
Investigating the importance of methane for future 
climate change: wetland methane emissions, the 

permafrost carbon feedback, and methane mitigation 

by 

Claude-Michel Nzotungicimpaye 

M.Sc. (Environmental & Geographical Science), University of Cape Town, 2014 

B.Sc. (Applied Mathematics), National University of Rwanda, 2009 

 

Thesis Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

Doctor of Philosophy 

in the 

Department of Geography 

Faculty of Environment 

 

© Claude-Michel Nzotungicimpaye 2021 

SIMON FRASER UNIVERSITY 

Spring 2021 

Copyright in this work rests with the author. Please ensure that any reproduction or re-use is 
done in accordance with the relevant national copyright legislation. 



ii 

Declaration of Committee 

Name: Claude-Michel Nzotungicimpaye 

Degree: Doctor of Philosophy (Geography) 

Thesis title: Investigating the importance of methane for 
future climate change: wetland methane 
emissions, the permafrost carbon feedback, and 
methane mitigation 

Committee: Chair: Eugene McCann 
Professor, Geography 

 Kirsten Zickfeld 
Supervisor 
Professor, Geography 

 Lance F. W. Lesack 
Committee Member 
Professor, Geography and Biological Sciences 

 Joe R. Melton 
Committee Member 
Research Scientist 
Climate Research Division 
Environment and Climate Change Canada 

 Andrew H. MacDougall 
Committee Member 
Assistant Professor 
Climate and Environment 
St. Francis Xavier University 

 W. Jesse Hahm 
Examiner 
Assistant Professor, Geography 

 Victor A. Brovkin 
External Examiner 
Head of Climate-Biogeosphere Interactions Group 
Land in the Earth System Department 
Max Planck Institute for Meteorology, Germany 



iii 

Abstract 

Methane (CH4) is a major greenhouse gas (GHG), second only to carbon dioxide (CO2) 

in the contribution to historical climate forcing. Yet, the level of understanding of how 

CH4 will influence the future climate remains low because CH4 processes are generally 

not represented in Earth system models used for future climate projections. The 

objective of this thesis is to investigate the importance of CH4 for future climate change 

with a focus on CH4 mitigation as well as wetland CH4 emissions from thawing 

permafrost soils, and their respective impact on global warming. The thesis includes a 

description of a new model for wetland CH4 emissions implemented in an Earth system 

model of intermediate complexity (EMIC) and applications of the EMIC (including a 

simplified representation of the CH4 cycle) to: (i) investigate the importance of CH4 

mitigation to comply with stringent global warming limits, and (ii) project the additional 

warming due to wetland CH4 emissions from previously frozen carbon following gradual 

permafrost thaw over the next three centuries. Salient results of this thesis are: (i) 

immediate cuts in anthropogenic CH4 emissions, alongside CO2 mitigation, are needed 

to increase the likelihood of limiting global warming to 2°C above pre-industrial levels; (ii) 

the warming due to wetland CH4 emissions from thawing permafrost soils is projected to 

be small (<0.05°C) throughout the 21st century independent of the future anthropogenic 

emission scenario, (iii) the warming due to such permafrost CH4 emissions has the 

potential to increase substantially beyond the 21st century, reaching 0.09 (0.01-0.24) °C 

in the year 2300 under a scenario of high anthropogenic emissions. Overall, by 

incorporating a simplified representation of the CH4 cycle in Earth system model 

simulations, this thesis suggests that (i) delaying CH4 mitigation to after the year 2040 

will constitute a challenge for limiting global warming to 2°C even if anthropogenic CO2 

emissions were reduced aggressively, (ii) reducing anthropogenic GHG emissions will 

allow to limit the warming due to wetland CH4 emissions from thawing permafrost soils to 

well below 0.1°C over the next three centuries. 

 

Keywords:  Methane; Wetland methane emissions; Methane mitigation; Permafrost 

carbon feedback. 
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Chapter 1. Introduction 

The industrial revolution of the 18th century marked the beginning of intensive use of 

fossil fuels by humans, which resulted in economic growth followed by a sustained 

increase in greenhouse gas (GHG) emissions from anthropogenic sources and a 

gradual rise of the average global surface temperature (IPCC, 2014). The increase in 

global mean surface air temperature of about 1.1°C above pre-industrial (1850-1900) 

levels has induced severe impacts on both natural and human systems in many regions 

of the Earth (WMO, 2019). Climate-related impacts are expected to increase and worsen 

in a future without an effective action to mitigate anthropogenic emissions (IPCC, 2014). 

As part of international efforts to combat climate change, the 2015 Paris 

Agreement by parties to the United Nations Framework Convention on Climate Change 

(UNFCCC) aims at “holding the increase in the global average temperature to well below 

2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 

1.5°C above pre-industrial levels, recognizing that this would significantly reduce the 

risks and impacts of climate change” (UNFCCC, 2015). Holding global warming to the 

limits set by the Paris Agreement requires achieving net zero carbon dioxide (CO2) 

emissions and substantial reductions in non-CO2 emissions from anthropogenic sources 

by the year 2050 (IPCC, 2018). 

Methane (CH4) is the second most important contributor to total radiative forcing 

after CO2 (Myhre et al., 2013). While CO2 stays in the atmosphere for centuries, CH4 has 

a residence time of only about a decade in the atmosphere (Ciais et al., 2013). Yet, the 

global warming potential of CH4 is 28-34 over 100 years: that is, each molecule of CH4 

added to the atmosphere is 28-34 times more effective at absorbing heat than a 

molecule of CO2 over a period of 100 years (Myhre et al., 2013). The global CH4 cycle 

involves several sources (e.g. fossil fuels, landfills, rice paddies, natural wetlands and 

freshwater systems) and sinks (e.g. chemical reactions in the atmosphere and microbial 

uptake at the soil surface) (Saunois et al., 2020). Ongoing climate change has the 

potential to increase CH4 emissions from natural wetlands and permafrost environments, 

which could trigger positive feedbacks between climate change and these CH4 

emissions (Dean et al., 2018; O’Connor et al., 2010). CH4 is an integral part of the 

permafrost carbon feedback (Schuur et al., 2015), which is a positive (i.e. amplifying) 
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Earth system feedback involving wetland CH4 emissions resulting from microbial 

decomposition of previously frozen carbon under anaerobic decomposition (see Section 

1.1.2). Moreover, CH4 is a major component of so-called short-lived climate pollutants 

(SLCPs) targeted by international policies for mitigating climate change (Harmsen et al., 

2019b; Ramanathan and Xu, 2010; Weaver, 2011) and achieving the temperature goals 

of the Paris Agreement (IPCC, 2018; Rogelj et al., 2018). However, fully coupled Earth 

system models (ESMs) used for future climate projections do not generally incorporate 

wetland CH4 emissions and the global CH4 cycle. There is a growing need to (i) 

represent wetland CH4 processes and the global CH4 cycle in fully coupled ESMs, (ii) 

assess the relevance of CH4 as part of the permafrost carbon feedback to climate 

change, and (iii) investigate the importance of CH4 mitigation in the context of complying 

with the warming limits set by the Paris Agreement. 

1.1. Background 

1.1.1. Wetland CH4 emissions 

Wetlands are vegetated land areas that are inundated with water on a permanent, 

seasonal, or recurrent basis (Wheeler, 1999). Natural wetlands can be found in all 

climate zones across the globe (Bridgham et al., 2013; Turetsky et al., 2014). Wetlands 

are the dominant natural source of CH4, accounting for approximately a third of total (i.e. 

anthropogenic and natural) global CH4 emissions (Kirschke et al., 2013; Saunois et al., 

2020). The release of CH4 from a wetland site is regulated by two main processes: (i) the 

production of CH4 following decomposition of organic matter by specialized microbes 

(methanogens) under anaerobic conditions, and (ii) the oxidation of CH4 by specialized 

microbes (methanotrophs) primarily occurring in aerobic soil layers (Segers, 1998). 

Wetland CH4 emissions can vary by several orders of magnitude within and between 

sites depending on many factors such as the dominant vegetation type, water table 

fluctuations, soil composition, and predominant climate conditions (Bridgham et al., 

2013; Cooper et al., 2017; Levy et al., 2012; Turetsky et al., 2014). The high 

heterogeneity of site-scale wetland CH4 emissions imply that regional and global wetland 

CH4 emissions are difficult to predict (Bridgham et al., 2013; Melton et al., 2013; Saunois 

et al., 2020). 
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Wetland CH4 emissions are commonly linked to climate change. On the one 

hand, wetland CH4 emissions are sensitive to changes in climate conditions (e.g. 

temperature and precipitation shifts) which influence both the production and oxidation of 

CH4 in wetlands (Bridgham et al., 2013). On the other hand, wetland CH4 emissions can 

affect the global climate through changes in atmospheric CH4 levels and radiative forcing 

(O’Connor et al., 2010). While analyses of ice cores suggest that wetland CH4 emissions 

were an important contributor to climate changes during past glacial-interglacial 

transitions (Loulergue et al., 2008; Rhodes et al., 2017), it remains difficult to predict how 

wetland CH4 emissions and climate will interact in the future because wetland CH4 

processes are not commonly represented in fully coupled Earth system models (ESMs) 

(Xu et al., 2016). 

1.1.2. The permafrost carbon feedback 

Permafrost is ground (soil, rock, ice) that remains at or below 0°C for two or more 

consecutive years (Woo, 2012). Permafrost prevails in the boreal and Arctic regions 

where soils and sediments store 1100-1500 Pg (1015 g) of carbon (Pg C) (Hugelius et 

al., 2014), which is roughly twice the amount of carbon held in the pre-industrial 

atmosphere (Ciais et al., 2013; MacDougall and Knutti, 2016; Schuur et al., 2015). In 

their top 3 m alone, these northern terrains store 885-1185 Pg C including a substantial 

fraction of perennially frozen carbon (i.e. permafrost carbon) (Hugelius et al., 2014). 

Permafrost carbon has been inert for centuries due to the predominant cold conditions 

(Hugelius et al., 2014; Schuur et al., 2015). However, permafrost is warming at a global 

scale with highest warming rates observed across the northern circumpolar region 

(Biskaborn et al., 2019). 

There have been concerns that the ongoing and projected warming across the 

northern circumpolar region could amplify global warming through a positive feedback 

involving permafrost carbon emissions (Schaefer et al., 2014). Thawing permafrost 

exposes previously frozen carbon (i.e. soil carbon previously frozen for at least two 

consecutive years) to accelerated microbial decomposition resulting in so-called 

permafrost CO2 and CH4 emissions into the atmosphere (Schuur et al., 2015; Zimov et 

al., 2006). Such permafrost carbon emissions would accelerate climate warming, which 

would lead to substantial permafrost degradation, more permafrost carbon release to the 

atmosphere, and thus an amplifying feedback loop (Figure 1.1). This positive Earth 
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system feedback is commonly referred to as the permafrost carbon feedback (Schuur et 

al., 2015). While permafrost CO2 emissions mainly occur following microbial 

decomposition under oxic conditions, permafrost CH4 emissions result from microbial 

decomposition in anaerobic environments such as wetlands (Schuur et al., 2008). 

 
Figure 1.1. Illustration of the permafrost carbon feedback loop, a positive (i.e. 

amplifying) Earth system feedback. 

In the past 10-12 years, considerable progress has been made in research 

related to the permafrost carbon feedback. For instance, the distribution of permafrost 

has been estimated with a focus on the northern hemisphere (Gruber, 2012; Zhang et 

al., 2008) and stocks of soil organic carbon in permafrost environments have been 

estimated (Hugelius et al., 2014; Tarnocai et al., 2009). The decay of organic matter 

from thawing permafrost soils has been investigated through incubation experiments in 

laboratories (Knoblauch et al., 2018; Treat et al., 2015; Walz et al., 2017) and field 

measurements (Corbett et al., 2015; Helbig et al., 2017; Neumann et al., 2019; Olefeldt 

et al., 2017). Advancements have also been made in the understanding of processes 

regulating CO2 and CH4 emissions from soils in the northern permafrost region (Cooper 

et al., 2017; Kwon et al., 2019; McCalley et al., 2014; Schädel et al., 2016; Song et al., 

2012; Walter Anthony et al., 2016; Walter et al., 2006; Zona et al., 2016). However, large 

uncertainties remain with regard to many aspects of the permafrost carbon feedback 

such as the distribution and quality of soil carbon across the northern permafrost region 

(Hugelius et al., 2014), the ecological response to permafrost thaw (Schuur and Mack, 
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2018), microbial processes regulating permafrost carbon emissions (Kwon et al., 2019; 

Schuur et al., 2015; Treat et al., 2015), the impact of abrupt thaw processes on soil 

carbon decomposition (Schuur et al., 2008; Turetsky et al., 2020), the relative roles of 

ancient versus modern soil carbon in CO2 and CH4 emissions from wet environments 

underlain by permafrost (Bogard et al., 2019; Cooper et al., 2017; Elder et al., 2018; 

Turetsky et al., 2020), and the partition of permafrost carbon emissions between CO2 

and CH4 (Schuur et al., 2013, 2015). 

Numerical models of different complexities have been applied to investigate the 

permafrost carbon feedback. Simple 1-D and 2-D models representing the northern 

high-latitude regions have been developed and applied to project permafrost carbon 

emissions and their climate impact (Schneider von Deimling et al., 2012, 2015). In 

addition, many complex land surface models have been developed or upgraded to 

represent permafrost freeze-thaw processes, vegetation dynamics, and terrestrial 

carbon fluxes (McGuire et al., 2016, 2017). While some uncoupled terrestrial 

components of Earth System Models (ESMs) have been used to simulate carbon 

emissions from thawing permafrost soils (Chadburn et al., 2017; Comyn-Platt et al., 

2018; Kleinen and Brovkin, 2018; Koven et al., 2015b) as well as the potential for 

northern vegetation growth and expansion to offset some of the CO2 emissions (McGuire 

et al., 2017), at present only Earth system models of intermediate complexity (EMICs) 

simulate the permafrost carbon feedback loop but with CO2 emissions alone (Crichton et 

al., 2016; MacDougall et al., 2012). The lack of permafrost CH4 emissions in climate 

projections might result in an underestimation of the strength of the permafrost carbon 

feedback, and hence future global warming levels (Dean et al., 2018; Schuur et al., 

2013, 2015). 

1.1.3. CH4 mitigation 

Limiting global mean temperature rise to 1.5 or 2°C above pre-industrial levels will 

require reaching net zero CO2 emissions and deep reductions in non-CO2 emissions 

from anthropogenic sources over the next three decades (IPCC, 2018). However, 

current strategies adopted by different countries to reduce GHG emissions (i.e. 

nationally determined contributions or NDCs) mostly focus on CO2 mitigation and 

generally do not explicitly target non-CO2 GHGs such as CH4 (Harmsen et al., 2019a). 

Meanwhile, atmospheric CH4 concentration ([CH4]) has been increasing rapidly and 
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tracking future scenarios of unmitigated emissions since the last few years (Nisbet et al., 

2019; Saunois et al., 2016b). 

Atmospheric [CH4] has increased from about 700 parts per billion (ppb) in the 

year 1750 to more than 1850 ppb today (Ciais et al., 2013; Nisbet et al., 2019). Such a 

rise in [CH4] is unprecedented over the past 800,000 years (O’Connor et al., 2010) and 

is primarily driven by increased emissions from anthropogenic sources of CH4 such as 

fossil fuels (e.g. coal, oil, natural gas), biomass burning, agriculture and waste (Saunois 

et al., 2020). Over the past few decades, anthropogenic sources of CH4 accounted for 

more than 60% of the global CH4 emissions (Kirschke et al., 2013; Saunois et al., 2020). 

After decades of sustained growth, [CH4] stabilized between the 1999-2006 period and 

its growth resumed since the year 2007 (Dlugokencky et al., 2011; Nisbet et al., 2019). 

The exact causes driving the evolution of [CH4] in recent years are not fully understood 

and still being debated (Saunois et al., 2020; Schaefer, 2019). 

Reducing CH4 emissions from anthropogenic sources is often proposed to be 

one way to tackle climate change in the near-term, in parallel with efforts to achieve net 

zero CO2 emissions and decarbonize the world economy (Ramanathan and Xu, 2010; 

Shoemaker et al., 2013; Weaver, 2011). Targeting CH4 for the mitigation of climate 

change is motivated with the dominance of anthropogenic sources in current global CH4 

emissions, the strong global warming potential of CH4 as well as its short residence time 

in the atmosphere (Crill and Thornton, 2017; Kirschke et al., 2013; Ramanathan and Xu, 

2010). Given that [CH4] has been growing fast over the last decade (Nisbet et al., 2019; 

Saunois et al., 2016b), there is a compelling need to investigate the importance of CH4 

mitigation as part of international efforts to achieve the temperature limits set by the 

Paris Agreement and minimize the future impacts of climate change. 

1.2. Research objectives 

The main objective of this thesis is to investigate the importance of CH4 for future climate 

change. Specific objectives are: 

1. To assess the relevance of CH4 as part of the permafrost carbon feedback 

through literature review. 
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2. To implement a model for wetland CH4 emissions in an Earth system model 

of intermediate complexity and evaluate its performance. 

3. To examine the importance of CH4 mitigation as part of strategies to comply 

with stringent global warming limits based on Earth system model 

simulations. 

4. To quantify the warming to expect in response to CH4 emissions from 

thawing permafrost soils over the next three centuries based on Earth system 

model simulations. 

1.3. Model choice and rationale 

To investigate the importance of CH4 in future climate projections, I use the University of 

Victoria Earth System Climate Model (UVic ESCM) into which I implemented a model for 

wetland CH4 emissions and a simplified representation of the global CH4 cycle. The UVic 

ESCM is an Earth system model of intermediate complexity (EMIC) suitable for multi-

centennial climate simulations and studies of feedbacks between various components of 

the Earth system (Weaver et al., 2001). As an EMIC, the UVic ESCM has an adequate 

level of detail for representing Earth system processes while being computationally 

efficient for running long-term climate simulations and a broad range of sensitivity 

experiments unlike more comprehensive ESMs (Eby et al., 2009, 2013). 

Since its development in the 1990s, the UVic ESCM has undergone a series of 

upgrades in order to allow simulations of several physical processes as well as the 

carbon cycle (Eby et al., 2009; Mengis et al., 2020). In the 2010s, the EMIC was 

upgraded to represent permafrost dynamics (Avis et al., 2011), carbon accumulation and 

related CO2 emissions (MacDougall et al., 2012; MacDougall and Knutti, 2016). When 

compared to other models, the UVic ESCM performs well in simulating the areal extent 

of the northern circumpolar permafrost and regional carbon cycling over the past few 

decades (McGuire et al., 2016). 

However, the UVic ESCM lacks a representation of wetland CH4 processes and 

the global CH4 cycle. A major objective of this research is to implement a numerical 

scheme for wetland CH4 emissions in the UVic ESCM. In the past few years, there has 

been a growing need for representing the effects of depth-dependent controls on soil 
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biogeochemistry (e.g. the quality of soil carbon and the spread of microbial communities) 

in terrestrial ecosystem models (Koven et al., 2013, 2017). This need is particularly 

relevant for the simulation of soil carbon decomposition in permafrost regions (Ahrens 

and Reichstein, 2017; Koven et al., 2015b; McGuire et al., 2017). By conducting a 

survey of models for wetland CH4 emissions published before the year 2017, I found that 

existing wetland CH4 models compatible with the complexity of the UVic ESCM are 

limited to the soil surface (i.e. surface inundation) or to only a few centimeters in the soil 

with regard to the parameterization of microbial CH4 production in wetlands (Cao et al., 

1996; Christensen et al., 1996; Eliseev et al., 2008; Gedney et al., 2004; Hodson et al., 

2011; Hopcroft et al., 2011; Tagesson et al., 2013; Wania et al., 2013; Xu et al., 2016). 

Therefore, I developed a new wetland CH4 model for implementation in the UVic ESCM 

and potentially more comprehensive ESMs. To represent the global CH4 cycle in the 

EMIC, I applied a simple formulation for the decay of CH4 in the atmosphere given 

simulated wetland CH4 emissions and prescribed CH4 emissions from non-wetland 

sources. A detailed description of the UVic ESCM is provided in Chapters 3-5. 

1.4. Thesis structure 

The remainder of this thesis is structured as follows: 

• Chapter 2 reviews the literature on the potential contribution from CH4 to the 

permafrost carbon feedback with a focus on peer-reviewed articles published 

between 2011 and 2016. This chapter was published in Current Climate Change 

Reports in early 2017. 

• Chapter 3 describes a new model for wetland CH4 emissions (WETMETH) 

developed for implementation in the UVic ESCM. This chapter includes an 

evaluation of WETMETH against recent estimates of wetland CH4 emissions. 

• Chapter 4 describes a simplified representation of the global CH4 cycle in the 

UVic ESCM and includes an evaluation of the global CH4 budget simulated by 

the UVic ESCM. This chapter provides an application of this newly developed 

version of the UVic ESCM to investigate the importance of CH4 mitigation in the 

context of complying with global warming limits set by the Paris Agreement. 
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• Chapter 5 seeks to quantify permafrost CH4 emissions and their climate impact 

over the next three centuries based on global climate projections with the UVic 

ESCM. This chapter focuses on quantifying wetland CH4 emissions associated 

with the decomposition of previously frozen carbon and their impact on changes 

in global mean surface air temperature. 

• Chapter 6 summarizes the thesis conclusions with an emphasis on key results 

and their significance as well as novel contributions to research. This chapter 

also presents recommendations for future research. 
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Chapter 2. The relevance of methane in the 
permafrost carbon feedback:  
A literature review 

A version of this chapter was published in Current Climate Change Reports as a literature review 
focusing on research published between 2011 and 2016. 
 
Citation details: Nzotungicimpaye, C-M., and Zickfeld K.: The contribution from methane to the 
permafrost carbon feedback, Current Climate Change Reports, 87, 228-238, 2017. 
 
Contribution statement: I conducted the literature review and was the main author of the paper. 
Dr. Kirsten Zickfeld provided feedback on the structure and content of the paper. 

Abstract 

We assess the level of importance of methane (CH4) in the permafrost carbon feedback 

by reviewing recent scientific publications. Studies that consider permafrost degradation 

in wetlands suggest that CH4 could have a share of ~20% in the warming caused by 

total permafrost carbon release by the year 2100. When CH4 emissions from 

thermokarst lakes are considered, the contribution from permafrost CH4 to surface 

warming increases to between 30% and 50%. Based on the reviewed literature, we 

report that gradual degradation of the near-surface permafrost under scenarios of 

unmitigated emissions could result in an additional warming of ~0.3 (0.08-0.50) °C by 

the year 2100, out of which up to 0.1°C would be from wetland CH4 emissions. However, 

these values can be underestimates as the degradation of ice-rich permafrost and 

subsequent CH4 emissions from thermokarst lakes are not accounted for in the 

calculations.  
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2.1. Introduction 

The unequivocal warming presently observed over the boreal and Arctic regions is 

projected to worsen throughout this century (Kirtman et al., 2013). This regional warming 

will likely result in substantial thawing and degradation of the perennially frozen ground 

(permafrost), with potential impacts on the regional hydrology (Woo, 2012), modification 

of landscapes (Kokelj and Jorgenson, 2013), and damage of infrastructures (de 

Grandpré et al., 2012). As soils and sediments of the northern circumpolar permafrost 

region store 1100-1500 Pg (1015 g) of carbon (Pg C) (Hugelius et al., 2014), permafrost 

thawing is also expected to have global impacts through the potential release of a 

significant amount of carbon that could be enough to influence the global climate 

(Schaefer et al., 2014). 

The fate of thawed carbon depends on whether it undergoes microbial 

decomposition in aerobic or anaerobic soils, or dissolves in rivers (Christensen et al., 

2015). When the microbial decomposition occurs under aerobic conditions, most of the 

thawed carbon enters the global carbon cycle as carbon dioxide (CO2). Otherwise, when 

thawed carbon is decomposed by microbes in anaerobic environments such as wetlands 

and lakes, a fraction of it is released as CH4 (Schuur et al., 2015). Once in the 

atmosphere, CO2 and CH4 from thawed soils contribute to increase radiative forcing, and 

subsequently to amplify climate warming which would lead to additional permafrost CO2 

and CH4 emissions, thus creating a feedback loop linking surface temperature and 

permafrost carbon emissions. This positive feedback is generally referred to as the 

permafrost carbon feedback (Schaefer et al., 2014; Schuur et al., 2015). 

The permafrost carbon feedback has not been considered in climate projections 

for the latest assessment report by the Intergovernmental Panel on Climate Change 

(IPCC) because permafrost dynamics and carbon content are not represented in most 

Earth system models (Arora et al., 2013; Ciais et al., 2013). So far, only simple models 

for the northern high-latitudes incorporate the complete loop for the permafrost carbon 

feedback with both CO2 and CH4 emissions (Schneider von Deimling et al., 2012, 2015). 

Moreover, an Earth system model of intermediate complexity represents the complete 

feedback loop but with permafrost CO2 emissions alone (MacDougall et al., 2012). 
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In comparison to CO2, however, CH4 is the more powerful greenhouse gas on a 

per molecule basis. Each molecule of CH4 in the atmosphere has 28 to 34 times the 

global warming potential of a molecule of CO2 over a period of 100 years, and more over 

shorter timescales (Myhre et al., 2013). Furthermore, atmospheric CH4 has an indirect 

effect on climate as its oxidation generally results in the formation of ozone (O3), water 

vapor (H2O) and CO2 which all contribute to the greenhouse effect (Isaksen et al., 2011). 

Therefore, there is justifiable concern for ignoring the feedback between climate 

warming and CH4 emissions from thawed soils. 

To assess the level of importance of CH4 in the permafrost carbon feedback, we 

review the available scientific literature on anaerobic environments in the northern 

permafrost region, estimates of regional CH4 emissions as well as projected warming 

due to carbon release from thawed soils. Our review is guided by the following 

questions: (i) How prevalent are anaerobic environments in the northern circumpolar 

permafrost region? (ii) How much of the produced CH4 escapes to the atmosphere? (iii) 

What is the share of CH4 in the permafrost carbon feedback on global mean surface air 

temperature? 

We base our review mostly on peer-reviewed research articles published 

between 2011 and 2016 with the consideration of earlier studies on the distribution of 

wetlands in the northern high-latitudes (Matthews and Fung, 1987), substantial CH4 

release through bubbling in the Arctic (Walter et al., 2006), mechanisms of permafrost 

degradation (O’Connor et al., 2010; Schuur et al., 2008), vulnerability of soil carbon in 

the northern high-latitudes under climate change (McGuire et al., 2009), and potential 

destabilization of CH4 trapped in hydrates below subsea permafrost on the continental 

shelves of the Arctic Ocean (O’Connor et al., 2010; Shakhova et al., 2010). To allow 

comparison between different studies projecting permafrost carbon emissions and their 

impact on global climate, we focus on results based on scenarios of unmitigated 

emissions with 2100 as the time horizon. 
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2.2. Anaerobic environments in the northern permafrost 
region 

2.2.1. Wetlands 

Natural wetlands are prevalent in the northern high-latitudes mostly because permafrost 

prevents vertical drainage (Woo, 2012). However, the area occupied by these wetlands 

is poorly constrained despite extensive research in the past three decades. The earliest 

study on the distribution of global wetlands suggests that these anaerobic environments 

cover 5.3 x 106 km2 of the global terrestrial area, and that ~50% of this area is occupied 

by wetlands located north of 50°N (Matthews and Fung, 1987). This study was based on 

three independent digital sources for vegetation, soil properties and fractional 

inundation. More recent estimates of global wetland area based on regional wetland 

inventories, updated datasets, satellite observations and numerical models vary between 

5.7 and 10.5 x 106 km2, with larger estimates often associated with seasonal inundated 

areas (Bridgham et al., 2013; Saunois et al., 2016a). Despite this wide range of 

estimated global wetland area, there is a consensus among studies on the location of 

the largest wetland area in the northern high-latitudes. Most importantly, wetlands are 

shown to be widespread in the permafrost zones of Alaska, Canada and Russia (Woo, 

2012), suggesting that CH4 emissions can occur in many locations as permafrost thaws. 

2.2.2. Thermokarst lakes 

Apart from wetlands, lakes are other anaerobic environments commonly found in the 

northern high-latitudes. These water bodies cover ~3% of the northern permafrost 

region, compared to ~9% for northern wetlands (Burke et al., 2012). Of particular 

importance with respect to the permafrost carbon feedback are shallow lakes that 

develop following degradation of ice-rich permafrost. In the following paragraphs, we 

describe processes related to the formation of these lakes and subsequent CH4 

emissions. 

Permafrost thaw can result in ground subsidence and thermokarst development 

in locations where the ground incorporates ice wedges or where permafrost is underlain 

by massive ground ice (Kokelj and Jorgenson, 2013; Schuur et al., 2008; Woo, 2012). 

Thermokarst refers to the uneven (karst-like) topography that is developed as thawing 
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occurs in ice-rich permafrost (Woo, 2012) or following melting of excessive ground ice 

such as those found in Alaska and northern Siberia (Kokelj and Jorgenson, 2013; Walter 

et al., 2006). Thermokarst landscape is characterized by depressions that are due to 

ground subsidence, and this terrain configuration is commonly observed throughout 

most permafrost regions of the globe (Kokelj and Jorgenson, 2013). In the northern 

permafrost region, current thermokarst landscapes and lands susceptible to future 

thermokarst development cover ~3.6 x 106 km2 with 75% of this area in zones with 

characteristics of wetlands and lakes (Olefeldt et al., 2016). 

When thermokarst development occurs near waterlogged environments, flooding 

of the depressions formed by ground subsidence creates so-called thermokarst lakes 

(Schuur et al., 2008; Woo, 2012). Mobilization of water from melting ground ice can 

contribute to the formation of these shallow lakes or to raise their water table (O’Connor 

et al., 2010). Ground subsidence and rapid increase of anaerobic environments in the 

northern high-latitudes can also be driven by changes in vegetation cover. A recent 

study has shown how, within five years, change in vegetation cover can induce 

thermokarst development with subsequent snowpack increase and water accumulation 

in the created depressions (Nauta et al., 2015). At present, there is increasing 

manifestation of frozen peatlands transforming into collapsed wetlands due to high rates 

and magnitudes of thermokarst development (Kokelj and Jorgenson, 2013). 

In the context of permafrost CH4, the occurrence of thermokarst lakes is 

generally associated with labile carbon eroding into anaerobic sediments and 

subsequent high rates of CH4 emissions (Walter et al., 2006). Particularly, the formation 

of thermokarst lakes could transform CH4 sinks into CH4 sources (Nauta et al., 2015). 

Therefore, the decomposition of thawed carbon into CH4 occurs, not only in existing 

wetlands, but also in newly formed thermokarst lakes. 

Thermokarst lakes are found in various locations of Alaska, northern Canada, 

Scandinavia and northern Siberia (Walter Anthony et al., 2016). Potential hotspots of 

thermokarst CH4 emissions in a warming climate are currently refrozen thermokarst 

deposits as well as yedoma deposits which are ice-rich and organic-rich silt deposits 

presently identified in Alaska, Yukon, and northern Siberia (Strauss et al., 2013). 
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2.3. An overview of CH4 production and oxidation in 
anaerobic environments 

2.3.1. CH4 production 

The production of CH4 in soils occurs through decomposition of organic matter by 

specialized anaerobic microbes (methanogens) found in wetlands and other inland water 

areas. The organic matter decomposed by methanogens originates from litter-fall, root 

exudates as well as dead plants and roots (Christensen et al., 2015). Another source of 

substrates used by methanogens is the lateral hydrological transport of soil carbon 

(Bastviken et al., 2011), in the form of dissolved and particulate organic carbon 

(Christensen et al., 2015). In the northern permafrost region, thawed carbon constitutes 

an additional source of organic matter to methanogens (Olefeldt et al., 2013; Treat et al., 

2015). 

Methanogens rely on the available organic matter to drive their metabolism. In 

the presence of alternate electron acceptors such as sulfate and nitrate, however, 

methanogens are outcompeted by other anaerobic microbes in accessing carbon 

substrates required for their lives (Schlesinger and Bernhardt, 2013). When sulfate, 

nitrate and other alternate acceptors are depleted but labile carbon is still available, a 

sequence of fermentation processes takes place and leads to CH4 production through 

the respiration of methanogens (Bridgham et al., 2013; Christensen et al., 2015). This 

heterotrophic respiration accelerates with increasing soil temperatures (Bridgham et al., 

2013; Treat et al., 2015). 

2.3.2. CH4 oxidation 

Like CH4 production, the oxidation of CH4 in anaerobic environments is a biological 

process regulated by specialized microbes (methanotrophs). Unlike methanogens, 

however, methanotrophs are adapted to aerobic conditions. These aerobic microbes are 

found in the more aerated water columns near the surface (Bridgham et al., 2013; 

Schlesinger and Bernhardt, 2013). Methanotrophs consume CH4 that is being 

transported from the zones of production at depth to the overlying water columns and 

atmosphere. In general, these microbes consume CH4 and produce CO2 as a by-product 

of their heterotrophic respiration (Bridgham et al., 2013; Christensen et al., 2015). 
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In analogy to CH4 production, increasing soil temperature enhances the activity 

of methanotrophs and results in higher rates of CH4 oxidation. However, the temperature 

response for CH4 oxidation has been shown to be lower than that for CH4 production 

(Bridgham et al., 2013; Lofton et al., 2014), suggesting that CH4 oxidation can decrease 

while CH4 production is increasing in a warming climate. Other environmental controls 

such as soil acidity (pH) and nutrient availability contribute to the regulation of both CH4 

production and oxidation in anaerobic environments (Bridgham et al., 2013; Christensen 

et al., 2015; Schädel et al., 2016). 

