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Abstract

Can we trust that the attention heatmaps produced by a neural machine translation (NMT) model re-

flect its true internal reasoning? We isolate and examine in detail the notion of faithfulness in NMT

models. We provide a measure of faithfulness for NMT based on a variety of stress tests where

model parameters are perturbed and measuring faithfulness based on how often each individual

output changes. We show that our proposed faithfulness measure for NMT models can be improved

using a novel differentiable objective that rewards faithful behaviour by the model through probabil-

ity divergence. Our experimental results on multiple language pairs show that our objective function

is effective in increasing faithfulness and can lead to a useful analysis of NMT model behaviour and

more trustworthy attention heatmaps. Our proposed objective improves faithfulness without reduc-

ing the translation quality and it also seems to have a useful regularization effect on the NMT model

and can even improve translation quality in some cases.

Keywords: deep learning; neural network; neural machine translation; interpretability; attention;

faithfulness
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Chapter 1

Introduction

Although neural models have become the standard solutions for solving many challenging tasks

including Machine Translation (MT), they are considered as black-boxes as their internal compu-

tations are not necessarily human-interpretable. In this thesis we have focused on analyzing and

improving attention, as an omnipresent component in many neural models, from interpretability

perspective. Thus, in Sec. 1.1 we discuss the importance of interpretability in the context of neural

models. Then we focus on attention as an interpretation method and briefly mention the notion of

faithfulness in Sec. 1.2. In this work we have an encoder-decoder model as our baseline and con-

sequently we provide a brief overview of the encoder-decoder model with attention in Sec. 1.3. In

Sec. 1.4 we discuss our contributions and in the end we present an overview of this thesis in Sec. 1.5.

1.1 Interpretability of Neural Models

With advances in sequence-to-sequence (Seq2Seq) models [59], Neural Machine Translation (NMT)

systems augmented with attention mechanism [5] have achieved state-of-the-art in many language

translation tasks. One shortcoming of NMT models, and neural models in general, is that it is usu-

ally difficult for a human interrogator to analyze or understand the true internal reasoning of the

neural model for making a particular prediction [15, 18]. The underlying reason behind this dif-

ficulty is that information and concepts are represented as real-valued vectors in neural networks.

Consequently it’s a challenge to interpret these vectors. Why do we want neural models to be in-

terpretable? There can be at least two reasons for this. First of all, to debug a model during error

analysis, it is crucial to know how each part of the model is contributing to the prediction and to

the error. Moreover, understanding the internal workings of a model is necessary for discovering its

deficiencies and improving it. This calls for interpretable neural models and also development of

models and methods for understanding and explaining these models. Accordingly, this has led to a

wide variety of contemporary NLP research focusing (a) different axes of interpretability including

plausibility (or interchangeably human-interpretability) [19, 31] and faithfulness (agreement of an

explanation with the internal reasoning of a model) [38, 20], (b) interpretation of the neural model

components [7, 12, 64], (c) explaining the decisions made by neural models to humans (using expla-
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 je to moorův zákon  
za posledních sto let 

  je to moorův zákon  
za posledních sto let 

it’s moore’s law 
for the last century

it’s moore’s law 
for the last century

0.00 1.00
attention weights

Figure 1.1: An example translation from Cs-En producing unfaithful attention weights. The model
is generating the token century. In the left attention heatmap, the attention is on the word sto while
the decoder generates century. However, in the right heatmap, sto is not attended to at all but
century is still produced as the output. This is an example of unfaithful behavior. Yellow words are
not attended.

nations, highlights, rationales, etc.) [51, 35, 14, 17, 6, 23], and (d) evaluating different explanation

methods from different perspectives [54, 45, 49, 22, 55, 67, 34] which are all discussed in details in

Chapter 2.

1.2 Attention Interpretability and Faithfulness

The advent of attention in neural models has improved the overall accuracy in many different tasks.

Attention has become an omnipresent component in neural machine translation models and more

generally in the architecture of neural models in NLP. The attention mechanism provides a proba-

bility distribution over the input with respect to a state variable such as decoding state in NMT. This

probability distribution is used to summarize source-side information into a context-vector and is

fed to the decoder as an additional signal for prediction. Along with their use in improving perfor-

mance across different tasks, attention weights are widely implicitly or explicitly used to explain

the predictions made by neural models [14, 16, 17]. The general idea is that attention weights can

be indicators of the importance of inputs for producing a particular prediction. However, whether

or not attention is a reliable source for explanation is often taken for granted. Consequently, there

has been a great interest recently in the community in investigating the credibility of attention as

explanation [22, 67, 55].

In this work we have focused on the faithfulness of interpretations offered by attention, that is

the extent to which the model’s internal reasoning process is actually based on that interpretation.

Faithfulness of these interpretations are particularly important for NLP practitioners who wish to

debug their neural models and improve them. Identification of the faults of a neural model cannot be

done if the neural model is not providing a faithful and trustworthy description of what it is doing.

Jacovi and Goldberg [20] emphasize distinguishing faithfulness from human-interpretability in in-

terpretability research by providing several clarifications about the terminology used by researchers.

They describe the following conditions on the evaluation of how well a research project tackles the

notion of faithfulness:

2



• Be explicit: provide a measurable evaluation of faithfulness.

• Human judgements are not relevant because we are interested in model internals.

• Do not match against gold labels (e.g. AER) because faithfulness of both correct and incorrect

decisions made by the model are equally important.

• No model is “inherently" faithful. We need to measure faithfulness not as a binary aspect of a

model (it is faithful or not) but rather as a gray-scale measure.

• A more faithful system is a necessary but not sufficient condition for model interpretation by

humans, c.f. [21].

Aligned with these criteria, we study faithfulness of NLP neural models, specifically NMT

models. We provide a faithfulness measure that is computed based on a variety of stress tests where

model parameters are perturbed and measuring how often the model output changes (Figure 1.1).

Our findings show that our objective is effective in increasing faithfulness and can lead to a use-

ful analysis of NMT model behaviour and more trustworthy attention heatmaps. We assert that

faithfulness is a good property to have in a model whether or not it will be useful for downstream

interpretation. A model that is faithful can be more trusted as a component in a larger end-to-end

neural model.

