
Deterministic Learning of DNF
by

Young Shin Oh

B.Sc., University of British Columbia, 2011

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master Of Science

in the
School of Computing Science
Faculty of Applied Sciences

c© Young Shin Oh 2020
SIMON FRASER UNIVERSITY

Fall 2020

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Young Shin Oh

Degree: Master Of Science (Computing Science)

Thesis title: Deterministic Learning of DNF

Committee: Chair: Oliver Schulte
Professor, Computing Science

Valentine Kabanets
Supervisor
Professor, Computing Science

Andrei Bulatov
Committee Member
Professor, Computing Science

Igor Shinkar
Examiner
Assistant Professor, Computing Science

ii

Abstract

Our main result is a deterministic learning algorithm with membership queries that approx-
imately learns a DNF on n variables with poly(n) number of terms to within an additive
approximation error ε in time nÕ(log(n)·log2(1/ε)). With random examples under the uniform
distribution, the learning algorithm of [LMN93] for DNFs runs in time nO(log2(n/ε)).

Our approach is to consider the Fourier expansion of the target DNF and approximate
the heavy Fourier coefficients. Our hypothesis is the sign of the sparse polynomial that
is defined with the approximated coefficients. We present two approaches for building our
sparse polynomial.

First, we use Gopalan and Meka’s [GMR13] PRG to deterministically approximate small
degree coefficients of our target DNF. Second, we generalize the result of [DETT10] to show
that a general DNF can be fooled by a small biased set to approximate coefficients of any
degree.

We also present a derandomized Goldreich and Levin’s algorithm for DNFs under the as-
sumption that there exists an ε-PRG of seed length log(n/ε) exists. This yields a determin-
istic learning algorithm for DNFs that runs in time nO(log logn log(1/ε)) under the ideal PRG
assumption.

Keywords: Always approximately correct learning ; Membership queries ; Disjunctive Nor-
mal Form ; Derandomization; Fourier Transform

iii

Dedication

To my family for always being there.

iv

Acknowledgements

I would like to express my deepest gratitude to my senior supervisor Dr. Valentine Kabanets
for giving me the opportunity to research and guiding me with patience. This thesis is mainly
based on joint work with Dr. Kabanets. His ability to explain hard concepts in a way that
is intuitively clear and passion for the field of computational complexity has always been a
source of inspiration.

I was very fortunate to be a part of many research meetings with Dr. Kabanets, Dr.
Antonina Kolokolova, and Dr. Marco Carmosino. My sincere thanks to Dr. Kolokolova for
her great advice which enriched this thesis. I want to thank Dr. Carmosino for his many
presentations and intellectual openness which taught me how research should be done. I
owe special thanks to Zhenjian Lu for providing helpful guidance at the beginning of this
research.

I would like to extend my special thanks to Dr. Andrei Bulatov, Dr. Igor Shinkar, and
Dr. Oliver Schulte for accepting to serve as the examining committee.

v

Table of Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

1 Introduction 1
1.1 Introduction . 1
1.2 Our Results . 3

2 Main Result 6
2.1 Preliminaries . 6

2.1.1 Vector space . 6
2.1.2 Fourier transform . 6
2.1.3 Restriction . 9
2.1.4 Secure pseudorandom generators . 9
2.1.5 Derandomization using pseudorandom generators 11
2.1.6 Biased distribution . 12
2.1.7 Learning model . 13
2.1.8 Sandwiching Approximators . 14

2.2 Main Results . 16
2.2.1 Estimation of Fourier coefficients from random examples 17
2.2.2 Goldreich and Levin Algorithm: Application in Learning of Boolean

functions . 17
2.2.3 Derandomization of Goldreich Levin algorithm for small L1 norm

functions . 19
2.2.4 Sparse polynomial approximation . 23

3 Deterministic approximation of the Fourier coefficients 26

vi

3.1 Estimation based on conditional expectation and GMR pseudorandom gen-
erator . 26

3.2 Estimation based on biased distribution that fools small L1 norm functions 29

4 Deterministic learning of DNF 33
4.1 Learning from GMR PRG . 33
4.2 Learning from biased distribution . 35

5 Deterministic learning of AC0 37
5.1 Fourier spectrum bound approach . 37
5.2 Sparse polynomial approach . 39

6 Deterministic Goldreich and Levin algorithm for DNFs 41

7 Conclusions 46

Bibliography 48

Appendix A Estimating Fourier coefficients 51

vii

Chapter 1

Introduction

1.1 Introduction

A logical formula is in DNF if it is a disjunction of one or more conjunctions of one or more
literals. The size of a DNF formula is measured by either the number of conjunctions(terms)
or the maximum width of a term. DNFs are widely used in machine learning because it is a
natural way to express real concepts. Therefore much attention has been given to the class
of functions with compact DNF representations and its learnability has been well-studied.
This paper is about learning DNFs with polynomial number of terms.

The learning algorithm we will be discussing in this paper is an approximately correct
learning. By approximately correct, we mean that the output hypothesis of the learner
agrees with the target function on almost all inputs except some fraction under the uniform
distribution. The error can be a constant or it can be a function of the size of the input.
The quality of the hypothesis is then evaluated according to the error.

In the original PAC learning model [Val84], the adversary can choose any distribution on
the inputs on which the target function evaluates to true and the learner is only allowed to
get random examples from the distribution. Since we can exactly identify a Boolean function
on {0, 1}n by identifying the subset of {0, 1}n on which the function is true, Valiant opts
for one-sided error for the learning model. In other words, the hypothesis function will be
false on those inputs that the target function is false but the hypothesis is allowed to make
mistakes on those inputs that the target function is true. Assuming that the distribution
is what naturally occur for the positive examples, the inputs that are sampled from the
distribution will represent what inputs typically make the target function true. The idea
behind PAC learning model is that after enough sampling from the distribution, with high
probability, we will have seen all the examples that occur with high probability in which case
the probability mass of the unseen examples is negligible. Then construction of a hypothesis
simply becomes defining a function that is true on the examples we have seen so far. This
hypothesis will then, with high probability, agree with the target function except on those

1

inputs that occur very rarely. A class of function is PAC learnable if there is a polynomial
time algorithm that can do the above procedure and output a hypothesis.

Despite intensive research to PAC learn DNF formulas, the fastest algorithm that learns
polynomial size DNF under arbitrary distribution remains to be 2Õ(n1/3) [KS04]. Even if
we restrict the distribution to the uniform, the fastest algorithm to this date is nO(logn)

[Ver90]. While the examples in the PAC learning model are independent from each other,
Bshouty and others [BMOS05] presented a polynomial time algorithm under another nat-
ural assumption where the examples are not generated independently but are produced
sequentially according to a random walk on the Boolean hypercube.

An important technique in analysis of Boolean function is Fourier analysis. Fourier
expansion of a Boolean function is a multilinear polynomial with real valued coefficients
where each monomial is a parity function. By studying the coefficients carefully, researchers
have been able to derive many useful properties of a Boolean function. These properties
can be used to construct a function that can approximate a given Boolean function. In
their seminal work, Linial, Mansour and Nisan [LMN93] used Fourier analysis to learn
Boolean functions that can be computed by depth d and polynomial size circuits in time
nO(logd(n/ε)) under the uniform distribution where ε is the error. They used the fact that
a constant depth circuit has most of its Fourier coefficients on the small degree terms and
estimated those coefficients using random sampling from the uniform distribution. Since
then Fourier analysis played a central role in learning of DNFs.

Note that the examples presented to the learner in the original PAC learning model are
random and the learner is passive in this sense. To overcome the limitation of random ex-
amples, membership queries were introduced to learning models. With membership queries,
the learner can query the unknown target function on any input. Building on his previ-
ous work of [KM93], which uses membership queries in a recursive algorithm and outputs
close approximations to all of the large Fourier coefficients of a Boolean function, Man-
sour [Man92] presented an (n/ε)O(log log(n/ε) log(1/ε))-time algorithm to learn DNFs under the
uniform distribution. In this paper, he shows that a DNF can be approximated by a poly-
nomial with few non zero coefficients. Informally, his result follows from the fact that given
a DNF with terms of size at most some bound w (w-DNF), there cannot be too many large
coefficients of small degree. More specifically, he shows that given a w-DNF, the sum of
absolute values of Fourier coefficients up to degree k is bounded by L = wO(k),therefore,
the number of coefficient whose absolute value larger than ε/2L and degree less than k is
at most (2L/ε)2. This combined with the fact that the total Fourier mass (i.e the sum of
squares of all Fourier coefficients) is one, naturally yields a learning algorithm. That is, to
find those large absolute value and small degree coefficients. Goldreich and Levin [GL89]
showed that given a query access to an n-variate Boolean function and a threshold τ , there
exists an algorithm running in poly(n, τ) and outputs the list of subsets of [n] that contains
all subsets of [n] that correspond to all of the coefficients whose absolute value is greater

2

than τ . Later, [KM93] developed a learning algorithm based on [GL89] for a class of Boolean
functions such that every function in the class has its all but ε Fourier spectrum on a small
collection of subsets of [n]. Above mentioned work [Man92] is to show that w-DNF is a class
of functions with this property.

Jackson later combined Freund’s boosting algorithm [Fre95] and Fourier analysis to give
a polynomial time algorithm [Jac97] to learn DNFs under the uniform distribution. Roughly
speaking, boosting algorithm works as follows. It takes a weak learner that produces a
hypothesis which merely beats coin toss and after training the weak learner number of times
on different distribution of inputs, it outputs a strong hypothesis that is a combination of
the weak hypothesis in some way. The distribution in each iteration is updated to give more
weight on the inputs that the previous weak hypothesis didn’t perform well. Jackson proves
that for a DNF and any distribution D, there exists an algorithm that produces in time
that is polynomial in the number of terms of the DNF, and the maximum value of 2nD, a
parity function which weakly approximates the DNF. He then uses this weak learner in the
boosting algorithm. Jackson’s celebrated result is often called Harmonic Sieve.

Feldman [Fel12] later introduced a new way of learning a DNF expression under the
product distribution, in particular the uniform distribution, from estimating heavy low
degree Fourier coefficients. His algorithm uses membership queries and efficiently learns a
DNF expression under the uniform distribution. He showed that a given DNF f of m terms,
and any [−1, 1] bonded function on {−1, 1}n, the expectation of the difference between f and
g is at most the multiple of (2s+1) and the maximum difference in the Fourier coefficient of
f and g under the uniform distribution. This means in order to ε learn f under the uniform
distribution, finding a bounded function such that each of its Fourier coefficient is at most
ε/(2s+ 1) different from the corresponding Fourier coefficient of f is enough. Feldman finds
this hypothesis function g by using an iterative process such that in each iteration, the L2

norm squared distance between the target and the updated hypothesis is strictly less than
the L2 norm squared distance between the target and the previous hypothesis.

In contrast to Valiant’s probably approximately correct learning model using random
sampling, Angluin [Ang87] considered the exact learning model using queries.

There have been some deterministic learning algorithms for constant depth circuits.
Sitharam [Sit95] used Fourier mass concentration result from [LMN93] and showed that
a distribution called polylog-wise decomposable distribution fools any constant depth cir-
cuits to present a deterministic learning algorithm for constant depth circuits running in
2O(poly(logn)) where the degree of poly(log) depends on the depth and size of the circuit.

1.2 Our Results

The above mentioned randomized learning algorithms based on Fourier analysis of Boolean
functions use random sampling to estimate the mean of relevant random variables. Our main

3

result is to use a pseudorandom generator (PRG) for DNFs to derandomize this estimation
process. A pseudorandom generator is an efficiently computable function that takes a short
string called a seed and outputs a long string such that the distribution of the outputs is
similar to the uniform distribution from the perspective of a class of functions. PRG can be
used in derandomization by enumerating its all possible outputs and using them instead of
random bits. Our algorithm is deterministic in the sense that the sample points from the
input space is determined by our choice of PRG.