2.3.3. Link between the oxidation and release of CH4 

The rate of CH4 oxidation highly depends on whether CH4 is released via molecular 

diffusion, ebullition (gas bubbling) or through a transport mediated by plants that are 

equipped with conduit tissues (aerenchyma), referred to as vascular plants (Christensen 

et al., 2015). The position of the water table plays a crucial role in this process because 

a lowering of the water level favors methanotrophs (O’Connor et al., 2010). Diffusion of 

CH4 is the most typical transport pathway, whereby molecules of CH4 from the zones of 

production slowly ascend to the overlying water columns. When the water table is below 

the soil surface, methanotrophs may oxidize all of the diffusing CH4 before it reaches the 

atmosphere (Bridgham et al., 2013). In the presence of vascular plants, a lower 

proportion of the produced CH4 is oxidized because these plants transport the gas 

through their aerenchyma, allowing CH4 to bypass the aerobic zones where 

methanotrophs are hosted (Christensen et al., 2015; Schlesinger and Bernhardt, 2013). 

However, the aerenchyma also serve as a conduit for oxygen (O2) from the aerated 

water columns to the plant roots such that methanotrophs and subsequent CH4 oxidation 

can also occur at depth (Bridgham et al., 2013). 

CH4 can also accumulate in anaerobic sediments and later ascend within the 

water column in the form of gas bubbles (ebullition). In this case, CH4 escapes to the 

atmosphere with little opportunity for oxidation (Christensen et al., 2015). Particularly in 

thermokarst lakes, the majority of CH4 emissions can occur by ebullition with the 

remainder being dominated by molecular diffusion (Walter et al., 2006), implying that 

CH4 oxidation is relatively minimal in these shallow lakes. Consequently, the amount of 

CH4 emitted from anaerobic permafrost sites can depend on whether decomposition 

occurs in a wetland or in a thermokarst lake. Because thermokarst lakes increased in 
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number and size during recent decades (Christensen et al., 2015; Walter et al., 2006), 

we would expect these lakes to be key contributors to CH4 emissions and the permafrost 

carbon feedback. 

2.4. Permafrost CH4 emissions 

2.4.1. The dominance of CO2 over CH4 emissions in anaerobic 
environments 

The proportion of CH4 that is produced or emitted from thawed carbon has been 

assessed with anaerobic laboratory incubations. Some of the most recent results 

suggest that CO2 production dominates over CH4 production even under anaerobic 

conditions (Schädel et al., 2016; Schuur et al., 2015; Treat et al., 2015). For instance, 

anaerobic incubations of samples collected from multiple sites across the northern 

permafrost region indicate that maximum CH4 production rates can reach 0.05 g CH4-C 

m-2 day-1, compared to median anaerobic CO2 production rates of 1.5 g CO2-C m-2 day-1 

(Treat et al., 2015). The highest CH4 production is observed for incubations with 

herbaceous plants (Treat et al., 2015), indicating the role of vegetation in enhancing CH4 

production. Moreover, laboratory incubations suggest that permafrost CH4 emissions are 

higher in organic soils than in mineral soils, but all in small proportion compared to 

anaerobic CO2 emissions (Schuur et al., 2015). A recent meta-analysis of 25 incubation 

studies suggest that CH4 emissions may rarely exceed 20% of total permafrost carbon 

emissions in few samples from tundra and peatland ecosystems (Schädel et al., 2016). 

Field data has also been used to investigate the proportion of CH4 in permafrost 

carbon emissions. An analysis of data collected with static chambers across the northern 

permafrost region supports the dominance of CO2 in carbon emissions under anaerobic 

conditions (Olefeldt et al., 2013). The analyzed data is from 303 sites and collected only 

during the growing season because measurements of CH4 emissions in the northern 

high-latitudes are sparse for colder seasons (Christensen et al., 2015; Olefeldt et al., 

2013). The results from the collected chambers show that rates of CH4 emissions are 

generally less than 20% of the CO2 emissions depending on the site location, soil 

moisture and vegetation cover. Median rates of CH4 emissions range between 0% and 

5% of the CO2 emissions, with the highest rates in warm and saturated wetlands and 
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littoral sites covered by sedges, which are highly productive vascular plants (Olefeldt et 

al., 2013). 

Although deduced from a limited number of sites, the reported results from 

laboratory incubations and static chambers highlight the relatively small proportion of 

CH4 in permafrost carbon emissions. The dominance of permafrost CO2 emissions from 

anaerobic sites can be attributed to either metabolic pathways that produce CO2 but not 

CH4 (Schlesinger and Bernhardt, 2013) or to CO2 production following CH4 oxidation, or 

to a combination of the two. 

2.4.2. Current permafrost CH4 emissions 

The concentration of CH4 in the global atmosphere ([CH4]) has increased from about 700 

parts per billion (ppb) in the year 1750 to more than 1850 ppb at present due to changes 

in anthropogenic and natural emissions (Ciais et al., 2013; O’Connor et al., 2010). 

Trends of [CH4] stabilized between the 1999-2006 period, perhaps due to a combination 

of decreasing-to-stable fossil fuel emissions and increasing-to-stable microbial 

emissions, but then increased again after the year 2006 probably due to a combination 

of increased fossil fuel and wetland emissions (Kirschke et al., 2013). The contribution 

from permafrost CH4 emissions to these trends is uncertain (Ciais et al., 2013; Kirschke 

et al., 2013). 

Syntheses of global CH4 fluxes report that permafrost emitted a maximum of 1 Tg 

(1012 g) of CH4 per year (Tg CH4 yr-1) throughout the 1980-2012 period (Kirschke et al., 

2013; Saunois et al., 2016a). However, this estimate does not include CH4 emissions 

from wetlands and freshwater systems (lakes and rivers), which are separately reported 

in the CH4 syntheses (Kirschke et al., 2013; Saunois et al., 2016a). For instance, 

wetlands in the boreal region of North America, Europe and Asia released ~23 (15-40) 

Tg CH4 yr-1 during the 2000-2009 decade (Kirschke et al., 2013). Over the same period, 

research on Arctic CH4 estimates that wetlands located north of 60°N emitted ~15.5 (11-

28) Tg CH4 yr-1 (Bruhwiler et al., 2015). Furthermore, it is estimated that, in the current 

climate, northern lakes and rivers emit ~8.3 (3.6-13.0) Tg CH4 yr-1 and ~0.3 Tg CH4 yr-1, 

respectively (Bastviken et al., 2011; Wik et al., 2016). The proportion of these emissions 

associated with thawed carbon is not explicitly provided in the literature such that 
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present-day permafrost CH4 emissions in wetlands, lakes and rivers are difficult to 

estimate. 

For the case of thermokarst lakes, however, a recent study provides an estimate 

for CH4 emissions associated with thawed soil carbon eroding in these lakes since the 

1950s (Walter Anthony et al., 2016). This study suggests that margins of thermokarst 

lakes across the northern high-latitudes released 100-300 Tg CH4 in the past 60 years, 

which is equivalent to 1.6-5.0 Tg CH4 yr-1. Interestingly, CH4 emissions by ebullition are 

shown to be proportional to soil organic carbon eroded around thermokarst lakes as 

evidence of permafrost thaw fueling CH4 production in these lakes (Walter Anthony et 

al., 2016). Total CH4 emissions from thermokarst lakes are estimated to range from 1.9 

to 6.3 Tg CH4 yr-1 (Wik et al., 2016). 

2.4.3. CH4 emissions from hydrates 

A large but poorly estimated amount of CH4 is trapped in ocean sediments along 

continental shelves (Parmentier et al., 2015) and below deep terrestrial permafrost 

(Walter Anthony et al., 2012) in the form of gas hydrates. CH4 hydrates are water or ice 

cages enveloping molecules of CH4 (Ciais et al., 2013; Thornton and Crill, 2015). In the 

literature, there is no consensus on the global amount of CH4 in marine hydrates, with 

estimates ranging from thousands to millions of Tg CH4 (Ciais et al., 2013; Parmentier et 

al., 2015; Saunois et al., 2016a). The mass of CH4 contained in terrestrial hydrates is in 

the range of hundred thousands of Tg CH4 (Ciais et al., 2013).  Marine CH4 hydrates 

originated from various sources including volcanic gas, geologic seeps, deposition by 

rivers and microbial production in the water column (O’Connor et al., 2010; Parmentier et 

al., 2015; Shakhova et al., 2010), whereas most terrestrial CH4 hydrates formed 

following thermal and microbial decomposition of organic compounds in sediments 

(Walter Anthony et al., 2012). 

In general, gas hydrates are stable under specific conditions of high pressure 

and low temperature, and the sediment zone with ideal conditions for the stability of 

these hydrates is referred to as the gas hydrate stability zone (GHSZ) (O’Connor et al., 

2010). Globally, the GHSZ occurs at ocean depths exceeding 300 m, but CH4 hydrates 

below subsea permafrost along the Arctic coastline may be found at shallower depths of 

~200 m (Parmentier et al., 2015). Ocean warming under climate change could 
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destabilize these hydrates and liberate CH4 that would dissolve in the water column 

(O’Connor et al., 2010). Terrestrial hydrates are less vulnerable to destabilization than 

marine hydrates on the shelf of the Arctic Ocean (McGuire et al., 2009). The more stable 

conditions for CH4 hydrates below terrestrial permafrost can be attributed to a relatively 

deeper GHSZ compared to shallow offshore regions (O’Connor et al., 2010). The major 

concern regarding climate feedbacks is whether and when ocean warming will lead to 

substantial degradation of the subsea permafrost and to an eventual release of liberated 

CH4 to the atmosphere. 

In the Arctic Ocean, the total amount of hydrates sequestered beneath subsea 

permafrost is estimated to be ~27000 Tg CH4 (Ruppel, 2015). Several studies have 

been conducted to assess the risk associated with the destabilization of these hydrates, 

with a focus on the East Siberian Arctic Shelf (ESAS) (Dmitrenko et al., 2011; Overduin 

et al., 2015; Shakhova et al., 2010; Thornton and Crill, 2015). The particular interest in 

the ESAS is because it is the largest and shallowest continental shelf among the world 

oceans, and thus expected to be the most vulnerable with respect to subsea permafrost 

degradation and CH4 release (Shakhova et al., 2010). 

A number of field campaigns between the years 2005 and 2007 allowed 

detecting significant CH4 fluxes from the marine seabed into the water column, high 

concentration of dissolved CH4 reaching 5 micromolar (µM) and episodic increase of 

airborne CH4 by more than 6 parts per million (ppm) (Shakhova et al., 2010). Based on 

these observations, it was suggested that the subsea permafrost is already degrading 

due to long-lasting warming of the ocean (Shakhova et al., 2010). However, this 

hypothesis of ongoing degradation of the subsea permafrost has been challenged by a 

combination of long-term summer observations and numerical thermal modelling with 

extreme warming scenarios (Dmitrenko et al., 2011). Thermal modelling simulated that 

only 1 m of subsea permafrost on the shelf of the eastern Arctic Ocean thawed between 

the 1985-2009 period, and suggested that ~70 m of the submerged permafrost will thaw 

after 1000 years (Dmitrenko et al., 2011). Consequently, destabilization of gas hydrates 

in the Arctic Ocean and a subsequent release of significant CH4 to influence global 

climate seem unlikely in the current century, in agreement with the recent IPCC 

assessment report (Ciais et al., 2013) and the most recent comprehensive review on the 

permafrost carbon feedback (Schuur et al., 2015). 
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Furthermore, ocean biogeochemistry suggests that a large amount of dissolved 

CH4 is consumed in the water column. Recent studies have shown that the abundance 

of sulfate in the ESAS result in a substantial removal of dissolved CH4 (Overduin et al., 

2015; Thornton and Crill, 2015). The current understanding is that this sulfate-driven 

oxidation of dissolved CH4 can effectively prevent the release of large quantities of CH4 

to the atmosphere (Thornton and Crill, 2015). However, these results are all based on 

observations from the Laptev Sea of the ESAS and may not be valid elsewhere across 

the Arctic Ocean. According to the latest global CH4 budget, marine hydrates worldwide 

emitted less than 5 Tg CH4 yr-1 to the atmosphere between the 2003-2012 decade 

(Saunois et al., 2016a). 

2.4.4. Projected permafrost CH4 emissions 

The magnitude of permafrost CH4 emissions in the future under climate change is of 

particular interest, as these emissions would contribute to amplify global warming. In this 

section, we focus on permafrost CH4 emissions projected by the year 2100 under 

scenarios of unmitigated emissions to allow easier comparison between the available 

studies. Figure 2.1 illustrates how the magnitude of future CH4 emissions from natural 

sources across the northern permafrost region is projected to increase during the current 

century in comparison to present-day regional CH4 emissions. Only future CH4 

emissions from wetlands, lakes and thermokarst lakes are documented in the literature. 

In the rest of this section, we discuss projected permafrost CH4 emissions by the year 

2100 in detail. Later in the text, we discuss results for mitigation scenarios and 

projections beyond the 21st century. 

Numerical models are essential tools to assess the amount of permafrost CH4 

emissions in the future. A number of ecosystem and climate models of different 

complexity have been used to assess the magnitude of permafrost carbon emissions in 

a warming climate (Koven et al., 2015a; Schaefer et al., 2014; Schneider von Deimling 

et al., 2015). However, most models simulate permafrost CO2 emissions but not CH4 

release. The few modelling studies with simulations of permafrost CH4 emissions are 

listed in Table 2.1 and their results are discussed below. 

Simulations by a terrestrial ecosystem model that has a representation of the 

permafrost carbon pool, frozen ground dynamics and wetland CH4 biogeochemistry 
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suggest that CH4 emissions in the northern high-latitudes will increase from 34 Tg CH4 

yr-1 at present-day to 41-70 Tg CH4 yr-1 by the year 2100, mostly due to permafrost 

carbon loss (Koven et al., 2011). Another study projected permafrost CH4 emissions to 

vary between 2 and 59 Tg CH4 yr-1 by the year 2100 (Burke et al., 2012). Recent data-

constrained projections of permafrost carbon emissions suggest a total increase of CH4 

emissions of 5.3-14 Tg CH4 yr-1 between the years 2010 and 2100 (Koven et al., 2015a). 

However, the latter results are based on the assumption of fixed wetland extent. 

Moreover, none of the above studies include a representation of CH4 emissions from 

thermokarst lakes or account for the complete feedback loop between permafrost carbon 

emissions and climate. 

Thus far, only two studies estimate permafrost CH4 emissions by accounting for 

the complete loop for the permafrost carbon feedback, although with 1-D and 2-D 

models for the northern high-latitudes (Schneider von Deimling et al., 2012, 2015). The 

first study suggests that permafrost CH4 emissions could accumulate to 207-1336 Tg 

CH4 by the year 2100 following gradual permafrost degradation and CH4 emissions from 

wetlands (Schneider von Deimling et al., 2012). This study is based on simulations by a 

1-D (latitude) module for the uppermost (3 m) permafrost coupled to a climate-carbon 

cycle model of reduced complexity. In the second study, a 2-D (latitude x depth) 

modeling approach is considered, with a parameterization of the areal extent of 

thermokarst lakes as a function of surface air temperature (Schneider von Deimling et 

al., 2015). The study indicates that permafrost CH4 emissions could accumulate to 836-

2614 Tg CH4 by the year 2100 with a substantial contribution from thermokarst lakes. In 

terms of CH4 fluxes, the simulations suggest that thermokarst lakes alone could emit 50 

Tg CH4 yr-1 in the middle of the 21st century when these lakes will reach their maximum 

areal extent (Schneider von Deimling et al., 2015). In the latest IPCC assessment report, 

a maximum of 5000 Tg CH4 was estimated for permafrost CH4 emissions by the year 

2100 (Ciais et al., 2013). 

Permafrost CH4 emissions will occur along with CO2, contributing to the total 

permafrost carbon emissions. By assuming a global warming potential of 33 for CH4 

(over 100 years), an assessment based on a survey with permafrost experts suggests 

that, if climate change follows the Representative Concentration Pathway (RCP) 8.5 

scenario, the fraction of CH4 in total permafrost carbon emissions will vary between 1.5% 

and 3.5% throughout the next two centuries, with a best estimate of 2.3% (Schuur et al., 
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2013). This estimate has been adopted by more recent studies of the permafrost carbon 

feedback (Schaefer et al., 2014; Schuur et al., 2015). Studies based on simple models 

support a range of 1-4% for the fraction of CH4 in total permafrost carbon release by and 

beyond the year 2100 (Schneider von Deimling et al., 2012, 2015). 

2.5. The future warming to expect from permafrost CH4 
emissions 

There are currently few published studies on the impact of permafrost CH4 emissions on 

global mean surface air temperature. This is mostly due to the fact that most climate 

models still lack a representation of the permafrost carbon pool and CH4 emissions from 

anaerobic environments (Arora et al., 2013; Ciais et al., 2013). Up to now, only four 

studies with CH4 emissions estimate the total warming to expect from permafrost carbon 

emissions (Table 2.1). Among these studies, the two that represent the complete 

feedback loop with simple coupled climate-carbon cycle models estimate the weakest 

permafrost carbon feedback, perhaps due to relatively small cumulative CO2 emissions 

from thawed soils compared to other studies (Table 2.1). 

A meta-analysis of several modelling studies on future permafrost carbon 

emissions and their climate impact provides a constrained estimate of the strength of the 

permafrost carbon feedback by the end of the century (Schaefer et al., 2014). This meta-

analysis constrains the warming associated with permafrost CO2 emissions by the year 

2100 to 0.06-0.40°C, with the best estimate of 0.23°C (Table 2.1). By assuming a 

fraction of 2.3% for CH4 in total permafrost carbon emissions and a global warming 

potential of 33 for CH4 (over 100 years), the strength of the permafrost carbon feedback 

by the year 2100 is increased to 0.29 (0.08-0.50) °C due to a contribution of 0.06 (0.01-

0.11) °C from wetland CH4 emissions (Schaefer et al., 2014). However, thermokarst CH4 

emissions are missing in these calculations. 
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Figure 2.1. Illustration of how annual rates of natural CH4 emissions (Tg CH4 yr-1) from the northern permafrost region 

could change during the current century. Grey and black arrows indicate present-day and future CH4 
emissions, respectively. The width of each arrow is proportional to regional CH4 emissions from sources 
documented in the literature. Sources of CH4 considered here are rivers (present-day: (Bastviken et al., 2011)), 
wetlands (present-day: (Christensen et al., 2015; Kirschke et al., 2013); future: (Koven et al., 2011, 2015a)), 
lakes (present-day: (Bastviken et al., 2011; Wik et al., 2016); future: (Wik et al., 2016)), thermokarst lakes 
(present-day: (Walter Anthony et al., 2016; Wik et al., 2016); future: (Schneider von Deimling et al., 2015; Wik 
et al., 2016)), geologic seeps (present-day : (Walter Anthony et al., 2012)), and marine hydrates (present-day: 
(Saunois et al., 2016a)). 
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Although CH4 may not exceed 4% of total permafrost carbon emissions 

(Schaefer et al., 2014; Schneider von Deimling et al., 2015; Schuur et al., 2013), the 

contribution from CH4 to the warming associated with the permafrost carbon feedback by 

the year 2100 is assessed to be 10-50% (Table 2.1). Constrained estimates suggest that 

CH4 emitted following gradual thaw in wetlands will contribute to 20.6% of the warming 

by the end of the century (Schaefer et al., 2014). However, expert assessment, review 

and modelling studies that explicitly or implicitly consider additional CH4 emissions from 

thermokarst lakes suggest that the contribution from CH4 to climate warming by the year 

2100 could be higher, ranging between 30% and 50% (Table 2.1). It follows that 

projections of the permafrost carbon feedback based on CO2 emissions alone are 

missing a substantial fraction of the warming to be expected by the year 2100. 

2.6. Policy implications of the permafrost carbon feedback 

In the natural world, permafrost CH4 and CO2 emissions occur concomitantly and their 

impact on the global climate should not be separated. For this reason, we discuss policy 

implications associated with both CH4 and CO2 emissions from thawed carbon in this 

section. 

2.6.1. Avoiding the warming associated with permafrost carbon 
release 

The projected permafrost degradation and change in carbon storage under climate 

change are regarded as irreversible on the scale of human lifetime (Schaefer et al., 

2011; Schuur et al., 2015). But, will it be possible for humans to have a control on the 

release of CO2 and CH4 from thawed soils and the associated warming? 

Experts assess that two-thirds of the projected carbon release from thawed soils 

could be avoided if mitigation of climate change in line with the RCP 2.6 scenario is 

effectively achieved (Schuur et al., 2013). However, even if anthropogenic emissions 

would cease immediately, the permafrost carbon feedback has been shown to be a self-

sustained process, with the capacity of leading to continued accumulation of CO2 in the 

atmosphere throughout the 21st and 22nd centuries, especially if the Earth system has a 

climate sensitivity larger than 3°C (MacDougall et al., 2012). The latter result highlights 

how the permafrost carbon feedback might offset efforts to mitigate climate change. 
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Therefore, for limiting the global mean temperature below a certain threshold, the 

permafrost carbon feedback needs to be considered in the carbon budget compatible 

with that threshold. 

MacDougall and colleagues investigated the effect of the permafrost carbon 

feedback on remaining carbon budgets for the 2°C, 2.5°C and 3°C warming thresholds 

(MacDougall et al., 2015). Considering the 2°C threshold, for example, their results 

suggest that the permafrost carbon feedback could reduce allowable emissions by 85-

150 Pg C depending on the future concentration pathway. As the carbon budget for 2°C 

was estimated at 770-800 Pg C (with the consideration of non-CO2 greenhouse gases 

and aerosols) (MacDougall et al., 2015), we deduce that the permafrost carbon 

emissions could contribute to 10-19% of the allowable carbon emissions for this warming 

threshold. In the case of eventual exceedance of the 2°C threshold, the permafrost 

carbon feedback would require larger reductions (> 300 Pg C) of the carbon budget in 

order to return to 2°C by means of artificial CO2 removal (MacDougall et al., 2015). 

Based on the above information, we consider that aiming for the 2°C warming 

threshold without accounting for the permafrost carbon feedback could be futile. In 

addition, further studies should be conducted to assess the implications of the feedback 

on the carbon budget compatible with the 1.5°C warming threshold. 

2.6.2. The permafrost carbon feedback beyond the 21st century 

Throughout the 21st century and beyond, CH4 emissions in the northern permafrost 

zones highly depend on the response of wetlands and lakes to climate change. For 

instance, wetlands could become drier or wetter (Lawrence et al., 2015), their areal 

extent could decline (Avis et al., 2011), and thermokarst lakes could drain in the 

discontinuous permafrost zone and expand in the continuous permafrost zone (Schuur 

et al., 2015). Numerical models suggest that CH4 emissions from thermokarst lakes will 

peak in the middle of the 21st century, and decline throughout the 22nd and 23rd centuries 

following a reduced extent of these lakes through increased drainage (Schneider von 

Deimling et al., 2015). CH4 emissions from wetlands could be more important after the 

21st century, due to a relatively slower progression of permafrost thaw in wetlands than 

in thermokarst lakes (Schneider von Deimling et al., 2015). As discussed earlier, CH4 

from hydrates could also come into play beyond the 21st century. 
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Table 2.1. Projected cumulative permafrost CH4 and CO2 emissions and their impact on global mean surface air 
temperature by the year 2100. 

 Cumulative permafrost carbon 
emissions 

Impact on global climate expressed as 
change in global mean surface air temperature 

Share of CH4 in the 
global climate impact 

Study  
reference 

CH4 
(Tg CH4) 

CO2 
(Pg C) 

∆T (CH4) 
(° C) 

∆T (CO2) 
(° C) 

∆T (Total) 
(° C) 

Fraction of ∆T or RF 
(%) 

Koven 
et al. (2011) 

n. a. 
 

62 (55-69) n. a. n. a. n. a. n. a. 

Ciais 
et al. * (2013) 

Max. 5000 Max. 250 n. a. n. a. n. a. n. a. 

Schneider von Deimling 
et al. (2012) a  

533 (207-1336) 
 

63 (33-114) n. a. n. a. 0.1 (0.04-0.23) 
 

Up to 13 

Koven 
et al. (2015) a 

n. a. 
 

57.4 (27.9-112.6) n. a. n. a. n. a. 10-18 

Schaefer 
et al. (2014) b 

n. a. 120 (45-205) 
 

0.06 (0.01-0.11) 
 

0.23 (0.06-0.40) 
 

0.29 (0.08-0.50) 
 

20.6 

Burke 
et al. (2012) 

n. a. 50-270 n. a. n. a. 0.08-0.36 25 

Schneider von Deimling 
et al. (2015) * 

1474 (836-2614) 87 (42-141) 
 

n. a. n. a. 0.09 (0.05-0.14) 
 

Up to 40 

Schuur 
et al. (2015) * 

n. a. 37-174 
 

n. a. n. a. n. a. 35-48 

Schuur 
et al. (2013) * 

n. a. 158 (120-196) c n. a. n. a. n. a. 33-50 

The reported numbers correspond to projections under scenarios of unmitigated emissions. ∆T and RF stand for temperature change and radiative forcing, respectively. The 
results are listed in order of increasing share of permafrost CH4 in the impact on global climate. Studies that consider CH4 emissions from both wetlands and thermokarst lakes are 
indicated by an asterisk (*). Otherwise, permafrost CH4 emissions are from wetlands alone. Where available, best estimates are reported with ranges in brackets. 

 a The results in Schneider von Deimling et al. (2012) and Koven et al. (2015) are based on the assumption of fixed areal extent of wetlands. 

 b The study by Schaefer et al. (2014) is a meta-analysis of all studies on projected permafrost carbon emissions and their impact on global climate published before 2014. 

 c The reported cumulative permafrost CO2 emissions for Schuur et al. (2013) are values based on results from the meta-analysis by Schaefer et al. (2014).
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Experts assess that permafrost carbon emissions could double between the 

years 2100 and 2300 under scenarios of unmitigated emissions (Schuur et al., 2013). 

However, it has been suggested that the largest warming from permafrost carbon 

release after the year 2100 should not be expected from a scenario of unmitigated 

emissions but from low to medium mitigation scenarios (MacDougall et al., 2012; 

Schneider von Deimling et al., 2015). This counter-intuitive result is generally attributed 

to the decreasing radiative efficiency of CO2 and CH4 under high levels of these 

greenhouse gases in the atmosphere (MacDougall et al., 2012; Schneider von Deimling 

et al., 2015). 

2.7. Research gaps and sources of uncertainties 

None of the reviewed studies considers the complete feedback loop between climate 

warming and the release of both CO2 and CH4 from thawed carbon with an Earth system 

model. While some studies use terrestrial ecosystem models and simple climate models 

to estimate permafrost degradation and carbon emissions (Koven et al., 2011) or 

induced warming (Burke et al., 2012), some others are based on expert opinions 

(Schuur et al., 2013) or consider a coupled modelling approach for the northern high-

latitudes (Schneider von Deimling et al., 2012, 2015). So far, projections of the 

permafrost carbon feedback with a consistent representation of the feedback loop in a 3-

D Earth system model do not include permafrost CH4 emissions (MacDougall et al., 

2012). In addition, most studies that model CH4 release from thawed soils focus on 

emissions from wetlands and ignore those from thermokarst lakes, which could be 

substantial in the future (Schneider von Deimling et al., 2015). 

Uncertainties in projections of the permafrost carbon feedback can arise from 

several aspects including the biogeochemical processes regulating CH4 emissions, the 

geographical distribution of soil carbon across the northern permafrost region and the 

variation of decomposition rates. A whole set of uncertainties is associated with 

processes of CH4 production and oxidation as well as the outgassing pathways that 

determine CH4 emissions in anaerobic environments (Christensen et al., 2015). In 

addition, the carbon content is not homogeneous throughout the northern permafrost 

region (Hugelius et al., 2014) and the initial carbon pool set in modelling studies has 

been shown to be the most important source of uncertainties for estimating the 

permafrost carbon feedback for a given future climate scenario (Burke et al., 2012). 
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Moreover, there are different types of frozen soils (Hugelius et al., 2014), each type 

being associated with a particular range of rates of permafrost degradation and carbon 

decomposition (Olefeldt et al., 2013; Schuur et al., 2015; Treat et al., 2015). 

Uncertainties in permafrost CH4 emissions can also arise from the influence of small-

scale changes in vegetation cover (Nauta et al., 2015) and the dynamics of microbial 

communities (Bridgham et al., 2013; McCalley et al., 2014). 

Representing anaerobic environments with their geographical distribution in 

global models is challenging for both wetlands (Melton et al., 2013) and thermokarst 

lakes (Kokelj and Jorgenson, 2013). In particular, global models might not resolve well 

the transition from aerobic to anaerobic conditions associated with thermokarst 

development in various ice-rich permafrost locations, because ground subsidence 

generally occurs at localized scale (Kokelj and Jorgenson, 2013). In addition, because 

thawing may enhance soil drainage and therefore reducing CH4 release in some 

locations, or permafrost degradation may result in ground subsidence and more 

prevalent anaerobic environments with higher CH4 emissions in other locations, the 

complex interplay between permafrost dynamics and hydrology is an important factor for 

quantifying permafrost CH4 emissions (O’Connor et al., 2010). Furthermore, acceleration 

of permafrost carbon losses associated with wildfires (Turetsky et al., 2011), river and 

coastal erosion (Schuur et al., 2008) might not be well resolved by global models. Sub-

grid parameterizations of these processes in global models are required for constraining 

the magnitude of permafrost carbon emissions. 

Atmospheric CH4 is a chemically active gas whose oxidation generates other 

greenhouse gases and its impact on radiative forcing is also associated with potential 

uncertainties. Lastly, the strength of the permafrost carbon feedback will depend on the 

response of the human society to climate change which is highly unpredictable (Burke et 

al., 2012; MacDougall et al., 2012; Schneider von Deimling et al., 2015). 

2.8. Conclusions 

The positive feedback between climate warming and permafrost CH4 emissions is 

expected following increasing surface temperatures across the northern high-latitudes. 

Although considerable progress in permafrost carbon research has been made in the 
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last decade, more research is needed to better quantify the contribution from CH4 to the 

permafrost carbon feedback. 

Our review emphasizes how CH4 emissions from thermokarst lakes, generally 

unrepresented in climate models, could increase the share of CH4 in the permafrost 

carbon feedback on global mean surface air temperature. Although CH4 might not 

exceed 4% of total permafrost carbon emissions, available climate projections suggest 

that permafrost CH4 emissions from wetlands could contribute to 20.6 % of the warming 

induced by permafrost carbon release by the year 2100, while CH4 emissions from both 

wetlands and thermokarst lakes could contribute to 30-50% by the end of the century. 

Parameterization of processes regulating CH4 emissions in thermokarst lakes is a 

required step towards better projections of the permafrost carbon feedback. 

The permafrost carbon feedback has considerable policy implications. Research 

suggests that this feedback could claim up to 150 Pg C from the amount of carbon 

emissions required to keep the global warming below 2°C above pre-industrial levels 

(MacDougall et al., 2015). Further research on the implications of the permafrost carbon 

feedback on the 1.5°C warming threshold is needed for current climate policy. 
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Abstract 

Wetlands are the single largest natural source of methane (CH4), a powerful greenhouse 

gas affecting the global climate. In turn, wetland CH4 emissions are sensitive to changes 

in climate conditions such as temperature and precipitation shifts. However, 

biogeochemical processes regulating wetland CH4 emissions are not routinely included 

in fully coupled Earth system models that simulate feedbacks between the physical 

climate, the carbon cycle, and other biogeochemical cycles. This chapter introduces a 

process-based wetland CH4 model (WETMETH) developed for implementation in Earth 

system models and currently embedded in an Earth system model of intermediate 

complexity. Here we: (i) describe the wetland CH4 model; (ii) evaluate the model 

performance against available datasets and estimates from the literature; (iii) analyze 

the model sensitivity to perturbations of poorly constrained parameters. Historical 

simulations show that WETMETH is capable of reproducing mean annual emissions 

consistent with present-day estimates across spatial scales. For the 2008-2017 decade 

the model simulates global mean wetland emissions of 158.6 Tg CH4 yr-1, of which 33.1 

Tg CH4 yr-1 are from wetlands north of 45°N. WETMETH is highly sensitive to 

parameters for the microbial oxidation of CH4, which is the least constrained process in 

the literature. 
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3.1. Introduction 

Wetlands are vegetated locations that are inundated with water on a permanent, 

seasonal or recurrent basis (Wheeler, 1999). In the context of this study, wetlands are 

defined following the latest global CH4 budget report (Saunois et al., 2020): natural 

ecosystems with inundated or water-saturated soils where anoxic conditions lead to the 

production of CH4. Wetlands across the globe are the single largest natural source of 

atmospheric CH4, accounting for approximately a third of total global emissions 

(Bridgham et al., 2013; Saunois et al., 2016a). Estimates of global wetland CH4 

emissions over the past few decades vary between 140 and 210 Tg CH4 yr-1 (Kirschke et 

al., 2013). Although there exist different types of wetlands such as bogs, fens, swamps, 

marshes and floodplains (Aselmann and Crutzen, 1989; Saunois et al., 2016a), the 

release of CH4 from any wetland results from the balance between two biogeochemical 

processes (Segers, 1998): the production of CH4 by anaerobic microbes (namely 

methanogens) and the oxidation of CH4 primarily by aerobic microbes (namely 

methanotrophs). 