1.3 Encoder-Decoder Model with Attention

Given a training sentence pair (x, y) where x = [x1, x2, ..., xm] is a sentence in the source language

and y = [y1, y2, ..., yn] is its corresponding translation in the target language, the problem of neural

machine translation is feeding x to a neural network and getting y as the output. The model we use

in this work is called "encoder-decoder" model with attention [59, 4]. The idea is that the encoder,

which is a recurrent neural network (RNN), runs over the source sentence to calculate the contex-

tualized representation of the source sentence. Then a second neural network which is the decoder

"decodes" this information into the target sentence. The attention mechanism is employed to cal-

culate the contextualized representation of the source sentence dynamically based on the decoding

step (Figure 1.2).

To be more specific, we use a bidirectional encoder, and concatenate the forward and backward

hidden states to build the final representation.

−→
ht =

−−→
fenc(xt,

−−→
ht−1)

←−
ht =

←−−
fenc(xt,

←−−
ht+1)

ht = [
−→
ht ,
←−
ht ]

(1.1)

Then the decoder generates output tokens using the following probability distribution:

p(yt|y<t, x) = softmax(gdec(st, ct))

3



Figure 1.2: An encoder-decoder model with attention mechanism. Image from https://www.
tensorflow.org/tutorials/text/nmt_with_attention

with gdec being a transformation function that produces a vocabulary-sized vector, and st is the

hidden unit of the decoder’s RNN:

st = fdec(yt−1, st−1, ct−1)

where fdec is a RNN. Here ct is the context vector calculated by attention mechanisms:

ct =
m∑
i=1

αt,ihi

where αt is the normalized attention weights over the source context:

αt,i = ea(st,hi)∑
j e

a(st,hj)

Here, a is a scoring function that determines the contribution of each source context vector to

the final context vector. Implementation of a depends on the choice of the attention method. In this

work, we use general attention [41] as the scoring function:

a(st, hi) = s>t Wahi

4
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1.4 Contributions

We seek to improve faithfulness of NMT models. To this end, we make the following contributions

in this work:

• We propose a measure for quantifying faithfulness in NMT.

• We introduce a novel learning objective based on probability divergence that rewards faithful

behavior and which can be included in the training objective for NMT.

• We provide empirical evidence that we can improve faithfulness in an NMT model. Our

approach results in more a more faithful NMT model while producing better BLEU scores.

Most previous work has focused on document or sentence-based classification tasks where

attention models are not as directly useful as in NMT models.

We chose to study the impact of faithfulness in NMT because it is under-studied in terms of in-

terpretability. Most previous work has focused on document or sentence-based classification tasks

where attention models are not as directly useful as in NMT models. Attention is also more chal-

lenging in terms of faithfulness in the context of NMT models due to the substantial impact of the

decoder component.1

1.5 Overview

This thesis addresses the problem of faithfulness of attention in NMT. First we propose how to mea-

sure faithfulness in NMT using proposed adversarial attention as stress tests. Secondly we propose

a novel method to improve faithfulness in NMT.

in Chapter 2 we present previous works on different axes of interpretability, from interpretabil-

ity methods to interpretability of attention and efforts to build inherently interpretable models.

in Chapter 3 we demonstrate our proposal for measuring faithfulness in NMT. Our novel

method for improving faithfulness in NMT is also discussed. We also mention attention sparsity

as an attempt for improving faithfulness.

in Chapter 4 we discuss our findings. We illustrate behavior of NMT in the presence of stress

tests. Moreover, we show the effect of our method and attention sparsity on the faithfulness.

We conclude our work in Chapter 5.

1We focus on RNN based encoder-decoder models. While Transformers [63] generally produce better NMT models,
in order to replace the long distance dependencies in a gated RNN, a Transformer model relies on multiple heads of
attention and self-attention. Before we can tackle multi-head attention, we focus on the simpler single-head attention
models and try to understand them in terms of faithfulness.
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Chapter 2

Related Work

Contemporary research on interpretability of neural models cover diverse topics ranging from dif-

ferent interpretability methods to designing inherently interpretable neural models. In this chapter

we present recent research related to our work. In Sec. 2.1 we discuss several methods for analyzing

and interpreting neural models. In this work we have focused on interpretability of attention com-

ponent and thus we review prior studies on understanding the semantics captured by attention in

Sec. 2.2. There has been extensive research on investigating attention as an interpretation method

from different axes ranging from faithfulness and plausibility to accountability and fairness. Those

works are reviewed in Sec. 2.3. In this work we have also analyzed effect of sparsity for improved

faithfulness. Consequently we have reviewed works regarding sparsity for better interpretability in

Sec. 2.4. Our proposed method for improving faithfulness can be seen as an explanation regularizer.

Several previous works have investigated regularizing explanations for better interpretability and

we have reviewed them in Sec. 2.5. In the end we review prior attempts on designing inherently

interpretable neural models in Sec. 2.6.

2.1 Interpretability Methods

Relevance-based interpretation is a common technique in analyzing predictions in neural models.

In this method, inputs of a predictor are assigned a scalar value quantifying the importance of that

particular input on the final decision. Saliency methods use the gradient of the inputs to define

importance [36, 17, 13]. Layer-wise relevance propagation that assigns relevance to neurons based

on their contribution to activation of higher-layer neurons is also investigated in NLP [2, 14, 3].

Another method to measure relevance is by removing the input, and tracking the difference in the

network’s output [37]. While these methods focus on explaining a model’s decision, Shi et al. [56],

Kádár et al. [24], Calvillo and Crocker [8] investigate how a particular concept is represented in the

network.

