation
function, see equations 4.4 and 4.5.

p(Almn|zm, zn) = fl(zm)ᵀfl(zn) (4.4)

p(A′ |A1, . . . ,AL) = σ(
L∑
l=1

Al) (4.5)

NoteW s and bs are learning parameters. We call this setting of our model as LLGF-Dot in
this thesis. The first two GCNs in encoders have dimensions 32 and 64, respectively, and
each node is mapped to a 64-dimensional latent space. The non-linear node transformations
in the decoder have two layers with dimensions 32. We use L ∈ {1, 2, 6, 4, 8, 10} in all the
experiments . Instead of a greedy search, we start with L = 1 and increase it while AUC
increases on the validation set. The LLGF-Dot is trained using Adam optimizer with a
learning rate of 0.001, and 0.3 dropout.

4.4.2 Baselines Setup

For all the baselines, we use 200 as the number of epochs. For all other hyper-parameters,
we apply the same settings as reported in their original paper. We also use the same split
for a better evaluation for training, validation, and test in all experiments.

4.4.3 Results on Link Prediction

We compare models based on their ability to learn meaningful latent node representations
and predict missing edges. In link prediction task, we are given a graph with a fraction
of edges removed, and we would like to predict these missing edges. Similar to [8, 15, 17],
we hold out 10% and 5% of the edges and the same number of non-existent edges as test
and validation set, respectively. We use the validation set to fine-tune the hyper-parameters
and report the results on the test set. We evaluate model performance based on their Area
Under Curve (AUC) and Average Precision (AP) metrics. The results are shown in Table
4.2 and 4.3.
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Table 4.2: Link prediction task in different homogeneous networks. See Table 4.1 for dataset details.

Method Les Misérables Citeseer Cora Pubmed
AUC AP AUC AP AUC AP AUC AP

VGAE [8] 91.2 0.01 91.5 0.01 90.5 0.01 90.06 0.04 90.96 0.00 92.79 0.02 90.47 0.01 91.01 0.00
VGAE-SBM 91.7 0.03 91.81 0.04 90.67 0.03 90.81 0.04 91.25 0.06 92.44 0.05 91.01 0.03 91.21 0.01
DGLFRM [15] 91.4 0.02 91.61 0.03 92.05 0.01 92.62 0.04 92.28 0.02 93.14 0.02 94.21 0.01 94.16 0.01
ARGA [17] 92.50 0.02 92.73 0.01 91.40 0.02 91.79 0.01 92.52 0.01 92.99 0.00 90.36 0.04 91.02 0.01

LLGF-Dot(Ours) 95.12 0.01 95.8 0.02 94.59 0.01 94.08 0.01 94.56 0.01 94.51 0.00 96.89 0.00 96.97 0.01

Table 4.3: Link prediction task in different heterogeneous networks. See Table 4.1 for dataset
details.

Method IMDb DBLP ACM IMDb-F
AUC AP AUC AP AUC AP AUC AP

VGAE[8] 84.47 0.02 85.87 0.01 91.90 0.00 92.00 0.01 83.00 0.02 84.00 0.03 82.5 0.02 82.7 0.02
VGAE-SBM 76.55 0.00 76.02 0.00 90.02 0.00 91.90 0.01 92.48 0.01 94.62 0.00 77.25 0.00 77.5 0.00
DGLFRM[15] 86.16 0.03 86.68 0.02 91.96 0.01 93.33 0.01 90.35 0.01 91.02 0.01 84.45 0.03 84.6 0.02
ARGA[17] 82.49 0.01 83.14 0.02 91.55 0.00 92.96 0.00 92.19 0.02 90.18 0.01 84.05 0.03 84.2 0.01

LLGF-Dot(Ours) 90.25 0.01 91.97 0.01 93.17 0.02 94.04 0.03 96.94 0.01 97.61 0.02 91.1 0.02 91.34 0.03

As shown in the tables, LLGF-Dot outperforms the baselines on all datasets. Although
we have a fine improvement on the homogeneous graphs, on the heterogeneous graphs with
hidden latent layers, we gain up to 5.5% improvement, which justifies the importance of
considering the graph multi-layer structure in designing the deep generative models. We will
discuss the effects of the latent layer in the proposed model performance in more detail in
section 4.5. Note that we set L as discussed in section 4.4.1 and report the result of the final
settings. We use L = 4 for all homogeneous datasets. For ACM, we have L = 2 whereas, in
IMDb, DBLP, and IMDb-F, L is set to 8, 6, and 8 respectively.

