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Abstract 

The present research consists of using Wenner’s four electrodes method to measure the 

electrical resistivity of soil (e.g., clayey silt and clay), applying two machine-learning 

algorithms (k Nearest Neighbor (KNN) and Support Vector Machine (SVM)) to predict 

the type of soil. Such predictions may be leveraged, e.g., to extract parameters to help 

choose materials to withstand electrochemical corrosion in a hybrid environment (soil 

and moisture). A dataset of 162 sample points was obtained from the literature (151 

training, 11 testing points). From laboratory experiments, 26 sample points 

(corresponding to 130 measurements) were obtained; 6 points were added to the literature 

training dataset, and 20 were used as testing points for final validation. The results show 

that given the electrical resistivity of soil and its moisture, the KNN model is capable of 

predicting the type of soil with accuracy, error rate, sensitivity, specificity, and precision 

of 70%, 30%, 64%, 83%, and 90% respectively. In contrast, the SVM presented an error 

rate and accuracy of 44.1% and 55.9 % respectively.  
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1.1. Introduction  

This research is part of a collaboration between Simon Fraser University and Powertech 

Labs, a division of BC Hydro, with the overall goal to provide instrumentation to help 

analyze corrosive environments and avoid corrosion of power grillage foundations. The 

larger project includes methods to reduce the cost of corrosion in power systems 

industries via a new miniature Adaptive Corrosion Protection System (ACPS) that 

protects a target metal by monitoring the corrosion status and minimize the protection 

parameters required. This dissertation presents a more preventive approach that aims to 

measure the electrical resistivity of soil using Wenner’s four-electrode technique and use 

the measured electrical resistivity to predict the type of soil under investigation to help 

determine the potential corrosivity of a particular environment and aid engineers in 

recommending materials that may withstand corrosion in that specific environment.  

The system proposed in this dissertation computes the resistivity of soil, predicts the type 

of soil, and leverages parameters such as soil electrical resistivity and moisture to aid 

engineers in the identification of potentially corrosive environments and selection of the 

best materials to withstand corrosion in that hybrid environment (soil and moisture). The 

advantage of focusing on prevention instead of protection is that it allows engineers to 

collect more information about the potential corrosion aggressiveness of the soil before 

placing the metal underground.  

The environment considered in this dissertation is a hybrid environment of soil and 

moisture, which may cause grillage structures to undergo electrochemical corrosion. This 

type of corrosion is characterized by the destruction of the metallic structure caused by 

direct contact with the electrolyte solution (e.g. soil and moisture) that generates electrons 

that move from the anode to the cathode [1]. Electrochemical corrosion differs from 

chemical corrosion that is the redox in which the electrons of the metal are passed 

directly to the substances (water vapor or gas at high temperature) in the environment [1]. 

In this research, we intend to aid engineers in selecting the recommended material that 
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may withstand electrochemical corrosion when buried underground. This will be done by 

measuring the electrical resistivity of the soil and use it to select the recommended 

material that may withstand corrosion in that specific environment. The value of soil 

electrical resistivity indicates the relative ability of a medium to carry electrical current. It 

also influences the degree of corrosion in an underground metallic structure and the 

growth of agricultural products. Testing the resistivity of soil has become an important 

step of soil analysis before construction and plantation in Civil engineering and 

agriculture respectively [2]. However, measuring soil resistivity is not an easy task 

because several factors affect the electrical resistivity of soils, such as mineral 

composition, grain size, porosity, and organic materials [3]. Electrical resistivity is 

defined as the electrical resistance measured between two opposite faces of a unit cube 

[4]. However, the resistivity of soil depends on many things, including the layer being 

measured, soil type, moisture content, grain size, the closeness of packing, temperature, 

chemical composition, salt concentration, season, etc. [5].    

Several techniques of measuring soil resistivity have been developed to better understand 

its influence in the degradation of metallic materials and to protect vegetation. Four 

techniques of measuring soil resistivity are summarised in this dissertation namely, 

Wenner’s four electrodes, Schlumberger’s technique, Boy’s method, and Multispectral 

Imagining technique discussed in [4],[6], and [5], respectively. However, only Wenner’s 

method is utilized during the laboratory experiment because it is effective, accurate, and 

easy to implement [7]. The resistivity and soil moisture measured from the laboratory 

setup is input to a k-nearest neighbor and support vector machine algorithm to predict the 

type of soil under investigation. The parameters measured and estimated through the 

machine learning algorithms are then leveraged to select the best material for a specific 

environment to avoid or delay corrosion.  

Many scholars have investigated the relationship between resistivity, soil moisture, and 

temperature. Recent reports have stated that there is a non-linear interdependency 

between resistivity and soil moisture [8]. Vivek Sai et al. conducted a study wherein 

electrical resistivity was measured using Wenner’s four-electrode techniques to observe 

the credibility of the existing computational methods for simulating soil moisture content 
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from the resistivity of the soil [8]. After calculating the electrical resistivity and 

extracting soil moisture from the resistivity measurements, they verified the uncertainty 

of the results by comparing the actual soil moisture (measured by a moisture sensor) to 

the estimated value (calculated using a regression equation) [8]. Since the discrepancy 

between the estimated soil moisture value and the measured value was very small, the 

study concluded that soil moisture can be extracted from the measured electrical 

resistivity [8].   

It is important to note that the electrical resistivity of a given soil at a constant 

temperature, and water content might vary slightly depending on the depth, and 

separation of the electrodes being used. Liangfu et al. reported in [9] that the reason for 

soil conductivity variation at different depths is the change of the environment resistivity 

due to the increase of active ions within that area. However, the resistivity of the soil can 

be estimated by taking an average of the electrical resistivity from different depths, and 

locations within a short radius.  

This technique reduces the time and cost when investigating geotechnical parameters of 

difficult terrain. For example, the usage of heavy equipment to measure different 

parameters in terrain with difficult access becomes unnecessary if a resistivity meter can 

be used instead. Abidin et al. conducted a laboratory study wherein a resistivity meter 

was used to calculate the resistivity of soil and the density of the soil was extracted using 

a regression equation [10]. The bulk density’s regression coefficient (R2) was estimated 

to be 0.7016. Although the value for R2 is not close enough to 1, this value could be 

improved by using more accurate resistivity meters and soil moisture sensors.  

The state of the art in the investigation of soil characteristics has been advancing in the 

last few years from only measuring the resistivity of soil to predict the soil type, 

moisture, and drainage using machine learning algorithms [8], [9], [10], [11], [12], [13], 

and [14]. In terms of machine learning, several scholars have been applying diverse 

machine learning algorithms to predict natural soil drainage, and soil properties. For 

example, in [12] a boosted tree algorithm was used to predict natural soil drainage 

properties of different regions. This study aimed to classify different regions based on 
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their natural soil drainage. Another research conducted in [11] used a Support Vector 

Machine (SVM) algorithm to estimate the type of soil under investigation based on soil 

features such as backscatter and incident angle from tropical rainfall. In addition to the 

two studies mentioned above, the research presented in [13] used an Artificial Neural 

Network (ANN) to create a digital mapping of different types of soil. The ANN 

algorithm leverages soil properties and locations to predict different types of soil. The 

method presented in this thesis differs from these previously described methods by 

combining a machine learning approach (k Nearest Neighbor approach) and Wenner’s 

four electrodes technique and by using parameters such electrical resistivity and soil 

moisture to select materials less likely to corrode in a given environment.  

One of the most used devices to measure soil resistivity is the AEMC 4630 Rechargeable 

Digital 4-Point Ground Resistance Tester. This device measures the resistivity of soil 

using Wenner’s technique [14]. The other device that is being currently developed is the 

Adaptive Corrosion Projection System (ACPS). The ACPS is a current-sourced device 

that protects a target metal using a cathodic protection technique. Additionally, it 

monitors the state of corrosion while optimally protecting the target structure. However, 

this device is still under development in a joint collaboration between Simon Fraser 

University and Powertech.  

The device proposed in this thesis is part of a larger project with BC Hydro and 

Powertech Labs ACPS project to develop instrumentation that helps to analyze and 

address corrosion for power grillage structures. The machine-learning algorithms 

presented in this thesis could supplement the ACPS  by aiding engineers to predict 

different types of soil.  This additional feature to the ACPS would result in a more robust 

and updated device to the new artificial intelligence technology trending today. If 

implemented, the proposed device could help fill a gap in the current state of the art as 

part of the equipment that measures electrical resistivity, soil moisture, and predicts the 

type of soil under investigation.  
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1.2. Contribution of the thesis work 

The utilization of Wenner’s method to measure electrical resistivity is the current state of 

the art in the field of geology. However, neither currently available commercial systems 

nor academic research has explored the combination of Wenner’s technique together with 

machine learning algorithms for soil type prediction, and leveraged electrical resistivity 

to predict the type of soil under investigation to help determine the potential corrosivity 

of a hybrid environment (e.g. soil and moisture). The thesis research combines Wenner’s 

technique and machine learning algorithms to measure electrical resistivity, soil moisture, 

and predict the type of soil under investigation. The results could then be potentially used 

to help engineers in recommending materials that may withstand corrosion in a hybrid 

environment (soil and moisture). Current systems do not have the capability of predicting 

the type of soil using a machine learning algorithm. One example of such a device that is 

commercially available is the  AEMC 4630 Rechargeable Digital 4-Point Ground 

Resistance Tester. Although it measures the electrical resistivity of soil just like the 

proposed device, it cannot predict the type of soil, nor extract important parameters (such 

as electrical resistivity, and soil moisture) using a machine learning algorithm (k Nearest 

Neighbor (kNN)), which could be used to select material that may withstand 

electrochemical corrosion of underground metallic structures. In addition, such a 

combination of techniques aimed towards materials selection does not exist in the 

literature. The integration of machine learning into a Wenner’s method tester would 

provide such resistivity testers the ability to predict the type of soil and store important 

information about the soil under investigation that could then be used to understand the 

characteristics of different types of soils in the future. In other words, the device could 

learn important soil characteristics whenever utilized in the field, which could then add to 

its prediction accuracy. For example, such an instrument may take the form of a portable 

hardware device and work with the ACPS to perform soil investigation such as 

measuring the electrical resistivity of soil and predicting different types of soil. These 

characteristics learned during field tests are dynamically utilized to improve the 

performance of the machine learning algorithms, and soil prediction over time 
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This addition of machine learning to such devices also provides the capability of 

engineers to utilize the same device to extract the resistivity of soil, soil moisture, and 

type of soil to select the best material that may withstand electrochemical corrosion 

within a  hybrid environment (soil and moisture). The selection of the optimal material 

that may withstand corrosion in a hybrid environment would be determined in two steps: 

1)  the electrical resistivity and moisture would be extracted from the device 

measurement; 2) the extracted parameters would then be used to estimate the corrosion 

aggressiveness of the soil using corrosion standards such as the American Water Works 

Association (AWWA)  for Ductile-Iron Pipe Systems [15]. Although machine learning 

(Support Vector Machine (SVM)) has been used for soil prediction in [12] by using 

features such as backscatter and incident angle from tropical rainfall to predict different 

types of soils, it has not to the author’s knowledge, been used in combination of 

Wenner’s four electrodes technique to extract parameters such as soil electrical 

resistivity, and moisture to delay corrosion by selecting the ideal material that may 

withstand corrosion within a hybrid environment (soil and moisture). The benefit of using 

such a device is that it allows engineers to be able to measure electrical resistivity (using 

Wenner’s four electrodes technique), predict the type of soil under investigation (using a 

machine learning algorithm), and extract parameters to help in the selection of material 

that will better withstand electrochemical corrosion from a single electronic device. There 

is no device available in the market today or described in the scientific literature that is 

capable of performing all these three tasks from a single measurement.   

1.3. Thesis outline  

This dissertation is divided into several chapters. Each chapter of this thesis provides 

background information on the next section to help the reader fully understand the 

content in the subsequent sections. The chapters of this thesis are organized as follows:   

 Background (Chapter 2): This chapter presents several reviews of 

different scholars’ publications on the topic of corrosion and machine 

learning used in soil prediction research. A detailed explanation of the 

concept of corrosion, the different types of corrosion, and their impact on 
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the surface of the metal are presented. Also, an overview of the different 

types of soil and their properties are presented in this chapter. The 

influence of temperature and soil moisture on different types of soil is 

also discussed here. The chapter concludes with a discussion of the 

current state of the art in machine learning algorithms used to predict 

different types of soil.  

 Proposed Methodology (Chapter 3): The proposed approach of this 

dissertation and the methodology utilized to implement it is outlined. The 

diagram of the proposed approaches is discussed. Also, the k-NN and 

SVM algorithms are defined in detail. Finally, the results of the 

implemented models are presented and discussed.  

 Preliminary experimental verification (Chapter 4): In this chapter, the 

laboratory experiment setup, the devices used for the laboratory 

experiment, and the techniques utilized are presented. The results 

obtained from the models and laboratory experiments are reported in 

detail.  

 Limitations (Chapter 5): Several limitations that might have affected the 

result obtained during the laboratory experiment are reported in this 

section. The implication of these limitations to the overall conclusion of 

this dissertation are outlined.  

 Conclusions and Future Work (Chapter 6): The outcomes from the 

thesis research are presented and conclusions are reported in the context 

of combined corrosion and machine learning research. The results and 

implications of the k-NN and SVM algorithms are outlined. Future work 

to improve the results obtained from this research is also discussed in 

detail.  
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Background  

This chapter presents a background on the corrosion process, soil types, and measurement 

techniques. The chapter concludes with a discussion of machine learning algorithms 

currently being used to perform the prediction of different types of soil and properties.  