6



2.2 Understanding Information Captured by Attention

Analyzing and interpreting the attention mechanism n NLP is another direction that has drawn

major interest. Koehn and Knowles [28] compares alignment in NMT extracted by attention with

those of fast-align and argue that attention cannot be reliably used as word alignment between

source and target words, at least in the traditional sense in statistical machine translation. Ghader

and Monz [16] also verifies this however they show that attention is capturing useful information

other than alignment. Tang and Nivre [60] investigates the role of attention in the case of word

sense disambiguation (WSD) in NMT models. Counterintuitively, they show that attention pays

more attention to the ambiguous noun itself and in fact encoder hidden states are handling WSD.

Clark et al. [10] studies the information captured by each head in a BERT model. They conclude that

some heads correspond well to linguistic notions of syntax and co-reference. Vig and Belinkov [65]

focuses on structure of attention in a GPT-2 model. By visualizing attention for individual instances,

they show that attention targets different part-of-speech at different layers and dependency relations

are mostly captured in middle layers.

2.3 Attention and different axes of interpretability

While several studies have focused on understanding the semantic notions captured by attention

[16, 64, 10], evaluating attention as an interpretability approach has garnered a lot of interest. From

the faithfulness perspective, Jain and Wallace [22], Serrano and Smith [55] show that for instances

in a data set there can be adversarial attention heatmaps that do not change the output of the text

classifier. In other words, adversarial attention leads to no decision flip in each instance. They use

this to claim that attention heatmaps are not to be trusted, or unfaithful. Wiegreffe and Pinter [67]

argue against per-instance modifications at test time for two reasons: 1) in classification tasks at-

tention may not be useful so perturbing attention is misleading. This is not true for NMT since

attention is very useful in NMT. 2) they train an adversarial attention model (e.g. uniform attention)

chosen to produce attention weights distant from the original attention weights while at the same

time trying to minimize classification error. They show that such adversarial attention models are

not as accurate as models with attention. In our work we acknowledge that attention is useful and

faithful to some extent and we aim to improve faithfulness of NMT models.

While most of these works provide evidence that attention weights are not always faithful,

Moradi et al. [46] confirm similar observations on the unfaithful nature of attention in the con-

text of NMT models. Li et al. [34] is one of the few papers examining attention models in NMT.

However, they are focused on the task of identifying relevant source words to explain the output

translations selected by the NMT model. They look for optimal proxy models that agree with the

NMT model such that the relevant source words picked as an explanation by a proxy model exhibits

similar behaviour to the target model. They use the notion of fidelity over proxy models and evaluate

several alternative proxy models using empirical risk minimization. Attention weights are evaluated

7



alongside other proxy models for this task. In contrast, our work is about improving the faithfulness

of NMT models and we focus on the internal state of the NMT model rather than proxy models.

They use human references, e.g. AER, for evaluating fidelity. As discussed earlier, evaluation of

faithfulness cannot involved human judgements or reference data. It is possible that our faithful

NMT models are also better at fidelity, but that is an open question.

While prior works have mostly failed to explicitly distinguish faithfulness from plausibility in

their arguments, Jacovi and Goldberg [21, 20] focus on formalizing faithfulness and addressing

evaluation of faithfulness separately from plausibility respectively.

Subramanian et al. [58] have investigated the concept of faithfulness in neural modular networks

(NMN) which are employed for modeling compositionality. They question the faithfulness of the

structure of the network modules describing the true abstract reasoning of the model. Similar to us,

they attempt to quantify faithfulness and improve upon it. However their contributions like training

with an auxiliary atomic-task supervision for improved faithfulness are specific to the context of

NMNs.

Pruthi et al. [50] demonstrate that it is possible to train a model that produces a deceptive atten-

tion mask, questioning the use of attention weights as explanation from the fairness and account-

ability perspective.

Alvarez-Melis and Jaakkola [1] investigate the interpretability methods from the robustness

perspective. They attempt to quantify robustness and show that current interpretability methods

cannot be considered as robust.

2.4 Sparsity for Improved Interpretability

This line of work suggests making attention sparser so that the most contributing input word is

more distinguishable over other input words. Martins and Astudillo [43] propose sparsemax as an

alternative to the traditional softmax activation function, but able to output sparse probabilities and

at the same time being differentiable. Malaviya et al. [42] improves sparsemax by proposing a

constrained sparsemax for attention that can model fertilises to the source words and at the same

time being sparse and differentiable. Zhang et al. [68] propose sparsity regularization terms such as

entropy regularization to promote sparsity in the attention.

2.5 Regularizing Explanations

Recent work on explanations for black-box models has produced tools (e.g. LIME [51]) to show the

implicit rules behind predictions, which can help us identify when models are right for the wrong

reasons. However, these methods do not scale to explaining entire datasets and cannot correct the

problems they reveal. Ross et al. [53] introduce a method for efficiently explaining and regularizing

differentiable models by examining and selectively penalizing their input gradients. Rieger et al. [52]

follow a similar spirit but they use ‘contextual decomposition’ [47] to extract explanations offered

8



by the model. Aligning attention (as explanation) with prior knowledge has also been extensively

studied. Mi et al. [44], Liu et al. [40] propose to supervise attention with traditional alignment

models so that attention weights match better with alignment. Zhong et al. [69] show that in the

task of textual sentiment classification, attention is often misaligned with the words that contribute

to attention. They propose to supervise attention with human rationale during training and they

observe improved model performance. Cohn et al. [11] demonstrate that by including structural

biases from traditional alignment models like positional bias and fertility in attention, it’s possible

to improve the existing NMT baselines.

2.6 Self-explanatory Neural Models

Contrary to efforts for propose post-hoc explanation methods for neural models, a series of works

have attempted to make neural models inherently interpretable or self-explanatory. Stahlberg et al.