It is worthwhile to note that the deterministic training set produced by the choice of
PRG for a class of function is independent of the particular function that is learnt. In
other words, we have the same training set for every function in the class. This subject of
uniform training set for deterministic learning is studied in depth by Sitharam and Straney
[SS97]. Having fixed points to query the unknown target function poses a problem if we
assume that the function is a particular type when, in fact, we only have blackbox access
to the function that computes our target DNF. We deal with this issue by showing that an
arbitrary DNF can be approximated by a particular type of DNF on which we can apply
our choice of PRG and by using the fact that the PRG that fools the approximators can
also fool the approximated function. We use Gopalan and Meka’s [GMR13] PRG along
with the fact that the expectation can be expressed as the sum of conditional expectations
to approximate Fourier coefficients of a DNF. We then use this approximation method to
present a deterministic algorithm to find small degree, large absolute value coefficients with
which we build our polynomial that is close to the target function in L2 norm. Tal’s result
[Tal17] which upper bounds the sum of squares of large degree coefficients as well as the
sum of absolute values of small degree coefficients is then applied to bound the error of the
polynomial.

The above procedure yields a deterministic nÕ(log(n) log2(1/ε)) time membership query
learning algorithm for the class of DNFs with poly(n) terms.

Main Theorem. Let f : {0, 1}n → {0, 1} be a Boolean function that can be computed by
a DNF with poly(n) terms. Then for ε > 0 there exists a deterministic learning algorithm
that runs in time

nÕ(log(n) log2(1/ε))

and uses membership queries to f , and outputs g : {0, 1}n −→ R such that Ex∼U [(f(x) −
g(x))2] ≤ ε.

In order to build such a polynomial g, we present two deterministic ways to approximate
Fourier coefficients. First, we show that given a DNF of terms with width at most w (w-
DNF) and a constant ε > 0, there exists a deterministic algorithm to ε-approximate a
Fourier coefficient of degree less than t in time 2Õ(w2+w·log(2t/ε)+log logn) · 2t.

4

Main Lemma 1. For a given width w-DNF, there is a deterministic procedure to
ε-approximate its Fourier coefficient of degree less than t in time 2Õ(w2+w·log(2t/ε)+log logn) ·
2t.

Although this method applies to w-DNFs due to the nature of the PRG used, we will
show that by finding an approximating w-DNF to an arbitrary DNF with poly(n) terms,
we can still apply the PRG for w-DNFs to approximate the small degree coefficients of
the target DNF. This is possible because of the more general fact that a pseudo random
distribution that fools an approximator of f also fools f .

Another approach we use to get an approximation of Fourier coefficients is to directly
fool the product of our target function and the parity function. For this, we closely follow
the proof of existence of small L1 norm sandwich approximator for a width w DNF in
[DETT10]. By using sparse polynomial approximation result [Tal17] that does not depend
on the width of the DNF, we generalize this result and show that for an arbitrary DNF of
poly(n) terms, there exists a small L1 norm sandwiching approximators. Furthermore, using
the fact that the product of a parity function χS for any S ⊆ [n] and a function f has the
same L1 norm as f , we show that a small biased distribution that fools the sandwiching
approximators of f also fools f ·χS . A deterministic algorithm to approximate the mean of
f · χS then follows. We show that given an arbitrary DNF with poly(n) number of terms,
there exists a deterministic algorithm to ε-approximate a Fourier coefficient of any degree
in time (logn)O(logn log(1/ε)).

Main Lemma 2. Given a DNF with m = poly(n) terms φ : {0, 1}n −→ {0, 1} and ε > 0,
there exists a deterministic procedure that can approximate φ̂(S) for S ⊆ [n] within 6ε in
time (logn)O(logn log(1/ε)).

This approximation is an improvement over our first method where we break a small
degree Fourier coefficient into conditional expectations in the sense that it can approximate
a Fourier coefficient of any degree for a general DNF.

5

Chapter 2

Main Result

2.1 Preliminaries

In this section we give all necessary definitions and some observations that will be useful
for the discussion of our result.

2.1.1 Vector space

A vector space over a field F is a set V with two operations called vector addition and
scalar multiplication. Vector addition is a mapping: V × V −→ V. Scalar multiplication is
a mapping: F × V −→ V. Vector addition must meet associativity, commutativity,existence
of the identity element, and existence of the inverse element axioms. Scalar multiplication
must be compatible with field multiplication, have the identity scalar element, meet the
axiom of distributivity with respect to vector addition and with scalar addition.

2.1.2 Fourier transform

With the definition of vector space in mind, we can see that the set of all real valued
functions f : {0, 1}n −→ R forms a vector space over the field of real numbers. Each element
of the vector space can be thought of as a vector in R2n where the entries of the vector is
the function values on all possible inputs in lexicographic order. Then it is easy to verify
that element wise vector addition and multiplication by a real number meet all the axioms
of vector space.

We can write any Boolean function f : {0, 1}n −→ {0, 1} as a DNF of at most 2n terms
such that for any string in {0, 1}n, at most one term of the DNF evaluates to 1. We can
also convert this DNF into a multilinear polynomial q : {0, 1}n −→ {0, 1} by replacing a
conjunction with multiplication, disjunction with addition, x̄i with (1−xi), and xi with xi.
The coefficients of q will be in the range [−2n, 2n]. Now consider the same function f but
instead of using 1 for True, we use -1 and instead of using 0 for False, we use 1. We can show
that this function can also be expressed as a multilinear polynomial p : {1,−1}n −→ {1,−1}.

6

Since p and q both represent the same function f , we can write

q(x1, ..., xn) = 1
2 −

1
2p(1− 2x1, ..., 1− 2xn)

From the above equation, we can see that the coefficients of p is in the range [−1, 1]. We
denote the monomial in p that corresponds to a subset S ⊆ [n] with character
χs : {1,−1}n −→ {1,−1}. In other words,

χs (x) =
∏
i∈S

xi

Note that the characters correspond to the logical parity functions or exclusive OR when
the input domain is Fn2 . That is, we can define the character χS as follows.

Definition 2.1.1. For S ⊆ [n] define χS : Fn2 −→ R by

χS(x) = (−1)
∑

i∈S xi

We also denote the coefficients of χS as f̂(S). So we can see that any real valued function
f : {−1, 1}n −→ {1,−1} can be represented as a multilinear polynomial as follows

f(x) =
∑
s⊆[n]

f̂(s)χs(x)

This multilinear polynomial representation is called the Fourier expansion of f .

Remark 2.1.2. Although we are discussing Boolean valued functions in this paper, note
that any real valued functions f : {−1, 1}n −→ R can be written as the Fourier expansion.
We are considering Boolean valued functions as real valued functions f : {0, 1}n −→ R.

This representation shows that the set of all χS functions is a spanning set of the vector
space. Since there are 2n different such functions, the set of all χS is a basis for the vector
space. Therefore, the representation is unique.

Definition 2.1.3. We can also define an inner product on pairs of functions f, g : {−1, 1}n −→
R as follows

〈f, g〉 = E
x∈{−1,1}n

[f(x)g(x)]

It can be verified that the basis defined in Definition 2.1.1 above is an orthonormal
basis, which means for any S ⊆ [n], 〈χS , χS〉 = 1 and for two distinct S ⊆ [n] and T ⊆ [n],
〈χS , χT 〉 = 0.

Remark 2.1.4. It is worthwhile to note that even though the characters compute the logical
parity where True, False is encoded as {1, 0}, the orthonormality follows when True, False
is encoded as (−1)1 = −1, (−1)0 = 1.

7

The orthonormality of the basis results in Parseval’s theorem

〈f, f〉 = E
x∈{−1,1}n

[f (x) f (x)] =
∑
s∈[n]

f̂2(s)

We use the following notation for l2 norm of f .

||f ||2 =
√
〈f, f〉 =

√∑
s∈[n]

f̂2(s)

The orthonormality of the basis functions also let us compute the Fourier coefficients of
f : {−1, 1} −→ R easily

〈χs, f〉 = E
x∈{−1,1}n

[χs(x)f(x)] = f̂(s)

Remark 2.1.5. [O’D14] When the two functions are {−1, 1} valued in Definition 2.1.3,
we can see that the inner product of them is measuring how similar they are. That is, for
f, g : {−1, 1}n −→ {−1, 1}

〈f, g〉 = Prx∈{−1,1}[f(x) = g(x)]− Prx∈{−1,1}[f(x) 6= g(x)]

We will refer to this measure as a correlation between f and g. In this sense, given f :
{−1, 1} −→ {−1, 1} the Fourier coefficient f̂(S) is a correlation between f and χS.

Remark 2.1.6. When f : {0, 1} −→ R is {−1, 1} valued, we can see that
〈f, f〉 =

∑
S⊆[n] f̂(S) = 1. It is worthwhile to note that there are some useful properties like

this when we encode the value of the Boolean valued function with {−1, 1}

We say that f : {−1, 1}n −→ R is ε concentrated up to degree k if

∑
s⊆[n]and|s|>k

f̂(s)2 ≤ ε

The degree of f denoted as deg(f) is max{|s| : f̂(s) 6= 0}
A t sparse function is a function that has at most t non-zero coefficients.
The following fact follows from Parseval’s equality.

E
x∈{−1,1}n

[(f(x)− g(x))2] =
∑
s⊆[n]

(f̂(s)− ĝ(s))2 = ||f − g||22

We use the following notation for the Fourier l1 norm of f and a l1 norm excluding
f̂(∅) = Ex∈{−1,1}n [f(x)].

||f ||1 :=
∑
S

|f̂(S)| and ||f ||6=∅1 :=
∑
S 6=∅
|f̂(S)|

8

The l1 norm is also called the spectral norm. This term is used more often when we refer to
the sum of absolute values of Fourier coefficients of a certain degree. So we call the following
the spectral norm of kth-level of f .

∑
S:|S|=k

|f̂(S)|

Lemma 2.1.7. For any f, g : {0, 1}n −→ R, ||fg||1 ≤ ||f ||1||g||1.

The following fact and remarks will be useful in our discourse.

Lemma 2.1.8. If f : {−1, 1}n −→ R is a t sparse function, then ||f ||1 ≤ t.

Proof. Let γ = {S : f̂(S) 6= 0}

 ∑
S⊆[n]

|f̂(S)|

2

≤ |γ|

 ∑
S⊆[n]

|f̂(S)|2
 (By Jensen’s inequality)

≤ |γ| (Because
∑
S⊆[n] |f̂(S)|2 ≤ 1)

Now ||f ||1 =
∑
S⊆[n] |f̂(S)| ≤

√
|γ| ≤ t.

Remark 2.1.9. If f, g : {0, 1} −→ R, then ||f + g||1 ≤ ||f ||1 + ||g||1 and ||fg||1 ≤ ||f ||1||g||1.

Remark 2.1.10. If φ : {0, 1}n −→ {0, 1} is an AND of some subsets of literals, then
||φ||1 = 1.

2.1.3 Restriction

A restriction ρ on variables {x1, ..., xn} is a mapping of the variables to {0, 1, ∗}. The function
obtained from f (x1, ..., xn) by applying a restriction ρ is denoted by fρ. The inputs of fρ
are those variables xi such that ρ(xi) = ∗ while all other variables are set according to ρ.

2.1.4 Secure pseudorandom generators

In this section we will cover some theorems and definitions for secure pseudo random gener-
ators and introduce the Goldreich and Levin algorithm [GL89]. Although this algorithm was
developed for cryptography, it has other applications such as learning Fourier coefficients.

We will use U with a subscript to denote the uniform distribution over the bit strings
of length of the subscript. That is Un is the uniform distribution over {0, 1}n. U without a
subscript means Un unless otherwise noted.

Definition 2.1.11 (Negligible functions). A function ε : N −→ [0, 1] is called negligible if
ε(n) < n−c for every c and sufficiently large n.