2.1. Basic concepts of corrosion 

There are several definitions of corrosion depending on the purpose of the research or the 

field of study. For this research, we define corrosion as “an electrochemical reaction 

between a material, usually a metal, and its environment that produces a deterioration of 

the material and its properties” [16]. The electrochemical reaction is one in which a metal 

loses electrons by transferring them to the environment and undergoes a valence change, 

thus becoming positively charged with a value z. The environment of a metal corroding is 

everything that surrounds the material. According to Joseph et al [16], these 

environments are classified as a physical state (gas, liquid, or solid), chemical 

composition (constituents and concertation), and temperature. Besides, some 

environments are hybrid soil-liquid (this is our environment of interest). Since these 

environments have their conductivity, they exchange electrons, we call them electrolytes. 

Conductive solutions such as an electrolyte contain positively and negatively charged 

ions called cations and anions, respectively. An example of a corrosion reaction process 

is illustrated below. In this reaction extracted from [17], a metallic material is immersed 

within a sulfuric acid (H2SO4) solution wherein metal oxidation (the loss of one or more 

electrons by the metal) occurs through an anodic reaction and reduction (the metal 

gaining one or more electrons) through a cathodic reaction.  

M → M+z + ze- (Anodic ≡ Oxidation) (eq. 2.1a) 

zH+ + zSO-
4 + ze- → 

𝒛

𝟐
𝑯2SO4 (Cathodic ≡ Reduction) (eq. 2.1b) 
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M + zH + zSO-
4  → M+z + 

𝒛

𝟐
𝑯2SO4 (Overall ≡ Redux) (eq. 2.1c) 

In the chemical reactions described in eq.2.1a, eq.2.1b, and eq.2.1c M, H+, and z are 

Metal, Hydrogen cation, and Valence or Oxidation State respectively.   

The rate at which metal corrodes depends on several factors such as temperature, type of 

metal involved, soil moisture (in a hybrid environment), soil composition, diffusion, 

conductivity, type of ions, pH value, electrochemical potential, and more. Therefore, to 

properly understand corrosion, it is imperative to identify the environment in which the 

material is to be exposed. Also, the material that corrodes needs to be identified to 

understand the corrosiveness or aggressiveness of an environment on that material [16].   

Corrosion in a metallic structure may be manifested in different forms. In terms of 

classification, there are several types of corrosion namely: general corrosion, localized 

corrosion, atmospheric corrosion, and galvanic corrosion.  

2.1.1. General corrosion  

In this form of corrosion, the compromised surface area of the metal/alloy is usually 

corroded completely. The exposed surface area is submersed within the environment 

which could be a liquid electrolyte (chemical solution, a liquid metal), gaseous electrolyte 

(air, CO2, SO-
2, etc.), or a hybrid electrolyte (solid and water, biological organisms, etc.) 

[17]. The nature of the corrodent which causes general corrosion could be either wet (the 

electrolyte could be a liquid or moisture), dry (it usually involves reaction with high-

temperature gases), or both.  

2.1.2.  Localized corrosion  

This form of corrosion usually occurs on a specific surface area of the exposed metal. 

Localized corrosion is very difficult to control compared to other forms of corrosion [17]. 

In terms of classification, the localized corrosion can be classified as crevice corrosion 

(associated with a stagnant electrolyte such as dirt corrosion product, sand, and more), 

filiform corrosion (a type of crevice corrosion that occurs under a protective film), pitting 
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corrosion (corrosion that causes destructive pits), oral corrosion (occurs on dental alloys 

exposed to saliva), and biological corrosion (caused by fouling organisms) [17].  

Additionally, localized corrosion might possess a macroscopic and microscopic form. 

Microscopic localized corrosion attack could cause considerable damage (or lead to 

structure failure) before the corrosion becomes available to the naked eyes. On the other 

hand, macroscopic localized corrosion attack is visible with the naked eyes or becomes 

visible when viewed with a low power magnifying device [16].     

2.1.3. Atmospheric corrosion 

In this form of corrosion, the entire metal surface area exposed to the corrosive 

environment is converted into its oxide form (only if the metallic material has a uniform 

microstructure) [17]. Atmospheric corrosion is usually a uniform and general attack 

phenomenon that manifest in different forms. For example, in uniform atmospheric 

corrosion, a brown-color corrosion layer (ferric hydroxide compound known as rust) 

could develop on a compromised steel surface. In contrast to localized corrosion, this 

form of corrosion is usually visible to the naked eyes.  

2.1.4. Galvanic corrosion 

This type of corrosion attack occurs when two dissimilar electrodes/metals are connected 

through an electrolyte environment leading to either a chemical or electrochemical 

reaction in which current flows from more negative metal to the more positive potential 

metal. The transfer of electrons from the more negative potential (anode) to the more 

positive (cathode) metal causes the anodic surface area to oxidize, thus leading to 

corrosion. This form of corrosion is easily prevented by proper corrosion design. For 

example, reference [17] states that “in selecting two metals or two alloys for a galvanic 

coupling, both metals should have similar potential or should be placed close to each 

other in series to suppress galvanic corrosion”. Therefore, the higher the difference of 

standard potentials of two coupled metals, the more enhanced galvanic corrosion 

becomes.  
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2.2. The economic impact of corrosion 

Recent studies reported that the annual direct cost of corrosion to the industrial economy 

is approximately 3-4% of the country’s Gross National Product (GNP) [18], [19]. For 

example, the United States of America spends approximately $276 billion every year on 

corrosion-related damage [18]. It is thus paramount to reduce the amount of money spent 

on corrosion. Industries are not the only institutions that lose exorbitant amounts of 

money due to corrosion; it affects everyone’s daily life as well. For example, 

manufacturers raise the price of customers' products due to the high cost of machine 

maintenance. Also, corrosion is one of the causes of products (e.g. oil) spills and 

pollution that affect people’s wellness.  

There are two types of costs related to corrosion namely direct and indirect costs. 

Reference [19] defines direct cost as losses that can be quantitatively accounted for such 

as replacement cost, protection cost, corrosion inhibition, research, and development. On 

the other hand, indirect costs are losses that cannot be quantitatively evaluated such as 

loss of product to spill and fire, loss of revenue due to downtime, loss of efficiency of 

equipment, contamination of products, environment pollution, etc. 

2.3. Soil characteristics 

To understand soil conductivity, it is pivotal to know some of the characteristics and 

constituents of the terrain being investigated. These constituents influence the 

conductivity of soil because of conditions such as temperature and saturation level (water 

content). Soil consists basically of the following components: mineral material (clay, silt, 

and sand), organic material, water, and gases. In terms of mineral material, soil can be 

classified according to sand, silt, and clay size range. These three components can be 

identified according to their diameters. The diameters of sand, silt, and clay are 0.05-2 

millimeters, 0.002-0.005 millimeters, and less than 0.002 millimeters, respectively [3]. 

Reference [3] also states that the content of clay in soil affects the soil conductivity, thus 

different soil types might have different conductivities.  
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Different types of soil may combine to create a new form of soil. The chemical constituents 

involved in the formation of soils affect their resistivity and their range of conductivity. The 

conductivity of soil is determined by porosity, moisture content, the concentration of dissolved 

electrolytes in the contained moisture, temperature and phase state of the pore water, and amount 

and composition of colloids [3]. This is because conductivity is electrolytic and takes place through 

the moisture-filled pores and passages contained within the insulating matrix [3]. On the other hand, 

the electrical resistivity of soil changes with respect to moisture (water content), temperature, and 

more [20].  

2.4. Measurement techniques 

Several techniques of measuring soil resistivity have been developed to better understand 

its influence in the degradation of metallic materials and to protect vegetation. We 

present a review of four techniques of measuring soil resistivity namely the Wenner’s 

method, Schlumberger’s technique, Boy’s method, and Multispectral Imagining 

technique. 

2.4.1. Wenner’s four-electrode method 

This is one of the best techniques used to measure soil resistivity because it is simple to 

implement compared to other testing methods [7]. When the soil is contained within a 

box, in Wenner’s method, the relationship between the probe separation and the depth of 

penetration depends on the standard being used. The World Trade Organization 

Technical Barriers standard requires that four electrodes are placed with equal separation 

in a straight line in the surface of the soil to a depth of not more than 5% of the minimum 

separation of the electrodes [4]. The separation of the electrodes is chosen according to 

the soil strata of interest (Figure 2.1) so that the measured resistivity represents the 

average resistivity of a hemisphere of the soil of a radius equal to the electrode separation 

[4]. However, the AEMC Instrument [14] and [6], requires that the depth of penetration 

of the electrode be less or equal to 50% of the electrode separation (less or equal to half 

of the electrode separation).  
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For the laboratory measurements, the depth of penetration of the electrodes (e.g., 1, 2, or 

4 cm) was approximately half of the separation (2, 4, or 8 cm, respectively) of the 

electrodes.  A voltage is applied to the outer electrodes causing a current flow in the 

electrodes. The injected current (which flows radially outwards from its point source) 

generates a current density in the ground which is related to the electric field that creates 

the voltage drop [21]. In Wenner’s four electrodes method, the two inner probes measure 

the electrical potential (voltage drop) caused by the variation in electrical conductivity 

underground (which results from the current flow) [21]. Box 1 was clay silt and was used 

for electrode penetration depths of 1 cm and 2 cm. Box 2 was clay and used for electrode 

penetration depths of 1, 2, and 4 cm. For the laboratory experiment, the volume 

conductor of soil in  boxes 1 and 2 were 3689 𝑐𝑚3 (clay silt) and 11722 𝑐𝑚3 (clay). The 

depth of soil in box 1 was 8cmwhile the depth of soil in box 2 was 11cm. Based on the 

guideline for Wenner's method measurements, the box depths are considered sufficient 

[4]: their depths are each at least 3-4 times the depth of penetration of the electrodes.  

The measured voltage and the applied current are used to calculate the mean resistance of 

the soil sample [22] (eq. 2.3a). If the current-carrying electrodes are not spaced equally 

as the potential-measuring electrodes, the resistivity (⍴) is given by eq.2.3b. Otherwise, 

the soil resistivity is given by (eq2.3c) [4]. If the experiment is conducted in the 

laboratory wherein the soil is contained within a soil box, the resistivity is calculated by 

eq. 2.3d.  

𝑅 =
𝑉

𝐼
                                                                              (eq.2.3a) 

ρ, Ω · cm = 95.76 ∗ b ∗ R/(1 −
b

b+a
)                               (eq2.3b) 

where: b = outer electrode spacing, ft, 

a = inner electrode spacing, ft, and  

R = resistance, Ω. 

ρ, Ω · cm = 2πa ∗ R (a in cm)                                          (eq. 2.3c) 
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where: a = inner electrode separation, and  

R = resistance, Ω. 

ρ, Ω · cm = R ∗
A

𝑎
(a in cm)                                                 (eq. 2.3d) 

where:  

R = resistance, Ω, 

 

Figure 2.1. Wenner’s Arrangement  

Equations 2.3b and 2.3c were developed by the World Trade Organization Technical 

Barriers as a standard when measuring electrical resistivity of a given soil contained 

within a box [4]. In terms of boundary conditions, the outer electrode spacing (b) and 

inner electrode separation (a) should always be greater than zero. For equation 2.3b, if the 

outer electrode spacing is equal to zero, the electrical resistivity will be zero also. On the 

other hand, if inner electrode separation is zero the multimeter shows a continuous 

increase in the electrical resistivity value (infinite electrical resistivity as observed during 

the laboratory experiment). Additionally, as the inner electrode separation (b) increases 

the electrical resistivity decreases compared to a smaller value of a.  

From equations 2.3b and 2.3c, the electrical resistivity depends on a and b, which are the 

inner electrode separation and outer electrode spacing, respectively [23]. Also, equations 

2.3c can be used to calculate the electrical resistivity of a given soil regardless of the 
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actual placement of the electrodes on the surface of the soil [23]. The electrical resistivity 

of the laboratory soil was measured as instructed by the World Trade Organization 

Technical Barriers standard. This technique is widely used to measure the electrical 

resistivity of soil contained within a box [4].  

For the laboratory experiment, we used four electrodes to measure the electrical 

resistivity of the soil instead of two electrodes. The usage of 4 electrodes instead of two 

electrodes to measure the electrical resistivity of a given soil is preferred to avoid 

unpredictability and measurement errors related to using only two electrodes [24]. When 

using two electrodes to measure the electrical resistivity of a given soil, the contact 

resistivity between the electrode and the soil is also added to the soil electrical resistivity. 

Thus, it is not a good technique to use wherein we only intend to measure the electrical 

resistivity of the soil sample. Wenner's four-electrode technique has been long preferred 

over two electrodes to avoid the unpredictability and measurement errors related to the 

latter method since 1931 [24].  

2.4.2. Schlumberger’s soil resistivity testing method 

Schlumberger’s soil resistivity testing has the same arrangement as Wenner’s method in 

Figure 2.1. However, the resistivity of soil in this technique is measured differently 

wherein the inner and outer electrodes are not spaced equally. The inner electrodes 

(voltage probes) have the same distance with respect to the center, but different 

dimensions with respect to the outer electrodes Figure 2.2. According to B. Philip in [7], 

there are alternative techniques used to measure soil resistivity within Schlumberger’s 

method, wherein the most used leaves the voltage probes stationary, while shifting the 

current electrodes out. This technique is different than Wenner’s method where the test 

center is maintained so that all four electrodes have the same center [7].  

