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Abstract 

Optical Coherence Tomography Angiography (OCT-A) permits visualization of the 

changes to the retinal circulation due to diabetic retinopathy (DR), a microvascular 

complication of diabetes. Machine learning applications have directly benefited 

ophthalmology, leveraging large amounts of data to create frameworks to aid clinical 

decision-making. In this thesis, several techniques to quantify the retinal 

microvasculature are explored. First, high-quality, averaged, 6x6mm OCT-A enface 

images are used to produce manual segmentations for the corresponding lower-quality, 

single-frame images to produce more training data. Using transfer learning, the resulting 

convolutional neural network (CNN) segmented the superficial capillary plexus and deep 

vascular complex with performance exceeding inter-rater comparisons. Next, a 

federated learning framework was designed to allow for collaborative training by multiple 

participants on a de-centralized data corpus. When trained for microvasculature 

segmentation, the framework achieved comparable performance to a CNN trained on a 

fully-centralized dataset. 

Keywords:  optical coherence tomography, angiography, image processing, machine 

learning, deep neural networks, federated learning 
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Chapter 1. Introduction 

1.1. Motivation 

The advent of machine learning and artificial intelligence has sparked significant 

global interest, resulting in tremendous leaps of progress across numerous areas. 

Machine learning uses representation learning to process raw data without explicit, 

programmed instructions. Allowing the machine to learn the features to perform a 

specific task captures minute nuances in real-world data that would be otherwise 

overlooked in manual feature engineering. Consequently, machine learning has been 

used in many applications found in daily life, including social media, navigation, and e-

commerce.  

Machine learning applications have directly benefited the healthcare industry, 

with tools developed for diagnosis and prognosis, drug development, and epidemiology. 

These tools leverage large amounts of data for methods which include medical image 

processing and pattern recognition, leading to large-scale frameworks that aid decision-

making processes for clinicians. This thesis solely focuses on the usage of these 

frameworks in ophthalmology, which has seen a substantial increase in machine 

learning publications in recent years. 

Vision is the most complex and developed of the five senses, and one that is 

frequently taken for granted. Diabetic retinopathy (DR) is one of the leading causes of 

vision loss, and the most common cause of vision loss among people with diabetes 

mellitus. Because the eye is an exceptionally delicate organ, there is significant interest 

in non-invasive imaging modalities to identify and track the progression of pathologies 

such as DR. An overview of DR is provided in Section 2.1.1. One of the most widely-

used modalities for diagnostic imaging of the retina is the rapidly-evolving optical 

coherence tomography angiography (OCT-A), a variant of optical coherence tomography 

(OCT) which allows for volumetric imaging of the microvasculature of the retina, a light-

sensitive tissue in the eye.  

OCT-A images are information-rich, and prohibitively time-consuming to manually 

delineate the vessels for quantitative analysis and classification of DR. As such, the topic 
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of this thesis is focused on methods to automatically segment the microvasculature in 

OCT-A enface images, utilizing machine learning techniques such as deep learning, 

transfer learning, and federated learning.  

1.2. Contributions  

This master’s thesis research project built upon the work in my bachelor’s thesis, 

which involved the automated segmentation of vasculature in retinal funduscopic colour 

photos. The first major project of my post-graduate career was the development and 

maintenance of a deep neural network (DNN) for retinal microvasculature segmentation 

in commercial OCT-A images. Solutions for microvasculature segmentation already 

existed in commercial OCT systems, however the quality was inadequate for accurate 

analysis. In particular, the signal-to-noise ratio of images in the deep vascular complex 

(DVC) was too high for traditional image processing approaches. 

Methods for semantic segmentation using DNNs have been widely explored in 

the literature. As a part of my research project, I investigated leveraging existing high-

quality averaged OCT-A images to create additional training data. This was combined 

with a technique called transfer learning to significantly improve segmentation quality. 

The DNN was directly applied to patient data obtained from the Eye Care Center through 

retinal specialists Dr. Sonja Karst, Dr. Vinicius Vanzan, and Dr. Eduardo Navajas, 

allowing a unique opportunity to see how machine learning image processing techniques 

directly benefited clinicians and patients. My findings led to a first-authored publication 

[A1], with additional quantitative analyses, conducted by Dr. Karst, resulted in an 

additional co-authored publication [A2]. 

Through my work developing the DNN, it was apparent that the quantity of 

available data was unsuitable for a fully robust framework for microvasculature 

segmentation. To expand the capability of the DNN to be hardware-agnostic, additional 

datasets from different machines and institutions were required. Because patient data is 

securely kept behind privacy regulations, I investigated the usage of federated learning 

to allow for the usage of data from collaborators without direct interaction. I developed a 

federated learning framework, with a cloud-based storage solution in SFU Vault as a 

method of exchanging files between participants. The framework was initially tested on 

my microvasculature segmentation data, with eventual repurposing towards diabetic 
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retinopathy classification, a project handled by another member of BORG, Mr. Timothy 

Yu. This was done in collaboration with Dr. Yali Jia from the Oregon Health and Science 

University, as well as Dr. Aaron Lee from the University of Washington. I mentored 

Timothy as he worked with members of Dr. Jia and Dr. Lee’s respective teams to deploy 

the framework on real patient data, obtaining results that were presented at the Gained 

in Translation 2020 conference. 

The body of work done during my graduate career comprises one first-authored 

journal publication, and a co-author on three additional publications. During my graduate 

studies, I have given one podium presentation at an international conference. All peer-

reviewed journal publications on which I am an author are listed in Appendix 1 [A1-A4]. 

These publications are representative of my contributions to the development and 

implementation of novel deep learning methods for ophthalmological image analysis, 

which is the focus of this thesis. 

1.3. Thesis Organization  

The remaining chapters of this thesis are organized as follows. Chapter 2 

presents background information on topics discussed in this thesis which include: 

diabetic retinopathy and machine learning techniques. Chapter 3 outlines the use of a 

machine learning framework to segment and quantify the retinal microvasculature. This 

chapter demonstrates the use of a transfer learning method, combined with training data 

generated through a separate neural network to obtain high-quality segmentations of 

both the superficial capillary plexus and deep vascular complex. This chapter also 

outlines changes made to the framework since its submission to a peer-reviewed 

journal. Chapter 4 outlines the use of federated learning to develop a framework for 

hardware agnostic microvasculature segmentation, as well as possible expansion to 

diabetic retinopathy severity classification. Chapters 5 and 6 discuss future research 

directions in the field of ophthalmic image processing, as well as machine learning. 
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Chapter 2. Background 

2.1. Eye Anatomy 

The eye is a complex sense organ that allows for the perception of light, and its 

subsequent conversion to electrical signals that the brain can interpret. Figure 2.1 shows 

a simple schematic of a human eye. 

 

Figure 2.1.  Anatomy of the human eye 

To enable vision, incoming light is focused by the cornea and the lens onto the 

retina. The retina is a layer of tissue that contains layers of photoreceptors that react to 

light, initiating a chain of chemical and electrical events that send neural impulses 

through the optic nerve to the visual cortex in the brain.  

The retina is perfused by a network of capillaries, which can be differentiated into 

four capillary plexuses: the radial peripapillary, superficial, intermediate, and deep 

capillary plexuses. The radial peripapillary capillaries (RPCs) are the most superficial 

layer of capillaries lying in the inner part of nerve fiber layer (NFL), and feed the 

superficial nerve fibers surrounding the ONH. The superficial capillary plexus (SCP) is 

supplied by the central retinal artery and composed of various vessel types resides 

primarily in the ganglion cell layer (GCL) and anterior half of the inner plexiform layer 

(IPL). Below this is the ICP, which is supplied by vertical anastomoses from the SCP and 

contains the capillaries encapsulated by the posterior half of the IPL and the anterior half 

of inner nuclear layer (INL). Lastly, the DCP is also supplied via vertical anastomoses of 
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the SCP and is considered to be the vessels contained within the posterior half of the 

INL and the outer plexiform layer (OPL). Due to difficulties delineating the boundary 

between the intermediate and deep capillary plexuses after retinal volumetric imaging, 

these are frequently presented together as the deep vascular complex (DVC). 

2.1.1. Diabetic Retinopathy 

Diabetic retinopathy (DR) is a complication of diabetes mellitus, the most 

common cause of vision loss among people with diabetes, which affects 749,800 

Canadians [1],  DR damages the structure of the retinal microvasculature [2], leading to 

widespread areas of ischemia as it progresses. DR has numerous categorization 

schemes, however one of the most commonly used is the 5 stage International Clinical 

Diabetic Retinopathy categorization of no retinopathy, mild, moderate, severe non-

proliferative retinopathy, and proliferative retinopathy [3]. Resultant decreases in 

perfusion density and enlargement of the foveal avascular zone (FAZ) have been 

correlated to a lower level of visual acuity [4], [5] in patients. Therefore, there is great 

clinical value in a framework that can accurately quantify these microvascular changes 

to improve DR treatment and patient prognoses. 

