
// Performative ParametricsACADIA 2012 // Synthetic Digital Ecologies

56 57

6 CONCLUSIONS
The multi-criteria design and optimization of buildings poses both an interesting technical challenge

and potentially a powerful means by which to drive design toward better performance.

This paper shows a conceptual approach to supporting optimization within a single computational

design system that crosses traditional discipline boundaries and can therefore address issues of

optimization that are inherently multidisciplinary.

While the idea of design optimization has been discussed in the research literature, it has not been

widely used in practice, mainly because tools based on optimization have not been widely available or

indeed available in forms that are easily accessible to practitioners.

Therefore, one important future challenge for software developers is to make optimization tools more

accessible and more easily used by practitioners, but without compromising the rigor of use that

is required to achieve valid results. The anticipated increase in adoption of optimization tools has

the potential to bring substantial benefits not only to architects and building engineers but also to

the users and owners of buildings, and thereby address wider economic and sustainability concerns.

REFERENCES
Aish, R. (2011). DesignScript: Origins, Explanation, Illustration. Design Modeling Symposium, University of the
Arts, Berlin.

Attar, R., R. Aish, J. Stam, et al. (2009). Physics-Based Generative Design. CAAD Futures.

Commission Internationale de l’Eclairage. (1994). Guide to Recommended Practice of Daylight Measurement,
ed. J. D. Kendrick. Vienna: Commission Internationale de l’Eclairage.

Evins, R., S. Joyce, et al. (2012). Multi-Objective Optimisation: Getting More for Less by Design. Proceedings of
the Institution of Civil Engineers, Civil Engineering Special Issue 165.

Shrubshall, C., and A. Fisher. (2011). The Practical Application of Structural Optimisation in the Design
of the Louvre Abu Dhabi. In Proceedings of the International Association for Shell and Spatial Structures
Symposium, London.

Whitehead, H., and B. Peters. (2008). Form and Complexity. In Space Craft: Developments in Architectural
Computing, ed. D. Littlefied. RIBA Enterprises.

Williams, C. (2001). The Analytic and Numerical Definition of the Geometry of the British Museum Great
Court Roof. In Mathematics and Design, eds. M. Burry, S. Datta, A. Dawson, and A. J. Rollo, 434–40. Geelong,
Victoria, Australia: Deakin University.

PARALLEL DEVELOPMENT OF PARAMETRIC DESIGN
MODELS USING SUBJUNCTIVE DEPENDENCY GRAPHS

Naghmi Shireen
School of Interactive Arts and Technology
Simon Fraser University

Halil Erhan
School of Interactive Arts and Technology
Simon Fraser University

David Botta
School of Interactive Arts and Technology
Simon Fraser University

Robert Woodbury
School of Interactive Arts and Technology
Simon Fraser University

ABSTRACT
Exploring problems through multiple alternatives is a key aspect of design. In this paper, we

present a prototype system as an extension to existing parametric CAD tools that enables parallel

generation and editing of design alternatives. The system is built on two fundamental ideas. First,

use of subjunctive dependency graphs enables simultaneous work on multiple design variations.

These graphs capture and reveal complex data flow across alternative parametric CAD models.

Second, prototype-based modeling provides a weak notion of inheritance, enabling incremental

description of differences between alternatives. The system is intended to be general enough to be

used in different CAD platforms and other systems using graph-based modeling. The three basic

system functions are definition of alternatives (variations) using prototype-based modeling, structural

and parametric divergences of the prototypes, and interactive comparison. The goal of this research

is consistent with the general qualities expected from any creativity support tools: enabling exploration

and simultaneous development of variations.

// Performative ParametricsACADIA 2012 // Synthetic Digital Ecologies

58 59

1 INTRODUCTION
Exploring alternatives is a crucial part of design (Akin and Lin 1995; Cross and Dorst 1998). Whatever

the media used, designers generate, compare, analyze, and reflect on multiple solutions in their

search for a viable, satisfying design (Simon 1973). Computer Aided Design (CAD) systems should

be expected to support these activities (Shneiderman 2007). However, because they have limitations

on multiple states, their functionality falls short in helping designers. CAD largely supports building

single-state models—term introduced by Terry and Mynatt (2002)—with limited support for creative

processes, especially those that explore alternative solutions.