4.5 Sensitivity to Hyper-Parameters

The proposed model involves an important hyper-parameter L, which defines the number
of components to infer the interactions of the latent layers. Recall that L = 1 is equivalent
to the model ignoring any latent layers present in the dataset. In Figure 4.2a and 4.2b,
we examine how this parameter affects the performance of the proposed model on the
homogeneous and heterogeneous datasets, respectively. As illustrated, the sensitivity of the
proposed model to parameter L is not as noticeable for the homogeneous datasets compared
to the heterogeneous datasets. The model performance gradually increases from L = 1 to
4 and then gradually decreases for homogeneous datasets such as Citeseer, Les Misérables,
Cora, and Pubmed. For the datasets, IMDb, DBLP, ACM, and IMDb-F that we know to
comprise latent layer structure, the model Area Under Curve (AUC) performance is strongly
sensitive to the parameter L.
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(a)

(b)

Figure 4.2: LLGF-Dot sensitivity to L. Figure 4.2a and 4.2b shows the effect of L on the model for
homogeneous and heterogeneous datasets. The proposed model’s sensitivity to L for the homogeneous
datasets is not as noticeable as it is for the heterogeneous datasets. As expected, this parameter
results in an increase in performance by introducing latent layers.
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Overall, we observe that incorporating latent layers improves link prediction in all
datasets, but the extent of the improvement depends on the dataset’s characteristics.

We also analyze the ability of a baseline model to utilize hidden graph structure by
adding learning parameters. We increase the number of model parameters by adding dimensi-
ons (latent communities) to the node latent space d′. Figure 4.3 shows the sensitivity to d′

of DGLFRM (the model with the second-best performance in link prediction). Expanding
d′ from 32 to 128 barely makes more than 1% difference in AUC. This is evidence that
our AUC improvements are due to modeling latent layers specifically, not simply by adding
parameters to graph VAE models.

Figure 4.3: Sensitivity of baseline to the number of parameters. This figure depicts DGLFRM’s
(model with the 2nd best performance) ability to utilize the graph latent structure by expanding
the dimension of the latent space. As d′ increases, the baseline capacity increases. This experiment
attests that expanding d′ from 32 to 128 barely increases AUC.

4.6 Qualitative Analysis

In this section, we demonstrate and discuss our model’s ability to recover latent layers
present in the graph and analyze the interpretable nature of these layers. As discussed in
this thesis, four of the evaluated datasets are heterogeneous (originally labeled with layers).
To keep this discussion brief, we study results for two out of these four datasets on different
experiments.

4.6.1 Graph Latent Layer Retrieval

To show the model’s ability to retrieve the latent layers, we withhold the edge labels and
obtain the ground-truth layer labels for homogeneous datasets. Figure 4.4a and 4.4b shows
the retrieved latent layers of the graph, for ACM and DBLP, respectively.
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(a) ACM (b) DBLP

Figure 4.4: Retrieved latent layers of the graph by LLGF. The observed layers present in the
dataset are depicted by the different levels (2 in ACM and DBLP). While the nodes are common
between these 2 levels, the interaction between nodes is different and is limited to only one type.
The edge colors indicate the model’s prediction for latent layers; note that the node and edge types
are hidden during the training.

In each figure, observed layers in a graph are represented by different levels, which is 2
for ACM and DBLP. While the nodes are common between these levels, the interactions
between these nodes are different and limited to only one type. For instance, in the ACM
dataset, the edges in the bottom level show Paper-Author interaction, and the upper
level presents Paper-Subject interactions. The colors depict the retrieved latent layer by
the model. For this analysis, we used LLGF-Dot with L = 2 and used the decoder’s
reconstruction block to color the edges using the following condition:

if p(A1mn|zm, zn) > p(A2mn|zm, zn) return blue else red.