2.1.2. Summary 

Diabetic retinopathy has characteristic changes in retinal microvasculature which 

can be quantified through ophthalmic imaging. Methods of ophthalmic imaging of the 

retina are described in the next section. 

2.2. Retinal Imaging 

Obtaining clear images of the retina is essential in all ophthalmic clinics. With 

funduscopic photos being the gold standard in diabetic retinopathy diagnosis, optical 

coherence tomography provides clinicians with additional options for high-resolution 

imaging. In addition, angiographic imaging techniques such as optical coherence 

tomography angiography provide clinicians with additional details that cannot be 

otherwise obtained from structural imaging. 
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2.2.1. Optical Coherence Tomography 

Optical coherence tomography (OCT) is a non-invasive, in vivo imaging 

technique that uses low-coherence near-infrared light to capture three-dimensional, 

volumetric tomographs. Cross-sections of these imaged volumes, termed B-scans, 

consist of depth scans, known as A-scans. OCT produces micrometer-resolution images 

up to 1 or 2 millimeters of penetration depth. 

Swept source OCT has enjoyed recent popularity due to its increased acquisition 

speed over the previous standard, spectral domain OCT. These systems use a swept 

source laser with a wavelength centered at 1 µm that sweeps across a narrow band of 

wavelengths, with a point photodetector to detect the returning light waves. The 

photodetector detects the interference spectrum caused by the recombined 

backscattered light from the reference and sample arms. From this, the Fourier 

transform is calculated to obtain an A-scan, the reflectivity as a function of depth. 

2.2.2. Optical Coherence Tomography Angiography 

Optical Coherence Tomography Angiography (OCT-A) is an emerging variant of 

OCT with which the retinal microvasculature can be more easily visualized. OCT-A uses 

a speckle variance approach by computing the OCT speckle difference between multiple 

repeated B-scans at the same location. By applying the retinal layer boundaries found in 

the OCT structural volume to the OCT-A volume, the SCP and DVC can be resolved for 

analysis. 

2.2.3. Summary 

High-resolution images of the retina are facilitated through the imaging modalities 

explored in this section. Retinal perfusion can be visualized through angiographic 

imaging. Machine learning techniques that can be used for quantification and analysis of 

these images are explained in the next section. 
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2.3. Machine Learning Techniques 

Machine learning is an application of artificial intelligence that involves algorithms 

that improve through experience, as opposed to traditional rule-based programming. 

This thesis will focus on a subset of machine learning, called supervised learning, where 

a mapping function is approximated based on a set of desired inputs and outputs (e.g. 

images and labels), known as the training data. The objective is to be able to accurately 

infer outputs from a new set of inputs. These mapping functions can be represented 

through numerous algorithms, which include support vector machines, random forest 

classifiers, and neural networks. 

2.3.1. Neural Networks 

A neural network (model) is a machine learning algorithm which learns 

representations of the data to extract useful features to perform tasks such as 

regression, classification, and simple processing. Neural networks are composed of 

layers of neurons or nodes, and are modelled after biological neural networks, which 

contain neurons that receive inputs through dendrites and send outputs through axons. 

Typically, neural networks contain an input layer, and output layer, with intermediate 

layers in between. Each connection between each node has a learnable weight, and 

each nodal output is a linear combination of each of the outputs of the preceding nodes 

and their corresponding weights, subsequently multiplied by an activation function. Basic 

neural networks that contain only fully-connected layers, where each node in a given 

layer is connected to all nodes in the previous layer, are known as multilayer 

perceptrons. In general, neural networks with more than one intermediate layer are 

called deep neural networks (DNNs). Different DNN architectures can be separated into 

additional categorizations, including recurrent neural networks, which are best-suited for 

temporal data, and convolutional neural networks, which are best-suited for images. 
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Figure 2.2.  Multilayer perceptron with three hidden layers 

Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a class of DNNs, which are generally 

applied to image processing. CNNs are able to assign weights and biases to individual 

features in the image as part of the training process and can take into account spatial 

dependencies between these features. CNNs are most notably used for image 

classification and have been shown to outperform traditional image processing methods 

due to their ability to capture minute nuances that would be otherwise missed in 

algorithm-based programming. CNNs typically make use of convolutional layers and 

pooling layers, in addition to the fully-connected layers typically seen in multilayer 

perceptrons.  

Network Architectures 

The first network architecture used in this thesis is U-Net [6], a fully-convolutional 

network (meaning it lacks any fully-connected layers) developed for semantic 

segmentation. Its structure consists of a contracting and expanding path. The 

contracting path follows a typical CNN structure, where convolutional layers extract 

features, and pooling layers progressively down-sample feature maps to extract context. 

The symmetric expanding path uses convolutional layers and up-convolutional layers 

that propagate contextual information to higher-resolution layers. In addition, span 

connections are added for each level, where high resolution weights are combined with 

the upsampled, generalized weights in the corresponding level of the expanding path. 

This allows the network to retain the learned localization information and better segment 

smaller, more detailed structures in the image. 

Hidden 
layer 1

Output layer
Input layer

Hidden 
layer 2

Hidden 
layer 3
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Residual blocks have seen success in ResNet [7] and provide a solution to the 

vanishing gradient problem that has emerged as a result of using excessive numbers of 

layers in CNNs. As the gradient backpropagates to earlier layers during training, 

successive multiplications reduce the gradients to zero. As shown in Figure 2.3, an 

added skip connection bypasses weight layers, which allow gradients to flow back to 

earlier layers in the network. This reduces the complexity of the network (and its 

corresponding mapping function), smoothing the “loss landscape” [8] and allowing local 

minima to be more easily found. As a result, training and test accuracy degradation are 

mitigated even when more layers are added.   

 

Figure 2.3.  Residual block, as shown in [7]. 

Residual blocks can be subsequently added to the U-Net architecture [9], which 

is shown in Figure 2.4. The identity function is implemented through a 1x1 convolutional 

layer, which ensures the representation shapes are compatible when adding. 

 

Figure 2.4.  Residual U-Net architecture 
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2.3.2. Deep Learning 

Deep learning is a subset of machine learning which uses DNNs. Due to the 

larger number of weights and parameters involved with DNNs, these allow for deep 

abstractions and high-level representations within its nodes. DNN’s benefit from larger 

datasets, where an increased number of training examples improves its ability to 

generalize, meaning its ability to apply learned representations from its training data to 

new data.  

2.3.3. Federated Learning 

As deep learning applications increase in complexity, the amount of data required 

to train a robust, accurate network increases significantly. However, for medical 

applications, data is securely guarded behind privacy regulations and additional legal 

hurdles, which include the European Union’s General Data Protection Regulation and 

the United States Health Insurance Portability and Accountability Act. Federated learning 

is a method of collaborative deep learning between groups that is designed to allow 

multiple parties to jointly train a model without directly sharing sensitive data. As shown 

in Figure 2.5, each participating group (client) trains a model on a secure local server 

only using their own data. Only the weights are sent to a central aggregate server, where 

all client model updates are globally aggregated. The resulting aggregate model is 

subsequently distributed to all clients to repeat the process. 

2.3.4. Summary 

Machine learning techniques provide essential tools for quantitative image 

analysis. In the next chapter, I will discuss how these techniques help aid the 

segmentation and quantification of the retinal microvasculature. 
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Figure 2.5. General federated learning schematic. Image from [10] 
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Chapter 3. Microvasculature Segmentation and 
Inter-capillary Area Quantification of the Deep 
Vascular Complex using Transfer Learning1 

3.1. Abstract  

3.1.1. Purpose: 

Optical Coherence Tomography Angiography (OCT-A) permits visualization of 

the changes to the retinal circulation due to diabetic retinopathy (DR), a microvascular 

complication of diabetes. We demonstrate accurate segmentation of the vascular 

morphology for the superficial capillary plexus (SCP) and deep vascular complex (DVC) 

using a convolutional neural network (CNN) for quantitative analysis. 

3.1.2. Methods: 

The main CNN training dataset consisted of retinal OCT-A with a 6x6mm field of 

view (FOV), acquired using a Zeiss PlexElite. Multiple-volume acquisition and averaging 

enhanced the vasculature contrast used for constructing the ground-truth for neural 

network training. We used transfer learning from a CNN trained on smaller FOVs of the 

SCP acquired using different OCT instruments. Quantitative analysis of perfusion was 

performed on the resulting automated vasculature segmentations in representative 

patients with DR.  

3.1.3. Results: 

The automated segmentations of the OCT-A images maintained the distinct 

morphologies of the SCP and DVC. The network segmented the SCP with an accuracy 

and Dice index of 0.8599 and 0.8618, respectively, and 0.7986 and 0.8139 for the DVC. 

 

1 This work has been published in Translational Vision Science & Technology. [J. Lo, M. Heisler, 
V. Vanzan, S. Karst, I. Z. Matovinović, S. Lončarić, E. V. Navajas, M. F. Beg, and M. V. Šarunić, 
“Microvasculature Segmentation and Intercapillary Area Quantification of the Deep Vascular 
Complex Using Transfer Learning,” Transl. Vis. Sci. Technol., vol. 9, no. 2, p. 38, Jul. 2020.] 
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The inter-rater comparisons for the SCP had an accuracy and Dice index of 0.8300 and 

0.6700, respectively, and 0.6874 and 0.7416 for the DVC. 

