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Abstract 

Climate change and human activities are altering river flows and temperatures, with 

potentially large consequences for aquatic life. I investigated how changing river flows 

affect salmon productivity, and how climate sensitivity varies across a watershed. First, I 

tested the effects of shifting river conditions on Chinook salmon productivity in a river 

where average August river discharge decreased by 26% in the last century. Summer 

low flows had the greatest negative impact on productivity: cohorts that experienced 

50% below average flow in the August of spawning and rearing had 40% lower 

productivity. Second, I examined whether watershed characteristics could predict which 

streams were warmest and most sensitive to regional climate. Streams with more 

riparian forest cover were cooler overall and less sensitive to warmer air temperatures. 

Overall, this research shows that restoring river flows and watershed-scale forest 

management are essential parts of salmon conservation. 

Keywords:  flow regimes; stream temperature; Chinook salmon; hydrology; 

environmental flows; climate change 
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Chapter 1.  
 
Introduction 

Rivers are a foundation for much of the integrity of the biosphere (Strayer & 

Dudgeon, 2010). Each river is an expression of its watershed, transporting and 

integrating water, sediment, and organic materials across vast distances from 

mountaintop to sea (Gomi et al., 2002; Naiman et al., 1992). The particular climate, 

geology, and vegetation of a watershed interact to shape what each river looks like and 

the variety of habitats it provides for aquatic life (Thorp et al., 2006). Naturally variable, 

they provide a shifting mosaic of habitats and flows across hours, days, seasons, years, 

decades, and centuries (Baldock et al., 2016; Bradford & Higgins, 2001; Brennan et al., 

2019; Philipsen et al., 2020; Poff et al., 1997). As such, changes to anything that the 

river integrates, such as precipitation, sediment mobility, organic matter, and heat load 

can alter its downstream character (DeLong et al., 2018). For example, changes to the 

plant community in a watershed have implications for its downstream hydrology 

(Goeking & Tarboton, 2020; Niemeyer et al., 2020; Perry & Jones, 2017).  

Aquatic organisms, such as river fishes, have adapted in an incredible diversity 

to these pulsed ecosystems, taking advantage of niches in environmental gradients over 

time and space (Crisp, 1996; Mann, 1996). Anadromous salmon demonstrate this 

pattern well, with a diversity of species, life history types, and populations with variable 

migration timing, juvenile rearing location and duration, and body size, matched to the 

qualities of their home rivers (Beechie et al., 2006; Eliason et al., 2011). However, the 

natural variability of rivers can have dramatic effects on the vital rates – such as growth 

and survival – of these fishes. For example, temperature and spring rainfall (as a proxy 

for discharge) explain the majority of the variation in recruitment of stream-rearing 

salmonids (Lobón‐Cerviá & Mortensen, 2005). This natural variability in river character is 

one factor in determining the natural variability in the population dynamics of river fishes. 

Rivers are faced with enormous legacy, current, and projected effects from 

humans which threaten the ability of rivers to support life – both human and non-human 

(Meybeck, 2003; Tickner et al., 2020; Wohl, 2019). These changes span from global 

climate change (Islam, Curry, et al., 2019) to local stream alterations (Wohl, 2019). 
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Anthropogenic climate change alters patterns of precipitation, temperature, and glacial 

extent, altering flow regimes and water temperatures (Curry et al., 2019; Islam, Hay, et 

al., 2019; Mantua et al., 2010; Pitman et al., 2020; van Vliet et al., 2013; Wu et al., 

2012). On the regional scale, pervasive changes to the landscape – like forestry and 

development – change how water moves from the sky to the river mouth, and can lead 

to reduced flow rates and more intense floods (Cheng & Wang, 2002; Goeking & 

Tarboton, 2020; Poff et al., 1997, 2006). At the local scale, alterations to the river and its 

riparian forest have implications for physical habitat and local stream temperature 

(Garner et al., 2014; Pollock et al., 2009; Wohl, 2019) and the direct extraction of water 

reduces the amount of water available for freshwater life (Postel, 2000). To complicate 

matters, interactions across this spectrum are probable and proven (Tockner et al., 

2010). For example, altered sediment dynamics can exacerbate changes in hydrology 

(Collins et al., 2019). These coincident, interrelated changes to rivers – sometimes 

referred to as cumulative effects – have complex implications for freshwater organisms 

that are challenging to quantify (Collins et al., 2019; Crozier et al., 2008; Tockner et al., 

2010; Zhang et al., 2019). Cumulative effects remain a challenge not only to 

researchers, but also in policy and governance (Seitz et al., 2011).  

Amidst these cumulative effects, flow and water temperature have been identified 

as critical aspects of river habitat in need of special attention (Reid et al., 2019; Tickner 

et al., 2020). Natural flow regimes – the patterns of flow volume and variability over time 

– are essential for diverse, productive rivers (Bestgen et al., 2020; Poff, 2018; Poff et al., 

1997). Flow regimes are being recognized as more and more important for population 

dynamics of salmonids that spend part of their life cycle in fresh water (Jones et al., 

2020; Ohlberger et al., 2018; Scheuerell et al., 2020; Vorste et al., 2020). Low summer 

flows during rearing are linked to lower productivity in coho salmon (Oncorhynchus 

kisutch) in the Pacific northwest (Ohlberger et al., 2018) and California (Vorste et al., 

2020), and Chinook salmon (O. tshawytscha) in Alaska (Jones et al., 2020). Additionally, 

high flows during incubation in fall, winter or early spring have been linked with lower 

productivity in steelhead (O. mykiss) (Scheuerell et al., 2020), Chinook (Jones et al., 

2020), and brown trout (Salmo trutta) (Lobón‐Cerviá & Mortensen, 2005). These effects 

of flow are context specific – for example, in two Alaskan rivers, high summer discharge 

was associated with lower productivity for Chinook salmon (Neuswanger et al., 2015). In 

watersheds with both stream-rearing salmonids and stressors on flow regimes, 
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quantifying the relationship between flow and fish productivity is a key step in conserving 

fishes of economic and cultural value.  

As with flow regime, patterns of water temperature are a foundational 

characteristic of river habitat that influence aquatic organisms in many ways (Allan & 

Castillo, 2007; Brewitt & Danner, 2014; Claireaux & Lagardère, 1999; Lessard & Hayes, 

2003). Warming rivers, whether from local changes or global climate warming, present a 

threat to freshwater life (Reid et al., 2019). For salmonids, warming water temperatures 

can have lethal and non-lethal effects across life stages (Hinch et al., 2012; Marine & 

Cech, 2004; Martin et al., 2017; Richter & Kolmes, 2005). Furthermore, rivers offer 

complex waterscapes of thermal habitats, with cold-water refuges and areas with lower 

sensitivity to warming climates (Beaufort et al., 2020; Fullerton et al., 2015; Mauger et 

al., 2016; Steel et al., 2017). Finding these areas with cooler water temperatures and 

lower sensitivity to regional climate and identifying ways to mitigate the effects of climate 

change would benefit already imperilled salmonids (Ebersole et al., 2020) 

In my thesis, I investigated key relationships of stream temperatures and flow 

regimes in an interior watershed of British Columbia, Canada. First, I explored the 

relationship between flow regimes and fish population dynamics. Second, I investigated 

the patterns of stream temperature sensitivity to climate, and what watershed 

characteristics make streams less sensitive to warm air temperatures. 

The Nicola watershed in interior British Columbia is an ideal location to explore 

these specific questions within the broader context of cumulative effects in river systems. 

The watershed is located in the rain shadow of the Coastal Mountains and is prone to 

summer droughts and large spring floods. Several important salmonids live in the 

watershed, including Chinook salmon, coho salmon, steelhead trout, and bull trout 

(Salvelinus confluentus). Assessments for federal protection for some of these species 

are recent or ongoing. Water temperatures in summer regularly exceed 20°C, when 

juvenile salmon are rearing and adults are returning to spawn. Drought is a chronic 

problem, and low flows are a concern despite the construction of storage reservoirs over 

the past century. There is ongoing concern about the impacts of warm water 

temperatures and low flows on salmonids. Pine beetle infestation and associated 

forestry are also changing the landscape at large scales. In this watershed with many 

pressures, I investigated the linkages between variable flow regimes and Chinook 
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productivity, and the linkages between watershed characteristics and climate sensitivity 

of streams.  

In Chapter 2, I tested the effects of variable river conditions on the productivity of 

Chinook salmon and review available data on cumulative stressors and hydrology over 

the last century. Despite the addition of water storage to augment summer flows, 

average August river discharge has decreased by 26% in the last 100 years. Freshwater 

processes, namely density-dependence and summer low flows, had the greatest 

negative impacts on productivity. I found that the altered flow regime is eroding the 

productivity of a Chinook population with productivity levels below replacement for more 

than 50% of cohorts since 1992. Analysis of over two decades of Chinook salmon life-

cycle data revealed that low summer flow strongly decreases productivity. Specifically, 

August flow during spawning and fry rearing had the strongest effects – cohorts that 

experienced 50% below average flow in the August of spawning and rearing had 40% 

lower productivity. Chinook salmon cohorts are predicted to drop below replacement – 

and thus unable to sustain fishery mortality – in years with average August discharge 

less than 10.83 m³s-1 (or 36% mean annual discharge) during the rearing summer. 

Alarmingly, this flow only occurred for 18% of cohorts examined. Our results suggest 

that this Chinook population being assessed for legal protection requires almost double 

the amount of August flow recommended by a model-based study to remain stable, and 

additional summer flows would be required to sustain fisheries harvest. 

In Chapter 3 of my thesis, I asked how watershed characteristics influence 

patterns of maximum water temperatures and stream temperature sensitivity. 

Specifically, I identified the influence of riparian forest cover, lakes, elevation, and 

catchment area on the thermal regime of streams across the watershed. I found that 

steam locations with larger upstream catchment areas had higher maximum 

temperatures as well as greater climate sensitivity to air temperatures. In addition, sites 

with more riparian vegetation cover had lower climate sensitivity. Streams with 100% 

riparian forest cover had, on average, maximum temperatures 1.2°C lower than streams 

without riparian cover. Many smaller tributaries were identified as contributing cool water 

to the mainstem in the warmest days of summer and being less sensitive to warm 

regional air temperatures. Other geographic features like lakes influenced thermal 

regimes. Collectively, these results identify factors that are associated with warmer 

temperatures and greater climate sensitivity that pose risks to cold-water fishes such as 
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Chinook and coho salmon, steelhead, and bull trout. They also identify feasible actions – 

such as planting riparian trees around small streams – that may increase the resiliency 

of stream temperatures to a warming climate.   

I discuss the broad implication of my findings in Chapter 4. In particular, I identify 

how these studies contribute to the growing body of work that emphasizes the 

importance of freshwater conditions to the life-cycle productivity – and thus recovery – of 

declining salmon populations. Particularly, these findings provide rare empirical evidence 

of how different components of flow regimes impact salmon, which are necessary to 

inform water and land use. I also discuss the opportunity to mitigate some impacts of 

climate change on thermal regimes using riparian restoration, and the importance of 

working with the unique characteristics of rivers – rather than against them – for 

successful conservation of rivers and fishes.  
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Chapter 2.  
 
Shifting flow regimes erode the productivity of 
imperiled Chinook salmon1 

2.1. Introduction 

Coincident changes in climate, land cover, and water use are altering the natural 

flow regimes of the world’s rivers (Palmer & Ruhi, 2019). Natural flow regimes are the 

patterns of “flow quantity, timing, and variability” (Poff et al., 1997) that maintain diverse, 

productive river ecosystems (Bestgen et al., 2020; Poff, 2018). Yet climate modelling 

predicts large changes in flow regimes due to shifts in global precipitation (Gerten et al., 

2008; van Vliet et al., 2013). Furthermore, human activities such as forestry and 

irrigation influence the volume and timing of flow in rivers (Goeking & Tarboton, 2020; 

Gronsdahl et al., 2019; Perry & Jones, 2017). Indeed, empirical studies have already 

reported earlier freshets, lower discharge in summer, and longer dry periods in fall (Déry 

et al., 2009). However, the consequences of past, present, and future changes in flow 

regimes for river ecosystems and fish remain uncertain (Palmer & Ruhi, 2019). 

Changing flow regimes are a leading contributor to the current “emergency” in 

freshwater biodiversity, and understanding the instream flow needs of fish is a global 

priority (Tickner et al., 2020). Typically, models are used to make predictions about how 

much water fish need (Tennant, 1976), and these flow-fish relationships are considered 

in light of human uses and values to set in-stream flow regulations (Rosenfeld & 

Ptolemy, 2017). While fish-flow relationships are a key foundation of effective flow 

regulation (Rosenfeld, 2017; Rosenfeld & Ptolemy, 2017), they are often based on 

habitat models and rarely tested with empirical data at the population level (Beecher et 

al., 2010; Bradford et al., 2011; Shirvell, 1989). However, emerging examples from 

around the world are showcasing empirical linkages between flow regimes and fish 

productivity (Chen & Olden, 2017; Sabo et al., 2017).  

 

1 This chapter is currently a manuscript in review: Warkentin, L., C.K. Parken, R. Bailey, and J.W. 
Moore (2020). Shifting flow regimes erode the productivity of imperiled Chinook salmon. 
Ecological Solutions and Evidence. 



7 

Empirical studies of fishes and flows are especially important for species of 

economic and cultural importance, such as Pacific salmon (Oncorhynchus spp.) 

(Bradford & Heinonen, 2008). While salmon are adapted to their local flow regime 

(Beechie et al., 2006), variable or extreme hydrology can impact salmon through a 

variety of processes during their freshwater life stages. For example, hydrology 

influences spawning site selection and egg survival (Malcolm et al., 2012), large floods 

can kill incubating eggs (Gendaszek et al., 2018; Sloat et al., 2017), and reduced 

summer low-flows can decrease the growth rates of juveniles (Harvey et al., 2006). As a 

result, changing flow regimes can exert population-level impacts on salmon via summer 

flows (Jones et al., 2020; Ohlberger et al., 2018; Vorste et al., 2020), floods (Greene et 

al., 2005; Seiler et al., 2003), flow variability (Sturrock et al., 2020; Ward et al., 2015), 

and winter ice (Bradford et al., 2001; Cunningham et al., 2018).  Flow regimes are likely 

especially important for salmon that rear in freshwater, such as stream-type Chinook 

salmon O. tshawytscha (Sturrock et al., 2020) and coho salmon O. kisutch (Ohlberger et 

al., 2018). Yet, it has proven challenging to isolate the effects of changing flow regimes 

from other processes, such as ocean survival, fishing mortality, and interactions with 

hatchery-origin salmon. 