Recent parametric-CAD (P-CAD) systems present opportunities to explore alternatives. They enable

rapid change of design dimensions and structure (Woodbury 2010). Using them, designers can

change the values of parameters in an abstract structure to explore various resultant forms. However,

P-CAD systems presently show the result of only one parametric state at a time; alternatives are

lost during work (Shireen et al. 2011). Herein is an opportunity to enhance P-CAD systems, so the

designer can compare and build multiple concurrent alternatives.

P-CAD typically supports multiple modes of model construction, including scripting, and facilitates

this with interactive graphical representations of the data flow, called dependency graphs (Aish

and Woodbury 2005). Textual scripts for generating form can be hard to see and understand, so

interaction with the dependency graph provides a way to grasp the relationships among the design

elements. Here we focus on dependency graphs, as these expose the logical structure of a design,

visually decoupled from the geometric views (where parametric relationships are not always

accessible). The decoupling permits the designer to work with logical structure free from the visual

noise of the resultant geometry, while still directly seeing dependency relationships.

This study is part of a research program on representing and interacting with alternatives in design.

The larger goals are about modeling simultaneous independent scenarios, comparing them, and

manipulating them independently or collectively (Terry et al. 2004). Lunzer and Hornbæk (2008)

call such interfaces subjunctive, which term we use here. Our approach draws upon the prototype

paradigm of programming, which enables the modification and evolution of individual objects, without

a priori classification into type hierarchies (Taivalsaari 1997). Briefly, a subjunctive graph is a derived

graph from another prototype dependency graph, to execute “what if” scenarios. A subjunctive

graph inherits all properties (nodes and dependencies) from a prototype graph. It can override these

properties, add new properties, define parametrically or structurally different solutions, and can

compose properties from several prototypes. An equivalent view is that subjunctive graphs contain

subjunctive nodes that distinguish those parts of the graph that differ. A computation path through a

subjunctive graph must pick one differing part from each subjunctive node.

After describing P-CAD systems more fully, we use a realistic scenario, based on Foster and Partners’

Copenhagen New Elephant House, to illustrate strategies for using dependency graphs to support

exploration of alternatives.

2 DESIGN AND PARAMETRIC CAD SYSTEMS
In current practice, both experts and novices use P-CAD systems for experimental and professional

purposes. The widespread adoption of P-CAD systems attests to their utility in at least some aspects

of design. Yet these systems challenge both designers and developers by introducing new tasks that

entail new mental models, new representations, new knowledge, new skills, and new strategies for

building models (Aish and Woodbury 2005; Kasik, Buxton, and Ferguson 2005). While they enhance

modeling capabilities, their pattern of use in actual design remains unclear. In the wild, they might

reasonably be expected to enable exploratory processes, facilitate collaboration, support rich history-

keeping, and be useful for both novices and experts (Shneiderman 2007). In addition, they ought to

be engaging, balance effort-reward tradeoffs, provide transparency toward achieving tasks, and be

expressive. Their actual success against these aspirations is limited to specific and often technically

involved strategies (Woodbury 2010, Chapter 3).

In parametric design, the main view is of the constructed 3D geometry—a familiar representation for

most designers. Recently, graph and script views have become central parts of the interface. Figure

1 shows that such views enable definition of parametric dependencies among model elements

at a symbolic level (Woodbury 2010). When dependency graphs were first introduced into P-CAD

systems, their main role was to visualize parametric dependencies, but they had limited selection

capabilities. In current systems, they enable direct model creation using semantically meaningful

nodes and links. In addition to the nodes representing geometric elements, other nodes can

represent arbitrary data useful in design. Some node types provide access to data external to the

system, thus supporting weak but easily accessible integration across tools.

Parametric models are dynamic—they change with their inputs. A well-known pattern of use is to

build geometries and parameters that are not part of a design and act specifically as input-output

controls. In use, models and graphs grow in both size and complexity, so model elements can be

composed together into reusable components with interfaces and input and output parameters—a

form of encapsulation, composition, and abstraction.