9

Definition 2.1.12 (Unpredictable functions). let G : {0, 1}∗ −→ {0, 1}∗ be a polynomial-
time computable function with |G(x)| = l(|x|) for all x ∈ {0, 1}∗. G is unpredictable if for
every probabilistic polynomial time B there exists a negligible function ε : N −→ [0, 1] such
that

Prx∈{0,1}n,y=G(x),i∈[l(n)][B(1n, y1, ..., yi−1) = yi] ≤ 1/2 + ε(n)

Definition 2.1.13 (One-way functions). A polynomial time computable f : {0, 1}∗ −→
{0, 1}∗ is one-way function if for all polynomial time probabilistic algorithm A, there exists
a negligible function ε : N −→ [0, 1] such that for every n ∈ N,

Prx∈{0,1}n [f (A (f(x))) = f(x)] ≤ ε(n)

Definition 2.1.14 (Secure pseudorandom generators). Let G : {0, 1}∗ −→ {0, 1}∗ be a
polynomial-time computable function. Let l : N −→ N be a polynomial-time computable func-
tion such that l(n) > n for every n. We say that G is a secure pseudorandom generator of
stretch l(n), if |G(x)| = l(|x|) for all x ∈ {0, 1}∗ and for every probabilistic polynomial-time
A, there exists a negligible function ε : N −→ [0, 1] such that

Pr [A (G (Un)) = 1]− Pr[A
(
Ul(n)

)
= 1] ≤ ε(n)

for every n ∈ N.

In the cryptography setting, the algorithm A in above theorem can be thought of as
an adversary. So G is secure in the sense that for any polynomial time adversary, it is not
possible to distinguish between a random string of length l(n) and a string generated by G.

Theorem 2.1.15. [Yao82] Let l : N −→ N be some polynomial-time computable function and
let G : {0, 1}∗ −→ {0, 1}∗ be a polynomial-time computable function such that |G(x)| = l(|x|)
for all x ∈ {0, 1}∗. If G is unpredictable then it is a secure pseudorandom generator.

The following theorem is a consequence of Goldreich and Levin algorithm. We will
discuss its application in learning of Boolean functions in the next section.

Theorem 2.1.16. [GL89] Suppose that f : {0, 1}n −→ {0, 1}n is a one-way function such
that f is one-to-one. Then, for every probabilistic polynomial-time algorithm A, there is a
negligible function ε : N −→ [0, 1] such that

Prx,r∈{0,1}n [A(f(x), r) =
n∑
i=1

xi · ri(mod2)] ≤ 1/2 + ε(n)

Theorem 2.1.16 implies that the function G(x, r) = f(x), r,
∑n
i=1 xi · ri(mod2) is a se-

cure pseudo random generator of stretch function l(2n) = 2n + 1 for n ∈ N. To see this,
assume otherwise. Then by Theorem 2.1.15, there exists a predictor for G which contradicts
Theorem 2.1.16.

10

Theorem 2.1.16 is an immediate corollary of the following result.

Theorem 2.1.17. [GL89] Let f : {0, 1}n −→ {0, 1} be a function such that, for some
unknown x,

Prr∈{0,1}n [f(r) =
n∑
i=1

xi · ri(mod2)] ≥ 1
2 + ε

Then, there exists O
(
n2ε−4 logn

)
time algorithm that makes O

(
nε−2 logn

)
queries into f

and outputs a list L ⊆ [n] such that |L| = O
(
ε−2) and x ∈ L with probability at least 1/2.

Remark 2.1.18. Note that
∑n
i=1 xi · ri(mod2) is the logical parity of bits ri ∈ s where

s = {i : xi = 1}. In other words, (−1)
∑n

i=1 xi·ri(mod2) = χs(r). So we see that

Prr∈{0,1}n [f(r) =
n∑
i=1

xi · ri(mod2)]

= Prr∈{−1,1}n [f(r) =
n∑
i=1

xi · ri(mod2)]] (encoding Fn2 with {−1, 1}n)

= Prr∈{−1,1}n [(−1)f(r) = (−1)
∑n

i=1 xi·ri(mod2)]

= Prr∈{−1,1}n [g(r) = χS(r)] (Letting g(r) = (−1)f(r) and S = {i : xi = 1})

= ĝ(S) + 1
2

From above remark, we see that Goldreich and Levin algorithm in Theorem 2.1.17
outputs a list of all parity functions χS that are at least slightly correlated with g(x) =
(−1)f(x).

2.1.5 Derandomization using pseudorandom generators

We say that a probability distribution D over {0, 1}n can be sampled efficiently with r

random bits if D is a uniform distribution over a multiset z(1), z(2), ..., z(s) of strings from
{0, 1}n where s ∈ [1

poly(n)2r, 2r] and there is a deterministic algorithm G that, on uniformly
random input from [s], runs in poly(n, s) and outputs a string from D.

Definition 2.1.19 (Pseudorandom generators). For ε > 0 and a class F of functions from
{0, 1}n to {0, 1}, we say that a deterministic algorithm G : {0, 1}r −→ {0, 1}n that efficiently
samples a distribution D as explained above is an ε-pseudorandom generator(PRG) for F
if for all f ∈ F , we have

| E
y∼{0,1}r

[f (G (y))]− E
x∼{0,1}n

[f(x)]| ≤ ε

Remark 2.1.20. It is natural to use the minimum size of the circuit that computes f
to classify a given function. However, the pseudo random generators we will use in our
derandomization is for a class of functions that are computable by DNFs. That is, depth 2
circuits of polynomial size.

11

In the definition of PRG, the parameter r is called the seed length. The class of functions
F is said to be fooled by G or equivalently, by the distribution D. A pseudorandom generator
for a class of function F can be though as a generator of a distribution over inputs that is
statistically close to the uniform distribution when the test is in F .

Below we explain formally how a pseudo random generator can be used for derandom-
ization.

Lemma 2.1.21. Let F be a class of Boolean circuits of polynomial size .
Given f : {0, 1}n −→ {0, 1}, assume that there exists an algorithm A that can be computed in
poly(n) time and Prr∈{0,1}m [A(x, r) = f(x)] > 1− δ where m is the number of random bits
required for A. If there exist an ε-pseudo random generator G for F with seed length l then
there exists a deterministic algorithm B that runs in time 2lpoly(n) such that B(x) = f(x)
for all x ∈ {0, 1}n.

Proof. We can construct a deterministic algorithm B as follows.
B : on input x ∈ {0, 1}n, will compute A(x,G(z)) for each z ∈ {0, 1}l. This will take
2lpoly(n) time. Then B outputs the majority of A(x,G(z)) over all z.
We claim that the fraction of z such that A(x,G(z)) = f(x) is at least 1− δ − ε.
Assume to the contrary that Prz∈{0,1}l [A(x,G(z)) = f(x)] < 1 − δ − ε. Then we see that
Prr∈{0,1}m [A(x, r) = f(x)]− Prz∈{0,1}l [A(x,G(z)) = f(x)] > ε. It is a well known fact that
a polynomial size circuit can be constructed for a polynomial time algorithm. Therefore we
can construct a polynomial size circuit CA that computes r −→ A(x, r) by hard wiring x.
However, this means that G fails to fool the circuit CA ∈ F which is a contradiction.

Remark 2.1.22. Note that the efficiency of the pseudo random generator in terms of the
seed length was not considered in the derandomization shown in above proof. That is, the
deterministic algorithm enumerates over all possible seeds which takes exponential time in
seed length anyways.

2.1.6 Biased distribution

Definition 2.1.23 (ε-biased distribution). A probability distribution D over {0, 1}n is ε-
biased if and only if it ε-fools the Fourier basis functions χS. That is,

| E
x∼D

[χS(x)]− E
x∼U

[χS(x)]| ≤ ε ∀S ⊆ [n]

Let us denote the uniform distribution over {0, 1}n with the support B ⊆ {0, 1}n with UB.
A subset B ⊆ {0, 1}n is called ε-biased if UB is ε-biased.

Explicit construction of small biased space in polynomial time is used considerably in
the field of algorithmic derandomization. The following result is due to Naor and Naor
[NN93] and [AGHP92].

12

Theorem 2.1.24. [NN93][AGHP92] There exists ε-biased sets of size O
(
n2/ε2

)
such that

a random element from the set can be sampled using a seed length 2 log (n/ε), in time
poly(n, log(1/ε)).

When a real valued function f : {0, 1}n −→ R has small L1 norm, it can be fooled by a
small ε-biased sets.

Lemma 2.1.25. All functions f : {0, 1}n −→ R is ε||f ||1-fooled by any ε-biased probability
distribution

Proof. Let D be an ε-biased distribution. Then

| E
x∼D

[f(x)]− E
x∼U

[f(x)]| = | E
x∼D

[∑
S

f̂(S)χS(x)
]
− f̂(∅)|

= |
∑
S 6=∅

f̂(S) E
x∼D

[χS(x)] |

≤ ε
∑
S 6=∅
|f̂(S)| ≤ ε||f ||6=∅1 ≤ ε||f ||1

2.1.7 Learning model

Our learning model uses deterministic membership queries. We assume that the learner is
given some unknown target function which it can only access by black box. More formally,
a membership oracle for f is an oracle that given any instance x, returns the value f(x).
The number of queries the learner makes is bounded by the number of all possible outputs
of a PRG of our choice. Therefore we need a PRG with small seed length. The learner than
outputs a hypothesis h.

A deterministic algorithm A learns a class of function F if for every f ∈ F and ε > 0,
the algorithm outputs h = A(f, ε) such that Prx∼U [f(x) 6= h(x)] ≤ ε.

A real valued function g ε approximates f in norm L2 if Ex∼U [(f(x)− g(x))2] ≤ ε.

Remark 2.1.26. We will refer to the quantity Ex∼U [(f(x)−g(x))2] as a squared L2 distance
from f to g.

Given a real valued function that ε approximates f : {0, 1}n −→ {−1, 1}, we can get a
hypothesis h by setting h = sign(g) where the value of sign(g) is 1 when g is positive, −1
if g is negative and 0 when g = 0.

This hypothesis then satisfies the following inequality.

Prx∼U [f(x) 6= h(x)] ≤ Prx∼U [|f(x)− g(x)| ≥ 1] ≤ E
x∼U

[
(f(x)− g(x))2

]
≤ ε

13

Another useful measure of the distance between the target function f : {0, 1}n −→ {−1, 1}
and a real valued function g : {0, 1}n −→ R when we want to upper bound the probability
Prx∼U [f(x)−sign(g(x))] is the expectation of the difference between f and g since we have
the following

Prx∼U [f(x)− sign(g(x))] ≤ E
x∼U

[|f(x)− g(x)|]

2.1.8 Sandwiching Approximators

Definition 2.1.27. Let f : {0, 1}n −→ {0, 1}. We say that functions fl, fu : {0, 1}n −→ R are
ε- sandwiching approximators for f if ∀x ∈ {0, 1}n, fl(x) ≤ f(x) ≤ fu(x) and

E
x∼U

[|f(x)− fl(x)|] ≤ ε

E
x∼U

[|f(x)− fu(x)|] ≤ ε

We will show that there exists ε-sandwiching approximator for an arbitrary DNF with
polynomial number of terms. Finding those approximator is useful because of the following
fact.

Lemma 2.1.28. If G is a PRG that fools the ε- sandwich approximators of f , fl and fu
then G also fools f .