Both CH4 production and oxidation in wetlands are sensitive to changes in 

climate conditions. For instance, soil warming accelerates the microbial activity with a 

higher response for methanogenic than methanotrophic activity (Bridgham et al., 2013; 

Dunfield et al., 1993; Segers, 1998). At the landscape or larger scale, increased wet 

conditions tend to enhance methanogenic activity to the detriment of methanotrophic 

activity (Duval and Radu, 2018; Helbig et al., 2017; Kim, 2015). In turn, wetland CH4 

emissions can affect the global climate through changes in atmospheric CH4 levels and 

associated radiative forcing (Dean et al., 2018; O’Connor et al., 2010). Analyses of ice 

cores suggest that CH4 emissions from tropical and northern wetlands contributed 

significantly to climate changes during past glacial-interglacial transitions (Loulergue et 

al., 2008; Rhodes et al., 2017). 

The interactions between climate conditions and wetland CH4 emissions translate 

into a positive feedback loop that has the potential to amplify changes in global mean 

surface air temperature, which is a major concern for future climates (Dean et al., 2018; 

O’Connor et al., 2010). Research on feedbacks between the physical climate and 

biogeochemical cycles is generally conducted with 3-dimensional (3-D) fully coupled 

Earth system models (ESMs) (Arora et al., 2013). Over the past decade, these ESMs 
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have proven very useful to investigate and inform international climate policies such as 

the accounting of carbon emissions required to avoid the risk of dangerous climate 

change (Zickfeld et al., 2009) and achieve the goals of the Paris Agreement (Tokarska 

and Gillett, 2018). Yet, biogeochemical processes regulating CH4 emissions in wetlands 

are not commonly included in fully coupled ESM simulations. 

In the past, several process-based models have been developed for investigating 

the response of wetland CH4 emissions to climate variability and climate change 

(Hodson et al., 2011; Hopcroft et al., 2011; Pandey et al., 2017; Paudel et al., 2016; 

Shindell et al., 2004; Zhang et al., 2018; Zhu et al., 2015). These wetland CH4 models 

are generally embedded in terrestrial or land surface models and forced with 

observational datasets or reanalysis products (Melton et al., 2013; Wania et al., 2013; 

Xu et al., 2016). A second application for wetland CH4 models has been to quantify the 

climate response to wetland CH4 emissions (Gedney et al., 2004, 2019; Zhang et al., 

2017b). In this case, results from wetland CH4 models are used in climate-carbon cycle 

model emulators to assess their impact on radiative forcing (Gedney et al., 2019; Zhang 

et al., 2017b). These modelling studies have contributed to advance research on the 

possible evolution of wetland CH4 emissions in the 21st century (Koven et al., 2011; 

Shindell et al., 2004), the magnitude of their impact on the global climate (Gedney et al., 

2019; Zhang et al., 2017b), and their implications for international climate policy (Comyn-

Platt et al., 2018). However, their quasi-coupling methods do not reflect the complete 

feedback loop between climate conditions and wetland CH4 emissions as expected in 

the natural world. So far, only 1-D and 2-D models of the northern high-latitude regions 

have been applied for simulating the feedback between climate conditions (temperature 

changes) and wetland CH4 emissions in a fully coupled mode (Schneider von Deimling 

et al., 2012, 2015). 

The implementation of process-based wetland CH4 models in fully coupled ESMs 

is needed in order to advance research on wetland CH4-climate feedbacks in the context 

of global climate projections (Dean et al., 2018). In particular, this addition to Earth 

system modelling should be beneficial to ongoing research on the permafrost carbon 

feedback (Nzotungicimpaye and Zickfeld, 2017; Schuur et al., 2015) and the remaining 

carbon budget for achieving the goals of the Paris Agreement (Rogelj et al., 2019). 
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This chapter introduces a wetland CH4 model developed for implementation in 

ESMs and currently embedded in an Earth system model of intermediate complexity 

(EMIC). Our study aims at developing a computationally efficient process-based model 

for simulating large-scale wetland CH4 emissions constrained with sparse observations. 

Section 3.2 gives an overview of processes regulating CH4 emissions in wetlands. 

Section 3.3 provides the model description and an outline of performed model 

simulations. Section 3.4 describes the model calibration and choice of parameter values. 

Section 3.5 presents the model performance evaluation. Section 3.6 describes the 

model sensitivity to poorly constrained parameters. Sections 3.7 and 3.8 are for 

discussions and conclusions, respectively. 

3.2. Overview of processes regulating CH4 emissions in 
wetlands 

3.2.1. Microbial production of CH4 

Wetlands host several communities of microbes adapted to the predominant anoxic 

conditions of these environments (Bridgham et al., 2013). Some of these microbes are 

methanogens, which decompose organic matter for their metabolism and produce CH4 

as a by-product of their respiration (McCalley et al., 2014; Segers, 1998). The organic 

matter decomposed by methanogens in wetlands originates from litter-fall, root 

exudates, dead plants and dissolved organic carbon (Bridgham et al., 2013; Conrad, 

2009; Girkin et al., 2018; Mitsch and Mander, 2018). In the northern permafrost region, 

carbon from thawed soils constitutes an additional source of organic matter to 

methanogens (Kwon et al., 2019; Olefeldt et al., 2013). 

There are three pathways through which methanogens produce CH4 from soil 

organic matter (Le Mer and Roger, 2001; Segers, 1998; Whalen, 2005). The first 

pathway is operated by methanogens that rely on acetate for their metabolism, resulting 

in the production of both CH4 and carbon dioxide (CO2) (Bridgham et al., 2013; Whalen, 

2005). The second pathway is operated by methanogens that produce CH4 through CO2 

reduction in the presence of hydrogen (Bridgham et al., 2013). The third pathway is 

operated by methanogens that use methylated substrates (e.g. methanol, methylamines, 

and dimethysulfide) for their metabolism (Zalman et al., 2018). 
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Rates of CH4 production in wetlands are generally highest in upper anoxic layers 

due to several factors such as the quality of organic matter and the spread of active 

microbial populations. For instance, in comparison to soil layers at depth where organic 

matter can be recalcitrant to microbial decomposition, the organic matter in near-surface 

soil layers is more labile due to fresh inputs from litter-fall and vegetation mortality (Treat 

et al., 2015; Walz et al., 2017; Wild et al., 2016). Furthermore, observations at various 

sites show that methanogenic activity decreases as depth increases (Bridgham et al., 

2013; Cadillo-Quiroz et al., 2006). 

Increasing soil temperatures stimulate the dynamics and growth of methanogenic 

communities in wetlands, resulting in an increase of CH4 production rates (Bridgham et 

al., 2013; Segers, 1998). However, several studies indicate that there is an optimal 

temperature for methanogenic activity between 25°C and 30°C (Dean et al., 2018; 

Dunfield et al., 1993). Other factors promoting the occurrence of CH4 production in 

wetlands include the persistence of anoxic conditions as well as soil pH varying between 

acidic and neutral (Dunfield et al., 1993; Segers, 1998). 

3.2.2. Microbial oxidation of CH4 

In wetlands, methanotrophs (CH4-oxidizing microbes) populate oxic portions of the soil 

column (Bridgham et al., 2013; Conrad, 2009; Whalen, 2005). Such oxic portions are 

primarily soil layers close to the surface which are in contact with the atmosphere, 

commonly near and above the water table (Bridgham et al., 2013; Le Mer and Roger, 

2001; Segers, 1998). In the presence of vascular plants, other oxic portions of the soil 

column can be found near the roots due to the downward transport of oxygen (O2) 

through plant aerenchyma (Kwon et al., 2019; Whalen, 2005). All these oxic portions of 

the soil column constitute the so-called oxic zone, which is predominantly made of soil 

layers near and above the water table (Bridgham et al., 2013; Conrad, 2009; Segers, 

1998). Methanotrophs consume CH4 that ascends from the zones of production at depth 

to the overlying oxic zone for their metabolism, and primarily produce CO2 as part of 

their respiration (Bridgham et al., 2013; Segers, 1998). 

While O2 has been considered for years to be the only electron acceptor involved 

in the microbial oxidation of CH4, there is a growing evidence of the occurrence of CH4 

oxidation under anoxic conditions operated by anaerobic microbes that rely on alternate 
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electron acceptors such as nitrate and sulfate (Dean et al., 2018). However, although 

anaerobic CH4 oxidation in marine environments has been well established for decades 

(Hoehler et al., 1994; Reeburgh, 1976), this process remains poorly investigated in 

wetlands despite its potential importance for the CH4 cycle (Gauthier et al., 2015; 

Smemo and Yavitt, 2011). 

In analogy to CH4 production, CH4 oxidation is influenced by changes in soil 

temperatures (Bridgham et al., 2013; Segers, 1998). For instance, CH4 oxidation rates 

increase during the summer because of intensified microbial activity but also the 

availability of substantial CH4 in response to increased soil temperatures (Segers, 1998). 

However, the temperature response for CH4 oxidation is generally lower than that for 

CH4 production (Bridgham et al., 2013; Dean et al., 2018; Dunfield et al., 1993; Segers, 

1998). 

3.2.3. Mechanisms transporting CH4 to the atmosphere 

There exist various mechanisms transporting CH4 produced in wetlands to the 

atmosphere. Three transport mechanisms are well documented in the literature and 

generally monitored in situ (Bridgham et al., 2013; Whalen, 2005): the diffusion of CH4 

whereby molecules of CH4 slowly ascend the overlying water column, the ebullition of 

CH4 whereby bubbles of CH4 rapidly ascend towards the soil surface, as well as the 

transport of CH4 through the aerenchyma of vascular plants. However, other transport 

mechanisms for CH4 in wetlands have been revealed: the hydrodynamic transport of 

CH4 in the form of upwelling caused by temperature gradients primarily at nighttime 

(Poindexter et al., 2016), and the transport of CH4 through tree stems (Bridgham et al., 

2013; Conrad, 2009; Pangala et al., 2017) whose driving processes are still not well 

understood (Barba et al., 2019). 

Methane oxidation is highly dependent on the predominant transport mechanism 

for CH4. The water table position plays a crucial role in affecting what fraction of the 

produced CH4 reaches the atmosphere (Blodau, 2002; Moore and Roulet, 1993; Segers, 

1998). When the water table is well below the surface, methanotrophs may oxidize all of 

the diffusing CH4 before the gas reaches the atmosphere (Segers, 1998). In the 

presence of vascular plants, a lower fraction of the produced CH4 is oxidized because 

these plants allow the gas to bypass the oxic zone where methanotrophs are hosted 
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(Blodau, 2002; Bridgham et al., 2013; Segers, 1998). In the case of ebullition, which 

often occurs episodically, CH4 may escape to the atmosphere with reduced opportunities 

for oxidation (Bridgham et al., 2013; Whalen, 2005). How CH4 oxidation relates to the 

transport of CH4 through tree stems (Barba et al., 2019) or by hydrodynamic processes 

(Poindexter et al., 2016) is not well established. 

3.2.4. A synopsis of wetland CH4 dynamics 

Figure 3.1 illustrates vertical profiles of soil organic content, CH4 concentration, and CH4 

oxidation rates in a soil column with and without inundation at the surface based on 

principles outlined in the literature (Blodau et al., 2004; Whiticar and Faber, 1985). In 

general, the water table position determines the maximum depth at which O2 is available 

in the soil column (i.e. the oxic-anoxic interface). When the surface is flooded and the 

water is stagnant (Figure 3.1a), O2 diffuses slowly into the soil column and may only be 

present in a portion of the upper soil layer which is in contact with the atmosphere. 

Under such predominantly anoxic conditions, CH4 production occurs throughout the soil 

column and the concentration of CH4 mirrors soil organic content – eventually with a 

small reduction near the surface due to CH4 oxidation. A modest amount of ascending 

CH4 may be oxidized throughout the soil column, but with highest oxidation rates near 

the surface where some O2 may be available as an electron acceptor. The combination 

of high CH4 production and only modest CH4 oxidation in the soil column results in large 

CH4 emissions into the atmosphere. 

When the flooding recedes, O2 becomes more prevalent in the upper soil column 

where CH4 concentration decreases following a slow down or shut down of CH4 

production as aerobic microbes dominate the competition for organic matter (Figure 

3.1b). CH4 production persists below the oxic-anoxic interface where the concentration 

of CH4 mirrors soil organic content owing to the predominant anoxic conditions. 

Ascending CH4 becomes subject to substantial oxidation in the soil column with the 

highest oxidation rates above the oxic-anoxic interface where O2 is abundant. The 

combination of decreased CH4 production and substantial CH4 oxidation in the soil 

column results in small or no CH4 emissions into the atmosphere. 
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Figure 3.1. Illustrated vertical profiles of soil organic content, CH4 concentration 

and oxidation rates in a soil column with inundation at the surface 
(a) and without inundation at the surface (b). The vertical profiles are 
based on principles outlined in the literature (Blodau et al., 2004; 
Whiticar and Faber, 1985). For simplicity, the soil organic content is 
assumed to be identical in (a) and (b). In each case, the blue 
horizontal line illustrates the water table position and the dashed red 
horizontal line illustrates the oxic-anoxic interface or maximum 
depth at which O2 is available in the soil column. The relative 
magnitude of CH4 flux in the soil column is shown by the upward 
arrow to the right, also characterizing the relative magnitude of CH4 
emissions into the atmosphere. 
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3.3. Model description and simulations 

3.3.1. The new wetland CH4 model: WETMETH 

Microbial production and oxidation of CH4 are parameterized in WETMETH using a 

multi-layer ground structure with information on the moisture distribution, the amount of 

organic matter (carbon content), and the average temperature in each soil layer. These 

soil variables are commonly simulated by ESMs. Figure 3.2 provides a schematic 

representation of WETMETH for a soil column with and without inundation at the 

surface. By configuration, it is considered that CH4 emissions in WETMETH may occur 

not only from inundated locations, but also from non-inundated ecosystems with a 

relatively high level of soil moisture content (Saunois et al., 2016a, 2020). 

For any land location, the rate of microbial CH4 production in an underlying soil 

layer i (Pi in kg C m-3 s-1) is parameterized as: 

Pi =  S(θi) Ci  𝑟𝑟 Q10
T𝑖𝑖 − T0
10   exp (− 𝑧𝑧𝑖𝑖

𝜏𝜏prod
) ,      (3.1) 

where S(θi) is the fraction of soil layer that is saturated with water, and Ci is the amount 

of soil carbon (in kg C m-3) in the layer. The product of S(θi) and Ci represents the 

organic matter (in kg C m-3) available for microbial decomposition under anoxic 

conditions. When the soil surface is not flooded (Figure 3.2b), dry soil layers (S(θi) = 0) 

are assumed to be predominantly oxic and not producing CH4 (Pi = 0) mostly due to 

aerobic microbes dominating the competition for organic matter which results in the 

starvation of methanogens (Segers, 1998). 

The global factor 𝑟𝑟 is the specific CH4 production rate (in kg kg-1 s-1), which can 

be defined as the mass of CH4-C that is produced per kilogram of available soil C per 

unit of time. A meta-analysis of incubated soil samples from various anaerobic 

landscapes indicates that 𝑟𝑟 can vary between 0.3 to 27.2 μg of CH4-C per g of soil C per 

day (equivalent to the range from 3.5 x 10-12 to 3.1 x 10-10 kg kg-1 s-1) depending on the 

landscape type, relative water table position, and soil depth (Treat et al., 2015). Section 

3.4.1 discusses the choice of the value for 𝑟𝑟 as part of the model calibration. 



40 

 
Figure 3.2. Illustration of the new wetland CH4 model (WETMETH) and the 

dynamics of wetland CH4 processes as represented in the model. 
This schematic representation depicts a soil column (model grid 
box) with inundation at the surface (a) and without inundation at the 
surface (b). The soil column is shown here with multiple layers of 
unequal thicknesses. The blue area at the surface of (a) represents 
the inundated surface area. The blue sections in the different soil 
layers of (a) and (b) represent water-saturated zones. For both (a) 
and (b), the dashed red horizontal line illustrates the oxic-anoxic 
interface and the orange vertical arrow shows the relative thickness 
of the oxic zone or oxic zone depth (zoxic). Larger CH4 emissions are 
expected to occur when the soil surface is flooded than when it is 
not due to relatively high CH4 production and moderate CH4 
oxidation in the soil column. 

The expression Q10
T𝑖𝑖 − T0
10 , which depends on the average layer temperature T𝑖𝑖 (in 

Kelvin, K) and a baseline temperature T0 (273.15 K), represents the temperature-

dependency of CH4 production expressed with a Q10 coefficient as commonly done to 

approximate the sensitivity of biological processes to a temperature change of 10 K 

(Hegarty, 1973). While some biological processes double in rate with a warming of 10 K, 

several studies report a higher temperature sensitivity for CH4 production (i.e. Q10 > 2) 

although with large uncertainties (Lupascu et al., 2012; Sjögersten et al., 2018; Walz et 

al., 2017; Whalen, 2005). Nevertheless, a meta-analysis of temperature-response 

studies suggests an average Q10 of about 4.2 for CH4 production in pure cultures of 
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methanogens (Hoehler and Alperin, 2014; Yvon-Durocher et al., 2014) in agreement 

with previous estimates (Blodau, 2002). In order to account for uncertainties with this 

coefficient and define the occurrence of an optimal temperature for CH4 production 

(Blake et al., 2015; Dean et al., 2018; Dunfield et al., 1993), a temperature-dependent 

Q10 is considered in WETMETH. Its mathematical formulation is Q10(T𝑖𝑖) = 1.7 + 2.5 tanh 

[0.1 (T𝑟𝑟𝑟𝑟𝑟𝑟− T𝑖𝑖)], where T𝑟𝑟𝑟𝑟𝑟𝑟 = 308.15 K is a reference temperature (Table 3.1). This 

formulation is defined following an expression used for soil respiration in another study 

(Wu et al., 2016). Additional information on this formulation and its implications for the 

temperature-dependency of CH4 production are provided in Appendix A. Furthermore, 

CH4 production in WETMETH is assumed to shut down in frozen soil layers although 

research suggests that slow microbial activity can occur at temperatures below 273.15 K 

(Panikov and Dedysh, 2000; Rivkina et al., 2004). 

The expression exp (− 𝑧𝑧𝑖𝑖
𝜏𝜏prod

) , which depends on the depth of the soil layer i 

relative to the surface (𝑧𝑧𝑖𝑖 in m, positive downwards), describes the declining effect of 

various environmental controls on CH4 production with depth that are generally 

unresolved by ESMs. These environmental factors include the quality of organic matter 

and the spread of methanogens among other factors (Bridgham et al., 2013; Koven et 

al., 2015b; Treat et al., 2015; Walz et al., 2017; Wild et al., 2016). Here, 𝜏𝜏prod (in m) is a 

scaling parameter for CH4 production. The choice of the value for 𝜏𝜏prod is discussed later 

as part of the model calibration (see Section 3.4.1). 

Table 3.1. Model parameters for CH4 production and oxidation in WETMETH. 
Parameter Description Units Chosen value 

𝑟𝑟 Specific CH4 production rate kg kg-1 s-1 a 2.6 x 10-10 
Q10 Temperature coefficient for CH4 production — b 4.2 
T𝑟𝑟𝑟𝑟𝑟𝑟 Reference temperature for CH4 production K c 308.15 
𝜏𝜏prod Scaling parameter for CH4 production m 0.75 
𝑧𝑧oatz Thickness of the oxic-anoxic transition zone m 0.05 
𝜏𝜏oxid Scaling parameter for CH4 oxidation m 0.0146 

a This value is equivalent to 22.8 µg CH4-C produced per g of soil C per day; b A temperature-dependent Q10, 
approximating 4.2 for a wide range of temperatures, is used instead (see Appendix A); c The reference temperature is 
used to define an optimal temperature for CH4 production (see Appendix A). 

The total amount of CH4 produced in the soil column (P in kg C m-2 s-1) is 

calculated as: 
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P = ∫ Pi 𝑑𝑑zi
𝑖𝑖=𝑘𝑘
𝑖𝑖=1   ,          (3.2) 

where Pi (in kg C m-3 s-1) is the rate of CH4 production in the soil layer i from Eq. (3.1), dzi 

(in m) is the thickness of the soil layer i, and k represents the bottom-most soil layer. 

This amount of CH4 (P) is then subject to oxidation in transit to emission into the 

atmosphere. 

Microbial CH4 oxidation is parameterized based on the amount of CH4 produced 

in the soil column and the relative thickness of the oxic zone. Specifically, the total 

amount of CH4 oxidized in the soil column (O𝑥𝑥 in kg C m-2 s-1) and net CH4 emissions to 

the atmosphere (E in kg C m-2 s-1) are calculated as: 

O𝑥𝑥 = P (1 − exp(− 𝑧𝑧oxic
𝜏𝜏oxid

)),        (3.3) 

E = P − O𝑥𝑥  ,          (3.4) 

which is equivalent to the following expression: 

E = P exp(− 𝑧𝑧oxic
𝜏𝜏oxid

) ,         (3.5) 

where P (in kg C m-2 s-1) is the total amount of CH4 produced in the soil column as 

defined in Eq. (3.2), 𝑧𝑧oxic (in m) is the relative depth (positive downwards) to the oxic-

anoxic interface (Figure 3.2), and 𝜏𝜏oxid (in m) is a scaling parameter for CH4 oxidation. 

As for 𝜏𝜏prod, the choice of the value for 𝜏𝜏oxid is discussed as part of the model calibration 

(see Section 3.4.2). 

Regarding 𝑧𝑧oxic, we assume that O2 may be present in soil layers unsaturated 

with water as well as in a shallow oxic-anoxic transition zone within the upper-most soil 

layer saturated with water (Figure 3.2). In this first development of WETMETH, we 

consider a constant thickness (𝑧𝑧oatz) of 0.05 m for the oxic-anoxic transition zone, with 

its bottom defined as the oxic-anoxic interface (Frolking et al., 2002; Singleton et al., 

2018). The penetration of O2 into the soil and its dynamics with changing moisture 

conditions can be complex depending on site-specific factors such as the soil 

composition (Estop-Aragonés et al., 2012) and the presence of vascular plants (Brune et 

al., 2000). In addition, methanotrophs may be present at depth (> 0.05 m) below the 

water table probably following some adaptation to low O2 conditions (Singleton et al., 
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2018). Nevertheless, the approach applied here for 𝑧𝑧oxic is reasonable for ESMs not 

resolving O2 dynamics and microbial communities in the soil. 

For Eq. (3.3), the expression (1 − exp(− 𝑧𝑧oxic
𝜏𝜏oxid

)) represents the fraction of P that 

gets oxidized in transit to emission into the atmosphere. Various studies report estimates 

of CH4 oxidation as a fraction of produced CH4 in the soil column  (Blazewicz et al., 

2012; Le Mer and Roger, 2001; Roslev and King, 1996; Segers, 1998; Singleton et al., 

2018). From sample-to-sample and site-to-site, however, CH4 oxidation exhibits a broad 

range of values ranging from less than 20% to more than 95% depending on the 

sampled soil depth ranges, whether or not potential CH4 oxidation under anoxic 

conditions is considered, the monitored transport mechanisms for CH4 among many 

other factors (Blazewicz et al., 2012; Couwenberg et al., 2010; Jauhiainen et al., 2005; 

Kwon et al., 2019; Le Mer and Roger, 2001; Moosavi and Crill, 1998; Roslev and King, 

1996; Segers, 1998; Singleton et al., 2018; Whalen, 2005). Nevertheless, the largest 

fractions of oxidized CH4 are generally associated with the deepest water tables or oxic-

anoxic interfaces (Bridgham et al., 2013; Couwenberg et al., 2010; Jauhiainen et al., 

2005; Roslev and King, 1996; Segers, 1998; Whalen, 2005). 

The parameterization described in Eq. (3.3) is a simple approach for 

characterizing CH4 oxidation in the soil column. Such a parameterization is practical 

when there is little knowledge on the soil chemistry (e.g. O2 and alternate electron 

acceptors), the dynamics of methanotrophs and other environmental factors exerting a 

control on CH4 oxidation (Blazewicz et al., 2012; Blodau, 2002; Dean et al., 2018; Kwon 

et al., 2019; Singleton et al., 2018; Smemo and Yavitt, 2011). Most importantly, this 

parameterization considers the net effect of all mechanisms transporting CH4 from the 

anoxic soil layers where the gas is produced to the atmosphere. The oxidized CH4 is 

assumed to produce CO2 that becomes part of the soil respiration routinely simulated by 

ESMs. 

3.3.2. The embedding Earth system model 

WETMETH has been embedded in the University of Victoria Earth System Climate 

Model (UVic ESCM), an Earth system model of intermediate complexity (EMIC) (Weaver 

et al., 2001). A modified version of the EMIC based on UVic ESCM 2.9 (Eby et al., 2009) 

is used here. The UVic ESCM consists of a 3-D ocean general circulation model that is 
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coupled to a dynamic-thermodynamic sea ice model, a 2-D (vertically-integrated) 

energy-moisture balance model for the atmosphere, and a land surface model (Weaver 

et al., 2001). The land surface model is a modified version of the Met Office Surface 

Exchange Scheme (MOSES) with 14 ground layers of unequal thickness extending 

down to a depth of 250 m that can simulate permafrost processes such as freeze-thaw 

dynamics (Avis et al., 2011). The top eight ground layers (~10 m in total depth) are soil 

layers and contribute to the water cycle, whereas the bottom six ground layers are 

bedrock layers (Avis et al., 2011). In the hydraulically active layers, porosity and 

permeability are determined based on the relative abundance of prescribed sand, clay, 

and silt-sized particles. Water phase changes are determined over a range of soil 

temperatures to determine the fraction of frozen and unfrozen water in the ground (Avis 

et al., 2011). All components of the UVic ESCM have a horizontal grid resolution of 3.6° 

in longitude and 1.8° in latitude (Eby et al., 2009; Weaver et al., 2001). 

Wetlands in the UVic ESCM are identified in grid cell areas based on soil 

moisture content and topography. Model grid cells in which wetlands can occur are 

those with unfrozen soil moisture contents greater than 65% of the saturated moisture 

content in the upper soil layer for at least one day in a year (Avis et al., 2011). Instead of 

using a fixed global threshold value for topography (Avis et al., 2011), the version of the 

UVic ESCM used in this study identifies wetland coverage at the sub-grid scale following 

a TOPMODEL approach for global models (Gedney and Cox, 2003). Appendix B 

describes a minor modification applied to this TOPMODEL approach. Section 3.5.1 

presents an evaluation of wetlands simulated by the UVic ESCM. 

The UVic ESCM includes a representation of the global carbon cycle. The 

terrestrial carbon cycle (CO2 fluxes) is simulated using the Top-down Representation of 

Interactive Foliage and Flora including Dynamics (TRIFFID), a dynamic global 

vegetation model that is coupled to the land surface model (Avis et al., 2011; Meissner 

et al., 2003). TRIFFID defines the state of the terrestrial biosphere in terms of soil carbon 

as well as the structure and coverage of five plant functional types (PFTs): broadleaf 

trees, needleleaf trees, shrubs, C3 grasses and C4 grasses (Cox, 2001; Matthews et al., 

2004; Meissner et al., 2003). Terrestrial carbon gain occurs through photosynthesis that 

is simulated as a function of atmospheric CO2 concentration, shortwave radiation, air 

temperature, humidity, and soil moisture. Soil carbon gain occurs through litter-fall and 

vegetation mortality. The present-day permafrost carbon pool is simulated by the UVic 
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ESCM following a method that approximates the effect of long-term freeze-thaw cycles 

on the vertical distribution of carbon in permafrost-affected soils, a process referred to as 

cryoturbation (MacDougall and Knutti, 2016). Soil carbon can accumulate in the top six 

ground layers (~3.35 m in total depth). Terrestrial carbon loss occurs through autotrophic 

respiration by plants and heterotrophic respiration by soil microbes (Matthews et al., 

2004; Meissner et al., 2003). By configuration, permafrost carbon can only be lost 

through microbial respiration and this heterotrophic respiration is assumed to shut down 

in frozen soil layers (MacDougall et al., 2012; MacDougall and Knutti, 2016). 

The marine carbon cycle in the UVic ESCM is represented with organic and 

inorganic carbon cycle models (Eby et al., 2009). The organic carbon cycle is based on 

marine biology simulated with a nutrient-phytoplankton-zooplankton-detritus (NPZD) 

ecosystem model (Schmittner et al., 2008). The inorganic carbon cycle model simulates 

the air-sea exchange of CO2 and ocean carbonate chemistry following the protocols of 

the Ocean Carbon-Cycle Model Intercomparison Project (OCMIP) (Orr, 1999; Weaver et 

al., 2001). Dissolved inorganic carbon is treated as a passive tracer that is subject to 

ocean circulation (Weaver et al., 2001). Carbonate dissolution in ocean sediments is 

simulated with a model of respiration in marine sediments (Archer, 1996; Eby et al., 

2009). 

3.3.3. Model simulations 

For this research, three series of model simulations are performed with the UVic ESCM 

in its standard fully coupled mode and including WETMETH parameterizations. Firstly, 

the UVic ESCM is spun up for ~5000 years at year 1850 conditions to allow the model to 

reach an equilibrium climate state representing the pre-industrial period. Secondly, a 

transient run over the 1850-2019 period is performed in order to evaluate the model 

performance. This transient run is based on prescribed CO2 concentration and other 

forcing data (such as solar radiation, sulfate aerosols and non-CO2 greenhouse gases) 

from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) (Taylor et 

al., 2012). The UVic ESCM is driven by historical data over the 1850-2005 period and by 

Representative Concentration Pathway (RCP) 8.5 data over the 2006-2019 period. 

Figure D1 illustrates how the simulated historical climate conditions compare to 

observations in terms of global mean surface air temperature. Thirdly, a set of transient 

runs from 2000 to 2009 is performed to analyze the model sensitivity to poorly 
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constrained parameters. This set of model simulations (sensitivity runs) is performed by 

perturbing values of poorly constrained parameters associated with wetland CH4 

processes. 

3.4. Choice of model parameter values 

Here, we describe the choice of three WETMETH parameters (𝑟𝑟 and 𝜏𝜏prod for CH4 

production; 𝜏𝜏oxid for CH4 oxidation) as part of the model calibration. These model 

parameters are tuned to observations from northern high-latitude regions due to the 

scarcity of large-scale datasets from other regions. The model calibration against 

northern observations is based on the assumption that tuned parameter values will be 

valid across the globe, which is an important limitation as it will be discussed later. 

Nonetheless, this approach is deemed reasonable given the present state of data 

availability. Section 3.5.1 describes northern wetlands simulated by the UVic ESCM as 

part of the model validation. 

3.4.1. CH4 production parameters 

Parameters for CH4 production in WETMETH are calibrated against maximum CH4 

production rates measured in laboratory incubations of soil samples from several 

anaerobic environments across northern high-latitude regions (>50°N). These potential 

CH4 production rates are obtained from a synthesis dataset, which includes information 

on other environmental variables such as the relative depth of the soil samples (Treat et 

al., 2015). 

To allow a fair model-data comparison, measured CH4 production rates with 

corresponding soil bulk density from the sites of origin are converted into units of kg C m-

3 s-1 (see Appendix C). Furthermore, measurements from landscapes identified as 

uplands and lakes (in the dataset) are excluded from the dataset used in this model 

calibration. The remaining measurements are potential CH4 production rates in soil 

samples from landscapes identified (in the dataset) as wetlands, floodplains, and 

lowlands across Alaska. 

To set values for 𝑟𝑟 and 𝜏𝜏prod from Eq. (3.1), the depth profile of simulated CH4 

production rates across Alaska for the year 2000 is tuned to that of the measurements. 
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By setting 𝑟𝑟 to 22.8 µg CH4-C produced per g of soil C per C day (equivalent to 2.6 x 10-

10 kg kg-1 s-1) and 𝜏𝜏prod to 0.75 m, we obtain a depth profile of simulated CH4 production 

rates that compares fairly well to that of potential CH4 production rates from the 

laboratory incubations (Figure 3.3). These default values for 𝑟𝑟 and 𝜏𝜏prod are listed in 

Table 3.1. Section 3.6 presents a sensitivity analysis on these model parameters. 

 
Figure 3.3. Vertical profiles of simulated and potential CH4 production rates 

from wetlands across Alaska. Potential CH4 production rates are 
measurements from laboratory incubations of soil samples 
collected from various anaerobic ecosystems (Treat et al., 2015). 
Both simulated and measured CH4 production rates are shown here 
with a log-transformed axis (base-10 logarithmic scale). 

3.4.2. CH4 oxidation parameter 

Unlike for CH4 production, there are no published large-scale measurements of CH4 

oxidation rates that could be used in this research for the calibration of CH4 oxidation. 
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For that reason, CH4 oxidation in WETMETH is indirectly calibrated via CH4 emissions. A 

synthesis dataset of seasonal and annual CH4 emissions from various terrestrial sites 

across temperate, boreal and Arctic regions is used to this end (Treat et al., 2018). The 

model calibration focuses on annual CH4 emissions from sites north of 50°N for which 

many data points are available in the dataset. 

While most data points are from direct measurements of CH4 emissions, some 

data points are associated with different modelling methods for estimating CH4 

emissions (Treat et al., 2018). To allow a fair model-data comparison, only data points 

associated with direct measurements of CH4 emissions are included in the model 

calibration. Furthermore, measurements from lakes, uplands and alpine landscapes are 

excluded from this model calibration. In particular, the exclusion of data points from 

uplands and alpine landscapes sorts out measurements of terrestrial CH4 uptake 

(negative CH4 flux). The retained data points (n = 119) include measurements by 

chambers (85.7%), flux towers (13.4%) and a combination of flux towers and chambers 

(0.8%). 