P-CAD systems inherit a single-state limitation from the conventional CAD tools on which they are

largely based. This approach limits exploration and comparison of variations. Although there are

studies on exploring variations using representations resembling the intended result (Hartmann 2008;

Krish 2011; Marks et al. 1997; Terry 2004), to the best of our knowledge, there is little research on how

symbolic representations as interactive graphs can be used for this purpose. This research explores

opportunities in graph-based parametric modeling for parallel editing of multiple design variations.

3 DESIGN STRATEGIES AND SYSTEM NEEDS
Design builds on previously generated solutions and often diverges from existing solutions to further

develop alternative ones. Designers adapt different strategies in the search process (Akin and Lin

1995). For example, they copy, paste, and modify to create alternatives. Our approach envisions tool

support for design strategies, where the initial solutions are taken as the base alternatives and

are used to derive subsequent alternatives. Essentially, each alternative is a variation of a base

alternative and is accessible at the same time, and editable in parallel with the base and the other

alternatives. Below we summarize some of these strategies and the need to provide support for

them through a scenario of designing a stadium—a design problem that has been deeply probed

through parametric models (Shepherd, Hudson, and Hines 2011).

3.1 Branching Variations
Designers will typically branch from an initial design to try different ideas. For example, combinations

of seating, circulation, and form might be explored, driven by sight lines and seating capacity in a

stadium design. In parametric systems, branching is achieved by simple parametric variation, by

altering dependency relationships, or by substituting, adding, or removing features. While variations

are core to parametric systems, designers must explicitly and manually manage them, one at a

time. In the stadium-seating example, to see the effect of the number of seats in all variations, the

designer must work on each solution independently. Adding a shared feature to all variations is a

challenging task involving concepts akin to those from software engineering. Design exploration by

branching demands intense manual redoing and reshaping of the models.

3.2 Merging Variations
Often, designers will combine the best parts from different branches into a single model. The

stadium design might use the seat layout from one variation and the roof structure from another. In

current systems, merging partial solutions usually requires building a new model. The merged parts

are thereby divorced from their original contexts, cutting off the possibility of further development of

the merged parts by tweaking their original contexts. In current systems, after a merge, the model

requires manual patching.

f igure 1
A curved surface structure in (a)
GenerativeComponents™ and (b) Rhino
Grasshopper®.

figure 1

// Performative ParametricsACADIA 2012 // Synthetic Digital Ecologies

60 61

3.3 Reusing Parts
Design often involves reusing parts or all of previously created solutions. In parametric modeling,

reusing of parts not only substantially decreases the amount of time to model each variation, but

also reduces chances of error as modifications are made in one place. If the reused part in different

variations can be kept in the same workspace, the effect of updates on parts can be observed. In

the stadium example, various seat furniture designs can be compared in each of the alternatives.

The object compilation features common in most systems provide for reuse akin to functions in

programming languages. That is, the ability of an object to be used in a new context is expressed

through a list of arguments.

3.4 Simultaneous Manipulation
Our stadium designer might want to see the effect of the same number of seats across all stadium

variations—that is, to simultaneously edit multiple variations by changing linked parameters and

features. Yet, in current parametric systems, our designer must work on each variation independently,

even if they share common parameters. A typical strategy in existing systems is to write a script that

enumerates variations, one at a time.

4 THE PROTOTYPE: WORKING WITH SUBJUNCTIVE DEPENDENCY GRAPHS
How might a subjunctive dependency graph look and act? As mentioned, a subjunctive interface

should enable setting up simultaneous independent scenarios; comparing them; and manipulating

them independently or collectively. Here, we run our initial prototype through a realistic scenario and

describe how it supports branching, merging, reuse, and simultaneous manipulation.

4.1 Design Scenario: Elephant House
Our scenario uses the design of Foster and Partners’ Elephant House in Copenhagen (Figure 2).

This project was parametrically modeled in many aspects (Woodbury 2010, Chapter 5; Peter 2008)

of which we focus on the toroidal roof forms, cut by planes from two geometrically related tori.