Proof. Let G be a pseudorandom generator for fl and fu. Let Ex∼G [f (x)] denote the ex-
pectation of f when the inputs are distributed according to the distribution generated by
G.
Our goal is to show that for an arbitrary small ε > 0,

| E
x∼G

[f (x)]− E
x∼U

[f (x)]| ≤ 2ε

Observe that

E
x∼G

[f(x)] ≤ E
x∼G

[fu(x)] ≤ E
x∼U

[fu(x)] + ε = E
x∼U

[fu(x) + f(x)− f(x)] + ε

= E
x∼U

[fu(x)− f(x)] + E
x∼U

[f(x)] + ε

≤ E
x∼U

[|fu(x)− f(x)|] + E
x∼U

[f(x)] + ε

≤ E
x∼U

[f(x)] + 2ε

where the first inequality follows from the fact that ∀x ∈ {0, 1}n, f(x) ≤ fu(x) , second
inequality follows from the fact that G is a pseudorandom generator for fu and the last
inequality is due to the definition of ε-sandwiching approximator. In a symmetric manner,

14

observe that

E
x∼G

[f(x)] ≥ E
x∼G

[fl(x)] ≥ E
x∼U

[fl(x)]− ε = E
x∼U

[fl(x) + f(x)− f(x)]− ε

= E
x∼U

[fl(x)− f(x)] + E
x∼U

[f(x)]− ε

≥ E
x∼U

[f(x)]− ε− E
x∼U

[|fl(x)− f(x)|]

≥ E
x∼U

[f(x)]− 2ε

Our main technique in approximating Fourier coefficients is to fool an arbitrary DNF
of polynomial number of terms using a PRG. However, the seed length of the PRG of our
choice depends on the maximum width of the DNF and, in our learning model, we only
have black box access to our DNF. To resolve this problem, we show that DNFs with "short"
term length ε-sandwich approximate an arbitrary DNF. Then by Lemma 2.1.28 we will be
able to use our choice of PRG to fool an arbitrary DNF.

Lemma 2.1.29. Given f : {0, 1}n −→ {0, 1} that can be computed by a DNF with poly(n)
number of terms, there exist fl, fu : {0, 1}n −→ {0, 1} that can be computed by DNFs with
terms of length O (log (n/ε)) and they ε-sandwich approximate f .

Proof. Let m be the number of terms in the DNF that computes F .
We let fl to be the function computed by the DNF obtained by removing all terms of width
greater than log

(
m
ε

)
from the DNF that computes f . Let us denote this DNF with DNFl.

For x ∈ {0, 1}n, if f(x) = 0 then all terms of the DNF that computes f is 0. This means
fl(x) = 0. If f(x) = 1 then there must be a term in the DNF that computes f that is 1. In
this case, the term may or may not be in DNFl which implies fl(x) is either 0 or 1. This
shows that

∀x ∈ {0, 1}n, fl(x) ≤ f(x)

Since each term that is removed contribute to at most ε
m fraction of the inputs in {0, 1}n,

the probability that f and fl disagree is at most ε. So we have

Prx∼U [f(x) 6= fl(x)] = E
x∼U

[|f(x)− fl(x)|] ≤ ε

Now we let fu to be the function computed by DNF obtained by shortening all the terms of
length greater than log

(
m
ε

)
to length log

(
m
ε

)
from the DNF that computes f . Let us denote

this DNF with DNFu. For x ∈ {0, 1}n, if f(x) = 1 then there exists a term in the DNF
computing f that is 1. This term, whether or not it is shortened, will make the DNFu to
be 1. On the other hand, if f(x) = 0, although all terms of DNF computing f is 0, some of

15

the shortened term in the DNFu may evaluate to 1. This establishes that

∀x ∈ {0, 1}n, f(x) ≤ fu(x)

Furthermore, observe the following fact.

E
x∼U

[|f(x)− fu(x)|]

= Prx∼U [f(x) 6= fu(x)]

= Prx∼U [f(x) = 0 andfu(x) = 1]

= Prx∼U [f(x) = 0 and at least one of the shortened terms in DNFu is 1]

≤ m× Prx∼U [f(x) = 0 and a term of width log
(
m

ε

)
in DNFu is 1]

≤ m× Prx∼U [a term of width log
(
m

ε

)
in DNFu is 1]

= m× ε

m
= ε

When the sandwiching approximators have small L1 norms, we have the following useful
fact which states that a small ε-biased set can also fool the sandwiched function.

Lemma 2.1.30. Suppose f, fl, fu : {0, 1}n −→ R are such that for every x ∈ {0, 1}n we
have fl(x) ≤ f(x) ≤ fu(x) and Ex∼U [f(x) − fl(x)] ≤ δ and Ex∼U [fu(x) − f(x)] ≤ δ. Let
l = max(||fl||6=∅1 , ||fu||6=∅1). Then any ε-biased distribution (δ + εl) fools f

Proof. Let D be an ε-biased distribution. Then

E
x∼D

[f(x)] ≤ E
x∼D

[fu(x)]

≤ E
x∼U

[fu(x)] + ε||fu||6=∅1

≤ E
x∼U

[f(x)] + δ + ε||fu||6=∅1

Similarly we have Ex∼D[f(x)] ≥ Ex∼U [f(x)]− δ − ε||fu||6=∅1

2.2 Main Results

In this section, we will briefly cover some previous works on sparse polynomial approxima-
tion which involves randomness and compare our result with these works.

16

2.2.1 Estimation of Fourier coefficients from random examples

Hoeffding bound is an important tool in a randomized learning algorithm because it gives
the upper bound on the number of examples needed to well estimate the mean of a given
random variable.

Theorem 2.2.1 (Hoeffding Bound). Let X1, X2, ..., Xm be random variables that are inde-
pendent, all with mean E[Xi] = µ such that a ≤ Xi ≤ b for all i. Then for any λ > 0,

Pr

[∣∣∣∣∣ 1
m

m∑
i=1

Xi − µ
∣∣∣∣∣ ≥ λ

]
≤ 2e

−2λ2m
(b−a)2

Theorem 2.2.2. Given access to random examples for f : {−1, 1}n −→ {−1, 1}, there exists
an algorithm that on input 0 < ε, δ < 1/2 runs in poly(n, 1/ε) ln (1/δ) and outputs an
approximation f̃(S) for f̂(S) such that

Pr
[
|f̃(S)− f̂(S)| ≥ ε

]
≤ δ

Proof. After getting examples (x, f(x)),the algorithm outputs f̃(S) =
∑m

i=1 f(xi)χS(xi)
m . Note

that random variables −1 ≤ f(xi)χS(xi) ≤ 1 are independent and all have mean f̂(S). We
can apply Hoeffding bound and get

Pr
[∣∣∣f̃(S)− f̂(S)

∣∣∣ ≥ ε] ≤ 2e
−2ε2m

4

Setting the right hand side of the inequality to δ, we get that m = 2 ln(2/δ)
ε2

Our result is a deterministic estimation of the mean of f(x)χS(x) using membership
queries. As opposed to the sample bound obtained from Hoeffding bound in a randomized
estimation, our sample bound will be determined by our choice PRG.

2.2.2 Goldreich and Levin Algorithm: Application in Learning of Boolean
functions

In this section, we will discuss the Kushilevitz and Mansour version [KM93] of Goldreich and
Levin algorithm. As alluded in Remark 2.1.18, the algorithm outputs all parity functions
that are at least slightly correlated with a given function. The following is the formal
statement of Kushilevitz and Mansour’s version.

Theorem 2.2.3. There is a randomized algorithm, that given a query access to any Boolean
function f : {−1, 1} −→ {−1, 1}, any δ > 0, any 0 < θ ≤ 1 runs in time poly(n, 1/θ, log(1/δ))
and outputs a list L of vectors α ∈ {0, 1}n such that with probability at least 1− δ,

•
∣∣∣f̂(α)

∣∣∣ ≥ θ =⇒ α ∈ L

17

• α ∈ L =⇒
∣∣∣f̂(α)

∣∣∣ ≥ θ/2
Remark 2.2.4. Note that, by Parseval’s Theorem, the second property of L implies that
|L| ≤ 4/θ2. Upon the output L of above algorithm, if we want to build a hypothesis, we need
to estimate f̂(α) for each of the α ∈ L by using a randomized process such as Theorem 2.2.2
or using a deterministic process.

As stated in Theorem 2.2.2, given S ⊆ [n], we can efficiently check if f̂(S) is big within
small error with high probability. However, to find all large coefficients using random ex-
amples, we will need to check all 2n many coefficients for each S ⊆ [n]. Kushilevitz and
Mansour solve this problem by using a recursive algorithm where in each level of recursion,
buckets of Fourier coefficients are considered. That is, on level k of recursion, there can
be at most 2k buckets for each fixed α ∈ {0, 1}k and a bucket contains Fourier coefficients
f̂(αβ) for each β ∈ {0, 1}n−k.

Remark 2.2.5. Note that our notation for Fourier coefficients changed slightly. f̂(x) =
f̂(S) where x ∈ {0, 1}n and S = {i : xi = 1}

The idea is that for each bucket, if the sum of squares of the coefficients is smaller
than θ2 for some threshold θ, then for no β ∈ {0, 1}n−k,

∣∣∣f̂(αβ)
∣∣∣ ≥ θ. Therefore we don’t

need to consider further about coefficients with the prefix α ∈ {0, 1}k and this prunes the
recursion tree which greatly reduce the number of recursive calls. Furthermore, on each level
of recursion, there can be at most 1

θ2 many buckets such that the sum of squares of the
coefficients in the bucket is greater than θ2. This is because, for f : {0, 1}n −→ {−1, 1}, we
have

∑
α∈{0,1}k

∑
β∈{0,1}n−k f̂

2(αβ) = 1. If the sum of squares of the coefficients in a bucket
is greater than θ2 then we recurs with α0 and α1. Since there are n levels of recursion, the
total number of recursive call will be at most n

θ2 .
The only problem that remains is whether or not we can efficiently compute exactly or

approximate the sum of squares of the coefficients in a bucket. Computing the sum exactly
is not achievable in polynomial time, so it needs to be approximated within small error.

To make the above intuition more precise, let us introduce a few notations. For a given
function f : {0, 1}n −→ {−1, 1} with its Fourier expansion f(x) =

∑
z∈{0,1}n f̂(z)χz(x), we

define fα(x) : {0, 1}n−k −→ R for α ∈ {0, 1}k as follows

fα(x) =
∑

β∈{0,1}n−k
f̂(αβ)χβ(x)

Remark 2.2.6. Note that fα defined above can be obtained by first collecting all terms
f̂(z)χz(x) in the Fourier expansion of f such that the prefix of z is the same as α and then
restricting each of the terms by x ∈ {0, 1}n−k and summing up the resulting coefficients
of the restricted monomials. In other words, fα is the Fourier coefficient for χα of the

18

restriction of f . Therefore, denoting the restriction of f by x ∈ {0, 1}n−k with fx, we get

fα(x) =
∑

β∈{0,1}n−k
f̂(αβ)χβ(x) = f̂x(α) (2.2.1)

Also, note that ||fα||1 ≤ ||f ||1 by definition.

Recall that we need to estimate in each bucket the sum of squares of the Fourier coeffi-
cients ∑

β∈{0,1}n−k
f̂2(αβ) = E

x∈{0,1}n−k

[
f2
α(x)

]
(2.2.2)

Also recall that the learning model only has black box access to query f . The most crucial
fact that enables us to estimate this quantity is that, as stated in Remark 2.2.6, fα is the
Fourier coefficient of fx. Having a query access to f allows a query access to any restriction
of f . Also, note that by the definition of Fourier coefficient,

f̂x(α) = E
y∈{0,1}k

[fx(y)χα(y)] (2.2.3)

We know from Theorem 2.2.2 that this Fourier coefficient can be approximated efficiently
by getting random samples (y, fx(y)). Combining Equation (2.2.1), Equation (2.2.2), and
Equation (2.2.3) we get

∑
β∈{0,1}n−k

f̂2(αβ) = E
x∈{0,1}n−k

(E
y∈{0,1}k

[fx(y)χα(y)]
)2
 (2.2.4)

Kushilevitz and Mansour then show that getting good approximations by random sam-
ples (y1, fxi(y1)) , ..., (ym2 , fxi(ym2))for f̂xi(α) for each of x1, ..., xm1 and averaging over the
squares of the approximations gives a good approximation for the true value of
Ex∈{0,1}n−k [f2

α(x)]. Let us denote the approximation for Ex∈{0,1}n−k [f2
α(x)] with Bα. They

show the following which proves the correctness of the algorithm in Theorem 2.2.3.