In the best-case scenario, the model colors all edges in the same level with the same color.
As it is illustrated, our model can recover the latent layers. To the best of our knowledge,
the LLGF is the first graph generative model with the ability to recover the latent layers.
Note that for DBLP, for visualization purposes, we randomly select 10% of the nodes and
include their interactions due to the large size of the dataset.
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4.6.2 Edge Representation

As discussed earlier, LLGF, unlike the previous VGAEs, can simultaneously learn the (non-
existent) edge representations. Using the proposed model, an edge between nodes m and
n can be represented by L dimensional vector E:nm, which is the output of the decoder’s
reconstruction block for these two nodes. Elements of this vector can be interpreted as the
interaction features that are necessary for the decoder’s aggregation block to predict an
edge and its type if observed.

Figure 4.5a and 4.5c illustrates E for all the edges of ACM and DBLP learned by LLGF-
Dot with L = 2; we set L = 2 to have a 2-dimensional visualization. As our experiment
shows, the edge representation of our model captures the observed multi-layer structure.
To have better intuition, we depict edge representation obtained from concatenation of the
baselines node latent representation, in particular, VGAE [8]. To have a two-dimensional
edge representation for baseline we set d′ = 1 and learned the model as before. In this
scenario, the representation of an edge between nodes m and n is zn||zm. Figures 4.5b and
4.5d show the two-dimensional edge representations obtained by concatenating the dyad’s
two-dimensional node representations for ACM and DBLP. The color here also shows the
edge type.
We apply a Tanh function to have the baseline representation in range [−1, 1]. Our experiment
shows that our dyad representation in Figure 4.5 (Left) captures the latent multi-layer
structure better than concatenating the dyad’s two-dimensional reduced node representations
(Right).

4.6.3 Clustering Edge Representations

We perform an empirical analysis on the edge representations retrieved from our model
LLGF-Dot and compare them with baseline methods - VGAE[8] and VGAE-SBM. Again,
we train LLGF-Dot to generate these edge representations for ACM and DBLP and run a
K-Means clustering algorithm using k = 2, which signifies the number of observed edges.
Later, we use these cluster predictions to compute Normalized Mutual Information (NMI)
and Adjusted Rand Index (ARI) using the ground-truth edge labels.
We perform a similar clustering experiment and evaluation on the edge representations
computed for baselines using the concatenation of node representations for these edges.
Figure 4.6 denotes how well our edge representations performed versus baseline methods on
these clustering metrics, where 0 denotes low correlation of clusters and 1 denotes perfect
labeling.

4.6.4 Latent Layer Weights Assignment

In this section we analyze the weights of latent layers computed towards reconstructing
observed layers by our model LLGF-Dot for datasets - ACM, IMDb, DBLP, and IMDb-F.
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(a) LLGF-Dot on ACM (b) VGAE Baseline on ACM

(c) LLGF-Dot on DBLP (d) VGAE Baseline on DBLP

Figure 4.5: Edge representation visualization. Color depicts observed edge types, which are Paper-
Subject (blue) and Paper-Author (red) in ACM, and, Paper-Conference (blue) and Paper-Author
(red) in DBLP. Fig (Left) shows that by using the two dimensions of the latent layers, we can
reconstruct the edges reasonably well versus retrieving the edges by simply concatenating the
representation of nodes for the edges learned by the baseline method - VGAE[8] (Right). See Edge
Representation in section 4.6.3 for more details.

We train LLGF-Dot to generate latent layers for each type of observed layer existing in these
datasets. Table 4.4 captures some of these L dimensional weights computed for observed
layers for the above-mentioned datasets. Here, we set L as discussed in Section 4.4.3. The
table shows that the weights are quite sparse (many 0s), and in some cases disjoint, which
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Figure 4.6: Cluster quality evaluation of edge representation by LLGF −Dot and for two baselines
using concatenation method of node representations, learned with the original setup. K-Means
clustering is performed on the representations to predict the clusters in an unsupervised setting.
Further, clustering is evaluated using Normalized Mutual Information (NMI), Adjusted Rand Index
(ARI) using ground-truth edge labels for ACM and DBLP.
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means that different observed layer utilize different latent layers. It is interesting to note that
we observe relative sparsity without an explicit penalty term to encourage sparse weights.

Table 4.4: Latent layer weights assignment analysis. Observed layers denoted by L′ represent the
ground-truth labels present in each dataset. Latent layers denoted by L represent weights formulated
in the reconstruction block.