The model calibration in this section aims at choosing a value of 𝜏𝜏oxid from Eq. 

(3.5) such that the range (minimum - maximum) of annual CH4 emissions across 

northern wetlands (>50°N) simulated by the UVic ESCM is comparable to that of annual 

CH4 emissions from the data points (0.1-60.6 g CH4 m-2 yr-1). By setting 𝜏𝜏oxid to 0.0146 

m, we constrain simulated CH4 emissions from northern wetlands (specifically, grid-cell 

CH4 emissions divided by the inundated fraction of the grid cell) over the 2000-2009 

decade in the range of 0.04-65.6 g CH4 m-2 yr-1. This default value for 𝜏𝜏oxid is listed in 

Table 3.1. Section 3.6 presents a sensitivity analysis on this model parameter. 

3.5. Evaluation of the model performance 

3.5.1. Wetlands 

Figure 3.4 shows the latitudinal distribution of wetland areas simulated by the UVic 

ESCM in comparison to two global datasets. The first dataset is Global Inundation 

Extent from Multi-Satellites (GIEMS), which is based on remotely sensed inundation 

areas (Papa et al., 2010; Prigent et al., 2001, 2007a, 2012). The second dataset is 

Surface Water Microwave Product Series-Global Lakes and Wetlands Database 
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(SWAMPS-GLWD), which is based on a combination of information from satellites and 

maps of inundated areas in order to reduce uncertainties associated with the distribution 

of global wetlands (Poulter et al., 2017). The comparison between the model and the 

datasets is done over 2000-2007, which is the overlap period for the datasets. Over this 

period the UVic ESCM simulates an annual maximal extent of ~12.6 million km2 for 

global wetlands, whereas GIEMS and SWAMPS-GLWD estimate ~9.3 and ~10.6 million 

km2, respectively. 

The UVic ESCM agrees better with SWAMPS-GLWD in regions north of 40°N 

although with some underestimations around 55°N, and relatively well with GIEMS 

between 20-40°S (Figure 3.4). However, the model simulates too small wetland areas 

between 20-30°N when compared to both GIEMS and SWAMPS-GLWD. While our 

model could be underestimating wetland areas in this latitude zone, inundated areas 

estimated by GIEMS include rice paddies which prevail in tropical and sub-tropical 

regions (Prigent et al., 2007a, 2012). Rice paddies are likely not represented in 

SWAMPS-GLWD as there were efforts to only include natural wetlands during the 

development of this dataset (Poulter et al., 2017). In comparison to GIEMS and 

SWAMPS-GLWD, our model simulates small wetland areas in South-East Asia 

especially near Bangladesh (Figure 3.5 and Figure 3.6). 

 
Figure 3.4. Latitudinal distribution of wetland areas simulated by the UVic 

ESCM over the 2000-2007 period in comparison to two global 
datasets: GIEMS and SWAMPS-GLWD. The comparison period 
corresponds to the overlap period for the two datasets. The wetland 
areas are summed across latitude bins of 3°. 
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Between 20°N and 20°S, the UVic ESCM simulates a bimodal distribution of the 

wetland extent that is consistent with the two datasets although the model simulates too 

large wetland areas (Figure 3.4). Unlike for GIEMS and SWAMPS-GLWD, wetlands 

simulated by the UVic ESCM are widespread in Amazonia, West and Central Africa 

(Figure 3.5 and Figure 3.6). Although the UVic ESCM could be overestimating the extent 

of wetlands in some of these equatorial regions, it is possible that GIEMS and 

SWAMPS-GLWD do not detect inundated areas in densely forested regions due to 

forest canopies. Recent studies suggest that tropical wetlands are commonly 

underestimated in large-scale datasets (Dargie et al., 2017; Gumbricht et al., 2016). 

 
Figure 3.5. Average wetland extents (inundated fractions of grid cells) across 

the globe over the 2000-2007 period as simulated by the UVic ESCM 
(a) in comparison to two datasets: (b) GIEMS and (c) SWAMPS-
GLWD. The datasets are regridded to 3.6° x 1.8° for a fair 
comparison with the UVic ESCM. The comparison period 
corresponds to the overlap period for the two datasets. 

Conversely, it is possible that the UVic ESCM overestimates tropical wetland 

areas due to soil hydraulic properties unrepresented in the model. A potential cause for 

the overestimation of tropical wetlands in our model is the standard approach for 
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simulating global hydrology in land surface models based on the concentration of only 

sand, clay, and silt in the soil. A recent study suggests that the inclusion of ferralsols 

(weathered soils with micro-aggregated particles that are common in the humid tropics) 

in a global terrestrial model can help improve the simulation of tropical wetlands 

(Gedney et al., 2019). 

 
Figure 3.6. Differences in global wetland extents (inundated fractions of grid 

cells) between two datasets (GIEMS and SWAMPS-GLWD) and the 
UVic ESCM over the 2000-2007 period: (a) SWAMPS-GLWD – GIEMS, 
(b) UVic ESCM – GIEMS, and (c) UVic ESCM – SWAMPS-GLWD. The 
comparison period corresponds to the overlap period for the two 
datasets. 

Outside of the tropics, the UVic ESCM does a better job at simulating the 

distribution of wetlands in sub-Arctic and Arctic regions (Figure 3.7). The model 

simulates the occurrence of wetlands (i.e. surface inundation) across the West Siberian 

Lowlands (WSL) in Russia, the Hudson Bay Lowlands (HBL) in Canada as well as over 

other parts of northern Canada in agreement with both SWAMPS-GLWD and GIEMS 

(Figure 3.7). However, some disagreements between the UVic ESCM and the two 

datasets can also be identified: (i) in comparison to GIEMS, the UVic ESCM simulates 
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more wetland area in the Hudson Bay Lowlands (HBL) as well as widespread wetlands 

in parts of northern Eurasia (Figure 3.7b and Figure D2b); (ii) in comparison to 

SWAMPS-GLWD, the model simulates less wetland area over the WSL and northern 

Canada including the HBL and more wetland area in parts of Europe (Figure 3.7c and 

Figure D2c). 

 
Figure 3.7. Average wetland extents (inundated fractions of grid cells) in the 

north of 45°N over the 2000-2007 period as simulated by the UVic 
ESCM (a) in comparison to two datasets: (b) GIEMS and (c) 
SWAMPS-GLWD. The datasets are regridded to 3.6° x 1.8° for a fair 
comparison with the UVic ESCM. The comparison period 
corresponds to the overlap period for the two datasets. 

3.5.2. Wetland CH4 emissions 

Given the relative coarse grid resolution of the UVic ESCM, the model validation with 

respect to wetland CH4 emissions focuses on large-scale emissions such as regional, 
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zonal, and global emissions. Moreover, this model validation focuses on northern high-

latitude regions because observations and estimates of wetland CH4 emissions from 

other regions (e.g. the tropics) are scarce. This focus is further justified by the fact that 

our model better simulates the distribution of wetlands in northern high-latitude regions 

than in the tropics (see Section 3.5.1). Indeed, the extent of wetlands is a major control 

for wetland CH4 emissions simulated by process-based models and probably the primary 

contributor to related uncertainties (Melton et al., 2013; Saunois et al., 2020; Zhang et 

al., 2017a). 

The UVic ESCM simulates total CH4 emissions from northern wetlands that are in 

the range of recent estimates. Over the 2013-2014 period, the model simulates mean 

annual emissions of 33.2 Tg CH4 yr-1 for wetlands north of 45°N (Table 3.2). These CH4 

emissions are consistent with estimates from recent upscaled flux measurements 

(UFMs) over the same period based on a random forest (RF) algorithm and three 

wetland maps (Peltola et al., 2019): 30.6 ± 9.2 Tg CH4 yr-1 (RF-DYPTOP), 31.7 ± 9.4 Tg 

CH4 yr-1 (RF-PEATMAP), and 37.6 ± 11.8 Tg CH4 yr-1 (RF-GLWD) (Table 3.2). Table E2 

(see Appendix E) shows that the UVic ESCM has no preferential agreement with one of 

the three UFMs. 

Figure 3.8 shows the spatial distribution of simulated CH4 emissions in 

comparison to the three UFMs. When compared to each other, the three UFMs exhibit 

substantial differences primarily attributed to the distinct wetland distributions (Peltola et 

al., 2019). Considering the general pattern and magnitude of wetland CH4 emissions, the 

UVic ESCM agrees with either two or all three UFMs over key source regions such as 

the Hudson Bay Lowlands (HBL), the West Siberian Lowlands (WSL), western Europe 

and south-central Canada (Figure 3.8). The UVic ESCM simulates less CH4 emissions 

over parts of northeastern Canada and Fennoscandia in comparison to the UFMs 

(Figure 3.8). However, the three UFMs do not necessarily agree on both the distribution 

and magnitude of wetland CH4 emissions in these regions. Furthermore, the UVic ESCM 

does not simulate wetland CH4 emissions in southern Eurasia (40-135°E; 45-60°N) while 

the three UFMs suggest that CH4 can be emitted from sporadic wetlands in this region 

(Figure 3.8). Overall, the mismatch between the UFMs and our model in terms of 

northern CH4 emissions can be primarily attributed to differences in the areal extent of 

wetlands, but also to the spatial distribution of soil carbon simulated by the UVic ESCM 

(MacDougall and Knutti, 2016). 
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In terms of mean annual emissions from key source regions, the UVic ESCM 

simulates 2.9 Tg CH4 yr-1 for the Hudson Bay Lowlands (HBL) over the 2013-2014 

period (Table 3.2). Although these emissions are lower than estimates by the three 

UFMs (3.1-6.5 Tg CH4 yr-1) (Peltola et al., 2019), estimates by inverse models (2.0-3.4 

Tg CH4 yr-1) over this region are comparable to our model results (Miller et al., 2014; 

Pickett-Heaps et al., 2011; Thompson et al., 2017). Furthermore, the UVic ESCM 

simulates total wetland emissions of 4.1 Tg CH4 yr-1 for the West Siberian Lowlands 

(WSL) over the 2013-2014 period (Table 3.2). Regional estimates based on the three 

UFMs are higher (4.9-8.5 Tg CH4 yr-1) than our model results over the same period 

(Peltola et al., 2019), whereas previous observation-based estimates for the WSL 

suggest regional wetland emissions (3.9 ± 1.3 Tg CH4 yr-1) that are similar to our model 

results (Glagolev et al., 2011). Estimates by inverse models over the WSL are relatively 

high but comparable to our model estimates (Table 3.2): 6.1 ± 1.2 Tg CH4 yr-1 (Bohn et 

al., 2015) and 6.9 ± 3.6 Tg CH4 yr-1 (Thompson et al., 2017). 

The UVic ESCM is also evaluated with respect to wetland CH4 emissions over 

the 2000-2009 and 2008-2017 decades, which both are reference periods for the latest 

global CH4 budget report (Saunois et al., 2020). For wetlands north of 40°N, the UVic 

ESCM simulates emissions of 37.7 Tg CH4 yr-1 over the 2000-2009 decade and 38.5 Tg 

CH4 yr-1 over the 2008-2017 decade. These wetland CH4 emissions are consistent with 

recent estimates (37.4 ± 7.2 Tg CH4 yr-1) from data-constrained model ensembles over 

the same region (Treat et al., 2018). For wetlands north of 45°N, the model simulates 

total CH4 emissions that are in the range of estimates for the 2013-2014 period 

discussed earlier (32.4 Tg CH4 yr-1 over 2000-2009 and 33.1 Tg CH4 yr-1 over 2008-

2017). For Pan-Arctic wetlands (>60°N), the UVic ESCM simulates emissions of 17.4 Tg 

CH4 yr-1 over the 2000-2009 decade and a similar amount over the 2008-2017 decade 

(Table 3.2). These wetland CH4 emissions correspond to the upper limit of bottom-up 

estimates (2-18 Tg CH4 yr-1) from the latest global CH4 budget report (Saunois et al., 

2020). 
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Table 3.2. Mean annual wetland CH4 emissions simulated by the UVic ESCM in comparison to estimated emissions from 
the literature. All emissions are reported in Tg CH4 yr-1 and uncertainty ranges are provided for estimates from 
the literature. Three periods are used to allow a fair comparison between the UVic ESCM and estimates from 
the literature where possible: 2008-2017 as in the latest global CH4 budget report (Saunois et al., 2020), 2013-
2014 as for recent upscaled flux measurements across the northern high-latitudes (Peltola et al., 2019), and 
1993-2004 as for the WETCHIMP model ensemble (Melton et al., 2013). Principal methods used in the different 
references for estimates are reported in the last column: Top-down (TD) methods including inverse models 
(IM), and bottom-up (BU) methods including upscaled measurements (UM) as well as process-based models 
(PM). 
 Geographical UVic ESCM UVic ESCM Estimated Reference Method in 
 delimitation period emissions emissions for estimates reference 
Hudson Bay 50 – 60°N; 2013-2014 2.9 2.3 ± 0.3 Pickett-Heaps et al., 2011 BU 
Lowlands 75 – 96°W   2.4 ± 0.3 Miller et al., 2014 IM 
    2.7 - 3.4 Thompson et al., 2017 IM 
West Siberian 50 – 75°N; 2013-2014 4.1 3.9 ± 1.3 Glagolev et al., 2011 UM 
Lowlands 60 – 95 °E   6.1 ± 1.2 Bohn et al., 2015 a IM 
    6.9 ± 3.6 Thompson et al., 2017 IM 
Pan-Arctic 60°N – 90°N 2008-2017 17.3 7 – 16 Saunois et al., 2020 TD 
Wetlands    2 – 18 Saunois et al., 2020 BU 
Northern 40°N – 90°N 2008-2017 38.5 37.4 ± 7.2 Treat et al., 2018 BU 
Wetlands 45°N – 90°N 2013-2014 33.2 30.6 ± 9.2 Peltola et al., 2019 UM 
    31.7 ± 9.4 Peltola et al., 2019 UM 
    37.6 ± 11.8 Peltola et al., 2019 UM 
Tropical 30°S – 30°N 1993-2004 105.5 126 ± 31 Melton et al., 2013 a PM 
Wetlands    90 ± 77 Sjögersten et al. 2014 UM 
Global 90°S – 90°N 2008-2017 158.6 155 – 200 Saunois et al., 2020 TD 
Wetlands    102 – 182 Saunois et al., 2020 BU 

a These reported estimates are model ensemble means. For the West Siberian Lowlands, the range between the inverse models is 3.1–9.8 Tg CH4 yr-1 (Bohn et al., 2015). For 
tropical wetlands, the range between the process-based models is 85–184 Tg CH4 yr-1 (Melton et al., 2013).
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Figure 3.8. Average CH4 emissions from wetlands north of 45°N over the 2013-

2014 period as simulated by the UVic ESCM (a) in comparison to 
three datasets (upscaled flux measurements): (b) RF-DYPTOP, (c) 
RF-GLWD and (d) RF-PEATMAP. The datasets are regridded to 3.6° x 
1.8° for a fair comparison with the UVic ESCM. The comparison 
period corresponds to the overlap period for the three datasets. 

Figure 3.9 shows seasonal cycles of CH4 emissions from wetlands north of 45°N 

over the 2013-2014 period as simulated by the UVic ESCM and estimated from the three 

UFMs (Peltola et al., 2019). The pattern and magnitude of simulated seasonal emissions 

compare well to that of the UFMs. For both the model and UFMs, minimal emissions 

vary between 0.2-0.6 Tg CH4 month-1 and occur in December while peak emissions are 

well below 10 Tg CH4 month-1 and occur in July (Figure 3.9). However, simulated peak 

emissions (~8.5 Tg CH4 month-1) are relatively higher than peak emissions for the UFMs 

(range of best estimates: 5.6-7.5 Tg CH4 month-1). Moreover, in comparison to the three 

UFMs, the UVic ESCM simulates lower CH4 emissions between December and May but 

higher CH4 emissions between July and September (Figure 3.9). 
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The UVic ESCM simulates the occurrence of wetland CH4 emissions during the 

non-growing season. For wetlands north of 45°N, our model simulates total emissions of 

2.1 Tg CH4 yr-1 between November and March. The UFMs predict total emissions of 4.6-

10.2 Tg CH4 yr-1 during these cold months (Peltola et al., 2019). For wetlands north of 

60°N, the UVic ESCM simulates emissions of 1.2 Tg CH4 yr-1 from October through May 

in agreement with recent estimates (1.6 ± 0.1 Tg CH4 yr-1) from data-constrained model 

ensembles for these months (Treat et al., 2018). Based on our calculations, the three 

UFMs predict about 3.5-4.5 Tg CH4 yr-1 emitted from wetlands north of 60°N between 

October and May. Overall, this analysis shows that WETMETH is capable of simulating 

non-negligible CH4 emissions from northern wetlands during cold months as emphasized 

by recent studies (Treat et al., 2018; Zona et al., 2016). 

 
Figure 3.9. Seasonal variations of CH4 emissions from wetlands north of 45°N 

over the 2013-2014 period as simulated by the UVic ESCM in 
comparison to three upscaled flux measurements (RF-DYPTOP, RF-
GLWD and RF-PEATMAP). The dashed lines show the uncertainty 
range for the upscaled flux measurements. 

At the global scale, the UVic ESCM simulates total global wetland CH4 emissions 

of 155.1 and 158.6 Tg CH4 yr-1 over the 2000-2009 and 2008-2017 decades, 

respectively. According to the latest global CH4 budget report, these wetland emissions 

are in the mid-range of bottom-up estimates (102-179 and 102-182 Tg CH4 yr-1) but 

close to the lower limit of top-down estimates (153-196 and 155-200 Tg CH4 yr-1) over 
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the two decades (Saunois et al., 2020). Previous bottom-up estimates are significantly 

high (Melton et al., 2013; Saunois et al., 2016a) primarily due to possible double 

counting of emissions from wetlands and other inland water areas (Saunois et al., 2020; 

Thornton et al., 2016) in addition to uncertainties associated with the areal extent of 

wetlands and model parameterizations (Melton et al., 2013). Table 3.2 summarizes the 

comparison between the model results and estimates from the latest global CH4 budget 

report for the 2008-2017 decade. 

Figure 3.10 shows the spatial distribution of simulated wetland CH4 emissions 

over the 2001-2004 period in comparison to three process-based model ensembles: 

GCP-CH4 (Poulter et al., 2017), WetCHARTs (Bloom et al., 2017), and WETCHIMP 

(Melton et al., 2013). The UVic ESCM simulates few CH4-emitting areas over South-East 

Asia in comparison to the three model ensembles. The potential underestimation of 

wetland CH4 emissions in that region is associated with the relatively few wetland areas 

simulated by the UVic ESCM (see Section 3.5.1). In tropical Africa, our model simulates 

too many CH4-emitting locations in comparison to the model ensembles (Figure 3.10), 

which is also associated with the distribution of simulated wetlands (see Section 3.5.1). 

Nevertheless, the UVic ESCM simulates the occurrence of wetland CH4 emissions in key 

source regions such as the Amazon and Congo River basins, South Sudan (Sudd 

swamps), and Indonesian islands (Figure 3.10). For the Amazon and Congo River 

basins, however, the UVic ESCM simulates lower wetland CH4 emissions than predicted 

by the model ensembles (Figure 3.10). This can be due to either the consideration of an 

optimal temperature for CH4 production (around 27°C) in our model unlike many other 

process-based models, or the fact that model parameters in this study are tuned to 

northern estimates. 

Figure 3.11a shows the latitudinal distribution of simulated wetland CH4 

emissions in comparison to the model ensembles. Interestingly, although GCP-CH4 and 

WetCHARTs are based on the same wetland dataset (SWAMPS-GLWD) (Bloom et al., 

2017; Poulter et al., 2017), their zonal wetland CH4 emissions are very different 

especially near the Equator and across northern high-latitude regions (Figure 3.11a). 

Using the three model ensembles as reference, the UVic ESCM simulates significantly 

lower wetland CH4 emissions around the Equator (Figure 3.11a), despite that the model 

simulates too large equatorial wetland areas (Figure 3.4). In fact, wetland emission 

intensities (emissions per unit of wetland area) by the UVic ESCM are lower than those 
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by the model ensembles between 10°S and 10°N (Figure 3.11b) due to relatively large 

wetland areas but small CH4 emissions in equatorial regions (Figure 3.4 versus Figure 

3.11a). As previously discussed, the relatively small CH4 emissions simulated by the 

UVic ESCM in equatorial regions can be associated with either the optimal temperature 

for CH4 production considered in WETMETH but not in most other process-based 

models, or the fact that model parameters in this study are tuned to northern estimates. 

 
Figure 3.10. Average methane emissions from global wetlands over the 2001-

2004 period as simulated by the UVic ESCM (a) in comparison to 
three process-based model ensembles: (b) GCP-CH4, (c) 
WetCHARTs, and (d) WETCHIMP. The model ensembles are 
regridded to 3.6° x 1.8° for a fair comparison with the UVic ESCM. 
The comparison period corresponds to the overlap period for the 
three model ensembles. 

Furthermore, the UVic ESCM simulates more wetland CH4 emissions between 

10-20°N than the three model ensembles (Figure 3.11a) and this can be attributed to the 

widespread wetlands in West and Central Africa simulated by our model (Figure 3.5 and 

Figure 3.6). In addition, the UVic ESCM simulates significantly less wetland CH4 

emissions between 20-35°N in comparison to the WETCHIMP ensemble (Figure 3.11a) 

and this can be attributed to the relatively small wetland areas simulated by the UVic 
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ESCM in South-East Asia where some models include agricultural wetlands such as rice 

paddies. Moreover, wetland emission intensities by the UVic ESCM feature low 

variability with latitude unlike the three model ensembles (Figure 3.11b). Such a relative 

lack of variability can be attributed to two factors: (i) both wetland areas and CH4 

emissions simulated by the UVic ESCM feature relatively low variability with latitude 

compared to the datasets and model ensembles (Figure 3.4 and Figure 3.11a); and (ii) 

as previously discussed, our model likely simulates too large wetland areas but too small 

CH4 emissions around the Equator implying a lack of variability across tropical latitudes. 

Despite the various discrepancies between the UVic ESCM and both model 

ensembles regarding the distribution of wetland CH4 emissions in the tropics, our model 

simulates mean annual CH4 emissions from tropical wetlands that are in the range of 

estimates from the literature (Table 3.2). For the 1993-2004 period, the UVic ESCM 

simulates tropical wetland CH4 emissions of 105.5 Tg CH4 yr-1 whereas the WETCHIMP 

ensemble predicts 126 ± 31 Tg CH4 yr-1 (Melton et al., 2013). Another study suggests a 

lower mean value (90 ± 77 Tg CH4 yr-1) for wetland CH4 emissions in the tropics 

although with large uncertainties (Sjögersten et al., 2014). Indeed, several studies 

indicate that wetland CH4 emissions in the tropics are highly uncertain due to limited 

ground-based measurements and poorly delimitated wetland extent (Dargie et al., 2017; 

Gumbricht et al., 2016; Hu et al., 2018; Pangala et al., 2017; Saunois et al., 2020). 
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Figure 3.11. (a) Latitudinal distribution of wetland methane emissions simulated 

by the UVic ESCM over the 2001-2004 period in comparison to three 
process-based model ensembles: GCP-CH4, WetCHARTs and 
WETCHIMP. The comparison period corresponds to the overlap 
period for the three model ensembles. (b) Latitudinal emission 
intensity (methane emissions per unit of wetland area) simulated by 
the UVic ESCM over the 2001-2004 period in comparison to the three 
process-based model ensembles. GCP-CH4 and WetCHARTs both 
use SWAMPS-GLWD as prescribed wetlands. The wetland methane 
emissions and emission intensities are summed across latitude bins 
of 3°. 

3.6. Model sensitivity to poorly constrained parameters 

We performed a set of 30 model runs with perturbed parameter values (sensitivity runs) 

over the 2000-2009 decade in order to analyze the model sensitivity to poorly 

constrained parameters (T𝑟𝑟𝑟𝑟𝑟𝑟, 𝑟𝑟, 𝜏𝜏prod, 𝑧𝑧oatz, and 𝜏𝜏oxid). For each parameter, we 

increased or decreased the default value by 10, 20, and 30% while holding constant 
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values for other parameters (fixed to default values). We then compared results from the 

sensitivity runs to the model simulation with all parameter values set to default values 

(control run). This comparison focuses on the total simulated global (90°S-90°N), 

northern (45-90°N), and tropical (30°S-30°N) wetland CH4 emissions over the 2000-2009 

decade. 

Our results show that the model sensitivity varies with the different parameters 

and across regions (Figure 3.12). Among the five poorly constrained parameters, the 

UVic ESCM is most sensitive to perturbations of the two parameters for CH4 oxidation 

(𝑧𝑧oatz and 𝜏𝜏oxid) at both the global and regional scale. For 𝑧𝑧oatz, a decrease (increase) of 

the default parameter value by 10-30% results in an augmentation (reduction) of default 

wetland CH4 emissions by 41-179% (29-64%) at both the global and regional scale 

(Figure 3.12j-l). For 𝜏𝜏oxid, a decrease (increase) of the default parameter value by 10-

30% implies a reduction (augmentation) of default wetland CH4 emissions by 32-77% 

(37-120%) at both the global and regional scale (Figure 3.12m-o). 

The UVic ESCM is also very sensitive to perturbations of T𝑟𝑟𝑟𝑟𝑟𝑟, but this sensitivity 

is more pronounced for tropical regions than northern regions (Figure 3.12a-c). For 

northern regions, a decrease (increase) of T𝑟𝑟𝑟𝑟𝑟𝑟 by 10-30% results in a reduction 

(augmentation) of default wetland CH4 emissions by 5-21% (3-5%). For tropical regions, 

however, a decrease (increase) of T𝑟𝑟𝑟𝑟𝑟𝑟 by 10-30% results in a reduction (augmentation) 

of default wetland CH4 emissions by 34-82% (33-75%). Globally, a decrease (increase) 

of T𝑟𝑟𝑟𝑟𝑟𝑟 by 10-30% results in a reduction (augmentation) of default wetland CH4 emissions 

by 26-66% (24-55%). The model sensitivity to perturbations of 𝑟𝑟 is linear across all 

regions (Figure 3.12d-f). Lastly, the model is least sensitive to perturbation of 𝜏𝜏prod 

across the globe (Figure 3.12g-i). 
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Figure 3.12. Analysis of the model sensitivity to perturbations of poorly 

constrained parameters: Tref, r, τprod, zoatz, and τoxid. For each 
parameter, the default value is increased or decreased by 10, 20, and 
30% while values of other parameters are held constant (to default 
values). The model sensitivity is analyzed with respect to global 
(90°S-90°N), northern (45-90°N), and tropical (30°S-30°N) wetland 
methane emissions. Vertical axes show the ratio of the resulting 
emissions to the default emissions. 

3.7. Discussions 

3.7.1. WETMETH in the spectrum of wetland CH4 models 

A recent study reviewed 40 models of CH4 emissions in terrestrial ecosystems 

(predominantly rice paddies and natural wetlands) and classified them into three 
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categories based on their level of complexity: relatively simple models, relatively 

mechanistic models, and mechanistic models (Xu et al., 2016). Relatively simple models 

are those that simulate net CH4 emissions based on soil carbon or other environmental 

factors without explicit representations for the different CH4 production and oxidation 

pathways as well as mechanisms transporting CH4 to the atmosphere. Relatively 

mechanistic models are those that account for at least one transport mechanism for CH4 

release in addition to representing CH4 production and oxidation with simple functions. 

Mechanistic models are more comprehensive and explicitly simulate different pathways 

for both CH4 production and oxidation, more than two mechanisms for CH4 release, as 

well as their environmental controls. Based on this classification, WETMETH is a 

relatively simple model in the sense that it does not distinguish pathways for CH4 

production and oxidation as well as the various mechanisms transporting CH4 to the 

atmosphere. 

Although some wetland CH4 models are claimed to be embedded in ESMs (Xu et 

al., 2016), none of these models are currently run in fully coupled models with feedbacks 

between climate conditions and the global carbon cycle. Most of these models are rather 

implemented in dynamic vegetation models or uncoupled land surface components of 

climate models (Arora et al., 2018; Eliseev et al., 2008; Hodson et al., 2011; Riley et al., 

2011; Ringeval et al., 2011; Wania et al., 2009). Nonetheless, relatively simple models 

present the ideal level of complexity for the current generation of ESMs. More complex 

models generally imply detailed soil chemistry for O2 and alternate electron acceptors 

(Riley et al., 2011; Wania et al., 2010), different carbon substrates and their effects on 

CH4 production (Grant, 1998; Lovley and Klug, 1986), an explicit representation of the 

dynamics of different microbial communities (Grant, 1998; Xu et al., 2015), which all 

require comprehensive soil chemistry or model parameters that are currently not 

common in ESMs (Xu et al., 2016). Process parameterizations in mechanistic models 

generally imply too many degrees of freedom, making it difficult to constrain model 

parameters against sparse observations. Furthermore, mechanistic models may be too 

demanding computationally for fully coupled ESM runs without a proportional benefit for 

large-scale simulations of wetland CH4 emissions. 

The particularity of WETMETH among relatively simple models is that the model 

accounts for an optimum temperature for CH4 production, a depth-dependent 

representation for CH4 production allowing a calibration of parameters against potential 
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CH4 production rates from laboratory incubations, dynamic CH4 oxidation based on the 

vertical distribution of soil moisture, and the potential for CH4 emissions in non-inundated 

ecosystems with relatively high level of soil moisture content. In conclusion, WETMETH 

is simple enough to be compatible with ESMs and yet complex enough to simulate in an 

implicit way biogeochemical processes regulating wetland CH4 emissions. 

3.7.2. Limitations for WETMETH 

The new wetland CH4 model is associated with several limitations, which are linked to 

either its level of complexity or the scarcity of large-scale datasets for model calibration: 

1. The present state of global wetland modelling assumes generic wetlands 

without distinguishing their different types (Melton et al., 2013; Poulter et al., 

2017). Like many other large-scale models of the current generation, 

WETMETH would not be appropriate for investigating the contribution from 

particular wetland types to regional or global CH4 emissions (Aselmann and 

Crutzen, 1989). 

2. Since WETMETH is not based on a comprehensive soil biochemistry module 

and does not include the different pathways for CH4 production and oxidation, 

the model is not suited for investigating the role of specific biological and 

chemical controls on wetland CH4 emissions (Bridgham et al., 2013; Kwon et 

al., 2019). 

3. WETMETH does not simulate the contribution from wetland-specific 

vegetation species to CH4 emissions, although some of these species can 

either lead to high emissions (e.g. sedges are vascular plants that can 

transport CH4 through their aerenchyma) or low emissions (e.g. mosses are 

non-vascular plants that have been shown to develop a symbiotic relationship 

with methanotrophs) (Bridgham et al., 2013; Chen and Murrell, 2010). 

4. Ebullition and aerenchyma of vascular plants allow CH4 produced in wetlands 

to escape to the atmosphere with little opportunity for oxidation (Segers, 

1998; Whalen, 2005). Moreover, stems of woody trees are important conduits 

for CH4 emissions in Amazonia, a major source region in the world (Pangala 

et al., 2017). By considering the net effect of all mechanisms transporting 
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CH4 to the atmosphere, WETMETH presents a limitation for investigating the 

relative contribution of transport mechanisms to CH4 emissions across 

regions and at the global scale. 

5. Methane produced in northern wetlands can be stored underneath frozen soil 

during the winter and be released abruptly upon spring thaw (Mastepanov et 

al., 2013; Song et al., 2012). WETMETH does not currently feature such a 

storage of CH4 in the soil column, which is probably more relevant for small-

scale (site) and short-term (daily) than large-scale (regional) and long-term 

(seasonal) emissions (Figure 3.9). 

6. As presented in this study, poorly constrained WETMETH parameters are 

tuned to estimates from northern high-latitude regions because large-scale 

datasets from other regions are scarce (see Section 3.4). A strong limitation 

comes with the assumption that the chosen parameter values are 

representative for CH4 production and oxidation across the globe. However, 

the applied model calibration remains a reasonable approach given the 

scarcity of observations for wetland CH4 production, oxidation, and emissions 

at the global scale. 

Despite these limitations and the model simplicity, WETMETH is skillful when it comes to 

the simulation of mean seasonal, annual, and decadal wetland CH4 emissions at the 

regional, hemispheric, and global scale (see Section 3.5.2). The implementation of 

WETMETH in a fully coupled ESM should advance research on the interactions between 

climate change and wetland CH4 emissions in the context of global climate projections. 

3.8. Conclusions 

We developed a process-based wetland CH4 model (WETMETH) for implementation in 

ESMs. WETMETH is currently embedded in the UVic ESCM, a fully coupled EMIC. 

WETMETH is a computationally efficient model, applicable globally and, of appropriate 

complexity with respect to the current state of wetland CH4 modelling. Unconstrained 

model parameters are tuned to potential CH4 production rates from incubated soil 

samples and CH4 emissions from northern wetlands due to the scarcity of large-scale 

datasets from other regions. Nevertheless, WETMETH reproduces well estimates of 
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mean annual CH4 emissions over the past few decades at the regional, hemispheric, 

and global scale. 

