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Abstract

Learning actions values is a key idea in sports analytics with applications such as player
ranking, tactical insight and outcome prediction. We compare two fundamentally different
approaches for learning action values on a novel play-by-play volleyball dataset. In the
first approach, we employ regression models that implicitly assume statistical independence
of data samples. In the second approach, we use a deep reinforcement learning model,
explicitly enforcing the sequential nature of the data in the learning process. We find that
temporally independent regression can in certain settings outperform the reinforcement
learning approach in terms of predictive accuracy, but the latter performs much better
when temporal consistency is required. We also consider a mimic regression tree as a way to
add interpretability to the deep reinforcement learning approach. Finally, we examine the
computed action values and perform a number of example analyses to verify their validity.

Keywords: Action Values; Volleyball; Reinforcement Learning; Machine Learning
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Chapter 1

Introduction

Increasing volume of collected data in all kinds of sports has made machine learning tech-
niques a quickly developing area in sports science, but progress varies depending on the
particular sport in question [6]. Learning the value of actions taken during a match is key
to sports analytics. It offers applications such as player evaluation (by aggregating a player’s
action values) strategic analysis (by comparing actions in a given context) or even match
outcome prediction [1, 13, 16, 18, 20].

An action value function maps the match state and an action to a real value which
measures the team’s chance of success after the action is taken. Two fundamental approaches
have been explored for learning action values:

1. A regression approach where state-action inputs are treated as the independent vari-
able and success chance as the dependent target variable. The regression approach
implicitly assumes that the values for different state-action pairs are statistically in-
dependent of each other. However, in the actual data, the chances of success for
successive state-action pairs are highly correlated. Examples of this approach include
work on soccer data in [7] and [17].

2. Temporal difference learning, which exploits data correlation by forcing success pre-
dictions for successive state-action pairs to be consistent with each other, such as in
[13] and [20].

This project compares the two approaches on a novel volleyball dataset collected in the
past three seasons through a collaboration with the University of British Columbia Men’s
Volleyball program.
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1.1 Preliminaries and Objectives

1.1.1 Markov Decision Process

A Markov decision process (abbreviated as MDP) is a discrete-time stochastic process con-
sisting of a set of states S, a set of actions A, and a transition function Pa(s, s′) which gives
the transition probability from state s into state s′ given that action a was taken.

1.1.2 Action Value Function

Commonly, a reward function Ra(s, s′), which outputs a real-valued reward given a state
transition, is provided along with an MDP. This allows for evaluation of actions taken in
terms of expected future reward. The Q function, given for an action taking policy π as:

Qπ(s, a) = E [Rt+1 + γQπ(St+1, At+1) |St = s,At = a] (1.1)

formalizes this. Here Rt+1 is shorthand for Ra(St, St+1), i.e. the reward obtained by taking
action a in state St and proceeding to state St+1. A discounting factor γ is used to avoid
infinitely large accumulation of rewards in some applications, but following the example in
hockey-related work [13, 21, 20], we set γ = 1 in our experiments. The main motivation is
that points scored are worth the same regardless of when they are scored and longer rallies
do not diminish the reward at the end.

1.1.3 Objectives

The aim of this project is to:

1. Construct an MDP from volleyball play-by-play event data. The states of the MDP
represent match context and the actions correspond to player actions on the court.

2. Compute an action value function using:

(a) regression learning that assumes temporal independence,

(b) reinforcement learning that enforces temporal consistency

and compare results.

1.2 Related Work

1.2.1 Computing Action Values

The concept of an action value function has been applied to event data in a number of dif-
ferent sports. In [5], expected value of possessions in basketball (equivalent to a Q function)
was used on an NBA dataset. Similarly, soccer actions were evaluated in terms of scoring
probability in [7]. However, this project relies mostly on work in the hockey context done
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by Liu, Routley and Schulte [13, 19, 20, 21] on large NHL event datasets. Their work has
further been extended to consider pairs of players appearing on the ice together in [14]. A
similar action value based approach was also taken in [10].

1.2.2 Volleyball Statistical Analysis

In volleyball, there have been previous applications of statistical methods involving Markov
chains, but the dataset concerned actions of only one of the two teams and no game context
such as current score was included. This is in contrast to our dataset, where both oppo-
nents’ data is included. Skill importance was computed in this fashion in [15], rally winning
probabilities were computed in [8] and home advantage was brought into question in [2].

1.2.3 Machine Learning in Volleyball

Moving to more recent research than the purely statistical methods listed in the previous
section, machine learning has been applied to volleyball data with the goal of predicting
future team rankings from win/loss data in [24]. Deep models were employed for activity
recognition on video in [9] and [11], with the objective of determining training load and
injury risk. In [27] and [25], analysis and prediction of attack patterns was carried out using
artificial intelligence methods and [26] tackled classification of players into skill levels based
on motion data from wearable devices.

Despite progress of machine learning in a variety of fields in volleyball, however, we did
not encounter a context-aware approach to estimating action values that this project applies
to a volleyball event dataset.

1.3 Report Structure

This report is structured as follows:

• In Chapter 2, we describe the volleyball dataset used and discuss the modelling deci-
sions made in the process of constructing our MDP.

• Chapter 3 gives details on the various machine learning models used in computing the
action value function.

• In Chapter 4, we discuss comparison metrics between the models and give results.

• Chapter 5 gives some examples of potential applications of the action value function
in a practical setting.

• Chapter 6 draws conclusions and suggests future work.

3



Chapter 2

Dataset and the Markov Decision
Process

2.1 Dataset Description

The volleyball dataset was collected in collaboration with the University of British Columbia’s
Men’s Volleyball program. The UBC Thunderbirds compete in the Canada West division
of U-Sports volleyball, which is the highest level of volleyball university competition in
Canada. Their regular season consists of a double round robin phase, where they play each
of the other Canada West teams twice, and a play-off phase, where top seeded teams play
a single elimination bracket to determine the conference champion as well as participants
in the U-Sports national final tournament. During the data collection time window, 12
teams participated in the Canada West competition, except in 2017/2018, where 13 teams
competed.

The collection process was manual, using specialized software to record play-by-play
data, either live at the game or after the fact using game video. In the former case, a
second pass was needed to ensure quality and completeness of data. The format used was
introduced by the company Data Project based in Salerno, Italy and has become widely
adopted in professional and international volleyball. Both teams’ actions were included for
every game.

The dataset contains data from all games played by UBC over three seasons. Addition-
ally, a number of matches between other teams in Canada West were included, originally
intended for the purpose of tactical preparation for an upcoming opponent.

Table 2.1 describes the dataset size in terms of games, sets, rallies and game events.

Games Sets Rallies Events
Contained in Data 204 764 34,242 146,050

Table 2.1: Dataset size description in various terms.
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Each entry in the dataset corresponds to an action event by a player in the game. We
differentiate 7 action types:

• Serve: first contact of the serving team, the action of putting the ball into play over
the net from behind the baseline.

• Receive: first contact of the team receiving the opponent’s serve.

• Set: Second contact on either side, the aim of which is to deliver the ball to an
attacker.

• Attack: Usually the third contact of either team, spiking the ball over the net with
the aim of scoring by hitting the ground in the opponent’s court.

• Block: The action of one or more players by the net attempting to defending against
an attack by deflecting the ball back to the opponent’s court as it crosses the net.