We examined how changing flow regimes influence the productivity (adult 

offspring per reproducing parent) of stream-type Chinook salmon, which support 

Indigenous, commercial and recreational fisheries and are prey for endangered 

Southern Resident Killer Whales (Hanson et al., 2010). Specifically, we investigated how 

river flow regimes affect the productivity of Chinook salmon in a watershed which 

exemplifies cumulative effects of human activities and climate change and a hydrograph 

driven by snow-melt. We focused on average August flow, fall flooding, and duration of 

winter ice cover and accounted for variable ocean survival, mortality from fishing, and 

hatchery influence. We discovered that shifting flow regimes are decreasing the 

productivity of this imperiled population and quantified empirical fish-flow relationships 

that can inform the management of cumulative effects on hydrology. 
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2.2. Methods 

2.2.1. Study System 

The Nicola River is a tributary of the Thompson River, which flows into the Fraser 

River at Lytton in British Columbia (BC), Canada (Figure 2.1). The watershed drains 

7184 km2 and supports imperiled stream-rearing Chinook salmon, coho salmon, and 

steelhead O. mykiss. The watershed is under pressure from multiple human activities 

and climate change, emblematic of many semi-arid watersheds in western North 

America. The Committee for the Status of Endangered Wildlife in Canada is currently 

assessing whether to recommend Nicola Chinook for listing under the Species at Risk 

Act. Recruitment has been below replacement for more than half of the cohorts since 

1992 (Figure S1). Chinook fry from the Nicola are stream-rearing and overwinter in 

freshwater, either in the Nicola River and tributaries, or downstream in the Thompson 

and Fraser systems (unpublished data, C. Parken).  



9 

 

Figure 2.1. (a) The Nicola River watershed with clearcut areas. (b and c) 
Historical changes in annual mean August and January air 
temperatures, (d) rain and snow, (e) water allocations for the 
mainstem Nicola River (not including conservation and dam storage 
licenses), and (f) percent of Nicola watershed clearcut in previous 20 
years (rolling sum). 

Average total annual water yield of the Nicola River is 831,103,760 m3. Black lines in b, c, and d 
are LOESS best fit lines. 

This study focuses on the early summer-run Chinook salmon of the Nicola, one 

of several populations in this watershed. The early summer run enters the Fraser River 

from May to July and spawns in the Nicola River in September, mainly in the mainstem 

Nicola River, and in the lower reaches of the Coldwater River and Spius Creek (Parken 

et al., 2003, 2008). 

The flow regime of the Nicola River is characteristic of interior BC rivers with a 

hydrograph driven by snow-melt, with a large spring freshet which usually peaks in late 

April or early May (Figure 2.2). Peak flow during freshet can exceed 200 m3s-1, while 

summer base flow can be less than 3 m3s-1. Natural mean annual discharge (MAD; long-

term mean annual discharge plus estimated water withdrawal) is 29.8 m3s-1 (unpublished 

data, R. Ptolemy). Floods can occur in the fall, winter, and early spring. Flows usually 

decrease and reach base flows in August, and remain low into September. The river was 
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assessed as having no surplus flows in August to September unless supported by water 

storage (Kosakoski & Hamilton, 1982). 

 

Figure 2.2. (a) Hydrographs for the Nicola River, 1911-2014, divided into four 
periods. Bold lines are average daily flows for each day of the year 
within each period, and faint lines are actual daily flows for each 
year. (b) Percent difference between average daily flow in the four 
periods and the long-term historical average for each day of the 
year. 

There are no data available for 1921-1956. For period 1911-1920, January-March data were not 
used as these days had less than 6 years of data, to avoid skewed averages. 
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2.2.2. Data 

Long-term Environmental Data 

We compiled long-term data on air temperature (1918-2019), precipitation (1918-

2019), discharge (1911-1920, 1957-2014), water allocations (1871-2017), and forestry 

(1958-2018) for the watershed to give context for hydrological change and its potential 

drivers. See Appendix A for data sources.  

Escapement and Spawners 

We used escapement data from the cohorts spawned in 1992-2013 (22 cohorts), 

collected by Fisheries and Oceans Canada (DFO) and Scw’exmx Tribal Council. For 

cohorts 1992-1994, spawner escapement was estimated by aerial counts, with the 

proportion of adipose fin-clipped fish estimated from stream walks (Parken et al., 2003). 

From 1995-2013, data are from a mark-recapture program which estimates spawner 

escapement by age, sex, and Coded Wire Tag (CWT) code (Nandor et al., 2009), and 

marine survival and fishery-specific exploitation by age. The total abundance of 

spawners for a cohort included hatchery- and wild-origin fish that returned to the Nicola 

River minus any fish that were removed for hatchery brood stock and other purposes. 

Unmarked Hatchery Returns 

DFO operates the Spius Creek Hatchery on Spius Creek, near the confluence 

with the Nicola River. This hatchery has released juvenile Chinook since 1984. Since 

2005, most releases are 1+ smolts with CWT and adipose fin clips, and a smaller 

number of fry with no CWT or fin clip. Before 2005, there were releases of fry, sub-

yearling and 1+ smolts with no CWT or fin clip. To get an accurate measure of wild 

recruitment for each brood year, we estimated the number of unmarked hatchery-origin 

adults (those appearing to be wild, with no CWT or adipose fin clip) returning to the 

spawning grounds each year. After estimating this number for each cohort in a spawning 

year, we subtracted this from the unclipped spawners to get an estimate of ‘true’ wild 

spawning escapement for each cohort (see Appendix A for details).  

Estimating Recruitment 

To estimate recruitment (the number of wild adults produced by each year of 

spawners), we accounted for mortality from fishing. We assumed wild and hatchery fish 
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had equivalent mortality from fishing, by age and cohort, and used estimates of fishing 

mortality, by age and cohort, from the CWT program (see Appendix A; Nandor et al. 

2009, Pacific Salmon Commission 2018). To estimate recruitment, we summed the 

abundance of wild river spawners plus wild fish removed for hatchery and other 

purposes by cohort and age, and divided by 1 minus the fishing mortality rate (Appendix 

A). We summed recruits from each brood year to estimate the number of wild recruits for 

each cohort. 

Covariates 

We examined the influence of five covariates on the productivity of each cohort of 

Chinook salmon (Figure A2): 

• Smolt-to-age 3 survival (mean=0.026, SD=0.030) 

• Mean August flow during brood year migration of spawners (parents of cohort; 
mean=8.6 m3s-1, SD=5.6 m3s-1) 

• Discharge of maximum fall flood during incubation in brood year (mean=60.8 
m3s-1, SD=57.2 m3s-1) 

• Number of days in winter of incubation with ice cover (mean=55, SD=32.9) 

• Mean August flow during rearing year (brood year + 1) (mean=8.7 m3s-1, 
SD=5.6 m3s-1) 

We chose these covariates based on existing evidence from the literature on 

stream-rearing salmonids (Jones et al., 2020; Ohlberger et al., 2018; Vorste et al., 

2020), and because of predictions and evidence of climate change in this region (Islam, 

Curry, et al., 2019; Rodenhuis et al., 2007). 

To account for variable survival during downstream migration and growth in the 

ocean, we used the estimated smolt-to-age 3 survival, calculated from the survival of 

CWT-marked smolts released from the hatchery (Pacific Salmon Commission, 2018). 

We note that this metric of early marine survival also includes the downstream migration 

phase of smolts. We used hydrometric data from Nicola River near Spences Bridge 

(Water Survey of Canada station 08LG006). For each Chinook cohort, we calculated 

mean August flow when the spawners were migrating upstream and waiting to spawn 

(brood year), the discharge of the largest flood from September 1 to December 31 of the 

brood year, the number of days in the winter of incubation when ice covered the river 
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near the hydrometric station (recorded as a backwater effect from ice formation), and the 

mean August flow in the summer when the juvenile Chinook were rearing (brood year 

+1). We centered and standardized these five covariates to mean=0 and SD=1 to aid the 

comparison of relative effect sizes. 

2.2.3. Stock Recruit Model 

We used a log-linear Ricker equation including environmental effect terms 

(following Jones et al., 2020; Schick et al., 2016; Sharma & Liermann, 2010; Ward et al., 

2015). The standard Ricker equation predicts recruits R from spawners S, productivity α, 

and the strength of density dependence β (Equation 2.1). The five effect term 

coefficients of smolt-to-age 3 survival, mean August flow (spawning), maximum fall flow, 

ice days, and mean August flow (rearing) are b1, b2, b3, b4, and b5, respectively. We used 

the log-linear form of the Ricker equation because it has a normal distribution of 

residuals (Equation 2.2). 

𝑙𝑜𝑔 (
𝑅

𝑆
) =  𝑙𝑜𝑔(𝛼)  − 𝛽𝑆  +  𝑏1𝑜𝑐𝑒𝑎𝑛 𝑠𝑢𝑟𝑣 + 𝑏2𝐴𝑢𝑔 𝑓𝑙𝑜𝑤 𝑠𝑝𝑎𝑤𝑛  +  𝑏3 𝑓𝑎𝑙𝑙 𝑓𝑙𝑜𝑜𝑑  +

 𝑏4𝑖𝑐𝑒 𝑑𝑎𝑦𝑠  +  𝑏5𝐴𝑢𝑔 𝑓𝑙𝑜𝑤 𝑟𝑒𝑎𝑟 (2.1) 

The full Bayesian model was defined as follows (Equations 2.3-2.9), with similar 

priors to Connors et al. (2019).  

l𝑜𝑔 (
𝑅

𝑆
) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜏)  (2.2) 

𝜇 = 𝑙𝑜𝑔(𝛼) − 𝛽𝑆 + 𝑏1𝑜𝑐𝑒𝑎𝑛𝑠𝑢𝑟𝑣 + 𝑏2𝐴𝑢𝑔𝑓𝑙𝑜𝑤𝑠𝑝𝑎𝑤𝑛 + 𝑏3𝑓𝑎𝑙𝑙𝑓𝑙𝑜𝑜𝑑 + 𝑏4𝑖𝑐𝑒𝑑𝑎𝑦𝑠 +

𝑏5𝐴𝑢𝑔𝑓𝑙𝑜𝑤𝑟𝑒𝑎𝑟  (2.3) 

𝑙𝑜𝑔(𝛼) ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,3) (2.4) 

𝛽 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,10) (2.5) 

𝑏1, 𝑏1, 𝑏3, 𝑏4, 𝑏5 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1) (2.6) 

𝜏 ∼ 𝐺𝑎𝑚𝑚𝑎(0.01,0.01) (2.7) 

𝜇 = 𝑙𝑜𝑔(𝛼) − 𝛽𝑊 ⋅ 𝑆𝑊 − 𝛽𝐻 ⋅ 𝑆𝐻 + 𝑏1𝑜𝑐𝑒𝑎𝑛𝑠𝑢𝑟𝑣 + 𝑏2𝐴𝑢𝑔𝑓𝑙𝑜𝑤𝑠𝑝𝑎𝑤𝑛 + 𝑏3𝑓𝑎𝑙𝑙𝑓𝑙𝑜𝑜𝑑 +

𝑏4𝑖𝑐𝑒𝑑𝑎𝑦𝑠 + 𝑏5𝐴𝑢𝑔𝑓𝑙𝑜𝑤𝑟𝑒𝑎𝑟  (2.8) 
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For the models where we used separate β terms for wild and hatchery spawners 

– βW and βH, SW and SH – we used Equation 2.8, with the same priors for βW and βH as 

for β. See Appendix A for details on model fitting. 

2.2.4. Model Selection 

To compare the effects of different covariates and separate β terms, we 

compared 23 models which were subsets of the full model (Table A1). We used several 

methods to compare models: the widely applicable information criterion (WAIC) and 

leave-one-out cross-validation (LOO) (Vehtari et al., 2017); stability of posterior 

estimates of effect terms; and R2 values. We used the rethinking package (McElreath, 

2016) for WAIC and the loo package (Vehtari et al., 2019) for LOO. We also tested for 

autocorrelation and partial autocorrelation of residuals. 

2.3. Results 

Climate and land use in the Nicola have changed substantially over the past 

century (Figure 2.1). Winters are warming: from 1920-1980, daily average air 

temperatures in January never exceeded 0°C, but rose above freezing five times since 

1980. Daily average air temperatures in August increased by about 2°C. Patterns of 

precipitation have also shifted: rainfall nearly doubled in some recent years compared 

with historic values. Water use and forest cover have also changed. Water allocations 

began in 1871 and increased steadily up to the 1990s. During and after the spread of the 

Mountain Pine Beetle throughout the region, logging increased substantially: 17% of the 

entire watershed was logged in the last 20 years. Six major tributaries had over 20% of 

their area logged in the last 20 years, up to 36% in Clapperton Creek (Table A2). 

The hydrology of the Nicola River is responding to these coincident changes 

(Figure 2.2). From 1911-1920, average August discharge never fell below 15% MAD of 

4.47 m3s-1, whereas from 1992-2014, it fell below this value five times (Figure A3). 

Average August flow decreased by 26% comparing flows from 100 years ago with the 

past two decades. River discharge in June-September in the last 23 years was up to 

25% lower than the long-term average, compared to 1910-1921, when flows were up to 

50% greater than the long-term average (Figure 2.2). 
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Freshwater flow regimes and density dependence were the main drivers of 

population dynamics for Chinook salmon (Figure 2.3, Table A3). Mean flow in August 

during spawning and rearing and ice days were the most important variables. These 

were present in the most parsimonious model according to WAIC and LOO (model 8b; 

R2=0.70), which we use henceforth for predictions and results (Figures A1, A4-A7, 

Tables A4-A5). 

 

Figure 2.3. Posterior estimates (with means and 80% credible intervals in 
shaded region) of effect terms for the four environmental variables 
in the top model, 8b. 

Note that all variables were standardized (mean=0, SD=1). 
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Mean August flows during Chinook rearing had the strongest effect on 

productivity; cohorts with greater flows in their rearing summers had higher productivity 

(Figure 2.4). Our model predicts Chinook cohorts whose juveniles rear during summers 

with 50% below average flow have 30% lower productivity. August flows when spawners 

were returning were also important. Chinook that spawn during summers with 50% 

below average flow have 15% lower productivity. In combination, cohorts with 50% 

below average flow in the August they were spawned and the subsequent August during 

rearing are predicted to have 40% lower productivity.  
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Figure 2.4. (a) Empirical cumulative density function of mean August flows in 
four periods. (b) Effect of mean August flow during rearing on 
recruitment of Nicola River Chinook salmon.  

The three shaded regions represent 90% credible intervals of model predictions based on three 
spawner abundances (mean, 25th percentile, and 75th percentile). The dotted horizontal line 
shows replacement level of 1 Recruit/Spawner at mean spawner abundance. The vertical dashed 
gray line indicates the model-predicted value of 10.83 m3s-1 flow during the rearing summer that 
results in replacement (Recruits/Spawner = 1). Natural mean annual discharge (discharge plus 
estimated withdrawal) is 29.8 m3s-1 (unpublished data, Ptolemy).   