3.1.4. Conclusions: 

Transfer learning reduces the amount of manually-annotated images required, 

while producing high quality automatic segmentations of the SCP and DVC that exceed 

inter-rater comparisons. The resulting inter-capillary area quantification provides a tool 

for in-depth clinical analysis of retinal perfusion.  

3.1.5. Translational Relevance: 

Accurate retinal microvasculature segmentation with the CNN results in improved 

perfusion analysis in diabetic retinopathy. 

3.2. Introduction 

Diabetic retinopathy (DR) is a complication of diabetes mellitus, the most 

common cause of vision loss among people with diabetes, which affects 749,800 

Canadians [1]. DR damages the structure of the capillaries in the retina [2], leading to 

widespread areas of retinal ischemia as it progresses. Optical coherence tomography 

angiography (OCT-A) is a rapidly emerging imaging technology that allows for the retinal 

microvasculature to be seen volumetrically in micrometer-scale detail [11], [12]. OCT-A 

has shown to produce images that closely relate to histology[13]–[16], and presents a 

noninvasive and dye-free alternative with a lower risk of complications [17] when 

compared to the current gold standard, fluoroscein angiography (FA). 

Analysis and quantification of the retinal microvasculature benefits from multi-

scale imaging with fields-of-view (FOV’s) ranging from ~2x2mm to ~6x6mm. At a smaller 

FOV, the capillaries that comprise the structure of the microvasculature can be 

individually resolved, whereas with a larger FOV, macroscopic features, including 

regions of capillary non-perfusion, can be identified. With recent research hypothesizing 

that early manifestations of DR form in the retinal periphery [18], improving the vessel 

segmentations and tools for quantification in wider fields of view for both the superficial 

capillary plexus (SCP) and deep vascular complex (DVC) [19] are important assets to 
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clinicians. The DVC resulted from combining the intermediate and deep capillary 

plexuses due to difficulty in resolving each plexus individually, and has shown a higher 

correlation to retinal ischemia in DR [20], [21]. 

OCT-A images are information-rich, and time-consuming for a clinician to trace 

the vessels for detailed analysis. For the cases of highest clinical interest, small changes 

in the capillaries need to be detected. Consequently, accurate automated methods of 

microvasculature segmentation are an essential step towards quantification. However, 

the efficacy of traditional image processing algorithms can vary based on artifacts 

present in the image, most notably from noise. Segmentation of microvasculature in 

funduscopic photos, as well as FA have been examined [22], however fewer specific 

algorithms developed for OCT-A have been developed. Simple thresholding of the OCT-

A image intensity has been applied [23], [24], but these approaches pose numerous 

drawbacks in its invariance to microvasculature features and performance when applied 

to lower-quality images with a low signal-to-noise ratio (SNR). The disadvantages of 

thresholding can be seen in Figure 3.1, where an image of the DVC in a patient with mild 

diabetic retinopathy was processed with Otsu’s method [25]. This representative 

example of thresholding demonstrates that vessels do not maintain continuity, and a 

significant portion of the speckle is erroneously delineated as a vessel. 

 

Figure 3.1. Left: original single-frame image of the deep vascular complex. 
Right: image thresholded using Otsu’s Method. 
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Methods using vesselness filters have been developed [26], [27], but are either 

similarly limited by SNR, or require manual correction. A tophat filter and optimally 

oriented flux method for segmenting the vessels [28] has been implemented and 

demonstrated for brain imaging in mice. In addition, some commercial OCT systems 

also provide segmentation of the vessels but generally face the same issues with 

images with low SNR.  

Machine learning is a rapidly growing field, showing promising results for 

numerous ophthalmological applications. A few recent reports that are related to this 

topic include: retinal layer [29]–[31] and capillary plexus [32] segmentation, cone 

photoreceptor identification [33], [34], macular fluid segmentation [35], geographic 

atrophy segmentation [36], OCT image categorization [37], diagnosis and referral for 

retinal disease patients [38], [39], and synthesis of funduscopic images [40]. Additionally, 

recent reports have published online tools to improve the accessibility of machine 

learning-based retinal layer segmentation through intuitive user interfaces that can be 

used directly by clinicians [41]. Machine learning algorithms have also been applied 

towards OCT-A segmentation, with a recent approach (MEDnet) [42] applying a 

convolutional neural network (CNN) to identify and segment avascular areas in wide-

field images of the SCP. We have also previously published a method of using a CNN to 

segment 1x1mm images of the SCP [43]. Machine learning algorithms using CNN’s are 

well suited to address the issues of vessel segmentation through a series of trainable 

filters. These filters allow the segmentation to be sensitive to vessel boundaries, and 

hence also have the potential to preserve the vessel widths. However, even with the 

strengths of machine learning, the quality of the OCT-A images will have a significant 

impact on the results of the vessel segmentation and quantification. 

In our previous work, we proposed a method to register and average multiple 

sequentially acquired OCT-A images in order to significantly improve image quality and 

vessel discernibility [44]. Related works in the Literature have also investigated 

averaging of OCT-A images to improve vessel contrast [45] and automated biomarker 

identification algorithms [46]. However, this requires prolonged imaging sessions, which 

is not always possible, particularly in a high-volume clinical environment. Therefore, 

there is greater clinical utility in the development of an algorithm that can accurately 

segment, and subsequently quantify, the vasculature and corresponding inter-capillary 
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areas (ICA’s) from one single-frame OCT-A image. Quantification of individual ICA’s has 

been previously explored [23], [26], but used 3x3mm images of the SCP. Similarly, 

quantification of the vasculature in the DVC has been explored, but did not include ICA’s 

[27].  

With many approaches presenting accurate analysis of the ICA’s in the SCP, the 

contribution of this report is to describe an original and novel method to accurately and 

automatically segment and quantify these regions in the DVC. This used an approach of 

transfer learning, referred to as fine-tuning, for the segmentation of retinal 

microvasculature in single-frame, wide-field 6x6mm OCT-A images for the purposes of 

ICA quantification. The developed framework allows for the adaptation of an initial 

segmentation network to a new dataset with significantly fewer manually graded training 

examples. We combined the approach of OCT-A averaging to generate high contrast 

images of the vascular networks with supervised learning to provide the CNN with 

accurate ground truth data in order to guide the vessel segmentation even in the case of 

a single (unaveraged) OCT-A image. The computer-generated segmentations were 

qualitatively examined by retinal specialists and compared to manual segmentations 

from a trained rater. The outputs of the automated vessel analysis provide near-

immediately available, quantitative information on the microvasculature and ICA’s from a 

single OCT-A volume, and hence can potentially accelerate treatment plans and improve 

DR prognosis. 

3.3. Methods 

3.3.1. Subject Criteria and Data Preparation 

Subject recruitment and imaging took place at the Eye Care Centre of Vancouver 

General Hospital, and North Shore Eye Associates. The project protocol was approved 

by the Research Ethics Boards at the University of British Columbia and Vancouver 

General Hospital, and the experiment was performed in accordance with the tenets of 

the Declaration of Helsinki. Written informed consent was obtained by all subjects. 

Subjects in the control group (n = 8) displayed no evidence of retinal or ocular 

pathology upon examination by an experienced retina specialist. Subjects classified as 

diabetic (n = 28) were diagnosed with DR based on the international DR severity scale 
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[3]. All subjects were screened for clear ocular media, ability to fixate, and ability to 

provide informed consent before imaging. In addition, patients with diabetic macular 

edema were not included in the study. 

Table 3.1.  Demographics of the control dataset used in this study. 

Gender n Mean Age (Standard Deviation) 

Male 4 24.5 (3) 

Female 4 53.5 (23.1) 

3.3.2. Optical Coherence Tomography Instrumentation 

The data used for this study was acquired with the ZEISS PlexElite (Carl Zeiss 

Meditec, Dublin, CA) with software version 1.7.31492. The nominal 6x6mm scanning 

protocol was used, sampling at a 500x500 resolution at a rate of 100,000 A-scans per 

second at a visual angle of 20.94 degrees. Each B-scan was repeated twice at the same 

position and the optical micro-angiography (OMAG) implemented on the commercial 

imaging system was used to generate the angiographic information. The A-scan depth 

was 3mm with an axial resolution of 6.3 μm and a transverse resolution of 20 μm, as 

described in the product specifications. 

The inner limiting membrane (ILM), and posterior boundary of the outer plexiform 

layer (OPL) were used as the segmentation boundaries for the commercial device, with 

the inner plexiform layer (IPL)/inner nuclear layer (INL) complex used as the SCP/DVC 

boundary. The SCP and DVC were subsequently extracted, with projection artifacts 

removed, via a built-in software feature in the Zeiss PlexElite and exported at a 

1024x1024 resolution. Scans were only included in the study if the system specified 

signal strength was 8 (out of 10) or higher. 