[57] show that the NMT model can be made self-explanatory by training it to produce the discrete

decisions made by the model (from which the translations can be extracted later). Lei et al. [33]

propose a model in which first a rationale is selected from the input and then is further used for

prediction. Their proposed model consists of a generator and an encoder, which are trained to oper-

ate together. The generator specifies a distribution over the input to be used as candidate rationales

and these are passed to the encoder for prediction. Previous work proposed to assign binary latent

masks to input positions and to promote short selections via sparsity-inducing penalties such as L0

regularisation. Instead Bastings et al. [6] propose a latent model that mixes discrete and continuous

behaviour allowing at the same time for binary selections and gradient-based training without RE-

INFORCE. Instead of selecting part of the input as the rationale, Liu et al. [39] propose a generative

explanation framework.
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Chapter 3

Faithfulness in NMT

In this thesis we have two major contributions: a) quantifying faithfulness in NMT b) improving

faithfulness using a novel objective. In Sec. 3.1 we explain our approach for quantifying faithful-

ness in NMT by putting the model under various stress tests and capturing its behavior. Then in

Sec. 3.2 we present our proposed method for improving faithfulness based on a novel objective that

rewards faithful behavior. We also talk about our motivation for investigating effect of sparsity on

faithfulness.

3.1 Measuring Faithfulness

Intuitively, a faithful explanation should reflect the true internal reasoning of the model. Although

there is no formal definition for faithfulness, a common approach in the community is to design

stress tests to perturb the most relevant parts of the input, suggested by the explanation, in expec-

tation that the model’s decision should change [20]. A common stress test is the erasure test in

which the most-relevant part of the input is removed [3]. In the context of NMT, at decoding time

step t the attention component assigns attention weights αt, attending to the source word at posi-

tion mt = argmaxi αt,i (or the k-best attended-to words in the source). These weights are often

implicitly or explicitly regarded as an interpretation for the model’s prediction at the time step t

[61, 44, 40, 66, 32, 14, 17]. It is worth noting that erasure is only one of the possible stress tests

for evaluating faithfulness. Passing more stress tests implies a more faithful model as it is resilient

to more attacks or stress tests of its faithfulness. In this paper we consider three intuitive stress test

cases:

• ZeroOutMax [3]: Here we remove attention from the most important token according to the

attention weights by setting αt,mt = 0.

• Uniform [46]: In this stress test all attention weights are set to be equal, αt = 1
m
~1, where m

is the length of the source sentence. This is to confuse the model about which part of the input

is the most important one.

• RandomPermute [22]: In this stress test we randomly permute attention weights several

times until a change in the model output is observed. We ensure that mt, the most important
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token according to attention, is always changed. We set α′t = random_permute(αt) such

that argmaxi α′t,i 6= mt

Many prior studies of attention [22, 67] have used a binary measure: either attention is faithful

or it is not. These studies typically are about whether attention has the potential to be useful in

terms of accuracy and faithful in terms of model behaviour. In many cases, especially in the case

of NMT models, attention is clearly useful and by and large it must be faithful. The question is

can we measure the faithfulness and improve faithfulness. It is more natural to have a gray-scale

notion of faithfulness for evaluation [20]. Following this reasoning, we define F (M) as faithfulness

of attention heatmaps in model M as:

F (M) = # of tokens passing stress tests
# of tokens

(3.1)

F (M) is a number between 0 to 1 measuring the percentage of output tokens during inference

which passed the stress tests, i.e., they changed in the presence of adversarial attention. This metric

can also be regarded as a measure of trust we can assign to the attention heatmap to fully reflect the

internal reasoning of the NMT model.

3.2 Improving Faithfulness

The conventional objective function in a sequence-to-sequence task is a cross-entropy loss Facc
which should be minimized :

Facc(θ) = − 1
|S|

∑
(X,Y )∈S

log p(Y |X; θ) (3.2)

where S is the training data andX and Y are source sentence and the correct translation respectively

(We use capital letters for sentences and small letters for single tokens). This training objective does

not explicitly model the interpretability aspects (e.g. faithfulness) of the network and it remains

unoptimized during training.

Faithfulness Objective In an effort to develop a model that is right for the right reason, Ross

et al. [53] change the loss function of their classifier to model both right answers and right reasons

instead of only the former. They achieve this by introducing a regularizing term that tends to shrink

irrelevant gradients. In a similar spirit, we change our objective to account for the NMT model’s

faithfulness as well as the cross-entropy score against the reference translations:

F = Facc + λfaithFfaith (3.3)

Ffaith is an additional component that rewards the model for having more faithful attention. The

parameter λfaith regulates the trade-off between between faithfulness and accuracy objectives.
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Figure 3.1: We generate adversaries to the attention weights using various stress tests Uniform,
ZeroOutMax, and RandomPermute. When adversarial attention weights are used, in a faithful model
we expect the probability of the original output (ŷ) to drop significantly. We use this criteria to define
a faithfulness objective function.

3.2.1 Divergence-based Faithfulness Objective

Consider a predictive model gθ in which an intermediate calculation is later employed to justify

predictions:

ŷ = arg max
y

p(y|x) = arg max
y

gθ(x, IC(x), y) (3.4)

where IC(x) is the intermediate calculation on the input. A concrete example for IC(x) would be

the context vector calculated by the attention mechanism.

Hypothesis If there exists an intermediate calculation IC ′(x), as a stress test, that conveys a

contradictory post-hoc attention compared to IC(x), then IC(x) cannot be regarded as faithful for

predicting ŷ. If IC(x) is faithful, we expect the model to diverge from predicting ŷ when IC ′(x) is

employed instead.

Based on our hypothesis, we propose a divergence-based objective which mimics behavior of a

faithful explanation under stress test:

Ffaith = log p(ŷ|x, IC ′(x)) (3.5)

This objective is a negative loss that should be minimized. The minimum of this objective is

achieved when the probability of the original prediction approaches zero under the stress test which
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is the ideal. Thus, it promotes reduction in output probability under an adversarial intermediate

calculation (Figure 3.1). It is worth noting that this objective can be potentially employed in models

where outputs are modeled as soft probabilities and thus is not limited to NMT. To put a model

under various stress tests we manipulate the context vector during training time by changing the

attention weights and feeding it to the decoder to calculate the probability. More precisely:

Ffaith = λzom log p(ŷ|x, IC ′zom(x))

+ λuni log p(ŷ|x, IC ′uni(x))

+ λperm log p(ŷ|x, IC ′perm(x))

(3.6)

where IC ′zom, IC ′uni and IC ′perm are ZeroOutMax, Uniform and RandomPermute methods (see

Sec. 3) to manipulate attention weights, respectively. λ{method} parameters regulate the contribution

of each objective. We use the term Fall when all λ{method}s in Eq. (3.6) are non-zero. Moreover, we

use the term F{method} when λ{method} is set to 1 and other regularization weights are zero.