Alarmingly, the median of yearly average August flows has decreased by 37% 

from 10.83 m3s-1 to 6.87 m3s-1 over the last century (Figure 2.4a), despite considerable 

development of storage reservoirs to offset withdrawals during the same period. Holding 

all other variables at their average, this corresponds to a 27% decrease in productivity of 
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Chinook salmon based on the effect on rearing juveniles, and a 37% decrease in 

recruitment based on the combined effect on rearing and spawning, to a level where 

every 100 spawners produces 73 recruits. A transect-based modelling approach 

recommended an environmental flow for the Nicola mainstem (from Spius Creek down 

to confluence with the Thompson River) of 5.66 m3s-1 year-round, and concluded there 

was no surplus flows for withdrawal in August and September (Kosakoski & Hamilton, 

1982). Based on our analyses, this flow is insufficient to allow for population replacement 

in a typical year – if the mean August flow was 5.66 m3s-1 during both spawning and 

rearing, every 100 spawners would only produce 63 recruits, and the population would 

decline even in the absence of any fishing mortality.  

Cohorts that incubated in winters with more ice days tended to have lower 

recruitment; for every 10 additional days of river ice, recruitment was predicted to 

decrease by 10%. Surprisingly, smolt-to-age 3 survival, which includes early marine 

survival, accounted for little variation in recruitment after accounting for variation in river 

conditions, with a mean effect size of 0.03 and a credible interval that spans 0 (Figure 

2.3). 

There is also evidence that fall floods may decrease productivity, as this effect is 

included in the third most parsimonious model for WAIC and second for LOO. However, 

this effect had less evidence than August flows and ice days. There was limited 

evidence that density dependence was stronger for hatchery spawners compared to wild 

spawners (Figure A8). 

2.4. Discussion 

We found that the altered flow regime of an interior watershed, likely driven by 

the cumulative effects of climate change, land use, and water withdrawals, is eroding the 

productivity of an imperiled fish population. Specifically, air temperatures, rainfall, 

logging pressure, and water demand have all increased over the last 100 years 

(Rodenhuis et al. 2007). Low summer flows are now 26% lower than they were 100 

years ago. Analysis of 22 years of Chinook salmon life-cycle data revealed that this low 

summer flow strongly decreases productivity. For example, Chinook salmon cohorts are 

predicted to drop below replacement – and thus unable to sustain fishery mortality – in 

years with average August discharge less than 10.83 m3s-1 (or 36% MAD) during the 
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rearing summer. These findings provide rare empirical evidence of how different 

components of flow regimes impact salmon. 

Summer low flows have been shown to influence productivity and growth in 

stream-rearing salmonids (Beecher et al., 2010; Grantham et al., 2012; Letcher et al., 

2015; Ohlberger et al., 2018; Rosenfeld, 2017; Vorste et al., 2020). Rather than 

assuming that a single mechanism consistently drives the relationship between low flows 

and fish, the empirical relationship between summer flows and fish we observed could 

be driven by a variety of mechanisms. Lower flows can decrease the amount of 

invertebrate food (Harvey et al., 2006), as well as reduce amounts of suitable rearing 

habitat (Bradford et al., 2011). It is also possible that lower flows may render the system 

more sensitive to excessively hot weather (van Vliet et al., 2013); water temperatures in 

the Nicola can exceed 25°C in some summers (unpublished data, L. Warkentin). Given 

that juvenile Chinook salmon, including a subset of those from the Nicola River 

watershed, may disperse downstream and rear in non-natal habitats (Murray & 

Rosenau, 1989), summer rearing flows in the Nicola will directly impact the juveniles that 

remain in the Nicola system, but only indirectly impact those that disperse to 

downstream habitats (Figure A9). We also found that low flows during adult migration 

appeared to impair productivity, an effect that could be compounded by warm stream 

temperatures. Regardless of the mechanisms, our study provides strong empirical 

evidence that lower flows during the summer impair the productivity of this population of 

concern.  

Our study evaluated other factors that could affect this population’s productivity. 

Like many salmonids, evidence of density-dependence was strong. In addition, cohorts 

that experienced more ice cover appeared to have lower productivity; anchor ice and ice 

scour can kill incubating eggs and alevins (Cunjak et al., 1998; Huusko et al., 2007). 

Although large fall and winter floods can have negative consequences for coastal 

salmon populations (Greene et al., 2005; Jones et al., 2020; Seiler et al., 2003), we did 

not find conclusive evidence for this effect. However, productivity appeared lower for 

cohorts that incubated during years with fall and winter floods greater than ~150 m3s-1 

(Figure A10d). Flows over this threshold could mobilize sediments and scour incubating 

eggs (Gendaszek et al. 2018), but this is speculative given the sample size and lack of 

statistical support. Although untangling the effects of seasonal extremes from other 

factors over the salmonid life cycle is challenging, it is essential for salmon conservation.  
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Freshwater processes were stronger predictors of life-time productivity than 

survival during downstream smolt migration and ocean growth. Many recent publications 

have focused on the influence of ocean conditions on the survival and productivity of 

Pacific salmon (Connors et al., 2020; Dorner et al., 2017; Sharma & Liermann, 2010). 

We found that freshwater conditions explain more variation in lifetime productivity than 

an index of early ocean survival. We were able to incorporate a proxy for marine survival 

of wild fish based on estimates of smolt-to-age 3 survival of hatchery smolts, which has 

potential for error. Notably, the lowest observed smolt-to-age 3 survival was for the 1992 

hatchery cohort, likely from a pathogen problem, which would not have effected wild 

smolts. However, productivity for the 1992 cohort was well-predicted (Figure A1), and 

other studies found good correlation between the inter-annual variability of marine 

survival for wild and hatchery stocks (Raymond, 1988; Williamson et al., 2010; 

Zimmerman et al., 2015), supporting our finding that freshwater dynamics can be the 

dominant driver of some stream-rearing salmon populations. 

 The influence of hatchery spawners on the dynamics of this population deserves 

attention. There was some evidence that density dependence for hatchery spawners 

was higher than for wild fish (see Appendix A). In addition, the proportion of total 

spawners that were of hatchery origin over time has varied, with hatchery fish making up 

a significant proportion of spawners in some years (Figure A12). Although this 

information is dependent on the methods of accounting for unmarked hatchery fish, it 

deserves attention given the multiple influences that hatchery fish can have on wild 

populations (Buhle et al., 2009).  

 Two important assumptions in the analysis were related to fishing mortality and 

the model formulation that made the environmental effects independent of density-

dependence. We assumed that fishing mortality for wild fish was equal to that of 

hatchery-origin fish, which had an average of 29% and maximum of 60% by brood year 

for the cohorts examined (1992-2013). Making the effects of the environmental 

covariates independent of density-dependence makes the interpretation of their effects 

simpler and has been used by others (Jones et al., 2020; Ward et al., 2015). Specific 

evidence of how a given environmental variable effects survival of a life stage in a 

density-dependent way would justify a different model formulation that evaluates such a 

pattern. 
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Implications for the Management of Fish and Flows 

Our study has specific relevance to environmental flow recommendations for the 

Nicola River and BC. We found that the older model-based environmental flow 

recommendation of 19% MAD (Kosakoski & Hamilton, 1982) is associated with 

productivity levels in a Chinook salmon population that are not only below replacement 

but also eliminate the possibility of sustainable fishing. Instead, we estimate that for 

average spawner abundance and current habitat and environmental conditions, 36% 

MAD during rearing would support a stable population in the absence of fishing. This 

result adds to the growing evidence that habitat suitability models may underestimate 

the instream flow needs of fish (Beecher et al., 2010; Bradford et al., 2011; Shirvell, 

1989). Furthermore, conventional habitat suitability curves generally assume that fish-

flow relationships are asymptotic (Rosenfeld 2017) and that productivity declines sharply 

below a threshold (Tennant, 1976). Instead, we observed a variable but approximately 

linear relationship between summer flows and productivity over the observed range of 

flows (Figure 2.4, A10f; Beecher et al., 2010). Rearing flows exceeded 36% MAD for 

only four of the 22 cohorts we examined, highlighting the chronic problem of low flows 

and the importance of higher flows during infrequent, wet summers for the recovery of 

this population. Our results are also relevant for setting critical environmental flow 

thresholds under the BC Water Sustainability Act, with the aim to prevent “significant or 

irreversible harm” to fish populations. Thus, our study provides a rare empirical 

relationship that links flows and fish productivity, a critical foundation of setting effective 

instream flow thresholds.  

Chinook and other stream-rearing salmon support commercial, recreational, and 

Indigenous fisheries (Nesbitt & Moore, 2016), and restrictions to these fisheries have 

cultural and economic consequences. We show that consequential decisions about 

harvest limits can be based on more accurate predictions by accounting for the effects of 

river conditions. Based on our model, mean August flow during rearing would need to be 

15 m3s-1 (50% MAD) to allow a harvest of 30% and escapement to spawning grounds at 

replacement levels.  

There are many options for conserving flow regimes, each with potential trade-

offs. Limiting new water licenses and buying back existing licenses would leave more 

water in the river but would have consequences for licensees. Releases from reservoirs 
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can boost summer flows, although storage capacity is constrained by infrastructure, 

flood management, and precipitation, and summer reservoir releases can alter 

downstream temperatures (Olden & Naiman, 2010). We also suggest that forestry’s 

influence on hydrology deserves attention. Forests have a strong influence on hydrology, 

and forest disturbances can alter the amount and timing of river discharge (Goeking & 

Tarboton, 2020). Importantly, clearcut logging can cause a lagged, long-term reduction 

in base flows starting approximately 15 years after harvest (Coble et al., 2020; 

Gronsdahl et al., 2019; Perry & Jones, 2017). Watersheds with large increases in 

logging in the last 10-20 years, such as the Nicola and much of interior BC, may be at 

risk of further decreases in summer discharge from a legacy of forestry. Future impacts 

of forestry and climate change could be mitigated by adjusting harvest and regeneration 

(Goeking & Tarboton, 2020). Thus, while climate change and shifting flow regimes 

present a dour challenge, there are a suite of management options that could aid the 

survival of stream-rearing fishes. 

Changes in climate, land cover and water extraction are profoundly altering river 

systems and flow regimes for Pacific salmon (Healey, 2011; Schoen et al., 2017) and 

freshwater life across the world (Palmer & Ruhi, 2019). Globally, adequate river flows 

are needed to support diverse freshwater ecosystems (Tickner et al., 2020), while 

climate change pushes conditions beyond historical values (van Vliet et al., 2013). To 

steward the life of rivers that bear the burden of human work, we need a wholistic 

appreciation for shifting flow regimes and their real consequences (Palmer & Ruhi, 

2019). 
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Chapter 3.  
 
The relationship between watershed characteristics 
and stream temperature sensitivity in the Nicola 
River watershed 

3.1. Introduction 

Water temperature influences aquatic life at many scales, including individuals, 

populations, and communities (Allan & Castillo, 2007). On an individual basis, water 

temperature influences metabolic rates (Claireaux & Lagardère, 1999). At a larger scale, 

it can explain the distribution of species in river basins (Lessard & Hayes, 2003; Sloat & 

Osterback, 2013) and changes in distribution of a population across days (Brewitt & 

Danner, 2014) and seasons (Baldock et al., 2016). As such, changes in stream 

temperatures based on human influence and climate change may drive expansion of 

some populations while others shrink (Buisson et al., 2008; Lynch et al., 2016; Ruesch 

et al., 2012). As climate change continues to warm the world’s rivers (Isaak et al., 2012; 

Islam, Hay, et al., 2019), warming streams present a threat to the viability of some 

populations and communities of freshwater organisms (Reid et al., 2019). 

Warming river temperatures can impact economically- and culturally-important 

salmonids across their life cycle (Jones et al., 2020; Kovach et al., 2016; Myers et al., 

2017; Richter & Kolmes, 2005). While warmer water may have some benefits for specific 

salmonids life stages – like higher juvenile growth rates and earlier migration (Fullerton 

et al., 2017) – much attention is given to the negative effects of elevated summertime 

temperatures on salmon, which can experience various physiological consequences of 

temperatures that approach or exceed thresholds (Richter & Kolmes, 2005).  For adult 

salmon, warm water during adult migration up-river is associated with delayed migration 

(Goniea et al., 2006) and pre-spawn mortality (Hinch et al., 2012). Elevated water 

temperature can also cause mortality during embryo growth (Martin et al., 2017; Tang et 

al., 1987), alter incubation duration (Whitney et al., 2014), and decrease juvenile growth 

rate (Marine & Cech, 2004). However, thermal regimes are complex across space and 

time (Fullerton et al., 2015), and salmon depend on and make use of this thermal 

diversity. For example, adult salmon utilize thermal refugia during migration (Frechette et 
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al., 2018; Keefer et al., 2018), while juveniles exploit temperature differentials for 

metabolic benefits (Armstrong et al., 2013; Baldock et al., 2016; Brewitt et al., 2017). 

River systems offer complex networks of thermal diversity throughout space and 

time (Fullerton et al., 2015; Steel et al., 2017). While stream temperature is directly 

influenced by energy fluxes like short and long wave radiation (Poole & Berman, 2001; 

Webb et al., 2008), physical watershed characteristics can explain patterns in both 

maximum stream temperatures and the relationship between air temperature and stream 

temperature (Beaufort et al., 2020; Chang & Psaris, 2013; Jackson et al., 2018; Mauger 

et al., 2016). For example, maximum stream temperatures have been positively linked to 

livestock grazing (Kovach et al., 2018) and riparian forest harvesting (Bladon et al., 

2018). Water temperatures in the northern hemisphere generally peak in late summer, 

and these maximum temperatures are a common focus for studies of water 

temperatures in salmon watersheds (Madej et al., 2006). Maximum temperatures may 

indicate stream reaches that are inhospitable or stressful for salmonids (Sloat & 

Osterback, 2013). Besides maximum temperatures, stream temperature sensitivity to 

climate is an additional dimension of stream thermal regimes that conveys the relative 

responsiveness of the system to warmer air temperatures. One metric of stream 

temperature sensitivity is the relationship between air temperature and water 

temperature, or thermal sensitivity (TS) (Nelitz et al., 2007). TS is an important 

characteristic of streams, and indicates the degree to which changes in air temperature 

over days, weeks, or seasons are reflected by changes in water temperature (Mohseni 

et al., 1998). As such, TS can be a measure of climate sensitivity, and has been linked 

to watershed characteristics such stream size, shade, elevation, watershed area, and 

hydrology (Beaufort et al., 2020; Lisi et al., 2015; Mauger et al., 2016). Streams that 

show a high correlation between stream temperature and air temperature may be at 

greater risk of warming if regional air temperatures increase, while streams with lower 

TS may indicate important areas of resilience to climate change. 

Understanding the underlying portfolio of temperatures in a watershed supporting 

multiple life histories and species that are under threat can help us understand limiting 

factors and opportunities for conserving and restoring natural thermal regimes. Here, I 

focus on understanding patterns of stream temperature across an important salmon 

watershed prone to drought and warm water temperatures. Specifically, I ask two 

questions. First, how do watershed characteristics influence patterns of maximum water 
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temperatures across a watershed? Second, how do watershed characteristics influence 

patterns of temperature sensitivity of streams? The watershed characteristics I used 

were riparian forest cover, the influence of lakes, catchment elevation, and catchment 

area. 