In Fosters’ design process, the tori and the cutting plane could be smoothly changed to explore

variations of the shapes and the space defined, while the building connecting them could be replaced

by radically different geometries (Figure 3). In our scenario, we imagine three alternatives of viewing

the elephant enclosures (Table 1).

f igure 2
A perspective view of Foster and
Partners’ Elephant House design.
© Brady Peters.

f igure 3
Two tori, each cut by a plane, define
the large skylights for the elephants in
the Elephant House. The space between
provides the main accommodation
for visitors.

figure 2

figure 3

Table 1: Three design scenarios: Picnic, Stroll, and Maze

2. “Stroll up a grassy hill to discover a view” provides

a stepped walkway between the enclosures that

reveals the interesting roof shapes, and gently angles

upward from ground level to overlook the field.

1. In “Picnic with friends”, the space between the

enclosures comprises an elevated, open area for

gatherings, with a protected area underneath;

3. “Children dash around a maze” comprises a

gallery that overlooks both the field and a central,

connecting courtyard.

4.2 Interacting with Parallel Designs
The design of dependency graphs in our prototype is consistent with the node-link diagram design in

GenerativeComponents™ and Rhino Grasshopper®, which are representative of propagation-based

parametric modeling software, mainly used for designing built environments. In our prototype, the

major focus is on developing a set of techniques for parallel development of alternatives; hence we

intentionally left the graph layout to another study. However, for simplicity, the prototype organizes

the nodes by propagation order and in nearly linear form. Where large blocks of related code are

identical across alternatives, we represent these as single nodes (all systems provide tools for such

node compilation).

Below we describe the prototype interfaces and how they enable parallel editing of graph-based

parametric models of the three Elephant House alternatives. We demonstrate how base designs are

used to create variations by applying the design strategies discussed before (branching, merging,

reusing, simultaneous manipulation).

4.3 Branching Variations
Branching from a prototype design requires creating a new panel for a new subjunctive graph

(equivalently for graph differences). When the user instantiates a new panel, an empty design model

is created. This adds an empty geometric model view and an empty graph area in the system

UI (Figure 4). When the user selects a node from the prototype design and inserts it in the new

subjunctive graph, a new instance of the prototype design is created and becomes ready for further

editing (see next subsection).

// Performative ParametricsACADIA 2012 // Synthetic Digital Ecologies

62 63

4.4 Cloning Parameters and Dependencies
Cloning and changing parameter values creates a variation (a new design). Cloning can be achieved by

dragging and dropping an existing node from the prototype graph. Also, a new node may be inserted

in the new panel; when the new node is connected with the prototype, it inherits features from the

prototype. The new alternative becomes available for further editing by changing its parameters, by

changing its dependencies, by substituting a node with another type of node, or by adding or removing

nodes. We next describe how our prototype accomplishes each of these tasks for creating variations.

Figure 5 shows how a new variation of the Elephant House Picnic alternative is derived. In the new

subjunctive graph panel, only the parameters that change are visible; these parameters inherit

their dependencies from the original design, hence these dependencies can be hidden or shown as

needed. The new alternative changes when (a) any inherited property from the base design changes,

(b) a cloned parameter changes, or (c) a parameter introduced only in the new alternative changes.

This strategy of reusing base nodes not only saves user time and effort, but also allows the user to

manipulate both variations simultaneously by changing values of the common nodes.

4.5 Adding and Substituting Nodes
Although, in any system, adding or removing features can be done by just working on a new copy

of the file, this method creates discrete instances. Comparison of variations can only be performed

manually since the links are lost. In our system, users can develop variations to the existing design

by adding new features or removing existing features. Using the subjunctive graph, users can

substitute or replace certain features of a design. Figure 5 shows the Stroll and Maze alternatives

derived from the Picnic alternative as the prototype. They inherit all properties from the prototype,

except they override the tori angle and cutting plane values; they also respectively substitute the

viewing bridge with different connection designs. The substitution takes place by creating new

structures in the relevant subjunctive graphs, connecting them to the prototype, and removing the

substituted nodes from the alternative.

4.6 Merging Variations
Design space can be explored by merging features from multiple alternate designs. Users can drag

and drop into a new panel the nodes that are intended for combination.