• Ex∈{0,1}n−k [f2
α(x)] ≥ θ2 =⇒ Bα ≥ θ2/2

• Ex∈{0,1}n−k [f2
α(x)] ≤ θ2/4 =⇒ Bα ≤ θ2/2

2.2.3 Derandomization of Goldreich Levin algorithm for small L1 norm
functions

Lemma 2.2.7. Given f : {0, 1}n −→ R, if ||f ||1 ≤ l then ||fx||1 ≤ l

Proof. It follows immediately from the definition of Fourier expansion and L1 norm. That
is

||fx||1 =
∑
s⊆[n]

|f̂x(S)| ≤
∑
s⊆[n]

|f̂(S)| = ||f ||1 ≤ l

19

Lemma 2.2.8. Given f : {0, 1}n −→ R, if ||f ||1 ≤ l then ||f · χS ||1 ≤ l for any S ⊆ [n].

Proof. Since χS · χT = χS4T where S4T denotes the symmetric difference of S and T , we
have f(x) · χS =

∑
T⊆[n] f̂(T)χT · χS =

∑
T⊆[n] f̂(T)χT4S . From the uniqueness of Fourier

expansion, we get ||f ||1 = ||f · χS ||1.

Using Lemma 2.2.8,Lemma 2.1.25, and Theorem 2.1.24 we get the following theorem.

Theorem 2.2.9. For f : {0, 1}n −→ R such that ||f ||1 ≤ l, there is a deterministic algorithm
that given query access to f , S ⊆ [n], and 0 < ε ≤ 1/2, and 1 ≤ l runs in time poly(l, n/ε)
and outputs an approximation f̃(S) for f̂(S) such that

|f̃(S)− f̂(S)| ≤ ε

Proof. Let D be an ε/l-biased distribution. By Theorem 2.1.24, time to construct the sup-
port of this distribution is poly(n, l, 1/ε). By Lemma 2.2.8 and Lemma 2.1.25 we see that
|Ex∼D[f(x) · χS(x)]− Ex∼U [f(x) · χS(x)]| ≤ ε.

In order to derandomize Goldreich and Levin algorithm, we need a deterministic way
of approximating the Fourier coefficient of a restricted function. We can use a small biased
set that fools f to estimate Ey∈{0,1}k [fx(y)χα(y)] because of the following fact.

Lemma 2.2.10. Let f : {0, 1}n −→ R such that ||f ||1 ≤ l and J ⊆ [n] with |J | = k. Let us
denote by {0, 1}J length k bit strings that corresponds to the coordinates of J ⊆ [n] where J
does not need to be consecutive. Let D be an ε/l biased distribution over {0, 1}n defined by a
probability mass function φ : {0, 1}n −→ R≥0. Then the marginal distribution DJ on {0, 1}J

defined by φ′ : {0, 1}J −→ R≥0 where φ′(y) =
∑
x∈{0,1}J̄ φ(yx) for each y ∈ {0, 1}J is still ε/l

biased on {0, 1}J . That is ∣∣∣∣∣ E
y∼DJ

[χα(y)]− E
y∈{0,1}J

[χα(y)]
∣∣∣∣∣ ≤ ε/l

for any α ∈ {0, 1}J

20

Proof. ∣∣∣∣∣ Ex∼D[χα(x)]− E
x∈{0,1}n

[χα(x)]
∣∣∣∣∣

=

∣∣∣∣∣∣
∑

y∈{0,1}k

∑
x∈{0,1}n−k

φ(yx)χα(yx)−
∑

y∈{0,1}k

∑
x∈{0,1}n−k

1
2nχα(yx)

∣∣∣∣∣∣
(since α ∈ {0, 1}k, χα(x) = 1)

=

∣∣∣∣∣∣
∑

y∈{0,1}k

∑
x∈{0,1}n−k

φ(yx)χα(y)−
∑

y∈{0,1}k

∑
x∈{0,1}n−k

1
2nχα(y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

y∈{0,1}k
φ′(y)χα(y)−

∑
y∈{0,1}k

1
2kχα(y)

∣∣∣∣∣∣
=
∣∣∣∣∣ E
y∼DJ

[χα(y)]− E
y∈{0,1}k

[χα(y)]
∣∣∣∣∣ ≤ ε/l

We need one more fact to derandomize Goldreich and Levin algorithm for small L1 norm
functions.

Lemma 2.2.11. For f : {0, 1}n −→ R with ||f ||1 ≤ l, and an ε-biased distribution D on
{0, 1}n, ∣∣∣∣ Ex∼D[f2(x)]− E

x∼U
[f2(x)]

∣∣∣∣ ≤ l2ε
Proof. ∣∣∣∣ Ex∼D[f2(x)]− E

x∼U
[f2(x)]

∣∣∣∣ ≤ ||f2||1ε (by Lemma 2.1.25)

≤ ||f ||21ε ≤ l2ε (by Lemma 2.1.7)

Recall that the quantity that we need to approximate is the expectation over {0, 1}J̄

of the square of a function with domain {0, 1}J for some J ⊆ [n] as we see in Equa-
tion (2.2.2).Let us assume ||f ||1 ≤ l. Let us construct an ε/l2-biased set B according
to Theorem 2.1.24, for {0, 1}n. Let DB be the ε/l2-biased distribution over B. Then by
Lemma 2.2.10 and by Lemma 2.2.11, we can use the marginal distribution of DB to esti-
mate this quantity. In other words, the marginal distribution DJ̄B on {0, 1}J̄ will fool f2

α(x).∣∣∣∣∣ E
x∼DJ̄B

[f2
α(x)]− E

x∼{0,1}J̄
[f2
α(x)]

∣∣∣∣∣ ≤ ||fα(x)||21
ε

l2
(by Lemma 2.2.11)

≤ ||f(x)||21
ε

l2
≤ ε (by Remark 2.2.6)

21

One more problem remains. That is, we don’t have a query access to fα. However by
Remark 2.2.6, we can estimate its value by querying fx. As mentioned earlier, since the
algorithm can query into f for any input of the domain, it also has a query access to fx
for any x ∈ {0, 1}n−k. Furthermore, by Lemma 2.2.7 and Lemma 2.2.8, the L1 norm of
fx(y)χS(y) is at most the L1 norm of f . The same ε/l2-biased set B can be used to estimate
the expectation of fx(y)χS(y) over {0, 1}J . In other words, the marginal distribution DJB
on {0, 1}J will fool fx(y)χS(y).∣∣∣∣∣ E

y∼DJB
[fx(y)χS(y)]− E

y∼{0,1}J
[fx(y)χS(y)]

∣∣∣∣∣ ≤ ||f(x)||1
ε

l2
≤ ε

l
(2.2.5)

Note that if we get an approximation β of E
x∼DJ̄B

[f2
α(x)] such that

∣∣∣β − E
x∼U ′B

[f2
α(x)]

∣∣∣ ≤ ε

then we have ∣∣∣∣∣β − E
x∼{0,1}J̄

[f2
α(x)]

∣∣∣∣∣
≤
∣∣∣∣∣β − E

x∼DJ̄B
[f2
α(x)]

∣∣∣∣∣+
∣∣∣∣∣ E
x∼DJ̄B

[f2
α(x)]− E

x∼{0,1}J̄
[f2
α(x)]

∣∣∣∣∣ ≤ 2ε

Since fα is a Fourier coefficient of a Boolean function, we have that |fα| ≤ 1. By Equa-
tion (2.2.5),we can approximate fα within ε/l. Let us denote this approximation of fα with
α. Then we have the following

α− fα ≤ ε/l =⇒ α2 − f2
α ≤ f2

α + 2ε/lfα + ε2/l2 − f2
α ≤ 3ε/l

fα − α ≤ ε/l =⇒ f2
α − α2 ≤ f2

α − f2
α + 2ε/lfα − ε2/l2 ≤ 2ε/l

So α2 is 3ε/l approximation of f2
α. Now we have the approximation β of E

x∼U J̄B
[f2
α(x)] such

that
∣∣∣β − E

x∼U J̄B
[f2
α(x)]

∣∣∣ ≤ 3ε/l. That is we enumerate each x ∼ U J̄B and get 3ε/l-estimate
of f2

α as described by above. Then the equally weighted average of the estimates of f2
α will

be 3ε/l-estimate of E
x∼U J̄B

[f2
α(x)]. In conclusion, we have the following.

Theorem 2.2.12. There exists a deterministic algorithm that given a query access to any
f : {0, 1}n −→ {0, 1} such that ||f ||1 ≤ l, any θ > 0 runs in time poly(n, 1/θ) and outputs a
list L of vectors α ∈ {0, 1}n such that

•
∣∣∣f̂(α)

∣∣∣ ≥ θ =⇒ α ∈ L

• α ∈ L =⇒
∣∣∣f̂(α)

∣∣∣ ≥ θ/2
Our result is a deterministic approximation of Ex∈{0,1}J̄ [f2

α(x)] where f is computed by
a DNF of polynomial number of terms for small Sα where Sα = {i : αi = 1} provided that
there exists a good pseudo random generator for DNF. It is a derandomization of Goldreich

22

and Levin algorithm that does not depend on f having the small L1 norm. Instead our result
is for the special case when we only need to find small degree coefficients and conditioned
with the existence of an ideal PRG for DNFs.

2.2.4 Sparse polynomial approximation

The following lemma says that if f can be approximated by a sparse polynomial g, then f
can be approximated by h that has only large coefficients of g.

Theorem 2.2.13. [KM93] If f can be approximated by a t-sparse function g such that
E[(f − g)2] ≤ ε, then there exists a t-sparse function h such that E[(f − h)2] ≤ ε+O

(
ε2/t

)
and all the nonzero coefficients of h are at least ε/t

Remark 2.2.14. Without loss of generality, Kushilevitz and Mansour assumes that the
nonzero coefficients of the sparse functions g are the same as the coefficients of f of the
corresponding vectors. h is then defined with the coefficients of g that are at least ε/t. In
other words

g(x) =
t∑
i=1

f̂(zi)χzi(x), h(x) =
∑

f̂(zi)≥ε/t

f̂(zi)χzi(x)

Since h is the same as g except at most t many small coefficients where each of them
contributes at most ε/t, we can see that the increase in the L2 norm squared distance from
h to f compared to the L2 norm squared distance from g to f is at most

(
ε
t

)2
t.

Remark 2.2.15. We can see that f is ε approximated by a t-sparse function g, if and
only if there exists a list L of vectors α ∈ {0, 1}n such that

∑
z /∈L f̂

2(z) ≤ ε and |L| ≤ t.
Therefore, we can equivalently define the function h in Theorem 2.2.13 as

h =
∑

α∈Landf̂(α)≥ε/t

f̂(α)

The L2 norm squared distance between h and f is then,

∑
α∈{0,1}n

(
f̂(α)− ĥ(α)

)2
=
∑
α/∈L

f̂2(α) +
∑

α∈Landf̂(α)≤ε/t

f̂2(α) ≤ ε+ t

(
ε

t

)2

Mansour’s [Man92] main contribution in the paper was to show that for a w-DNF,
there exist a sparse function that ε-approximates the DNF, which is a sufficient condition
in Theorem 2.2.13. Furthermore, he showed that When we are limited to a w-DNF, finding
large coefficients of small degree and approximating them gives the desired bound on the
sum of squared difference. That is, for a w-DNF, the list L as described as above only
consists of small degree vectors.

Remark 2.2.16. Note that in Theorem 2.2.13, only the existence of a sparse polynomial is
mentioned without an explicit construction for it. In fact, in [Man92], the sparse polynomial

23

consists of a subset of Fourier coefficients of the target function which we do not have an
access to in our learning model. However, it narrows down the number of Fourier coefficients
that we need to estimate.