3.3.3. Network Architecture  

The network for vessel segmentation used a variation of the U-Net [6] 

architecture, which was adapted for two classes: vessel and background. The basic U-

Net architecture is shown in Figure 3.2 and consists of convolutional and pooling layers. 

The convolutional layers consist of a series of trainable filters, which are correlated 

across the image and subsequently passed through a rectifier linear unit activation with 
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units capped at 6 (ReLU-6) [47]. Each convolutional layer was followed by a batch 

normalization layer, as well as a dropout layer with a coefficient of 0.5 [47]. Pooling 

layers were inserted to increase the receptive field of the subsequent filters in the 

convolutional layers, helping with generalization to prevent overfitting. 

 

Figure 3.2. U-net architecture. 

The U-Net architecture provides high-resolution feature extraction through its 

structure, which consists of a contracting and expanding path. For each level in the 

contracting path, high resolution weights are combined with the upsampled, generalized 

weights (span connections) in the corresponding level of the expanding path. This allows 

the network to retain the learned localization information and better segment smaller, 

more detailed structures in the image. In addition, methods using residual blocks for 

each convolutional block were experimented, however this resulted in similar or lower 

performance (data not shown). 

3.3.4. Training 

Two OCT-A datasets were used for training the network. To construct the initial 

weights, data were acquired from a previous study [48]. Briefly, this data consisted of 29 

images with a 2x2mm FOV acquired with a prototype swept source OCT instrument [49] 

and 47 images with a 3x3mm FOV acquired with a commercial spectral domain OCT 

instrument. Each OCT-A image was manually segmented using a Microsoft Surface Pro 

tablet and GNU image manipulation program (GIMP) by one trained rater and verified 

and accepted by two additional trained raters.   

To construct the initial weights, the network hyperparameters were optimized 

using 3-fold cross-validation. This resulted in a network trained over 120 epochs using 
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the Adam optimizer, with an initial learning rate of 10-4, and a custom epsilon value of 10-

5. Evaluation was performed qualitatively on a set of acquired 3x3mm FOV OCT-A 

images across all devices based on images most recently acquired at the clinic. 

Segmentation of a single 3x3mm or 2x2mm image using the network took approximately 

two seconds on a Nvidia RTX 2060 GPU, with a possible decrease to 0.3 seconds per 

image when segmented in larger batches of ~10 images. 

The network with the initial weights was subsequently fine-tuned on the 6x6mm 

FOV images acquired with the PlexElite. This was done in two stages: First, a smaller 

dataset of 10 single-frame OCT-A images of each of the SCP and DVC for which there 

existed a corresponding high-quality averaged image was identified. As described in our 

previously-published study [44], images were registered and averaged based on a 

template image that was free of microsaccadic motion. This allowed us to use the 

averaged OCT-A images to construct ground-truth labels for each single-frame template 

image. These labeled ground truth vessel segmentations were subsequently paired with 

the single-frame template OCT-A images to train the deep neural network to perform 

segmentations approaching the quality of averaged images, while only using single-

frame images.  

 

Figure 3.3.  Left: 10-frame averaged 6x6mm image of the deep vascular complex 
(DVC). Centre: Single-frame template image of the same region. 
Right: Manually-segmented averaged image, to be paired with the 
template image for training. 

For the SCP, the automated segmentations of the averaged images generated 

by the network with initial weights were adequate, as determined by a separate group of 

trained raters; hence these results were fed back into the network as additional training 

examples. However, the automated segmentations on the DVC required additional 
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manual correction due to the lower SNR of the images in this layer and the different 

morphological features of the vasculature relative to the SCP. Using the initial weights as 

a guideline for the manual raters would introduce biases that could negatively impact 

further stages of training; hence, the vasculature of the DVC images was instead first 

segmented through Otsu’s method [25]. Another masked and trained rater manually 

corrected the resulting segmentation using a Microsoft Surface Pro tablet and GIMP. All 

segmentations were reviewed and accepted by two of three other trained raters. A 

second trained rater segmented three images to obtain inter-rater metrics.  

Due to memory limitations when training, each 6x6 image was separated into 4 

quadrants, which were saved as 4 separate images. The same method of augmentation 

and cross-validation was used. This resulted in the network being trained through the 

Adam optimizer, using an initial learning rate of 10-2, and a custom epsilon value of 10-2. 

The forward inference segmentation of a single 6x6mm image using the network took 

approximately four seconds, with a possible decrease to 0.5 seconds per image when 

segmented in larger batches. 

To further reinforce the manually-segmented dataset, extensive data 

augmentation was performed. Each OCT-A image (along with its corresponding manual 

segmentation) in the training set was rotated 90 degrees three times with no processing. 

Next, to account for noise, each image was rotated 90 degrees an additional 5 times 

with various contrast adjustments, which included contrast-limited adaptive histogram 

equalization, as well as the built-in imadjust function in MATLAB. To account for motion, 

each rotated image was also separated into randomly-sized strips, which were re-

ordered randomly to simulate motion artifacts in the image. The probability maps 

resulting from the automated segmentations were binarized at a value of 0.5, the default 

class cut-off in the probability map. After binarization, isolated clusters of less than 30 

pixels were deemed false positives and removed.  

Additional training data were required to improve the performance of the network 

on the DVC using a single frame OCT-A image. The intermediate network (after training 

on the 10 manually-segmented images) was able to segment additional 6x6mm 

averaged OCT-A images of the DVC. Subsequently, the next stage of fine-tuning the 

CNN involved using this intermediate network to generate additional training data, using 

manual inspection for quality, but not requiring laborious manual segmentation at the 
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scale of capillaries. We applied the intermediate network trained on the manual 

segmentations to all 50 averaged OCT-A images in our 6x6mm dataset. After manual 

inspection, we identified 39 images for each of the SCP and DVC with adequate 

automated segmentations that constituted the new training set. A summary of the 

training sets used is provided in Table 3.2.  

Similarly to the first stage, the weights were initialized with the original network 

trained with the first dataset of 2x2mm and 3x3mm images. The same methods of image 

augmentation and training were applied, and cross-validation resulted in an initial 

learning rate of 10-2, and a custom epsilon value of 10-2 using the Adam optimizer.  

Table 3.2. Overview of the three datasets used to train the fine-tuned network 
 

2x2/3x3mm dataset First 6x6mm dataset Second 6x6mm dataset 

Training images SCP: 76 averaged and 
single-frame 

SCP: 10 single-frame 
DVC: 10 single-frame 

SCP: 39 single-frame 

DVC: 39 single-frame 

Ground-truth 
segmentations 

SCP: manual  SCP: automated 

DVC: manual 

SCP: automated 

DVC: automated 

 

3.3.5. Performance Evaluation 

To evaluate the automated segmentation performance, a number of metrics were 

calculated. The number of true positives (TP), false positives (FP), false negatives (FN), 

and true negatives (TN) were calculated using pixel-wise comparison between a 

reference manual segmentation and the thresholded binary output of the neural network. 

To calculate inter-rater metrics, these metrics were calculated by comparing one manual 

segmentation to another by a different rater. In the context of this study, pixels 

corresponding to vessels and the background comprised the positive and negative 

classes, respectively. Using the TP, FP, FN, and TN numbers we can calculate the 

accuracy of the segmentation, as shown in Equation 1:  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
. (1) 

   

Additionally, we can compute the Dice similarity coefficient (DSC), which 

quantifies the similarity between two segmented images, through measuring the degree 
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of spatial overlap. The DSC value ranges from 0, indicating no spatial overlap, and 1, 

indicating complete overlap and is calculated by Equation 2: 

 𝐷𝑆𝐶 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
. (2) 

 

Three methods were tested: using only the initial weights, using a network solely 

trained on the 6x6mm dataset, and the fine-tuned network, trained on both datasets. 

3.3.6. Post-Processing of the Automated Vessel Segmentation 

The neural network generated segmentation of the vessels in the OCT-A images, 

but further processing was required for quantitative analysis. Next, the ICA’s were 

identified, determined by the non-vessel pixels. The largest ICA within a small region in 

the center of the image was defined as the foveal avascular zone (FAZ). All erroneously 

segmented pixels within the FAZ were set to a non-vessel classification, with the 

centroid then used as the center of the Early Treatment of Diabetic Retinopathy Study 

(ETDRS) grid. 

Two metrics were of interest when quantifying ICA’s: the area of the region and 

maximum ischemic point (MIP), defined as the point of maximum distance to nearest 

vessel within the ICA. The metrics were measured for each ETDRS region and 

compared to a database of healthy eyes, for which the SCP and DVC were extracted. As 

outlined in Section 3.3.1, 8 healthy controls were recruited, resulting in a possible 16 

eyes. Of these, we were able to obtain high-quality averaged images for 12 to construct 

the reference database and were also included in the training dataset outlined in Table 

3.2. Each measured ICA was color-coded and overlaid on the original image based on 

number of standard deviations from the mean. Perifoveal vessel density (for each 

ETDRS region) was also calculated as the proportion of measured area occupied by 

pixels which were classified by the algorithm as a vessel. In addition, the projection 

artifacts remaining in segmentations of the DVC were excluded for the calculation of 

vascular metrics including vessel density and vessel index. This was done through an 

automated MATLAB post-processing step using image erosion and dilation.  
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3.4. Results 

3.4.1. Network Performance Evaluation 

Quantitative Segmentation Comparison 

Table 3.3 and Table 3.4 show comparative quantitative results when segmenting 

the SCP and DVC respectively. The network trained on the initial dataset of 2x2mm and 

3x3mm images, the network solely trained on the 6x6mm dataset, and the network 

trained with our proposed transfer-learning method were enumerated as Network A, B, 

and C, respectively. The accuracy and Dice index for Network C showed a high similarity 

between segmentations of the single-frame template images and the averaged images. 