4.7 Parallel Editing
Subjunctive dependency graphs allow users to edit alternatives in parallel. Changing the parametric

value or dependency of a common node (a node common across multiple alternatives) will result

in editing all dependent alternatives simultaneously. For example, in Figure 6, changing the value

of tori diameters in the prototype results in changing all three alternatives in parallel. However,

figure 4

changing tori angles in a branch alternative will change the tori configuration in that alternative only,

where the tori angles are overridden and change locally (Figure 7).

4.8 Selective Manipulation and Modes of Interaction
In subjunctive graphs, the user can choose to view all variations at the same time or can switch

between variations by selecting the corresponding geometric view or panel. This features aims

at enabling users to focus on particular or overall aspects of design as parametric changes are

applied. There are two modes of interaction. The first mode is node selection and brushing across

workspaces. In this mode, the user selects a node, and in turn the interface highlights the selected

node, the related nodes, and the edges in all subjunctive graphs (panels) (Figure 8).

The interaction takes place at the alternative level, where users can select an individual alternative;

all the nodes relating or being used in that alternative get highlighted, and nodes relating other

alternatives become transparent (Figure 9). Users can then further select nodes inside the

highlighted panel to study only that alternative. During both of the interaction modes, if user makes

a change to a node, that change propagates to all linked alternatives simultaneously.

Subjunctive dependency graphs also allow users to enlarge one single alternative at any time (Figure

10). During this interaction, all the nodes relating to the selected alternative are displayed by covering

the workspace. All other panels and geometric views disappear. In this mode, if the user makes

changes to any node, it will only affect the current alternative until other alternatives are displayed.

The system features mentioned in this paper are not exhaustive. We selected the important ones,

and we leave a more detailed description of the prototype to another paper. However, we believe that

these demonstrate the capabilities of subjunctive graphs in parametric design modeling.

figure 5 f igure 5
The Maze and Stroll alternatives are
derived from Picnic; in each, a new
bridge design substitutes for the one in
the Picnic prototype.

f igure 6
Manipulation of tori radii in the Picnic
prototype results in parallel changes to
the derived radii in the Stroll and Maze
branch alternatives.

figure 6

f igure 4
Once an alternative is initialized,
dependency graph nodes can
be dragged and dropped into it.
Changing the dropped parameters
changes the alternate design.

// Performative ParametricsACADIA 2012 // Synthetic Digital Ecologies

64 65

5 RELATED WORK
There are few systems that experiment with parallel exploration of alternatives. The “subjunctive

interfaces” introduce interaction techniques for exploratory analysis of scenarios side-by-side

and editing those scenarios in parallel (Lunzer and Hornbæk 2008). A fully developed subjunctive

interface would support selecting multiple values of interest for multiple parameters, and executing

all combinations of values in parallel to produce variations respectively corresponding to each set of

parameters. Moreover, a designer could choose to edit values in single variation or in all variations

simultaneously, as required. The concept of subjunctive interfaces has been demonstrated in three

domains: information access, real-time simulation, and document design. Our approach extends the

conceptual ground of subjunctive interfaces through dependency graphs, while providing concrete

user interface mechanisms for parallel development, comparison, and revision of graph-based

parametric CAD models.

Terry et al. (2004) propose parallel pies and side views for exploring alternate chains of commands

for manipulation of pixel-based images. Alternatives may be invoked before, during, or after the

execution of a command. Subjuntive dependency graphs extend the work of Terry et al. into the area

of dynamic structures. Hartmann et al.’s Juxtapose (2008) enables exploration of interaction design

alternatives by showing side-by-side live graphical user interfaces, while enabling runtime code

editing of shared parameters.

The modeling software called SolidWorks© exemplifies parallel exploration of scenarios through

side-by-side calculations in spreadsheets. Its Design Tables associate feature parameters (col-

umns) with parameter values (rows). Both design tables and subjunctive dependency graphs face

similar issues as the number of alternatives grows.