3.2.2 On attention sparsity

Do the models trained with the faithfulness objective have sparser attention weights? Sharper at-

tention in a model M might correlate with an intensified contribution of the most-attended source

hidden state on the prediction resulting in higher faithfulness.

To measure sparseness of the attention, we take an average over the normalized entropy of

attention distribution for each output token during inference on test data. We use normalized entropy

which is in range [0,1] to account for the fact that the range of the entropy for each output token

depends on the length of the corresponding source sentence.

AvgEnt = 1∑|S|
i=1

∣∣∣Ŷi∣∣∣ .
|S|∑
i=1

|Ŷi|∑
j=1

NormEnt(αi,j) (3.7)

NormEnt(P ) = −
∑
i

Pi logPi
logN (3.8)

Here αij is the attention distribution for the output token j in the generated translation of source

sentence i, and P is a discrete probability distribution. In Eq. (3.8) low entropy indicates a sharper

distribution.

Attention Entropy Regularization Alongside investigating sparsity of the models trained by the

faithfulness objective, we also train a model in which sparsity in attention is directly optimized. We

used attention entropy regularization [68]:

Fent = Facc + λent

|S|∑
i=1

|Ŷi|∑
j=1

Ent(αi,j) (3.9)
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where entropy of attention weights is added to the cross-entropy loss (3.2) as a regularization term.

3.2.3 Summary

In this chapter we have presented our approach for quantifying faithfulness and also improving it.

We put NMT under different stress tests and define faithfulness based on the percentage of out-

put tokens that have been preserved under those tests. We argue that faithfulness is not optimized

in usual NMT objectives and we propose a novel loss based on probability divergence that rewards

faithfulness behavior. Moreover we mention our motivation for experimenting with entropy regular-

ization which is investigating if attention sparsity is related to faithfulness. In Chapter 4 we discuss

our experimental setup, experiments, and findings.
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Chapter 4

Experiments

In this chapter we provide results of our experiments and findings. We first explain our experimental

setup including the NMT model employed, datasets used, hyperparameters and training tricks in

Sec. 4.1. We also study the faithfulness of our baseline NMT model and its sensitivity to different

stress tests in Sec. 4.2. In Sec. 4.3 we analyze our proposed method and its effect on faithfulness

and sparsity. We provide a brief summary of this chapter in Sec. 4.4.

4.1 Experimental Setup

Data We use the Czech-English (Cs-En) dataset from IWSLT20161 and the German-English (De-

En) dataset from IWSLT20142. For the Czech-English dataset we use dev2010, tst2010, tst2011,

tst2012, and tst2013 as the test data. For the German-English dataset we use dev2010, tst2010,

tst2011, dev2012, and tst2012 as the test data. Table 4.1 shows the number of instances in different

sets from the datasets used. We used Moses [29] to tokenize the dataset.

Cs-En De-En
Train 101225 160239
Valid 4601 7283
Test 5716 6750

Table 4.1: Number of sentences in training, validation, and test sets across Cs-En and De-En
datasets.

Architecture and Hyperparameters We use OpenNMT [26] as our translation framework. We

employ a 2 layer LSTM-based encoder-decoder [59, 9] model with global attention [41]. Dimension

of the hidden states and the word embeddings for both source and target languages are set to 500.

Vocabulary size for both the source and target language is set to 50000. We remove sentences with

more than 50 tokens from the training data. We use Adam [25] for training our models and we

1https://sites.google.com/site/iwsltevaluation2016/

2https://sites.google.com/site/iwsltevaluation2014/
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Cs-En De-En
Number of tokens (+EOS) 115993 139465

% of function words 68% 68%
% of content words 32% 32%

Table 4.2: Percentage of function and content words in the generated translation for test set.

set the learning rate to 0.001. Models are trained until convergence. Our models have around 82M

parameters and it took us twelve hours to train each model on two GTX 1080ti GPUs. We optimize

the hyperparameters of our models using the validation set. The baseline model is trained using

Eqn. (3.2) and we call it Fbaseline. λent in Eq. (3.9) is set to 0.04. We refer to the objective as Fall
when λzom, λuni, and λperm are set to 0.5, 0.375, and 0.125 respectively. λfaith is set to 1.

Training Difficulties Our first attempts at using the modified objective function in Eq. (3.3)

trained poorly. We observed that it was difficult for the model to learn the faithfulness constraint

without having already learned to assign a reasonable probability to correct translations. To address

this problem we first train the NMT model using the standard unmodified objective function and

then fine-tune this trained model by switching the objective function to Eq. (3.3).

4.2 Analyzing the baseline model

4.2.1 Power of each test

We investigate behavior of the model under stress test for generation of function3 and content words.

Function words (e.g., a, the, is) have little lexical meaning in contrast to content words and thus we

are curious whether response of the model to stress tests differs for generation of these two groups

of words. Table 4.2 shows the percentage of function and content words generated by the baseline

model. As expected, the majority of the generated tokens are function words.

Table 4.3 and 4.4 show the faithfulness of the model for generation of function and content words

under different stress tests. ZeroOutMax test has been the most effective method for capturing un-

faithful behavior as it has resulted in the lowest faithfulness. We also determine that RandomPermute

is not as effective as the Uniform and ZeroOutMax methods. Our justification is that in the

RandomPermute method, it is highly probable that the context vector is biased toward a ran-

dom source hidden state. Such bias can lead to significant misleading noise in the context vector

which can change the prediction of the model. However, there isn’t such a bias in the Uniform or

ZeroOutMax methods.

As evident from Table 4.3 and 4.4, the most strict test is when all stress tests are applied for capturing

unfaithful behavior (All column).