Despite the importance of tropical wetlands in the global CH4 budget (Kirschke et 

al., 2013; Saunois et al., 2016a) and climate change (O’Connor et al., 2010; Zhang et 

al., 2017b), their areal extent and associated CH4 emissions remain highly uncertain in 

both the literature and modelling work (including this study) due to a combination of 

limited ground-based measurements and process understanding (Pangala et al., 2017; 

Saunois et al., 2020; Sjögersten et al., 2014), as well as a low accuracy from remotely-

sensed products especially over dense rainforests of Indonesia, Amazonia, and the 

Congo River basin where new peatlands continue to be discovered to date (Dargie et al., 

2017). Large-scale wetland mapping is a field of ongoing research (Tootchi et al., 2019) 

and further model development should focus on the improvement of wetland simulations 

in the tropics. In parallel, a compilation of tropical wetland CH4 measurements from 

various sources into synthesis datasets would be beneficial for constraining wetland CH4 

processes in large-scale models. 

The inclusion of wetland CH4 processes in a fully coupled ESM allows to 

advance the research on the feedback between climate change and wetland CH4 

emissions. The implementation of WETMETH in the UVic ESCM constitutes an ideal tool 

for investigating interactions between climate conditions and wetland CH4 emissions 

from decadal to longer timescales. Of particular importance is the permafrost carbon 

feedback to climate change, in which CH4 emissions from northern wetlands are 

expected to play an important role (Nzotungicimpaye and Zickfeld, 2017). 
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Chapter 4. The importance of methane mitigation 
to comply with the 2°C warming limit 

Abstract 

Methane (CH4) mitigation is often proposed to be one way to tackle climate change in 

the short-term with co-benefits for air quality and human health. However, atmospheric 

CH4 concentration ([CH4]) is growing rapidly since the last decade and currently tracking 

projected [CH4] under unmitigated emission scenarios. Here we use an Earth system 

model of intermediate complexity (EMIC) to investigate the importance of immediate 

versus delayed CH4 mitigation as part of international efforts to limit global warming to 

2°C above pre-industrial levels. The CH4 cycle in the EMIC is represented with a 

process-based model for wetland CH4 emissions, static CH4 emissions from non-wetland 

natural sources, and a one box-model for atmospheric CH4 whereby CH4 decay depends 

on a constant lifetime of 9.3 years. The EMIC is driven with prescribed CH4 emissions 

from anthropogenic sources among other forcing data. We explore scenarios with 

different initiation of CH4 mitigation over the next three decades, all reaching the same 

amount of anthropogenic CH4 emissions in the year 2100 as in a reference low emission 

scenario (SSP1-2.6). To explore the possibility of limiting global warming to 2°C, we 

assume that non-CH4 forcings (greenhouse gas emissions, aerosols, and land-use 

changes) evolve according to SSP1-2.6 throughout the future. Our results suggest that 

CH4 mitigation initiated between the years 2020 and 2030 under SSP1-2.6 could allow to 

keep global warming to well below 2°C relative to 1850-1900 levels, whereas delaying 

CH4 mitigation to the years 2040 or 2050 under SSP1-2.6 could overshoot the 2°C 

warming target for at least two decades in the 21st century. Our results imply that 

immediate cuts in anthropogenic CH4 emissions, alongside CO2 mitigation, are needed 

to increase the likelihood of limiting global mean temperature rise to 2°C above pre-

industrial levels.  
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4.1. Introduction 

A key outcome of the 2015 Paris Agreement by the Conference of the Parties (COP) to 

the United Nations Framework Convention on Climate Change (UNFCCC) is the 

international commitment to hold the increase in the global average temperature to well 

below 2°C above pre-industrial levels and pursue efforts to limit the temperature 

increase to 1.5°C above pre-industrial levels (UNFCCC, 2015). Limiting global warming 

to 1.5 or 2°C above pre-industrial levels will require reaching net zero carbon dioxide 

(CO2) emissions and deep reductions in non-CO2 emissions by the year 2050 (IPCC, 

2018). However, current strategies adopted by different countries to reduce 

anthropogenic emissions (i.e. nationally determined contributions or NDCs) generally do 

not explicitly target non-CO2 emissions such as CH4 (Harmsen et al., 2019a). 

Atmospheric CH4 is a trace gas of relevance to air quality and climate change. 

The gas contributes to the formation of ground-level ozone (O3), an air pollutant, through 

a series of chemical reactions in the presence of nitrogen oxides (NOx) and sunlight 

(Isaksen et al., 2011; O’Connor et al., 2010). Atmospheric CH4 is also a powerful 

greenhouse gas (GHG). A molecule of CH4 added in the atmosphere is 28-34 times 

more effective at absorbing infrared radiation than an additional molecule of carbon 

dioxide (CO2) over a period of 100 years (Myhre et al., 2013). [CH4] has increased from 

about 700 parts per billion (ppb) in the year 1750 to more than 1850 ppb today (Ciais et 

al., 2013). The rising [CH4] is a major contributor to the increase in total radiative forcing, 

second only to CO2 (Myhre et al., 2013). 

The atmospheric CH4 burden is regulated by many sources and sinks. Emissions 

of CH4 into the atmosphere originate from a variety of anthropogenic and natural 

sources. Anthropogenic sources of CH4 include fossil fuels, landfills, rice cultivation and 

domesticated ruminants, whereas natural sources of CH4 include wetlands, lakes, 

geological seeps, wildfires, wild ruminants and termites (Saunois et al., 2020). In the 

past few decades, more than 60% of the global CH4 emissions were from anthropogenic 

sources mostly related to fossil fuel exploitation, livestock production, agriculture and 

waste (Kirschke et al., 2013; Saunois et al., 2020). Sinks of CH4 are entirely natural 

processes mostly occurring in the atmosphere. The main removal of CH4 occurs in the 

troposphere through its reaction with the hydroxyl (OH) radical (Isaksen et al., 2011; 

Saunois et al., 2016b). In the stratosphere, CH4 is removed through its reaction with 
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chlorine and oxygen radicals (Isaksen et al., 2011; Kirschke et al., 2013). CH4 is also 

destroyed in the marine boundary layer through its reaction with chlorine radicals 

(Kirschke et al., 2013). Another sink of atmospheric CH4 is the uptake by soils (Kirschke 

et al., 2013; Saunois et al., 2020). 

There exist large uncertainties in the global CH4 budget and its evolution in the 

future. Although the various sources and sinks of atmospheric CH4 are well documented, 

their quantification and apportionment remain challenging (Saunois et al., 2020). 

Perhaps the most intriguing aspect of the CH4 budget in the current era is the evolution 

of atmospheric CH4 since the year 1999 characterized by approximately constant [CH4] 

between the 1999-2006 period followed by a renewed increase of at least 5 ppb yr-1 from 

the year 2007 to present (Nisbet et al., 2019; Schaefer, 2019). The stabilization of [CH4] 

between the years 1999 and 2006 has been attributed to a combination of decreasing-

to-stable fossil fuel emissions and increasing-to-stable biogenic emissions such as 

ruminants, rice cultivation, wetlands and other inland waters (Kirschke et al., 2013). It is 

also possible that changes in CH4 sinks (namely the oxidation of CH4 by tropospheric 

OH) contributed to the brief plateau in global CH4 levels in the late 1990s and early 

2000s (Prather and Holmes, 2017). The causes driving the sustained [CH4] increase 

after 2007 are still under debate after more than a decade (Prather and Holmes, 2017; 

Schaefer, 2019), with recent studies suggesting contributions from both sources and 

sinks of CH4 (Jackson et al., 2020; Nisbet et al., 2019; Schaefer, 2019). Limitations in 

the understanding of the current CH4 budget translate into uncertainties in the future 

evolution of the global CH4 cycle. 

The reduction of anthropogenic CH4 emissions, alongside CO2 mitigation, is often 

proposed to be an essential action for tackling climate change in the current century with 

co-benefits for air quality and human health (Anenberg et al., 2012; Ramanathan and 

Xu, 2010; Rao et al., 2016; Shindell et al., 2012; Shoemaker et al., 2013; Weaver, 2011; 

West et al., 2006). This proposal is justified by three main reasons: (i) the dominance of 

anthropogenic sources in current global CH4 emissions, (ii) the strong global warming 

potential of CH4, and (iii) its residence time in the atmosphere of only about a decade 

(Crill and Thornton, 2017; Kirschke et al., 2013; Ramanathan and Xu, 2010). Simulations 

by integrated assessment models (IAMs) and climate models of reduced complexity 

suggest that limiting global warming to 2°C will require a rapid decarbonization of the 

global economy as well as deep reductions in CH4 and other non-CO2 emissions 
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(Gernaat et al., 2015; Harmsen et al., 2019b; Rogelj et al., 2018). However, observed 

[CH4] is tracking future scenarios of unmitigated emissions (Nisbet et al., 2019; Saunois 

et al., 2016b). There are concerns that sustained [CH4] growth at current rates in the 

next few decades could constitute a challenge for meeting the temperature goals in the 

Paris Agreement, even under aggressive CO2 mitigation (Nisbet et al., 2019). 

Earth system models (ESMs) are fully coupled climate models that are 

appropriate for projecting future climate conditions and changes in biogeochemical 

cycles by considering different mitigation pathways and accounting for many Earth 

system feedbacks. In general, fully coupled climate models use prescribed [CH4] 

scenarios to investigate the climate impacts of CH4 mitigation because these models 

lack a representation of the global CH4 cycle (Jones et al., 2018). Here we use a version 

of the University of Victoria Earth System Climate Model (UVic ESCM) into which we 

implemented a simplified representation of the CH4 cycle (see Sections 4.2.2 and 4.2.3). 

The main question guiding this research is: What is the importance of immediate versus 

delayed CH4 mitigation to comply with the global warming limits set by the Paris 

Agreement? The focus is on global reductions of anthropogenic CH4 emissions without 

distinguishing which source sectors or regions would be cutting emissions down. The 

remainder of this chapter is structured as follows: Section 4.2 describes the methods 

used in this study. Section 4.3 presents the study results, and Section 4.4 provides the 

discussion and conclusions. 

4.2. Methods 

4.2.1. Description of the UVic ESCM 

The UVic ESCM is an Earth system model of intermediate complexity (EMIC) with a 

horizontal grid resolution of 3.6° in longitude and 1.8° in latitude (Weaver et al., 2001). 

The UVic ESCM consists of a simplified atmosphere model coupled to a comprehensive 

ocean model, a sea ice model, and a land surface model (Weaver et al., 2001). In this 

study, we use a version of the EMIC based on UVic ESCM 2.10 (Mengis et al., 2020) 

into which we incorporated a simplified representation of the global CH4 cycle (see 

Sections 4.2.2 and 4.2.3). 
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The atmosphere in the UVic ESCM is represented with a 2-D (vertically-

integrated) energy-moisture balance model, which uses wind fields prescribed from 

observation-based data and accounts for dynamical feedbacks (e.g. water vapour and 

planetary longwave feedbacks). The ocean model is a 3-D ocean general circulation 

model, with 19 vertical layers of unequal thicknesses that range from 50 m near the 

surface to 500 m in the deep ocean (Weaver et al., 2001). The sea ice model 

incorporates representations of sea-ice dynamics (subject to atmospheric wind stress 

and ocean currents) as well as sea-ice thermodynamics and thickness distribution 

(Weaver et al., 2001). The marine carbon cycle is represented with organic and 

inorganic carbon cycle models. The organic carbon cycle is represented with an ocean 

biogeochemistry model that simulates phytoplankton and zooplankton dynamics (Keller 

et al., 2012). The inorganic carbon cycle model simulates the air-sea exchange of CO2 

and ocean carbonate chemistry following the protocols of the Ocean Carbon-cycle 

Model Intercomparison Project (Orr, 1999; Weaver et al., 2001). Dissolved inorganic 

carbon is treated as a passive tracer that is subject to ocean circulation (Weaver et al., 

2001). Carbonate dissolution in ocean sediments is simulated with a model of respiration 

in marine sediments (Archer, 1996; Eby et al., 2009). 

The land in the UVic ESCM 2.10 is represented with 14 ground layers of unequal 

thicknesses with a total thickness of 250 m (Avis et al., 2011; Mengis et al., 2020). The 

top eight ground layers (~10 m in total depth) are soil layers, whereas the bottom six 

ground layers are bedrock layers with thermal characteristics of granitic rock (Avis et al., 

2011). The energy balance is determined for each ground layer and permafrost is 

identified whenever one ground layer is frozen for two or more consecutive years (Avis 

et al., 2011). Water phase changes in the soil layers are determined over a range of soil 

temperatures to determine the fraction of frozen and unfrozen water in the ground (Avis 

et al., 2011). Porosity and permeability are determined based on the relative abundance 

of prescribed sand, clay, and silt-sized particles. Moisture undergoes free drainage in 

these soil layers and subsurface runoff occurs when the water reaches the bedrock (Avis 

et al., 2011). Wetlands are simulated to occur in grid cells whose upper ground layer 

contains soil moisture exceeding 65% of saturation for at least one day in a year (Avis et 

al., 2011). Sub-grid scale wetlands are identified, in the model version used in this study, 

following a TOPMODEL approach for global models (Gedney and Cox, 2003). Terrestrial 

CO2 fluxes are simulated using the Top-down Representation of Interactive Foliage and 
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Flora including Dynamics (TRIFFID), a dynamic global vegetation model that is coupled 

to the land model (Avis et al., 2011; Meissner et al., 2003). TRIFFID defines the state of 

the terrestrial biosphere in terms of soil carbon as well as the structure and coverage of 

five plant functional types: broadleaf trees, needleleaf trees, C3 grasses, C4 grasses, 

and shrubs (Cox, 2001; Matthews et al., 2004; Meissner et al., 2003). Terrestrial carbon 

gain occurs through photosynthesis and soil carbon gain occurs through litter-fall and 

vegetation mortality. Soil carbon can accumulate in the top six layers (~3.35 m in total 

depth). The buildup of carbon in permafrost-affected locations is simulated following a 

diffusion method that approximates cryoturbation, a process driven by long-term freeze-

thaw cycles (MacDougall and Knutti, 2016). Terrestrial carbon loss occurs through 

autotrophic respiration by plants and heterotrophic respiration by soil microbes 

(Matthews et al., 2004; Meissner et al., 2003). Permafrost carbon can only be lost 

through microbial respiration, which only occurs in unfrozen soil layers (MacDougall et 

al., 2012; MacDougall and Knutti, 2016). 

4.2.2. Wetland CH4 emissions 

Wetland CH4 emissions are simulated in the UVic ESCM following a recent model 

development (Nzotungicimpaye et al., 2020). Chapter 3 provides a detailed description 

of the wetland CH4 model (WETMETH) implemented in the UVic ESCM. For the sake of 

brevity, we provide a short description of the model here. Wetland CH4 emissions in the 

UVic ESCM are calculated as the balance between microbial production and oxidation of 

CH4 in the soil column. CH4 production is calculated in each soil layer as a function of 

moisture content, carbon content, temperature, and the relative depth from the soil 

surface. In this approach, soil moisture (i.e. water saturation) represents potential anoxic 

conditions. Soil carbon represents organic matter that may be accessed by 

methanogens. Soil temperature allows to estimate potential changes in methanogenic 

activity, whereas the relative depth from the soil surface allows to represent the net 

effect of depth-dependent controls on CH4 production that are unresolved by the UVic 

ESCM (e.g. the quality of organic matter and the distribution of methanogens in the soil). 

CH4 production is assumed to not take place in dry soil layers (i.e soil layers unsaturated 

with water) as well as in frozen soil layers. CH4 oxidation is calculated for the entire soil 

column as a fraction of the amount of CH4 produced in the soil column. The oxidized 

CH4 fraction is determined based on an estimated oxic zone depth, which represents the 



74 

prevalence of methanotrophs in the soil. This fraction increases as the oxic zone 

deepens. 

4.2.3. Atmospheric CH4 and associated radiative forcing 

A simple one-box model is used to simulate the evolution of the atmospheric CH4 burden 

(B) with time as the balance between total CH4 emissions (E) and total CH4 sinks (S): 

dB
dt

 = (E − S) ,                                  (4.1) 

where E = E𝑎𝑎 +  E𝑤𝑤 + E𝑛𝑛 represents the sum of prescribed anthropogenic CH4 

emissions (E𝑎𝑎) (see Section 4.2.4), simulated wetland CH4 emissions (E𝑤𝑤), as well as 

natural CH4 emissions from non-wetland sources (E𝑛𝑛) such as termites, wild ruminants, 

wildfires, lakes, rivers, geologic seeps, and marine hydrates. Given that the UVic ESCM 

does not incorporate these non-wetland natural sources and in the absence of dataset 

for CH4 emissions from these sources, we assume that non-wetland natural CH4 

emissions would remain constant in time at 45 Tg C yr-1. This value is in the range of 

estimated total CH4 emissions from non-wetland natural sources over the last four 

decades (Kirschke et al., 2013; Saunois et al., 2020) as well as pre-industrial periods 

(Houweling et al., 2000 and references therein). Sinks of atmospheric CH4 are 

aggregated into a single term (S) calculated as S = B (1− exp(− 1
𝜏𝜏CH4

)), where 𝜏𝜏CH4 is the 

atmospheric CH4 lifetime assumed to be 9.3 years (Saunois et al., 2020). Similar 

estimates for the atmospheric CH4 lifetime have been reported for the pre-industrial era 

(9.5 ± 1.3 years) and present-day (9.1 ± 0.9 years) (Prather et al., 2012). At each time 

step, [CH4] is determined based on the atmospheric CH4 burden (B) by using a factor 

equivalent to ~2.8 Tg CH4/ppb. Radiative forcing associated with changes in [CH4] is 

calculated using the formulation of (Etminan et al., 2016) and is accounted separately 

from the aggregated forcing of other non-CO2 GHGs that is prescribed to the UVic 

ESCM in its standard configuration (Mengis et al., 2020). 

4.2.4. Prescribed anthropogenic CH4 emissions 

We prescribe global CH4 emissions from anthropogenic sources over the historical 

period (1850-2014) and the future period (2015-2300) to the UVic ESCM. These 

emissions are from climate forcing datasets used in the Coupled Model Intercomparison 



75 

Project Phase 6 (CMIP6) in preparation for the Sixth Assessment Report (AR6) by the 

Intergovernmental Panel on Climate Change (IPCC) (Eyring et al., 2016). Future 

anthropogenic emissions are based on Shared Socioeconomic Pathways (SSPs), a set 

of alternative futures (scenarios) of societal development designed for CMIP6 (Gidden et 

al., 2019) and their extension beyond the 21st century (Meinshausen et al., 2019). In this 

study, we use two SSPs and their extension to the year 2300 for anthropogenic CH4 

emissions (Meinshausen et al., 2019; Nicholls et al., 2020): (i) SSP1-2.6, a scenario 

featuring an early CH4 mitigation (prior to 2020), (ii) and SSP3-7.0, a scenario without 

CH4 mitigation throughout the 21st century (Figure 4.1). 

 
Figure 4.1. Anthropogenic CH4 emissions prescribed to the UVic ESCM in this 

study. Emissions in the early mitigation scenario (“Early Mitig”) 
correspond to SSP1-2.6, whereas emissions without mitigation (“No 
Mitig”) correspond to SSP3-7.0. Immediate and delayed mitigation 
scenarios follow the SSP3-7.0 CH4 emission trajectory to the 
specified point in time and decline linearly to reach the same 
amount of CH4 emissions as SSP1-2.6 in 2100, and evolve according 
to the SSP1-2.6 extension beyond the 21st century. 

We design four additional scenarios of anthropogenic CH4 emissions by 

assuming different initiation of CH4 mitigation over the next few decades. These 

scenarios follow the SSP3-7.0 trajectory up to a specified year (i.e. 2020, 2030, 2040, 
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and 2050) and decline linearly to reach the same amount of CH4 emissions as SSP1-2.6 

in the year 2100, and then evolve according to the SSP1-2.6 extension beyond the 21st 

century (Figure 4.1). All the considered mitigation scenarios assume deep reductions in 

anthropogenic CH4 emissions. For instance, anthropogenic CH4 emissions in the year 

2100 correspond to a ~69% reduction of the peak emissions for the early mitigation 

scenario (SSP1-2.6), ~71% for the mitigation scenario starting in the year 2020, ~74% 

for the mitigation scenario starting in the year 2030, ~76% for the mitigation scenario 

starting in the year 2040, and ~78% for the mitigation scenario starting in the year 2050 

(Table 4.1). These idealized scenarios allow to compare the effect of immediate versus 

delayed CH4 mitigation on the global climate at the end of the 21st century and beyond. 

4.2.5. Non-CH4 radiative forcing agents 

Apart from anthropogenic CH4 emissions, we use CMIP6 data for natural forcing agents 

(volcanic and solar) as well as non-CH4 anthropogenic GHGs and aerosols to drive the 

UVic ESCM over the 1850-2300 period. Natural forcing datasets consist of volcanic 

radiative forcing anomalies spanning the historical period based on (Schmidt et al., 

2018) and solar constant data prescribed to the year 2300 (Matthes et al., 2017). To 

explore the possibility of achieving the warming limits set by the Paris Agreement, we 

assume that non-CH4 GHGs as well as aerosols from anthropogenic sources evolve 

according to SSP1-2.6, which is a scenario representing a combination of mitigation 

strategies to achieve sustainable development in the future and eventually comply with 

the 2°C warming limit by the year 2100 (O’Neill et al., 2016). While such a future 

possibility (i.e. all anthropogenic GHGs and aerosols following SSP1-2.6 except for CH4) 

sounds unrealistic, our experiment enables to investigate recent concerns about the 

sustained [CH4] growth and the associated challenge for limiting global warming to 2°C 

above pre-industrial levels even under aggressive CO2 mitigation (Nisbet et al., 2019). 

Therefore, we prescribe CO2 emissions from fossil fuels as defined in the SSP1-2.6 

scenario and their long-term extension (Meinshausen et al., 2019; Nicholls et al., 2020). 

The SSP1-2.6 scenario features strong reductions in CO2 emissions as well as negative 

CO2 emissions (i.e. artificial removal of atmospheric CO2) in the second half of the 21st 

century (Gidden et al., 2019). Furthermore, we prescribe gridded land-use change (LUC) 

data according to SSP1-2.6 (Lawrence et al., 2016) and the UVic ESCM internally 

calculates corresponding LUC CO2 emissions. The radiative forcing of CO2 is calculated 
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within the UVic ESCM following the formulation of (Etminan et al., 2016). Radiative 

forcing values of other non-CH4 GHGs are calculated externally using concentration data 

and their extension (Meinshausen et al., 2019), which are then summed up into an 

aggregated forcing that is prescribed to the UVic ESCM. For anthropogenic sulfate 

aerosols, we prescribe SSP1-2.6 gridded aerosol optical depth (AOD) data to the UVic 

ESCM (Fiedler et al., 2019; Stevens et al., 2017) and the model uses this data to 

internally calculate the associated radiative forcing. While forcing data for CO2 and other 

non-CH4 GHGs extend to the year 2300 (Meinshausen et al., 2019), forcing data for LUC 

and sulfate aerosols are prescribed to the year 2100 and their radiative forcing are held 

fixed at their year 2100 values in our climate simulations. 

4.3. Results 

4.3.1. Validation of the simulated CH4 cycle 

We validate the atmospheric [CH4] simulated by the UVic ESCM against reconstructed 

as well as observed [CH4] over the historical period (1850-2014). Our model reproduces 

the trend and magnitude of atmospheric [CH4] for the decades prior to the 1980s 

reasonably well (Figure 4.2). The simulated [CH4] for the 1850-1980 period is within a 

10-30 ppb range of historical [CH4] reconstructions (Etheridge et al., 1998; Meinshausen 

et al., 2017; Rhodes et al., 2013). For the 1980-2014 period, however, the trend in 

simulated [CH4] does not feature the observed slowdown prior to the year 2007 and 

renewed rise afterwards (Figure 4.2). This trend mismatch can be associated with 

uncertainties in (i) CH4 sources especially simulated wetland CH4 emissions but also 

prescribed anthropogenic CH4 emissions as well as natural CH4 emissions from non-

wetland sources, (ii) or simulated CH4 sinks that are represented with a simple one-box 

model and a constant lifetime for atmospheric CH4. It is difficult to pinpoint the exact 

reasons behind this mismatch given that causes driving the observed [CH4] trends over 

the past few decades are also poorly understood (Ganesan et al., 2019; Schaefer, 

2019). Nevertheless, the magnitude of simulated [CH4] between the years 1980 and 

2014 is within a 60-110 ppb range of observed [CH4] with the highest [CH4] difference 

occurring towards the end of the historical period (Figure 4.2). 
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Figure 4.2. Simulated [CH4] over the historical period (1850-2014) in comparison 

to reconstructed as well as observed [CH4]. Reconstructions of [CH4] 
are based on ice cores and firn (perennial snow) layers from polar 
regions (Etheridge et al., 1998; Rhodes et al., 2013), whereas 
observations of [CH4] are from the NOAA Global Monitoring 
Laboratory (Dlugokencky, 2020). 

We further validate the global CH4 cycle simulated by the UVic ESCM over the 

past few decades (1980s, 1990s, 2000s) against syntheses from recent global CH4 

budget reports and other published estimates. Despite significant uncertainties in both 

the model inputs and parameters, our model reproduces relatively well the global CH4 

budget over the three decades (Table 4.2). Total CH4 sources are 490, 515 and 549 Tg 

CH4 yr-1 in 1980s, 1990s, and 2000s, respectively. At the exception of the 1980s, these 

values are in the range of either top-down (TD) or bottom-up (BU) estimates from the 

global CH4 budget reports (Table 4.2). For the 1980s, total CH4 sources are smaller than 

both TD and BU estimates from the global CH4 budget reports. This underestimation of 

total CH4 sources could be attributed to low total CH4 emissions from anthropogenic 

sources prescribed to our model (see Table 4.2). For instance, research suggests that 

there has been a general underestimation of CH4 emissions from the extraction, 

distribution, and use of fossil fuels (i.e. coal, oil, and natural gas) in recent decades 

(Hmiel et al., 2020; Schwietzke et al., 2016). However, we cannot rule out a potential 

underestimation of natural CH4 emissions in this study. Depending on the decade, 
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wetland CH4 emissions simulated by our model are in the range of either TD or BU 

estimates from the global CH4 budget reports. As indicated in the model description, 

natural CH4 emissions (excluding wetlands) prescribed to our model are consistently 

between TD and BU estimates from the global CH4 budget reports throughout the three 

decades (Table 4.2). Simulated total CH4 sinks are generally within the range of both TD 

and BU estimates, except for 1990s – a decade during which the simulated global CH4 

sinks are smaller than estimated in the global CH4 budget reports (Table 4.2). Our model 

simulates an average atmospheric CH4 burden of 4490, 4790, and 5056 Tg CH4 for the 

1980s, 1990s and 2000s, respectively – consistent with estimates from the Fifth 

Assessment Report (AR5) by the IPCC (Ciais et al., 2013). 

Overall, our simple representation of the global CH4 cycle displays a relatively 

good performance over most of the historical period since the year 1850 despite the 

complex level of uncertainties in the global CH4 budget. The lowest performance by the 

model is with respect to the recent [CH4] trends whose causes are still not well 

understood (Ganesan et al., 2019; Schaefer, 2019). 

4.3.2. Effects of CH4 mitigation on [CH4] and surface air temperature 

Our model simulations suggest that CH4 mitigation initiated between the years 2020 and 

2030 will result in 90-135 ppb more atmospheric [CH4] in the year 2100 than for an early 

CH4 mitigation represented by the SSP1-2.6 trajectory (Figure 4.3a). Delaying CH4 

mitigation to between the years 2040 and 2050 implies 185-260 ppb more atmospheric 

[CH4] in the year 2100 than for an early CH4 mitigation represented by the SSP1-2.6 

trajectory. Eventually, [CH4] for the different CH4 mitigation scenarios would converge 

within the first half of the 22nd century (Figure 4.3a). Inaction on CH4 mitigation in the 21st 

century (i.e. SSP3-7.0 trajectory) could result in ~2094 ppb more atmospheric [CH4] in 

the year 2100 than if CH4 mitigation evolves according to SSP1-2.6. 

Our model simulations further suggest that different initiations of CH4 mitigation 

over the next three decades under SSP1-2.6 will result in distinct surface air 

temperatures by the end of the century and beyond (Figure 4.3b). CH4 mitigation 

initiated between the years 2020 and 2030 could result in 0.08-0.12°C more warming in 

the year 2100 than if CH4 mitigation evolves according to SSP1-2.6. Delaying CH4 

mitigation to between the years 2040 and 2050 could result in 0.17-0.22°C more 
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warming in the year 2100 than for an early CH4 mitigation represented by the SSP1-2.6 

trajectory. Although [CH4] for the different CH4 mitigation scenarios are simulated to 

converge in the first half of the 22nd century (Figure 4.3a), our model suggests that 

differences in surface air temperature between the different mitigation scenarios will 

persist for more than two centuries (Figure 4.3b). The lack of CH4 mitigation in the 21st 

century (i.e. SSP3-7.0 trajectory) could result in ~0.62°C more warming in the year 2100 

than if CH4 mitigation evolves according to SSP1-2.6. We note that CO2 feedbacks 

amplify the surface air temperature response in late versus early CH4 mitigation 

scenarios, as illustrated by the [CO2] plots in Figure 4.3c. 

 
Figure 4.3. Projected changes in (a) atmospheric CH4 concentration, (b) surface 

air temperature (SAT), and (c) atmospheric CO2 concentration 
relative to 2006-2015 for different initiation of CH4 mitigation under 
the assumption that non-CH4 forcing agents evolve according to 
SSP1-2.6. The variability in the SAT curves is associated with the 
solar cycle. 
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To understand the reasons behind the differences in [CH4] between the 

considered scenarios of CH4 mitigation, we analyze the balance between total CH4 

sources (Figure 4.4a) and CH4 sinks (Figure 4.4b) at the year 2100 when all mitigated 

anthropogenic CH4 emissions converge to the SSP1-2.6 level (Figure 4.1). For the 

scenarios of CH4 mitigation initiated between the years 2020 and 2050, our model 

suggests that total CH4 sources will be relatively the same in the year 2100 (Figure 

4.4a). This result is justified by the fact that: (i) simulated global wetland CH4 emissions 

are relatively independent of the initiation of CH4 mitigation, with very small differences 

(<0.5 Tg CH4 yr-1) between the considered mitigation scenarios in the year 2100 (Figure 

4.4c); (ii) CH4 emissions from non-wetland natural sources are assumed to be of the 

same magnitude (and constant) in this study (see Section 4.2.3). 

According to our model simulations, differences in the initiation of CH4 mitigation 

over the next few decades will be strongly reflected in CH4 sinks at the year 2100 (Figure 

4.4b). In our simple model, the decay of atmospheric CH4 is parameterized as a function 

of the atmospheric CH4 burden and a constant lifetime for atmospheric CH4 (see Section 

4.2.3). A delayed mitigation results in a higher atmospheric CH4 burden than for an early 

mitigation throughout the 21st century (Figure 4.4d), which implies a lag in the decline of 

CH4 sinks for the delayed mitigation in comparison to the early mitigation (Figure 4.4c). 

Our model suggests that total CH4 sinks in the year 2100 will be 26-39 Tg CH4 yr-1 

higher for CH4 mitigation initiated between the years 2020 and 2030 than for an early 

CH4 mitigation represented by the SSP1-2.6 trajectory. Furthermore, total CH4 sinks in 

the year 2100 will be 54-76 Tg CH4 yr-1 higher for CH4 mitigation delayed to between the 

years 2040 and 2050 than if CH4 mitigation evolves according to SSP1-2.6 (Figure 4.4b). 
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Figure 4.4. Projected changes in (a) total CH4 sources, (b) total CH4 sinks, (c) 

global wetland CH4 emissions, and (d) atmospheric CH4 burden 
relative to 2006-2015 for different initiation of CH4 mitigation under 
the assumption that non-CH4 forcing agents evolve according to 
SSP1-2.6. 

4.3.3. Effects of CH4 mitigation on stringent warming limits 

Determining the historical warming level is a critical aspect for assessing the implications 

of future climate projections on global warming limits set by the Paris Agreement (Rogelj 

et al., 2019; Tokarska et al., 2019). A recent special report by the IPCC uses an estimate 

of 0.97°C for the global warming level in the 2006-2015 decade relative to the 1850-

1900 period (IPCC, 2018), whereas our model suggests a slightly high value (1.10°C) for 

the global warming level in the same decade relative to the same baseline period. 

Hence, we adopt the IPCC estimate for the historical warming level to investigate global 
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warming levels associated with different scenarios of CH4 mitigation in the 21st century 

under SSP1-2.6 (Figure 4.5). 

 
Figure 4.5. Projected changes in global mean surface air temperature (ΔT) 

relative to 1850-1900 for different initiation of CH4 mitigation under 
the assumption that non-CH4 forcing agents evolve according to 
SSP1-2.6. The variability in the SAT curves is associated with the 
solar cycle. 

Our results suggest that none of the CH4 mitigation scenarios (including the 

SSP1-2.6 trajectory or “Early Mitig”) considered in this study will allow to limit global 

warming to below 1.5°C above 1850-1900 levels in the 21st century (Figure 4.5). By 

design, the SSP1-2.6 scenario represents mitigation strategies to limit global warming to 

2°C by the year 2100 but not necessarily 1.5°C (O’Neill et al., 2016) implying that efforts 

to mitigate CH4 under this scenario will not achieve much with regard to the 1.5°C 

warming limit during the current century (Figure 4.5). Our results suggest that, under 

SSP1-2.6, the 1.5°C warming limit will be breached in the early 2030s and the level of 

global warming will stay above the 1.5°C warming limit throughout the 21st century 

(Figure 4.5). 
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Our model simulations further suggest that global warming relative to 1850-1900 

could be limited to below 2°C throughout the 21st century if non-CH4 forcings evolve 

according to SSP1-2.6 and CH4 mitigation is initiated by the year 2030 (Figure 4.5). 