In terms of human resources required to perform the measurement, Schlumberger’s 

method is more economical than Wenner’s technique since only the outer electrodes are 

moved. Additionally, the two current electrodes (outer electrodes) can be moved four or 

five times for each move of the inner electrodes (voltage electrodes) [6]. The soil 

resistivity is measured using eq. 2.3e [6]:  
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                               ρ, Ω · cm =
πL2𝑅

2𝑙
                                                                     (eq. 2.3e)           

where: L= distance from the center to the outer probe  

l= distance to the center from the inner probe  

 

Figure 2.2. Schlumberger Arrangement 

2.4.3. Boy’s method for resistivity measurement  

In this technique, the two current electrodes and a voltage electrode are fixed. The fourth 

electrode is shifted between measurements (starting close to the current probe) to 

determine the soil resistivity Figure 2.3. The Boy’s method measures the resistivity 

around the outer stationary current probe at the movable voltage probe end [7]. In terms 

of time efficiency, the Boy’s method is more efficient compared to Wenner’s and 

Schlumberger’s techniques. The Soil resistivity is measured using eq. 2.3f:  

ρ =
2(Rmeasured−Rreference) 𝜋𝑍(𝑊−𝑍)

W−2Z
                                                   (eq. 2.3f) 
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Figure 2.3. Boy’s Method Arrangement 

2.4.4. Multispectral Imagining method 

This technique uses a statistics algorithm (maximum likelihood) and satellite 

(LANDSAT-7) images to approximate the soil electrical resistivity value. The maximum 

likelihood algorithm determines classes that maximize the probability of the likelihood of 

a sample [5]. By using the LANDSAT-7 image database of different types of soil and its 

resistivity, the system can predict the resistivity of an unknown soil. Although this is a 

powerful method of measuring soil resistivity, the results obtained are less accurate 

compared to the techniques mentioned previously. The inefficiency of this technique is 

caused by approximation errors introduced by the imaging system and the likelihood 

algorithm itself.  



18 

 

Figure 2.4. Earth resistivity map [adapted from 5] 

The color map showed in Figure 2.4 was created using ENVI software wherein red, 

green, and dark blue indicates the soil resistivity [5]. In Figure 2.4, the areas in red have 

the lowest resistivity while those marked by dark blue have the highest resistivity. On the 

other hand, Figure 2.5 shows the flowchart of soil resistivity estimation wherein a 

supervised learning algorithm is used to predict the resistivity of different types of soil. 

The training and testing data of this algorithm were obtained using Wenner’s method.  

 

Figure 2.5. Flowchart for earth resistivity estimation using supervised learning 

[adapted from 5] 
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2.5. Prior Art in Machine Learning Applied to the Prediction of 

Types of Soil and Properties  

Lemercier et al. conducted a study in Brittany (Northwestern France) to predict soil 

properties such as soil parent material and drainage. The soil parent material included 

bedrock formation and superficial deposit. A boosted classification tree and a two-step 

approach were employed as the algorithms used to predict the soil properties. The two 

steps approach consisted of predicting the parent material (PM) and leverage the PM as a 

predictive variable to estimate natural soil drainage [12]. In addition to the PM, 

environmental data representing known soil-forming factors such as terrain attributes 

(elevation, slope, profile and plant curvatures, sub-watershed hillslope length, 

hydrological distance from the nearest stream, aspect, relative elevation above the nearest 

stream, geological data, etc.) and landscape data derived from remote sensing data were 

used as predictive features [12]. The study concluded that “based on 20, 000 randomly 

pixels from the training area, selected PM and soil drainage were predicted with overall 

accuracies of 73 and 70% respectively”. Also, the PM was calculated to be the most 

relevant variable to predict soil drainage.  

Ahmad et al. researched the estimation of soil moisture using remote sensing data. A 

Support Vector Machine (SVM) learning technique was used to predict soil water 

content. The experiment was conducted in 10 sites in the Lower Colorado River Basin 

located in the western United States. The features used to predict the data are backscatter 

and incidence angle from Tropical Rainfall Measuring Mission (TRMM), and 

Normalized Difference Vegetation Index (NDVI) from Advanced Very High-Resolution 

Radiometer (AVHRR) [11]. The model was trained and tested with 5 years (from 1998-

2002) and 3 years of data (from 2003-2005) [11]. After comparing the SVM model to 

Artificial Neural Network and Multivariate Linear Regression (MLR ) model, the study 

concluded that the SVM model performs better for soil moisture estimation than ANN 

and MLR models.  

A study conducted by Bodaghabadi et al. leveraged Artificial Neural Network to perform 

digital soil mapping. The area of interest of this study enclosed approximately 1 000 
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hectares and was located in the Borujen region of Chaharmahal-Va-Bakhtiari Province, 

Central Iran [13]. The study consisted of collecting several soil profiles of different types 

of soils and extracting its properties to feed into an ANN algorithm. The ANN algorithm 

was trained afterward using the soil properties extracted from the collected samples. 

Bodaghabadi et al. concluded that the overall accuracy of the ANN algorithm used was 

50% and that the algorithm was capable of making an accurate prediction of the D (Fine, 

mixed, active, mesic Typic Calcixerepts), and  F(Loamy-skeletal, carbonatic, mesic 

Typic Calcixerepts) soils series. However, the prediction reported for the A (Clayey-

skeletal, carbonatic, mesic Petrocalcic Calcixerepts), C (Fine, carbonatic, mesic Typic 

Calcixerepts) and B (Fine, carbonatic, mesic Petrocalcic Calcixerepts), E (Fine-loamy, 

carbonatic, mesic Typic Calcixerepts), and G (Fine, mixed, active, mesic Calcic 

Haploxeralfs) soil series were acceptable and unacceptable respectively [13].  

The AEMC 4630 Rechargeable Digital 4-Point Ground Resistance Tester is an electronic 

device that measures electrical resistivity using both Wenner’s and Schlumberger 

techniques. Many engineers today use this electronic device to make sub-surface 

geophysical surveys for diverse soil investigation,  protect metals against corrosion, and 

design grounding systems [14]. In terms of corrosion protection, the inverse relationship 

between soil resistivity and corrosion activity is used to prevent corrosion of underground 

pipelines [14]. The relationship between soil resistivity and corrosion is that  “a decrease 

in resistivity relates to an increase in corrosion activity” [14]. Base on the fact that the 

most economic grounding installation is achieved at the location where the soil resistivity 

is the lowest, the AEMC 4630 Rechargeable Digital 4-Point Ground Resistance Tester is 

used for designing grounding systems [14]. This device has some similarities to the 

device proposed in this dissertation because they both measure electrical resistivity for 

sub-surface geophysical surveys and can be used for grounding installation.  

Except for the AEMC 4630 Rechargeable Digital 4-Point Ground Resistance Tester, the 

studies presented in this section leverage machine learning algorithms to predict soil 

properties and mapping different types of soils. Although they all use machine learning 

algorithms such as SVM, ANN, and boosted tree, these studies were conducted for 

different purposes rather than implementing an electronic device. The three studies 
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presented require several data collections and soil profile analyses such as investigating 

soil elevation, soil moisture, slope, plant curvatures hillslope length, etc. The soil 

investigation conducted in each one of the studies presented here is time-consuming and 

expensive because they require more than a technician and several measurement tools to 

properly analyze the soil under investigation.  

Although the AEMC 4630 Rechargeable Digital 4-Point Ground Resistance Tester and 

the proposed device measure electrical resistivity, perform sub-surface geophysical 

surveys and grounding systems design, they have several differences. The AEMC 4630 

Rechargeable Digital 4-Point Ground Resistance Tester lacks the ability to perform soil 

prediction using a machine learning algorithm. Thus, it can merely be used to conduct 

soil electrical resistivity measurement. However, the device proposed in this dissertation 

will help engineers not just to perform soil electrical resistivity measurements, but predict 

the type of soil under investigation using a machine-learning algorithm, select the 

recommended material that may withstand corrosion, and measure soil moisture. In short, 

the proposed device can be used to extract parameters (such as electrical resistivity and 

soil moisture) to select material that may withstand electrochemical corrosion, 

dynamically leverages a machine-learning algorithm to improve its performance, and 

predict the type of soil under investigation. The implementation of a resistance tester that 

can help engineers to extract parameters (such as electrical resistivity and soil moisture) 

to select material that may withstand electrochemical corrosion, and predict the type of 

soil under investigation using machine learning would advance the current state of the art 

by providing an integrated combination of cutting edges techniques that have not been 

previously integrated.   



22 

  

 

Proposed Methodology   

The measurement techniques reviewed in Chapter 2 are capable of computing soil 

resistivity with a certain accuracy. However, more improvements are needed to increase 

the measurement time efficiency and accuracy when testing non-homogeneous soil and to 

decrease the errors caused by the continuous motion of probes. For instance, testing soil 

resistivity using Wenner’s and Schlumberger’s methods is time-consuming and the user 

operating the device needs to move the probes around several times. Unless the 

measurement is being performed by several staff members, it requires a lot of walking 

while measuring the resistivity of a large area. When measuring non-homogeneous soil, 

the resistivity obtained is the average of different layers of the soil involved. However, 

this result can be misleading if we intend to use the measured resistivity as an input to 

protect a metallic structure. For example, if we measure the surface resistivity to be of a 

certain value while the resistivity of the same soil a few depths deeper is way different 

than the surface resistivity, the material we intend to protect could be under or 

overprotected. Also, when testing the resistivity of a large area using Wenner’s 

technique, it might become a tedious task to keep the separation of the four electrodes 

equally spaced, leading to unreliable results. Therefore, a better technique is needed to 

solve the challenges presented here.  

3.1. Proposed Approach  

The proposed method collects a dataset that is used as training and testing data to create a 

model that is utilized to predict the type of soil under investigation and aid engineers in 

selecting the recommended material that may withstand corrosion in that specific 

environment.  Figure 3.1 shows the flowchart of the proposed solution. After collecting 

the dataset, a model is implemented and tested for prediction and measurement accuracy, 

precision, sensitivity, specificity, and hypothesis verification. An apparatus is built in the 

laboratory as a proof of concept to measure the resistivity of different types of soil. To 

address the issue caused by the continuous motion of the electrodes, five measurements 
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are taken. Four measurements are performed to form a square and the fifth sample is 

taken diagonally. The geometry used to measure electrical resistivity was defined by 

AEMC Instrument which is a leading distributor of tests, measurement, control, and 

calibration instrumentation. The geometric pattern setup is utilized in the AEMC 4630 

Rechargeable Digital 4-Point Ground Resistance Tester to get a better estimation of soil 

resistivity of the grounding electrode site [14]. Since AEMC is a well-known company in 

the market and they have been successful using this measurement pattern (establishing it 

as an industry standard), it was utilized during the laboratory experiment. This proposed 

technique is expected to increase the accuracy when testing the resistivity of a non-

homogeneous soil.  

Unlike the device available in the market, the technique used in the device discussed in 

this dissertation will not just measure soil resistivity and help engineers to select the 

recommended material that may withstand corrosion in a given environment, but will 

also use a machine-learning algorithm to perform soil type prediction and dynamically 

improve its prediction performance. Upon completion, the proposed device will 

contribute to the advancement of the current state of the art technique used by the AEMC 

4630 Rechargeable Digital 4-Point Ground Resistance Tester and the scientific literature 

research in artificial intelligence (AI), geology, agriculture, and civil engineering. The 

proposed device will leverage Wenner’s four electrodes technique to extract parameters 

such as soil electrical resistivity, and moisture that may delay corrosion by selecting the 

recommended material that may withstand corrosion within a specific environment, and 

utilize the data collected over time to improve the machine learning prediction capability. 

Additionally, the device will contribute to the improvement of the current state of the art 

and may become one of the cutting-edge technologies used to perform subsurface 

geophysical surveys and metallic corrosion prevention.  
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Figure 3.1. Project Flowchart 

3.2. Prediction model 

It is said that prevention is the best form of protection. The model presented here aims to 

simulate a hardware device that measures the electrical resistivity of soil. Then, from the 

electrical resistivity, the device is designed to predict the type of soil and estimate the 

corrosion aggressiveness of that soil. Once the aggressiveness of the soil is identified, the 

type of protection to protect the metal is defined. Several machine learning algorithms 

can be used to create this model. However, we have chosen a supervised learning 

approach to build the model, Figure 3.2. A supervised learning approach creates a model 

that makes predictions based on evidence in the presence of uncertainty [25]. As shown 

in Figure 3.2, this approach uses two techniques to create predictive models namely 

classification and regression. The supervised learning algorithm uses a set of predefined 

input and output data and trains a given model to generate reasonable predictions for the 

response to new data [25]. Within the supervised learning approach, several techniques 

could be chosen, but after careful analysis (trial and error of different algorithms), the 

Nearest Neighbor (k-NN) and Support Vector Machine (SVM) techniques were chosen 
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because they are excellent classifiers, they perform prediction by taking inputs, and they 

are easy to implement as opposed to, e.g., Artificial Neural Network (ANN), Decision 

Tree, Naïve Bayes, etc.  The next section will provide more detail on the capability of 

each algorithm.  

 

Figure 3.2. Machine learning techniques  

3.3. Training the models - Nearest Neighbor (KNN) technique  

The k-NN technique is a searching technique that locates all neighbors within a specified 

distance to query data points, based on the specified distance metric [26]. This 

classification technique allows the user to generate a search object with a training data set 

and passes the object and query data sets to the object functions. Additionally, the k-NN 

technique provides objects (KDTreeSearcher objects) that store the results (the training 

data, distance metric, and its parameters, and the maximum number of data points) of the 

nearest neighbor search that uses the kd-tree algorithm [27]. The kd-tree is a data 

structure used to split a space to organize points in a k-dimensional space. In this 

algorithm, the kd-tree is used to split the training data into two dimensions (x,y) to allow 

the KDTreeSearcher object to perform the searching of the k nearest neighbors of a 

testing point. Provided that a KDTreeSearcher object is created, the algorithm can find all 

neighboring points to the query data (testing data). To perform a nearest neighbor search, 

the KDTreeSearcher object is created first, then utilized to search the stored tree to find 

all neighboring points to the testing points stored within a data structure (e.g. Array) [28]. 

The algorithm (kd-tree) is more efficient than the exhaustive search algorithm (as 
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discussed in [29]) when the value of k (number of nearest neighbors to be found) is small 

(k ≤ 10), the training and the testing data are sparse, and the training and query sets have 

many observations [28]. The KDTreeSearcher algorithm takes the training data with all 

its features as an input and partitions (fits) the data into regions according to the number 

of features available in the dataset. It is important to highlight that there is no single 

correct form to partition the data or plane into regions, different classification algorithms 

result in different partitions. Also, the value of k plays a pivotal role in the accuracy of 

the algorithm. The smaller the k value is the more likely the classification algorithm is to 

misclassify a testing point to belong to the wrong class. Therefore, it is a good practice to 

choose the value of k at least bigger than three to avoid misclassification due to outliers. 