3The reference for function words (we added new function words including the EOS token to this) can be found at:
semanticsimilarity.files.wordpress.com/2013/08/jim-oshea-fwlist-277.pdf
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Content Words Function WordsObjective
ZOM Uniform RandPerm All ZOM Uniform RandPerm All

Fbaseline 83% 90% 94% 78% 46% 48% 64% 33%
Fzom 91% 93% 98% 86% 84% 87% 95% 74%
Funi 84% 98% 97% 83% 56% 98% 91% 54%
Fperm 86% 95% 96% 83% 74% 97% 98% 71%
Fall 91% 99% 98% 89% 83% 98% 98% 82%
Fent 78% 90% 94% 73% 46% 48% 64% 33%

Table 4.3: Faithfulness metric for the generated content and function words through different objec-
tives in the Czech-English dataset. The columns are different tests included in the Eq.(3.1).

Content Words Function WordsObjective
ZOM Uniform RandPerm All ZOM Uniform RandPerm All

Fbaseline 81% 90% 93% 76% 45% 48% 64% 32%
Fzom 91% 95% 98% 87% 87% 95% 97% 82%
Funi 81% 98% 91% 80% 60% 100% 95% 58%
Fperm 85% 95% 97% 82% 74% 97% 98% 72%
Fall 91% 98% 98% 89% 87% 100% 99% 86%
Fent 81% 90% 93% 76% 47% 47% 64% 33%

Table 4.4: Faithfulness metric for the generated content and function words through different objec-
tives in the German-English dataset. The columns are different tests included in the Eq.(3.1).

4.2.2 Function words are more easily generated compared to content words

An important observation in Table 4.3 and 4.4 is that function words exhibit unfaithful behavior

much more than content words. Faithfulness of the model for generation of content words is 78%

and 76% for Czech-English and German-English respectively. However it is 33% and 32% for

function words. The reason is that The production of function words rely more on the target context,

in contrast to content words which rely more on the source context [62]. Accordingly, perturbation

in the original attention weights likely has significantly more impact on diminishing content words

compared to function words. This ties well with the main idea behind context gates in which the

influence of source context and target context is controlled dynamically [62].

4.2.3 Highlighting top preserved tokens

To better understand the behavior of the model in the presence of stress test, we listed the top pre-

served tokens in the De-En dataset. Table 4.5 contains the top 20 content words sorted by the number

of times they were preserved. It is interesting to note that for many of these frequent tokens, more

than half of their total occurrences are preserved without focusing on their corresponding translation

in the source sentence (e.g., “going”, “know”, “thing”, etc). In Table 4.6, we sort such tokens based
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Token # preserved Coverage
going 310 70%
people 237 46%
know 219 62%
world 215 67%
like 189 47%

think 176 50%
way 162 68%
get 160 53%

thing 147 79%
things 142 56%
time 139 54%
see 137 51%

years 136 64%
make 126 49%
little 113 55%
just 109 29%

really 93 37%
bit 92 88%

said 89 59%
got 86 59%

Table 4.5: Top 20 content words preserved
by the aggregate method sorted by the num-
ber of times they were preserved.

Token Coverage Total
bit 88% 105

course 87% 91
thank 83% 89
thing 79% 186
fact 78% 74
half 78% 27
own 75% 75
ones 73% 30
states 73% 30

difference 71% 21
going 70% 444
turns 69% 26
way 68% 237
able 67% 85

world 67% 323
doing 66% 103
planet 65% 37
years 64% 212
know 62% 353
united 62% 21

Table 4.6: Top 20 content words preserved
by the aggregate method sorted by percent-
age of their total occurrences that are pre-
served (coverage).
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Token # preserved Coverage
, 7329 85%

EOS 6364 94%
the 5210 82%
. 3947 60%

of 3003 87%
to 2923 86%

and 2639 67%
a 2187 65%

that 1936 69%
i 1737 76%
's 1732 95%

you 1501 72%
it 1497 72%
is 1496 88%
in 1364 64%
we 1246 64%

they 624 69%
'' 620 81%

have 613 70%
be 582 91%
't 580 96%
're 542 86%
this 541 42%
so 531 57%
are 526 77%
was 514 66%
do 433 77%

about 417 65%
what 415 61%
can 400 54%

Table 4.7: Top 30 function words preserved
by the aggregate method sorted by the num-
ber of times they were preserved.

Token Coverage Total
't 96% 602
's 95% 1819

EOS 94% 6748
be 91% 641
is 88% 1707
of 87% 3450
to 86% 3383
're 86% 631
, 85% 8582

'm 84% 311
been 82% 233
lot 82% 148
the 82% 6386
'' 81% 770

are 77% 679
do 77% 565
i 76% 2290

who 73% 300
it 72% 2089

you 72% 2099
have 70% 876
up 70% 235

they 69% 904
that 69% 2812
well 67% 153
and 67% 3922
was 66% 774
were 65% 240
same 65% 154

a 65% 3369

Table 4.8: Top 30 function words preserved
by the aggregate method sorted by coverage.

on their coverage, which is the percentage of their total occurrences that are not affected when a

counterfactual attention is applied4.

We repeat the same process for function words (Table 4.7 and Table 4.8) . As evident from Table

4.7, we have successfully yielded the same token in 94% of the occurrences of the EOS token but

with a counterfactual attention. This can be explained by the previous findings suggesting special

hidden units keep track of translation length [56]. As a result, the EOS token is generated upon

4We consider only the tokens that have appeared more than 20 times. The reason is that there are many preserved
words that have appeared only once (coverage=1) and it is not clear if the coverage remains the same when frequency
increases.
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receiving signal from these units rather than using attention. This indicates that attention weights

are highly unreliable for explaining the generation of EOS tokens. This is worth noting because

early generation of the EOS token is often a major reason of the under-translation problem in NMT

[30]. Thus, attention weights should not be used to debug early generation of EOS, and that some

other underlying influence in the network [14] might be responsible for the model’s decision in this

case.