The inter-rater metrics were only conducted on the manually-segmented datasets and 

are intended to be a representative number illustrating the difficulty of this problem and 

the variation in the metrics between human raters. Table 3.5 shows the same networks 

but evaluated on the original 2x2mm and 3x3mm dataset. 

Table 3.3. Comparative quantitative results of the segmentation of the SCP 
between three networks: Network A consisted of only the initial 
weights, Network B was trained on only the images from the 6x6mm 
dataset, and Network C was the fine-tuned network using our 
proposed transfer learning method. 

 

Network A Network B Network C Inter-rater 

Accuracy 0.8141 0.8534 0.8599 0.8300 

Dice similarity index 0.8060 0.8586 0.8618 0.6700 

Table 3.4.  Comparative quantitative results of the segmentation of the DVC 
between three networks: Network A consisted of only the initial 
weights, Network B was trained on only the images from the 6x6mm 
dataset, and Network C was the fine-tuned network using our 
proposed transfer learning method. 

 

Network A Network B Network C Inter-rater 

Accuracy 0.6934 0.7822 0.7986 0.6874 

Dice similarity index 0.6469 0.8065 0.8139 0.7416 
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Table 3.5. Comparative quantitative results of the segmentation of the 2x2mm 
and 3x3mm dataset between three networks: Network A consisted of 
only the initial weights, Network B was trained on only the images 
from the 6x6mm dataset, and Network C was the fine-tuned network 
using our proposed transfer learning method. 

 

Network A Network B Network C Inter-rater 

Accuracy 0.8677 0.8329 0.8350 0.8300 

Dice similarity index 0.8395 0.8059 0.8066 0.6700 

 

Qualitative Segmentation Comparison 

The fine-tuned network was qualitatively evaluated on data unseen by the CNN 

during training on control and DR patients. Figure 3.4 focuses on a peripheral area of the 

SCP located close to the optic nerve head, where the elongated vascular structure of 

radial peripapillary capillaries (RPC’s) are visible. As shown in Figure 3.4-C2, Network C 

(the fine-tuned network) preserves the features characteristic of the RPC’s, and 

segments larger vessels more accurately than Network A (the initial weights). The 

differences between Network B (trained solely with the 6x6mm dataset) and Network C 

are less pronounced, due to the higher SNR present in images of the SCP. 
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Figure 3.4.  A1: 2x2mm window of an averaged 6x6mm image taken of the 
superficial capillary plexus (SCP). A2: 2x2mm window of the 
corresponding region in the equivalent single-frame template image. 
B1: averaged image segmented using the initial weights (Network 
A). B2: single-frame image segmented using Network A. C1: 
averaged image segmented using the fine-tuned network (Network 
C). C2: single-frame image segmented using Network C. D: 
comparison between the automated segmentations between the 
averaged and single-frame images produced by Network C, 
represented by magenta and green respectively, with white 
representing the union. E: comparison between single-frame 
segmentations between Network B and C, represented by magenta 
and green respectively, with white representing the union. 

Figure 3.5 shows an additional enlarged comparison for an image of the SCP. It 

can be seen here that Network C is able to accurately segment the areas of ischemia 

observed in the averaged images, and as also shown in Figure 3.4, segments larger 

vessels more accurately.  
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Figure 3.5. A1: 2x2mm window of an averaged 6x6mm image taken of the 
superficial capillary plexus (SCP). A2: 2x2mm window of the 
corresponding region in the equivalent single-frame template image. 
B1: averaged image segmented using the initial weights (Network 
A). B2: single-frame image segmented using Network A. C1: 
averaged image segmented using the fine-tuned network (Network 
C). C2: single-frame image segmented using Network C. D: 
comparison between the automated segmentations between the 
averaged and single-frame images produced by Network C, 
represented by magenta and green respectively, with white 
representing the union. E: comparison between single-frame 
segmentations between Network B and C, represented by magenta 
and green respectively, with white representing the union. 

Figure 3.6Figure 3.6 shows an enlarged comparison of the segmentations results 

obtained by Network A and Network C when segmenting the elongated, lobular capillary 

structure of the DVC in a lower-quality image. As shown in Figure 3.6-B2, certain 

clusters of vessels were erroneously treated as noise by Network A, resulting in regions 

of false negatives. This is characteristic of single-frame OCT-A images; the blurred-out 

regions were replaced by a discernible vessel structure when using the averaged OCT-A 

images. The results presented in Figure 3.6-C2 are representative of the outputs from 

Network C, which eliminated a portion of these false negatives.  

Residual projection artifacts from the SCP were automatically identified and are 

highlighted in cyan in Figure 3.6-C1 and Figure 3.6-C2. As outlined in Section 3.3.6, 

these regions obscure the capillaries underneath and are subsequently excluded as a 

post-processing step when calculating the vessel density and vessel index metrics. 
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When segmenting with Network A, these projection artifacts were erroneously 

segmented as additional capillaries. This can also be seen in Figure 3.6-E where the 

green spots along the projection artifacts indicate that the segmentation produced by 

Network B is not as continuous as Network C. With accurate and continuous projection 

artifact delineation, these can be more accurately removed in post-processing. 

 

Figure 3.6. A1: 2x2mm window of an averaged 6x6mm image taken of the deep 
vascular complex (DVC). A2: 2x2mm window of the corresponding 
region in the equivalent single-frame template image. B1: averaged 
image segmented using the initial weights (Network A). B2: single-
frame image segmented using Network A. C1: averaged image 
segmented using the fine-tuned network (Network C) with projection 
artifacts to be excluded highlighted in cyan. C2: single-frame image 
segmented using Network C with projection artifacts to be excluded 
highlighted in cyan. D: comparison between the automated 
segmentations between the averaged and single-frame images 
produced by Network C, represented by magenta and green 
respectively, with white representing the union. E: comparison 
between single-frame segmentations between Network B and C, 
represented by magenta and green respectively, with white 
representing the union. 

Figure 3.7 shows an additional enlarged comparison of the results when 

segmenting the DVC with different versions of the deep neural network. The images 

segmented by Network C, shown in Figure 3.7-C1 and Figure 3.7-C2, more closely 

follow the elongated, lobular ICA morphology of the DVC and the results are less prone 

to over-segmenting noise. This presents a substantial improvement over the images 
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segmented by Network A, as shown in Figure 3.7-B1 and Figure 3.7-B2, the results of 

which incorrectly apply the branching structure characteristic of the SCP to the DVC. 

 

Figure 3.7. A1: 2x2mm window of an averaged 6x6mm image taken of the deep 
vascular complex (DVC). A2: 2x2mm window of the corresponding 
region in the equivalent single-frame template image. B1: averaged 
image segmented using the initial weights (Network A). B2: single-
frame image segmented using Network A. C1: averaged image 
segmented using the fine-tuned network (Network C) with projection 
artifacts to be excluded highlighted in cyan. C2: single-frame image 
segmented using Network C with projection artifacts to be excluded 
highlighted in cyan. D: comparison between the automated 
segmentations between the averaged and single-frame images 
produced by Network C, represented by magenta and green 
respectively, with white representing the union. E: comparison 
between single-frame segmentations between Network B and C, 
represented by magenta and green respectively, with white 
representing the union. 

3.4.2. Inter-capillary Area Evaluation 

Figure 3.8 shows representative images, segmentations, and standard deviation 

maps for diabetic subjects without DR, with mild/moderate non-proliferative NPDR, and 

with severe non-proliferative DR as graded by a retina specialist. 
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Figure 3.8. Labeled standard deviation maps for subjects with no diabetic 
retinopathy, mild/moderate non-proliferative diabetic retinopathy, 
and severe non-proliferative diabetic retinopathy. Original images of 
the deep vascular complex have been brightened for clarity. All 
inter-capillary areas are labeled based on the number of standard 
deviations its maximum ischemic point and area exceeded the 
reference mean. 

3.5. Discussion  

Early detection of DR is paramount to ensuring effective treatment and improved 

patient quality-of-life. Detecting changes in both the SCP and DVC have been identified 

as potential early biomarkers of DR. As a result, accurate segmentation and 

quantification of increasingly wide-field images of both the SCP and DVC will allow for 

further insight into the emergence and progression of DR. 