Outliers are data points that lie outside its region or plane in the kd-tree partition, Figure 

3.3. From figure 3.3, if we choose k = 1 for a given testing point that belongs to the black 

dots class, but it happens to be nearer one of the two circled blue dots class (outliers), the 

data would be misclassified as a blue dot class instead of black dot class. Therefore, if we 

select k to be at least bigger than three, we are less likely to misclassify our prediction.  

 

Figure 3.3. A plot displaying outliers  
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The k-NN function “knnsearch” takes the trained model, testing points, and the number 

of k-value as input. The function computes a search algorithm to return the indices of the 

closest points in the model for the input testing points. In addition to returning the indices 

of the closest points, the “knnsearch” function returns a matrix D which contains the 

distances between each observation for all k [30]. By using the indices of the closest 

points, the k training points closest to the n-th testing point is computed with high 

accuracy.  

Since k-NN is capable of taking the soil resistivity, soil moisture, and soil labels as input, 

it became the most suitable technique to develop the model. Another reason is that the k-

NN algorithm principle is very easy to implement. The k-NN algorithm only takes the 

input (training data), uses kd-tree data structure to organize the training data, and 

leverages kd-tree objects to find the k nearest points of the testing dataset. Therefore, if 

the k-NN algorithm is trained with a dataset containing the electrical resistivity and its 

moisture, the algorithm should be able to predict the type of soil and its corrosiveness for 

a new set of testing data. Finally, the ability of k-NN to display the input, output, and 

number of neighbors in the same graph is one of the reasons it was chosen.     

3.4. KNN model results 

The dataset in the appendix (Table A1) used in this model was collected from several 

scholars’ papers published in journals such as IEEE, Applied physics letters, Research 

gates, Elsevier, among others. These scholars conducted laboratory and field experiments 

to investigate the resistivity of different types of soils and the impact of the moisture 

content on its resistivity [3], [8], [9], [31], [32]. For the creation of the k-NN model, the 

collected dataset was divided into two sets: training (151 data points) and testing data (11 

data points). The training data was used to create the model while the testing data was 

utilized for the proof of concept of the model. Both the training and testing data consists 

of a column of the electrical resistivity of different soils, the moisture content of the 

respective soils, detailed characterization of the type of soil, the site where the 

experiment was conducted or the soil sample was extracted, and lastly the depth of the 

measuring electrodes. The model was built using MATLAB (R2019b; The Mathworks) 
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which is a numerical computing software used to manipulate matrix, plotting data, 

implement models, create a user interface, etc.  

In this approach, the following functions were used “KDTreeSearcher”, “knnseach”, and 

Tabulate. The model was first trained with a set of training and testing data. Then, a new 

dataset containing testing data never seen by the model was used to predict the type of 

soil. This approach is a classifier approach that allows the user to compute the k-nearest 

neighbor of each testing point value. Using the training dataset, a plot of the electrical 

resistivity in the function of the moisture content was obtained as shown in Figure 3.4. 

This figure shows pictorially the non-linear relation between electrical resistivity and 

moisture content. The different dots (or data points) plotted in figure 3.4 represents 

electrical resistivity and its corresponding moisture. As shown in figure 3.4 each colored 

dot corresponds to different types of soil. This figure also shows the electrical resistivity 

range of different types of soil as the moisture content is been changed.  
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Figure 3.4. A plot of the electrical resistivity against soil moisture 
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Figure 3.5 shows the plot of the testing data that verifies if the k-NN model estimates the 

type of soil when unknown resistivity and moisture values are input. The estimation of 

the type of soil is performed by the k-NN algorithm by calculating the k nearest neighbor 

of the input electrical resistivity and soil moisture. In other words, the k-NN looks for the 

closest electrical resistivity and soil moisture values to the input or training data. This 

estimation is done taking into consideration the training data so that the more training 

data the algorithm uses the more accurate the system becomes. The number of k-nearest 

neighbors is defined by the user. For example, we have set k to be equal to 4, so that the 

algorithm only identifies 4 types of soil from the predefined training points in which the 

input must belong. For example, figure 3.6 shows that the 4 nearest neighbors of the 

electrical resistivity with the value of 40.81 ohm*m (with 9.8% of water content) are: 38 

ohm*m (16%), 34.37 ohm*m (13.5%), 35.5 ohm*m (15%), and 34.37 ohm*m (15.9%). 

Additionally, the model provides feedback in terms of the percentage of likelihood of a 

given electrical resistivity belonging to a specific type of soil. To illustrate, Figure 3.7 

shows that the soil that measures an electrical resistivity value of 40.81 ohm*m (with 

9.8% of water content) is more likely to be a sandy loam measured at a depth of 0.31m. 

As shown in Figure 3.7, the testing point has a 25% probability of belonging to either of 

the 4 nearest points. In a situation like this, the algorithm chooses the most likely among 

the four points, which is the first in the list in figure 3.7 (sandy loam). Figure 3.8 shows a 

different scenario for the training point of 14 ohm*m (49.01%). As illustrated, the 

measured electrical resistivity of 14 ohm*m (49.01%) is more likely to be a Clayey silt 

type of soil measured at a depth of 0.24m. As shown in [33] the data point of 14 ohm*m 

(49.01%) was extracted from a Clay type of soil. This shows that the k-NN algorithm was 

capable of predicting the clay type of soil based on its resistivity and moisture, but unable 

to detect the presence of silt in the soil. Table 3.1 summarizes the rest of the predictions 

for the testing points used to train the k-NN model.   
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Figure 3.5. A plot of the testing points (x) showing the nearest neighbors (in a circle) 
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Figure 3.6. Four nearest neighbors for an electrical resistivity value of 40.81 

ohm*m 
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Figure 3.7. Probability of electrical resistivity to belong to a type of soil 

 

 

Figure 3.8. Probability of electrical resistivity to belong to a type of soil 
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Table 3.1. Literature dataset prediction 

Resistivity 

[ohm *m] 

Corrosion level Soil 

moisture 

Depth (cm)  Actual 

soil:  

Predicted  

40.81 0 9.8 Unknown Sandy 

Loam 

Sandy 

Loam 

14 8 49.01 Unknown  Clay   Clay Silt  

340 0 37 Unknown Fibrous 

Loam 

Fibrous 

Loam 

255 0 11 31 Sand Clay Sand Clay 

210  0  15 61 Brown 

Sand 

Brown 

Sand 

1 10 8 61 Loam and 

Slate 

Loam and 

Slate 

475 0 66 Unknown  Sandy 

Loam  

Sandy 

Loam 

250 0 15.67 Unknown  Clay Silt Dark grit 

and clay 

80  0 22.2 Unknown  Clay Silt Sandy loam  

160  0 59 Unknown Sandy 

loam 

Dark grey 

Clay 

274 0 52.2 Unknown Sandy 

loam 

Sandy 

Loam 

 

Table 3.1 summarizes the results obtained from the k-NN algorithms using 11 

testing points. The model was built to predict the two laboratory soil (clayey silt and clay, 

soil 1 and 2 respectively). Therefore, the testing was conducted to identify clayey silt or 

clay (they are the true values).  To understand the outcome and implications of the results 

presented in table 3.1, a confusion matrix was implemented. In statistical analysis, a 

confusion matrix is a table used to describe the performance of a classification model on 

a set of testing data for which the true values are known [34]. Figure 3.9 presents the 

confusion matrix of the results presented in Table 3.1 where,  

• True Negative (TN) – Soils that are not clay/mixture of clay with a different 

soil predicted as not clay/mixture  

• False Negative (FN) – Actual clay/mixture, but predicted as a different type of 

soil 

• False Positive (FP) – A soil that is not actual clay/mixture, but was predicted as 

clay  

• True Positive (TP) – Actual clay/mixture and predicted as clay/mixture  

• n-Number of testing data  
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Figure 3.9. Literature/Training Data Confusion Matrix 

 

Accuracy = 
(𝑇𝑃+𝑇𝑁)

𝑛
 = 

9

11
= 0.82                                eq. 3.1 

Error Rate = 
𝐹𝑃+𝐹𝑁

𝑛
 = 

2

11
= 0.18                                 eq. 3.2 

Sensitivity= 
𝑇𝑃

𝐴𝑐𝑡𝑢𝑎𝑙:𝑌𝑒𝑠 
=

3

4
= 0.75                             eq. 3.3 

Specificity = 
𝑇𝑁

𝐴𝑐𝑡𝑢𝑎𝑙: 𝑁𝑜
=

6

7
= 0.86                             eq. 3.4 

Precision =
𝑇𝑃

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑:𝑌𝑒𝑠
=

3

4
= 0.75                          eq. 3.5 

It is important to mention that the prediction was conducted considering clayey silt and 

clay as the true positive (TP). Based on the 151 points used to train the model, the eleven 

testing points were predicted with accuracy, error rate, sensitivity, specificity, and 

precision of 82%, 18%, 75%, 86%, and 75%. These results show that the testing data fit 

the model very well with only a 0.18 error rate. The high sensitivity value (75%) 

indicates the model is capable of predicting the true name of an unknown soil 75% of the 
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time. On the other hand, the specificity value (86%), implies that the algorithm or model 

implemented here is capable of predicting when certain soil is not clayey silt or clay 86 % 

of the time. In section 4.3.2 (Data analysis), the model will be tested with the data 

collected in the laboratory and compared with the literature model results presented in 

this section.  

Once the type of soil for a given electrical resistivity value is identified, the model can 

estimate the corrosiveness of the soil. The AWWA standard uses a scale from 1-10 

wherein 10 indicates soil corrosiveness to ductile-iron pipe [15]. The training and testing 

data resistivity values are mapped to the AWWA standard scale to determine its 

corrosion level to the ductile-iron pipe.  One of the missions of the AWWA is “to review 

interior and exterior corrosion of ductile iron pipe and fittings and to draw standards for 

the interior and exterior protection of ductile-iron pipe and fittings” [15]. It is important 

to mention that the AWWA corrosion characterization, Table 3.2, discussed in this 

dissertation was utilized for illustration purposes only. In other words, given that the 

resistivity of soil and the type of soil under investigation is known, the corrosion level of 

a given soil is determined, thus the best material can be selected by taking into 

consideration the ability of the material to withstand corrosion in that environment. 

However, one should not use the AWWA corrosion level classification discussed here to 

make conclusive decisions about a real-world project until field testing is conducted, and 

all the limiting variables are considered. Table 3.2 shows a table extracted from [15] 

where the resistivity range and corrosion level for a ductile-iron pipe are presented. In the 

case of an electrical resistivity value of 14 ohms*m, the level of corrosion is 10, and 

protection is required if a ductile-ion pipe is to be placed in the ground.  
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Table 3.2. Soil test evaluation (adapted from [15]) 

Soil Characteristics Based on Samples Taken Down to Pipe Depth 

Resistivity – ohm-cm (based on water-saturated soil box): *Points 

Resistivity 

< 1500 (15 ohm*m) 10 

>= 1500 - 1800 8 

>1800-2100 5 

>2100 - 2500 2 

>2500 - 3000 1 

>3000 0 
*Ten points or greater indicates that soil is corrosive to the ductile-iron pipe; protection is needed.  

3.5. Support Vector Machine 

The SVM is another supervised learning classification algorithm used to separate two sets 

of data. This algorithm works by finding the best hyperplane that separates all data points 

of one class from those of the other class [35]. The optimal hyperplane for an SVM 

technique is the one with the largest margin (maximal width of the slab parallel to the 

hyperplane that has no interior data points, Figure 3.10) between two classes [35]. Within 

the SVM algorithm, there are several fitting functions used to fit the data. However, this 

dissertation used “fitcecoc” [35] algorithm to training and separate five classes of soil 

namely sandy loam, clayey silt, unknown soil 1, unknown soil 2, and blue clay. The 

error-correcting output codes (ECOC) is a classifier “for multiclass learning, where the 

classifier consists of multiple binary learners such as support vector machines (SVMs)” 

[36].  
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Figure 3.10. A plot indicating support vector machine parameters 

3.6. SVM model results  

The data used in this model was collected from the same scholars' papers as in the 

previous model (see table A2 in the appendix). However, only five classes of the 

collected data were used to simplify the algorithm and the interpretation of the collected 

data. Figure 3.11 shows the plot of the five classes of data in small dots of different 

colors. The algorithm learned the data and the SVM technique was applied to separate the 

five classes. In this specific model, five learners corresponding to each of the five soil 

types were created. The algorithm performed several iterations (one-versus-one coding) 

wherein the first SVM binary leaner performed all observations and classifications using 

sandy loam in red dot (figure 3.11). The circles shown in figure 3.11 indicate the support 

vectors for each of the classes used in the model. The data enclosed by either circle are 

predicted to be part of the support vector class enclosing the data. To illustrate, the data 

points 18.56 (90% moisture) are defined as unknown soil 1 (in green dot) in figure 3.11, 

however, it was enclosed by SVM 2 (clayey silt) which means that the unknown soil is 

clayey silt. The error of the model was calculated to be  44.07 % which is quite large. 
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This large percentage of error was evident in the performance of the algorithm. For 

example, several blue clay soils (892(5% moisture), 1094 (51.5% moisture), 695 (23% 

moisture), etc) were classified to be SVM 4 (unknown soil 2). We know that these 

classifications are incorrect because the unknown soil 2 (or clay) used in the laboratory 

experiment is not blue clay as predicted by the model. Therefore, the SVM is not a good 

model to predict the type of soil based on the resistivity of soil and its moisture. Another 

reason for the inaccuracy of the SVM algorithm might be that the training data used to 

create the model cannot be easily separated by the algorithm into different classes, 

resulting in a high error rate of 44.1%.  