3.2. Methods 

3.2.1. Study System 

The Nicola River is a tributary of the Thompson River, which flows into the Fraser 

River at Lytton in British Columbia (BC), Canada (Figure 3.1). The watershed drains 

7184 km2 and supports imperiled stream-rearing Chinook salmon (Oncorhynchus 

tshawytscha), coho salmon (O. kisutch), steelhead trout (O. mykiss), and bull trout 

(Salvelinus confluentus). The watershed is under pressure from multiple human activities 

and climate change, emblematic of many semi-arid watersheds in western North 

America. The Committee for the Status of Endangered Wildlife in Canada is currently 

assessing whether to recommend Nicola Chinook salmon for listing under the Species at 

Risk Act (SARA). COSEWIC assessed Thompson River steelhead as Endangered in an 

Emergency Assessment in 2018 (COSEWIC, 2020). 

The Nicola watershed is representative of many watersheds prone to drought 

and warm stream temperatures. In the rain-shadow of the Coast Mountains, this interior 

watershed can reach high summer water temperatures in its main stem that exceed 

25°C. Drought is a chronic problem, and low flows are a concern despite the 

construction of storage reservoirs over the past century. The watershed has no glaciers. 

The flow regime of the Nicola River is characteristic of interior BC rivers with a 

hydrograph driven by snow-melt, with a large spring freshet which usually peaks in late 

April or early May. Peak flow during freshet can exceed 200 m3s-1, while summer base 

flow can be less than 3 m3s-1. Flows usually decrease and reach base flows in August, 

and remain low into September. 
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3.2.2. Data Collection 

Stream temperature 

I quantified the thermal regimes throughout the study catchment through 

installation of an extensive network of temperature loggers (Figure 3.1). Temperature 

loggers were a combination of OnSet© Pendant and Tidbit loggers. These were installed 

in September 2017 (a small number were installed in September 2018 and July 2019) in 

well-mixed areas of streams. Deep pools sheltered by boulders were targeted as they 

are less likely to dewater during low water or be disturbed by floods than shallower 

reaches. Loggers were set to record once per hour or two hours (depending on memory 

size) and housed in white PVC cases to protect them from direct sunlight. They were 

held in place with aircraft cable by either wrapping the cable around a boulder, a tree, or 

to an anchor bolt with climbing hanger installed into a boulder. The loggers were left in 

place year-round, and some loss of loggers occurred during floods. For this analysis, 50 

sites were used, which had records during the September 2017-September 2019 period 

(Table 3.1). 

Temperature data were downloaded and data were visually inspected for 

possible dewatering events. Dewatering events were characterized by a sudden large 

increase in temperature values and an increase in the magnitude of day-to-night 

fluctuation in the temperature signal. Dewatering was also known if the logger was out of 

the water when the site was visited to download. Periods suspected of dewatering were 

removed and not used in the analysis.  

Air temperature 

To understand the regional air temperatures and how stream temperatures 

responded to these (i.e., climate sensitivity), I used Environment Canada mean daily air 

temperature from the Merritt STP station, which is approximately in the centre of the 

watershed, downloaded with weathercan package (LaZerte & Albers, 2018).  
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Figure 3.1. Stream temperature monitoring sites (green points) in the Nicola 
River watershed (outlined in black), with streams and major lakes 
within the watershed in blue.  

The red star indicates the Merritt weather station. The hillshade digital elevation model shows 
topography. 
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Table 3.1. Stream temperature monitoring sites with their mean TS slopes and 
intercepts 

Site ID Site name Latitude Longitude 
Mean TS 
slope 

Mean TS 
intercept 

200 Clapperton Creek 50.16234 -120.66963 0.56 13.3 

201 Nicola River upstream of Clapperton Creek 50.16199 -120.66939 0.71 18.2 

202 Quilchena Creek 50.15888 -120.516035 0.75 16.9 

203 Nicola River above Nicola Lake 1 50.182583 -120.374983 0.67 16.5 

204 Nicola River above Nicola Lake 2 50.181267 -120.368433 0.71 16.7 

205 Nicola River above Douglas Lake 1 50.16724 -120.20668 0.42 14.9 

207 Nicola River above Douglas Lake 3 50.17212 -120.20241 0.64 16.3 

208 Coldwater River above Patchett Road 49.98209 -120.93307 0.65 15.6 

209 Coldwater River under Gillis Road 49.90536 -120.91579 0.69 14.8 

210 Juliet Creek 49.74369 -121.00843 0.48 12.1 

211 Coldwater River above Juliet Creek 49.74206 -121.00715 0.45 11.3 

212 Coldwater River below Juliet Creek 49.74602 -121.00972 0.50 11.6 

213 Coldwater River at Gravel Pit 49.65744 -121.01124 0.44 10.0 

214 Coldwater River Headwaters 49.65367 -121.01328 0.39 10.5 

215 Nicola River below Skeikut Creek 50.33898 -121.22566 0.74 18.0 

216 Nicola River below Kloklwuck Creek 50.37406 -121.2574 0.69 17.7 

217 Nicola River near Spences Bridge 50.40926 -121.29466 0.76 18.3 

218 Skuhun Creek 1 50.30125 -121.16675 0.51 13.0 

219 Skuhun Creek 2 50.297417 -121.070633 0.42 10.9 

220 Skuhost Creek 50.32009 -121.03354 0.36 9.4 

221 Nicola River above Manning Creek 50.2554 -121.11617 0.71 17.5 

222 Nicola River at Shackelly Creek 50.18963 -121.0631 0.70 17.4 

223 Nuaitch Creek 50.16407 -121.07044 0.38 11.0 

225 Prospect Creek 50.04303 -121.15062 0.51 11.8 

227 Nicola River above Hatchery 50.13767 -120.97016 0.68 17.1 

228 Nicola River at Sunshine Valley Road 50.13846 -120.92927 0.67 17.2 

229 Guichon Creek at Nicola River 50.150946 -120.876649 0.66 16.0 

230 Spius Creek at Maka Creek 49.96693 -121.08054 0.64 13.6 

231 Skuhun Creek 3 50.32243 -120.95857 0.46 9.7 

232 Guichon Creek above Mamit Lake 50.45771 -120.81185 0.47 11.9 

233 Quilchena Creek 2 50.158373 -120.515576 0.75 16.8 

234 Nicola Lake at Dam 50.162984 -120.664385 0.68 18.4 

235 Clapperton Creek 2 50.201123 -120.648212 0.45 12.0 

237 Nicola River at Norgaards 50.115966 -120.809059 0.73 18.2 

238 Gillis Creek 1 49.911912 -120.923101 0.41 10.9 

239 Gillis Creek 2 49.911828 -120.923437 0.41 10.8 

240 Voght Creek 1 49.909316 -120.911425 0.52 12.8 

241 Voght Creek 2 49.907712 -120.912797 0.45 12.3 

242 Maka Creek 1 49.964606 -121.077311 0.65 13.9 

244 Spius Creek above Maka Creek 49.964583 -121.079605 0.66 13.6 

245 Spius Creek at Hatchery Intake 50.140333 -121.026582 0.75 15.9 
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Site ID Site name Latitude Longitude 
Mean TS 
slope 

Mean TS 
intercept 

246 Prospect Creek 2 50.043033 -121.150547 0.57 11.8 

247 Spaxomin Creek near Douglas Lake 50.135027 -120.276938 0.55 14.6 

248 Nicola River at outlet of Douglas Lake 50.139985 -120.283533 0.42 17.8 

250 Nicola River above Chaperon Creek 50.158411 -120.128775 0.58 15.6 

251 Nicola River below Chaperon Creek 50.167158 -120.14297 0.53 16.2 

252 Beaks Creek 50.112014 -119.982919 0.49 12.1 

253 Nicola River above Beaks Creek 50.109477 -119.984539 0.51 12.4 

300 Nicola River at Guichon Creek confluence 50.144087 -120.886353 0.55 18.1 

301 Nicola River at Petit Creek 50.147573 -121.019528 0.57 17.9 

 

Watershed characteristics 

As covariates for the analysis to examine how watershed characteristics 

influence temperature regimes, I chose the following four variables that have been 

shown to predict stream temperatures and thermal sensitivity in other watersheds 

(Table B1):  

1. Riparian forest cover 

2. Lake influence  

3. Elevation  

4. Watershed area  

I calculated percent riparian forest cover upstream of each site. To do this, I 

combined line and polygon shapefiles for rivers from the BC Freshwater Atlas (GeoBC, 

2019). I then made a 30 m buffer on each side of this shapefile, and then clipped this at 

the site and 600 m upstream of the site. This buffer was used to make a clip of the BC 

provincial Forest Vegetation Composite Polygons (Ministry of Forests, Lands, Natural 

Resource Operations, 2019) which classifies land cover into treed, non-tree vegetation, 

unvegetated land, and water. I calculated the percent of the riparian buffer with treed 

vegetation for each site, and chose a 30 m by 600 m buffer based on previous research 

on the amount of riparian forest required to show a detectable effect on stream 

temperature (Bladon et al., 2018; Pollock et al., 2009; Sullivan et al., 1990). Other 

studies have used 500 m and 1000 m long buffers (Hrachowitz et al., 2010). 

To calculate an index of lake influence weighted by distance upstream of each 

site, I used lakes with an area >10,000 m2. For each site, I calculated the distance from 
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the site to each upstream lake. The area of each lake was divided by its distance to the 

downstream site. These area/distance values were then summed for each site to give 

the lake index for each site (Mauger et al., 2016). I used the BC Freshwater Atlas lakes 

polygon layer (GeoBC, 2020b) to calculate this index.  

I calculated the mean elevation of the upstream catchment for each site using the 

DEM and the upstream catchment area. I used a digital elevation model (DEM) for 

British Columbia to calculate this elevation variable (GeoBC, 2020a). I used ArcGIS to 

delineate upstream catchment area polygons for each site based on the DEM. All 

manipulation of spatial data was done in ArcGIS (ESRI, 2020) and QGIS (QGIS 

Development Team, 2020).  

3.2.3. Statistical analyses 

Statistical models of water temperature – compared to process-based or physical 

models – are increasingly used to quantify and analyze stream temperatures (Hague & 

Patterson, 2014; Isaak et al., 2017). Before analysis, watershed area and lake influence 

were log-transformed to improve normality (Lisi et al., 2013). 

Maximum daily stream temperature 

To determine the relationship between watershed characteristics and maximum 

stream temperatures, I fit a mixed-effect linear model to predict maximum stream 

temperatures for each site in each year (Equation 3.1). For site i, TWmax is the 

maximum of daily mean stream temperatures over each summer, erip is the effect of 

riparian forest cover, riparian is the percentage of the riparian buffer with trees, elake is 

the effect of lakes, lake is the lake index for each site, eelev is the effect of elevation, 

elevation is the mean elevation of each catchment, earea is the effect of area, area is the 

area of each catchment, and b is the intercept. I included a random effect of year. 

𝑇𝑊𝑚𝑎𝑥𝑖 = 𝑒𝑟𝑖𝑝 ×  𝑟𝑖𝑝𝑎𝑟𝑖𝑎𝑛𝑖 + 𝑒𝑙𝑎𝑘𝑒 ×  𝑙𝑜𝑔(𝑙𝑎𝑘𝑒𝑖) + 𝑒𝑒𝑙𝑒𝑣 ×  𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑖 + 𝑒𝑎𝑟𝑒𝑎 ×

 𝑙𝑜𝑔(𝑎𝑟𝑒𝑎𝑖) + (1|𝑦𝑒𝑎𝑟) + 𝑏 (3.1) 

I also included a spatially autocorrelated error term, based on the latitude and 

longitude (in decimal degrees) of each site. The spatial autocorrelation term uses the 

latitude and longitude values to determine linear distance between each pair of sites (in 
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this case, in decimal degrees). Including this term allows the model to account for 

similarities between sites that are closer together. There was essentially no difference in 

AIC values between models fit with exponential and linear auto-correlation structures 

(difference < 0.001), so I used an exponential auto-correlation structure for the analysis. 

The model was fit with the nlme package (Pinheiro et al., 2020), which was also 

used to extract confidence intervals for the effect terms.  

Stream temperature sensitivity 

I used a multi-step linear modelling approach to determine the influence of 

watershed characteristics on the thermal sensitivity of streams throughout the 

watershed. This analysis used data for August and September only, as this time period 

is typically when base flow conditions are present, coincides with the migration and 

spawning of Chinook salmon, and was shown to be important in terms of flow effects on 

both spawning and rearing (see Chapter 2). The TS slopes are also similar between 

these two months, based on visual inspection. Air temperature was centred to reduce 

the amount of covariation between slope and intercept to aid model fitting. The TS slope 

indicates the relative change in stream temperature given a change in air temperature at 

each site. Because air temperature was centred for this analysis, the TS intercept 

indicates the average stream temperature at each site given a common distribution of 

regional air temperatures.  

This analysis was done in two steps (Beaufort et al., 2020; Mauger et al., 2016). 

First, I regressed stream temperature as a function of air temperature to get slopes and 

intercepts for each site. I used a Bayesian approach to fit slope and intercept for each 

site, as random effects. For each site i, predicted daily mean stream water temperature 

pTW are predicted by the product of site-specific slope bi and daily mean air temperature 

TA plus a site-specific intercept ai (Equation 3.2). Observed daily mean water 

temperature TW is assumed to be drawn from a normal distribution with mean pTW and 

standard deviation σ (Equation 3.3). The prior for σ is a half-cauchy distribution 

(Equation 3.4). All site-specific slopes b are drawn from a common normal distribution 

with hyper-parameters μb and σb specifying their mean and standard deviation, and 

likewise for site-specific intercepts a (Equations 3.5-3.10). This modelling was carried 

out using R (R Development Core Team, 2015) and the rstan package (Stan 
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Development Team, 2019). The model was run with 3 chains and 5000 iterations, with a 

burn-in of 1000.   

𝑝𝑇𝑊 = 𝑏𝑖 × 𝑇𝐴 + 𝑎𝑖 (3.2) 

𝑇𝑊 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑝𝑇𝑊, 𝜎) (3.3) 

𝜎 ~ 𝐶𝑎𝑢𝑐ℎ𝑦(0,  1) (3.4) 

𝑏𝑖 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑏 , 𝜎𝑏) (3.5) 

𝜇𝑏 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(1,  0.1)  (3.6) 

𝜎𝑏 ~ 𝐶𝑎𝑢𝑐ℎ𝑦(0,  1) (3.7) 

𝑎𝑖  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑎 , 𝜎𝑎) (3.8) 

𝜇𝑎  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(12,  0.1) (3.9) 

𝜎𝑎 ~ 𝐶𝑎𝑢𝑐ℎ𝑦(0,  1) (3.10) 

When visually inspecting the data, only a few of the sites exhibited an effect of 

month or year (e.g., Nooaitch Creek), but these varied by at least two other factors which 

would have required a three-way interaction term (month×year×site), which would have 

been prohibitive to model fitting given the sample size. Since the goal of this analysis 

was detecting overall site-specific patterns and relating these to watershed 

characteristics that were either static by nature (e.g., elevation, lake influence, area) or 

within the time period (e.g., riparian forest), as opposed to a predictive model, this was 

not a large concern. Also, for this part of the analysis, we are interested in the average 

TS for each site, not in temporal differences.  