Enhanced history mechanisms enable users to revisit old commands and edit them to ask “‘what if’

questions (Derthick and Roth 2001) and explore design space (Woodbury et al. 2000; Klemmer et al. 2002).

f igure 7
Manipulation of tori angles and cutting
planes in the derived graphs changes
local states.

f igure 8
Single-node selection shows the
immediate dependencies between the
selected nodes and others.

figure 7

figure 8

f igure 9
Selection of an alternative highlights
related nodes across all panels.

f igure 10
Focusing on a single alternative hides all
panels from the workspace and displays
only the related geometry and graph.

Because expert designers defer their decisions in parametric systems, and often replay history to edit,

refine, and explore design features (Woodbury 2010), we expect that enhanced history and subjunctive

dependency graphs are deeply related, and together facilitate decision making and explanation.

6 DISCUSSION AND FUTURE DIRECTION
Parallel exploration of multiple design alternatives in a parametric CAD system is an under-

researched area. Addressing this domain, we are exploring how dependency graphs in a parametric

system can be used to develop parallel design solutions. We have introduced a prototype-based

system to create design variations and subjunctive graphs to interact with them. The prototype

allows its users to edit single or multiple alternatives at the same time.

To represent and work on parallel alternatives, multiple side-by-side views are made available in the

same workspace. The dependency graphs shows what is different in each alternative. For clarity,

each panel shows only what is different from the other panels (parametric changes, new nodes,

new dependencies).

In an earlier study (Shireen et al. 2012), we found not only that participants preferred paneled graph display

over small multiples to compare alternatives, but also that the study opened further questions, such as

being able to move panels to better compare them. Comparing derived alternatives to each other (rather

than each to the base) is difficult, especially if they have significantly different dependencies. While our

prototype, based on the earlier study, enables switching between viewing a single alternative to viewing

several simultaneously, the effectiveness of this strategy has yet to be verified.

Our goals include developing more advanced prototypes, and conducting studies with realistic

design models.

figure 9

figure 10

// Performative ParametricsACADIA 2012 // Synthetic Digital Ecologies

66 67

ACKNOWLEDGMENTS
This research was partially funded by the Natural Sciences and Engineering Research Council of

Canada (NSERC) Discovery Grants Program and the Graphics, Animation and New Media Network

of Centres of Excellence.

REFERENCES
Aish, R., and R. Woodbury. (2005). Multi-Level Interaction in Parametric Design. In SmartGraphics, 5th
International Symposium, SG2005, 151–62, eds. A. Butz, B. Fisher, A. Kruger, and P. Oliver. LNCS 3638.
Springer.

Akin, Ö., and C. Lin. (1995). Design Protocol Data and Novel Design Decisions. DesignStudies 16 (2): 211–236.

Cross, N., and K. Dorst. (1998). Co-evolution of Problem and Solution Spaces in Creative Design: Observations
from an Empirical Study. Computational Models of Creative Design IV, eds. J. Gero and M. L. Maher. University
of Sydney, NSW, Australia.

GenerativeComponentsTM (GC). (2011). Bentleys System Inc.

Green, T. R. G., and M. Petre. (1996). Usability Analysis of Visual Programming Environments: A ‘Cognitive
Dimensions’ Framework. Journal of Visual Languages and Computing 7(2): 131–74.

Hartmann, B., L. Yu, A. Allison, Y. Yang, and S. R. Klemmer. (2008). Design as Exploration: Creating Interface
Alternatives through Parallel Authoring and Runtime Tuning. Proceedings of UIST, ACM.

Kasik, D., W. Buxton, and D. R. Ferguson. (2005). Ten CAD Challenges. IEEE Computer Graphics and
Applications 25 (2): 81–92.

Klemmer, S. R., M. Thomsen, E. Phelps-Goodman, R. Lee, and J. A. Landay. (2002). Where Do Web Sites Come
From?: Capturing and Interacting with Design History. Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems: Changing Our world, Changing Ourselves, 1–8. ACM.

Krish, S. (2011). A Practical Generative Design Method. Computer-Aided Design, 43: 88–100.

Lunzer, A., and K. Hornbæk. (2008). Subjunctive Interfaces: Extending Applications to Support Parallel Setup,
Viewing and Control of Alternative Scenarios. ACM Transactions. Computer-Human Interaction 14 (4), Article
17, 44 pages.