The sparsity comes from the fact that a w-DNF has small Fouier concentration for
large degree and small sum of absolute values of Fourier coefficients of small degree. This
is formally stated in the following two lemmas.

Lemma 2.2.17. [Man92] Let f be a function that can be written as a DNF with terms of
size w. Then, ∑

|S|>20w log 2/ε
f̂2(S) ≤ ε

Lemma 2.2.18. [Man92] Let f be a function that can be written as a DNF with terms of
size w. Then, ∑

S:|S|≤γ
|f̂(S)| ≤ wO(γ)

Since the total sum of absolute values of small degree Fourier coefficients for a w-DNF
f is upper bounded, the number of small degree coefficients that can have its absolute
value larger than a certain threshold is upper bounded. More specifically, denoting L =∑
S:|S|≤γ |f̂(S)| where γ = 20w log 1

ε , Mansour sets the threshold to ε
L . Let us denote the

set of Fourier coefficients of f with absolute value larger than ε
L and degree smaller than γ

as G. So
G =

{
s : |s| ≤ γ and |f̂(s)| ≥ ε

L

}
Then there can be at most

(
L
ε

)2
elements in G. The sparse function g that approximates f

is exactly the function with those coefficients in G. Mansour then shows, by simple analysis,
that the Fourier mass of f outside G is bounded by ε which proves that the sparse function
g is indeed ε close to f in L2 norm squared.

Theorem 2.2.19. [Man92] For any function f that can be described by a DNF with terms
of size d there exists an t-sparse function g that ε-approximates f and t ≤ dO(d log 1/ε)

So if there exists an algorithm that finds coefficients larger than some threshold, then
the sparse function h mentioned in Theorem 2.2.13 can be found explicitly. As we discussed
in the previous section, based on the idea of Goldreich and Levin [GL89], Kushilevitz and
Mansour [KM93] presents a randomized algorithm that given a membership query access to
a function f and a threshold θ, finds with probability at least 1− δ in poly(n, 1/θ, log(1/δ))
time, every S ⊆ [n] for which |f̂(S)| ≥ θ.

Since Mansour showed that a t-sparse function exists in Theorem 2.2.19, we can use
Kushilevitz and Mansour algorithm with threshold ε/t to find the list of S ⊂ [n] such
that |f̂(S)| ≥ ε/t. Then according to Theorem 2.2.13, the function defined by the positive

24

Fourier coefficients of the vectors in the output list of the KM algorithm will ε + O
(
ε2/t

)
approximate the target DNF f . Since we do not have access to the coefficients of f , we
estimate them upon the output of the Kushilevitz and Mansour’s algorithm where each
coefficient can be approximated efficiently with the standard sampling as in Theorem 2.2.2.
This approximated coefficients are then used to build a sparse polynomial that is close to
f in L2 norm.

As explained in Remark 2.2.4, the output list from KM algorithm contains at most t2/ε
vectors for which we need to approximate the coefficients. Therefore we need to approximate
each of them so that the squared difference of the target function’s coefficient and the
estimated coefficient is at most our desired total squared difference divided by the size of
the output list. Since our desired total squared difference is ε, the approximation error will
be ε2/t2. The run time to do this is still in poly(t, 1/ε) as shown in Theorem 2.2.2.

Theorem 2.2.20. [KM93] Let f be a Boolean function such that there exists a t-sparse
function that ε-approximates f. There exists a randomized algorithm whose running time is
polynomial in t, n, 1/ε and log 1

δ that given f(as a black box) and δ > 0 outputs a function
h, such that the probability that h O(ε) approximates f is at least 1− δ.

Mansour makes an assumption that the largest term of the target DNF is O(log(n/ε))
which is valid because the sample points in the learning model is uniformly randomly
selected. The sparsity of the function approximating the target DNF is, by Theorem 2.2.19,
(n/ε)O(log log(n/ε) log(1/ε)) which dominates the run time of Mansour’s algorithm [Man92]
according to Theorem 2.2.20. [Tal17] later has improved this sparsity result as follows.

Theorem 2.2.21. [Tal17] Given a DNF f : {0, 1}n −→ {0, 1}of m terms and ε > 0, there ex-
ists a t-sparse function g : {0, 1}n −→ R such that ||f−g||2 ≤ ε and t ≤ (log(m))O(log(m) log(1/ε))

25

Chapter 3

Deterministic approximation of the
Fourier coefficients

Learning of a Boolean function can be done if we can estimate its Fourier coefficients such
that the sum of squared difference of the true and the estimated coefficients is small. In the
case of [LMN93], it estimates each coefficients f̂(S) for each S of size less than some bound
by randomly sampling x from the input space to get an average over f(x)χS and set all
large degree coefficients to zero. This is taking advantage of the fact that AC0 circuits have
Fourier representations such that most of its coefficients is concentrated at small degree.
Tal [Tal17] has later improved this concentration bound as following

Theorem 3.0.1 ([Tal17]). Let f be a Boolean circuit with depth d and size m. Then∑
s:|s|≥k f̂(s)2 ≤ 2 · 2−k/O(logm)d−1

Remark 3.0.2. From the above theorem, a Boolean circuit with depth d ad size m has at
most ε of its Fourier mass on degree greater than O

(
logd−1m log(1/ε)

)
3.1 Estimation based on conditional expectation and GMR

pseudorandom generator

Now we will use Gopalan and others’ PRG [GMR13] for DNFs to deterministically approx-
imate the Fourier coefficients. Before we do so, we need to express a Fourier coefficient in
terms of expectations of restricted DNFs as stated in the following lemma.

Lemma 3.1.1. Given f : {0, 1}n → R and a subset S ⊆ [n] of size t, let fx denote f
restricted on the coordinates corresponding to S with x ∼ {0, 1}t, then we have

E
x∼U

[f(x)χS(x)] = 1
2t

∑
x∼{0,1}t

χS(x) E
y∼{0,1}n−t

[fx(y)]

Note that if f is in a circuit class that is closed under restriction, then we can use the
PRG for the circuit class to fool fx. The class of functions computable by DNFs is closed

26

under restriction. Furthermore, note that if f can be computed by a w-DNF than fx can
also be computed by a w-DNF.

Our learning model has black box query access to an unknown target function and this
in turn gives a black box query access to a restriction of the target function.

The runtime of derandomized algorithm using a PRG depends on the seed length and
the seed length in turn depends on various parameters. In the case of Gopalan and others’
PRG, the the dependency is on the maximum width of the terms.

Theorem 3.1.2 ([GMR13]). For all δ, there exists an explicit generator G : {0, 1}r −→
{0, 1}n that δ-fools width w-DNF and has seed length

r = Õ

(
w2 + w log

(1
δ

)
+ log log(n)

)
It is therefore desirable that our DNF has small width. In the case of randomized learning

where the examples are randomly selected, we can ignore the large terms as we explain in
the following. When we want to learn a DNF formula of size m = poly(n) up to ε error
probability, we can assume without loss of generality that our DNF formula has width at
most O(log(m/ε)). This is because the probability that a term larger than log(mε) is satisfied
is at most ε

m and so the total error probability will increase by at most O(ε). Since we are
discussing DNFs with polynomial number of terms, we can then assume that the width is
O(log(n/ε)).

This simplified DNF with only short terms is then learned by the randomized learning
algorithm. Note that even if the learning model only has back box access to the original
function , in randomized case, this simplification does not pose a problem because, for each
random example, the probability that the original function and the simplified one disagree
is negligible. Therefore, assuming that we need at most poly(n) number of examples to learn
the DNF with only short terms, the original DNF and the simplified one will agree on all
of the examples with high probability except at most poly(n)ε.

With deterministic learning, in contrast, this assumption cannot be justified. To see
this, we can imagine the worst case scenario when the set of example points that we make
queries to the black box of original function includes all points that the simplified function
disagrees with the original one.

Combining Lemma 3.1.1 and Theorem 3.1.2 we get the following theorem

Theorem 3.1.3. For a given width w-DNF, there is a deterministic procedure to ε-approximate
its Fourier coefficient of degree less than t in time 2Õ(w2+w·log(2t/ε)+log logn) · 2t

Proof. In order to approximate each coefficient within error ε, one term in the summation
should be approximated within ε

2t . Then the seed length follows from Theorem 3.

27

Derandomized LMN learning for DNF To derandomize the LMN learning for the
case of width w-DNF, we use Theorem 3.0.1 for a better concentration bound. So we need to
estimate the coefficients of degree at most O (logn log(1/ε)). As it is in LMN, we will set the
coefficients of larger degree to zero. Therefore,the number of coefficients to be estimated is
at most nO(logn log(1/ε)). This means if we want the final hypothesis to ε-approximate f , then
we need to have that the approximation of each coefficients is within at most ε

nO(logn log(1/ε))

of the true value of the coefficient.
Using Theorem 3.1.3, this approximation of one coefficient takes

2Õ(w2+w logn log(1/ε)+log logn) · nlog(1/ε)

time. Therefore for a small w such that w ≤ log (n/ε), we can deterministically learn a
w-DNF formula in time (n/ε)Õ(log(n/ε) log(1/ε)).

Theorem 3.1.4. Given a w-DNF and ε > 0, where w ≤ log (n/ε), there exists a determinis-
tic learning algorithm that outputs an ε approximating hypothesis in time

(
n
ε

)Õ(log(nε) log 1
ε).

Note that if we were to estimate the coefficient by directly fooling f(x)χs(x) using a
pseudo random generator for the class of DNFs, then we would have to construct a large
circuit for f(x)χs(x) in a DNF formula. This in turn will result in a long seed length. In
contrast, our method does not suffer this overhead because, in each term of the summation,
the parity is constant.

Read once DNF In the special case of read once DNFs, Gopalan and others [GMR+12]
showed that there exist a near optimal PRG.

Theorem 3.1.5. [GMR+12] For every ε > 0 there exists an explicit PRG G : {0, 1}r −→
{1,−1}n that fools all read once CNFs on n-variables with error at most ε and seed-length
r = O

(
log(n/ε) (log log(n/ε))3

)
It can be verified that a PRG that ε-fools the class of all read once CNFs also ε-fools the

class of all read once DNFs. Since the class of read once DNFs is closed under restriction,
we can use our Lemma 3.1.1 to approximate its coefficients.

Theorem 3.1.6. Given a read once DNF, there is a deterministic procedure to ε-approximate
a Fourier coefficient of degree less than t in time 2Õ(log(n/ε)+t)

Proof. To estimate one coefficient of degree t within ε error, one term of the summation in
lemma 3.1.1 needs to be approximated within ε

2t which require Õ
(
log(n/ε) + log(2t)

)
seed

length according to theorem 3.1.5.

Theorem 3.1.6 immediately gives a deterministic learning algorithm for read once DNFs
that runs in time nÕ(logn log(1/ε)).

28

3.2 Estimation based on biased distribution that fools small
L1 norm functions

De and others [DETT10] showed that a w-DNF φw : {0, 1}n −→ {0, 1} can be fooled by a
small ε-biased set by showing that φw has sandwich approximators that have small l1 norms.
Their argument starts with Mansour’s [Man92] result that says a sparse polynomial defined
with a subset of Fourier coefficients of φw can approximate φw. Then by Lemma 2.1.8, we
have a small l1 norm function approximating φw. They then follow the proof by Razborov
[Raz09] to show that there exists a function g approximating φw that has slightly larger
l1 norm than that of Mansour’s sparse polynomial but has an advantage that g(x) = 0
whenever φw(x) = 0.
Finally, using the construction of Bazzi [Baz09], they construct sandwich approximators
for φw with slightly larger l1 norm then ||g||1. Then by using Lemma 2.1.30, the small
ε-biased set that fools the approximators also fools φw. In fact, in the construction of the
sandwiching approximators in [DETT10], the l1 norm of both lower and upper sandwiching
approximators are bounded by the same quantity which is the sparsity of the approximating
polynomial that is shown to exists for a given w-DNF by [Man92]. Then they reduce the
case of arbitrary DNFs with m terms to that of bounded width, by deleting the terms of
width greater than log(m/δ) and show that the distribution that δ/4 fools the bounded
width DNF δ-fools the original DNF.