After determining the site-specific TS slopes and intercepts, linear models were 

used to predict these variables based on the four watershed characteristics (Equations 

3.11-3.12).  

𝑏𝑖 = 𝑏𝑟𝑖𝑝 ×  𝑟𝑖𝑝𝑎𝑟𝑖𝑎𝑛𝑖 + 𝑏𝑙𝑎𝑘𝑒 ×  𝑙𝑜𝑔(𝑙𝑎𝑘𝑒𝑖) + 𝑏𝑒𝑙𝑒𝑣 ×  𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑖 + 𝑏𝑎𝑟𝑒𝑎 ×  𝑙𝑜𝑔(𝑎𝑟𝑒𝑎𝑖) +

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑏  (3.11) 
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𝑎𝑖 = 𝑎𝑟𝑖𝑝 ×  𝑟𝑖𝑝𝑎𝑟𝑖𝑎𝑛𝑖 + 𝑎𝑙𝑎𝑘𝑒 ×  𝑙𝑜𝑔(𝑙𝑎𝑘𝑒𝑖) + 𝑎𝑒𝑙𝑒𝑣 ×  𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑖 + 𝑎𝑎𝑟𝑒𝑎 ×  𝑙𝑜𝑔(𝑎𝑟𝑒𝑎𝑖) +

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑎  (3.12) 

I used the nlme package (Pinheiro et al., 2020) to fit these models.  

I also included spatial autocorrelation terms in these models. I used exponential 

structure for the slope model as it had a lower AIC score than the same model fit with a 

linear spatial autocorrelation. I used a linear structure for the intercept model as it had a 

lower AIC score than the model fit with exponential structure. In order to use the nlme 

package to account for spatial auto-correlation structure, I also included a dummy 

random effect term, which was identical for all observations. 

A preliminary analysis attempted to accomplish the two steps above with a 

single, hierarchical Bayesian model, where the site-specific slopes and intercepts were 

fit simultaneously with the effects of watershed characteristics, but even after centering 

the air temperature variable, the slope and intercept were still correlated, and the model 

failed to converge. While the two-step approach may be less sophisticated, other two-

step approaches have been used successfully (Beaufort et al., 2020; Mauger et al., 

2016).  

Watershed characteristics with effect terms whose 95% confidence intervals did 

not span 0 were interpreted as having a detectable relationship with maximum stream 

temperature, TS slope, and/or TS intercept. The TS slope represents the sensitivity of 

stream temperature to changes in air temperature, and the TS intercept represents the 

typical stream temperature at the average air temperature from August-September.  

3.3. Results 

There were large differences in temperature dynamics across the different 

portions of the Nicola watershed. In the mainstem Nicola River, summertime maximum 

temperatures exceeded 25°C in 2018 and 2019 in late July and early August. In 

comparison, the coldest measured water temperatures in the watershed were smaller 

creeks and tributaries, and had daily mean temperatures that stayed below 15°C 

throughout the summer (e.g., Skuhost Creek, Gillis Creek, Coldwater River headwaters, 

upper Skuhun Creek, upper Clapperton Creek).  
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Catchment area had a strong positive relationship with maximum stream 

temperature, and riparian tree cover a weak negative effect (Figure 3.2, Table 3.2). For 

an increase in the natural logarithm of catchment area by 1, maximum stream 

temperature increased by 1.5°C. The estimate of the effect of riparian tree cover was 

more uncertain, with 90% confidence intervals overlapping 0. The mean estimate of the 

effect size of riparian cover was -1.2, meaning that for a 50% increase in riparian cover, 

maximum stream temperature decreased 0.6°C. There was no evidence of a 

relationship between maximum stream temperature and either lake influence or mean 

watershed elevation. Collectively, these watershed variables explained the majority of 

the observed variation in maximum stream temperature (R2 of equation 3.1 was 0.64). 

 

Figure 3.2. Mean and 95% confidence intervals for the estimated effect sizes of 
the four watershed characteristics on maximum daily mean stream 
temperature. 

The sensitivity of streams temperature to regional air temperatures showed a 

large amount of variation (Figure 3.3). On days when air temperature was 25°C, streams 

with the lowest TS slopes averaged less than 15°C, while the most sensitive streams 

were warmer than 20°C.  
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There was strong evidence that riparian cover, lake influence, and catchment 

area had relationships with TS slopes – the sensitivity of stream temperature to regional 

air temperature – during August and September (Figure 3.4, Figure 3.5, Table 3.3). 

Streams with higher riparian cover of the monitoring site had lower TS slopes. Given a 

10°C increase in air temperature, water temperature would increase by 0.8°C less at 

sites with 100% riparian cover, compared to sites with 0% riparian cover (based on the 

mean effect estimate). Sites with larger lakes located closer upstream had lower 

sensitivity slopes, while larger watersheds had higher sensitivity slopes. Mean 

watershed elevation did not have a clear relationship with sensitivity – the 90% 

confidence intervals included both positive and negative relationships.  
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Figure 3.3. TS relationships for each of the 50 sites (one line per site), for 
August-September.  

The panels include all sites located along a single stream. 
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Figure 3.4. Mean and 95% confidence intervals for the estimated effect sizes of 
the four watershed characteristics on TS slopes (thermal 
sensitivity). 
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Figure 3.5. Contrast plots of relationship between TS slopes and watershed 
characteristics.  

Y axes show the relative change in TS slopes for values of the four watershed characteristics. 
Each point represents an individual site. 

Relationships between watershed characteristics and the TS intercept – the 

average stream temperature at average air temperature values – were similar to slope, 

except for the lake area, which had the opposite effect (Figure 3.6, Figure 3.7, Table 

3.4). Sites with greater lake influence showed higher intercepts (i.e., the average stream 

temperature at average air temperatures were greater for more lake-influenced sites). 

Sites also had higher intercepts if they had larger catchments, and lower intercepts with 
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higher riparian cover (but the upper confidence interval for the latter relationship was just 

overlapping 0, and uncertainty was higher).  

 

Figure 3.6. Mean and 95% confidence intervals for the estimated effect sizes of 
the four watershed characteristics on TS intercepts. 
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Figure 3.7. Contrast plots of relationship between TS intercepts and watershed 
characteristics.  

Y axes show the relative change in TS intercepts for values of the four watershed characteristics. 
Each point represents an individual site. 
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Table 3.2. Mean and 95% confidence intervals of the estimated intercept and 
fixed effects for the model predicting maximum daily mean water 
temperature. 

 lower estimate upper 

intercept -27.4006 -13.3706 0.659333 

log catchment area 1.030987 1.507651 1.984315 

elevation -0.00649 0.000228 0.006944 

log lake index -0.39178 0.003022 0.397824 

riparian tree percent cover -2.70671 -1.23232 0.242059 

Table 3.3. Mean and 95% confidence intervals of the estimated intercept and 
fixed effects for the model predicting TS slopes. 

 lower estimate upper 

intercept -1.08724 -0.28037 0.52651 

log catchment area 0.034912 0.06049 0.086068 

elevation -0.00052 -0.00015 0.000219 

log lake index -0.03837 -0.02023 -0.00209 

riparian tree percent cover -0.15216 -0.07752 -0.00287 

Table 3.4. Mean and 95% confidence intervals of the estimated intercept and 
fixed effects for the model predicting TS intercepts. 

 lower estimate upper 

intercept -12.0641 -1.97755 8.108974 

log catchment area 0.698063 1.010192 1.322322 

elevation -0.00825 -0.0037 0.000851 

log lake index 0.076474 0.275377 0.474281 

riparian tree percent cover -1.67949 -0.83676 0.005975 
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Figure 3.8. The Nicola watershed, showing the TS slopes of the 50 monitoring 
sites. 
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Figure 3.9. The Nicola watershed, showing the TS intercepts of the 50 
monitoring sites. 

3.4. Discussion 

This study quantified how different watershed characteristics influenced the 

thermal regime of an interior river system with imperiled salmon. Specifically, sites with 

higher catchment areas had higher maximum temperatures as well as greater thermal 

sensitivity (TS slope). In addition, sites with greater riparian vegetation cover had lower 

thermal sensitivity. Other geographic features, namely lakes, also influenced thermal 

regimes. Collectively, these results identify factors that, even after accounting for spatial 

autocorrelation, are associated with warmer temperatures and greater climate sensitivity 

that pose risks to cold-water fishes such as Chinook salmon and bull trout. 
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The influence of catchment area was the most consistent and strong predictor of 

the stream thermal regime, having a strong positive relationship with maximum stream 

temperature and TS slope and intercept. I found that larger catchments had a higher 

thermal sensitivity (TS slope), or higher sensitivity to regional air temperature. This result 

is consistent with other studies that show that catchment area has an important influence 

of stream thermal regime, including positive relationships with TS slope (Chang & 

Psaris, 2013; Mauger et al., 2016). As catchment area increases, there is more surface 

area for both insolation of the stream surface and for heat fluxes across the stream-air 

interface (Poole & Berman, 2001). Summer stream temperatures generally increase 

downstream (although not always, see Fullerton et al. 2015), as the temperature of 

water tends toward equilibrium with air temperature (Poole & Berman, 2001). Thus, 

through impacts on both maximum temperature and climate sensitivity, catchment area 

is a strong structuring force on stream temperatures. Our study provides additional 

evidence that small tributaries with smaller catchments can be both cooler and less 

climate sensitive than downstream rivers, and thus likely reflect important thermal 

refugia in this warming world (Ebersole et al., 2020). 

Riparian tree cover was an important local factor in influence temperature 

regimes, and decreased thermal sensitivity of stream temperatures, consistent with other 

studies (Beaufort et al., 2020). More riparian tree cover was associated with lower TS 

slopes, indicating that loss of riparian habitat may increase climate sensitivity. More 

riparian tree cover also tended to be associated with somewhat lower maximum stream 

temperature and TS intercept (an indicator of average stream temperatures). These 

patterns emerged despite relatively coarse available data on riparian cover; more 

detailed mapping based on orthophotos or LIDAR data may reveal stronger, more 

precise relationships between riparian vegetation and stream temperatures (Dugdale et 

al. 2020). These results illustrate that conservation or restoration of local riparian cover 

(the reach that extends 600m upstream) could help improve thermal regimes for 

salmonids in warming rivers. Riparian forest creates a local microclimate around the 

stream channel, buffering the stream from solar radiation, wind, and meteorological 

effects (Garner et al., 2015; Poole & Berman, 2001). Other studies have shown that 

large-scale riparian planting (together with channel restoration), may provide short and 

long-term benefits to cold-dependent salmonids with climate change (Justice et al., 

2017). In addition, protection of riparian forests, such as from rural development, 
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agriculture, logging, and other human impacts found in the Nicola system and 

elsewhere, will help maintain the climate resilience of stream ecosystems. 

Lakes and reservoirs, a common feature in many salmon watersheds, decreased 

thermal sensitivity (TS slopes) but increased maximum temperatures in this study. It 

appears that lakes dampen daily fluctuations in temperatures due to their high thermal 

inertia. This pattern is apparent just downstream of Nicola Lake, where diel variation is 

lower than in reaches without lake influence or farther downstream. Further, higher TS 

intercepts with greater lake influence indicates that lakes may elevate the entire 

distribution of water temperature downstream in August and September, due to the 

physical properties of lakes (e.g., large surface area, stratification with warm water 

flowing out of the top layer of the lake). Other studies show complex effects of reservoirs 

on downstream temperatures which vary across years, seasons and days (Webb & 

Walling, 1997). While it may be possible to adjust reservoir releases with the goal of 

enhancing habitat for certain species (Bestgen et al., 2020; Olden & Naiman, 2010; 

Sabo et al., 2017), context is important. For example, the operation of the Nicola Lake 

reservoir is constrained by a top-release dam, frequent drought, flood safety 

management, and a shallow lake mouth that requires a minimum water depth in winter 

to avoid freezing, which can limit late summer and fall releases during low flows. Other 

reservoirs in the watershed, such as Mamit Lake reservoir, which is at a higher 

elevation, may offer more opportunities for cold-water releases during summer. 

Regardless, the spatial distribution of lakes and reservoirs in watersheds is an important 

driver of thermal riverscapes. 

This study had analytical challenges that are important to discuss. First, this 

study did not find any relationship between elevation and thermal regime, contrary to 

other research, but note that study catchments only spanned 300 m in elevation. Other 

studies of systems with greater elevational ranges (500-1000 m) found that mean 

catchment elevation was negatively related with average stream temperature (Lisi et al., 

2013), maximum weekly maximum temperature, and TS slope (Mauger et al., 2016). 

Second, while flow is somewhat implicit in the catchment area variable (Hrachowitz et 

al., 2010), this study also did not examine the potential moderating effect of flow on TS 

slope (Hague & Patterson, 2014; Sohrabi et al., 2017) because of the lack of 

hydrometric data for many of the smaller tributary streams, and the current availability of 

unapproved provisional data that are subject to changes. Third, dealing with spatial auto-
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correlation and pseudo-replication with stream water quality data is challenging, and the 

most sophisticated techniques are often complicated analyses unto themselves (Hoef et 

al., 2014; Peterson et al., 2013). General practice is to avoid sites closer than 5-10 km 

(Gardner et al., 2003; Hrachowitz et al., 2010). However, it is still possible to introduce 

error in the estimation of other effects. I used a simple spatial structure based on site 

latitude and longitude to account for potential spatial autocorrelation, striking a balance 

between computational intensity and over-simplification. A more robust estimation of 

spatial auto-correlation would be more important for models that aim to predict 

temperatures throughout river systems (Isaak et al., 2010). Finally, further research 

could investigate whether these results are sensitive to which air temperature data are 

used, comparing a regional air temperature station to site-specific air temperature 

loggers and downscaled, interpolated climate data (Chezik et al., 2017; Wang et al., 

2016). 

One factor that could be explored more in future research is the potential 

interaction between riparian forest cover and stream size. Riparian vegetation shades 

streams from direct solar radiation, and thus a riparian forest of a given height and 

density will shade more of a small stream compared to a wider stream. In addition, the 

buffering effect of riparian vegetation to reduce air speed and thus heat exchange 

processes over a stream may decrease as channel width increases (Poole & Berman, 

2001). Thus, one could expect an interaction between riparian cover and stream size, 

such that the same percentage of riparian forest cover would have a greater effect on 

smaller streams compared to larger streams. If this pattern is present in the Nicola 

watershed, it is possible that my estimates of the effects of riparian forest were over-

estimated for larger streams and under-estimated for smaller streams. Although I did not 

test for this pattern, doing so in further work would be worthwhile.  

The low TS slopes and intercepts of many of the smaller tributaries in the Nicola 

watershed highlight their importance as sources of cold water during the summer, with 

less sensitivity to regional climate (Figure 3.8, Figure 3.9), thus representing thermal 

refugia. These results highlight the importance of managing land and water use in order 

to preserve the favourable thermal regimes of these smaller tributaries. Land use 

management such as preservation of riparian cover in small tributary streams can keep 

small streams cooler (Macdonald et al., 2003), while forest harvest practices that aim to 

reduce rate of snow-melt, such as minimizing logging on steep and south-facing slopes 
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can help to ensure higher base-flows of tributary streams (Goeking & Tarboton, 2020). 