We designed a transfer learning-based framework for automated segmentation of 

the microvasculature in the SCP and DVC, as well as quantification of the ICA’s in 
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6x6mm single-frame OCT-A images. The framework consists of two convolutional neural 

networks: an initial network, trained on 2x2mm and 3x3mm images; and a second 

network, which utilized the pre-existing weights and fine-tuning on a smaller dataset of 

6x6mm images of both the SCP and DVC. This approach allowed for accurate feature 

detection despite a limited training set, with results that exceed the intra-rater accuracy. 

In particular, fine-tuning from an existing set of data provided more robust projection 

artifact delineation in the DVC, allowing for removal in post-processing when computing 

vascular metrics. The resulting ICA quantifications allow for a closer investigation into 

suspected areas of low perfusion but does not expressly define what constitutes such 

areas.  

A prevailing limitation of many machine learning problems is training dataset 

acquisition. For our study, manually segmenting an individual 6x6mm image of the DVC 

took each rater an average of 4 hours to complete, which can pose a significant 

challenge for problems requiring larger datasets. Solely training a new network on our 

limited, manually-segmented, 6x6mm dataset would overfit to the training set and 

including this new dataset with the original would result in a heavy data imbalance. The 

introduction of additional automated segmentations of averaged images greatly 

increased the size and quality of our training set, from 10 images of each of the SCP and 

DVC to 39. This allowed for a larger variation in training samples, consequently 

improving network performance. 

The impact of the training examples is most evident in the segmentations of the 

DVC, where the initial weights produced segmentations that significantly differed from 

the images produced by the fine-tuned network. As seen in Figure 3.6 and Figure 3.7, 

vessels segmented by the initial weights closely resemble the denser morphological 

characteristics of the SCP. In particular, the ICA’s in the DVC follow a lobular pattern, 

which is reflected more accurately in the segmentations generated by the fine-tuned 

network.  

Another limitation is the quality of the data. Currently, images with an SSI of 8 or 

lower, as well as images with excessive microsaccadic eye motion were omitted from 

the study. If there are excessive microsaccadic artifacts, microvascular features begin to 

blur, and can be subsequently classified as noise by the network. This emphasizes the 

importance of using the averaged 6x6mm images as the ground-truth data obtained from 



31 
 

manual segmentations because it will be the most anatomically accurate. Our 

previously-published method of averaging and registering single-frame images based on 

a template [44] allowed for segmentations of averaged images to be paired with single-

frame training data, greatly improving the quality of our training samples. Segmentation 

quality appeared to be independent of location in the image, as automated segmentation 

accuracy was consistent across the 6x6mm FOV in the absence of additional artifacts.  

To summarize, we designed a machine learning framework to accurately 

segment and quantify the retinal microvasculature in the SVP and the DVC. It produces 

immediately-available segmentations, which provide clinicians with a tool for in-depth 

analysis of ICA’s and the level of retinal perfusion. Through this framework, patient care 

for DR can be adapted individually, improving compliance and patient prognosis. In 

addition, visualization and quantification of retinal vasculature at a high level of accuracy 

provide more information about disease activity and therefore may add to individualized 

patient care. 

3.5.1. Contributions 

The details of the methods were conceived and designed by myself, with help 

from Dr. Morgan Heisler and Dr. Marinko Sarunic. The data was acquired at the Eye 

Care Centre by Dr. Sonja Karst. All machine learning scripts and accompanying 

MATLAB scripts were written by me, as well as the eventual manuscript, which was 

subsequently published. 

After the publication of these methods, I changed the architecture to a residual U-

Net approach, as shown in Figure 2.4. I also implemented a method of converting the 

Keras model files to a MATLAB-compatible version, allowing other members of BORG to 

use the segmentation tool without my assistance. 
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Chapter 4. Federated learning 

4.1. Introduction 

The usage of deep learning has been extended to numerous problems in the 

medical industry, such as described in Chapter 3. However, as deep learning 

applications increase in complexity, the amount of data required to train a robust, 

accurate model increases significantly. However, as institutions and corporations 

increase the amount of data collected per user or participant, the consequences of a 

breach could prove disastrous. As a result, for medical applications, data is securely 

guarded behind privacy regulations and additional legal hurdles, which include the 

European Union’s General Data Protection Regulation and the United States Health 

Insurance Portability and Accountability Act. This presents a nearly insurmountable 

hurdle for collaborative data sharing between institutions. Additionally, there exists a 

possibility that deep neural networks (DNNs) trained solely on medical data available in 

its own “data island” are significantly overfitted, especially if all the data originates from 

one source. This is the case for image processing algorithms, where images originating 

from one source can have distinct features that can facilitate overfitting as training 

progresses.  

Federated learning is a distributed machine learning approach which enables 

DNN training on a large corpus of de-centralized data originating from different sources 

without directly accessing sensitive data. Cross-device federated learning was originally 

developed by Google for usage with large amounts of data present in phones and 

tablets for the development of intelligent applications [50]. It was proposed that a central 

server could distribute copies of a machine learning model to a set of clients, where 

each client could locally perform one or multiple steps of gradient descent on local data, 

and subsequently return its results to the central server to be averaged among the rest 

of the client base. Frameworks for developing federated learning algorithms such as 

Tensorflow Federated, NVIDIA Clara, as well as PySyft [51] exist, however, for medical 

applications with a small number of participating (collaborating) institutions, this 

approach can be simplified. This is termed cross-silo federated learning [52]. Compared 

to cross-device federated learning, the small number of collaborative participants in a 

cross-silo setting simplifies execution by allowing for the training to be synchronous. The 
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cross-silo setting also assumes that the participants are trusted, and do not present an 

adversarial risk towards federated training, which can include white-box and black-box 

inference attacks [53], or exploiting the gradients to reconstruct the training data [54].   

Development of a cross-silo approach to federated learning for medical image 

analysis has been explored by various groups, most notably for the coronavirus disease 

2019 (COVID-19) pandemic. A collaborative federated learning platform for CT scan-

based COVID-19 diagnosis using a 3D dense convolutional neural network (CNN) has 

developed [55]. In addition, a federated approach to both L1 regularization and 

multilayer perceptron models were applied to electronic health records to predict COVID-

19 mortality, showing improvement over models trained locally [56]. A federated learning 

framework was also developed for functional magnetic resonance imaging analysis 

using domain adaptation [57]. In the field of OCT for ophthalmic imaging, to the best of 

our knowledge, there is no previous report examining the use of federated learning. A 

related model-to-data approach was applied to intraretinal fluid segmentation in OCT 

volumes [58] with significant success. his report represents the next step in the 

progression of model-to-data to federated learning. 

In this study, we investigate the federated learning approach to apply the 

microvasculature segmentation in Chapter 3 to multiple datasets across multiple 

institutions in a simulated environment.  The performance of the federated model will be 

compared to models trained solely on local data, models trained on a fully centralized 

dataset, as well as alternative methods of collaborative deep learning. 

4.2. Methods 

4.2.1. Main components 

The main components of the framework involve the central server and the 

individual clients from which the private data is sourced. The central server serves as the 

‘hub’ of the framework, through dictating when training occurs, and defining 

hyperparameters for each client. The central server also collects an aggregate of each 

client’s updates, and performs averaging to compute a new global model for distribution. 

Model updates from each client, as well as each iteration of the aggregated global model 

are saved locally, and is not accessed by other participants. In the cross-silo federated 
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learning setting, clients are different organizations, which include hospitals, research 

institutions, or geo-distributed datacenters, and it is assumed that clients are reliable and 

trusted participants with no adversarial motives. Data used for training is stored directly 

on servers that the client owns, and is not accessed by outside parties. Each individual 

client executes a persistent script that continually checks for instructions from the central 

server, and trains for an epoch on local data when directed.  

4.2.2. Secure File Transfer 

The training cycle in federated learning consists of regular communication 

between the central server and client, necessitating a secure method of programmatic 

file transfer. Direct SSH access to either the client or central server was deemed to pose 

a high security risk, especially if the traditional SSH keypair approach was used. In 

particular, providing direct access to the computer files was considered a risk in the case 

of an adversarial client (or a compromised client) potentially gaining access to models 

trained by other clients. Furthermore, the central client would have access to each 

client’s training data. To solve this problem, a cloud-based drop-off folder was 

implemented, with the configuration as shown in Figure 4.1. 

 

Figure 4.1. Overview of the data flow configuration between the central server 
and the client server. Each client is assigned its own drop-off folder, 
where files are uploaded to be downloaded by its recipient.  

The drop-off folder serves as a middle point for both the central server and the 

client, providing a medium on which to exchange files without direct SSH access. Drop-

off folders are hosted on SFU Vault, which is an implementation of Owncloud, and can 

be subsequently utilized through its API. Each client is assigned its own folder, with a 

secure link and password that is provided and accessed programmatically.  
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4.2.3. Aggregation 

The aggregation algorithm overview is as shown in Figure 4.2. For each training 

cycle, the central server would distribute the aggregate model, as well as instructions in 

a configuration file (INI was used, but formats such as JSON or XML would also be 

suitable) for each client. This configuration file included information such as the current 

epoch, as well as the learning rate at which that epoch would be trained. Each client 

would receive the model and configuration file, perform data augmentation, train for a full 

epoch on its training set, and validate on its validation set. The resulting model and CSV 

file containing the loss and accuracy for both training and validation would be returned to 

the central server. Once the central server received the model and CSV file from each 

client, it would further validate each client model on a separate dataset with high-quality, 

averaged OCT-A images in order to isolate models that could disrupt the overall training 

process. This can occur from a model simply diverging, or through adversarial attacks 

such as white-box and black-box attacks. Consequently, any client model that scored 

below a specified tolerance value would be omitted from the average. The paths to 

saved models and training data are defined in a configuration file located locally on the 

client server and are not accessed by the aggregator. 