We will use the improved sparsity result by Tal [Tal17] stated in Theorem 2.2.21 to show
that there exists small l1 norm sandwich approximators for an arbitrary DNF. Our proof
closely follow the proof for w-DNF by [DETT10] and that is because the case of w-DNF
can be generalized to a general DNF without breaking the proof of the lemmas that lead
to the existence of the small L1 norm approximators.
The following lemma is proven in [DETT10].

Lemma 3.2.1 ([DETT10]). Let φ : {0, 1}n −→ {0, 1} be a DNF with m terms and g :
{0, 1}n −→ R be such that: ||g||1 ≤ l, ||φ − g||2 ≤ ε1 and g(x) = 0 whenever φ(x) = 0. Then
we can construct fl, fu : {0, 1}n −→ R such that

• ∀x, fl(x) ≤ φ(x) ≤ fu(x)

• Ex∼U [fu(x)− φ(x)] ≤ mε21 and Ex∼U [φ(x)− fl(x)] ≤ mε21

• ||fl||1, ||fu||1 ≤ (m+ 1)(l + 1)2 + 1

The following lemma is a slight variant of Lemma4.4 of [DETT10]. The only change
is that the DNF is not limited to a width w-DNF but it is a general DNF with m terms.
However the proof of the lemma does not depend on the DNF being bounded width but
what is required is that the DNF is estimated by a sparse polynomial.

29

Lemma 3.2.2. Let φ : {0, 1}n −→ {0, 1} be a DNF with m terms. Suppose for every DNF φ1

with at most m terms, there exists g1 : {0, 1}n −→ R such that: |||g1||1 ≤ l1 and ||φ1−g1||2 ≤
ε2. Then we can get g : {0, 1}n −→ R such that ||g||1 ≤ m(l1 + 1), ||φ − g||2 ≤ mε2 and
g(x) = 0 whenever φ(x) = 0.

The proof closely follow the proof of [DETT10] but we will state it here for completeness

Proof. Given a DNF φ = ∨mi=1Ai where Ai ∈ {0, 1} are individual terms, we can write
φ =

∑m
i=1Ai

(
1− ∨i−1

j=1Aj
)
[Raz09]. Letting ∨i−1

j=1Aj = φi where φi = 0 if i = 1, we get
φ =

∑m
i=1Ai (1− φi). Since each φi is a DNF of at most m terms, by our hypothesis, for

each φi, there exist gi : {0, 1}n −→ R such that: |||gi||1 ≤ l1 and ||φi − gi||2 ≤ ε2. Now we
define a function

g =
m∑
i=1

Ai (1− gi)

If φ(x) = 0 then Ai(x) = 0 for all i therefore g(x) = 0. Using the fact that Ai is a conjunction
and Remark 2.1.10 and Remark 2.1.9, we get ||g||1 ≤ m (l1 + 1). Now

||g − φ||22 = E
x∈{0,1}n

(m∑
i=1

Ai(φi − gi)(x)
)2


≤ m E
x∈{0,1}n

[
m∑
i=1

(Ai(φi − gi)(x))2
]

(By Jensen’s inequality)

= m
m∑
i=1

E
x∈{0,1}n

[
(Ai(φi − gi)(x))2

]
≤ m

m∑
i=1

E
x∈{0,1}n

[
(φi − gi)(x)2

]
(Ai is at most 1)

= m
m∑
i=1
||φi − gi||22 ≤ m2ε22

With Tal’s improved sparsity result in theorem 2.2.21, we have the following which is
just a restatement of theorem 2.2.21.

Lemma 3.2.3. Let φ : {0, 1}n −→ {0, 1} be a DNF with m terms and ε2 > 0. Then there
exists g1 : {0, 1}n −→ R such that: |||g1||1 ≤ (log(m))O(log(m) log(1/ε2)) and ||φ− g1||2 ≤ ε2.

Proof. By theorem 2.2.21, we get a t ≤ (logm))O(logm log(1/ε2))-sparse function g1 : {0, 1}n −→
R such that ||φ− g1||2 ≤ ε2. By Lemma 2.1.8, ||g1|| ≤ (logm))O(logm log(1/ε2)).

Combining Lemma 3.2.1, Lemma 3.2.2, and Lemma 3.2.3 we get the following result.

Lemma 3.2.4. Let φ : {0, 1}n −→ {0, 1} be a DNF with m terms. Then we can construct
fl, fu : {0, 1}n −→ R such that

30

• ∀x, fl(x) ≤ φ(x) ≤ fu(x)

• Ex∼U [fu(x)− φ(x)] ≤ δ/2 and Ex∼U [φ(x)− fl(x)] ≤ δ/2

• ||fl||1, ||fu||1 ≤ (log(m))O(log(m) log(m/δ))

Proof. This proof follows the proof of [DETT10]. Set ε2 =
√
δ/2m3 and ε1 =

√
δ/2m. By

applying Lemma 3.2.3, for every DNF with at most m terms φ1, we can get a function
g1 : {0, 1}n −→ R such that

• ||φ1 − g1|| ≤ ε2 =
√
δ/2m3

• ||g1||1 ≤ (log(m))O(log(m) log(1/ε2)) = (log(m))O(log(m) log(m/δ))

Now apply Lemma 3.2.2 with l1 = (log(m))O(log(m) log(m/δ)) and ε2 =
√
δ/2m3. Then for

the given DNF φ, we get a function g such that ||g||1 ≤ (log(m))O(log(m) log(m/δ)) and ||g −
φ||2 ≤ mε2 = ε1 =

√
δ/2m. Then, apply Lemma 3.2.1 with g and ε1 as defined and

l = (log(m))O(log(m) log(m/δ)) to get fl and fu such that φ is sandwiched by fl and fu and
||fl||1, ||fu||1 ≤ (log(m))O(log(m) log(m/δ)) and

E
x∼U

[fu(x)− φ(x)] ≤ δ/2 and E
x∼U

[φ(x)− fl(x)] ≤ δ/2

In this section, we will use the following lemma that says that any function f : {0, 1}n −→
R that is sandwiched by small l1 norm functions fl, fu : {0, 1}n −→ R, a small biased set
that fools the approximator also fools f · χS .

Lemma 3.2.5. Suppose f, fl, fu : {0, 1}n −→ R are such that for every x ∈ {0, 1}n we
have fl(x) ≤ f(x) ≤ fu(x) and Ex∼U [f(x) − fl(x)] ≤ δ and Ex∼U [fu(x) − f(x)] ≤ δ.Let
l = max(||fl||6=∅1 , ||fu||6=∅1). Let χS be an arbitrary Fourier basis for S ⊆ [n]. Let D be a
ε-biased distribution. Then,

| E
x∼D

[f · χS]− E
x∼U

[f · χS]| ≤ 4l · ε+ 2δ

The proof is shown in the appendix for a more general case when D is a pseudorandom
distribution that ε fools a class of functions that is closed under multiplication with Fourier
basis but here is the brief idea. The class of functions that have small l1 norm is closed under
multiplication with any Fourier basis function χS for S ⊆ [n] as shown in Lemma 2.2.8.
Therefore, fl · χS and fu · χS are also fooled by a small ε-biased set. Furthermore, since fl
and fu are approximators for f , fl ·χS and fu ·χS are approximators for f ·χS for S ⊆ [n].
Combining Lemma 3.2.4 and Lemma 3.2.5 we get the following theorem.

31

Theorem 3.2.6. Given a DNF with m = poly(n) terms φ : {0, 1}n −→ {0, 1} and ε > 0,
there exists a deterministic procedure that can approximate φ̂(S) for S ⊆ [n] within 6ε in
time (logn)O(logn log(1/ε))

Proof. We get from Lemma 3.2.4, that there exists fl and fu such that

• Ex∼U [fu(x)− φ(x)] ≤ ε and Ex∼U [φ(x)− fl(x)] ≤ ε

• ||fl||1, ||fu||1 ≤ (logn)O(logn log(1/ε))

Then we can apply Lemma 3.2.5 and see that ε

(logn)O(logn log(1/ε)) -biased distribution will

4ε+ 2ε fool φ · χS . The size of the support of the biased distribution is (logn)O(logn log(1/ε))

and it can be constructed in time poly
(
(logn)O(logn log(1/ε))

)
by Theorem 2.1.24.

32

Chapter 4

Deterministic learning of DNF

In this chapter, we will discuss our main result which uses our deterministic procedure to
estimate the Fourier coefficients of an arbitrary DNF with poly(n) terms and define a sparse
polynomial with the estimates of low degree, large coefficients.

4.1 Learning from GMR PRG

Our first result is an nÕ(log(n) log2(1/ε)) time deterministic algorithm that finds a function
that ε-approximates a DNF with polynomial number of terms. We will be using the method
we developed in Section 3.1.

Theorem 4.1.1. (Main Theorem restated) Let f be a boolean function that can be computed
by a DNF with polynomial number of terms. Then for ε > 0, there exists a deterministic
algorithm that runs in time nÕ(log(n) log2(1/ε)) and outputs g : {0, 1}n −→ R such that g ε
approximates f .

Proof. We aim to discard all coefficients of small degree and use the estimates for all of the
small degree, large absolute value coefficients. Specifically, let us denote the threshold for
the absolute value of a coefficient as θ. We will show a deterministic procedure that outputs
a list of S ⊆ [n] that contains every S for which |f̂(S)| ≥ θ and does not contain any S for
which |f̂(S)| ≤ 8θ

10 .
Our approximating polynomial g will have zero coefficients for degree larger than
O (log(n) log(1/ε)) and this bound comes from Theorem 3.0.1. Let us denote this bound
with k.
For each S ∈ [n] such that |S| ≤ k = O (log(n)log(1/ε)), we approximate E

x∼U
[f(x)χS(x)]

with error ± θ
10 where

θ = ε

(n)O(log log(n) log(1/ε))

Notice that the denominator of the threshold is the sparsity in Theorem 2.2.21. In order
to use the approximation discussed in Section 3.1, we need a PRG that can fool an arbi-
trary DNF. However, PRG by [GMR13] can be used when we have the parameter for the

33

maximum width of the DNF being fooled. Fortunately, as we discussed in the preliminary
chapter Lemma 2.1.28, if we can find small width DNFs that ε-sandwich approximate an
arbitrary DNF, we can use the PRG that fools the approximators to also fool the arbitrary
DNF. The existence of those approximators is what we showed in Lemma 2.1.29. All we
need to do is to tune the error parameter according to the number of coefficients to be
estimated and the number of terms in the summation as shown in Lemma 3.1.1.
For each coefficient, there are 2O(log(n) log(1/ε)) = (n)O(log(1/ε)) terms. So the mean of a re-
stricted DNF in each term in the summation should be approximated within ε

(n)O(log log(n) log(1/ε)) .
Let us denote this error as δ′.

δ′ = ε

(n)O(log log(n) log(1/ε))

Then, by Lemma 2.1.29 there exists δ′/2-sandwiching approximator for a restricted DNF
in each term that can be computed by a DNF of width log(2n

δ′). The PRG that δ′/2 fools
any of those sandwich approximators will δ′ fool the arbitrary restricted DNF for which we
want to approximate the mean.
This PRG, by Theorem 3.1.2, will require seed length

r = Õ

(
log2(2n

δ′
) + log(n/δ′) log

(1
δ′

)
+ log log(n)

)
= Õ

(
log2 (n) log log(n) log2(1/ε)

)
So the time to estimate one coefficient is 2r = (n)Õ(log(n) log2(1/ε)). Since there are at most
nO(log(n) log(1/ε)) coefficients to estimate, the total time is (n)Õ(log(n) log2(1/ε)).
Let G = {S1, ..., Sl} be the collection of the subsets S ∈ [n] with |S| ≤ k such that the
absolute value of the estimate for f̂(Si) is at least 9θ

10 . We have the bounds on the sum of
absolute values of small degree coefficients from [Tal17] as follows

Lemma 4.1.2. [Tal17] Let f be a Boolean circuit of depth d and size m > 1. Then

∑
s:|s|<O(logd−1 m log(1/ε))

|f̂(s)| ≤ O
(
logd−1m

)O(logd−1m log(1/ε))

In particular, for our case where m = poly(n) and d = 2 above lemma gives us the
upper bound of (n)O(log log(n) log(1/ε)). Notice that if the absolute value of an approximation
to a coefficient is at least 9θ

10 , the absolute value of the true coefficient must be at least 8θ
10 .