An approach with increasing popularity, beaver dam analogs have been shown to 

increase temperature heterogeneity and decrease temperatures downstream (Weber et 

al., 2017), increase downstream flows (Pollock et al., 2003), and improve habitat for 

rearing salmonids (Bouwes et al., 2016). Indeed, beaver ponds have been shown to be 

especially important for rearing coho salmon in the Coldwater River, a major tributary of 

the Nicola (Swales & Levings, 1989). As such, there are a number of science-based 

approaches to land and water management that could help preserve and restore thermal 

regimes for salmonids in climate-stressed watersheds.  

Elevated water temperatures can affect fish populations at specific pinch points 

in their life cycle when they encounter warm water. For example, adults sockeye salmon 

migrating up the Fraser River have greater mortality with increasing river temperature, 

with over 90% dying before spawning in the warmest years (Hinch et al., 2012). Non-

lethal effects can include reduced growth rate (Marine & Cech, 2004), reduction in cold-

water refugia which used by migrating adults (Keefer et al., 2018), and may increase the 

feeding rate of predators on juvenile salmonids (Petersen & Kitchell, 2001). However, 

different populations of salmon from warmer watersheds are differently physiologically 

adapted to elevated water temperatures (Eliason et al., 2011). Furthermore, diverse 

salmon populations and species have different migration timings and use different 

portions of river networks, thereby driving divergent exposures to elevated water 

temperatures (Brennan et al., 2019; Crozier et al., 2019). For example, the Nicola has 

several different conservation units of Chinook salmon that migrate through the 

mainstem river at different times and spawn in different locations, ranging from 

mainstem to tributaries. Studies such as this one represent a step towards 

understanding the risks posed by climate change to different salmon conservation units.  

Climate change poses many risks to the viability of salmon populations 

throughout their range (Crozier et al., 2008; Healey, 2011; Wade et al., 2013). At the 

same time, salmon play a critical role in supporting food security of Indigenous Peoples 

today and for at least the last seven millennia (Campbell & Butler, 2010; Nesbitt & 

Moore, 2016). Given the cultural, economic and ecological importance of productive 

salmonid populations and their reliance on specific thermal regimes, research that sheds 

light on the relationship between the landscape and stream temperature sensitivity 
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provides valuable information for science-based management in the face of accelerating 

climate change (Ebersole et al., 2020).  
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Chapter 4.  
 
Conclusion 

The relationship between climate, landscapes, rivers, and freshwater 

communities are intricately linked. In this thesis, I have quantified two important linkages 

in this chain of relationships: the relationship between freshwater flow conditions and the 

productivity of salmon (Chapter 2), and the relationship between watershed 

characteristics and stream temperature regime (Chapter 3). In this chapter, I present an 

overview of major findings, their key implications and context, and suggestions for future 

work.   

4.1. The importance of freshwater conditions for salmonids 

In my first chapter, I showed that low summer flows during the migration of 

Chinook spawners and rearing of their offspring the following year were correlated with 

lower lifetime productivity in a population currently being assessed for federal protection. 

This is particularly relevant because more than half of cohorts since 1992 have produced 

less than one recruit per spawner. Moreover, I showed that flows during this critical time 

have decreased by 26% over the last 100 years. These results, based on empirical 

stock-recruit data, suggest that sufficient flows for a stable population – in the absence 

of fishing – are nearly double previous estimates of flow requirements based on habitat 

models. In addition, this flow threshold – 35% of mean annual discharge – only occurred 

for 18% of cohorts examined. Winter ice conditions also showed a significant 

relationship with productivity. These results are critical to understand the status of this 

population and its potential for recovery, especially given the cumulative effects on the 

landscape, water use, and climate of the region.  

This research has important implications for actions that influence hydrology, like 

forestry and water use Although this has not been a comprehensive hydrological 

analysis, there is a pattern of declining August base flows over the last century in the 

Nicola River. This is the same pattern predicted in British Columbia given climate 

change (Kang et al., 2016) and a legacy of logging (Goeking & Tarboton, 2020; 

Gronsdahl et al., 2019). In interior BC, clearcut logging has been demonstrated to 
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reduce summer baseflows, but this effect can take at least 15 years to be detected – 

large stands of young trees with high rates of transpiration the most probable cause 

(Gronsdahl et al., 2019). Summer baseflow decreased after logging after a similar period 

of time in Oregon, with no return to pre-disturbance base flows despite 45 years of data 

after logging (Perry & Jones, 2017). Thus, watersheds with large increases in logging in 

the last 10-20 years, such as the Nicola, may be at greater risk of decreasing base flows 

as young forests develop. As has been demonstrated, Nicola Chinook have seldom 

experienced the river discharge associated with stable population growth – only about 

one in five of the years examined did flows exceed 35% mean annual discharge in 

August. If maintaining a stable population is desired, flows in the river need to increase 

from their current patterns. Achieving this in the Nicola watershed is a challenge, but 

there are a suite of options to boost summer low flows. For example, the forestry sector 

could work to keep water on the landscape as long as possible by managing forests to 

enhance snow accumulation, soil moisture, and infiltration while delaying melt (e.g., 

minimizing logging on steep and south-facing slopes). This could be informed by water 

and energy budgets specific to regions and catchments, since the processes that drive 

runoff vary across forest composition, elevation, slope, aspect, and latitude (Boon, 2012; 

Ellis et al., 2011; Goeking & Tarboton, 2020; Hubbart et al., 2015; Winkler et al., 2014). 

Other diverse actions such as beaver dam analogs (Pollock et al., 2003), reassessing 

historical water licenses and farm subsidy programs for water conservation retrofits 

could mitigate the effects of rapid climate change on flow regimes critical for salmon 

productivity.  

My results and the growing body of work on the importance of variable flow 

conditions on salmon productivity are highly important given that many of these species 

are used by Indigenous, commercial and recreational fisheries (Nesbitt & Moore, 2016; 

Prince, 2002). Based on our model, mean August flow during rearing would need to be 

15 m3s-1 (50% MAD) to allow a harvest of 30% and escapement to spawning grounds at 

replacement levels. Given that year-to-year variation in freshwater conditions can have 

major implications for the productivity of some stocks, fisheries that are able to adjust 

based on these variable conditions will be more adaptable to actual productivity. 

Because different populations may have different or even opposite reactions to the same 

change in freshwater conditions (Jones et al., 2020; Neuswanger et al., 2015), fisheries 

that are able to be population-selective will also be better able to avoid those populations 
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that are more at risk from consistently changing flow regimes (e.g., steady decreases in 

summer base flow). Further, by incorporating quantified stock-recruit relationships that 

use freshwater conditions as inputs, fisheries managers can be more accurate in 

predicting total returns, and thus better match allocations to actual returns and avoid 

overfishing cohorts that have experienced poor freshwater conditions at critical life 

stages. For stocks of conservation concern, identifying key, limiting freshwater stages 

may become more and more important as climate changes continues to alter flow 

regimes in Canada and across the world.  

4.2. Watershed portfolios of temperature regimes 

In my second chapter, I showed that both maximum stream temperatures and 

climate sensitivity of streams across a watershed were related to several watershed 

characteristics. Stream sites with smaller upstream catchment areas had lower 

maximum stream temperatures, as did streams with more riparian cover. For a 50% 

increase in riparian tree cover, maximum temperature was on average 0.6°C lower. 

Streams with larger catchments had higher climate sensitivity, while those with more 

riparian cover and higher lake influence were less climate sensitive. My results also 

identified small tributaries as important sources of cooler water at the height of summer, 

while also being less sensitive to warm air temperatures.  

The link between riparian forest cover and lower maximum stream temperatures 

and lower climate sensitivity is important considering climate change projections. In 

combination with the result that smaller streams had lower maximum temperatures and 

were less sensitive to regional air temperatures, these results highlight the importance of 

preserving and restoring riparian cover for small streams. As this and other studies 

show, riparian forests buffer stream temperatures and their removal can increase stream 

temperatures by 4-6°C (Beakes et al., 2014; Garner et al., 2014; Macdonald et al., 

2003). Currently, the British Columbia Forest and Range Practices Act and its 

regulations do not require retention of any riparian trees around fish-bearing streams 

less than 1.5 m width or non fish-bearing streams less than 3 m width when logging 

(Forest Planning and Practices Regulation, 2018; Forest Practices Board, 2018). The 

consequences of small stream management is disproportionate with their individual size, 

as small stream catchments can make up 70-80% of total watershed area (Gomi et al., 

2002). Legislating the protection of riparian buffers around all small streams – whether 
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fish bearing or not – could mitigate some impacts of warming climates on thermal 

regimes. In combination with large-scale riparian planting programs, this could help 

struggling salmon populations persist in the coming century (Justice et al., 2017). 

Just as the effects of flow are context-specific, the effects of increased stream 

temperature depend on the overall patterns of temperature present. For example, 

warmer than average stream temperatures are associated with higher productivity in 

typically cold streams and lower productivity in typically warm streams (Jones et al., 

2020). The Nicola watershed shows signs of typically warm temperatures over the last 

several decades, with summertime temperatures in the main stem often exceeding 20°C 

(PSF, unpublished data). However, it also has tributary streams and headwater areas 

which stay cooler, such as the Coldwater River headwaters, which are used by rearing 

coho, Chinook, rainbow trout, and Dolly Varden (Swales & Levings, 1989). This study 

has shown that smaller tributaries and headwater areas with smaller catchment areas 

are less sensitive to warmer regional air temperatures, which may make them more 

suitable as cold-water refugia.  

4.3. Act like a river: the need for context, connectivity and 
integration 

Preserving complex, interdependent watershed functioning and species in the 

face of climate change is a dire challenge (Reid et al., 2019; Tickner et al., 2020). The 

regimes of flow and temperature that freshwater organisms depend on – such as 

summer base flows for Chinook identified here – are changing rapidly, and are expected 

to continue to change, with many potential effects on ecosystems with large uncertainty 

(Ficke et al., 2007; Heino et al., 2009). In this examination of flows and temperatures in 

the Nicola watershed, I have shown the importance of place-based, specific case studies 

in understanding the manifestations of global and regional changes to particular rivers 

and fishes. Indeed, place-based management – reliant on studies such as this – can 

help conserve fisheries in this era of pervasive changes (Gayeski et al., 2018).  

The naturally variable and integrative nature of rivers requires wholistic thinking 

and action in order to have desirable outcomes not only for fishes, but also wildlife, water 

supply, flood mitigation, and fire control. Just as rivers connect and integrate water, 

sediment, wood, and energy, our approach to river conservation must make connections 
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between typically divorced disciplines and integrate knowledge and planning to 

implement actions that will have the greatest benefits to multiple processes and species. 

For example, riparian restoration has the potential for multiple benefits (Feld et al., 2018; 

Seavy et al., 2009), including cooling stream temperatures (Garner et al., 2014; Justice 

et al., 2017), invertebrate productivity (Zalewski et al., 1998), woody debris input (Wohl 

et al., 2019), and fire mitigation and recovery (Dwire & Kauffman, 2003). Approached 

this way, the unique characteristics of river systems, like connectivity and integration, 

could actually serve to advance efforts to conserve processes and species throughout 

their networks. Humans would do well to identify the connected benefits that are 

possible when watersheds are treated as wholistic systems, where changes to the 

headwaters will have cascading effects downstream, for fishes and people. 
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Appendix A. 
 
Supplemental Material for Chapter 2 

Long-term Environmental Data 

We used the Harvested Areas of BC (Consolidated Cutblocks) layer to calculate 

areas logged in the Nicola watershed (Ministry of Forests, Lands, Natural Resource 

Operations and Rural Development, 2019). We used the weathercan package (LaZerte 

& Albers, 2018) to access air temperature and precipitation data for the Merritt and 

Merritt STP weather stations from Environment and Climate Change Canada. We used 

the tidyhydat package (Albers, 2017) to access hydrometric data from the Water Survey 

of Canada’s HYDAT database. There was no hydrometric information from 1921-1956. 

Naturalized long-term mean annual discharge (mean annual discharge plus estimated 

water usage) was based on HYDAT hydrometric data and an estimate of annual water 

usage (unpublished data, Ptolemy; Summit Environmental Consultants Ltd., 2007). We 

accessed water allocation data from the Water Licenses Query website using stream 

name = Nicola, and removed licenses for conservation or dam storage purposes 

(Government of British Columbia, 2020).  

We also used the Freshwater Atlas (GeoBC, 2019) and the Atlas of Canada 

1:1,000,000 National Scale Data – Boundaries, Rivers, Waterbodies (GeoBC & Natural 

Resources Canada, 2019) with QGIS (QGIS Development Team, 2020) to make Figure 

2.1. 

There was no evidence of correlation between the five covariates used in the 

stock-recruit model. The greatest correlation between these variables was -0.47.  

Accounting for Unmarked Hatchery Adults 

The period of the analysis includes years when the Spius Creek hatchery 

released unmarked Chinook into the Nicola River and tributaries. (Marked fish refers to 

fish that are adipose fin-clipped and have a CWT.) These included unmarked fry, sub-

yearling smolts, and yearling smolts. When these unmarked spawners of hatchery origin 

return to the river, they are not distinguishable from wild origin spawners except by 
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genetic or otolith methods, which were not used. To measure actual recruitment from 

wild spawners, we needed to estimate how many of the unmarked adults in the study 

period were actually of hatchery origin. We downloaded hatchery release data from the 

Regional Mark Information System (Regional Mark Processing Center 2019) 

There were four types of hatchery releases that we estimated unmarked adult 

returns from: 

• Type 1: Releases of unmarked fish with complementary releases of marked 
fish of the same stage, brood year, and stock. 

• Type 2: Releases of unmarked fish that did not have complementary releases 
of marked fish of the same stage; unmarked fish which had a complementary 
release of marked fish of another stage in the same brood year, where those 
two stages have paired tagged releases in another brood year. 

• Type 3: Hatchery-origin strays from Coldwater and Spius stocks: unmarked 
fish of Coldwater and Spius stock, which had complementary release of same 
stage, same brood year of marked fish from Nicola stock, where those 
stages/stocks have paired tagged releases in another brood year 

• Type 4: Releases of unmarked fish that never had coded wire tags or clipped 
adipose fins for that stage (Coldwater fry, Spius fry and sub-yearling smolts).  

Type 1  

We calculated a return index – the fraction of CWT adult returns to the river from 

the total number of CWT fish released from the hatchery, for each combination of return 

age, stage of hatchery release (fry, sub-yearling, or yearling), brood year, and stock 

(Nicola, Coldwater, or Spius), which were summed by age, brood year and stock before 

dividing (Equation A1). These were pooled because CWT tag numbers within a stage, 

brood year and stock do not represent different treatments but reflect the limited number 

of CWT tag codes in each tagging wire. For years with paired marked/unmarked 

releases, we then expanded the return index by the the number of unmarked releases to 

get an estimate of unmarked hatchery adult returns (Equation A2).  