 

Figure 3.11. A plot displaying support vectors 
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Preliminary experimental verification  

The results obtained from the model were intended as a proof of concept that the 

proposed approach may be a viable solution to help prevent corrosion, through proper 

materials selection, on underground metallic structures. However, a laboratory 

experiment was next conducted to further examine the hypothesis and machine learning 

model. The data collected during the laboratory experiment is used to compare with the 

data obtained from the k-NN model created on MATLAB. The next section of this thesis 

introduces the techniques used during the laboratory experiment and discusses in detail 

the collected data and its implications.  

4.1. Experimental Setup 

The experiment was conducted within a room in which the temperature varied from 24-

26 o C. For each measurement, the temperature was taken using a temperature sensor 

attached to a digital multimeter (DMM) as shown in figure 4.1. The voltage drop across 

the two inner electrodes was measured using the DMM as shown in figure 4.2. The 

DMM was reset after every measurement to avoid any measurement error that might be 

introduced. On the other hand, the humidity of the soil was measured using the “3-way 

soil meter” (figure 4.3). This meter is commonly used to measure garden moisture, pH, 

and the intensity of light. The accuracy of the “3-way soil meter “is not the main goal of 

this research. To ensure that the soil moisture is being properly measured, several 

measurements across the soil sample was taken and an average of the measured soil 

moisture was calculated.  

Two different types of soil were used in this experiment. One of the soil was 

homogeneous (same type of soil) while the other was a mixture of two different forms of 

soil. Both soils were labeled as unknown (unknown soil 1 and 2) because no description 

of the soil was provided by the seller. After consulting an Oil Gas & Salt Resources 

Library geologist employee, soil 1 was identified as clayey silt and soil 2 as clay (A. 
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Cachunjua, personal communication, August 30th, 2020). However, during the 

experiment, both soils 1 and 2 are considered as unknown to be predicted by the 

algorithm. The fact that both soils were unknown is a good thing because we intend to 

estimate their characteristic by using the k-NN algorithm. Soil 1 was placed in a (31.2cm) 

x (17.5cm) x (11.3cm) box, length, width, and height, respectively. Figure 4.4 shows the 

box in which the experiment for soil 1 was conducted. For this soil, only two sets of 

experiments were conducted specifically for electrodes of depth 1cm (2cm separation) 

and 2cm (4cm separation). However, soil 2 was placed in the box shown in figure 4.5 

which possesses the following dimensions: (37.1cm) x (29cm) x (17.2cm). Three 

experiments were conducted using soil 2 (box 2-figure 4.5) because it is slightly bigger 

than box 1 used for soil 1. The experiments conducted on box 2 (soil 2) were for 

electrodes of depth 1cm (2cm separation), 2cm (4cm separation), and 4cm (8cm 

separation).  

 

Figure 4.1. DMM and temperature sensor 
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Figure 4.2. A DMM used to measure the voltage drop across two inner electrodes 

 

 

Figure 4.3. 3-way soil meter 
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Figure 4.4. Box 1 a (31.2cm) x (17.5cm) x (11.3cm) and soil 1 

 

 

Figure 4.5. Box 2 (37.1cm) x (29cm) x (17.2cm) and soil 2 
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Since four electrodes are needed in Wenner’s technique for soil’s electrical resistivity 

measurement, four electrodes were also used in this experiment (figure 4.6). As 

suggested by [4] the electrodes are fabricated of stainless steel. The diameters of the 

electrodes are 1cm and the total length of each electrode is approximately 10.5cm long. 

To keep track of the depth of penetration of each electrode in the soil, white marks were 

placed at 1cm, 2cm, and 4cm depth along the electrode’s length.   

4.2. Electrode setup technique  

In each experiment, the electrical resistivity of soil 1 and 2 was measured at three 

different depths specifically at 1cm, 2cm, and 4 cm of electrode penetration. The 

electrodes were separated at different distances for each of the depths. Figure 4.7 shows 

the electrode placement schematics at three different depths. For example, as illustrated 

in figure 4.7, at the depth of 4cm the electrodes are equally separated by 8cm or double 

the depth of penetration. To help to keep the electrodes equally spaced a placeholder was 

designed for each experiment (1cm, 2cm, and 4cm depth), figure 4.8.   

 

Figure 4.6. Stainless steel electrodes 
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Figure 4.7. Electrodes placement setup 

 

 

Figure 4.8. Electrode separation placeholder 
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To improve the accuracy of the measurement, five voltage drop samples were taken for 

each of the soil moisture percentages. Figure 4.9 shows each of the five measurement 

positions for each of the soil moisture percentages. As shown in figure 4.9, measurements 

1 to 4 were taken parallel to each other while sample five was taken diagonally. The 

voltage drop of each measurement was added and divide by 5 to find the voltage drop of 

that specific area and soil moisture value eq.4.1. Additionally, several voltages drop 

measurements were performed for a single moisture value to account for the shaking 

electrodes which can introduce measurement errors and voltage reading inaccuracy. The 

electrical resistivity of the soil was then calculated using equations eq 4.2 and 4.3. Tables 

4.1- 4.5 below show the data collected in each of the measurements for each of the 

experimental depths (1cm, 2cm, and 4cm of electrode penetration).   

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑑𝑟𝑜𝑝 𝑎𝑣𝑔 =  
𝑣𝑚1+𝑣𝑚2+𝑣𝑚3+𝑣𝑚4+𝑣𝑚5

5
         eq.4.1 

𝑅 =
𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑑𝑟𝑜𝑝 𝑎𝑣𝑔

𝐼𝑎𝑣𝑔
                     eq.4.2 

ρ, Ω · m = 2πa ∗ R (a is in meters)      eq.4.3 

Where, vm1,2,3,4,5 are the voltage drop at each sample in volts (V)  

 Iavg, input current in Ampere (A) 

 a, electrodes separation in meters (m) 

 ρ, soil electrical resistivity in Ω · m  
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Figure 4.9. Voltage drop measurement sample 
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Table 4.1. Soil 1-at 1 cm depth 

Voltage drop trials (V) Current (A) R (Ω) a 

(m) 

Tempe- 

rature  

Soil  

Moisture 
Ρ (Ω ·
m) 

0.26 0.25 0.3 0.52 0.17 0.02 0.02 0.02 0.02 0.02 15 0.02 24 30 1.88 

2.28 3.12 3.25 2.4 2.2 0.04 0.04 0.04 0.04 0.04 66.25 0.02 24 90 8.33 

 

Table 4.2. Soil 1-at 2 cm depth 

Voltage drop trials (V) Current (A) R (Ω) a 

(m) 

Tempe- 

rature  

Soil  

Moisture 
Ρ (Ω ·
m) 

1.3 1.22 1.22 2 0.99 0.03 0.03 0.03 0.03 0.03 44.87 0.04 24 30 11.28 

3.66 3.2 4.8 2.8 4 0.05 0.05 0.05 0.05 0.05 73.84 0.04 24 90 18.56 

 

Table 4.3. Soil 2-at 1 cm depth 

Voltage drop trials (V) Current (A) R (Ω) a 

(m) 

Tempe- 

rature  

Soil  

Moisture 
Ρ (Ω · m) 

0.13 0.2 0.3 0.45 0.35 0.02 0.02 0.02 0.02 0.02 14.30 0.02 24 10 1.80 

0.7 1.82 1.65 1.2 1.6 0.02 0.03 0.03 0.02 0.03 52.80 0.02 25 35 6.64 

1.3 1.6 1.2 1.2 1.2 0.03 0.03 0.03 0.03 0.03 43.33 0.02 

0.02 

24 65 5.45 

0.5 0.75 1.2 0.8 0.7 0.03 0.03 0.03 0.03 0.03 26.33 0.02 24 70 3.31 
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Table 4.4. Soil 2-at 2 cm depth 

Voltage drop trials (V) Current (A) R (Ω) a 

(m) 

Tempe- 

rature  

Soil  

Moisture 
Ρ (Ω · m) 

1.2 0.45 0.6 0.7 1 0.02 0.02 0.02 0.02 0.02 39.50 0.04 24 10 9.93 

3 3.3 2.8 2.3 2.5 0.03 0.03 0.03 0.03 0.03 92.67 0.04 25 35 23.29 

1.6 1.8 1.7 1.3 1 0.03 0.03 0.03 0.03 0.03 49.33 0.04 24 65 12.40 

0.8 0.6 0.3 0.7 0.8 0.03 0.03 0.03 0.03 0.03 21.33 0.04 24 70 5.36 

 

Table 4.5. Soil 2-at 4 cm depth 

Voltage drop trials (V) Current (A) R (Ω) a 

(m) 

Tempe- 

rature  

Soil  

Moisture 
Ρ (Ω · m) 

2.2 2.24 2.2 2 2.1 0.02 0.02 0.02 0.02 0.02 107.4 0.08 24 10 53.99 

3.2 3.3 2.4 3.5 3 0.03 0.03 0.03 0.03 0.03 102.67 0.08 26 35 51.61 

2.3 2.5 2.55 1.7 2.3 0.03 0.03 0.03 0.03 0.03 75.67 0.08 24 42 38.03 

1.3 1.2 1.3 1.31 1.4 0.03 0.03 0.03 0.03 0.03 43.40 0.08 24 70 21.82 
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4.3. Results and Discussion 

Figure 4.10 shows the final laboratory experimental setup where a current is applied at 

the outer electrodes and the voltage drop is measured from the two inner probes. A Direct 

Current (DC) power supply was used. The current density increases within conductive 

regions and decreases within resistive regions. The depth of penetration of the input 

current or electrical signal depends on the instrument’s strength of the signal [6]. The 

electrical charges from the current input build-up at the interfaces between regions of 

different electrical conductivity [23]. These variations in charge are then detected by the 

two inner electrodes and registered as variations in the distribution of potential (voltage 

drop). After performing several measurements, the collected data was input into an excel 

spreadsheet to compute all the necessary magnitudes. A MATLAB file was then created 

from the excel spreadsheet to allow the algorithm to interpret the collected data.  

  

Figure 4.10. Wenner’s four-electrode box experiment 
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4.3.1. Mean value and standard deviation of the experimental data  

Since five measurements were taken to determine the electrical resistivity for a given 

depth and soil moisture (figure 4.9), there were some differences in the measured 

voltages, currents, and depth for each sample (tables 4.1-4.5 and 6.3-6.7). Therefore, the 

mean value and standard deviation for each measurement were calculated. Tables 4.6-

4.10 show the mean value and standard deviation for each soil and different depths. As 

shown below, the mean voltage value and standard deviation are all within 1 standard 

deviation. It means that each one of the five voltages drops measured for each sample 

was very close to the mean value. The same can be said for the current mean value and 

standard deviation. As shown in the tables below, the current standard deviation for most 

of the samples was calculated to be zero. These results were expected since the current 

was constant for most of the experimental samples. The equations below were used to 

calculate the mean and standard deviation from tables 4.1-4.5.  

Mean =
1

N
∗  ∑ 𝑚𝑖𝑁

𝑖=1      eq.4.4 

Standard Deviation = √(
1

𝑁
 ∑ (𝑚𝑖 − 𝑀𝑒𝑎𝑛)2𝑁

𝑖=1 )  eq.4.5 

In equations 4.4 and 4.5, m is the measurement while i and N are the sample number and 

the total number of measurements.  

Table 4.6. Mean value and standard deviation of soil 1-at 1 cm depth 

Voltage Mean (V) Voltage Standard 

Deviation (V) 

Current Mean (A) Current Standard 

Deviation (A) 

0.3000 0.1317 0.0200 0 

2.65 0.4957 0.0400 0 

 

Table 4.7. Mean value and standard deviation of soil 1 at 2 cm depth 

Voltage Mean (V) Voltage Standard 

Deviation (V) 

Current Mean (V) Current Standard 

Deviation (V) 

1.62 0.2490 0.0300 0 

3.10 0 0.0520 0.0084 
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Table 4.8. Mean value and standard deviation of soil 2 at 1 cm depth 

Voltage Mean (V) Voltage Standard 

Deviation (V) 

Current Mea (A)n Current Standard 

Deviation (A) 

0.2860 0.1254 0.0200 0 

1.3940 0.4496 0.0200 0.0055 

1.30 0.1732 0.0300 0 

0.7990 0.2559 0.0300 0 

 

Table 4.9. Mean value and standard deviation of soil 2 at 2 cm depth 

Voltage Mean (V) Voltage Standard 

Deviation (V) 

Current Mean (A) Current Standard 

Deviation (A) 

0.7900 0.3050 0.0200 0 

2.7800 0.3962 0.0300 0 

1.4800 0.3271 0.0300 0 

0.6400 0.2074 0.0300 0 

 

Table 4.10. Mean value and standard deviation of soil 2 at 4 cm depth 

Voltage Mean (V) Voltage Standard 

Deviation (V) 

Current Mean (A) Current Standard 

Deviation (A) 

2.1480 0.0976 0.0200 0 

3.0800 0.4207 0.0300 0 

2.2700 0.3384 0.0300 0 

1.3020 0.0709 0.0300 0 

 

Two measurements at the same depth and soil moisture were taken to calculate sample 

errors under the same conditions. Measurement at the depth of 2 cm, at the moisture of 90 

%, and temperature of 27 o C was taken and compare to a previous measurement at the 

same condition, but different temperature (at 24 o C). The first measurement taken from 

soil 1 at the temperature of 24 oC, 2 cm depth, 4cm separation, and 90 % moisture had an 

electrical resistivity of approximately 18.56 ohm*m while the second measurement 

performed at the same condition, but at a temperature of 27 oC had an electrical resistivity 

around 15.32 ohm*m. It becomes clear that there is a small discrepancy between the two 

electrical resistivities (18.56 ohm*m (at 24 o C) and 15.32 ohm*m (27 oC)). By 

subtracting the first and second electrical resistivity, the discrepancy is calculated to be 

3.24 ohm*m. Assuming a normal distribution, the mean value of the two electrical 

resistivities is calculated to be about 16.94 ohm*m while the standard deviation becomes 

2.229 ohm*m. Taking into consideration that the measurement considered herein were 

performed at different temperatures ( about 3 oC of difference), the discrepancy of the 
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two measurements could be considered as small enough. This implies that a small change 

in temperature does not cause a dramatic change in the resistivity of a given soil. Also, 

the small standard deviation (about 2.229 ohm*m) implies that the two measured 

electrical resistivities are within 1 standard deviation. In other words, the Wenner 

technique used to measure soil resistivity during this experiment is accurate enough and 

the electrical resistivity of the soil does not change drastically with a small variation in 

temperature.  