Marks, J., B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hodgins, and T. Kang. (1997). Design
Galleries: A General Approach to Setting Parameters for Computer Graphics and Animation. Proceedings of
the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97, 389–400. ACM
Press and Addison-Wesley Publishing Co.

Michael T., E. D. Mynatt, K. Nakakoji, and Y. Yamamoto. (2004). Variation in Element and Action: Supporting
Simultaneous Development of Alternative Solutions. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’04), 711–18. New York: ACM.

Peters, B., (2008). The Copenhagen Elephant House: A Case Study of Digital Design Processes. Proceedings of
the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), 134–41.

Shepherd, P., R. Hudson, and D. Hines. (2011). Aviva Stadium: A Parametric Success. International Journal of
Architectural Computing 9 (2): 167–86.

Shireen, N., H. I. Erhan, R. Sanchez, J. Popovic, B. Riecke, and R. F. Woodbury. (2011). Design Space
Exploration in Parametric Systems: Analyzing the Effects of Goal Specificity and Method Specificity on Design
Solutions. Proceedings of the 8th ACM Conference on Creativity and Cognition, 249–258. New York.

Shireen, N., H. I. Erhan, L. Bartram, and R. F. Woodbury. (2012). Visualizing Parallel Design Alternatives of
Parametric Graph-Based CAD Models. Internal Technical Report, Computational Design Group, School of
Interactive Arts and Technology, Simon Fraser University, Canada.

Shneiderman, B. (2007). Creativity Support Tools: Accelerating Discovery and Innovation. Communication of
ACM 50 (12): 20–32.

Simon, H. (1973). The Structure of Ill-Structured Problems. Artificial Intelligence 4: 181–203

SolidWorks. (2010). Dassault Systèmes SolidWorks Corp. http://www.solidworks.com/.

Taivalsaari, A. (1997). Classes Versus Prototypes: Some Philosophical and Historical Observations. Journal of
Object-Oriented Programming 10 (7): 44–50.

Terry, M., and E. D. Mynatt. (2002). Recognizing Creative Needs in User Interface Design. In Proceedings of 4th
Conference on Creativity and Cognition, 38–44. New York: ACM.

Woodbury, R., S. Datta, and A. Burrow. (2000). Erasure in Design Space Exploration. Artificial Intelligence in
Design 2000: 521–44.

Woodbury, R. F. (2010). Elements of Parametric Design. Routledge.

SYNTHESIZING DESIGN PERFORMANCE:
AN EVOLUTIONARY APPROACH TO MULTIDISCIPLINARY
DESIGN SEARCH

David Jason Gerber,
USC School of Architecture

Shih-Hsin Eve Lin,
USC School of Architecture

ABSTRACT
Design is a goal-oriented decision-making activity. Design is ill defined and requires synthetic

approaches to weighing and understanding tradeoffs amongst soft and hard objectives, and

imprecise and/or computationally explicit criteria and goals. In this regard, designers in

contemporary practice face a crisis of sorts. How do we achieve performance under large

degrees of uncertainty and limited design cycle time? How do we better design for integrating

performance? Fundamentally, design teams are typically given neither enough time nor the best

tools to design explore, generate design alternatives, and then evolve solution quality to search

for best fit through expansive design solution spaces. Given the complex criteria for defining

performance in architecture, our research approach experiments upon an evolutionary and

integrative computational strategy to expand the solution space of a design problem as well as

presort and qualify candidate designs. We present technology and methodology that supports

rapid development of design problem solution spaces in which the objectives of three design

domains have multidirectional impact on each other. The research describes the use of an

evolutionary approach in which a genetic algorithm is used as a means to automate the design

alternative population as well as to facilitate multidisciplinary design domain optimization. The

paper provides a technical description of the prototype design, one that integrates associative

parametric modeling with an energy use intensity evaluation and with a financial pro forma. The

initial results of the research are presented and analyzed including impacts on design process;

impacts on design uncertainty and design cycle latency; and the affordances for “designing in”

performance and managing project complexity. A summary discussion is developed that describes

a future cloud implementation and the future extensions into other domains, scales, tectonic, and

system detail.