• Dig: The defensive action against an opponent’s attack, volleying the ball before it
contacts the ground.

• Free-ball: The first contact of a team after the opposing team failed to produce a
proper attack and volleyed an ’easy ball’ over the net.

Further, the outcome of each action is recorded, ranging from ‘=’ (double negative),
through ‘-’ (negative), ‘/’, ‘!’, ‘+’ (positive) and ‘#’ (double positive). The meanings of
these symbols vary by action type, but in general double negative corresponds to an error
(awarding the rally to the opponent) and double positive is a winning or perfect outcome,
eg. a scoring attack.

For most actions, the execution location is also recorded, as well as the trajectory loca-
tion for attack and serve actions. Finally, we also record the context, i.e. the state of the
game, including the current set number (1 through maximum 5) and the points scored by
each team in the current set (usually between 0 and 25, but can be higher in a ‘win by 2’
scenario). Table 2.2 summarizes the context and action-related fields recorded in the dataset.

Action Field Player, Team Type Outcome Location, Trajectory

Range categorical 7 categories 6 categories Discretized
12-by-6 grid of locations

Context Field Set Number Set Scores
Range Integers 1-5 Integers 0-31

Table 2.2: Summary of fields in the volleyball dataset. Action-related fields on top, context-
related fields on the bottom.
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Figure 2.1: Rally length histogram for the volleyball dataset.

2.2 The Markov Decision Process

In volleyball, a rally is a sequence of actions beginning with the serve and ending with one
of the teams scoring a point. We model every rally as a sequence of states and actions of
a Markov decision process (abbreviated as MDP). Similarly to the NHL related work in
[20], we include in the state space the match context as well as a limited history of previous
actions taken by either team.

In determining the extent of action history to include, we consider the distribution of
rally lengths (in terms of the number of actions). Figure 2.1 shows a histogram of rally
lengths found in the dataset. We adopt a maximum history window of 9 actions, which
means 96% of all rallies are encompassed in full from their beginning.

The state space S is therefore defined as a set of vectors (c, a0, a1, ..., a9), where c contains
the match context features, i.e. the current set score and set number, and a0 through a9

contain action features as described in Table 2.2 for the current action and up to 9 past
actions.

Every rally corresponds to a walk through the states of the MDP, where the action taken
by either team determines the next state. Eventually one of the teams wins the point and
the walk terminates. We model this by a reward function r : S × A → Z, where S is the
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state space, A is the action space and

r(s, a) =


1 if home team wins the rally

−1 if away team wins the rally

0 otherwise.

(2.1)

Our quantity of interest in this setting is the action value function (1.1). It expresses the
expected future reward given the current state and action assuming future actions follow
policy π.

Often in reinforcement learning applications, the objective is to compute the optimal
policy π∗ that maximizes future expected reward. This is not the case in this context, as
the objective is only to evaluate the match states and actions given the policy observed in
the data. The observed policy represents the behaviour of the average volleyball player. We
thus omit the subscript π in (1.1) from here on. Additionally, as discussed in Section 1.1.2,
we use a discounting factor of γ = 1 for all derivations and experiments to follow.
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Chapter 3

Models

This chapter gives an overview of the various learning models employed in our experiments.
As mentioned previously, we make the distinction between models that assume data in-
dependence on one hand and models that incorporate sequential dependence of the data
on the other hand. The former are considered first in Section 3.1 and the latter follow in
Section 3.2.

3.1 Temporally Independent Models

We first consider regression models that treat data samples as independent. The Q function
gives the expected future reward in an episode starting from a given state-action pair by
equation (1.1). Treating the current state and action as the independent variable x and
the eventual reward R(x) as the output, we can formulate this as a regression problem,
where the target value for each sample in the training data is 1 or −1, depending on which
team eventually won the rally. If we train a function estimator Q′ that minimizes the mean
squared error

1
|X|

∑
x∈X

(Q′(x)−R(x))2, (3.1)

then Q′(s, a) will approximate the conditional expected value

E [R |x] .

This follows from the property that conditional expectation of the target in general mini-
mizes mean squared error. See, e.g. Bishop [3] Section 1.5.5 for a derivation of this property.
In other words, since x is a state-action pair sample and R(x) is the eventual reward, Q′(x)
will approximate the Q function. We now consider specific models that follow this approach.

3.1.1 Decision Tree

Decision trees are an appealing model because they offer interpretable function approxi-
mation modelled as a sequence of simple decisions. We use a regression tree class from the
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Python scikit-learn package. Due to categorical fields in the dataset, a pre-processing step
is needed, encoding the categorical data using a number of binary ’dummy’ columns.

To avoid overfitting, we limit the maximum depth of the tree and use 5-fold cross-
validation to determine the best value for maximum depth (i.e. the one that gives the
minimal mean squared error averaged over the 5 cross-validation runs).

Table 3.1 shows experiment results for a range of maximal depth values. Setting the
depth limit to 10 is adopted as the best model based on the mean squared error values
shown.

max_depth 8 9 10 11 12 13
mean cross-validation MSE 0.6476 0.6302 0.6248 0.6260 0.6335 0.6448

Table 3.1: Mean MSE values for 5-fold cross-validation using a regression tree model with
varying maximal depth.

A distinct feature of tree models is the ability to plot and examine the tree structure. We
show the first three levels of the adopted tree in Figure 3.1. We notice the top level splits
mostly concern the most recent two action outcomes, which seems sensible. Interestingly,
it looks like action outcomes are considered before action types. This is likely due to the
fact that outcome symbols, especially the extremes ’#’ and ’=’, share the meaning of ’point
scored’ and ’point lost’ across several volleyball skills and splitting on those values correlates
with winning or losing the rally without knowing the action type.

  (...)    (...)    (...)    (...)    (...)    (...)    (...)    (...)    (...)    (...)    (...)    (...)    (...)    (...)    (...)    (...)  

Outcome1_/ <= 0.5
mse = 0.983

samples = 60321
value = 0.129

Outcome0_# <= 0.5
mse = 0.942

samples = 16656
value = -0.24

Type0_A <= 0.5
mse = 0.038

samples = 6298
value = -0.981

Outcome0_# <= 0.5
mse = 0.942

samples = 6835
value = -0.241

Outcome1_/ <= 0.5
mse = 0.963

samples = 25362
value = -0.193

Outcome0_# <= 0.5
mse = 0.901

samples = 16763
value = 0.314

Outcome0_# <= 0.5
mse = 0.031

samples = 6766
value = 0.985

Outcome0_# <= 0.5
mse = 0.91

samples = 7049
value = 0.299

Outcome1_+ <= 0.5
mse = 0.998

samples = 76977
value = 0.049

Away0 <= 0.5
mse = 0.645

samples = 13133
value = -0.596

Outcome1_+ <= 0.5
mse = 1.0

samples = 42125
value = 0.009

Home0 <= 0.5
mse = 0.597

samples = 13815
value = 0.635

Outcome1_# <= 0.5
mse = 0.998

samples = 90110
value = -0.045

Outcome1_# <= 0.5
mse = 0.973

samples = 55940
value = 0.164

Home1 <= 0.5
mse = 0.999

samples = 146050
value = 0.035

Figure 3.1: First levels of the regression tree structure.
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3.1.2 Random Forest

While decision trees are an appealing model in terms of simplicity and interpretability,
we wish to examine a potentially stronger regression model by using ensemble methods.
The random forest model from the Python scikit-learn package allows for a straightforward
implementation of an ensemble of trees. We use the same pre-processing steps as above
and train an ensemble of 10 decision tree estimators (experiments showed that using more
estimators beyond 10 did not provide a significant decrease in mean squared error). Table
3.2 shows mean MSE values for 5-fold cross-validation using a random forest model. An
improvement over using a single decision tree can clearly be observed.

max_depth 10 11 12 13 14
mean cross-validation MSE 0.6177 0.6159 0.6170 0.6192 0.6222

Table 3.2: Mean MSE values for 5-fold cross-validation using a regression random forest
model with varying maximal depth.