𝑅𝑒𝑡𝑢𝑟𝑛𝐼𝑛𝑑𝑒𝑥𝑎𝑔𝑒,𝑠𝑡𝑎𝑔𝑒,𝐵𝑌,𝑠𝑡𝑜𝑐𝑘 =
∑ 𝑀𝑎𝑟𝑘𝑒𝑑𝐴𝑑𝑢𝑙𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑠𝑇𝑜𝑁𝑖𝑐𝑜𝑙𝑎𝑎𝑔𝑒,𝐵𝑌,𝑠𝑡𝑜𝑐𝑘

∑ 𝑀𝑎𝑟𝑘𝑒𝑑𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠𝑠𝑡𝑎𝑔𝑒,𝐵𝑌,𝑠𝑡𝑜𝑐𝑘
   (A1) 

𝑈𝑛𝑚𝑎𝑟𝑘𝑒𝑑𝐻𝑎𝑡𝑐ℎ𝑒𝑟𝑦𝐴𝑑𝑢𝑙𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑠𝑎𝑔𝑒,𝑠𝑡𝑎𝑔𝑒,𝐵𝑌 = 𝑈𝑛𝑚𝑎𝑟𝑘𝑒𝑑𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠𝑠𝑡𝑎𝑔𝑒,𝐵𝑌,𝑠𝑡𝑜𝑐𝑘 ⋅

𝑅𝑒𝑡𝑢𝑟𝑛𝐼𝑛𝑑𝑒𝑥𝑎𝑔𝑒,𝑠𝑡𝑎𝑔𝑒,𝐵𝑌,𝑠𝑡𝑜𝑐𝑘    (A2) 
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Type 2 

For releases of unmarked fish that didn’t have a marked release of the same 

stage and brood year, we calculated a return index factor which was the ratio of the 

return index values for the stage of the release to esimate returns for and the stage with 

a complementary release of marked fish, for each age and brood year (Equation A3). 

Then, we took an average of these return idex factors by return age, across all years 

where these stages had shared CWT releases (Equation A4).  

𝑅𝑒𝑡𝑢𝑟𝑛𝐼𝑛𝑑𝑒𝑥𝐹𝑎𝑐𝑡𝑜𝑟𝑠𝑡𝑎𝑔𝑒1:𝑠𝑡𝑎𝑔𝑒2,𝑎𝑔𝑒,𝐵𝑌 =
𝑅𝑒𝑡𝑢𝑟𝑛𝐼𝑛𝑑𝑒𝑥𝑠𝑡𝑎𝑔𝑒1,𝑎𝑔𝑒,𝐵𝑌

𝑅𝑒𝑡𝑢𝑟𝑛𝐼𝑛𝑑𝑒𝑥𝑠𝑡𝑎𝑔𝑒2,𝑎𝑔𝑒,𝐵𝑌
 (A3) 

𝑅𝑒𝑡𝑢𝑟𝑛𝐼𝑛𝑑𝑒𝑥𝐹𝑎𝑐𝑡𝑜𝑟𝑠𝑡𝑎𝑔𝑒1:𝑠𝑡𝑎𝑔𝑒2,𝑎𝑔𝑒 =
1

𝑁
∑ 𝑅𝑒𝑡𝑢𝑟𝑛𝑁

𝑖 𝐼𝑛𝑑𝑒𝑥𝐹𝑎𝑐𝑡𝑜𝑟𝑠𝑡𝑎𝑔𝑒1:𝑠𝑡𝑎𝑔𝑒2,𝑎𝑔𝑒,𝐵𝑌𝑖
 (A4) 

To estimate the unmarked hatchery adult returns for these releases, we then 

multipled the number of umarked hatchery releases by the return index for the 

complementary stage and by the return index for that complementary stage for the brood 

year and age of interest (Equation A5).  

𝑈𝑛𝑚𝑎𝑟𝑘𝑒𝑑𝐻𝑎𝑡𝑐ℎ𝑒𝑟𝑦𝐴𝑑𝑢𝑙𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑠𝑎𝑔𝑒,𝐵𝑌 = 𝑈𝑛𝑚𝑎𝑟𝑘𝑒𝑑𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠𝑠𝑡𝑎𝑔𝑒1,𝐵𝑌 ⋅

𝑅𝑒𝑡𝑢𝑟𝑛𝐼𝑛𝑑𝑒𝑥𝑎𝑔𝑒,𝑠𝑡𝑎𝑔𝑒2,𝐵𝑌 ⋅ 𝑅𝑒𝑡𝑢𝑟𝑛𝐼𝑛𝑑𝑒𝑥𝐹𝑎𝑐𝑡𝑜𝑟𝑠𝑡𝑎𝑔𝑒1:𝑠𝑡𝑎𝑔𝑒2,𝑎𝑔𝑒  (A5) 

Type 3 

Based on CWT analysis, there is a small number of strays of hatchery releases 

of Coldwater River and Spius Creek origin that return to the Nicola River late run and are 

counted in the Nicola late run mark recapture program. Some of these unmarked fish are 

from years with complementary CWT releases and were estimated as part of the Type 1 

category. Others did not have paired releases of CWT fish, but had paired releases of 

the same age and stage but from Nicola brood stock. To estimate the number of these 

unmarked adult strays we calculated a return index factor which was a proportion of the 

return index for stock of interest and the the Nicola origin hatchery release of the same 

age, stage and brood year (Equation A6). 

𝑅𝑒𝑡𝑢𝑟𝑛𝐼𝑛𝑑𝑒𝑥𝐹𝑎𝑐𝑡𝑜𝑟𝑠𝑡𝑜𝑐𝑘𝑗:𝑠𝑡𝑜𝑐𝑘𝑁𝑖𝑐𝑜𝑙𝑎,𝑠𝑡𝑎𝑔𝑒,𝑎𝑔𝑒,𝐵𝑌 =
𝑅𝑒𝑡𝑢𝑟𝑛𝐼𝑛𝑑𝑒𝑥𝑠𝑡𝑜𝑐𝑘𝑗,𝑎𝑔𝑒,𝑠𝑡𝑎𝑔𝑒,𝐵𝑌

𝑅𝑒𝑡𝑢𝑟𝑛𝐼𝑛𝑑𝑒𝑥𝑠𝑡𝑜𝑐𝑘𝑁𝑖𝑐𝑜𝑙𝑎,𝑎𝑔𝑒,𝑠𝑡𝑎𝑔𝑒,𝐵𝑌
 (A6) 
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After calculating a return index factor for each pair of Coldwater/Spius and Nicola 

stocks, we averaged these factors across brood years to get an average proportion of 

strays to Nicola returns (Equation A7). 

𝑅𝑒𝑡𝑢𝑟𝑛𝐼𝑛𝑑𝑒𝑥𝐹𝑎𝑐𝑡𝑜𝑟𝑠𝑡𝑜𝑐𝑘𝑗:𝑠𝑡𝑜𝑐𝑘𝑁𝑖𝑐𝑜𝑙𝑎,𝑎𝑔𝑒 =

1

𝑁
∑ 𝑅𝑒𝑡𝑢𝑟𝑛𝐼𝑛𝑑𝑒𝑥𝐹𝑎𝑐𝑡𝑜𝑟𝑠𝑡𝑜𝑐𝑘𝑗:𝑠𝑡𝑜𝑐𝑘𝑁𝑖𝑐𝑜𝑙𝑎,𝑎𝑔𝑒,𝑠𝑡𝑎𝑔𝑒,𝐵𝑌𝑖

𝑁
𝑖  (A7) 

Using this average return index factos, we multiplied the number of unmarked 

fish by the return index of hatchery releases of the same age, stage and brood year of 

Nicola origin fish and by the appropriate return index factor (Equation A8). 

𝑈𝑛𝑚𝑎𝑟𝑘𝑒𝑑𝐻𝑎𝑡𝑐ℎ𝑒𝑟𝑦𝐴𝑑𝑢𝑙𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑠𝑎𝑔𝑒,𝐵𝑌 = 𝑈𝑛𝑚𝑎𝑟𝑘𝑒𝑑𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑠𝑠𝑡𝑜𝑐𝑘𝑗,𝑠𝑡𝑎𝑔𝑒,𝐵𝑌 ⋅

𝑅𝑒𝑡𝑢𝑟𝑛𝐼𝑛𝑑𝑒𝑥𝑎𝑔𝑒,𝑠𝑡𝑜𝑐𝑘𝑁𝑖𝑐𝑜𝑙𝑎,𝑠𝑡𝑎𝑔𝑒,𝐵𝑌 ⋅ 𝑅𝑒𝑡𝑢𝑟𝑛𝐼𝑛𝑑𝑒𝑥𝐹𝑎𝑐𝑡𝑜𝑟𝑠𝑡𝑜𝑐𝑘𝑗:𝑠𝑡𝑜𝑐𝑘𝑁𝑖𝑐𝑜𝑙𝑎,𝑠𝑡𝑎𝑔𝑒,𝑎𝑔𝑒 (A8) 

Type 4 

There were a very small number of releases of unmarked hatchery fish of 

Coldwater and Spius stocks of stages that have not had any complimentary CWT 

release. As such, it is not possible to estimate the number of strays from these fish that 

end up in the Nicola late run mark-recapture program. We assume that this number is 

very low.  

Accounting for Unmarked Hatchery Adults in Escapement 

After estimating the number of unmarked hatchery adults for each brood year 

and age for each type and summed these estimates for each brood year and age, we 

subtracted this amount from the number of unmarked adults on the spawning grounds 

as estimated by the mark-recapture program to get an esimated of wild escapement 

(Equation A9). If the result was negative, we used 0 instead. 

𝐸𝑠𝑐𝑎𝑝𝑒𝑚𝑒𝑛𝑡𝐵𝑌,𝑎𝑔𝑒 = 𝑈𝑛𝑚𝑎𝑟𝑘𝑒𝑑𝐴𝑑𝑢𝑙𝑡𝑠𝐵𝑌,𝑎𝑔𝑒 − 𝑈𝑛𝑚𝑎𝑟𝑘𝑒𝑑𝐻𝑎𝑡𝑐ℎ𝑒𝑟𝑦𝐴𝑑𝑢𝑙𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑠𝐵𝑌,𝑎𝑔𝑒 

(A9) 
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Accounting for Fishing Mortality 

We assumed that the rate of fishing mortality of wild fish was equal to that for 

hatchery fish for each age and brood year. This is possible if there is both escapement 

and recovery of CWT from fish caught in a fishery. Fisheries and Oceans Canada 

estimates age-specific mortality from fishing of hatchery fish using CWT recoveries from 

fisheries. We estimated wild recruitment from these exploitation rates and the wild 

escapement (Equation A10). The fishing rates are the total fishing mortality, which 

include landed catch plus incidental mortality. No adjustments were made for any 

differential mortality that could have occurred from mark selective fishing regulations. 

𝑊𝑖𝑙𝑑𝑅𝑒𝑐𝑟𝑢𝑖𝑡𝑠𝐵𝑌,𝑎𝑔𝑒 =
𝑊𝑖𝑙𝑑𝐸𝑠𝑐𝑎𝑝𝑒𝑚𝑒𝑛𝑡𝐵𝑌,𝑎𝑔𝑒

1−𝐶𝑊𝑇𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒𝐵𝑌,𝑎𝑔𝑒
 (A10) 

For ages and brood years where there were 0 fish with CWT counted in 

escapement: 

• If there were CWT fish caught in the fishery, this would imply an exploitation 
rate of 100%, which would give a recruitment of infinity. Because this is 
impossible, in these years/ages, we used an expansion factor to estimate the 
number of wild fish caught in the hatchery and then found total escapement 
(Equations A11, A12).  

𝑊𝑖𝑙𝑑𝐹𝑖𝑠ℎ𝑀𝑜𝑟𝑡𝑎𝑔𝑒𝑖,𝐵𝑌 = 𝐶𝑊𝑇𝐹𝑖𝑠ℎ𝑀𝑜𝑟𝑡𝑎𝑔𝑒𝑖,𝐵𝑌 ∙  
𝑊𝑖𝑙𝑑𝐸𝑠𝑐𝑎𝑔𝑒𝑗,𝐵𝑌+𝑊𝑖𝑙𝑑𝐸𝑠𝑐𝑎𝑔𝑒𝑘,𝐵𝑌

𝐶𝑊𝑇𝐸𝑠𝑐𝑎𝑔𝑒𝑗,𝐵𝑌+𝐶𝑊𝑇𝐸𝑠𝑐𝑎𝑔𝑒𝑘,𝐵𝑌
 (A11) 

𝑊𝑖𝑙𝑑𝑅𝑒𝑐𝑟𝑢𝑖𝑡𝑠𝐵𝑌,𝑎𝑔𝑒 = 𝑊𝑖𝑙𝑑𝐹𝑖𝑠ℎ𝑀𝑜𝑟𝑡𝑎𝑔𝑒,𝐵𝑌 + 𝑊𝑖𝑙𝑑𝐸𝑠𝑐𝑎𝑝𝑒𝑚𝑒𝑛𝑡𝑎𝑔𝑒,𝐵𝑌 (A12) 

• If there were no CWT caught in the fishery, then an average of the exploitation 
rate for that age from all other years with both CWT in escapement and fishery 
was used. 

Bayesian Model Details 

We used the rstan package (Stan Development Team, 2019) to fit the Bayesian 

models. Although an informative prior could be chosen for  based on previous research 

on Chinook populations (Parken et al., 2006), we used a uniform prior to aid model fitting 

and because the inclusion of covariates in the Ricker equation changes the relative 

value of  compared to analyses that do not include covariates. We used the following 

initial values: random draw from a uniform distribution between 0 and 3 for loge(); 
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random draw from a uniform distribution between 0.0002 and 0.0001 for , W, and H; 

random draw from a normal distribution with mean 0 and SD 0.1 for b1, b2, b3, b4, and b5; 

and random draw from a uniform distribution between 0 and 2 for . We ran all models 

with 3 chains of 10000 iterations, with a warmup (burn in) of 5000 iterations. We did not 

find any evidence of autocorrelation for model 8b (spurious lag-3 auto-correlation). 

Comparison of Effect Sizes Across Models 

Estimates of effect terms were mainly stable when comparing between models 

(Figure A11). This indicates that the effects are not very sensitive to whether certain 

variables are included or excluded. The most stable effect sizes were for mean August 

flow for rearing, which adds support that this parameter is important in explaining the 

variation in the recruitment. The parameter with the most variation in effect sizes across 

models was smolt to age 3 survival. 

Density-dependence of Hatchery and Wild Spawners 

There was limited evidence that density dependence was stronger for hatchery 

spawners compared to wild spawners. The second most parsimonious model from 

WAIC and third most for LOO included different  terms for wild and hatchery fish. Using 

 and  terms from this model, the strength of density dependence for wild fish ( = 

0.00014) was about half that of hatchery fish ( = 0.00024, Figure A11b), with respective 

carrying capacities of 8007 and 4339 (Figure A8). However, the credible intervals 

overlapped and the 90% CI for W was contained by the 90% CI for H (Figure A11b). 