4.3.2. Data analysis  

In this section, the k-NN model created in section 3.3 is tested using the data collected 

from the laboratory experiment and a comparison between the literature and laboratory 

data performance is conducted. Table 4.11 below presents the laboratory experimental 

data used to test the model to predict the laboratory soil samples. To verify the 

performance of the model to the experimental data, ten samples collected from the lab 

were input into the model specifically  21.82 ohm*m [70%], 38.03 ohm*m [42%], 12.40 

ohm*m [65%], 9.93 ohm*m [10%], 6.64 ohm*m [35%], 18.56 ohm*m [90%], 8.34 

ohm*m [90%], 1.80 ohm*m [10%], 5.45 ohm*m [65%], and 53.99 ohm*m [10%]. These 

datasets were never seen by the model, and they were extracted from the laboratory soil 

samples (clayey and clay, soil 1 and 2, respectively). As shown in table 4.11 six sample 

points (in green) collected from the laboratory were correctly predicted as clayey silt and 

clay. This result shows that the model is capable of predicting the type of soil given that 

the resistivity and moisture of the soil are known. This result also proves the hypothesis 

of this thesis that a k-NN machine learning algorithm is capable of predicting the type of 

soil of an unknown soil if the resistivity and moisture of that soil are known.  
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Table 4.11. Experimental dataset prediction 

Resistivity 

[ohm *m] 
Corrosion level Soil moisture Depth (cm)  Actual soil:  Predicted  

21.82 2 70 4 2(clay) Clay Loam 

38.03 0 42 4 2 (clay) Sandy 

Loam 

12.40 10 65 2 2 (clay) Clayey Silt 

9.93 10 10 2 2 (clay) Brown 

Sand 

6.64 10 35 1 2 (clay) Clayey Silt 

18.56 5 90 2 1 (clay) Clayey Silt  

8.34 10 90 1 1 (clayey 

silt) 

Clayey Silt 

1.80 10 10 1 1 (clayey 

silt)  

Loam 

5.45 10 65 1 2 (clay) Clayey Silt 

53.99 0 10 4 2 (clay) Chalk 

Loam  

14 8 49.01 Unknown  Clay   Clay Silt  

340 0 37 Unknown Fibrous 

Loam 

Fibrous 

Loam 

255 0 11 31 Sand Clay Sand Clay 

210  0  15 61 Brown Sand Brown 

Sand 

1 10 8 61 Loam and 

Slate 

Loam and 

Slate 

475 0 66 Unknown  Sandy Loam  Sandy 

Loam 

250 0 15.67 Unknown  Clay Silt Dark grit 

and clay 

80  0 22.2 Unknown  Clay Silt Sandy 

loam  

160  0 59 Unknown Sandy loam Dark grey 

Clay 

274 0 52.2 Unknown Sandy loam Sandy 

Loam 

 

The overall performance of the model was analyzed using a confusion matrix as 

performed on the literature sample in chapter 3, but a new dataset collected from the 

laboratory experiment was added to the testing data. Figure 4.11 below displays the 

confusion matrix of the experimental data. Using a total of 20 points the confusion matrix 

was created wherein:  

• True Negative (TN) – Soils that are not clay/mixture of clay with a different 

soil predicted as not clay/mixture 
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• False Negative (FN) – Actual clay/mixture, but predicted as a different type of 

soil 

• False Positive (FP) – A soil that is not actual clay/mixture, but was predicted as 

clay  

• True Positive (TP) – Actual clay/mixture and predicted as clay/mixture  

• n-Number of testing data 

 

Figure 4.11. Laboratory/Experiment Sample Data Confusion Matrix 

 

Accuracy = 
(𝑇𝑃+𝑇𝑁)

𝑛
 = 

14

20
= 0.70                           eq.4.6 

Error Rate = 
𝐹𝑃+𝐹𝑁

𝑛
 = 

6

20
= 0.3                              eq.4.7 

Sensitivity= 
𝑇𝑃

𝐴𝑐𝑡𝑢𝑎𝑙:𝑌𝑒𝑠 
=

9

14
= 0.64                      eq.4.8 

Specificity = 
𝑇𝑁

𝐴𝑐𝑡𝑢𝑎𝑙: 𝑁𝑜
=

5

6
= 0.833                     eq.4.8 

Precision =
𝑇𝑃

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑:𝑌𝑒𝑠
=

9

14
= 0.64                  eq.4.10 
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In terms of accuracy, the model performed well with 70% accuracy, which indicates that 

the model is capable of predicting the correct type of soil 70 percent of the time. This 

accuracy percentage is similar to the accuracy obtained by Lemercier in [12] where a 

boosted classification tree was used to predict soil parent material and drainage. An 

accuracy of about 70% was also described as adequate in [12] and [13]. The accuracy 

achieved by the k-NN model created here is good enough compared to [12] and [13] and 

considering the fact that the data used to train the model were extracted from scholarly 

sources in which the accuracy and veracity of the data are unknown. On the other hand, 

the error rate of the model is 0.3 (or 30%) which means that the model is capable of 

predicting the right type of soil 70 percent of the time. This error rate can be decreased by 

increasing the number of training sample points. In contrast, the sensitivity of the model 

is 64% percent which indicates that we can only be sure of a true positive (TP) 64% of 

the time. This sensitivity result is a bit low because the higher the sensitivity value the 

better the model becomes. However, the specificity result is 83.3 % which indicates that 

we can be sure that a true negative (TN) value is indeed a correct prediction 83.3 percent 

of the time. In terms of precision, the model proved to be very precise. The precision 

value of 90% indicates that the model is capable of precisely predict the correct type of 

soil 90 percent of the time.  

Table 4.12. Comparison between literature and experimental dataset models 

Statistical Results Comparison 

 Literature Dataset Model Experimental Sample Model 

Accuracy  0.82 0.70 

Error Rate 0.18 0.3 

Sensitivity 0.75 0.64 

Specificity 0.86 0.833 

Precision 0.75 0.64 

 

Table 4.12 above shows the comparison between the statistical results obtained using the 

literature testing dataset (used to test the k-NN model in chapter 3) and the experimental 

dataset (used to predict the laboratory soil samples). As shown the literature testing data 

(accuracy, error rate, sensitivity, specificity, and precision equal to 82%, 18%, 75%, 86%, 

and 75% respectively) fits better the model than the experimental testing data points 

(accuracy, error rate, sensitivity, specificity, and precision equal to 70%, 30%, 64%, 
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83.3%, and 64% respectively). The reason for the literature data points fitting better the 

model might be because most of the training data were collected from the literature 

papers. The model might be biased to the dataset extracted from the scholars' literature, 

thus the accuracy, error rate, sensitivity, specificity, and precision are better than the ones 

obtained from the experimental dataset.  

In terms of sample size, the model would perform better if the training dataset was bigger 

than 151 sample points (6 points were added later from the laboratory measurement). The 

model would have more points to train the algorithm and the class of electrical resistivity 

for different types of soil would be more evident or easier to be classified by the 

algorithm. However, if the training data’s sample size becomes too big, it might lead to 

overfitting which might impact the performance of the algorithm negatively. Overfitting 

happens when the model learns all the characteristics of the training data to the point of 

negatively impact the performance of the model. Therefore, careful consideration is 

required when increasing the number of datasets used to create a model.  
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Limitations 

The results presented in the last section of this dissertation provides initial proof-of-

concept verification of the hypothesis of this research. However, those results were 

influenced by several factors that must be reported. The main limitation of this research is 

the resistivity meter accuracy, depth of measurement, electrode separation, the 

temperature at which the samples were taken, origin of the data used for model creation, 

experiment site, soil moisture, and model’s bias.  

 As previously stated, the data used to create the machine learning model was collected 

from different scholars’ papers. This research assumes that the collected data are 

accurate, and the resistivity meter used by these scholars was also accurate. Also, it was 

assumed that these scholars did not make any computation mistakes related to the 

reported data. On the other hand, it was shown that the resistivity of soil varies according 

to the depth and separation of the probe’s electrodes. This report assumes that the data 

reported by each scholar was extracted taking into consideration these parameters and no 

measurement mistakes were made.  

Some of the data used in this report were extracted from scientific papers that did not 

provide enough detail about the temperature at which each measurement was collected. It 

was found that during the laboratory experiment that the temperature in which the 

experiment is conducted affects the resistivity of soil. Thus, it would be important to 

know the temperature at which the experiments were conducted to better train the 

machine learning models.  

The homogeneity of the dataset used is another limitation of this research since the data 

were taken from different literature. There are no standards to determine how 

homogeneous the data from different literature are to each other. Therefore, the data 

collected in the laboratory were compared against the literature data to help to decide 

which data from the literature were reasonable to create the model. The parameters used 
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to decide either a given literature data should be included are temperature and electrical 

resistivity. From the laboratory experiment, It was observed that the electrical resistivity 

increased as the temperature increased. Therefore, the datasets of literature with the same 

characteristics as the laboratory measurements were included to create the model. 

Additionally, the datasets from different literature were added to the training model 

separately and the accuracy of the model was calculated afterward. Datasets that 

decreased the accuracy of the model by 40% were excluded.  

The percentage of water content in the soil was varied from oven-dry (approximately 0%) 

to about 90% water content for each depth tested in the laboratory experiment. However, 

after pouring 660ml of water for each depth of the measurement sample, the soil was not 

evenly wet. This resulted in different soil moisture percentage over the surface area of the 

soil even after the soil was properly mixed. Therefore, the average of different soil 

moisture measurement was taken and used as the moisture level. This unequal moisture 

percentage across the soil for a given depth sample might negatively influence the results 

reported from the laboratory experiment. In addition, soil resistivity, even for a specific 

soil type (e.g., clay) may be highly dependent on depth in the field as characteristics such 

as moisture and density change with depth.  

Finally, the data used to implement the model were divided into training and testing data. 

In some cases, the model performed well with the training data but performed poorly 

when unseen data was input as the testing data. This machine learning problem is known 

as overfitting (the opposite of this issue is called underfitting). Although the k-NN and 

SVM models were implemented taking into consideration these issues, it is possible that 

the results of the model were biased by overfitting or underfitting problems.  

5.1. Model limitation  

The accuracy of the algorithms is biased by the parameters used as training data. In other 

words, the more features the algorithm uses to predict the unknown variable, the more 

effective the algorithm becomes. However, in this research, only two main features were 

used to verify the hypothesis namely soil resistivity and moisture. In reality, soil moisture 
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and resistivity are not the only factors that should be used to predict the type of soil. As 

found out during the experiment temperature variation, and electrodes depth of 

penetration are relevant parameters that affect the resistivity of soil, thus these parameters 

should be considered. The model would predict better the type of soil when only the 

electrical resistivity of the soil is known if electrodes depth of penetration and 

temperature were also used to train the model.  

Additionally, the pH of the soil is another factor that should be considered when selecting 

the recommended material that may withstand corrosion within a given environment. The 

pH of a given soil affects the corrosion of metallic structures such as pipes underground 

[37]. Therefore, not using the pH of the soil as a parameter to predict different types of 

soil and selecting the recommended material that may withstand corrosion in a specific 

environment is another limitation of the model implemented in this dissertation.   

In short, the limitations reported above might have influenced the results reported in this 

research. However, these limitations did not affect the proof-of-concept effectiveness of 

the proposed machine learning algorithm. Therefore, regardless of the limitations 

presented, the machine learning algorithms were able to estimate with some level of 

accuracy the type of soil when both the electrical resistivity of the soil and its water 

content was given or when only the electrical resistivity of the soil was provided.  
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Conclusions and Future Work 

6.1.  Summary 

In this dissertation, the electrical resistivity and soil moisture were used to predict two 

different types of soil using k nearest neighbors (KNN) and support vector machine 

algorithm (SVM). Besides predicting different types of soil, this research used the 

measured electrical resistivity and corrosion standards such as the American Water 

Works Association to make recommendations for materials that may withstand 

electrochemical corrosion within a hybrid environment (e.g. a metal buried underground 

in soil and moisture). The electrical resistivity was measured using Wenner’s four 

electrodes technique. To create the KNN literature model, a dataset of 162 sample points 

was obtained from different literature wherein 151, and 11 points were used as training 

and testing points, respectively. To predict the laboratory soil, 26 sample points were 

obtained (corresponding to 130 measurements) wherein 6 points were added to the 

literature training dataset and 20 used as testing points. 

The results showed that the SVM algorithm is unfit to predict the laboratory sample soils 

(clayey silt and clay, or soil 1 and 2, respectively) while using the training dataset 

provided to create the machine learning models. The SVM algorithm was unable to 

separate the training sample points into distinct classes, thus it could not classify different 

types of soils with high accuracy. In terms of error rate and accuracy, the SVM algorithm 

had an error rate of 44.1% and an accuracy of only 55.9 %. However, the k nearest 

neighbor algorithm proved to be capable of predicting the type of soil of an unknown soil 

when the electrical resistivity and moisture of the given soil are known. The model was 

tested using both literature and laboratory testing data. The model proved to fit the 

literature testing data better than the laboratory testing dataset. The reason is that the 

model became a litter bit biased to the literature dataset since it was used to create the 

model. The confusion matrix statistical rate obtained from both literature and 

experimental results are presented in Table 4.12. This table shows that the literature 
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testing data had accuracy, error rate, sensitivity, specificity, and precision of  82%, 18%, 

75%, 86%, and 75% respectively. On the other hand, the experimental testing data points 

had accuracy, error rate, sensitivity, specificity, and precision of 70%, 30%, 64%, 83.3%, 

and 64% respectively. The k-NN model was capable of predicting the laboratory soils 1 

and 2 (clayey silt and clay respectively). Additionally, the result of this dissertation 

showed that the model was not able to tell a mixture of soil from plain soil ( e.g. clayey 

silt from clay).  