3.1.3 Regression Neural Network

We also explore the option of a neural network as a regression model. After experimenting
with a range of hidden layers, activation functions and node counts, we decide on the
following architecture:

• First dense layer of 200 nodes with RelU activation,

• Second dense layer of 20 nodes with RelU activation,

• Output layer with tanh activation.

Similarly to previous models, we employ 5-fold cross validation to determine the best number
of training epochs to prevent overfitting to the training data. Table 3.3 shows mean MSE
values for a range of training epoch counts. We adopted 7 epochs as the best value in further
experiments.

epochs 4 5 6 7 8 9 10
mean cross-val. MSE 0.6162 0.6145 0.6139 0.6116 0.6147 0.6142 0.6154

Table 3.3: Mean MSE values for 5-fold cross-validation using a regression neural network
model with varying number of training epochs.
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3.2 Temporally Consistent Models

In this section we consider a reinforcement learning (abbreviated as RL) approach, where
the underlying MDP is exploited and the sequential nature of the data is explicitly used in
the learning process. More specifically, the action value function has the recurrent property:

Q(s, a) = r(s, a) +
∑

s′,a′∈S×A
T (s, a, s′, a′) Q(s′, a′) (3.2)

where T (s, a) denotes the probability that the state-action pair (s′, a′) follows (s, a) in the
MDP. Equation (3.2) includes assumptions made in section 2.2.

3.2.1 Temporal Difference Learning

One of the central ideas in reinforcement learning is the notion of temporal difference
(TD) learning [23], which performs updates to action values after each state transition
without waiting until the end of the episode to obtain rewards. This is accomplished by
approximating the true action values through bootstrapping of the current estimate. In its
simplest form, the action value for a state-action pair (s, a) is updated by

Q(s, a)← Q(s, a) + α(r(s, a) + γQ(s′, a′)−Q(s, a)),

where the pair (s′, a′) follows (s, a) in the current episode and the reward r(s, a) is given for
the transition. The target r(s, a)+γQ(s′, a′) is a one-step bootstrapped estimate of the true
action value and the current estimate Q(s, a) is updated towards that value by learning rate
α. We use this concept in our RL Neural Network approach to computing action values.

3.2.2 The RL Neural Network

Our neural network architecture is based on the approach in [13] that proved successful for
deep learning using NHL hockey data. After some experiments with the number of nodes,
we adopt the following structure for our reinforcement learning based neural network:

• First layer containing 256 LSTM nodes for sequence processing,

• Hidden dense layer of 1000 nodes with RelU activation,

• Output layer.

The input sequence contains vectors of the current state-action pair and a history of up to 9
previous actions in the same rally. As in [13], a dynamic trace length parameter is passed to
the network to ensure the correct history length is taken into account. The network outputs
a single number, which is the estimated expected reward value of the given (partial) state
sequence. This differs from the implementation in [13], where separate values are output
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for ‘home score’, ‘away score’ and ‘no score’ events. Because of the nature of scoring in
volleyball, every rally ends with one of the two teams scoring and only a single number is
sufficient to describe all outcomes.

Denoting the weight vector of the neural network by w and the corresponding approxi-
mated action value function as Q(s, a; w), we apply one-step temporal difference bootstrap-
ping [23] to approximate the true action values Q(s, a) and we minimize the loss function:

J(w) = E[(r(s, a) + γQ(s′, a′; w)−Q(s, a; w))2],

where the state-action pair s, a is followed by the pair s′, a′, producing a reward of r(s, a).
For terminal states s′ where no successor state exists, expected future reward becomes triv-
ial - for those states we set Q(s, a; w) = r(s, a).
The training process uses gradient backpropagation by the Adam algorithm [12] as imple-
mented in the Tensorflow Python package.

We monitor convergence of the action values through the 1-norm of successive Q function
iterates, i.e. denoting by Qi the vector of all action values produced by the i-th iteration
through the training data, we consider ‖Qi−Qi−1‖1 as a measure of convergence and stop
when its value falls below a predefined threshold.

3.3 Mimic Tree

Mimic learning attempts to combine the predictive power of a deep neural network with the
transparency of a decision tree model. In [22], this approach is employed to model action
values learned from hockey data in an interpretable way. We follow the same idea using
volleyball action values, but we stop short of using linear model trees and use a regression
tree instead.

Specifically, we train a regression tree model with the same input as our regular regres-
sion tree, but instead of targeting the binary outcome of home or away rally win, we use the
output of the RL neural network (i.e. the computed action value) as the regression target.

Just as before, we use 5-fold cross-validation to determine the optimal maximal depth
of the tree. Table 3.4 shows an excerpt of the cross-validation mean squared error values for
various tree depths. We adopt a maximal depth of 20 as the optimal choice and note that
the mimic tree appears to achieve a good fit to the action values with MSE value about
2.5× 10−3.

max_depth 16 18 20 22 24
mean cross-validation MSE 0.00261 0.00257 0.00250 0.00257 0.00259

Table 3.4: Mean MSE values for 5-fold cross-validation using a regression random forest
model with varying maximal depth.
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The tree is much too large to include in its entirety, but we can examine some of the top
level splits shown in Figure 3.2. Comparison to Figure 3.1 reveals a great deal of similarity,
but there is a single node on the lowest level shown that is different between the two models,
indicating that the mimic tree is close to the original regression tree, but not identical.

  (...)    (...)    (...)    (...)    (...)    (...)    (...)    (...)    (...)    (...)    (...)    (...)    (...)    (...)    (...)    (...)  

Outcome1_/ <= 0.5
mse = 0.299

samples = 60321
value = 0.129

Outcome0_# <= 0.5
mse = 0.271

samples = 16656
value = -0.237

Outcome0_# <= 0.5
mse = 0.029

samples = 6298
value = -0.977

Outcome0_# <= 0.5
mse = 0.383

samples = 6835
value = -0.237

Outcome1_/ <= 0.5
mse = 0.257

samples = 25362
value = -0.191

Outcome0_# <= 0.5
mse = 0.262

samples = 16763
value = 0.313

Outcome0_# <= 0.5
mse = 0.025

samples = 6766
value = 0.98

Outcome0_# <= 0.5
mse = 0.388

samples = 7049
value = 0.299

Outcome1_+ <= 0.5
mse = 0.315

samples = 76977
value = 0.05

Away0 <= 0.5
mse = 0.35

samples = 13133
value = -0.592

Outcome1_+ <= 0.5
mse = 0.32

samples = 42125
value = 0.01

Home0 <= 0.5
mse = 0.326

samples = 13815
value = 0.633

Outcome1_# <= 0.5
mse = 0.372

samples = 90110
value = -0.044

Outcome1_# <= 0.5
mse = 0.394

samples = 55940
value = 0.164

Home1 <= 0.5
mse = 0.39

samples = 146050
value = 0.036

Figure 3.2: First levels of the mimic regression tree structure.