Moreover, our results suggest that the 2°C warming limit could be breached for two 

decades if CH4 mitigation is delayed to the year 2040 under SSP1-2.6. If non-CH4 

forcings evolve according to SSP1-2.6 and CH4 mitigation is delayed to the year 2050, 

the 2°C warming target could be overshot for three to four decades in the remainder of 

the 21st century (Figure 4.5). In the long run, all mitigation scenarios considered in this 

study (i.e. CH4 mitigation initiated between the years 2020 and 2050) under SSP1-2.6 

could allow to limit global warming to 1.5°C from the second half of the 22nd century 

onwards (Figure 4.5). However, aggressive efforts to reduce CO2 and other non-CH4 

forcings according to SSP1-2.6 without CH4 mitigation in the 21st century could still 

increase global warming to above 2°C relative to 1850-1900 throughout the second half 

of the 21st century and beyond (Figure 4.5). 

4.4. Discussion and conclusions 

Our study applies the UVic ESCM, an Earth system model of intermediate complexity 

(EMIC), into which we implemented a simplified representation of the global CH4 cycle 

as a first step to prognostically simulate the evolution of atmospheric CH4 in the EMIC. 

The global CH4 cycle in the UVic ESCM version used here consists of simulated CH4 

emissions from wetlands, static and aggregated CH4 emissions non-wetland natural 

sources (termites, lakes, wildfires, wild ruminants, etc.), as well as simulated 

atmospheric CH4 decay based on a simple one-box model with a constant lifetime. The 

EMIC is forced with prescribed anthropogenic CH4 emissions among other forcing data. 

Although this approach for global CH4 modelling is relatively simple, it allows to 

reproduce the evolution of atmospheric [CH4] reasonably well in comparison to 

reconstructions over most of the past 170 years (see Figure 4.2). However, our model 

does not capture the slowdown and renewed growth in atmospheric [CH4] observed in 

the 1990s and 2000s whose causes are still under debate (Prather and Holmes, 2017; 

Schaefer, 2019). Our simple modelling approach also allows to perform CH4 mitigation 

experiments through intrinsic reductions in anthropogenic CH4 emissions, instead of 

using prescribed atmospheric [CH4] reductions (Jones et al., 2018). 
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There are concerns about the sustained growth in atmospheric [CH4] since the 

year 2007 and the potential challenge of continued increase in CH4 emissions over the 

next decades with regard to meeting the temperature goals in the Paris Agreement even 

if anthropogenic CO2 emissions were reduced aggressively (Ganesan et al., 2019; 

Nisbet et al., 2019). Our study investigates the importance of immediate versus delayed 

CH4 mitigation to comply with the global warming limits set by the Paris Agreement 

under the assumption that all non-CH4 forcings (including anthropogenic CO2 emissions) 

would evolve according to SSP1-2.6. Our results suggest that delaying CH4 mitigation to 

between the years 2040 and 2050 under SSP1-2.6 could result in an overshoot of the 

2°C warming limit for two to four decades in the remainder of the 21st century. In 

contrast, initiating stringent CH4 mitigation by the year 2030 under SSP1-2.6 could allow 

to limit global warming to below 2°C above pre-industrial levels (Figure 4.5). Our results 

agree with simulations by integrated assessment models (IAMs) and climate models of 

reduced complexity, which are the tools commonly used to investigate CH4 mitigation 

and its climate impacts. The major agreement between our results and those by IAMs is 

the need for deep reductions in CH4 emissions, alongside stringent CO2 mitigation by 

mid century, to limit global warming to below 2°C above pre-industrial levels (Gernaat et 

al., 2015; Harmsen et al., 2019b; Rogelj et al., 2018). The particularities of our results 

are: (i) the importance of immediate rather than delayed CH4 mitigation to comply with 

the 2°C warming limit, (ii) the potential role of CO2 feedbacks in the amplification of the 

surface air temperature response for delayed versus immediate CH4 mitigation. 

Our study further suggests that none of the CH4 mitigation scenarios considered 

in this study would allow to limit global warming to 1.5°C in the 21st century. According to 

a previous study, limiting global warming to 1.5°C by the year 2100 would require 

reducing [CH4] at four times the rate assumed in the Representative Concentration 

Pathway (RCP) 2.6 – a future scenario comparable to SSP1-2.6 (Jones et al., 2018). 

Such a scenario would imply an initial overshoot of the 1.5°C warming target for a couple 

of decades in the 21st century (Jones et al., 2018). Furthermore, this [CH4] scenario 

would involve negative CH4 emissions throughout the second half of the 21st century 

although required technologies are not yet developed (Jones et al., 2018). Nonetheless, 

our study suggests that CH4 mitigation over the next three decades under SSP1-2.6 will 

increase the likelihood to limit global warming to 1.5°C in the long run (from the second 
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half of the 22nd century onwards) after an overshoot in the first half of the 21st century 

(Figure 4.5). 

Overall, although there exist large uncertainties in the global CH4 budget 

(Saunois et al., 2020), our results imply that cuts in anthropogenic CH4 emissions should 

not be delayed to increase the likelihood of limiting global warming to 2°C above pre-

industrial levels. Many anthropogenic sources of CH4 could be reduced cost-efficiently 

(Harmsen et al., 2019b; Höglund-Isaksson, 2012) and previous studies suggest that the 

priority for deep emission cuts should be in the energy, industry and transport sectors 

without neglecting the high potential from the waste and agricultural sectors (Gernaat et 

al., 2015; Harmsen et al., 2019b; Jackson et al., 2020; Rogelj et al., 2018; Saunois et al., 

2016b). Multilateral partnerships already exist to support large-scale CH4 mitigation (e.g. 

the Climate and Clean Air Coalition: https://www.ccacoalition.org/, and the Global 

Methane Initiative: https://www.globalmethane.org/). 

Limitations of this study include a whole set of uncertainties in the areal extent 

and dynamics of wetlands (including the impact of land-use change upon wetlands) as 

well as biogeochemical processes regulating wetland CH4 emissions (Abdalla et al., 

2016; Bridgham et al., 2013). Most of these limitations are discussed in detail in Chapter 

3 (e.g. Section 3.7.2). Major limitations specific to this study are associated with the 

following assumptions: (i) a constant lifetime for atmospheric CH4, (ii) static CH4 

emissions from non-wetland natural sources, (iii) an effective mitigation of CO2 and other 

non-CH4 climate forcers according to SSP1-2.6, except for CH4. Regarding the first 

limitation, we chose to use a lifetime for atmospheric CH4 fixed at 9.3 years as part of 

initial steps to simulating the evolution of atmospheric [CH4] prognostically with the UVic 

ESCM. However, there exist variations (from fractions of a year to few years) in the 

atmospheric CH4 lifetime mostly due to a positive chemical feedback involving the 

oxidation of CH4 by the OH radical (Naik et al., 2013; Prather et al., 2012). This positive 

feedback is such that declining [CH4] enhances the abundance of OH in the atmosphere, 

which results in more oxidation of CH4, further lowering of [CH4], and shortening of the 

atmospheric CH4 lifetime. As such, declining [CH4] in response to CH4 mitigation would 

imply a decrease in the atmospheric CH4 lifetime, a further reduction in [CH4], and 

eventually a cooling of the Earth. However, the same feedback mechanism is such that 

increasing [CH4] in response to the absence of CH4 mitigation would increase the 

atmospheric CH4 lifetime, a further rise in [CH4], and imply a high level of global 

https://www.ccacoalition.org/
https://www.globalmethane.org/
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warming. Therefore, one consequence of this assumption (of a constant CH4 lifetime) is 

the potential underestimation of the peak [CH4] in delayed mitigation scenarios. The 

assumption of a constant lifetime for atmospheric CH4 in this study can be seen as a 

simple but more or less conservative approach for investigating the climate impact of 

CH4 mitigation after decades of sustained [CH4] growth. Furthermore, the atmospheric 

CH4 lifetime used in our model simulations is consistent with estimates reported for the 

pre-industrial era (9.5 ± 1.3 years) and present-day (9.1 ± 0.9 years) (Prather et al., 

2012). Regarding the second limitation, CH4 emissions from non-wetland sources (e.g. 

termites, lakes, wildfires, geologic seeps, marine hydrates) in our model simulations are 

held fixed at 45 Tg C yr-1 (i.e. 60 Tg CH4 yr-1) mostly because the UVic ESCM does not 

incorporate these natural sources of CH4. The amount of non-wetland natural CH4 

emissions used in our model simulations is within the range of estimates over the pre-

industrial periods (Houweling et al., 2000 and references therein) as well as the last four 

decades (Kirschke et al., 2013; Saunois et al., 2020). We acknowledge that it is difficult 

to predict the evolution of non-wetland natural CH4 sources in the future, especially for 

wildfires, lakes and other climate-sensitive sources (Dean et al., 2018; Saunois et al., 

2020). The third limitation is related to the assumption that all anthropogenic GHGs and 

aerosols would evolve according SSP1-2.6, while anthropogenic CH4 emissions 

continue to increase over the next three decades. Although this assumption may be 

unrealistic, it enables to investigate recent concerns raised about sustained [CH4] growth 

in the next few decades and the associated challenge for achieving the 2°C warming 

limit despite stringent CO2 mitigation by mid century (Ganesan et al., 2019; Nisbet et al., 

2019). 

In summary, our study suggests that aggressive reductions of anthropogenic CO2 

emissions without CH4 mitigation over the next few years could push the Earth system 

beyond the 2°C warming limit above pre-industrial levels. Considering that (i) current 

NDCs are mostly focused on reducing CO2 emissions (Harmsen et al., 2019a) and (ii) 

the sustained rise in [CH4] since the year 2007 is tracking future scenarios of unmitigated 

emissions (Nisbet et al., 2019; Saunois et al., 2016b), we highlight the importance of 

immediate cuts in anthropogenic CH4 emissions globally, along with CO2 mitigation, in 

order to increase the likelihood of keeping global warming below 2°C above pre-

industrial levels. 
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Table 4.1. Description of anthropogenic CH4 emission scenarios used in this study. 
Name Description Comments 
Early Mitigation SSP1-2.6 throughout the 21st century Peak emissions reduced by ~69% in 2100 
2020 Mitigation SSP3-7.0 up to 2020, then linear decline to SSP1-2.6 value in 2100 Peak emissions reduced by ~71% in 2100 
2030 Mitigation SSP3-7.0 up to 2030, then linear decline to SSP1-2.6 value in 2100 Peak emissions reduced by ~74% in 2100 
2040 Mitigation SSP3-7.0 up to 2040, then linear decline to SSP1-2.6 value in 2100 Peak emissions reduced by ~76% in 2100 
2050 Mitigation SSP3-7.0 up to 2050, then linear decline to SSP1-2.6 value in 2100 Peak emissions reduced by ~78% in 2100 
No Mitigation SSP3-7.0 throughout the 21st century No emission reductions in the 21st century 

 

Table 4.2. The global CH4 budget by the UVic ESCM for the 1980-1989, 1990-1999, and 2000-2009 decades in comparison 
to recent top-down (TD) and bottom-up (BU) estimates. All units are in Tg CH4 yr-1. 

 UVic ESCM Kirschke et al. (2013) Kirschke et al. (2013) Saunois et al. (2020) 
 1980s 1990s 2000s 1980s 1990s 2000s 
 Model inputs or results TD BU TD BU TD BU 
Anthropogenic 289 311 340 348 308 372 313 331 334 
 emissions    (305-383) (292-323) (290-453) (281-347) (310-346) (325-357) 
Wetland 141 144 149 167 225 150 206 180 147 
 emissions    (115-231) (183-266) (144-160) (169-265) (153-196) (102-179) 
Other natural 60 60 60 36 130 32 130 37 222 
 emissions    (35-36) (61-200) (23-37) (61-200) (21-50) (143-306) 
Total 490 515 549 551 663 554 649 545 703 
 sources    (500-592) (536-789) (529-596) (511-812) (522-559) (570-842) 
Total 458 488 515 511 539 542 596 540 625 
 sinks    (460-559) (420-718) (518-579) (530-668) (486-556) (500-798) 
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Chapter 5. Multi-centennial projections of wetland 
methane emissions from gradual 
permafrost thaw and their climate 
impact 

Abstract 

Methane (CH4) emissions from thawing permafrost soils remain under-represented in 

Earth system models used for future climate projections, implying a potential 

underestimation of future global warming. Here we use an Earth system model of 

intermediate complexity to project wetland CH4 emissions from previously frozen carbon 

stored within the top ~3m of depth following gradual permafrost thaw (hereafter, 

permafrost CH4 emissions) and their climate impact by the years 2100 and 2300. We 

account for uncertainties in wetland CH4 biogeochemistry through model parameter 

perturbations, and our model simulations feature possibilities of high (low) production 

jointly with low (high) oxidation of CH4 in wetlands underlain by permafrost. Moreover, 

through model experiments designed to isolate the climate effect of permafrost CH4 

emissions, our model projections represent an extreme situation whereby previously 

frozen carbon decays only into CH4. According to our model, permafrost CH4 emissions 

in the year 2100 will range from 3 (0-6) Tg C yr-1 (1 Tg C ~ 1.3 Tg CH4) under the low 

anthropogenic emission scenario (SSP1-2.6) to 20 (1-51) Tg C yr-1 under the high 

anthropogenic emission scenario (SSP5-8.5). The warming due to these CH4 emissions 

is projected to be small, ranging from ~0.0 (0.0-0.01) °C under SSP1-2.6 to 0.02 (0.0-

0.04) °C under SSP5-8.5. Beyond the 21st century, our model suggests that permafrost 

CH4 emissions will increase substantially in the 22nd and 23rd centuries under SSP5-8.5, 

reaching 58 (3-158) Tg C yr-1 in the year 2300. The warming due to these CH4 emissions 

is projected to be 0.09 (0.01-0.24) °C by the year 2300. Under SSP1-2.6 and 

intermediate anthropogenic emission scenarios (SSP2-4.5 and SSP4-6.0), however, 

permafrost CH4 emissions are projected to remain below 40 Tg C yr-1 and induce a 

modest warming (<0.08°C) throughout the 22nd and 23rd centuries. We conclude that 

reducing anthropogenic emissions could prevent potentially large permafrost CH4 

emissions and their climate impact over many centuries.  
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5.1. Introduction 

Permafrost soils across the boreal and Arctic regions store vast amounts of organic 

carbon preserved from microbial decomposition for millennia owing to predominant cold 

temperatures (Hugelius et al., 2014). However, permafrost is thawing in many terrestrial 

locations of these northern regions as a consequence of climate warming (Biskaborn et 

al., 2019) and northern permafrost thaw is expected to increase in the future if 

anthropogenic emissions of greenhouse gases continue to rise (Kirtman et al., 2013; 

Schuur et al., 2015). Permafrost thaw in the future could result in increased wetland CH4 

emissions following anaerobic decomposition of previously frozen carbon, which could 

amplify global warming (Dean et al., 2018; Schuur et al., 2015). The scientific 

understanding is that previously frozen carbon in wetlands could be a new source of 

organic matter for methanogens (CH4-producing microbes), which would enhance CH4 

production and lead to permafrost CH4 emissions under the assumption that 

methanotrophs (CH4-oxidizing microbes) will not consume all of the produced CH4 

(Kwon et al., 2019; Olefeldt et al., 2017; Schuur et al., 2015). 

While wetland CH4 emissions from thawing permafrost soils are already 

occurring in many locations, several studies suggest that such emissions will not induce 

a strong feedback to climate change throughout the 21st century. Measurements at two 

peatland sites in northern Canada show that CH4 emissions from anaerobic 

decomposition of previously frozen carbon represent a small component (<2 g CH4 m-2 

yr-1) of local total CH4 emissions (>20 g CH4 m-2 yr-1) (Cooper et al., 2017). By upscaling 

model projections for wetlands in Russia, one study estimates a global temperature 

change of 0.012°C due to wetland CH4 emissions from Russian permafrost regions by 

mid 21st century (Anisimov, 2007). Based on predictions constrained by field 

measurements, satellite observations and reanalysis data, a more recent study suggests 

an upper limit of 0.02°C for the future warming induced by wetland CH4 emissions from 

Siberian permafrost regions by mid century (Anisimov and Zimov, 2020). Another study 

suggests that the warming induced by CH4 emissions from previously frozen carbon in 

response to gradual permafrost thaw across the boreal and Arctic regions will not 

exceed 0.1°C by the year 2100 even when considering a potential increase in surface 

inundation (Gao et al., 2013). A meta-analysis of permafrost carbon modelling studies 

gives a similar result (0.01-0.11°C) for the warming due to CH4 emissions from gradual 
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permafrost thaw by the year 2100 under various scenarios of high anthropogenic 

emissions (Schaefer et al., 2014). For comparison, multi-model projections suggest that 

permafrost CO2 emissions will induce a warming of 0.06-0.40°C by the year 2100 under 

scenarios of high anthropogenic emissions (Schaefer et al., 2014). 

The permafrost CH4 feedback remains under-represented in Earth system 

models (ESMs) contributing to international climate assessment reports (Ciais et al., 

2013) as well as research on feedbacks between climate change and biogeochemical 

processes (Arora et al., 2013, 2020). Here we use the University of Victoria Earth 

System Model (UVic ESCM) version 2.10 (Mengis et al., 2020), into which we 

implemented processes regulating wetland CH4 emissions and their climate impact. Our 

study focuses on CH4 emissions resulting from the decomposition of previously frozen 

carbon in wetlands following gradual permafrost thaw. The aim of this study is to project 

the potential evolution of wetland CH4 emissions from thawing permafrost soils and 

quantify their climate impact on multi-centennial scales. In our analysis, we account for 

three major uncertainties in wetland CH4 biogeochemistry (see Section 5.2.4). The 

remainder of this chapter is organized as follows: Section 5.2 describes the study 

methods, Section 5.3 presents the study results, and Section 5.4 provides the discussion 

and conclusions. 

5.2. Methods 

5.2.1. Description of the UVic ESCM 

We use a modified version of the UVic ESCM, into which we implemented a simple 

model for wetland CH4 emissions (see Chapter 3) and a one-box model for atmospheric 

CH4 (see Chapter 4). The UVic ESCM is an Earth system model of intermediate 

complexity (EMIC) with a horizontal grid resolution of 3.6° in longitude and 1.8° in 

latitude (Weaver et al., 2001). The EMIC consists of a comprehensive ocean general 

circulation model with 19 vertical layers, coupled to a dynamic-thermodynamic sea ice 

model, a 2-D (vertically-integrated) energy-moisture balance model for the atmosphere, 

and a land surface model (Weaver et al., 2001). This study is based on modifications to 

version 2.10 of the UVic ESCM (Mengis et al., 2020). 



92 

The land in version 2.10 of the UVic ESCM is represented with 14 ground layers 

of unequal thicknesses with a total thickness of 250 m (Avis et al., 2011; Mengis et al., 

2020). The top eight ground layers (~10 m in total depth) are soil layers, whereas the 

bottom six ground layers are bedrock layers with thermal characteristics of granitic rock 

(Avis et al., 2011). The energy balance is determined for each ground layer and grid 

cells containing permafrost are identified whenever one ground layer is frozen for at 

least two consecutive years (Avis et al., 2011). Permafrost thaw in the UVic ESCM 

occurs mainly in the form of active layer deepening but also talik expansion at the grid 

scale. Water phase changes in the soil layers are determined over a range of soil 

temperatures to determine the fraction of frozen and unfrozen water in the ground (Avis 

et al., 2011). Porosity and permeability are determined based on the relative abundance 

of prescribed sand, clay, and silt-sized particles. Moisture undergoes free drainage in 

these soil layers and subsurface runoff occurs when the water reaches the bedrock (Avis 

et al., 2011). In the model version used in this study, sub-grid scale wetlands are 

identified following a TOPMODEL approach for global models (Gedney and Cox, 2003). 

The UVic ESCM includes a representation of the global carbon cycle. The marine 

carbon cycle is represented with organic and inorganic carbon cycle models embedded 

in the ocean general circulation model. The organic carbon cycle is simulated with an 

ocean biogeochemistry model describing phytoplankton and zooplankton dynamics 

(Keller et al., 2012). The inorganic carbon cycle model simulates the air-sea exchange of 

CO2 and ocean carbonate chemistry following the protocols of the Ocean Carbon-cycle 

Model Intercomparison Project (Orr, 1999; Weaver et al., 2001), with updated numbers 

for the air-sea CO2 exchange parameterization (Mengis et al., 2020; Wanninkhof, 2014). 

Dissolved inorganic carbon is treated as a passive tracer that is subject to ocean 

circulation (Weaver et al., 2001). Carbonate dissolution in ocean sediments is simulated 

with a model of respiration in marine sediments (Archer, 1996; Eby et al., 2009). 

Terrestrial CO2 fluxes are simulated using the Top-down Representation of 

Interactive Foliage and Flora including Dynamics (TRIFFID), a dynamic global 

vegetation model that is coupled to the land surface model (Avis et al., 2011; Meissner 

et al., 2003). TRIFFID defines the state of the terrestrial biosphere in terms of soil carbon 

as well as the structure and coverage of five plant functional types: broadleaf trees, 

needleleaf trees, shrubs, C3 grasses and C4 grasses (Cox, 2001; Matthews et al., 2004; 

Meissner et al., 2003). Terrestrial carbon gain occurs through photosynthesis that is 
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simulated as a function of atmospheric CO2 concentration, shortwave radiation, air 

temperature, humidity, and soil moisture. Soil carbon gain occurs through litter-fall and 

vegetation mortality. Soil carbon can accumulate in the top six layers (~3.35 m in total 

depth). The buildup of carbon in permafrost-affected grid cells is simulated following a 

diffusion method that approximates cryoturbation, a process driven by long-term freeze-

thaw cycles (MacDougall and Knutti, 2016). Terrestrial carbon loss occurs through 

autotrophic respiration by plants and heterotrophic respiration by soil microbes 

(Matthews et al., 2004; Meissner et al., 2003). Permafrost carbon can only be lost 

through microbial respiration, which only occurs in unfrozen (thawed) soil layers 

(MacDougall et al., 2012; MacDougall and Knutti, 2016). By design, following gradual 

thaw, previously frozen carbon (e.g. carbon frozen at pre-industrial time) in the UVic 

ESCM decays with its own decay rate relative to regular (non-permafrost) soil carbon 

(MacDougall and Knutti, 2016). 

5.2.2. Wetland CH4 emissions 

Wetland CH4 emissions are simulated in the UVic ESCM following a recent model 

development (Nzotungicimpaye et al., 2020). Chapter 3 provides a detailed description 

of the wetland CH4 model (WETMETH) implemented in the UVic ESCM. Here, we give a 

brief description of the wetland CH4 model and reproduce mathematical formulas from 

Chapter 3. The reader should note that some of the default model parameters in Section  

3.3.1 are subject to perturbations in this study (see Section 5.2.4). 

For any land grid cell, microbial CH4 production is determined in an underlying 

soil layer i as: 

Pi =  S(θi) Ci  𝑟𝑟 Q10
T𝑖𝑖 − T0
10   exp (− 𝑧𝑧𝑖𝑖

𝜏𝜏prod
) ,      (5.1) 

where S(θi) is the fraction of soil layer that is saturated with water, Ci is the amount of 

soil carbon (in kg C m-3) in the layer, 𝑟𝑟 (in kg kg-1 s-1) is the specific CH4 production rate, 

T𝑖𝑖 is the average temperature (in Kelvin, K) for the layer, T0 is a baseline temperature (T0 

= 273.15 K), and Q10 is a coefficient representing the temperature-sensitivity of CH4 

production in wetlands. CH4 production is assumed to shut down in frozen soil layers. 

Furthermore, 𝑧𝑧𝑖𝑖 (in m) is the depth of the layer relative to the soil surface (positive 



94 

downwards), and 𝜏𝜏prod (in m) is a scaling parameter. Dry soil layers (S(θi) = 0) are 

assumed to be predominantly oxic and not producing CH4 (Pi = 0). 

The total amount of CH4 produced in the soil column (P in kg C m-2 s-1) is 

calculated as: 

P = ∫ Pi 𝑑𝑑zi
𝑖𝑖=𝑘𝑘
𝑖𝑖=1   ,         (5.2) 

where Pi (in kg C m-3 s-1) is the rate of CH4 production in the soil layer i from Eq. (5.1), dzi 

(in m) is the thickness of the soil layer i, and k represents the bottom-most soil layer. 

This amount of CH4 (P) is then subject to oxidation in transit to emission into the 

atmosphere. 

Microbial CH4 oxidation (O𝑥𝑥  in kg C m-2 s-1) is calculated for the entire soil column 

as: 

O𝑥𝑥 = P (1− exp(− 𝑧𝑧oxic
𝜏𝜏oxid

)),        (5.3) 

where P (in kg C m-2 s-1) is the total amount of CH4 produced in the soil column as 

defined in Eq. (5.2), 𝑧𝑧oxic (in m) is the relative depth (positive downwards) to the oxic-

anoxic interface, and 𝜏𝜏oxid (in m) is a scaling parameter for CH4 oxidation. The function 

(1− exp(− 𝑧𝑧oxic
𝜏𝜏oxid

)) represents the fraction of produced CH4 that gets oxidized in the soil 

column in transit to emission (i.e. fractional CH4 oxidation). 

Wetland CH4 emissions (E𝑤𝑤 in kg C m-2 s-1) are calculated as the balance 

between microbial CH4 production (P) and oxidation (O𝑥𝑥) in the soil column: 

E𝑤𝑤 = P − O𝑥𝑥  ,          (5.4) 

where P and O𝑥𝑥 are given by Eq. (5.2) and Eq. (5.3), respectively. 

5.2.3. Atmospheric CH4 concentration 

As in Chapter 4, we use a simple one-box model to simulate the evolution of the 

atmospheric CH4 burden (B) with time as the balance between total CH4 emissions (E) 

and total CH4 sinks (S): 
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dB
dt

 = (E − S) ,          (5.5) 

where E is the sum of simulated wetland CH4 emissions, prescribed anthropogenic CH4 

emissions, and natural CH4 emissions from non-wetland sources (e.g. termites, wild 

ruminants, wildfires, lakes, rivers, geologic seeps, and marine hydrates). We assume 

that CH4 emissions from these non-wetland natural sources remain constant in time with 

a value of 45 Tg C yr-1, which is in the range of estimates over the last few decades 

(Kirschke et al., 2013; Saunois et al., 2020). Sinks of atmospheric CH4 are aggregated 

into a single term (S) calculated as S = B (1− exp(− 1
𝜏𝜏CH4

)), where 𝜏𝜏CH4 is the 

atmospheric CH4 lifetime assumed to be 9.3 years (Saunois et al., 2020). At each time 

step, [CH4] is determined based on the atmospheric CH4 burden (B) by using a factor 

equivalent to ~2.8 Tg CH4/ppb. 

5.2.4. Perturbations of model parameters 

As mentioned in Section 5.2.1, permafrost carbon (i.e. previously frozen carbon) in the 

UVic ESCM decays with its own decay rate relative to non-permafrost soil carbon 

(MacDougall and Knutti, 2016; Mengis et al., 2020). This UVic ESCM feature has been 

used in a previous study to project CO2 emissions from thawing permafrost soils (i.e. 

permafrost CO2 emissions) through model parameter perturbations only applied to 

permafrost carbon decay (MacDougall and Knutti, 2016). In our study, we consider an 

analogous approach by: (i) perturbing model parameters associated with permafrost 

carbon decay into CH4 and subsequent CH4 emissions following gradual thaw in soil 

layers saturated with water, and (ii) using default model parameters for wetland CH4 

processes in locations without permafrost carbon (see Chapter 3). 

We perturb three model parameters related to major uncertainties in CH4 

production and oxidation in wetlands underlain by permafrost: (i) the specific CH4 

production rate (i.e. the anaerobic decomposition rate for CH4), (ii) the temperature-

sensitivity of CH4 production, and (iii) the proportion of CH4 oxidized in transit to 

emission. Regarding CH4 production, a synthesis of lab-incubated soil samples from 

northern environments suggests that the maximum rate of CH4 production in wetland 

landscapes is 19.5 ± 2.2 µg CH4-C g-1 soil C day-1 and slightly more (27.2 µg CH4-C g-1 

soil C day-1) depending on the water table position and soil depth (Treat et al., 2015). A 
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meta-analysis of temperature-sensitivity studies across various ecosystems suggests 

that the activation energy for CH4 production generally varies between 0.82 and 1.03 

electron volt (eV) (Yvon-Durocher et al., 2014). This result translates into a range of 3.4-

4.7 for the temperature coefficient (Q10) of CH4 production when assuming a temperature 

change from 0 to 10 °C. Regarding CH4 oxidation, various studies report CH4 oxidation 

as a fraction of produced CH4 in the soil column, with estimates of fractional CH4 

oxidation ranging from less than 20% to more than 95% of produced CH4 in wetlands (Le 

Mer and Roger, 2001; Moosavi and Crill, 1998; Popp et al., 2000; Roslev and King, 

1996; Segers, 1998). Highest estimates of fractional CH4 oxidation may be associated 

with the diffusion of CH4 in the soil column especially when considering CH4 production 

in very deep soils, whereas lowest estimates of fractional CH4 oxidation may be 

associated with non-diffusive mechanisms transporting CH4 towards the soil surface and 

atmosphere (e.g. ebullition and plant-mediated transfer of CH4 to the atmosphere) 

(Bridgham et al., 2013; Whalen, 2005).  

To investigate the possible evolution of wetland CH4 emissions from thawing 

permafrost soils and their climate impact, we consider the following ranges for model 

parameter perturbations applied only to CH4 production from previously frozen carbon 

and the associated CH4 oxidation in wetlands following gradual permafrost thaw: 

i. A range of 17.3-27.2 µg CH4-C g-1 soil C day-1 for the mean maximum CH4 

production rate (i.e. 2.0-3.1 kg kg-1 s-1). 

ii. A range of 3.4-4.7 for the temperature coefficient (Q10) of CH4 production. To 

explore the upper bounds of wetland CH4 emissions from thawing permafrost 

soils and their climate impact, we do not account for an optimal temperature for 

CH4 production in our model perturbations (Dean et al., 2018; Dunfield et al., 

1993; Metje and Frenzel, 2007). 

iii. A range of 20-97% for the fraction of produced CH4 that is oxidized in the soil 

column. We anticipate that the lower value for fractional CH4 oxidation in 

wetlands assumed in this study (i.e. 20%) may result in large wetland CH4 

emissions, while the oxidation of CH4 (in transit to emission) can be very efficient 

in some northern wetlands (Kettunen et al., 1999; Roulet et al., 1992). 
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Following the model parameter perturbations, we are able to generate an ensemble of 

model simulations featuring possibilities of high (low) production jointly with low (high) 

oxidation of CH4 across the northern permafrost region that may imply very large (small) 

wetland CH4 emissions from thawing permafrost soils. We consider that such extreme 

possibilities are useful to explore the limits (lower and upper bounds) of future wetland 

CH4 emissions from thawing permafrost soils and their climate impact. 

5.2.5. Model forcing and simulations 

To perform climate simulations, we drive the UVic ESCM with natural and anthropogenic 

forcing data used in the Sixth Phase of Coupled Model Intercomparison Project (CMIP6) 

(Eyring et al., 2016). Our climate simulations span the 1850-2300 period, comprising a 

historical period (1850-2014) and a future period (2015-2300). Natural forcing datasets 

consist of volcanic radiative forcing anomalies prescribed over the historical period 

based on (Schmidt et al., 2018) and solar constant data prescribed to the year 2300 

(Matthes et al., 2017). Regarding anthropogenic forcing data, we prescribe global CH4 

emissions spanning the historical and future periods (i.e. extended to the year 2300) 

(Meinshausen et al., 2019; Nicholls et al., 2020). For CO2, we prescribe fossil fuel 

emissions extended to the year 2300 (Meinshausen et al., 2019; Nicholls et al., 2020). 

CO2 emissions from land-use changes (LUC) are calculated by the UVic ESCM based 

on prescribed gridded LUC data to the year 2100 (Lawrence et al., 2016). For climate 

simulations beyond the 21st century, we assume that LUC values remain fixed at their 

2100 configuration. Radiative forcing associated with changes in the atmospheric 

concentration of CH4 and CO2 is internally calculated by the UVic ESCM based on 

formulations of (Etminan et al., 2016). For other greenhouse gases, an aggregated 

radiative forcing is calculated externally based on concentration data extended to the 

year 2300 (Meinshausen et al., 2019) and prescribed as input to the UVic ESCM. 

Radiative forcing of anthropogenic sulfate aerosols is internally calculated by the UVic 

ESCM based on prescribed gridded aerosol optical depth data over the historical period 

to the year 2100 (Stevens et al., 2017). For climate projections beyond the 21st century, 

we assume that the aerosol optical depth data remain fixed at their year 2100 values. 