4.3 Analyzing the proposed methods

4.3.1 Impact on faithfulness

To measure the effectiveness of the proposed objectives, we choose the best model in terms of pro-

vided faithfulness but within the 0.5 BLEU score of the maximum achieved BLEU score in the

validation set. The reason is that we prefer a model that is both accurate and with faithful attention-

based explanations. Table 4.3 and 4.4 show the performance of the different faithfulness objective

functions when generating content words and function words across different attention manipu-

lation methods in the Czech-English (Cs-En) and German-English (De-En) datasets respectively.

Results indicate that the proposed divergence-based objective has been effective in increasing the

faithfulness metric. Fall is the most effective objective for increasing faithfulness when all stress

tests are included in Eq. (3.1). When using Fall, faithfulness of attention-based explanations for

content words is increased 78% to 89%, while that of the function words is from 33% to 82%(see

All column in Table 4.3). There are similar increases from 76% to 89% for content words and from

32% to 86% for function words in the De-En dataset. These results establish the effectiveness of

our proposed objectives to increase the faithfulness metric. It is worth noting that increase in faith-

fulness of attention-based explanations for function words is much more than that of content words.

This can be attributed to the fact the function words are mostly generated using the target-side infor-

mation in the decoder [62, 46] and manipulating attention does not have much effect on generating

them. However, our proposed faithfulness objective (Ffaith) seems to tighten the dependence of the

decoder on the attention component. This results in much more increase in faithfulness for function

words compared to such content words.5 We also plot faithfulness over different checkpoints in

Figure 4.1. It indicates that progress in faithfulness is much faster for function words compared to

content words.

4.3.2 Effect of training with single adversary on passing other stress tests

An interesting observation in Table 4.3 and 4.4 is that training with an adversary has positive effects

on the model for passing stress tests from other types of adversaries. As an example, in Table 4.3 the

5If this dependence is not desired, it is possible not to penalize function words in the faithfulness objective. However,
relying on attention for generating function words can be helpful, not necessarily for interpretability but for dealing with
long-range dependencies [63] and, as a result, better translations.
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Figure 4.1: Progress in faithfulness over different checkpoints. It increases much faster in function
words compared to content words.

De-En Cs-En
Tag Baseline Ours Baseline Ours

PUNC 0.19 0.70 0.28 0.66
PRON 0.42 0.78 0.35 0.75
VERB 0.47 0.80 0.50 0.81
ADP 0.30 0.75 0.40 0.65
DET 0.35 0.74 0.38 0.70
PRT 0.13 0.63 0.17 0.50
ADV 0.66 0.80 0.63 0.79

NOUN 0.63 0.87 0.64 0.85
ADJ 0.68 0.87 0.69 0.85

NUM 0.84 0.86 0.79 0.86
X 0.67 0.78 0.55 0.80

Table 4.9: Faithfulness metric within different part-of-speech (POS) tags.

column Uniform is the faithfulness metric when only Uniform test is employed in Eq. (3.1). When

using this metric, we can observe that training a model with Fperm increased faithfulness from 90%

to 95% for content words and from 48% to 97% for function words. We can see such effect in

Table 4.4 as well. This observation indicates that training with each adversary can be beneficial for

making model tolerant against other types of stress tests. It seems that training with each adversary

strengthens the dependence of the decoder on the attention component which can be beneficial for

passing other stress tests.

4.3.3 POS-tag analysis

In addition to categorizing tokens into function and content words, we also analyze the effect of

our proposed objective within different universal part-of-speech (POS) tags [48] in Table 4.9. Our

proposed objective has increased faithfulness in each POS tag and in our both datasets. Tokens with

less lexical meaning are the ones affected the most as explained in Sec. 4.3.1. As expected, punctu-

ations (PUNC) and particles (PRT) tags have benefited the most from increase in the faithfulness.

Interestingly numbers (NUM tag) have the lowest increase in faithfulness. One reason might be that

they already had a high initial faithfulness and this has made further increase less likely.
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4.3.4 Regularization Effect

The model checkpoints used in Tables 4.3 and 4.4 were selected based on maximum increase in

faithfulness without sacrificing accuracy. To investigate if the proposed objective can have a general

positive side effect in terms of accuracy, we train three independent models using the Fbaseline and

Fall objectives. To make it fair for the baseline, we also add additional steps of training for the

baseline model as well to isolate the benefit of adding the faithfulness objective.

Table 4.10 contains the average BLEU score of the trained models. It indicates that the model

trained withFall, has +0.7 and +0.4 increase in BLEU score compared to the baseline for the Czech-

English and German-English language pairs respectively.

Objective BLEU

Cs-En Fbaseline 19.68
Fall 20.4

De-En Fbaseline 24.85
Fall 25.21

Table 4.10: BLEU score of the baseline and the model trained with Fall. Pairwise bootstrap resam-
pling [27] resulted in a p-value < 0.01 which indicates the statistical significance of the observed
difference.

Improved BLEU scores for the faithful model can be due to two reasons: 1) the faithfulness

objective can be seen as a regularization term which prevents the model from relying too much on

the target-side context and the implicit language model in the decoder, which results in increased

contribution of attention on the decoder and reducing some bias in the model. 2) penalizing the

model for the lack of connection between justification and prediction forces the model to learn

better translations by forcing it to justify each output in a right answer for the right reason paradigm.

Figure 4.2 shows some examples of how our proposed model can produce better translations.