In summary, the hypothesis of this dissertation states that given the electrical resistivity 

and moisture of an unknown soil, a machine learning algorithm can be leveraged to 

predict the type of soil. The implemented algorithm was capable of predicting the two 

types of soil used in the laboratory with some degree of accuracy, which can be built on 

for future implementations.  

6.2. Recommendation for future work  

There are several aspects of this dissertation that could be improved because some of the 

results presented were not conclusive. The limitation section of this research showed 

several aspects that could be improved in the future. Some of the aspects that could be 

improved or added in the future are the algorithm used to create the model, a physical 

version of the model that could be implemented, and field testing.  

6.2.1. Model improvement  

As previously mentioned, the data used to create the model were obtained from different 

scholars' papers. Although these scholar's papers are credible sources, there might be 

some calculations or other human mistakes that were not reported. These possible 

measurement errors committed by scholars affected negatively the model used in this 

research. However, to improve the accuracy of the model in the future, the data used to 

create the model will not be extracted from external sources, it will be obtained from a 

laboratory experiment conducted at SFU. This will increase the accuracy and improve the 

reliability of the model because all the errors and assumptions used during the data 

collection will be accounted for.  
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The model was created using about 162 data points wherein 80% of the data was used to 

train the model and about 20% to test the model. To improve the model accuracy in the 

future, more than 162 data points will be used. Since the data points used to create the 

model will be extracted from the laboratory at SFU, it would not be a big challenge to 

gather more than 162 points. In the future, a third soil should be used to further verify the 

hypothesis of this dissertation.  

Identifying how much overfitting exists in a model is very difficult [38]. However, it is 

possible to analyze the result of our model to help us decide either the model is 

overfitting or not. The results of this research showed that the literature model over-

performed the laboratory model with an accuracy of 82%, and 70% respectively. 

Statistically, it might be an indication of overfitting as previously mentioned. Overfitting 

might have happened because the literature model became too complex as the variance of 

the model increased at the training stage. Variance is the sensitivity of an algorithm to 

specific sets of the training dataset that occurs when the algorithm has limited flexibility 

to learn the true signal from the dataset [39]. As the literature variance increased, the 

model's ability to classify the training data increased as well, resulting in an accuracy of 

82%. The increase of the variance, decreased the ability of the model to generalize when 

new datasets are input to the model. Therefore, the accuracy of the model decreased as 

we introduced unseen data (laboratory data) to the model, resulting in an accuracy 

decrease of 12%. To solve this problem, the concept of regularization will be used in the 

future. This technique is widely used to reduce the variance and error of the model, thus 

avoiding overfitting [40].  

Finally, the model will be improved by the addition of electrodes depth of penetration 

and temperature as two keys parameters to determine the type of soil. By using four 

features to train the model instead of two the accuracy of the model will be greatly 

improved. Also, a new algorithm and software might be used instead of the MATLAB 

and just the k-NN algorithm and SVM. 
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6.2.2. Device implementation  

As mentioned in the objective section of this dissertation, the model created in this 

research could be embedded within a multi-use hardware device that also includes ACPS, 

or implemented as a separate device. If the model discussed in this report is implemented 

as an additional feature of the ACPS, it would improve greatly the capability of the 

ACPS. The ACPS could utilize a machine-learning algorithm to predict the type of soil. 

Additionally, instead of just protecting the metal target, it would also help engineers to 

select optimal materials that may withstand electrochemical corrosion in a hybrid 

environment (soil and moisture). The machine learning feature would make the device 

more robust and unlike any other device available in the market, it would be able to 

conduct a complete investigation of the soil before placing a metallic structure 

underground. However, if the model discussed herein is implemented as a single device, 

it would be used to measure soil resistivity, soil moisture, and estimate the type of soil 

under investigation. 

Since the device is intended to be portable, the device will have a rechargeable battery, 

embedded multimeter (hardware), and a user interface. The battery will supply the DC 

power to the Wenner’s four electrodes. The user will have the ability to adjust the input 

current and read the voltage drop from the user interface. Additionally, the user should be 

able to read the electrical resistivity from the user interface. In terms of data storage, all 

the training data should be stored in the device using a non-volatile memory card.  The 

training dataset will be obtained from several in-field measurement testing. The memory 

card (database) will be periodically updated with new data to improve the classification 

algorithm overtime.  

6.2.3. Field testing  

After the device implementation, the next phase of this research would be the field test to 

verify the performance of the device. The device would be tested in different sites to 

verify its accuracy to measure soil resistivity, estimate soil type, and moisture. By 

measuring soil resistivity accurately and estimate the type of soil the device’s ability to 

leverage parameters such as electrical resistivity and soil moisture to help engineers to 
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determine the aggressiveness of the soil in terms of corrosion would be determined. 

Finally, by testing both known and unknown types of soil the device’s ability to predict 

the type of soil in the field would be verified.  
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Appendix.  

 

Supplemental Datasets 

Table A1. k-NN Training and Testing Data 

resistivity Soil 

Moisture 

Level of 

Corrosion 

(Powertech) 

Description 

1212.25 17.81 0 Munnar, India at a single layer @depth of 0.3m 

448.4 0.266 0 Munnar, India at a single layer @depth of 0.3m 

358.72 8.68 0 Munnar, India at a single layer @depth of 0.3m 

306.8 12.09 0 Munnar, India at a single layer @depth of 0.3m 

205.61 24.74 0 Munnar, India at a single layer @depth of 0.3m 

195.88 26.84 0 Munnar, India at a single layer @depth of 0.3m 

186.2 29.14 0 Munnar, India at a single layer @depth of 0.3m 

147.33 42.08 0 Munnar, India at a single layer @depth of 0.3m 

131.84 49.82 0 Munnar, India at a single layer @depth of 0.3m 

44.96 31.7 0 CBE, site: sandy loam-Vallaccia, Italy @depth of 0.2m 

103.04 30.8 0 COL, site: sandy loam-Vallaccia, Italy @depth of 0.2m 

32.69 32.3 0 CON, site: sandy loam-Vallaccia, Italy @depth of 0.2m 

62.02 31.9 0 CRI, site: silt loam-Vallaccia, Italy@depth of 0.2m 

12.47 42.9 10 LEC, site: sandy loam-Vallaccia, Italy@depth of 0.2m 

39.3 24.7 0 MOL, site: sandy-Vallaccia, Italy@depth of 0.2m 

15.67 38.2 8 PRE, site: sandy loam-Vallaccia, Italy @depth of 0.2m 

38.12 32 0 VRO, site: sandy loam-Vallaccia, Italy @depth of 0.2m 

5600 6.36 0 Clayey Silt-Universiti Tun Hussein Onn,Malaysia @depth of 

0.24m 

1100 10.07 0 Clayey Silt-Universiti Tun Hussein Onn,Malaysia@depth of 

0.24m 

800 12.03 0 Clayey Silt-Universiti Tun Hussein Onn,Malaysia@depth of 

0.24m 

380 13.47 0 Clayey Silt-Universiti Tun Hussein Onn,Malaysia @depth of 

0.24m 

160 17.62 0 Clayey Silt-Universiti Tun Hussein Onn,Malaysia @depth of 

0.24m 

100 19.91 0 Clayey Silt-Universiti Tun Hussein Onn,Malaysia @depth of 

0.24m 

58 24.25 0 Clayey Silt-Universiti Tun Hussein Onn,Malaysia @depth of 

0.24m 

40 26.45 0 Clayey Silt-Universiti Tun Hussein Onn,Malaysia @depth of 

0.24m 

31 28.71 0 Clayey Silt-Universiti Tun Hussein Onn,Malaysia @depth of 

0.24m 

21 30.96 5 Clayey Silt-Universiti Tun Hussein Onn,Malaysia @depth of 

0.24m 
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resistivity Soil 

Moisture 

Level of 

Corrosion 

(Powertech) 

Description 

19 36.82 5 Clayey Silt-Universiti Tun Hussein Onn,Malaysia @depth of 

0.24m 

18 35.14 8 Clayey Silt-Universiti Tun Hussein Onn,Malaysia @depth of 

0.24m 

16 37.05 8 Clayey Silt-Universiti Tun Hussein Onn,Malaysia @depth of 

0.24m 

16 37.86 8 Clayey Silt-Universiti Tun Hussein Onn,Malaysia @depth of 

0.24m 

17 43.11 8 Clayey Silt-Universiti Tun Hussein Onn,Malaysia @depth of 

0.24m 

15 45.7 8 Clayey Silt-Universiti Tun Hussein Onn,Malaysia @depth of 

0.24m 

15 52.78 8 Clayey Silt-Universiti Tun Hussein Onn,Malaysia @depth of 

0.24m 

15 56.09 8 Clayey Silt-Universiti Tun Hussein Onn,Malaysia @depth of 

0.24m 

14 60.97 10 Clayey Silt-Universiti Tun Hussein Onn,Malaysia @depth of 

0.24m 

78 45 0 VES 1,site: sandy loam, Nigeria @depth of 0.5m 

275 48 0 VES 1,site: sandy loam, Nigeria @depth of 1.6m 

26 50 1 VES 1,site: sandy loam, Nigeria @depth of 2.7m 

349 49 0 VES 2,site: sandy loam, Nigeria @depth of 1.1m 

98 52 0 VES 2,site: sandy loam, Nigeria @depth of 6.8m 

475 66 0 VES 2,site: sandy loam, Nigeria @depth of 6.8m 

1094 51.5 0 VES 3,site: sandy loam, Nigeria @depth of 0.8m 

893 52 0 VES 3,site: sandy loam, Nigeria @depth of 12.3m 

393 50.2 0 VES 4,site: sandy loam, Nigeria @depth of 0.9 m 

110 50.5 0 VES 4,site: sandy loam, Nigeria @depth of 4.8 m 

766 71.5 0 VES 4,site: sandy loam, Nigeria @depth of 4.8 m 

122 51 0 VES 5,site: sandy loam, Nigeria @depth of 1.3m 

26 54 1 VES 5,site: sandy loam, Nigeria @depth of 15.3 m 

282 55 0 VES 5,site: sandy loam, Nigeria @depth of 15.3 m 

112 51 0 VES 6,site: sandy loam, Nigeria @depth of 1.9m 

18 54 8 VES6,site: clay loam, Nigeria @depth of 10.5 m 

181 55 0 VES6,site: clay loam, Nigeria @depth of 10.5 m 

34.37 13.5 0 Meteorological Bureau of Hechuan District, China  @depth 

of 0.05m 

34.37 43.39 0 Meteorological Bureau of Hechuan District, China  @depth 

of 0.10m 

34.37 22.1 0 Meteorological Bureau of Hechuan District, China @depth 

of 0.20m 

34.37 15.9 0 Meteorological Bureau of Hechuan District, China @depth 

of 0.30m 

44.27 21.3 0 Meteorological Bureau of Hechuan District, China @depth 

of 0.50m 
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resistivity Soil 

Moisture 

Level of 

Corrosion 

(Powertech) 

Description 

69.66 18.6 0 Meteorological Bureau of Hechuan District, China @depth 

of 1m 

85 10.1 0 Meteorological Bureau of Hechuan District, China @depth 

of 1.8m 

355 60 0 Lower lias: Dark fibrous loam @ the surface ; Rugby Radio 

750 33 0 Lower lias: Loam and clay @depth of 0.31m ; Rugby Radio 

860 26 0 Lower lias: Clay and sand @depth of 0.61m ; Rugby Radio 

945 25 0 Lower lias: Blue clay @depth of 0.91m ; Rugby Radio 

695 23 0 Lower lias: Blue Clay @depth of 3.10m ; Rugby Radio 

66.5 22 0 Lower lias: Loam @the surface ; Rugby Radio 

94 13 0 Lower lias: Loam and clay @depth of 0.31m ; Rugby Radio 

775 27 0 Lower lias: Blue clay @depth of 0.91 m ; Rugby Radio 

610 21 0 Lower lias: clay and sand @depth of 1.52m ; Rugby Radio 

835 25 0 Lower lias: Blue clay @depth of 3.10 m ; Rugby Radio 

97 21 0 Chalk: Fibrous loam @  the surface; Tatsfield, Kent 

61 21 0 Chalk: chalcky loam @ the depth of 0.31m; Tatsfield, Kent 

55 24 0 Chalk: chalk @ the depth of 0.61m; Tatsfield, Kent 

75 27 0 Chalk: chalk @  the depth of 0.91 m; Tatsfield, Kent 

128.5 26 0 Chalk: chalk @  the depth of 1.52 m; Tatsfield, Kent 

150 27 0 Chalk: chalk @  the depth of 3.1 m; Tatsfield, Kent 

340 37 0 Upper green sand: Fibrous loam @  the surface; Tatsfield, 

Kent 

255 11 0 Upper green sand: Brown, sand clay @ the depth of 0.31 m; 

Tatsfield, Kent 

210 15 0 Upper green sand: Brown sand @  the depth of 0.61 m; 

Tatsfield, Kent 

131.5 13 0 Upper green sand: Light brown sand @  the depth of 0.91 m; 

Tatsfield, Kent 

260 20 0 Upper green sand: Light brown sand @ the depth of 1.52 m; 

Tatsfield, Kent 

178.5 15 0 Upper green sand: Yellow sand @ the depth of 3.10 m; 

Tatsfield, Kent 

103 19 0 London Clay: Fibrous loam @ the surface; Brookmans Park, 

Herts 

97 18 0 London Clay: Stony loam @ the depth 0.31 m; Brookmans 

Park, Herts 

64 22 0 London Clay: Light sand Clay @ the depth 0.61 m; 