3.4 Summary

To summarize, Table 3.5 gives a list of all models considered in this project and whether or
not they enforce temporal consistency stemming from the sequential nature of the data and
the underlying MDP. Note that, while the mimic tree does not enforce temporal consistency
in its own right, it learns from the output of the RL Neural Network, indirectly incorporating
some temporal information.

Model Temporal Consistency
Decision Tree No
Random Forest No

Regression Neural Network No
Reinforcement Learning Neural Network Yes

Mimic Tree No*

Table 3.5: Summary of models used to compute action values.
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Chapter 4

Model Evaluation

4.1 Mean Squared Error

We evaluate the mean squared error (3.1) between observed rewards and computed action
values for all our models over the entire dataset. Table 4.1 shows a summary of MSE error
values for the various models as discussed in the previous chapter. The best regression fit
was achieved by using a random forest model, followed by the reinforcement learning neural
network. The decision tree model produced the highest mean squared error. These results
give the impression of the random forest as the superior model - however, as discussed
below, temporal consistency is sacrificed as a result.

Model Dec. Tree Rand. Forest Reg. Neural Net. RL Neural Net. Mimic Tree
MSE 0.609 0.592 0.606 0.603 0.604

Table 4.1: Mean squared error values between Q function estimates and eventual reward
values for various models.

4.2 Temporal Consistency

The action value function over a Markov decision process satisfies a recurrence relation-
ship in terms of the current state-action pair (s, a) and possible future state-action pairs
(St+1, At+1):

Qπ(s, a) = E [Rt+1 + γQπ(St+1, At+1) |St = s,At = a] (4.1)

= Rt+1 +
∑

s′∈S,a′∈A
γP (St+1 = s′, At+1 = a′ |St = s,At = a)Qπ(s′, a′). (4.2)

This property is known as the Bellman equation [23] and it gives us the opportunity
to evaluate action value estimates in an aspect that is different from the regression error
considered in the previous section. If our approximation is indeed an action value function,
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we expect it to (at least approximately) agree with the Bellman equation in addition to
minimizing the loss function against the training data. We use this notion to measure the
temporal consistency of our models.

In our context we use a discount factor of γ = 1 and rewards only occur at episode-ending
states. If s is not a terminal state, Rt+1 = 0 and the Bellman equation becomes

Q(s, a) =
∑
s′,a′

P (St+1 = s′, At+1 = a′ |St = s,At = a)Q(s′, a′). (4.3)

Assuming we’ve computed an action value function estimate for all the states in our dataset,
we can proceed to verify this equality using the data, since the transition probability P can
be estimated with respect to maximum likelihood (see e.g. [23] Chapter 6) by counting
occurrences of state transitions in the dataset as

P (St+1 = s′, At+1 = a′|St = s,At = a) = c(St+1 = s′, At+1 = a′, St = s,At = a)
c(St = s,At = a) ,

where we denote by c(x) the number of times x appears in the dataset.
Since the state space is large, we wish to avoid examining temporal consistency with

respect to a single state due to potential data sparsity effects. We are instead interested in
a set of state-action pairs X, summing all the corresponding action values as they appear
in the dataset, namely the quantity:

∑
s,a∈X

c(s, a)Q(s, a).

Using (4.3), we obtain the right hand side:

∑
s,a∈X

c(s, a)Q(s, a) =
∑
s,a∈X

c(s, a)
∑

s′,a′∈S×A

c(s′, a′, s, a)
c(s, a) Q(s′, a′), (4.4)

which simplifies to

∑
s,a∈X

c(s, a)Q(s, a) =
∑
s,a∈X

∑
s′,a′∈S×A

c(s′, a′, s, a)Q(s′, a′). (4.5)

This final form is the one we use to compute the degree of temporal inconsistency, since both
the left and right hand sides can be computed in a simple loop over the dataset sequences.
More specifically, we are interested in how much our action value estimates violate (4.5),
i.e. the quantity

eX = |
∑
s,a∈X

c(s, a)Q(s, a)−
∑
s,a∈X

∑
s′,a′∈S×A

c(s′, a′, s, a)Q(s′, a′)|. (4.6)
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Model Serve Receive Attack Set Block Dig
Decision Tree 0.0158 0.0151 0.0376 0.0074 0.0641 0.0662
Random Forest 0.0172 0.0183 0.0075 0.0066 0.0025 0.0148

Regr. Neural Network 0.0621 0.0162 0.0616 0.0401 0.0322 0.0508
RL Neural Network 0.0001 0.0005 0.0003 0.0019 0.0008 0.0002

Mimic Tree 0.0001 0.0001 0.0076 0.0018 0.0125 0.0009

Table 4.2: Mean degree of temporal inconsistency eX for various sets of non-terminal states
X. For each volleyball action type (columns), the set X includes actions performed by the
home team with a non-terminal outcome.

We choose the state-action subsetX to include actions of a single type with non-terminal
outcomes (for example, we include all serve actions that do not result in an immediate error
or point won). We compute the quantity eX averaged over the number of data samples for
various action types and compare results across different action value function approxima-
tions.

Looking at the eX values shown in Table 4.2, the reinforcement learning neural network
exhibits overall highest temporal consistency and the single decision tree is the worst of
our models in this respect. Since the RL neural network training incorporates the temporal
difference update, explicitly correcting toward the TD target

R(s, a) + γQ(s′, a′)−Q(s, a)

where the state-action pair (s, a) is followed by (s′, a′) in the data, it is not surprising that
temporal consistency is best maintained using this model. The Decision tree and other
regression models are trained under the assumption of independently sampled data and
do not incorporate any information about the sequential nature of the volleyball dataset.
Their eX values are accordingly much larger. In particular, the regression-based neural
network exhibits high eX values overall. In the case of the random forest, that drawback of
low temporal agreement could outweigh its lower mean squared error compared to the RL
neural network when used to compute action values.

The mimic tree model is by design a middle ground between regression models and
reinforcement learning, and its eX values seem to align with that premise. They are close to
the RL neural network’s in most cases, but significantly higher for attack and block actions.