 

Figure 4.2. Overview of the aggregation algorithm that oversees the federated 
learning training process. 
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4.2.4. Training 

To examine the efficacy and clinical utility of a federated learning approach, the 

resulting model was compared to alternative collaborative approaches, which include 

pooling all the data into a centralized location. Because of this, the model was trained on 

four base datasets that were locally available and sourced and are described in detail in 

Section 3.3.4 and are summarized in Table 4.1.  

Table 4.1. Overview of the four base datasets used for the federated learning 
simulation. Images in the PlexElite 6x6mm dataset were split after 
partitioning into training, validation, and test set. 

Image Source Field-of-
view 

Included capillary 
plexuses 

Number of available 
images 

Dataset partitions 

(quadrants) 

SFU prototype 
swept-source 
OCT-A 

2x2mm SCP 30 18 training 

6 validation 

6 testing 

RTVue XR Avanti 
(Optovue, Inc.) 

3x3mm SCP 26 16 training 

5 validation 

5 testing 

Angioplex (Carl 
Zeiss Meditec) 

3x3mm SCP 24 14 training 

5 validation 

5 testing 

PlexElite 9000 
(Carl Zeiss 
Meditec) 

6x6mm SCP and DVC 73 (292 quadrants) 42 (168) training 

15 (60) validation 

16 (64) testing 

  

Each base dataset was split into training, validation, and testing partitions, after 

which each 6x6mm image was divided into quadrants to ensure image size consistency. 

Four simulated clients were assigned one each of the four base datasets, with each 

client occupying a compute node on Cedar (Compute Canada supercomputer cluster). A 

local computer acted as the central server. The architecture used on each client was the 

residual U-Net outlined in Section 2.3.1. Training was performed over a maximum of 

1000 epochs, after which the model with the lowest validation loss was selected for 

evaluation. The clients all trained with stochastic gradient descent with a cyclic learning 

rate schedule that used warm restarts. The learning rate would decrease from 0.1 to 

0.001 with a decay factor of 0.1, and repeat. Each client employed the same data 

augmentation steps, which included 5-10% random pixel dropout, linear and gamma 
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contrast adjustment, rotations from -15 to 15 degrees, and horizontal and vertical flips 

using the ImgAug Python library. 

The performance of the federated learning model was investigated by using the 

data to train several scenarios. The model-to-data approach was investigated by training 

a model on each base dataset individually, but without transfer learning as in [58]. A 

combined dataset with all available images was used for training in the ideal case, where 

all data is available. The effects of the size of the data sets (and the resulting diversity in 

training examples) was explored through constructing two additional combined datasets 

with an equal number of images: one with 14 images randomly sampled from each 

source (the maximum possible, as the Angioplex 3x3mm training set contained 14 

images), and one with only 4 images randomly sampled from each image source, to 

approximate the size of a smaller base dataset. Lastly, the federated model was 

compared to a model trained on all four base datasets sequentially in the order shown in 

Table 4.1, to simulate a naïve collaborative deep learning approach. 

4.3. Results 

4.3.1. Training and Validation 

Figure 4.3 shows the training and validation loss curves over the entire training 

process of 1000 epochs. For the training loss curve, it can be seen that the clients 

converge as expected, with minimal oscillations along the length of the curve, which can 

be attributed to the cyclic learning rate schedule. These oscillations decrease in 

amplitude as training progresses. Convergence is also seen in the validation loss curve, 

with the minimum validation loss occurring at the 654th epoch. The validation losses for 

clients 0 to 2 (with the 2x2mm and 3x3mm base datasets) decrease as expected, with a 

plateau observed after approximately 300 epochs, while the loss for client 3 (with the 

6x6mm base dataset) plateaus at approximately 0.47 and begins to decrease to 0.4 after 

the 350th epoch. This suggests that the gradient may have slowly traversed from a 

plateau or saddle point to a nearby local minimum in the loss landscape. 
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Figure 4.3.  Training and validation loss curves for the federated model. The 
order of clients in the figure legends follows the same order of base 
datasets in Table 4.1, where client0 contains the prototype 2x2mm 
dataset, client1 contains the Optovue 3x3mm dataset, client2 
contains the Angioplex 3x3mm dataset, and client3 contains the 
PlexElite 6x6mm dataset. 

4.3.2. Quantitative Analysis 

Table 4.2 shows the accuracy when all 9 training methods are evaluated on each 

base dataset’s test set. In this case, the baseline performance (shown in red) is defined 

as the performance of a model naively trained, and subsequently tested, on one base 

dataset. It can be seen that the model trained with federated learning attained accuracy 

scores comparable to the baseline performance, which was the best-performing model 

for the 3x3mm and 6x6mm base datasets. It also achieved similar performance to the 

combined datasets, suggesting that pooling all datasets into a centralized location may 

only provide a marginal benefit over federated learning. Additionally, the federated 

model outperformed the sequentially-trained model for the 2x2mm and 3x3mm base 

datasets, as the model biased towards the most recently-seen 6x6mm base dataset. A 

similar trend is seen when calculating the Dice index, as detailed in Table 4.3. It can be 

seen that the federated learning model exceeds the baseline performance for the 

2x2mm base dataset, and achieves comparable scores for the two 3x3mm datasets. 

The federated learning model also achieves comparable scores to all combined 

datasets, similar to the results shown in Table 4.2.  
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Table 4.2.  Accuracy for each training method, evaluated on each base 
dataset's test set. Numbers in brackets in the first column represent 
number of images. Bolded values represent highest number in each 
column, and values in red represent the baseline performance (i.e. a 
model trained and tested on images from one base dataset). 

Model training method 
(number of images) 

SFU prototype 
(2x2mm) 

Optovue 
(3x3mm) 

Angioplex 
(3x3mm) 

PlexElite 
(6x6mm) 

Federated learning 0.8568 0.8148 0.8502 0.7836 

Sequential 0.8350 0.7889 0.8212 0.8098 

Only SFU prototype (18) 0.8575 0.7208 0.8077 0.5741 

Only Optovue (16) 0.8305 0.8293 0.8010 0.6211 

Only Angioplex (14) 0.8180 0.8165 0.8582 0.7132 

Only PlexElite (168) 0.8140 0.8001 0.8285 0.8168 

Combined (18/16/14/168) 0.8549 0.8037 0.8425 0.8056 

Combined equally (14/14/14/14) 0.8611 0.8285 0.8573 0.7951 

Combined equally (4/4/4/4) 0.8554 0.8292 0.8532 0.7850 

 

Table 4.3.  Dice similarity index for each training method, evaluated on each 
base dataset's test set. Numbers in brackets in the first column 
represent number of images. Bolded values represent highest 
number in each column, and values in red represent the baseline 
performance (i.e. a model trained and tested on images from one 
base dataset). 

Model training method 
(number of images) 

SFU prototype 
(2x2mm) 

Optovue 
(3x3mm) 

Angioplex 
(3x3mm) 

PlexElite 
(6x6mm) 

Federated learning 0.7727 0.8138 0.8239 0.7608 

Sequential 0.7515 0.7817 0.7815 0.7983 

Only SFU prototype (18) 0.7561 0.6629 0.7460 0.2652 

Only Optovue (16) 0.6714 0.8362 0.7343 0.4388 

Only Angioplex (14) 0.7353 0.8179 0.8363 0.6368 

Only PlexElite (168) 0.7382 0.8006 0.8008 0.8157 

Combined (18/16/14/168) 0.7547 0.7973 0.8063 0.7965 

Combined equally (14/14/14/14) 0.7719 0.8353 0.8347 0.7839 

Combined equally (4/4/4/4) 0.7723 0.8380 0.8314 0.7822 

 
 

4.4. Discussion 

As deep learning applications grow in complexity, the need for labelled ground-

truth data increases exponentially. In many cases, a single institution does not have 

enough resources to procure the data needed to train a robust model. However, for 
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medical images, this data is securely guarded behind various regulations and legal 

hurdles, resulting in a significant barrier to collaborative data sharing between 

institutions. There also exists a possibility that models trained mainly within one “data 

island” are significantly overfitted, which limits its eventual application. In this chapter, we 

designed a robust federated learning framework for hardware-agnostic microvasculature 

segmentation in OCT-A images, using a cross-silo approach. The framework involved 

individual clients training a model on its local training data and sending the weights to a 

central server. The central server would aggregate the weights from all clients and re-

distribute the new global model. Secure file transfer was handled through a cloud-based 

drop-off folder hosted on SFU Vault, eliminating the need for direct SSH access between 

the central server and each participant.  