4.3.5 Do the new models have sparser attention?

Table 4.11 shows the average entropy and average normalized entropy for the baseline, the proposed

model (Fall), and the model trained with attention entropy regularization respectively. Evidently, the

proposed model has not increased sparsity. On the other hand attention entropy regularization has

been very effective in making attention weights sparser. But Table 4.3 and 4.4 indicates that attention

entropy regularization has not been effective in increasing faithfulness. This suggests that sharper

attention weights only affect the context vector and do not contribute to increased dependence of

the decoder on attention. The proposed model does not end up with sparse attention, and entropy

regularization has been ineffective at increasing faithfulness although it does learn a sparse attention

model.
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src      es ist alles hier es ist alles online
ref      it 's all here it 's all on the web
base  it 's all right it 's all online .
ours   it 's all here it 's all online .

src      sie drängten wasser aus dem land heraus und hinaus in den fluss
ref      they pushed water off the land and out into the river
base  they kept running water from the land and out in the river
ours   they pushed water out of the country and out in the river .

src     anstatt hunderte von kilometern entfernt im norden
ref      instead of hundreds of miles away in the north
base  instead of hundreds of miles away from north america
ours  instead of hundreds of miles away from north
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\NO������SX]^NJM�YO�R_XM\NM]�YO�WSVN]�JaJc�SX�^RN�XY\^R
KJ]N��SX]^NJM�YO�R_XM\NM]�YO�WSVN]�JaJc�O\YW�XY\^R�JWN\SLJ
Y_\]��SX]^NJM�YO�R_XM\NM]�YO�WSVN]�JaJc�O\YW�XY\^R

]\L�����MSN�N\]^N�S]^�˳�MJ]]�aS\�_X]�XSLR^�aNS^N\NX^aSLUNVX�aN\MNX�˰
\NO������^RN�Ŋ\]^�S]�^RJ^�aN�aSVV�XY^�N`YV`N�˰
KJ]N��^RN�Ŋ\]^�S]�^RJ^�aN�aSVV�XY^�WY`N�OY\aJ\M�˰
Y_\]���^RN�Ŋ\]^�S]�^RJ^�aN�aSVV�XY^�N`YV`N�˰

]\L������N]�S]^�JVVN]�RSN\�N]�S]^�JVVN]�YXVSXN
\NO������S^�˿]�JVV�RN\N�S^�˿]�JVV�YX�^RN�aNK
KJ]N��S^�˿]�JVV�\SQR^�S^�˿]�JVV�YXVSXN�˰
Y_\]���S^�˿]�JVV�RN\N�S^�˿]�JVV�YXVSXN�˰

]\L������]SN�M\ęXQ^NX�aJ]]N\�J_]�MNW�VJXM�RN\J_]�_XM�RSXJ_]�
�SX�MNX�ō_]]

\NO������^RNc�Z_]RNM�aJ^N\�Yň�^RN�VJXM�JXM�Y_^�SX^Y�^RN�\S`N\
KJ]N��^RNc�UNZ^�\_XXSXQ�aJ^N\�O\YW�^RN�VJXM�JXM�Y_^�SX�^RN�\S`N\
Y_\]���^RNc�Z_]RNM�aJ^N\�Y_^�YO�^RN�LY_X^\c�JXM�Y_^�SX�^RN�\S`N\�˰

]\L�����JX]^J^^�R_XMN\^N�`YX�USVYWN^N\X�NX^ON\X^�SW�XY\MNX
\NO������SX]^NJM�YO�R_XM\NM]�YO�WSVN]�JaJc�SX�^RN�XY\^R
KJ]N��SX]^NJM�YO�R_XM\NM]�YO�WSVN]�JaJc�O\YW�XY\^R�JWN\SLJ
Y_\]��SX]^NJM�YO�R_XM\NM]�YO�WSVN]�JaJc�O\YW�XY\^R

src      es ist alles hier es ist alles online
ref      it 's all here it 's all on the web
base  it 's all right it 's all online .
ours   it 's all here it 's all online .

src      sie drängten wasser aus dem land heraus und hinaus in den fluss
ref      they pushed water off the land and out into the river
base  they kept running water from the land and out in the river
ours   they pushed water out of the country and out in the river .

src     anstatt hunderte von kilometern entfernt im norden
ref      instead of hundreds of miles away in the north
base  instead of hundreds of miles away from north america
ours  instead of hundreds of miles away from north

Figure 4.2: These examples show some cases where the more faithful model trained using our
faithfulness objective produces better translations compared to the baseline model. In each of these
cases, perturbing the attention weights has no effect on the baseline model output. The faithful model
is able to focus on the source side when needed in order to produce a more accurate translation.

Model AvgEnt AvgNormEnt

C
s-

E
n Fbaseline 0.69 0.23

Fall 0.84 0.27
Fent 0.35 0.11

D
e-

E
n Fbaseline 0.89 0.29

Fall 1.0 0.32
Fent 0.43 0.14

Table 4.11: Average entropy and average normalized entropy of the baseline, the proposed model
(Fall), and the model trained with attention entropy regularization.

4.4 Summary

In this chapter we have demonstrated our findings regarding the faithfulness of a baseline NMT

model and effect of our proposed method on it and also its relation to sparsity. Our findings show

that attention is much less faithful for rationalizing prediction of function words compared to content

words. Moreover we show that our proposed method can successfully improve faithfulness in NMT

without sacrificing accuracy and in some cases even with improved accuracy. Moreover we find that

neither our proposed model has more sparse attention, nor the model trained with attention entropy

regularization for increased sparsity has less unfaithful attention.
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Chapter 5

Conclusion

Using attention weights to justify a model’s prediction is tempting and seems intuitive at the first

glance. It is, however, not clear whether attention can be trusted for such purposes. To what extent

is it trustworthy or faithful and reflect the true internal reasoning of the model? In this work we have

proposed a method for quantifying faithfulness of NMT models. We have also investigated behavior

of NMT under presence of different stress tests. To optimize faithfulness we have defined a novel

objective function that rewards faithful behavior through probability divergence. We also show that

the additional constraint in the training objective for NMT does not harm translation quality and in

some cases we see some better translations presumably due to the regularization effect of our faith-

fulness objective. In future we intend to expand this work to language pairs where target language

is not English. While this work is focused on NMT, our approach is more generally applicable

to other neural models that exploit attention and where researchers are implicitly trusting atten-

tion heatmaps as a means of explanation of the model behaviour. Our faithfulness objective can be

used for other NLP tasks such as text classification. We aim to investigate and improve faithfulness

of attention-based explanations in more sophisticated attention models such as Transformers [63].

We can generalize our approach by designing explanatory modules in NMT through functionality

separation (alignment, reordering, etc.) instead of relying only on attention. We also plan to investi-

gate if faithful models can also be more useful for copy models and other applications of attention

heatmaps in NMT.
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