4.3 Action Value Comparison

We compare action values computed by the different models for the home and away team,
including all possible action types and outcomes. Tables 4.3 and 4.4 contain mean values
of Q(s, a) over all state-action pairs where the action type and outcome for a are fixed,
separately for the home team and away team, respectively.
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Home Action Values
Action Dec. Tree Rand. For. Regr. NN RL NN Mim. Tree Data
S = -1 -1 -1 -0.998 -0.998 -1

- -0.293 -0.291 -0.262 -0.29 -0.29 -0.293
! 0.103 0.011 -0.066 -0.101 -0.101 -0.106
+ 0.103 0.246 0.298 0.225 0.225 0.238
# 1 1 0.985 0.997 0.998 1

R = -1 -1 -1 -0.998 -0.998 -1
- -0.167 -0.167 -0.118 -0.157 -0.157 -0.166
! 0.104 0.039 0.192 0.11 0.108 0.118
+ 0.287 0.323 0.424 0.325 0.325 0.321
# 0.437 0.427 0.409 0.446 0.446 0.446

A = -0.991 -0.987 -0.997 -0.994 -0.993 -1
/ -0.984 -0.968 -0.984 -0.993 -0.986 -1
- 0.02 -0.052 -0.021 -0.072 -0.072 -0.071
! 0.107 0.082 0.190 0.122 0.117 0.127
+ 0.302 0.284 0.439 0.372 0.368 0.362
# 0.947 0.99 0.988 0.994 0.994 1

B = -0.87 -0.969 -1 -0.99 -0.961 -1
- -1 -1 -0.986 -0.993 -0.993 -1
! 0.103 0.209 0.051 0.063 0.071 0.052
+ 0.218 0.154 0.246 0.146 0.145 0.142
# 0.999 1 0.998 0.993 0.993 1

D = -1 -1 -1 -0.995 -0.995 -1
! -0.289 -0.262 -0.187 -0.278 -0.275 -0.282
# 0.217 0.152 0.211 0.155 0.155 0.147

E = -0.941 -0.986 -1 -0.994 -0.989 -1
+ 0.364 0.375 0.432 0.371 0.371 0.372

Table 4.3: Comparison of home action values computed by different models and directly
from data. Entries closest to data values in bold.

Note that there is no inherent order in the outcome symbols and the values for the
different outcomes are entirely learned by the models. The fact that action values increase
for outcomes generally considered more favourable is a good sanity check and provides
validation for our models. We also compute mean eventual rewards directly from the data
for comparison. Overall the model values seem to agree well with the data averages with
a few exceptions. For example, home values for serve outcomes ‘+’ and ‘!’ computed by
the decision tree model are identical and seem to be somewhere in between the outcome
frequencies observed in the data set, suggesting that a split failed to occur and samples
were grouped together in the same leaf node. The same can be observed for the ‘!’ and ‘+’
outcomes of the away receive action. The random forest model corrects this to some extent,
but still outputs a positive value for the ‘!’ outcome, contrary to what the data suggests.
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Away Action Values
Action Dec. Tree Rand. For. Regr. NN RL NN Mim. Tree Data
S = 1 1 0.999 0.999 0.999 1

- 0.362 0.351 0.342 0.364 0.364 0.362
! 0.107 0.11 0.076 0.11 0.11 0.118
+ -0.166 -0.167 -0.170 -0.157 -0.158 -0.167
# -1 -1 -0.992 -0.998 -0.997 -1

R = 1 1 1 0.998 0.998 1
- 0.239 0.239 0.184 0.225 0.225 0.238
! -0.185 -0.097 -0.135 -0.101 -0.1 -0.106
+ -0.185 -0.251 -0.266 -0.252 -0.252 -0.256
# -0.369 -0.368 -0.377 -0.373 -0.373 -0.369

A = 0.986 0.987 0.991 0.994 0.986 1
/ 0.927 0.965 0.987 0.993 0.99 1
- 0.114 0.151 0.150 0.155 0.156 0.153
! 0.091 0.103 -0.025 0.067 0.072 0.051
+ -0.204 -0.206 -0.264 -0.287 -0.275 -0.277
# -0.998 -0.992 -0.989 -0.994 -0.993 -1

B = 0.951 0.969 0.996 0.992 0.991 1
- 0.999 1 0.994 0.994 0.994 1
! 0.116 0.109 0.142 0.123 0.119 0.127
+ -0.052 -0.07 -0.063 -0.072 -0.071 -0.075
# -1 -0.999 -0.998 -0.993 -0.993 -1

D = 1 1 1 0.995 0.995 1
! 0.37 0.363 0.326 0.377 0.378 0.371
# -0.069 -0.071 -0.073 -0.064 -0.064 -0.062

E = 0.971 0.987 0.972 0.993 0.989 1
+ -0.281 -0.287 -0.311 -0.283 -0.284 -0.281

Table 4.4: Comparison of away action values computed by different models. See also Table
4.3.
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4.4 Rally Win Prediction Accuracy

The action value function has a range of [−1, 1] where positive values correspond to higher
expected reward for the home team and negative values correspond to higher expected
reward for the away team. Denoting by (s, a) the current state-action pair, action values
can be converted to rally-winning probabilities by using the formula:

PH(s, a) = Q(s, a) + 1
2 (4.7)

for the home team and
PA(s, a) = 1−Q(s, a)

2 (4.8)

for the away team. These relationships can easily be derived by noting that one (and only
one) of the two teams always wins the rally, hence

PH(s, a) + PA(s, a) = 1. (4.9)

Furthermore, the reward function (2.1) values depend precisely on those two events and
therefore

Q(s, a) = PH(s, a)− PA(s, a).

Finally, substitution of (4.9) into this equation yields the formulas (4.7). These probabilities
can be used to predict the eventual winner of the rally and evaluate accuracy differences
between our models. Table 4.5 shows prediction accuracies as well as cross entropy values
over the entire dataset for the different models. Cross entropy for a single prediction is
computed using the formula

− logP (y|PH) = −(y logPH + (1− y) log(1− PH)), (4.10)

where y ∈ {0, 1} is the indicator variable for the home team eventually winning the current
rally and PH is the according predicted home win probability. Dependency of y and PH on
s and a omitted here for brevity.

We consider some baselines in this context, against which to compare model accuracy.
The home team has a slight advantage, so always predicting home to win the rally is a
possible baseline. Furthermore, the receiving team normally scores more often than the
serving team, so always predicting the receiving team to win the rally is another viable
baseline. We find the following baseline accuracies are obtained:

• Always predicting home team wins the rally: 0.5174,

• Always predicting receiving team wins the rally: 0.5807.
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Model Accuracy Score Log Loss
Decision Tree 0.7493 0.4345
Random Forest 0.8092 0.4017

Regr. Neural Network 0.7612 0.4203
RL Neural Network 0.7551 0.4283

Mimic Tree 0.7529 0.4301

Table 4.5: Comparison of models for rally win prediction.

From Table 4.5 accuracy values, clearly all models perform well above the considered base-
lines, but the random forest model outperforms the rest with a prediction accuracy of
just over 80%, which suggests it as the best choice in the win prediction context. Despite
the prediction accuracy advantage however, we will find that random forest is not the best
choice when it comes to preserving temporal consistency inherited from the Markov decision
process.

To further analyse the win prediction capabilities of our models, we consider predictions
depending on how many actions remain in the rally. Recall that the model input is a
partial sequence of actions leading up to the current state and action, which means model
performance likely depends significantly on how much play remains in the current rally.
Figure 4.1 shows a graph of this dependency. When the observed action is the last one
in the rally (i.e. zero actions remain), win prediction accuracy is perfect for all considered
models. It remains significantly better than guessing for up to 4 actions away from the rally
terminating, but for distances of 5 or higher, accuracy is significantly impaired and only the
random forest model continues to give predictions with around 60% accuracy.
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Figure 4.1: Model win prediction accuracy plotted against distance from the end of rally in
terms of actions remaining.
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Chapter 5

Action Value Use Examples

5.1 Serve Risk Assessment

The serve action is one of the most crucial actions types in volleyball as its outcome has
a large impact on the odds of either team winning the rally. It is also the only action
in volleyball where the player executing it has complete control independently of other
players’ actions. Optimizing the risk/reward profile for serving is therefore an important
problem coaches and players frequently face [4]. In this section we examine serve action
value depending on the score context, namely how close to ending the current set is in
terms of score. We take max(home score, away score) to be the progress measure of the
current set and compare the action values of serves resulting in the ‘-’ and ‘!’ outcomes.
The ‘-’ outcome corresponds to the opponent team receiving the ball well enough to have
all attack options available - this is the expected outcome of a serve executed with low risk.
The ‘!’ serve outcome means the opponent reception landed away from the net, removing
the quick middle attack option and making opponent offence more predictable - this is
generally the outcome sought when executing a serve with some (controlled) risk.