To evaluate the performance of this framework, we simulated its performance on 

four base datasets from four separate imaging devices, consisting of fields-of-view 

ranging from 2x2mm to 6x6mm. The resulting federated model achieved performance 

comparable to the baseline – a model trained and tested on one single base dataset, 

showing that a model can converge despite training in a de-centralized manner. The 

federated model also achieved similar performance to models trained on centralized 

datasets, where multiple configurations were tested: combining all training images 

naively, and randomly sampling an equal number of images from each base dataset. 

The federated model was also compared to the sequential training method outlined in 

Section 4.2.3, providing better performance on the first three base datasets in the 

sequence due to its bias towards the most recently seen fourth base dataset. It was also 

observed that the difference in Dice index scores (in Table 4.3) for both models trained 

on randomly-sampled combined datasets varied by a maximum of 0.4% for each base 

dataset. This suggests that increasing the diversity of examples by adding images from 

additional imaging sources (through combining the datasets or federated learning) 

benefits the overall model more so than simply expanding a pre-existing dataset.  

Because a model trained with federated learning achieved comparable 

performance to a model trained on any centralized dataset, it can be inferred that 

federated learning provides the most benefit to clients with the least amount of data 

(assuming that the data are similar). Clients with larger datasets are shown more unseen 

cases, allowing for better identification of edge cases. The resulting model is expected to 
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generalize more so than a model trained on a dataset originating from a single data 

source, resulting in better performance on images from a fifth image source. However, 

one area that merits further exploration is how each model would perform on data 

acquired by the same machines in Table 4.1, but at different institutions with different 

imaging protocols. If computing resources are available, this can be used in conjunction 

with a “filter bank” implementation, where individual models are trained specifically to 

segment images from only one image source, and openly shared among collaborators. 

This appears to be the most appropriate solution for a set of clients with a large variance 

in their respective datasets, however, we expect this approach to achieve lower 

performance on new and unseen data when compared to federated learning. An 

alternative approach is to use the federated learning model as a starting point for 

transfer learning, allowing each institution to tailor the model to their data. 

Similar to traditional deep learning, a limitation of federated learning is the 

quantity and diversity of the training data. As shown in Table 4.1, the 6x6mm base 

dataset contained significantly more images than the other three base datasets, resulting 

in one client iterating over more steps per epoch during training. However, when 

aggregating the client models, each was weighted equally during averaging. This was 

done to ensure the federated model does not bias towards a single data source, despite 

the data imbalance. A potential solution to this is to perform additional augmentation on 

the smaller datasets, however, because each client model is aggregated into a global 

model, the benefits may be minimal. 

With any attempts of collaborative deep learning, there exist several risks if a 

presumed collaborator has an adversarial motive. In federated learning, adversaries are 

motivated to disrupt the training process through white-box and black-box attacks [53], 

which we mitigate through a framework-wide validation step before averaging. In 

addition, “dummy” gradients can be introduced from a client to leak private training data 

[54]. Presently, this only applies to image classification problems with low batch sizes 

and low-resolution images (up to 64x64), which is unsuitable for the high-resolution 

images seen in medical data, and the substantially higher number of parameters seen in 

image segmentation architectures.  
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4.4.1. Contributions 

The details of the methods were conceived and designed by myself, with advice 

from Dr. Marinko Sarunic, Dr. Da Ma, and Mr. Timothy Yu. I was present during the 

initial exploratory phase of the project, experimenting with different federated learning 

frameworks, before opting to code everything myself. Additional meetings with Dr. Aaron 

Lee, from the University of Washington (UW), provided insight on security concerns and 

constraints. I wrote all the code, including the aggregator and client scripts, and 

supervised Timothy as he adapted the framework for DR classification with our 

collaborators from Dr. Lee’s lab, as well as Dr. Yali Jia’s lab from the Oregon Health and 

Science University. All tests for vasculature segmentation for the purposes of evaluating 

the federated learning performance were organized and run by myself. 
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Chapter 5. Conclusions 

5.1. Summary 

The main purpose of this thesis is to investigate methods of quantifying the 

microvasculature of the retina in OCT-A enface images using deep learning. The low 

SNR found in single-frame OCT-A images (most notably in the DVC) provides a 

substantial challenge to traditional image processing techniques, paving the way for 

deep learning algorithms which improve through experience. However, as deep learning 

applications increase in complexity, the amount of manually-labeled data may prove 

inadequate. The works described in Chapters 3 and 4 outline methods to overcome 

limitations through inadequate amounts of labeled data, through leveraging existing 

datasets to federated learning. 

First, the basic concepts of the eye anatomy, ophthalmic imaging techniques, 

and machine learning were described as it pertains to this thesis. A comprehensive 

overview of each concept is beyond the scope of this thesis, however multiple review 

articles are available in the Literature for machine learning in ophthalmology [59] as well 

as federated learning [52]. 

Chapter 3 examined the usage of transfer learning to leverage pre-existing high-

quality, averaged, 6x6mm OCT-A enface images to obtain detailed manual 

segmentations. When paired with the equivalent high-SNR single-frame images, and 

pre-existing weights obtained from a model trained on 2x2mm and 3x3mm images, we 

were able to train a convolutional neural network to segment both the SCP and DVC. 

The resulting segmentations were analyzed to produce detailed perfusion maps based 

on the maximum ischemic point and area observed in each inter-capillary area. Through 

this study, we were able to show that the resulting convolutional neural network was able 

to segment both the SCP and DVC, with performance exceeding inter-rater 

comparisons. 

Because obtaining labeled data for complex tasks such as semantic 

segmentation is often arduous and resource-intensive, constructing a robust model 

relies heavily on collaborations between institutions. However, medical data sharing is 

severely limited by privacy regulations and additional legal hurdles. Chapter 4 expanded 



44 
 

on the previous method for microvasculature segmentation through the design and 

implementation of a federated learning framework to allow for multi-client training on a 

de-centralized data corpus. The framework consisted of a central aggregator server, as 

well as a series of clients to perform training on secure local data. A drop-off folder, 

hosted on SFU Vault, facilitated secure file transfer without direct SSH access between 

the central server and each participant. We showed that the federated learning 

framework achieves performance comparable to models trained on a fully-centralized 

dataset, while providing a model that is more generalized than a system of “filter banks”.  

The framework can also be adapted to other deep learning applications and is 

currently being implemented for DR severity classification. Available DR datasets can 

vary greatly across institutions based on location demographics and patient availability; 

thus, classification of multiple severity levels of DR can prove challenging due to the high 

potential of encountering unseen features. Pooling all available data through a 

decentralized dataset is essential to capture these edge cases, increasing the 

robustness of the resulting model, as well as its accuracy. 

In summary, the major contributions of this work are (1) the development of a tool 

using transfer learning to obtain accurate automated segmentations of the retinal 

microvasculature, and (2) the implementation of a robust federated learning framework 

for microvasculature segmentation, with possible adaptation to other applications. 

5.2. Future Works 

While several deep learning techniques were investigated for ophthalmological 

image analysis, there exist several additional topics that have yet to be explored. 

Expanding on the research presented in Chapter 3, there exist several potential 

directions for research using quantitative microvasculature data. As more data is 

available, longitudinal studies could be developed using these automated 

segmentations, which could provide insight into disease progression and prognosis. As 

imaging technologies improve, reducing the SNR for higher FOVs such as 9x9mm to 

20x20mm, this segmentation tool can be expanded to encompass additional regions of 

the retina. This would allow for the identification of additional risk factors, leading to more 
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precise risk stratification – namely identifying patients likely to progress to proliferative 

disease, and increasing the frequency of follow-up visits for treatment. 

As cross-silo federated learning is still in its infancy in terms of development, 

many additional experiments can be conducted to improve its clinical utility. It is possible 

that using different loss functions for each client could impact the results (in particular, 

the model’s ability to be fully hardware-agnostic), as well as a modified averaging 

scheme during aggregation. In addition, further measures could be taken if a client 

model scores below the specified validation threshold once it is collected by the central 

server to salvage the valuable data learned during that specific epoch while remaining 

resistant to adversarial white-box and black-box attacks. Encryption of weights using 

secure multi-party computation would increase the overall security of the framework, 

however the usage of a secure drop-off folder partially mitigates this issue. Looking into 

the future, encryption could be relevant if multiple clients share a communal space when 

transferring models, or when security concerns exist during model exchange. 

Furthermore, as the work presented in Chapter 4 utilizes synchronous learning, further 

experiments could be conducted on asynchronous training, where clients “subscribe” to 

the framework and receive updates from the central server. 

The examples outlined in this section remain small steps from the work 

presented in this thesis but present an optimistic outlook for the future of this field. As 

research and development in machine learning techniques continues to accelerate, the 

resulting discoveries can revolutionize ophthalmology beyond image processing and 

analysis, as well as direct diagnosis. The ultimate goal for any artificial intelligence 

application is to be able to produce a report, individualized for each patient, that details 

disease progression, expected prognosis, and a list of treatments the patient is most 

likely to respond to.  
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