Brookmans Park, Herts 

127.5 22 0 London Clay: Sand clay @ the depth 0.91 m; Brookmans 

Park, Herts 

177.5 21 0 London Clay: Sand clay @  the depth 1.52 m; Brookmans 

Park, Herts 

172.5 10 0 London Clay: Clay and Shingle @  the depth 3.10 m; 

Brookmans Park, Herts 

100 28 0 Upper lias: Fibrous loam @ the suface; Daventry Northants 



73 

resistivity Soil 

Moisture 

Level of 

Corrosion 

(Powertech) 

Description 

38 16 0 Upper lias: Sand loam @  the depth of 0.31m; Daventry 

Northants 

32 14 0 Upper lias: Brown sand @ the depth of 0.61m; Daventry 

Northants 

11.5 5 10 Upper lias: Brown sand @  the depth of 0.91m; Daventry 

Northants 

9 8.5 10 Upper lias: Sand and sandstone @  the depth of 1.52m; 

Daventry Northants 

33 24 0 Upper lias: Sand and sandstone @ the depth of 3.10m; 

Daventry Northants 

178 23 0 Red Marls: Reddish-brown loam @ the surface ; Washford 

Cross, Somerset 

178 20 0 Red Marls: Reddish-brown clay @ the depth of 0.31 m ; 

Washford Cross, Somerset 

299.5 18 0 Red Marls: Reddish-brown clay @ the depth of 0.61 m ; 

Washford Cross, Somerset 

530 21 0 Red Marls: Reddish-brown clay @ the depth of 0.91 m ; 

Washford Cross, Somerset 

325 19 0 Red Marls: Reddish-brown clay @ the depth of 1.52 m ; 

Washford Cross, Somerset 

490 15 0 Red Marls: Reddish-brown clay @ the depth of 3.10 m ; 

Washford Cross, Somerset 

155.5 21 0 Devonian: Black fibrous loam @ the surface; Brendon Hills, 

Somerset 

3 9 10 Devonian: Loam  and slate @ the depth of 0.31m; Brendon 

Hills, Somerset 

2 9 10 Devonian: Loam  and slate @ the depth of 0.61m; Brendon 

Hills, Somerset 

1 8 10 Devonian: Loam  and slate @ the depth of 0.91 m; Brendon 

Hills, Somerset 

0 5.5 10 Devonian: Loam  and slate @ the depth of 1.52m; Brendon 

Hills, Somerset 

0 0 10 Devonian: Slate @  the depth of 3.10m; Brendon Hills, 

Somerset 

13 18 10 Granite: Gritty loam @ the surface of 0.31m; Merrivale, 

Dartmoor,Devon 

16 13 8 Granite: Gritty loam @ the surface of 0.61m; Merrivale, 

Dartmoor,Devon 

0.5 0 10 Granite: Granite @ the surface of 1.22m; Merrivale, 

Dartmoor,Devon 

0.5 0 10 Granite: Granite @ the surface of 1.83m; Merrivale, 

Dartmoor,Devon 

0 0 10 Granite: Granite @ the surface of 2.73m; Merrivale, 

Dartmoor,Devon 

64 47 0 Devonian: Loam @ the surface; Dousland, Dartmoor, Devon 

27 41 1 Devonian: Dark brown laom  @ the depth of 0.31 m ; 

Dousland, Dartmoor, Devon 

0 0 10 Devonian: Slate @ the depth of 0.1 m; Dousland, Dartmoor, 

Devon 

0 0 10 Devonian: Granite @ the depth of 0.2 m; Dousland, 

Dartmoor, Devon 
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resistivity Soil 

Moisture 

Level of 

Corrosion 

(Powertech) 

Description 

155.5 13 0 Millstone grit: Fibrous loam @ the surface; Moorside, Edge, 

Yorks 

144.5 60 0 Millstone grit: Dark grey clay @ the depth of 0.31m; 

Moorside, Edge, Yorks 

92 35 0 Millstone grit: Dark grey clay @  the depth of 0.61m; 

Moorside, Edge, Yorks 

144.5 39 0 Millstone grit: Dark grey clay @ the depth of 0.91m; 

Moorside, Edge, Yorks 

102.5 19 0 Millstone grit: Dark grey clay @ the depth of 1.52m; 

Moorside, Edge, Yorks 

35.5 15 0 Millstone grit: Yelow and grey clay @  the depth of 3.10m; 

Moorside, Edge, Yorks 

66.5 38 0 Boulder clay: Fibrous loam @ the surface; Westerglen, 

Falkirk 

111 30 0 Boulder clay: Fibrous loam @ the depth of 0.31m; 

Westerglen, Falkirk 

122 19 0 Boulder clay: Clay and loam @ the depth of o.61m; 

Westerglen, Falkirk 

72.5 18 0 Boulder clay: Dark grit and clay @ the depth of 0.91m; 

Westerglen, Falkirk 

225 18 0 Boulder clay: Dark grit and clay @ the depth of 1.52m; 

Westerglen, Falkirk 

245 15 0 Boulder clay: Dark grit and clay @ the depth of 3.10m; 

Westerglen, Falkirk 

116.5 26 0 London clay: Fibrous loam @ the surface; Teddington, 

Middlesex 

75 20 0 London clay: Sandy loam @ the depth of 0.31m; 

Teddington, Middlesex 

69.5 13 0 London clay: Sandy loam @ the depth of 0.61m; 

Teddington, Middlesex 

61.5 6.5 0 London clay: Fine gravel @ the depth of 0.91m; Teddington, 

Middlesex 

19.5 2.9 5 London clay: Coarse gravel @ the depth of 1.52m; 

Teddington, Middlesex 

16 2.6 8 London clay: Fine sand @ the depth of 2.13m; Teddington, 

Middlesex 

144.5 20 0 London clay: Sand and Shingle @ the depth of 3.10 m; 

Teddington, Middlesex 

183.5 15 0 Red Marls: Red clay and loam @ depth of 0.31m; 

Wychbold, Droitwith 

1.885 30 10 unknown experimental soil_1 @ depth of 0.01 m 

11.2762 30 10 unknown experimental soil_1 @ depth of 0.02 m 

3.3091 70 10 unknown experimental soil_2 @ depth of 0.01 m 

23.2897 35 2 unknown experimental soil_2 @ depth of 0.02 m 

5.3617 70 10 unknown experimental soil_2 @ depth of 0.02 m 

51.6059 35 0 unknown experimental soil_2 @ depth of 0.04 m 
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Table A2. SVM Training Data 

Resistivity Moisture Level of Corrosion Description 

62.02 31.9 0 Silt loam 

12.47 42.9 10 Sandy loam 

39.3 24.7 0 Sandy loam 

15.67 38.2 8 Sandy loam 

38.12 32 0 Sandy loam 

380 13.47 0 Clayey Silt 

160 17.62 0 Clayey Silt 

31 28.71 0 Clayey Silt 

21 30.96 5 Clayey Silt 

19 36.82 5 Clayey Silt 

18 35.14 8 Clayey Silt 

16 37.05 8 Clayey Silt 

16 37.86 8 Clayey Silt 

17 43.11 8 Clayey Silt 

15 45.7 8 Clayey Silt 

15 52.78 8 Clayey Silt 

15 56.09 8 Clayey Silt 

14 60.97 10 Clayey Silt 

1094 51.5 0 Sandy loam 

893 52 0 Sandy loam 

393 50.2 0 Sandy loam 

110 50.5 0 Sandy loam 

766 71.5 0 Sandy loam 

122 51 0 Sandy loam 

26 54 1 Sandy loam 

282 55 0 Sandy loam 

112 51 0 Sandy loam 

181 55 0 Clay loam 

355 60 0 Dark fibrous loam 

750 33 0 Loam and clay 

860 26 0 Clay and sand 

94 13 0 Loam and clay 

610 21 0 Clay and sand 

835 25 0 Blue clay 

97 21 0 Fibrous loam 

61 21 0 Chalcky loam 

55 24 0 Chalk 

128.5 26 0 Chalk 

150 27 0 Chalk 
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Resistivity Moisture Level of Corrosion Description 

260 20 0 Light brown sand 

178.5 15 0 Yellow sand 

103 19 0 Fibrous loam 

97 18 0 Stony loam 

64 22 0 Light sand Clay 

127.5 22 0 Sand clay 

177.5 21 0 Sand clay 

172.5 10 0 Clay and Shingle 

100 28 0 Fibrous loam 

38 16 0 Sand loam 

32 14 0 Brown sand 

11.5 5 10 Brown sand 

33 24 0 Sand and sandstone 

530 21 0 Reddish-brown clay 

325 19 0 Reddish-brown clay 

490 15 0 Reddish-brown clay 

155.5 21 0 Black fibrous loam 

0 0 10 Slate 

13 18 10 Gritty loam 

16 13 8 Gritty loam 

0.5 0 10 Granite 

0.5 0 10 Granite 

0 0 10 Granite 

64 47 0 Loam 

27 41 1 Dark brown laom 

0 0 10 Slate 

0 0 10 Granite 

155.5 13 0 Fibrous loam 

92 35 0 Dark grey clay 

144.5 39 0 Dark grey clay 

102.5 19 0 Dark grey clay 

35.5 15 0 Yelow and grey clay 

66.5 38 0 Fibrous loam 

111 30 0 Fibrous loam 

122 19 0 Clay and loam 

72.5 18 0 Dark grit and clay 

225 18 0 Dark grit and clay 

245 15 0 Dark grit and clay 

116.5 26 0 Fibrous loam 

75 20 0 Sandy loam 
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Resistivity Moisture Level of Corrosion Description 

69.5 13 0 Sandy loam 

61.5 6.5 0 Fine gravel 

19.5 2.9 5 Coarse gravel 

16 2.6 8 Fine sand 

144.5 20 0 Sand and Shingle 

183.5 15 0 Red clay and loam 

51.6059 35 0 unknown experimental soil_2 

9.93 10 10 unknown experimental soil_2 

11.2762 30 10 unknown experimental soil_1 

32.69 32.3 0 Sandy loam 

5600 6.36 0 Clayey Silt 

1100 10.07 0 Clayey Silt 

800 12.03 0 Clayey Silt 

78 45 0 Sandy loam 

275 48 0 Sandy loam 

3 9 10 Loam  and slate 

2 9 10 Loam  and slate 

26 50 1 Sandy loam 

340 37 0 Fibrous loam 

255 11 0 sand clay 

210 15 0 Brown sand 

1 8 10 Loam  and slate 

0 5.5 10 Loam  and slate 

1.885 30 10 unknown experimental soil_1 

3.3091 70 10 unknown experimental soil_2 

23.2897 35 2 unknown experimental soil_2 

5.3617 70 10 unknown experimental soil_2 

349 49 0 Sandy loam 

100 19.91 0 Clayey Silt 

58 24.25 0 Clayey Silt 

40 26.45 0 Clayey Silt 

98 52 0 Sandy loam 

475 66 0 Sandy loam 

75 27 0 Chalk 

178 20 0 Reddish-brown clay 

144.5 60 0 Dark grey clay 

18 54 8 Clay loam 

945 25 0 Blue clay 

131.5 13 0 Light brown sand 

9 8.5 10 Sand and sandstone 
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Resistivity Moisture Level of Corrosion Description 

178 23 0 Reddish-brown loam 

299.5 18 0 Reddish-brown clay 

12.4 65 10 unknown experimental soil_2 

21.82 70 2 unknown experimental soil_2 

38.03 42 0 unknown experimental soil_2 

6.64 35 10 unknown experimental soil_2 

18.56 90 5 unknown experimental soil_1 

5.45 65 10 unknown experimental soil_2 

53.99 10 0 unknown experimental soil_2 

 

Table A3. Soil 1-at 1 cm depth 

Voltage drop trials (V) Current (A) R 

(Ω) 

a 

(m) 

Temper-

ature  

Soil 

Moisture 
Ρ 

(Ω · m) 

1.3 0.3 1 0.6 0.7 0.03 0.02 0.03 0.03 0.03 27 0.02 28 35 3.40 

1.2 1.5 1.6 1.4 1.3 0.04 0.04 0.04 0.04 0.04 35 0.02 27 90 4.40 

 

Table A4.  Soil 1-at 2 cm depth 

Voltage drop trials (V) Current (A) R 

(Ω) 

a 

(m) 

Temper- 

ature 

Soil 

oisture 
Ρ 

(Ω · m) 

1.8 1.2 1.7 1.6 1.8 0.03 0.03 0.03 0.03 0.03 54 0.04 28 35 13.57 

3.1 3.1 3.1 3.1 3.1 0.05 0.06 0.06 0.04 0.05 61 0.04 27 90 15.32 

 

Table A5.  Soil 2-at 1 cm depth 

Voltage drop trials (V) Current (A) R 

(Ω) 

a 

(m) 

Temper-

ature 

Soil 

Moisture 
Ρ 

(Ω · m) 

1.8 1.8 2.2 1.8 1.2 0.03 0.03 0.03 0.03 0.03 58.7 0.02 28 40 7.37 

1.4 1.5 1.4 1.5 1.4 0.03 0.03 0.03 0.03 0.03 48 0.02 28 80 6.03 

 

Table A6. Soil 2-at 2 cm depth 

Voltage drop trials (V) Current (A) R (Ω) a 

(m) 

Temper-

ature 

Soil 

Moisture 
Ρ 

(Ω · m) 

1.6 1.7 1.9 1.9 2.1 0.03 0.03 0.03 0.03 0.03 61.33 0.04 28 40 15.41 

1.9 1.2 1.8 1.4 1.8 0.03 0.03 0.03 0.03 0.03 54 0.04 27 80 13.57 

 

Table A7. Soil 2-at 4 cm depth 

Voltage drop trials (V) Current (A) R (Ω) a 

(m) 

Temper- 

ature 

Soil  

Moisture 
Ρ (Ω ·
m) 

2.4 2.2 2.2 2.3 2.6 0.03 0.03 0.03 0.03 0.03 78 0.08 28 40 39.20 

3.2 2.7 2.8 2.9 3.3 0.03 0.04 0.03 0.03 0.03 94.83 0.08 27 80 47.67 

 