Figure 5.1 shows action values converted to point scoring probability (see equation (4.7))
for the serve outcomes above depending on the current set score. For simplicity, the set score
is bracketed into intervals of 0-5, 6-10, 11-15, 16-20 and 21-25. The x axis labels correspond
to the upper end of each interval. From the graph we can observe a decreasing trend in the
‘-’ outcome value and an increasing trend in the ‘!’ outcome value. This would suggest a
strategy using lower risk serving in the beginning of a set and gradually increasing the risk
towards the end of the set, since ‘!’ outcomes become more valuable as the set progresses.

This is of course not a complete risk assessment, since we did not include any information
regarding serve errors, but it can serve as an example of potential use of the action value
function.
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Figure 5.1: Home serve values converted to point scoring probability for the ‘-’ and ‘!’ serve
outcomes depending on current set score.

5.2 Serve Receive Location Analysis

Since the previous section concerned analysis of actions through time, we now consider
an example related to spatial location. We focus on the action of receiving an opponent’s
serve and examine the associated end location of the ball, i.e. where the ball ended up
after the receive action was performed. This is a good validation example because there is
ample domain knowledge on the ideal target location that we can use to compare against
computed action values.

Figure 5.2 depicts home win probabilities by end location for the home team receiving
the serve (bird’s eye view of half the court is depicted with the net on the top side of the
image). These can easily be computed from action values using equation (4.7). Locations
in the half-court furthest from the net are not included due to the fact they are not present
in detail in the data.

The location with highest winning probability coincides perfectly with the usual notion
of a perfect reception, i.e. close to the net and shifted slightly to the right. Values generally
decrease as distance from the net increases and as the location is shifted away from the ideal
vertical line. This confirms our action values agree with domain knowledge and provides
validation to our model.
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Figure 5.2: Home win probabilities (percent) for home serve receive actions by end location.

5.3 Action Impact

One of the motivations of computing the action-value function for sports data is the ability
to numerically rank teams and players according to their action values. To achieve this, we
need to consider that the context of an action performed by a player influences the quality
of their actions. Namely, scoring a point from a favorable situation (eg. a successful attack
following a perfect pass) should be treated differently than scoring in a situation that is
deemed difficult. This leads us to the notion of action impact.

As discussed in [19], there are several options of how we could choose to value actions.
We adopt the difference of consecutive action values as a measure of impact. Namely, for a
transition from state st−1 to st, with actions at−1 and at we define the impact of (st, at) as:

impact(st, at) = Q(st, at)−Q(st−1, at−1). (5.1)

This allows us to capture to some degree how the flow of the game changed when action at
was performed. This version of valuing player actions was successfully used in the hockey
context in [13] for player evaluations.

Note that since action impact relates to the values of both current and previous states, we
need to find a treatment for the first action of any episode (in volleyball this is always a serve
action), where st−1 and at−1 are not defined. The most obvious solution is to use an initial
state-action value of 0, but since the serving team is generally at a disadvantage in terms
of scoring probability, this approach gives serve actions a negative value on average and
renders serve values disproportionate when compared to other action types. We therefore
proceed as follows. Define QSH to be the mean value of all home serve actions and QSA to
be the mean value of all away serve actions. We then use these values to compute action
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impacts as:

impact(st, at) =


Q(st, at)−QSH if at is home serve,

Q(st, at)−QSA if at is away serve,

Q(st, at)−Q(st−1, at−1) otherwise.

(5.2)

The intuition behind this approach is to have the serve impact measure the difference
between the current serve and the average serve. We also know the home team tends to
have a slight advantage, which is the reason for separate averaging of home and away serves.
The two means, QH and QA do in fact differ in absolute value by about 0.06 in favour of
the home team.

Firstly, we consider team collective action impact and investigate how well it aligns with
team performance in the Canada West volleyball competition in the last three seasons. To
this end, we compute the mean impact of all actions performed by players of a particular
team using equation (5.2). These values are collected in Table 5.1 for all teams participating
in the Canada West men’s volleyball competition (with the exception of Regina, who ceased
participation after the 2017/2018 season and is not well represented in the dataset). We
compare action impact values to mean ranking of the teams following regular season across
the 2017/2018, 2018/2019 and 2019/2020 seasons, also included in Table 5.1. Teams in
the table are sorted by mean action impact. Good alignment against team ranking can
be seen from inspection of the table, but a plot is also included in Figure 5.3 for a more
visual representation. With the exception of three teams, an increase in mean action impact
corresponds to higher ranking, which is desirable behaviour for our model, as higher action
values lead to more wins. We also compute the Pearson correlation coefficient between mean
action impacts and mean rankings and obtain a value of -0.854, confirming a high correlation
and a near linear relationship.

We note here again that the dataset contains all UBC games, but not all games among
other Canada West teams, meaning that the amount of data for those teams is significantly
lower than for UBC. The bias introduced by this could explain the outliers in Figure 5.3.

We can compute mean action impacts for individual players in the same fashion as we
did for teams above, which enables us to track and rank player performance. Table 5.2 shows
the top 10 players ranked by mean action impact in Canada West. The caveat, compared
to team ranking, is that there are fewer obvious ways to check the validity of these values.
In professional leagues such as the NHL, player salary has been used for this purpose, e.g.
in [21], but there is no such information for university athletes. Regardless, we still attempt
some discussion. Notably, most of the players listed come from the top ranked teams - the
best 4 teams in Canada West (by mean ranking in the last 3 seasons) are represented 8 out
of 10 times, which can be taken as a good sign.
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Team Mean Action Impact R20 R19 R18 Mean Ranking
Trinity Western 0.0220 1 2 1 1.33

Alberta 0.0175 2 3 3 2.67
UBC 0.0124 3 7 2 4.00

Brandon 0.0077 4 1 4 3.00
Calgary 0.0073 5 8 6 6.33
Winnipeg 0.0053 6 10 5 7.00

Mount Royal -0.0053 8 4 10 7.33
Manitoba -0.0067 10 9 7 8.67
MacEwan -0.0128 12 11 12 11.67

Thompson Rivers -0.0144 9 6 8 7.67
Saskatchewan -0.0210 7 5 9 7.00

UBCO -0.0235 11 12 11 11.33

Table 5.1: Canada West teams sorted by mean action impact. Columns R20, R19, R18 are
team rankings after regular season in 2020, 2019 and 2018, respectively and Mean Ranking
is the mean of those three columns.

Player Name Team Mean Action Impact
Elliot Viles Brandon 0.0838

Eric Loeppky Trinity Western 0.0796
Jackson Kennedy Alberta 0.0580
George Hobern Alberta 0.0566
Hamish Hazelden Calgary 0.0539

Joel Regher UBC 0.0509
Daniel Thiessen Winnipeg 0.0504
Gerard Murray UBC 0.0471
Jordan Canham Alberta 0.0459
Arran Chambers Alberta 0.0451

Table 5.2: Top 10 individual players in Canada West by mean action impact as given in
equation (5.2).