Dataset Observed Layers (L′) Latent Layers (L)

ACM Paper-Author 0.7 0.3

Paper-Subject 0.4 0.6

IMDb Movie-Director 0.2 0.1 0.4 0 0.1 0.2 0 0

Movie-Actor 0 0.1 0 0 0.4 0.3 0.2 0

DBLP Paper-Conference 0 0 0.5 0.3 0.2 0

Paper-Author 0.1 0.4 0.2 0.1 0.1 0.1

IMDb-F Movie-Director 0.1 0.3 0.2 0.1 0.1 0.1 0.1 0

Movie-Actor 0.2 0.1 0 0.1 0.3 0.1 0.2 0

We also perform an experiment to visualize the quality of representations captured in two
of the four datasets - IMDb and IMDb-F by our model LLGF-Dot. First we start with the
dyad representation zn||zm that concatenates the node representations for each observed
edge. Then we apply t-SNE [24] to project the dyad representations to a 2-dimensional
space. Each edge is then colored according to its ground-truth observed edge type. Here
the shading is applied based on the probability of the ground-truth assignment. Figure 4.7
illustrates these dyad representations for datasets - IMDb and IMDb-F. The lighter shades
of blue and red represent the weaker strength of these edge types.
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(a) IMDb (b) IMDb-F

Figure 4.7: Latent Layer visualization. Dyad edge representations are projected to a 2-dimensional
space using t-SNE [24]. The figure shows 70 randomly selected observed edges. Color depicts observed
edge types: Movie-Actor (blue) and Movie-Director (red) in IMDb and IMDb-F respectively. The
lighter shades of blue and red represent the weaker strength of these edge types.
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Chapter 5

Conclusion and Future Work

Layers or edge types influence the graph generation process; recent neural graph models have
successfully incorporated available layer labels to improve graph generation. However, often
layer structure is not explicitly annotated in the data. Our work shows that interpretable
latent layers can be usefully inferred to enhance the expressive capacity of variational
generative models. We described LLGF, a general framework for learning latent layers
that generalize Variational Graph Auto-Encoder (VGAEs) models to incorporate arbitrary
multi-relational representation encoders and link generation decoders.

Our decoder framework perceives latent graph layers as components of the observed
layers and uses a learnable aggregation function to generate observed layers by aggregating
the latent layers. Our encoder framework is based on learning parallel node representations,
one for each latent layer. Our experiments applied the encoder framework to add latent
layer learning to the Relational GCN [20]. We evaluated LLGF on eight benchmark graph
learning datasets on the link prediction task. Four of the datasets were heterogeneous
(originally labeled with layers). By with-holding the edge labels, we obtain ground-truth
layer labels for a homogeneous dataset. LLGF increased link prediction accuracy, especially
for heterogeneous datasets (up to 5% AUC), and recovered the ground-truth layers very
well.

Future Research. Latent layers or edge types represent an important aspect of the graph
generation process and open up several promising directions for future research.

Learning the number of latent layers. While in this thesis, we treated the number of
latent layers as a hyper-parameter, it is possible to apply Bayesian techniques to estimate
them from data. For example, [15] applies a stick-breaking process to estimate the dimension
of node representation in the VGAE model, which can likely be adapted to edge types.

Learning with Edge Attributes. Many real-world graph data specify observed attributes
for links (e.g the salary of a person working in a company), which can be predicted from
learned edge representations. We expect improvement in the prediction of latent edge types
and edge attributes by learning them jointly.
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Graph Embeddings. The learned wll′ parameters in our decoder model capture aspects
of global graph structure because they measure the presence of a latent layer in an observed
layer. The representation of global graph structure can be strengthened with graph embeddin-
gs, which are known to increase the generative power of many graph network models [5].
Graph embeddings can be easily added to our latent layer framework through message
passing.

Inductive Graph Learning. Another future direction is to evaluate the usefulness of latent
layers for inductive learning [5, Sec.6.1.1.], where a system is trained on observed nodes and
then applied to unseen nodes.

In sum, latent layer learning represents an important component of graph generation
that is interpretable and increases the predictive power of a multi-relational graph network
model.
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