Anthropogenic forcing data for the future period are based on the Shared 

Socioeconomic Pathways (SSPs), the set of emission scenarios used in CMIP6 in 

preparation for the Sixth Assessment Report (AR6) by the Intergovernmental Panel on 
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Climate Change (IPCC) (Riahi et al., 2017). By design, the SSPs span a wide range of 

assumptions on future societal changes with storylines combining projected population 

growth, economic development, technological advancement, potential shift towards 

renewable energy, stability of political institutions, and international cooperation (O’Neill 

et al., 2017; Riahi et al., 2017). In this study, we select four SSPs: SSP1-2.6, SSP2-4.5, 

SSP4-6.0, and SSP5-8.5. Like for the previous set of scenarios by the IPCC (i.e. 

Representative Concentration Pathways or RCPs), each SSP is named after the 

corresponding radiative forcing level in the year 2100 (e.g. 4.5 W m-2 for SSP2-4.5) 

(O’Neill et al., 2016). In the rest of this chapter, we refer to SSP5-8.5 as the high 

anthropogenic emission scenario, to SSP1-2.6 as the low anthropogenic emission 

scenario, and to both SSP2-4.5 and SSP4-6.0 as the intermediate anthropogenic 

emission scenarios. 

5.2.6. Model experiments 

Building on the UVic ESCM setting whereby permafrost carbon (i.e. previously frozen 

carbon) in the model decays with its own decay rate (MacDougall and Knutti, 2016; 

Mengis et al., 2020), we perform the following two experiments to quantify wetland CH4 

emissions from thawing permafrost soils and isolate their climate impact: (i) a baseline 

experiment in which, upon permafrost thaw, previously frozen carbon does not decay at 

all (“Baseline”); (ii) another experiment in which, upon permafrost thaw, previously frozen 

carbon decays only into CH4 (“CH4-On”) (Table 5.1). In these two experiments, all other 

processes simulated by the UVic ESCM (including soil respiration and wetland CH4 

emissions from non-permafrost locations) are represented as in the standard model 

configuration. Conceptually, the difference between the two experiments enables to 

quantify wetland CH4 emissions from thawing permafrost soils and isolate their climate 

impact from that of other forcing agents (including non-permafrost CH4 emissions). 

Hence, in the remainder of this study, we consider that the difference between the “CH4-

On” and “Baseline” experiments characterizes the effect of the permafrost CH4 feedback 

on the climate system. One particular implication from this experimental design is the 

potential overestimation of wetland CH4 emissions from thawing permafrost soils, owing 

to the fact that previously frozen carbon (permafrost carbon substrates for microbial 

decomposition) may deplete more slowly relative to when both CO2 and CH4 are being 

produced from thawing permafrost soils. Therefore, our quantification of the permafrost 
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CH4 feedback represents an extreme situation whereby previously frozen carbon 

substrates are abundantly available for CH4 production. 

Table 5.1. Description of the model experiments considered in this study. 
These experiments only pertains to permafrost carbon decay. 
Carbon decomposition in non-permafrost soil layers are defined as 
in the standard model configuration. 

Key experiments Description 
Baseline Upon permafrost thaw, previously frozen carbon does not decay at all 
CH4-On Upon permafrost thaw, previously frozen carbon decays only into CH4 
Additional experiment Description 
CO2-On Upon permafrost thaw, previously frozen carbon decays only into CO2 
 

We perform an additional experiment focusing on the permafrost CO2 feedback 

as one way to assess the potential significance of the climate impact due to wetland CH4 

emissions from thawing permafrost soils. The aim is to compare the warming induced by 

permafrost CH4 emissions to that induced by permafrost CO2 emissions. This additional 

experiment is such that, upon permafrost thaw, previously frozen carbon decays only 

into CO2 (“CO2-On”) (Table 5.1). Again, all other processes simulated by the UVic 

ESCM (including soil respiration and wetland CH4 emissions from non-permafrost 

locations) are represented as in the standard model configuration. Conceptually, the 

difference between this additional experiment and the “Baseline” experiment 

characterizes the effect of the permafrost CO2 feedback on the climate system. 

5.2.7. Feedback gain 

Building on previous studies on feedback analysis in climate research (Arora et al., 

2013; Hansen et al., 1984), we define a feedback factor (𝑓𝑓) such that: 

ΔF𝑐𝑐 = 𝑓𝑓 ΔF𝑢𝑢                                                                                    (5.6) 

where 𝑓𝑓 = 1/(1− 𝑔𝑔) characterizes the amplification (or dampening) of radiative forcing 

(ΔF) through a positive (or negative) feedback, ΔF𝑐𝑐 is radiative forcing for the climate 

system with the permafrost CH4 feedback (i.e. “CH4-On” experiment), ΔF𝑢𝑢 is radiative 

forcing for the climate system without permafrost carbon emissions (i.e. “Baseline” 

experiment), and 𝑔𝑔 represents the feedback gain associated with wetland CH4 emissions 

from previously frozen carbon following gradual permafrost thaw. 
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The feedback gain (𝑔𝑔) can be calculated as: 

𝑔𝑔 = (ΔF𝑐𝑐− ΔF𝑢𝑢) / ΔF𝑐𝑐                                                                                    (5.7) 

where 𝑔𝑔 > 0 implies that ΔF𝑐𝑐 > ΔF𝑢𝑢 and characterizes the amplification of ΔF𝑢𝑢 through 

the feedback factor 𝑓𝑓. 

5.3. Results 

5.3.1. Permafrost extent, northern wetland extent, and remaining 
frozen carbon 

Given our focus on the permafrost CH4 feedback, results presented in this section are 

based on model simulations with the “CH4-On” experiment (see Section 5.2.6). In this 

experiment, the UVic ESCM simulates an areal permafrost extent of ~17.4 x 106 km2 

over the 2000-2009 decade, which is within the range of estimates (13 to 18 x 106 km2) 

for exposed terrestrial permafrost area north of 60°S (i.e. excluding Antarctica) (Gruber, 

2012). The simulated permafrost area is consistent with a more recent estimate (17.8 x 

106 km2) for the extent of global permafrost excluding exposed bedrock, glaciers, ice 

sheets, and water bodies (Hugelius et al., 2014). Our model suggests that permafrost 

thaw (mainly through active layer deepening) over the next few centuries will evolve 

differently depending on the future anthropogenic emission scenario (Figure 5.1a). 

Under the low anthropogenic emission scenario (SSP1-2.6), simulated permafrost thaw 

slows down in the 21st century with potential to recover slightly in the 22nd and 23rd 

centuries. By the year 2300, the permafrost areal extent is projected to be 12.4 x 106 

km2 (Figure 5.1a), corresponding to a 30% reduction relative to the pre-industrial (1850-

1900) areal extent. In contrast, permafrost thaw continues throughout the 21st century 

and beyond under the intermediate and high anthropogenic emission scenarios. By the 

year 2300, the areal extent of permafrost is projected to be 7.6 x 106 km2 under SSP2-

4.5, 7.1 x 106 km2 under SSP4-6.0, 6.1 x 106 km2 under SSP5-8.5 (Figure 5.1a), 

corresponding to a 57-65% reduction relative to the areal extent of pre-industrial 

permafrost. 

The UVic ESCM simulates an areal extent of ~5.1 x 106 km2 for wetlands north of 

45°N over the 2000-2009 decade, which is slightly high in comparison to estimates (4.7 

x 106 km2) from the SWAMPS-GLWD dataset (Poulter et al., 2017). The areal extent of 
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northern wetlands is projected to change throughout the current century and beyond 

depending on the future anthropogenic emission scenario (Figure 5.1b). Under the low 

anthropogenic emission scenario, the areal extent of northern wetlands is projected to 

increase slightly over the next few centuries. By the year 2300, simulated northern 

wetlands under SSP1-2.6 will extend to 5.3 x 106 km2, corresponding to a 5% increase 

relative to the pre-industrial areal extent of northern wetlands (Figure 5.1b). 

 
Figure 5.1. Projected changes in the areal extents of permafrost and northern 

wetlands (>45°N), as well as carbon that remains frozen in near-
surface permafrost soils under different SSP scenarios based on the 
“CH4-On” experiment. In our model, carbon accumulates only in the 
top 3.35 m of soil, whereas areal permafrost extent accounts for the 
occurrence of perenially frozen ground down to a depth of 250 m.   

In contrast, the areal extent of northern wetlands is projected to increase steadily 

under the intermediate anthropogenic emission scenarios but more substantially under 

SSP4-6.0 than under SSP2-4.5. Simulated northern wetlands are projected to extend to 

5.6 x 106 km2 under SSP2-4.5 and 5.7 x 106 km2 under SSP4-6.0 by the year 2300 

(Figure 5.1b), corresponding to an increase of 11% and 13% relative to the pre-industrial 
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areal extent, respectively. Under the high anthropogenic emission scenario, the areal 

extent of northern wetlands is projected to increase substantially in the 21st century and 

decline gradually in the 22nd and 23rd centuries (Figure 5.1b). A previous study with the 

UVic ESCM showed that the reduction in the areal extent of northern high-latitude 

wetlands is expected under a warmer climate in the future following permafrost thaw and 

subsequent drainage of near-surface moisture to deeper soil layers (Avis et al., 2011). 

By the year 2300, simulated northern wetlands under SSP5-8.5 are projected to extend 

to 5.5 x 106 km2, corresponding to a 9% increase relative to pre-industrial areal extent. 

The amount of frozen carbon stored in near-surface permafrost soils (i.e. carbon 

frozen for at least two consecutive years within 3.35 m of depth) simulated by the UVic 

ESCM in the 2000-2009 decade is ~496 Pg C, which is comparable to present-day 

estimates (476 Pg C) for carbon stored in the top 3 m of northern frozen soils 

characterized by cryoturbation (i.e. turbels) (Hugelius et al., 2014). Readers should note 

that our model does not represent soil carbon stored in yedoma and deltaic deposits. 

The amount of frozen soil carbon is projected to change as permafrost thaws or re-

freezes depending on the future emission scenario (Figure 5.1c). Under the low 

anthropogenic emission scenario, the decrease in the amount of frozen carbon is 

projected to slow down in the 21st century and reverse after the year 2100 (Figure 5.1c). 

By the year 2300, about 370 Pg C will remain frozen under SSP1-2.6, corresponding to 

a 29% reduction relative to the pre-industrial of amount of simulated frozen carbon. In 

contrast, the amount of frozen carbon is projected to decrease significantly under the 

high anthropogenic emission scenario (Figure 5.1c). Only 0.1 Pg C will remain frozen 

(within 3.35 m of soil depth) by the year 2300 under SSP5-8.5, corresponding to roughly 

a 100% reduction relative to the pre-industrial amount of simulated carbon in permafrost 

soil layers. Such a near-complete depletion of frozen carbon is associated with 

substantial permafrost thaw within the upper 3.35 m of the soil where soil carbon can 

accumulate in our model, even though permafrost would remain present at greater depth 

(down to 250 m) (Figure 5.1a). Under the intermediate anthropogenic emission 

scenarios, the decrease in the amount of frozen carbon is projected to be relatively 

gradual although more pronounced under SSP4-6.0 than under SSP2-4.5. By the year 

2300, the amount of frozen carbon is projected to be 29 Pg C under SSP4-6.0 and 109 

Pg C under SSP2-4.5 (Figure 5.1c), corresponding to a 79 and 95% reduction relative to 

the pre-industrial amount of frozen carbon, respectively. 
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5.3.2. Release of CH4 from thawing permafrost 

As described in Section 5.2.6, we quantify permafrost CH4 emissions based on the 

difference between model simulations in which previously frozen carbon only decays into 

CH4 (“CH4-On” experiment) and model simulations in which the decay of previously 

frozen carbon is switched off (“Baseline” experiment). According to our model, wetland 

CH4 emissions from thawing permafrost soils are projected to increase gradually 

throughout the 21st century although depending on the future anthropogenic emission 

scenarios (Figure 5.2a-d). By the year 2100, such permafrost CH4 emissions are 

projected to be 3 (0-6) Tg C yr-1 under SSP1-2.6, 7 (0-18) Tg C yr-1 under SSP2-4.5, 10 

(1-24) Tg C yr-1 under SSP4-6.0, and 20 (1-51) Tg C yr-1 under SSP5-8.5. Cumulative 

wetland CH4 emissions from thawing permafrost soils by the year 2100 are projected to 

be 161 (17-429) Tg C under SSP1-2.6, 281 (30-764) Tg C under SSP2-4.5, 341 (36-

928) Tg C under SSP4-6.0, and 550 (61-1537) Tg C under SSP5-8.5. 

Beyond the year 2100, permafrost CH4 emissions have the potential to increase 

substantially under the high anthropogenic emission scenario (Figure 5.2a-d). According 

to our model simulations, such a rise in wetland CH4 emissions from thawing permafrost 

soils under SSP5-8.5 may be justified by two main factors when considered jointly: (i) 

the relatively large amount of previously frozen carbon that can be accessed by 

methanogens right after the year 2100 unlike for other anthropogenic emission scenarios 

(Figure 5.1c), which results in enhanced CH4 production from newly thawed carbon 

under SSP5-8.5; (ii) the consideration of low fractional CH4 oxidation (i.e. 20% of 

produced CH4 being oxidized in transit to emission) in CH4-producing locations underlain 

by permafrost, which implies high permafrost CH4 emissions given increasing CH4 

production from previously frozen carbon throughout the next three centuries. By the 

year 2300, permafrost CH4 emissions are projected to be 58 (3-158) Tg C yr-1 under 

SSP5-8.5. Under the low and intermediate emission anthropogenic scenarios, however, 

our model suggests that permafrost CH4 emissions in the year 2300 will not exceed 40 

Tg C yr-1. These CH4 emissions are projected to be 2 (0-4) Tg C yr-1 under SSP1-2.6, 9 

(1-22) Tg C yr-1 under SSP2-4.5, 16 (1-40) Tg C yr-1 under SSP4-6.0. Cumulative 

wetland CH4 emissions from thawing permafrost soils by the year 2300 are projected to 

be 491 (53-1305) Tg C under SSP1-2.6, 1943 (209-5361) Tg C under SSP2-4.5, 2897 

(320-8117) Tg C under SSP4-6.0, and 9545 (1122-28889) Tg C under SSP5-8.5. We 

note that projected CH4 emissions are potentially overestimated (especially under SSP5-
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8.5) due to the fact that previously frozen carbon decays only into CH4 as part of our 

model experiment design (see Section 5.2.6). 

 
Figure 5.2. Projected wetland CH4 emissions from thawing permafrost and their 

climate impact under different SSP scenarios: (a)-(d) permafrost CH4 
emissions, (e)-(h) changes in atmospheric [CH4], (i)-(l) changes in 
radiative forcing, (m)-(p) changes in surface air temperature. The 
shaded areas show the delimitation by 5th and 95th percentiles, 
whereas the black solid line shows the mean. 

5.3.3. Changes in atmospheric [CH4] and radiative forcing 

Rising permafrost CH4 emissions in the future will result in increased atmospheric CH4 

concentration and radiative forcing (Figure 5.2e-l). By the year 2100, our model suggests 
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that [CH4] will grow by 13 (1-30) ppb under SSP1-2.6, 30 (1-74) ppb under SSP2-4.5, 40 

(2-98) ppb under SSP4-6.0, and 74 (4-188) ppb under SSP5-8.5 in response to wetland 

CH4 emissions from thawing permafrost soils. Subsequent increase in radiative forcing in 

the year 2100 are projected to be 0.01 (0.0-0.02) W m-2 under SSP1-2.6, 0.02 (0.0-0.04) 

W m-2 under both SSP2-4.5 and SSP4-6.0, and 0.03 (0.0-0.07) W m-2 under SSP5-8.5. 

As for projected permafrost CH4 emissions, both [CH4] and radiative forcing have the 

potential to increase substantially beyond the year 2100 especially under the high 

anthropogenic emission scenario (Figure 5.2e-l). By the year 2300, changes in [CH4] due 

to wetland CH4 emissions from thawing permafrost soils are projected to be 266 (13-

724) ppb under SSP5-8.5 with a corresponding change in radiative forcing of 0.13 (0.01-

0.35) W m-2. For other anthropogenic emission scenarios, changes in atmospheric [CH4] 

in response to permafrost CH4 emissions are projected to be 8 (1-18) ppb under SSP1-

2.6, 43 (3-105) ppb under SSP2-4.5, and 74 (4-185) ppb under SSP4-6.0. Subsequent 

changes in radiative forcing are projected to remain below 0.08 W m-2 for the low and 

intermediate anthropogenic emission scenarios. 

5.3.4. Warming induced by permafrost CH4 emissions 

According to our model, the warming induced by wetland CH4 emissions from thawing 

permafrost soils throughout the 21st century is projected to be small independent of the 

future anthropogenic emission scenario (Figure 5.2m-p). By the year 2100, the warming 

due to such permafrost CH4 emissions is projected to be ~0.0 (0.0-0.01) °C under SSP1-

2.6, 0.01 (0.0-0.02) °C under SSP2-4.5, 0.01 (0.0-0.02) °C under SSP4-6.0, and 0.02 

(0.0-0.04) °C under SSP5-8.5. Beyond the 21st century, however, the additional warming 

due to the permafrost CH4 feedback has the potential to increase substantially under the 

high anthropogenic emission scenario (Figure 5.2p). By the year 2300, the warming 

induced by permafrost CH4 emissions under SSP5-8.5 is projected to be 0.09 (0.01-

0.24) °C. Under scenarios of low and intermediate anthropogenic emissions, however, 

the warming due to permafrost CH4 emissions is projected to remain relatively small: 

~0.0 (0.0-0.01) °C under SSP1-2.6, 0.03 (0.01-0.07) °C under SSP2-4.5, and 0.04 (0.01-

0.08) °C under SSP4-6.0. 
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5.3.5. Feedback gains due to wetland CH4 emissions from thawing 
permafrost soils 

Results in Table 5.2 show that all calculated feedback gains are positive, translating into 

an amplification of radiative forcing through the permafrost CH4 feedback associated 

with gradual thaw in wetlands. Most feedback gains are small (< 0.1), implying a 

relatively weak feedback factor throughout the next three centuries especially under the 

low and intermediate anthropogenic emission scenarios. 

By the end of the current century, the feedback gain is very small independent of 

the anthropogenic emission scenarios (Table 5.2). The median feedback gain in the year 

2100 varies between 0.006 and 0.008 for the low, intermediate, and high anthropogenic 

emission scenarios considered in this study. This result suggests that, by the year 2100, 

the amplification of radiative forcing due to wetland CH4 emissions from thawing 

permafrost soils will be modest and largely independent of the future anthropogenic 

emission scenarios. 

By the year 2200, the feedback gain is larger for SSP585 than for the low (SSP1-

2.6) and intermediate (SSP2-4.5 and SSP4-6.0) emission scenarios. For the low and 

intermediate emission scenarios (SSP1-2.6, SSP2-4.5, SSP4-6.0), the feedback gain 

remains very small and independent of the future anthropogenic emission scenario 

(Table 5.2). By the year 2300, the feedback gain is largest for SSP585 than for the other 

emission scenarios. The lowest feedback gain is calculated for SSP1-2.6 (Table 5.2), 

which is characterized by substantial radiative forcing reduction throughout the 22nd and 

23rd centuries due to sustained net zero CO2 emissions as well as relatively low non-CO2 

emissions from anthropogenic sources starting from the second half of the 21st century. 

Table 5.2. Calculated feedback gains with respect to radiative forcing due to 
CH4 emissions following gradual permafrost thaw in wetlands by the 
years 2100, 2200 and 2300 under different future anthropogenic 
emission scenarios (SSP1-2.6, SSP2-4.5, SSP4-6.0 and SSP5-8.5). 
The numbers represent median feedback gains, with the 5th-95th 
confidence interval in brackets. 

 2100 2200 2300 
SSP1-2.6 0.008 (0.001 – 0.019) 0.012 (0.001 – 0.023) 0.011 (~0.00 – 0.032) 
SSP2-4.5 0.007 (0.001 – 0.020) 0.014 (0.001 – 0.041) 0.022 (0.004 – 0.061) 
SSP4-6.0 0.006 (0.001 – 0.018) 0.012 (0.002 – 0.036) 0.019 (0.003 – 0.054) 
SSP5-8.5 0.007 (0.001 – 0.021) 0.023 (0.003 – 0.083) 0.037 (0.005 – 0.124) 
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5.3.6. Assessing the significance of the permafrost CH4 feedback 
versus the permafrost CO2 feedback 

To assess the potential significance of the warming induced by wetland CH4 emissions 

from thawing permafrost soils beyond the 21st century, we compare the results in 

Section 5.3.4 to temperature changes simulated by our model in response to CO2 

emissions from thawing permafrost soils in the year 2300. As for the permafrost CH4 

feedback, we quantify permafrost CO2 emissions and their climate impact based on the 

difference between the “CO2-On” and “Baseline” experiments described in Section 

5.2.6. Readers should note that CO2 emissions from thawing permafrost soils and 

related temperature changes estimated here are based on climate projections with 

default model parameters (i.e. no uncertainty bounds for the projected permafrost CO2 

emissions and related temperature feedback). According to our model, cumulative CO2 

emissions from thawing permafrost soils in the year 2300 are projected to be 48 Pg C 

under SSP1-2.6, 105 Pg C under SSP2-4.5, 127 Pg C under SSP4-6.0, and 148 Pg C 

under SSP5-8.5. The warming associated with these permafrost CO2 emissions is 

projected to be 0.08 °C under SSP1-2.6, 0.16 °C under SSP2-4.5, 0.18 °C under SSP4-

6.0, and 0.08 °C under SSP5-8.5 (Figure 5.3). The projected warming due to long-term 

permafrost CO2 emissions is lower for the high anthropogenic emission scenario (SSP5-

8.5) than for the intermediate anthropogenic emissions scenarios (SSP2-4.5 and SSP4-

6.0). This result is relatively well established (MacDougall et al., 2012; Schneider von 

Deimling et al., 2015): the radiative efficiency of CO2 is expected to decrease under 

sustained anthropogenic emissions (e.g. SSP5-8.5), such that a given amount of 

additional CO2 emissions from thawing permafrost soils would have a weaker climate 

impact under the high anthropogenic emission scenario than under intermediate 

anthropogenic emission scenarios. Overall, our results suggest that the warming due to 

wetland CH4 emissions from thawing permafrost soils by the year 2300 will be 

consistently small (less than 20% for the mean values) in comparison to that associated 

with permafrost CO2 emissions under scenarios of low and intermediate anthropogenic 

emissions. Under the high anthropogenic emission scenario, however, it is possible that 

the warming due to permafrost CH4 emissions by the year 2300 will be comparable to 

that induced by permafrost CO2 emissions. 
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Figure 5.3. Projected CO2 emissions from thawing permafrost soils and the 

associated temperature feedback under different SSPs: (a)-(d) 
cumulative permafrost CO2 emissions, (e)-(f) changes in surface air 
temperature. Note that these projections are based on default model 
parameters and hence do not feature uncertainty bounds. 

5.4. Discussion and conclusions 

Our model suggests that the warming to expect in response to wetland CH4 emissions 

from gradual permafrost thaw by the year 2100 will be small independent of the future 

anthropogenic emission scenario. The strongest temperature feedback is projected to be 

0.02 (0.0-0.04) °C under the high anthropogenic emission scenario (SSP5-8.5), whereas 

the weakest temperature feedback is projected to be ~0.0 (0.0-0.01) °C under the low 

anthropogenic emission scenario (SSP1-2.6). Our results are consistent with previous 

estimates based on simple modelling approaches (Burke et al., 2012; Gao et al., 2013; 

Schneider von Deimling et al., 2012). In particular, our findings agree with previous 

studies that suggest an upper limit of 0.1°C for the warming associated with projected 

CH4 emissions from gradual permafrost thaw by the end of the current century (Gao et 

al., 2013; Schaefer et al., 2014). Beyond the 21st century, however, the significance of 

CH4 emissions from gradual permafrost thaw and their climate impact will strongly 

depend on the future anthropogenic emission scenario. Under scenarios of low and 

intermediate anthropogenic emissions, our model suggests that wetland CH4 emissions 

from thawing permafrost soils will not exceed 40 Tg C yr-1 and the associated 

temperature feedback will remain below 0.1°C (max. 0.08°C) even under the assumption 
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of high rates of CH4 production jointly with low (fractional) rates of CH4 oxidation 

throughout the 22nd and 23rd centuries. In contrast, permafrost CH4 emissions and their 

climate impact could increase substantially if anthropogenic emissions remain high in the 

future. Under the high anthropogenic emission scenario (SSP5-8.5), our model suggests 

that wetland CH4 emissions from thawing permafrost soils will be 58 (3-158) Tg C yr-1 

and induce a warming of 0.09 (0.01-0.24) °C by the year 2300. The upper bound of 

these projected CH4 emissions is of similar magnitude as present-day global wetland 

CH4 emissions (Saunois et al., 2020). As mentioned in Section 5.2.6, it is possible that 

these permafrost CH4 emissions are overestimated due to the fact that previously frozen 

carbon decays only into CH4 as part of our model experiment design. In addition, we 

note that these large CH4 emissions are associated with the assumption of high 

production jointly with low oxidation of CH4 in wetlands underlain by permafrost as part 

of our intention to explore the limits of the permafrost CH4 feedback. 

Several studies suggest that CO2 will be the dominant component of the 

permafrost carbon feedback, with CH4 only playing a secondary role (Olefeldt et al., 

2013; Schädel et al., 2016; Schuur et al., 2013). Our results suggest that the warming 

due to wetland CH4 emissions from thawing permafrost soils will be significantly smaller 

than that due to their CO2 counterpart under the low and intermediate anthropogenic 

emission scenarios throughout the 21st century and beyond. Under the high 

anthropogenic emission scenario, however, CH4 could become a significant contributor 

to the permafrost carbon feedback in the 22nd and 23rd century primarily owing to (i) 

sustained high CH4 production and emissions from previously frozen carbon as well as 

the associated climate impact, and (ii) the expected decline in the radiative efficiency 

associated with increasing permafrost CO2 emissions under high anthropogenic CO2 

emissions. 

We indicate that estimates of the permafrost CO2 feedback in this study are 

smaller than results from a pioneering study with the UVic ESCM (MacDougall et al., 

2012), which sought to compare model simulations with and without the permafrost 

carbon pool. While our study only quantifies the warming due to CO2 emissions from 

perennially frozen carbon upon thaw (i.e. carbon previously frozen for at least two 

consecutive years), the study by MacDougall et al. (2012) projects the warming due to 

CO2 emissions from both seasonally frozen soil carbon in the active layer and 

perennially frozen carbon following permafrost thaw. Nevertheless, our projections for 
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permafrost CO2 emissions are consistent with results from a more recent study using the 

UVic ESCM (MacDougall and Knutti, 2016), which focused on the microbial 

decomposition of previously frozen carbon and associated CO2 release. According to 

MacDougall and Knutti (2016), cumulative CO2 emissions from thawing permafrost soils 

will range from 32-175 Pg C under RCP2.6 to 159-587 Pg C under RCP8.5 in the year 

2300. 

While our study focuses on major uncertainties in wetland CH4 biogeochemistry, 

there are poorly constrained physical factors that have the potential to influence the 

future evolution of wetland CH4 emissions from thawing permafrost soils. For instance, 

the future evolution of Arctic amplification is ambiguous but it will affect rates of 

permafrost thaw and the subsequent mobilization of previously frozen carbon (Serreze 

and Barry, 2011). Changes in surface inundation and soil moisture content in response 

to permafrost thaw as well as shifts in precipitation, evaporation, and vegetation will 

influence future wetland extent and hence permafrost CH4 emissions (Nauta et al., 2015; 

Walvoord and Kurylyk, 2016), but projections of these hydrological changes are poorly 

constrained for the northern permafrost region (Andresen et al., 2020; Walvoord and 

Kurylyk, 2016). Previous studies based on simple models accounted for key 

uncertainties in physical factors associated with permafrost CH4 emissions and their 

results are consistent with our conclusions regarding the limited strength for the 

permafrost CH4 feedback in the future especially under mitigated scenarios (Burke et al., 

2012; Gao et al., 2013; Schneider von Deimling et al., 2012). 

Our model only represents terrestrial permafrost whose response to climate 

warming (i.e. thaw) occurs gradually mainly through active layer deepening. However, 

permafrost thaw can occur abruptly in locations with ice wedges or excess ground ice 

creating so-called thermokarst landscapes (Kokelj and Jorgenson, 2013; Schuur and 

Mack, 2018). The formation of thermokarst lakes in response to abrupt thaw has the 

potential to enhance permafrost CH4 emissions in the current century, especially under 

high anthropogenic emission scenarios (Schneider von Deimling et al., 2015; Turetsky et 

al., 2020; Walter Anthony et al., 2018). Thermokarst lakes may have very distinct CH4 

dynamics from wetlands, especially with regard to the prevalence of (i) erosion of 

previously frozen but potentially labile carbon into water-saturated soils and (ii) CH4 

release by ebullition in these lakes (Turetsky et al., 2020; Walter Anthony et al., 2016, 

2018). Furthermore, soil carbon in our model only accumulates within the top 3.35 m of 
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depth although land permafrost stores substantial amounts of soil organic carbon at 

greater depth in yedoma regions of Alaska, Canada, and Siberia (Hugelius et al., 2014; 

Strauss et al., 2017) as well as deltaic deposits of major Arctic rivers (Hugelius et al., 

2014). In particular, abrupt thaw and thermokarst lakes in yedoma regions have the 

potential to mobilize carbon stored in deep permafrost soils contributing to increase CH4 

emissions from gradual thaw (Schneider von Deimling et al., 2015; Walter Anthony et al., 

2016, 2018). Under high anthropogenic emission scenarios, thermokarst lakes could be 

the dominant source of permafrost CH4 emissions in the 21st century whereas wetlands 

would become the most important source beyond the 21st century (Schneider von 

Deimling et al., 2015). Non-thermokarst lakes across the boreal and Arctic regions are 

other potential sources of CH4 from thawing permafrost soils (Dean et al., 2018; Wik et 

al., 2016), but their future CH4 emissions are expected to be dominated by decaying 

young carbon (i.e. carbon fixed by recent photosynthesis) suggesting that these lakes 

will be a negligible contributor to the permafrost CH4 feedback in comparison to 

thermokarst lakes (Elder et al., 2018). Our model does not resolve wildfires, river and 

coastal erosions, as well as lateral movement of soil carbon from upland environments, 

which have been associated with rapid permafrost carbon losses (Schuur et al., 2015; 

Turetsky et al., 2011; Vonk and Gustafsson, 2013). The contribution of these processes 

to permafrost CH4 emissions is expected to be negligible in comparison to that of 

wetlands and thermokarst lakes (Dean et al., 2018; Ribeiro-Kumara et al., 2020; Schuur 

et al., 2015). In the long run, thawing of subsea permafrost and subsequent 

destabilization of CH4 hydrates along the Arctic ocean could also contribute to enhance 

permafrost CH4 emissions although the magnitude of these emissions and their climate 

impact remain highly uncertain (Ruppel and Kessler, 2017; Shakhova et al., 2019). 

In summary, our modelling study investigates the possible evolution of wetland 

CH4 emissions from gradual permafrost thaw and their climate impact over the next 

three centuries. We find that the warming to expect from such permafrost CH4 emissions 

by the year 2100 will be small (<0.05°C) under different anthropogenic emission 

scenarios. This result agrees with previous studies that suggest an upper limit of 0.1°C 

for the warming due to CH4 emissions from gradual permafrost thaw throughout the 21st 

century (Gao et al., 2013; Schaefer et al., 2014). Beyond the 21st century, the warming 

due to wetland CH4 emissions from thawing permafrost soils are projected to increase 

substantially under the high anthropogenic emission scenario, with an estimate of 0.09 



112 

(0.01-0.24) °C by the year 2300. Under scenarios of low and intermediate anthropogenic 

emissions, however, the warming to expect from permafrost CH4 emissions are 

projected to remain modest (<0.08°C) throughout the 22nd and 23rd centuries. Therefore, 

reducing anthropogenic emissions has the potential to limit the warming due to wetland 

CH4 emissions from gradual permafrost thaw to well below 0.1°C over the next three 

centuries. To get a more complete picture of the permafrost CH4 feedback, future work 

should account for two opposing factors in response to increasing warming across the 

northern high-latitude regions: the potential increase in permafrost CH4 emissions 

associated with abrupt thaw (In’t Zandt et al., 2020; Turetsky et al., 2020), and the 

potential increase in CH4 uptake by soils (Oh et al., 2020). 
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Chapter 6. Conclusions 

6.1. Summary of key results and their significance 

This thesis seeks to contribute to the scientific understanding about the importance of 

CH4 for future climate change by: (i) reviewing the literature on the CH4 contribution to 

the permafrost carbon feedback (Chapter 2), (ii) developing a new wetland CH4 model 

for implementation in Earth system models (Chapter 3), (iii) assessing the importance of 

CH4 mitigation over the next few decades to comply with global warming limits set by the 

Paris Agreement based on Earth system model simulations (Chapter 4), and (iv) 

quantifying the possible evolution of wetland CH4 emissions from thawing permafrost 

soils and their climate impact over the next few centuries based on Earth system model 

simulations (Chapter 5). Key results of this thesis and their significance are summarized 

in the following sections. 