On a more individual level, player awards and recognition can provide further validity
to our ranking. Elliot Viles, who ranks first in Table 5.2, was named a conference all-star in
his rookie season and both Canada West as well as U SPORTS National player of the year
in the 2018/2019 season. He also represented his home country Australia in the prestigious
FIVB World League competition. Eric Loeppky, who follows closely in the mean impact
ranking, also received the title of U SPORTS player of the year in 2020 as well as multiple
other awards and has played on the Canadian senior national team, which is rare for players
still in their university years. Jackson Kennedy and Daniel Thiessen have furthermore been
selected as Canada West all-star team members alongside Loeppky and Viles. Prominent
players like that featuring as leaders in impact ranking is further validation of our action
impact model.
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Figure 5.3: Team mean ranking plotted against mean action impact for Canada West par-
ticipating teams, see Table 5.1 for values shown in this graph.
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Chapter 6

Conclusion and Future Work

This project explores learning action values from volleyball data using two fundamentally
different approaches. In the first approach, regression models are used to estimate the even-
tual reward (winning the rally) using partial action sequences and match context under
an independence assumption. In the second approach, deep reinforcement learning is used,
explicitly incorporating the sequential nature of the data into the learning process.

In terms of mean squared error, a common measure used in regression, the random
forest regression model achieved the best fit out of all experiments, followed by the RL neural
network in second place. However, when considering temporal consistency, the reinforcement
learning approach produced much more consistent action values. This suggests that the
random forest might be of better use in a strictly predictive context, but since action values
can be used in a diverse range of sports analyses (a sample of which we include in Chapter
5), we believe the temporal consistency of deep reinforcement learning makes it the best
choice.

As an additional experiment, we include a tree regression model based on mimic learning.
We find that it can achieve good fidelity to the RL neural network’s outputs (see Table 3.4),
while providing insight into their interpretation through its tree structure.

In Chapter 5, a number of example analyses using action values are carried out using the
values computed by the RL neural network. Comparing those against domain knowledge
we find a high degree of agreement, which adds validity to our model.

In terms of future work, this project examines only a small subset of all available machine
learning models, so there are numerous possible extensions:

• Additional ensemble methods for regression could be tested, e.g. gradient boosted
trees.

• When performing mimic learning, we restrict ourselves to a regression tree, but a
linear model tree could be used such as in [22].

• Finally, there are numerous architecture choices in neural network design that could
be considered, such as convolutional neural networks.
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Appendix A

Code

The following is the core Python code used to produce results listed in this report. Non-
essential exploratory analysis and plot-producing code is omitted.

A.1 Regression Models

import pandas as pd
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn import metrics
from sklearn.model_selection import cross_val_score

def loadDataset():
# loads volleyball data, returns input columns X as well as target column y

vb = pd.read_csv("../data/vb_data_3_numZone.csv")

# get input columns
X = vb.drop(['Season', 'GameID', 'PlayerTeam', 'PlayerName', \

'RewardDistance', 'RewardValue'], axis=1)

# generate dummy columns for categorical values
print(len(X.columns), 'columns in dataframe before dummies')
cols = [col for col in list(X.columns) if X[col].dtype == 'object']
X = pd.get_dummies(data=X, columns = cols)
print(len(X.columns), 'columns in dataframe after dummies')

# get target column
y = vb.RewardValue
return X,y
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# --- Decision Tree

def crossValRegressionTree(X, y, min_val=8, max_val=16):
# runs 5-fold cross-validation on a decision tree regression model
# with varying max_depth

for depth in range(min_val,max_val+1):
print('Checking max_depth =', depth)
decTree = DecisionTreeRegressor(max_depth=depth)
# perform 5-fold cross validation
scores = cross_val_score(estimator=decTree, X=X, y=y, cv=5, \

scoring='neg_mean_squared_error')
print('Mean cross validation MSE:', scores.mean())

def buildRegressionTree(X, y, max_depth=10):
# creates and trains a decision tree regression model

decTree = DecisionTreeRegressor(max_depth=max_depth).fit(X,y)
y_predicted = decTree.predict(X)
print("Mean squared error:", metrics.mean_squared_error(y, y_predicted))
return decTree

# --- Random Forest

def crossValRandomForest(X, y, min_val=8, max_val=16):
# runs 5-fold cross-validation on a random forest regression model
# with varying max_depth

for depth in range(min_val, max_val+1):
print('Checking max_depth =', i)
randForest = RandomForestRegressor(n_estimators=10, max_depth=i)
# Perform 5-fold cross validation
scores = cross_val_score(estimator=randForest, X=X, y=y, cv=5, \

scoring='neg_mean_squared_error')
print('Mean cross validation MSE:', scores.mean())

def buildRandomForest(X, y, max_depth=11):
# creates and trains a random forest regression model

randForest = RandomForestRegressor(n_estimators=10, max_depth=max_depth)
randForest.fit(X, y)
y_predicted = randForest.predict(X)
print("Mean squared error:", metrics.mean_squared_error(y, y_predicted))
return randForest

# --- Neural Network

from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasRegressor
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def regressionNNModel():
# create neural network
model = Sequential()
model.add(Dense(200, input_dim=204, activation='relu'))
model.add(Dense(20, activation='relu'))
model.add(Dense(1, activation='tanh'))
# compile model
model.compile(loss='mean_squared_error', optimizer='adam')
return model

def crossValNN(X, y, min_val=1, max_val=10):
# performs 5-fold cross validation with varying
# number of training epochs

for epochs in range(min_val, max_val+1):
estimator = KerasRegressor(build_fn=regressionNNModel, \

epochs=epochs, batch_size=64, verbose=0)
results = cross_val_score(estimator, X, y, cv=5)
print("CV MSE for %d epochs: %.5f" % (epochs, results.mean()))

def buildNN(X, y, epochs=7):
# builds and trains a neural network regression model

neural_net = KerasRegressor(build_fn=regressionNNModel, epochs=epochs,
batch_size=64, verbose=1)

neural_net.fit(X,y)
y_predicted = neural_net.predict(X)
print("Mean squared error:", metrics.mean_squared_error(y, y_predicted))
return neural_net

A.2 Reinforcement Learning Model

The following Python code is based on the NHL deep learning model from [13], but has
been substantially adapted for our purposes.