This pattern, although weak, is consistent with findings that hatchery salmon have 

stronger density dependence and lower carrying capacities than wild salmon (Buhle et 

al., 2009; Ward et al., 2015; Williamson et al., 2010). 
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Table A1. Candidate models. Note that models with “b” had one  term for 

total spawners, and models without “b” had two  terms (W for 

wild, H for hatchery spawners). 

Model 
name 

Parameters 
Number of  parameters (1 for total spawners, 
or 2 for hatchery and wild spawners) 

0 Base model: smolt-to-age 3 survival only 1 

1b Base + spawning flows 1 

2b Base + fall flood 1 

3b Base + ice days 1 

4b Base + rearing flows 1 

5b Base + summer terms 1 

6b Base + fall/winter terms 1 

7b Full - spawning flows 1 

8b Full - fall flood 1 

9b Full - ice days 1 

10b Full - rearing flows 1 

11b 
Full model (Base + spawning flows + fall 
flood + ice days + rearing flows) 

1 

1 Base + spawning flows 2 

2 Base + fall flood 2 

3 Base + ice days 2 

4 Base + rearing flows 2 

5 Base + summer terms 2 

6 Base + fall/winter terms 2 

7 Full - spawning flows 2 

8 Full - fall flood 2 

9 Full - ice days 2 

10 Full - rearing flows 2 

11 
Full model (Base + spawning flows + fall 
flood + ice days + rearing flows) 

2 
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Table A2. Proportion of area clearcut in last 20 years in major catchments in 
the Nicola watershed. 

Catchment Stream order 
Catchment 
area (ha) 

Clearcut area 
since 2000 (ha) 

Percent clearcut since 
2000 

Nicola River 8 718379 119977 17% 

Guichon Creek 7 119250 27372 23% 

Coldwater River 6 91228 11533 13% 

Quilchena Creek 6 77953 14426 19% 

Spius Creek 6 76756 4503 6% 

Meadow Creek 6 30943 6887 22% 

Stumplake Creek 5 30473 4217 14% 

Spahomin Creek 5 23604 3129 13% 

Skuhun Creek 6 23201 6951 30% 

Clapperton Creek 5 23189 8505 37% 

Chapperon Creek 5 22255 5091 23% 

Prospect Creek 5 22154 718 3% 

Maka Creek 5 21607 1813 8% 

Voght Creek 5 21046 4771 23% 
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Table A3. Parameter estimates from top model 8b. 

 Mean SE SD 10% 90% 

alpha 2.870441 0.010848 0.949462 1.825359 4.06135 

beta 0.000165 0 3.90E-05 0.000116 0.000215 

b1 0.029556 0.002253 0.203438 -0.22923 0.28449 

b2 0.209371 0.001734 0.171638 -0.00457 0.427826 

b4 -0.32564 0.002337 0.210528 -0.58604 -0.06327 

b5 0.454623 0.001902 0.178372 0.228721 0.68003 

tau 0.756471 0.001992 0.142339 0.595594 0.944297 
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Table A4. WAIC scores for model comparison 

Model WAIC Estimated 
effective 
number of 
parameters 

dWAIC Akaike 
weight 

SE 
(WAIC) 

SE (dWIAC) Cumulative 
weight 

Model 8b 55.2 4.81 0 0.13 4.39 NA 0.13 

Model 8 55.36 5.34 0.16 0.12 4.67 1.59 0.26 

Model 7b 55.41 4.8 0.21 0.12 4.5 2.79 0.38 

Model 11b 55.95 5.38 0.74 0.09 4.47 1.53 0.47 

Model 5b 56.32 4 1.12 0.08 5.73 3.66 0.55 

Model 11 56.61 5.77 1.4 0.07 4.36 1.5 0.61 

Model 9b 56.71 4.5 1.51 0.06 5.95 4.18 0.67 

Model 7 56.89 5.34 1.69 0.06 4.49 3.09 0.73 

Model 5 57.07 4.52 1.87 0.05 5.63 3.78 0.78 

Model 4b 57.81 3.34 2.6 0.04 4.41 3.41 0.82 

Model 2b 58.11 3.35 2.91 0.03 5.93 5.19 0.85 

Model 9 58.27 5.06 3.06 0.03 5.57 3.95 0.88 

Model 6b 59.03 4.41 3.83 0.02 5.67 4.9 0.9 

Model 4 59.22 3.86 4.01 0.02 4.27 3.78 0.92 

Model 2 59.9 3.97 4.7 0.01 5.69 5.18 0.93 

Model 0b 60.13 2.95 4.93 0.01 4.66 4.17 0.94 

Model 1b 60.45 3.63 5.25 0.01 5.2 4.32 0.95 

Model 10b 60.62 4.99 5.42 0.01 5.51 4.6 0.96 

Model 3b 60.67 3.97 5.47 0.01 5.26 4.78 0.97 

Model 6 60.84 4.91 5.64 0.01 5.37 4.85 0.98 

Model 1 60.96 3.92 5.75 0.01 5.02 4.36 0.99 

Model 0 61.5 3.48 6.3 0.01 4.52 4.37 0.99 

Model 10 62.01 5.34 6.81 0 5.19 4.53 1 

Model 3 62.18 4.56 6.98 0 5.22 4.97 1 
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Table A5. Estimates from leave-one-out (LOO) cross-validation for Bayesian 
models using Pareto smoothed importance sampling 

Model ELPD diff. SE diff. ELPD LOO SE ELPD LOO p LOO SE p LOO LOOIC SE LOOIC 

Model 8b 0 0 -28.03 2.33 5.24 1.01 56.05 4.67 

Model 7b -0.18 1.49 -28.21 2.37 5.3 0.93 56.42 4.75 

Model 8 -0.21 0.81 -28.24 2.49 5.89 1.04 56.48 4.98 

Model 11b -0.5 0.79 -28.53 2.37 5.93 1.04 57.05 4.75 

Model 5b -0.51 1.87 -28.53 3.03 4.37 1.14 57.07 6.07 

Model 9b -0.75 2.12 -28.77 3.14 4.91 1.14 57.55 6.28 

Model 11 -0.92 0.77 -28.95 2.34 6.41 0.99 57.9 4.67 

Model 5 -0.97 1.93 -28.99 2.97 4.97 1.1 57.98 5.95 

Model 7 -0.99 1.64 -29.02 2.38 5.92 0.96 58.04 4.76 

Model 4b -1.09 1.73 -29.12 2.27 3.55 0.64 58.24 4.55 

Model 2b -1.21 2.62 -29.24 3.07 3.53 0.8 58.47 6.14 

Model 9 -1.7 2.03 -29.73 2.97 5.65 1.11 59.46 5.93 

Model 6b -1.8 2.5 -29.83 2.97 4.72 1.08 59.65 5.94 

Model 4 -1.9 1.94 -29.92 2.21 4.18 0.66 59.85 4.41 

Model 0b -2.19 2.1 -30.21 2.41 3.1 0.6 60.43 4.81 

Model 2 -2.2 2.63 -30.22 2.95 4.25 0.84 60.45 5.91 

Model 1b -2.48 2.16 -30.51 2.7 3.92 0.82 61.02 5.39 

Model 3b -2.59 2.42 -30.61 2.75 4.25 0.98 61.22 5.51 

Model 10b -2.76 2.33 -30.78 2.92 5.46 1.16 61.57 5.84 

Model 1 -2.77 2.18 -30.79 2.59 4.24 0.75 61.59 5.19 

Model 6 -2.84 2.5 -30.87 2.86 5.36 1.11 61.74 5.71 

Model 0 -2.99 2.22 -31.02 2.34 3.74 0.66 62.03 4.68 

Model 10 -3.54 2.28 -31.57 2.75 5.9 1.09 63.13 5.5 

Model 3 -3.72 2.57 -31.74 2.79 5.22 1.14 63.48 5.58 
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Figure A1. Observed (points) and predicted (mean, 10%, 50%, and 90% credible 
intervals) of loge(Recruits/Spawner) for Nicola Chinook salmon, 
1992-2013. 
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Figure A2. Unscaled covariates for each of the 22 cohorts. Note that all 
variables were centered and standardized to mean=0 and SD=1 
before analysis. 
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Figure A3. Boxplots (black) and mean values (blue) of August daily discharge 
of the Nicola River, 1911-2014. The orange dashed line indicates 
15% mean annual discharge (4.47 m3s-1). 
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Figure A4. Predicted (mean with 90% credible intervals) vs. observed 
loge(Recruits/Spawner), with 1:1 slope line in orange. Based on top 
model 8b. 
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Figure A5. R2 values for the 24 candidate models based on predicted 
loge(Recruits/Spawner) ~ observed loge(Recruits/Spawner). 

R2 
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Figure A6. LOO comparison between models. The black circles and horizontal 
lines are the ELPD LOO and SE. The vertical black line is the ELPD 
LOO of the top model. The gray triangles and horizontal lines are the 
difference between each ELPD LOO and the ELPD LOO of the top 
model, with SE bars. Note that the difference SE for model 11 does 
not overlap 0. 
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Figure A7. WAIC comparison between models. Black open circles and 
horizontal lines are the WAIC estimates for each model with SE. The 
vertical black line is the WAIC of the top model. The Gray triangles 
and horizontal lines are the difference between the WAIC of each 
model and the WAIC of the top model with SE. Closed black circles 
are the in-sample deviance of each model. 
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Figure A8. Solid lines show the difference between stock recruit relationship 
when using the mean estimated beta terms for wild spawners (blue) 
and hatchery spawners (red) from model 8 and total spawners (gray) 
from model 8b. Dotted lines use the 80% credible intervals for beta 
estimates. 
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Figure A9. Data from inclined plane trapping of downstream-migrating juvenile 
Chinook in 1985 (data from Lauzier and McPherson 1987). (a) 
Cumulative proportion of total catch per unit effort (number of fish 
per hours fished; CPUE) of Chinook fry; (b) Chinook fry CPUE; (c) 
wild Chinook parr CPUE; and (d) daily discharge in the Nicola River, 
Environment Canada hydrometric station 08LG006 (Nicola River 
near Spences Bridge). 
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Figure A10. (a) Observed wild recruits plotted against total spawners (points). 
The black line is the Ricker curve based on alpha and beta values 
only (from the top model 8b), and the blue lines are the residuals. (b-
f) Residuals of observed total recruits and predictions from mean 
Ricker curve in panel (a), plotted as a function of the five 
environmental covariates tested: (b) smolt-to-age 3 survival; (c) 
mean August flow during spawning; (d) maximum fall flood during 
incubation; (e) ice days; and (f) mean August flow during rearing. 
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Figure A11. Parameter estimates under the 24 models for (a) environmental 
covariates and (b) beta terms. 
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Figure A12. Time series of Chinook total, wild, and hatchery spawners in the 
Nicola River. Wild and hatchery spawner abundances account for 
unmarked hatchery as explained in Appendix A. 
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Appendix B. 
 
Supplemental Material for Chapter 3 

Table B1. Watershed characteristics of the 50 stream temperature monitoring 
sites. 

Site 
ID 

Site name 
Catchment area 
(m²) 

Mean catchment 
elevation (m) 

Lake 
index 

Riparian tree 
cover 

200 Clapperton Creek 230277918 1361 157 0.000 

201 
Nicola River upstream of 
Clapperton Creek 

2933482568 1235 34328 0.004 

202 Quilchena Creek 771494216 1250 622 0.124 

203 
Nicola River above Nicola Lake 
1 

1421302695 1300 2246 0.769 

204 
Nicola River above Nicola Lake 
2 

1403240824 1304 2301 0.488 

205 
Nicola River above Douglas 
Lake 1 

950778425 1332 1160 0.642 

207 
Nicola River above Douglas 
Lake 3 

947738792 1334 1166 0.720 

208 
Coldwater River above Patchett 
Road 

617339810 1322 182 0.477 

209 
Coldwater River under Gillis 
Road 

357120005 1404 69 0.478 

210 Juliet Creek 69041409 1557 6 0.493 

211 
Coldwater River above Juliet 
Creek 

130838439 1452 16 1.000 

212 
Coldwater River below Juliet 
Creek 

200164186 1488 21 1.000 

213 Coldwater River at Gravel Pit 47816104 1440 14 0.520 

214 Coldwater River Headwaters 47400859 1442 15 1.000 

215 
Nicola River below Skeikut 
Creek 

7011327271 1259 2185 0.000 

216 
Nicola River below Kloklwuck 
Creek 

7067002867 1258 2052 0.000 

217 
Nicola River near Spences 
Bridge 

7101386082 1256 1945 0.000 

218 Skuhun Creek 1 234150265 1385 88 1.000 

219 Skuhun Creek 2 173672721 1453 133 1.000 

220 Skuhost Creek 54976892 1531 8 1.000 

221 
Nicola River above Manning 
Creek 

6560153102 1260 2528 0.938 

222 Nicola River at Shackelly Creek 6441932323 1262 2717 0.420 

223 Nuaitch Creek 82316288 1321 10 1.000 

225 Prospect Creek 138314872 1579 37 1.000 

227 Nicola River above Hatchery 5535803706 1250 3085 0.283 
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Site 
ID 

Site name 
Catchment area 
(m²) 

Mean catchment 
elevation (m) 

Lake 
index 

Riparian tree 
cover 

228 
Nicola River at Sunshine Valley 
Road 

5507780754 1252 3345 0.240 

229 Guichon Creek at Nicola River 1150775548 1346 473 0.000 

230 Spius Creek at Maka Creek 386908564 1387 94 0.987 

231 Skuhun Creek 3 69222210 1508 145 1.000 

232 
Guichon Creek above Mamit 
Lake 

684580223 1387 533 0.000 

233 Quilchena Creek 2 771487201 1250 624 0.196 

234 Nicola Lake at Dam 2933397526 1235 65431 0.000 

235 Clapperton Creek 2 183437893 1394 208 1.000 

237 Nicola River at Norgaards 4220583866 1234 4078 0.000 

238 Gillis Creek 1 11829628 1312 85 0.514 

239 Gillis Creek 2 11826348 1312 86 0.481 

240 Voght Creek 1 209328863 1238 132 0.911 

241 Voght Creek 2 209392917 1238 130 0.990 

242 Maka Creek 1 214623884 1365 43 0.167 

244 Spius Creek above Maka Creek 170926497 1417 51 0.987 

245 Spius Creek at Hatchery Intake 764901113 1368 101 0.411 

246 Prospect Creek 2 138303569 1579 37 1.000 

247 
Spaxomin Creek near Douglas 
Lake 

239230171 1406 751 0.074 

248 
Nicola River at outlet of Douglas 
Lake 

1273217180 1328 150182 0.000 

250 
Nicola River above Chaperon 
Creek 

530004642 1431 456 0.732 

251 
Nicola River below Chaperon 
Creek 

773129294 1378 1521 0.402 

252 Beaks Creek 82863881 1439 12 1.000 

253 Nicola River above Beaks Creek 330188099 1494 463 1.000 

300 
Nicola River at Guichon Creek 
confluence 

5446299561 1255 3701 0.508 

301 Nicola River at Petit Creek 6330929863 1263 2905 0.854 

 