6.1.1. The relevance of CH4 in the permafrost carbon feedback 

Ongoing and projected permafrost thaw will contribute to amplify global warming through 

CO2 and CH4 emissions from microbial decomposition of previously frozen carbon 

(Koven et al., 2011; Schaefer et al., 2014). Chapter 2 provides a review of the literature 

on the importance of CH4 as part of the permafrost carbon feedback. The literature 

review considers insights from a comprehensive review on the permafrost carbon 

feedback (Schuur et al., 2015), expert judgements (Schuur et al., 2013), meta-analyses 

(Schädel et al., 2016; Schaefer et al., 2014; Treat et al., 2015), uncoupled terrestrial 

ecosystem models (Burke et al., 2012; Koven et al., 2011, 2015a) as well as simple 1-D 

and 2-D models (Schneider von Deimling et al., 2012, 2015). According to the reviewed 

literature, wetlands and thermokarst lakes are expected to be the two major source 

contributors to the permafrost CH4 feedback over the next three centuries 

(Nzotungicimpaye and Zickfeld, 2017; Schuur et al., 2015) – although permafrost CH4 

emissions from these sources and their future projections remain poorly constrained 

(Dean et al., 2018; In’t Zandt et al., 2020). Under high anthropogenic emission 

scenarios, wetland CH4 emissions from thawing permafrost soils could contribute to 

about 20% of the warming to expect from total permafrost carbon (CO2 and CH4) 



114 

emissions by the year 2100, which is projected to be 0.29 (0.08-0.50) °C (Schaefer et 

al., 2014). According to expert judgements and simple model projections, the CH4 

contribution to the permafrost carbon feedback by the end of the current century could 

increase to 30-50% when considering permafrost CH4 emissions from both wetlands and 

thermokarst lakes under high anthropogenic emission scenarios (Schneider von 

Deimling et al., 2015; Schuur et al., 2013, 2015). 

6.1.2. A new model for wetland CH4 emissions 

For this thesis, I developed a new wetland CH4 model for implementation in Earth 

system models (WETMETH), which is currently embedded in the University of Victoria 

Earth System Climate Model (UVic ESCM) (see Chapter 3). WETMETH is a relatively 

simple model that simulates wetland CH4 emissions as the balance between (i) CH4 

production that is mainly controlled by the vertical distribution of soil moisture, carbon, 

and temperature; and (ii) CH4 oxidation that is controlled by the amount of produced CH4 

in the soil column and the vertical distribution of soil moisture. The calibration of 

WETMETH is based on small-scale observations from northern high-latitude regions, 

whereas its validation is done against regional to global estimates of wetland CH4 

emissions (see Chapter 3). Despite large uncertainties in wetland distribution and 

wetland CH4 biogeochemistry, WETMETH is capable of reproducing mean annual 

wetland CH4 emissions consistent with present-day estimates from the regional to the 

global scale (Chapter 3). 

6.1.3. The importance of CH4 mitigation to comply with the 2°C 
warming limit 

Strategies adopted by different countries to reduce GHG emissions (i.e. nationally 

determined contributions or NDCs) mostly focus on CO2 mitigation and generally do not 

explicitly target non-CO2 GHGs such as CH4 (Harmsen et al., 2019a). Meanwhile, 

atmospheric CH4 levels have been growing rapidly over the last decade partly due to 

human activities (Nisbet et al., 2019; Saunois et al., 2016b). Sustained [CH4] growth in 

the next decades could constitute a challenge for meeting temperature goals in the Paris 

Agreement, even under stringent CO2 mitigation (Nisbet et al., 2019). Chapter 4 

investigates the importance of immediate versus delayed CH4 mitigation to comply with 

the global warming limits set by the Paris Agreement. This investigation is based on 
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climate simulations with a newly developed version of the UVic ESCM including a 

simplified representation of the global CH4 cycle. The study assumes scenarios of 

immediate and delayed CH4 mitigation over the next three decades with all other 

anthropogenic forcings (non-CH4 GHG emissions, land-use changes, and aerosols) 

following a scenario consistent with limiting global warming to 2°C by the end of the 

current century (i.e. SSP1-2.6). According to our model simulations, initiating CH4 

mitigation by the year 2030 will allow to keep global warming below 2°C above 1850-

1900 levels under SSP1-2.6, whereas delaying CH4 mitigation to the year 2040 or 2050 

will overshoot the 2°C warming limit for at least two decades in the remainder of the 21st 

century under SSP1-2.6. These results suggest that rapid reductions in anthropogenic 

CH4 emissions are needed, along with CO2 mitigation, to increase the likelihood of 

limiting global warming below 2°C above pre-industrial levels. 

6.1.4. The strength of the permafrost CH4 feedback 

The permafrost carbon feedback is currently one of the least constrained 

biogeochemical feedbacks to climate change (Schuur et al., 2015). Chapter 5 focuses 

on quantifying the possible evolution of wetland CH4 emissions from previously frozen 

carbon in response to gradual permafrost thaw as well as their climate impact over the 

next three centuries. This study is based on climate projections with the newly 

developed version of the UVic ESCM (i.e. UVic ESCM version 2.10 into which I 

implemented a representation of the global CH4 cycle). Our results suggest that wetland 

CH4 emissions from thawing permafrost soils by the year 2100 will range from 3 (0-6) Tg 

C yr-1 under a low anthropogenic emission scenario (SSP1-2.6) to 20 (1-51) Tg C yr-1 

under a high anthropogenic emission scenario (SSP5-8.5). The warming to expect from 

such permafrost CH4 emissions is projected to be small, ranging from ~0.0 (0.0-0.01) °C 

under SSP1-2.6 to 0.02 (0.0-0.04) °C under SSP5-8.5. These results are consistent with 

a previous study that considered changes in surface inundation (Gao et al., 2013) and 

findings from a meta-analysis of permafrost carbon modelling studies (Schaefer et al., 

2014). Beyond the 21st century, wetland CH4 emissions from thawing permafrost soils 

and their climate impact will strongly depend on the scenario of future anthropogenic 

emissions. Our model suggests that wetland CH4 emissions from thawing permafrost 

soils will increase substantially under SSP5-8.5, primarily owing to a large amount of 

previously frozen carbon that will be accessible to methanogens from the early years of 
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the 22nd century. By the year 2300, wetland CH4 emissions from thawing permafrost 

soils are projected to be 58 (3-158) Tg C yr-1 and induce a warming of 0.09 (0.01-0.24) 

°C under SSP5-8.5. The upper bound of these projected CH4 emissions is of similar 

magnitude as present-day global wetland CH4 emissions (Saunois et al., 2020). While 

the potential for large permafrost CH4 emissions by the end of the 23rd century cannot be 

ruled out, it should be noted that these projected CH4 emissions are: (i) associated with 

model runs assuming the possibility of high production of CH4 jointly with low oxidation of 

CH4 from previously frozen carbon in wetlands; (ii) potentially overestimated considering 

that, in our model projections, previously frozen carbon decays only into CH4 as part of 

our model experiment design (see Section 5.2.6). Under the low (SSP1-2.6) and 

intermediate anthropogenic emission scenarios (SSP2-4.5 and SSP4-6.0), however, our 

model suggests that wetland CH4 emissions from thawing permafrost soils will not 

exceed 40 Tg C yr-1 and the associated temperature feedback will remain well below 

0.1°C even under the assumption of high rates of CH4 production jointly with low rates of 

(fractional) CH4 oxidation throughout the 22nd and 23rd centuries. Therefore, according to 

our study, reducing anthropogenic emissions in the 21st century could prevent large 

permafrost CH4 emissions and their climate impact over the next three centuries. 

6.2. Novel contributions 

For this thesis, I developed a model for wetland CH4 emissions and implemented it in the 

UVic ESCM (see Chapter 3) along with a simplified representation of the global CH4 

cycle (see Chapter 4). To the best of my knowledge, this thesis is the first research to 

apply an Earth system modelling framework to (i) investigating the importance of 

immediate rather than delayed CH4 mitigation in the future to comply with temperature 

limits set by the Paris Agreement, and (ii) quantifying the potential evolution of wetland 

CH4 emissions from thawing permafrost soils and their contribution to amplify global 

warming over the next three centuries. Representing the CH4 cycle in Earth system 

models is essential for the prognostic simulation of atmospheric CH4 concentration and 

its temporal evolution, which is a critical feature for investigating the climate response to 

changes in anthropogenic CH4 emissions (e.g. in the context of CH4 mitigation) and 

natural CH4 emissions (e.g. wetland CH4 emissions from thawing permafrost soils), as 

well as CH4 sinks. Overall, Earth system model simulations analyzed in this thesis 

suggest that (i) the warming to expect from feedbacks between wetland CH4 emissions 
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and future climate change will be relatively modest under scenarios of low anthropogenic 

emissions but potentially significant under scenarios of unmitigated emissions; (ii) 

delaying CH4 mitigation increases the risk of breaching the 2°C warming limit. 

6.3. Limitations 

Major limitations for this research include the relative simplicity of the developed model 

for wetland CH4 emissions, the lack of prognostic CH4 emissions from non-wetland 

natural sources (e.g. termites, lakes, wildfires, wild ruminants, geologic seeps, marine 

hydrates) in our climate simulations, the assumption of a constant atmospheric CH4 

lifetime, and the non-representation of abrupt thaw in projections of the permafrost CH4 

feedback to climate change. These limitations and their implications for this research are 

discussed in detail in previous chapters (see Sections 3.7, 4.4, and 5.4). A brief 

discussion of these limitations is provided here: 

1. The developed model for wetland CH4 emissions (WETMETH) is relatively simple 

with respect to the wide array of physical, biological, and chemical controls on 

CH4 production and oxidation in wetlands. Yet, this simple wetland CH4 model is 

capable of reproducing mean annual wetland CH4 emissions from the regional to 

the global scale based on soil moisture, carbon, and temperature simulated by 

the fully coupled UVic ESCM. 

2. Non-wetland natural sources of CH4 are not represented in the UVic ESCM. To 

the best of my knowledge, there is no dataset of CH4 emissions from non-

wetland natural sources for use in climate model simulations. To represent the 

global CH4 cycle in the UVic ESCM, I assume that CH4 emissions from these 

natural sources remain fixed at 45 Tg C yr-1 (i.e. ~60 Tg CH4 yr-1). This value is 

within the range of estimates for total CH4 emissions from non-wetland natural 

sources over the last four decades (Kirschke et al., 2013; Saunois et al., 2020) 

as well as pre-industrial periods (Houweling et al., 2000 and references therein). 

While CH4 emissions from wildfires as well as natural freshwater and marine 

systems have the potential to increase or decrease in a changing climate in the 

future (Dean et al., 2018), it is difficult to predict how the magnitude of total CH4 

emissions from non-wetland sources will change in the future under a given 

climate change scenario. 
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3. The consideration of a constant lifetime for atmospheric CH4 is another 

assumption made in this thesis as part of initial steps to represent the global CH4 

cycle in the UVic ESCM. In the natural world, the atmospheric CH4 lifetime may 

vary by a few months to a few years mostly due to changes in atmospheric 

chemistry associated with CH4 sinks especially the abundance of the OH radical 

in the troposphere (Wuebbles and Hayhoe, 2002). In our model simulations, the 

atmospheric CH4 lifetime is fixed at 9.3 years – which is an estimate from the 

latest global CH4 budget report (Saunois et al., 2020). Similar estimates for the 

atmospheric CH4 lifetime have been reported for the pre-industrial era (9.5 ± 1.3 

years) and present-day (i.e. early 2010s) (9.1 ± 0.9 years) (Prather et al., 2012). 

However, I acknowledge that variations in the atmospheric CH4 lifetime through 

changes in CH4 sinks may be partially responsible for changes in the growth 

rates of atmospheric CH4 over time (e.g. the slowdown observed in the 1990s 

through the 2000s as well as the renewed growth since the year 2007) (Kirschke 

et al., 2013; Prather and Holmes, 2017; Schaefer, 2019). 

4. The UVic ESCM does not simulate abrupt permafrost thaw, which could 

contribute to rapid and substantial carbon (both CH4 and CO2) emissions from 

thawing permafrost soils (Turetsky et al., 2020; Walter Anthony et al., 2018). 

Simulations by a terrestrial ecosystem model suggests that abrupt permafrost 

thaw in the 21st century could accelerate the mobilization of ancient carbon 

previously stored in deep permafrost soils (up to 15 m of depth) and contribute to 

increase permafrost carbon emissions by more than 120% relative to gradual 

thaw alone (Walter Anthony et al., 2018). CH4 emissions resulting from abrupt 

permafrost thaw occur primarily in thermokarst lakes but also in wetlands 

underlain by massive ground ice or affected by erosion (Turetsky et al., 2020; 

Walter Anthony et al., 2018). Thermokarst lakes are already hotspots of CH4 

emissions from ancient permafrost-derived carbon in response to abrupt thaw 

(Walter Anthony et al., 2016), and permafrost CH4 emissions from these lakes 

are expected to be a key component of total carbon emissions from previously 

frozen carbon in the future (In’t Zandt et al., 2020; Schneider von Deimling et al., 

2015; Turetsky et al., 2020; Walter Anthony et al., 2018). According to expert 

judgements as well as simple and uncoupled model projections, permafrost CH4 

emissions resulting from both gradual and abrupt thaw could contribute a third to 
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a half of the climate forcing to expect from total permafrost carbon emissions in 

the 21st century and beyond (Schneider von Deimling et al., 2015; Schuur et al., 

2013; Turetsky et al., 2020). 

6.4. Future directions 

6.4.1. Further studies 

While this thesis focuses on investigating the strength of the permafrost CH4 feedback to 

climate change, there is a need for more research on the significance of the positive 

feedback between future climate change and CH4 emissions from global wetlands 

(Gedney et al., 2019). There is also a need for quantifying the impact of wetland CH4 

emissions on remaining carbon budgets to keep global warming below stringent limits 

(Rogelj et al., 2019). Furthermore, a quantification of the warming to expect from both 

CH4 and CO2 emissions in response to permafrost thaw remains a major research gap in 

climate science. I suggest that such a quantification be done by accounting for 

uncertainties in permafrost thaw and hydrology (Andresen et al., 2020; Schuur et al., 

2015; Serreze and Barry, 2011; Walvoord and Kurylyk, 2016), as well as uncertainties in 

the decay of previously frozen carbon and subsequent carbon (both CO2 and CH4) 

emissions (Schädel et al., 2016; Treat et al., 2015). 

6.4.2. Further model development 

Further research should consider the following points about model development: 

1. Our model simulations assume a constant lifetime of 9.3 years for atmospheric 

CH4 (Saunois et al., 2020). However, research suggests that the atmospheric 

CH4 lifetime may vary by a few months to years mostly due the changes in the 

abundance of the OH radical (Naik et al., 2013; Prather et al., 2012). Future 

research on the global CH4 cycle with the UVic ESCM could explore the 

application of a dynamic CH4 lifetime, which can be parameterized based on 

simple formulations (Arora et al., 2018; Christensen et al., 2019). 

2. There is a need to revise how wetlands are identified in the UVic ESCM, 

especially for improving the distribution of tropical wetlands simulated by the 
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model. Wetlands in the UVic ESCM are currently simulated to occur in grid cells 

whose upper ground layer contains unfrozen soil moisture exceeding 65% of 

saturation for at least one day in a year (Avis et al., 2011) and contingent to a 

topography-based criterion determined with TOPMODEL (Gedney and Cox, 

2003). One option for improving the wetland distribution in the UVic ESCM is to 

focus on the number of days for the moisture criterion, which could be increased 

to a few days to weeks. Another option, which may be combined with the revision 

of the moisture criterion, is to apply a recent topographic map to drive 

TOPMODEL in the UVic ESCM (Marthews et al., 2015). If none of the above 

options provides satisfactory results, two more options may be applied: (i) 

considering different parameter values for the tropics and extra-tropical regions, 

(ii) revising the soil properties in the UVic ESCM by including ferralsols, which 

are weathered soils with micro-aggregated particles that are common in the 

tropics (Gedney et al., 2019). 

3. For future work on the permafrost CH4 feedback with the UVic ESCM, there is a 

need for incorporating excess ground ice and their impacts in Earth system 

models. While the occurrence of thermokarst development in response to abrupt 

permafrost thaw remains under-represented in climate model simulations, there 

are ongoing efforts to incorporate excess ground ice and sub-grid scale 

thermokarst in terrestrial components of Earth system models (Aas et al., 2019; 

Ekici et al., 2019). These studies may serve to inform future model development 

in the UVic ESCM. 

6.5. Final conclusion 

The global climate is governed by many complex physical and biogeochemical 

processes as well as their interactions. Over the last few decades considerable progress 

has been made with regard to the inclusion of carbon cycle processes in Earth system 

models, enabling to enhance the scientific understanding of how CO2 and climate will 

influence each other in the future through feedback mechanisms (Arora et al., 2013; 

Ciais et al., 2013; Cox et al., 2000; MacDougall et al., 2012; Zickfeld et al., 2013). 

Continuous efforts to incorporate or improve processes regulating biogeochemical 

cycles (e.g. CH4 and nitrogen cycles) in Earth system models are needed to have a 

more complete representation of the global climate system and increase confidence in 
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future climate projections. This thesis contributes to such modelling efforts by 

incorporating a simplified representation of the CH4 cycle in the UVic ESCM. 

Applications of this newly developed version of the UVic ESCM in this thesis provide 

policy-relevant results: (i) delaying CH4 mitigation increases the risk of breaching the 2°C 

warming limit even under aggressive CO2 mitigation by mid century; (ii) climate change 

mitigation in the 21st century could allow to limit the warming due to wetland CH4 

emissions from thawing permafrost soils to well below 0.1°C over the next three 

centuries. Although this thesis does not focus on quantifying the feedback between 

climate change and CH4 emissions from global wetlands, I anticipate that the future 

warming to expect from wetland CH4 emissions over the next three centuries will be: (i) 

small under low anthropogenic emission scenarios (e.g. mitigation scenarios), and (ii) 

potentially large under high anthropogenic emission scenarios (e.g. SSP5-8.5), but not 

strong enough to induce a runaway feedback in the climate system. However, the 

modelling approach applied in this thesis does not account for abrupt permafrost thaw in 

locations with massive ground ice as well as CH4 emissions from thermokarst lakes, 

which have the potential to enhance the importance of climate-CH4 feedbacks in the 

future (see Chapter 2). To provide a more complete assessment of the permafrost CH4 

feedback to climate change, there is need for representing abrupt permafrost thaw and 

subsequent CH4 emissions from thermokarst lakes in Earth system model simulations. 
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Appendix A. Temperature-dependent Q10 coefficient 
for CH4 production 

Figure A1 illustrates the different shapes of the temperature-dependency function for 

CH4 production (Q10
T𝑖𝑖 − T0
10 ; T0 = 273.15 K) across a range of temperatures when 

considering: (i) a constant Q10 of 4.2; and (ii) a temperature-dependent Q10 coefficient 

given by Q10(T𝑖𝑖) = 1.7 + 2.5 tanh [0.1 (T𝑟𝑟𝑟𝑟𝑟𝑟− T𝑖𝑖)], where T𝑟𝑟𝑟𝑟𝑟𝑟 = 308.15 K. The 

temperature-dependent Q10(T𝑖𝑖) implies an optimal temperature for CH4 production in 

WETMETH around 300.15 K (dashed vertical line). When Q10(T𝑖𝑖) decreases to reach 

negative values, its value in WETMETH is set to 10-3 to represent a very small 

methanogenic response to temperature changes (Figure A1). 

 
Figure A1. (a) Differences between a constant Q10 coefficient and a 

temperature-dependent Q10(Ti) coefficients and (b) implications for 
the temperature-dependency expression for CH4 production (Q10[(Ti 
– T0)/10]). 
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Appendix B. Applied minor modification to the 
TOPMODEL approach 

The TOPMODEL approach implemented in the UVic ESCM is based on the formulation 

by Gedney and Cox for global land surface models (Gedney and Cox, 2003). This 

approach combines the simulated hydrology with a prescribed topographic index to 

determine the occurrence of wetlands (surface inundation) and soil moisture 

heterogeneity at the sub-grid scale. The occurrence of wetlands is simulated in an area 

whose local topographic index (Λ) satisfies the following condition: 

Λmin ≤ Λ ≤  Λmax ,                             (B.1) 

where Λmin is a lower threshold that can be related to under-saturation conditions and 

Λmax is an upper threshold that can be related to over-saturation conditions. 

In the initial work by Gedney and Cox, Λmin depends on the transmissivity of the 

entire soil column (T(0)), the transmissivity of the soil column below the mean water 

table depth (𝑧𝑧𝑤𝑤) of the grid box (T(𝑧𝑧𝑤𝑤)) as well as the mean topographic index (Λmean). It 

is calculated as Λmin = ln T(0)
T(𝑧𝑧𝑤𝑤)

+  Λmean. While Λmean is static and prescribed with a 

topographic index map, both transmissivities (T(0) and T(𝑧𝑧𝑤𝑤)) are simulated and non-

static for a specific grid cell. Hence, Λmin is a non-static and grid-dependent threshold. 

Unlike Λmin, Λmax is a static and global threshold. This threshold is applied to constrain 

the occurrence of wetlands in areas of stagnant water based on the assumption that 

locations where the water table rises well above the surface would be characterized by 

streamflow. 

For the current study, a minor modification is applied to the above TOPMODEL 

approach. The revision consists of using a non-static and grid-dependent Λmax instead of 

a static and global threshold. Following the formulation by Comyn-Platt and colleagues 

(Comyn-Platt et al., 2018), an expression for Λmax that depends on Λmin is currently used 

in the UVic ESCM. This threshold is defined as: 

Λmax = Λmin +  Λrange ,                  (B.2) 
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where Λrange is a global tuning parameter (Λrange= 0.93 in the version of the UVic ESCM 

used in this study). 

In summary, unlike the initial work by Gedney and Cox (Gedney and Cox, 2003), 

the modified TOPMODEL approach considers two non-static and grid-dependent 

thresholds (Λmin and Λmax) for the identification of wetlands across the globe. 
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Appendix C. Unit conversion for potential CH4 
production rates 

Here, we describe steps followed for converting units of maximum CH4 production rates 

measured in laboratory incubations from a soil weight basis (µg C g DW-1 hr-1) to a soil 

volume basis (kg C m-3 s-1). This unit conversion relies on the soil bulk density (BD in g 

cm-3) from the site of origin. The following two steps illustrate the applied unit conversion. 

In the first step, the potential CH4 production rates (Pd,0) are converted from µg C g DW-1 

hr-1 to µg C cm-3 hr-1 as follows: 

Pd,1 = (BD) Pd,0             (C.1) 

Then, the conversion of Pd,1 from µg C cm-3 hr-1 to kg C m-3 s-1 is done as follows: 

Pd,2 = 𝛿𝛿
𝛾𝛾

Pd,1,            (C.2) 

where δ encompasses the conversion factors from µg to kg and from cm-3 to m-3 (δ = 10-

3 kg m-3); and γ is the number of seconds per hour (γ = 3600 s). 
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Appendix D. Supplementary figures for Chapter 3 

 
Figure D1. Illustration of the global climate conditions from 1850 through 2019 

as simulated by the fully coupled UVic ESCM: (a) Atmospheric CO2 
concentration prescribed to the model in comparison to 
measurements from the Mauna Loa Observatory. (b) Global surface 
air temperature (SAT) anomalies relative to 1961-1990 in comparison 
to the HadCRUT4 dataset. 
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Figure D2. Differences in northern wetland extents (inundated fractions of grid 

cells) between two datasets (GIEMS and SWAMPS-GLWD) and the 
UVic ESCM over the 2000-2007 period: (a) SWAMPS-GLWD – GIEMS, 
(b) UVic ESCM – GIEMS, and (c) UVic ESCM – SWAMPS-GLWD. The 
comparison period corresponds to the overlap period for the two 
datasets. 
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Appendix E. Statistical evaluation for Chapter 3 

Methods 

We consider four metrics to evaluate the model performance with respect to wetland 

extents and CH4 emissions: the mean bias error (MBE), the mean absolute error (MAE), 

the root mean square error (RMSE), and the coefficient of determination (R2). These 

metrics allow to compare a set of observations (𝑌𝑌) and their predictions (𝑋𝑋) (Ali and 

Abustan, 2014; Willmott, 1982). 

MBE, MAE and RMSE are difference metrics and their respective formulas for a 

sample size 𝑛𝑛 are given below: 

MBE = 1
𝑛𝑛
∑ (𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑖𝑖)𝑛𝑛
𝑖𝑖=1                        (E.1) 

MAE = 1
𝑛𝑛
∑ |𝑛𝑛
𝑖𝑖=1 𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑖𝑖 |         (E.2) 

RMSE = � 1
𝑛𝑛
∑ (𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑖𝑖)2𝑛𝑛
𝑖𝑖=1           (E.3) 

R2 is a correlation metric from the linear regression theory. It is a measure of the 

extent to which 𝑋𝑋 predicts the total variability in 𝑌𝑌 and is given by: 

R2 =  ∑ (𝑌𝑌�𝑖𝑖−𝑌𝑌�)2𝑛𝑛
𝑖𝑖=1

∑ (𝑌𝑌𝑖𝑖− 𝑌𝑌�)2𝑛𝑛
𝑖𝑖=1

  ,              (E.4) 

where 𝑌𝑌�𝑖𝑖 is the predicted value of 𝑋𝑋𝑖𝑖 and 𝑌𝑌� is the mean of 𝑌𝑌. R2 varies between 0 and 1, 

with R2 ~ 1 (R2 ~ 0) indicating a strong (weak) linear correlation between 𝑋𝑋 and 𝑌𝑌. 

For wetland extents, we use two observation-based datasets: GIEMS (Papa et 

al., 2010; Prigent et al., 2001, 2007b, 2012) and SWAMPS-GLWD (Poulter et al., 2017). 

In each case, we calculate the metrics over grid cells containing wetlands for both the 

UVic ESCM and the dataset. For wetland CH4 emissions, we use three upscaled flux 

measurements (UFMs) from across northern regions (>45°N): RF-DYPTOP, RF-GLWD, 

and RF-PEATMAT (Peltola et al., 2019). At the global scale, we use three process-

based model ensembles: GCP-CH4 (Poulter et al., 2017), WetCHARTs (Bloom et al., 

2017), and WETCHIMP (Melton et al., 2013). We calculate the metrics over grid cells in 
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which the UVic ESCM and the UFM or model ensemble both predict CH4 emissions 

(positive CH4 fluxes). We use MATLAB version R2018b for all calculations. 

Results for wetland extents 

Results listed in Table E1 show that: (i) wetlands in the UVic ESCM are better simulated 

across northern regions (>45°N) than at the global scale (e.g. RMSE and R2), and (ii) the 

model agrees better with SWAMPS-GLWD than with GIEMS at the regional and global 

scale (all performance metrics). R2 values suggest a weak linear correlation between our 

simulated and the estimated wetland extents globally. However, a previous study argues 

that R2 and other correlation-based metrics are not best measures for evaluating the 

goodness-of-fit of hydrologic and hydroclimatic models as these metrics were found to 

be over-sensitive to extreme values (outliers) and insensitive to additive and proportional 

differences between observations and model predictions (Legates and McCabe, 1999). 

As a reference, our comparison of GIEMS to SWAMPS-GLWD yields R2 = 0.12 for 

northern high-latitudes (>45°N) and R2 = 0.22 for the globe. 

Results for wetland CH4 emissions 

Table E2 lists the evaluation statistics for wetland CH4 emissions. For wetlands north of 

45°N, results show that the UVic ESCM has no preferential agreement with one of the 

three UFMs (all performance metrics). Based on the compared grid cells, however, the 

UVic ESCM simulates more CH4 emissions than RF-DYPTOP (MBE > 0) and less CH4 

emissions than RF-GLWD and RF-PEATMAP (MBE < 0). At the global scale, the UVic 

ESCM compares similarly to the three model ensembles (all performance metrics); 

although simulated CH4 emissions are higher than those predicted by the WetCHARTs 

ensemble (MBE > 0) and lower than those predicted by GCP-CH4 and WETCHIMP 

ensembles (MBE < 0). 

At both the regional and global scale, R2 values suggest a weak linear correlation 

between the UVic ESCM and the different UFMs or model ensembles (Table E2). As a 

reference, the inter-comparison of the UFMs yields R2 values between 0.1 and 0.4 (0.14 

for RF-DYPTOP and RF-GLWD; 0.32 for RF-DYPTOP and RF-PEATMAP; 0.33 for RF-

GLWD and RF-PEATMAP). The inter-comparison of the model ensembles yields R2 

values ranging from 0.25 to 0.55 (0.25 for WetCHARTs and WETCHIMP; 0.28 for GCP-

CH4 and WETCHIMP; 0.55 for WetCHARTs and GCP-CH4). The highest R2 value for 
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WetCHARTs and GCP-CH4 may be justified by the fact that the two model ensembles 

are based on the same wetland dataset (SWAMPS-GLWD) (Bloom et al., 2017; Poulter 

et al., 2017). However, the comparison of these two model ensembles with respect to 

wetland CH4 emission intensities (CH4 emissions per unit of wetland area) yields a small 

R2 value (R2 < 0.1). In fact, the comparison between the UVic ESCM and the three 

model ensembles as well as the inter-comparison of the model ensembles all yield small 

R2 values (R2 < 0.1) for both northern and global wetlands. This result suggests that 

large-scale wetland CH4 intensities are generally not consistent across process-based 

models. 
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Table E1. Statistics for the model performance evaluation with respect to northern (>45°N) and global wetland extents. 
The UVic ESCM is compared to two global wetland datasets over the 2000-2007 period: GIEMS and SWAMPS-
GLWD. Mean annual maximum extents over the same period are shown for reference. n represents the 
number of grid cells used in each comparison. 
 Mean annual Statistical comparison with the UVic ESCM 
 max. extent 𝑛𝑛 MBE MAE RMSE R2 
 (x 106 km2) (—) (km2) (km2) (km2) (—) 
Northern (>45°N)       
UVic ESCM 4.76 — — — — — 
GIEMS 3.05 429 787.5 1788.3 2374.7 0.09 
SWAMPS-GLWD 4.71 690 -108.9 1712.7 2504.5 0.36 
Global       
UVic ESCM 12.57 — — — — — 
GIEMS 9.33 869 1024.9 3681.2 6175.5 0.05 
SWAMPS-GLWD 10.59 1395 1124.2 2887.0 4234.1 0.11 

The comparison of GIEMS to SWAMPS-GLWD yields MBE = -966.7 km2; MAE = 1898.9 km2; RMSE = 3313.3 km2; and R2 = 0.12 for wetlands north of 45°N (n = 506). The 
comparison yields MBE = -65.1 km2; MAE = 2852.5 km2; RMSE = 5668.7 km2; and R2 = 0.22 for global wetlands (n = 1222). 
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Table E2. Statistics for the model performance evaluation with respect to CH4 emissions from northern (>45°N) and 
global wetlands. For northern wetland CH4 emissions, the model is compared to three upscaled flux 
measurements over the 2013-2014 period: RF-DYPTOP, RF-GLWD and RF-PEATMAP. For global wetland CH4 
emissions, the model is compared to three process-based model ensembles over the 2001-2004 period: GCP-
CH4, WetCHARTs and WETCHIMP. Annual mean wetland CH4 emissions over the same period are shown for 
reference. n represents the number of grid cells used in each comparison. 
 Annual mean Statistical comparison with the UVic ESCM 
 emissions 𝑛𝑛 MBE MAE RMSE R2 
 (Tg CH4 yr-1) (—) (Tg CH4 yr-1) (Tg CH4 yr-1) (Tg CH4 yr-1) (—) 
Northern (>45°N)       
UVic ESCM 33.2 — — — — — 
RF-DYPTOP 30.6 ± 9.2 562 0.0041 0.0433 0.0675 0.14 
RF-GLWD 37.6 ± 11.8 370 -0.0379 0.0723 0.1044 0.24 
RF-PEATMAP 31.7 ± 9.4 351 -0.0256 0.0531 0.0862 0.20 
Global       
UVic ESCM 154.4 — — — — — 
GCP-CH4 160.4 ± 28.1 1219 -0.0007 0.1167 0.2501 0.11 
WetCHARTs 147.3 ± 31.6 1388 0.0153 0.1037 0.2342 0.16 
WETCHIMP 182.9 ± 43.1 1539 -0.0092 0.1061 0.2220 0.19 

The comparison of RF-DYPTOP to RF-GLWD yields MBE = -0.0304 Tg CH4 yr-1; MAE = 0.0661 Tg CH4 yr-1; RMSE = 0.1073 Tg CH4 yr-1; and R2 = 0.14 (n = 468). The 
comparison of RF-DYPTOP to RF-PEATMAP yields MBE = -0.0219 Tg CH4 yr-1; MAE = 0.0575 Tg CH4 yr-1; RMSE = 0.0846 Tg CH4 yr-1; and R2 = 0.32 (n = 365). The comparison 
of RF-GLWD to RF-PEATMAP yields MBE = 0.0085 Tg CH4 yr-1; MAE = 0.0677 Tg CH4 yr-1; RMSE = 0.1023 Tg CH4 yr-1; and R2 = 0.33 (n = 266). 

The comparison of GCP-CH4 to WetCHARTs yields MBE = 0.0213 Tg CH4 yr-1; MAE = 0.0641 Tg CH4 yr-1; RMSE = 0.1735 Tg CH4 yr-1; and R2 = 0.55 (n = 1727). The 
comparison of GCP-CH4 to WETCHIMP yields MBE = -0.0192 Tg CH4 yr-1; MAE = 0.0991 Tg CH4 yr-1; RMSE = 0.2433 Tg CH4 yr-1; and R2 = 0.28 (n = 1780). The comparison of 
WetCHARTs to WETCHIMP yields MBE = -0.0304 Tg CH4 yr-1; MAE = 0.0641 Tg CH4 yr-1; RMSE = 0.1735 Tg CH4 yr-1; and R2 = 0.25 (n = 2103). 
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