A.2.1 Neural Network Class

import tensorflow as tf

class vball_lstm:
def __init__(self, feature_count, lstm_cell_count, max_trace_length,

learning_rate):
# define a dynamic LSTM neural network

with tf.name_scope("LSTM_layer"):
self.rnn_input = tf.placeholder(tf.float32,

[None, max_trace_length, feature_count],
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name="rnn_input")
self.trace_lengths = tf.placeholder(tf.int32, [None],

name="trace_lengths")

self.lstm_cell = tf.contrib.rnn.LSTMCell(
num_units=lstm_cell_count,
state_is_tuple=True,
initializer=tf.random_uniform_initializer(-0.05, 0.05))

self.rnn_output, self.rnn_state = tf.nn.dynamic_rnn(
inputs=self.rnn_input, cell=self.lstm_cell,
sequence_length=self.trace_lengths,
dtype=tf.float32,
scope='bp_last_step_rnn')

self.outputs = tf.stack(self.rnn_output)
self.batch_size = tf.shape(self.outputs)[0]
self.index = tf.range(0, self.batch_size) * max_trace_length

+ (self.trace_lengths - 1)
self.rnn_last = tf.gather(tf.reshape(self.outputs,

[-1, lstm_cell_count]), self.index)

num_layer_1 = lstm_cell_count
num_layer_2 = 1000
with tf.name_scope("dense_layer_1"):

self.W1 = tf.get_variable('w1_xaiver',
[num_layer_1, num_layer_2],
initializer=tf.contrib.layers.xavier_initializer())

self.b1 = tf.Variable(tf.zeros([num_layer_2]), name="b_1")
self.y1 = tf.matmul(self.rnn_last, self.W1) + self.b1
self.activation1 = tf.nn.relu(self.y1, name='activation')

with tf.name_scope("dense_layer_2"):
self.W2 = tf.get_variable('w2_xaiver', [num_layer_2, 1],

initializer=tf.contrib.layers.xavier_initializer())
self.b2 = tf.Variable(tf.zeros([1]), name="b_2")
self.read_out = tf.matmul(self.activation1, self.W2) + self.b2

self.y = tf.placeholder("float", [None, 1])

with tf.name_scope("cost"):
self.readout_action = self.read_out
self.cost =

tf.reduce_mean(tf.square(self.y - self.readout_action))
self.diff =

tf.reduce_mean(tf.abs(self.y - self.readout_action))
tf.summary.histogram('cost', self.cost)
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with tf.name_scope("train"):
self.train_step =

tf.train.AdamOptimizer(learning_rate=learning_rate)
.minimize(self.cost)

A.2.2 Main Learning Class

from nn_lstm import vball_lstm
from data_utils import get_next_batch, prepare_data, shuffle_data
import tensorflow as tf
import numpy as np
import time
import pickle

# config variables
FEATURE_COUNT = 41
LSTM_CELL_COUNT = 256
MAX_TRACE_LENGTH = 10
LEARNING_RATE = 1e-6
THRESHOLD = 0.0001
BATCH_SIZE = 32
GAMMA = 1

SAVE_DIR = '../output'
DATA_FILE = '../data/vb_data_3_numZone.csv'

def train_network(sess, model, state_data, reward_data, trace_lengths,
reward_targets, episode_ids, max_iterations):

converge_flag = False
merge = tf.summary.merge_all()
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
start_iteration = 1

state_data_orig = state_data.copy()
trace_lengths_orig = trace_lengths.copy()

restore_model = True
if restore_model:

checkpoint = tf.train.get_checkpoint_state(SAVE_DIR)
if checkpoint and checkpoint.model_checkpoint_path:

start_iteration =
int((checkpoint.model_checkpoint_path.split("-"))[-1]) + 1

saver.restore(sess, checkpoint.model_checkpoint_path)
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print("Successfully loaded:",
checkpoint.model_checkpoint_path)

else:
print("Could not find old network weights.")

# initial action values
[rnn_outputs_prev, q_predictions_prev] =

sess.run([model.outputs, model.read_out],
feed_dict={model.trace_lengths: trace_lengths_orig,
model.rnn_input: state_data_orig})

for iteration in range(start_iteration, max_iterations+1):
t = time.time()
print('Iteration %d ...' % (iteration))
costs = []
sample_index = 0

# shuffle data, preserving episodes
state_data, reward_data, trace_lengths, episode_ids =

shuffle_data(state_data, reward_data, trace_lengths,
episode_ids)

while sample_index < len(state_data):
# prepare batch
states0, states1, rewards, traces0, traces1, end_index =

get_next_batch(state_data, reward_data, trace_lengths,
sample_index, BATCH_SIZE)

# compute NN prediction
[rnn_outputs_t1, q_predictions_t1] =

sess.run([model.outputs, model.read_out],
feed_dict = {model.trace_lengths: traces1,

model.rnn_input: states1})

q_target = np.zeros([len(rewards), 1])
for i in range(len(rewards)):

if rewards[i] != 0:
# in this case, we're at the end of an episode
q_target[i,0] = rewards[i]

else:
q_target[i,0] = rewards[i] + GAMMA *

q_predictions_t1[i,0]

# update with gradient
[diff, read_out, cost, summary_train, _] =

sess.run([model.diff, model.read_out, model.cost, merge,
model.train_step], feed_dict={model.y: q_target,
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model.trace_lengths: traces0,
model.rnn_input: states0})

sample_index = end_index + 1
costs.append(cost)

# end of iteration loop

iteration_cost = np.mean(costs)
print('... done. Time elapsed: %.2f seconds' % (time.time() - t))
print('Iteration cost: %.3f' % (iteration_cost))

[rnn_outputs, q_predictions] =
sess.run([model.outputs, model.read_out],

feed_dict={model.trace_lengths: trace_lengths_orig,
model.rnn_input: state_data_orig})

# compute mean change in value predictions
avg_change = np.mean(np.abs(q_predictions - q_predictions_prev))
print('Mean change from last iteration: %.5f' % (avg_change))
q_predictions_prev = q_predictions

saver.save(sess, SAVE_DIR + '/nn-iter', global_step=iteration)

# check for convergence
if avg_change < THRESHOLD:

converge_flag = True

if converge_flag:
print('Convergence detected, exiting.')
print('Saving action values.')
pickle.dump(q_predictions,

open(SAVE_DIR + '/q_values.pkl', 'wb'))
break

print('Done.')

A.3 Mimic Learning

import pandas as pd
import numpy as np
import pickle
from sklearn.tree import DecisionTreeRegressor
from sklearn import metrics
from sklearn.model_selection import cross_val_score

def crossValMimicTree(min_val=10, max_val=30):
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# runs 5-fold cross-validation on a mimic tree regression model
# load data
X, _ = loadDataset()
# load reinforcement learning neural net outputs
act_values_raw = pickle.load(

open('../output/q_values_RL_NN.pkl', 'rb'))
act_values = np.asarray(

[q_values_raw[i,0] for i in range(len(q_values_raw))])
# clipping
act_values[act_values > 1] = 1
act_values[act_values < -1] = -1
for depth in range(min_val, max_val+1):

print('Checking max_depth =', depth)
mimicTree = DecisionTreeRegressor(max_depth=depth)
# Perform 5-fold cross validation
scores = cross_val_score(estimator=mimicTree,

X=X, y=act_values, cv=5, scoring='neg_mean_squared_error')
print('Mean cross validation MSE:', scores.mean())

def buildMimicTree(max_depth=20):
# build and train a mimic tree regression model

# load data
X, _ = loadDataset()
# load reinforcement learning neural net outputs
act_values_raw = pickle.load(

open('../output/q_values_new.pkl', 'rb'))
act_values = np.asarray(

[q_values_raw[i,0] for i in range(len(q_values_raw))])
# clipping
act_values[act_values > 1] = 1
act_values[act_values < -1] = -1
# build mimic tree and print MSE to NN action values
mimicTree = DecisionTreeRegressor(max_depth=max_depth)

.fit(X, act_values)
q_mimic = mimicTree.predict(X)
print("Mean squared error:",

metrics.mean_squared_error(act_values, q_mimic))
return mimicTree
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