Therefore, G contains every S for which |f̂(S)| ≥ θ and does not contain any S for which
|f̂(S)| ≤ 8θ

10 .
Let γi denote the estimate within ± θ

10 of f̂(Si) such that Si ∈ G. We then set our approxi-
mating polynomial g : {0, 1}n −→ R as g(x) =

∑
γiχSi(x).

Then we have the following

34

E[(f(x)− g(x))2] =
∑
s∈[n]

(
f̂(s)− ĝ(s)

)2

=
∑
|s|>k

f̂2(s) +
∑

|s|≤kands/∈G
f̂2(s) +

∑
s∈G

(
f̂(s)− ĝ(s)

)2

By Lemma 4.1.2, there are at most (n)O(log log(n) log(1/ε))

8θ
10

= nO(log logn log(1/ε)) many S such that

|f̂(S)| ≥ 8θ
10 . So we can see that the number of non zero coefficients in our approximating

polynomial g is small (i.e |G| ≤ nO(log logn log(1/ε))).
Now we bound each sum in the above equation.
The first summation is bounded above by ε due to Theorem 3.0.1.
Since for any S /∈ G we have |f̂(S)| < θ, we can bound the second summation as follows

∑
|s|≤kands/∈G

f̂2(s) ≤
(

max
s/∈Gand|s|≤k

|f̂(S)|
) ∑

|S|≤k
|f̂(S)|

 ≤ θ (n)O(log log(n) log(1/ε)) ≤ ε.

The third summation can be bounded as follows

∑
s∈G

(
f̂(s)− ĝ(s)

)2
≤ (n)O(log log(n) log(1/ε)) (θ/10)2 ≤ ε

Therefore, g ε-approximates f .

4.2 Learning from biased distribution

Our second result is an nÕ(log(n) log(1/ε)) time deterministic algorithm that finds a function
that ε-approximates a DNF with poly(n) number of terms. We will use Theorem 3.2.6 in
Section 3.2.

Theorem 4.2.1. Let f be a Boolean function that can be computed by a DNF with polyno-
mial number of terms. Then for ε > 0, there exists a deterministic algorithm that runs in
time nÕ(log(n) log(1/ε)) and outputs g : {0, 1}n −→ R such that g ε approximates f

Proof. The proof follows the same procedure as in the proof of Theorem 4.1.1 except that
the estimation of the Fourier coefficients of degree less than k = O (logn log(1/ε)) is per-
formed by enumerating the support of a biased distribution that fools the sandwiching
approximators of f .
By Theorem 3.2.6, there exists a deterministic procedure that can approximate a Fourier
coefficients of f within θ

10 = ε
nO(log logn log(1/ε)) in time

nO(log logn log(nlog logn log(1/ε))) = nÕ(logn log(1/ε))

35

Since there are at most nO(log(n) log(1/ε)) coefficients to estimate, the total time is nÕ(log(n) log(1/ε)).
We define g : {0, 1}n −→ R with the estimates of the Fourier coefficient that are larger than
9θ
10 as described in the proof of Theorem 4.1.1. The rest of the proof that shows that g is ε
close to f in l2 norm is the same.

36

Chapter 5

Deterministic learning of AC0

In this section, we will compare two approaches to learn AC0 circuits. An AC0 circuit consists
of AND and OR gates. It has a depth bounded by a constant d and the number of gates
is bounded by a polynomial in the input size n. Each gate has unbounded fanin. We also
assume without loss of generality that the gates are leveled. That is, all gates on level i have
their inputs coming from level i− 1, all gates at the same level are of the same kind where
AND and OR alternate on each level.

5.1 Fourier spectrum bound approach

We will use the fact that for a given AC0 circuit, all but ε of Fourier mass is concentrated
on small degree. If we approximate all of the small degree coefficient of the target AC0

function within a small fraction of ε, then we will have an approximating polynomial. This
was the approach used by LMN [LMN93]. [LMN93] showed that all but ε Fourier mass of
an AC0 circuit of depth d and size m is concentrated on degree smaller then logdm/ε. They
then approximated each of the small coefficient with random sampling. Our approach is
the same except that we are using the best Fourier concentration bound due to Tal [Tal17]
and we derandomize the estimation of small coefficients. In the case of AC0 circuits of
polynomial size and for 0 < ε < 1, its Fourier representation is ε-concentrated up to degree
k = O(logd−1 n log(1/ε)) by Theorem 3.0.1.

For deterministic approximation of Fourier coefficients, we will use the best PRG known
for AC0 due to Servedio and Tan [ST19]. This AC0 PRG is optimal given the current circuit
lower bounds for the class of AC0 circuits.

Theorem 5.1.1. [ST19] For every d ≥ 2, M ≥ n and ε > 0 there is an ε-PRG for the
class C of n-variable size M depth d circuits with seed length logd+O(1)(M) log(1/ε).

Since we want the squared L2 distance of our polynomial g and the target function f
to be less then ε, we need to approximate Ex∼U [f(x)χs(x)] within ± ε

nk
for each s such that

|s| is at most k. The coefficients of g for degree higher then k will be zero. To do this with

37

a PRG for AC0, we need to build an AC0 circuit that computes f(x) · χs(x).
We need the following fact to build such a circuit.

Lemma 5.1.2. For some S ⊆ [n], let χS(x) : {0, 1}n −→ {−1, 1} be a function defined by

χS(x) =
∏
i∈S

(−1)xi = (−1)
∑

i∈S ximod 2

Then χS can be computed by a depth d circuit of size poly (|S|) 2|S|1/(d−1) for every d ≥ 2

Proof. We need to prove that a parity of n bits can be computed by a circuit of size
poly (n) 2n1/(d−1) . We can show it inductively. For d = 2, we already know that any function
of n variable can be computed by a DNF or CNF of 2n terms. So we have the base case.
Now assume that the statement is true for d for any d ≥ 2. We can partition the n bits into
smaller bit strings of length n

d−1
d . So there will be n

1
d many partitions. By the inductive

assumption, the parity for each partition can be computed by a depth d circuit of size,
poly(n)2n1/d . Those circuits will have either AND or OR on the top of the circuit. Let us
assume without loss of generality that it is AND. Then finally, we can compute the parity
of n1/d output bits by a DNF of 2n1/d terms and we can collapse the two levels of AND into
one. Therefore, the overall size of the depth d+ 1 circuit is poly(n)2n1/d .

By above lemma, each χs(x) can be computed by a depth d circuit of size at most

poly
(
log(1/ε) · logd−1 n

)
· 2(log(1/ε)·logd−1 n)1/(d−1)

= O
(
nlog1/(d−1)(1/ε)

)
Lemma 5.1.3. If f, g : {0, 1}n −→ {−1, 1} can be computed by AC0 circuits of depth d and
size O (t(n)) for some function t of n, f ·g can be computed by an AC0 circuit of size O (t(n))
and depth d+ 1.

Proof. Since f and g are {−1, 1} valued, f ·g corresponds to logical XOR of the two bits. We
can assume without loss of generality that the AC0 circuits computing f and g both have
OR as the output gate. Since for two bits X and Y , we have X ⊕ Y =

(
X ∨ Y

)
∧ (X ∨ Y),

we can merge two levels of OR into one and make depth d + 1 circuit of size O (h(n))
computing f · g.

Since f can be computed by a polynomial size depth d circuit and χs can be computed
by a depth d circuit of size O

(
nlog1/(d−1)(1/ε)

)
, f · χs can be computed by a depth d + 1

circuit of size O
(
nlog1/(d−1)(1/ε)

)
. Then using Theorem 5.1.1,we can approximate f(x) ·χs(x)

within ± ε

nlogd−1 n log(1/ε) with seed length

l = logd+O(1)
(
nlog1/(d−1)(1/ε)

)
log

(
nlog

d−1n log(1/ε)

ε

)
= log

d
d−1 1/ε log2d+O(1)n

38

Therefore, the approximation can be done in time

2l = nlog2d+O(1) n log(1/ε)

Since there are at most nlogd−1 n log(1/ε) many coefficients to estimate, the total time to build
our approximating polynomial g : {0, 1}n −→ R is nlog2d+O(1) n log(1/ε). Since

∑
S⊆[n]

(
f̂(S)− ĝ(S)

)2
=
∑
S⊆[n]

∣∣∣f̂(S)− ĝ(S)
∣∣∣2

≤
∑

S⊆[n],|S|≤O(logd−1 n log(1/ε))

(
ε

nlogd−1 n log(1/ε)

)2
+

∑
S⊆[n],|S|≥O(logd−1 n log(1/ε))

f̂2(S)

≤ 2ε

We can see that g 2ε approximate f .We then set our hypothesis h as h = sign(g).

Theorem 5.1.4. For a given function f : {0, 1}n −→ {−1, 1} that is computed by a poly-
nomial size AC0 circuit of depth d and for 0 < ε < 1, there exists a deterministic learning
algorithm that runs in time nlog2d+O(1) n log(1/ε) and outputs a hypothesis h : {0, 1}n −→ {−1, 1}
such that Prx∈U [f(x) 6= h(x)] ≤ 2ε

5.2 Sparse polynomial approach

In this section, we will apply our deterministic approximation of Fourier coefficients de-
veloped in Section 3.1 to learn AC0 circuits of polynomial size. We also use the improved
sparsity result from Tal [Tal17]. In LMN, the sparsity of the polynomial that ε-approximates
an AC0 circuit is 2O(logn·logd(m/ε)). The following theorem is a better sparsity result by Tal

Theorem 5.2.1. [Tal17] Let f be a Boolean circuit of depth d and size m > 1. Then f is
ε-concentrated on at most

O
(
logd−1m

)O(logd−1(m) log(1/ε))
= 2O(log log(m) logd−1(m) log(1/ε))

Fourier coefficients

Remark 5.2.2. Note that from Tal’s Fourier mass bound in Theorem 3.0.1 we can get
the trivial sparsity nO(logd−1 m log(1/ε)). For m = poly(n), Tal’s sparsity in above theorem is
nO((d−1) logd−2 n log logn log(1/ε)). Therefore, Tal’s sparsity is better than the trivial sparsity by
the factor of (d−2) log logn

logn in the exponent.

Remark 5.2.3. Using Goldreich and Levin’s algorithm to find all coefficients greater than
ε
t where t is Tal’s sparsity above gives a randomized learning algorithm for AC0 circuits that
runs in time that is polynomial in t. In particular for DNFs, the run time is nO(log logn log(1/ε))

which matches [Man92].

39

Tal’s sparsity result follows from his improved small degree spectral norm bound

Theorem 5.2.4. [Tal17] Let f be a Boolean circuit of depth d and size m > 1. Then

∑
s:|s|<O(logd−1 m log(1/ε))

|f̂(s)| ≤ O
(
logd−1m

)O(logd−1m log(1/ε))

He then shows that the set of subsets of [n] which captures 1− ε Fourier mass is

F =

s : |s| ≤ logd−1m · log(1/ε) and |f̂(s)| ≥ ε

logd−1m
logd−1m log(1/ε)


By using the same analysis of Mansour’s sparsity result for DNFs [Man92] as described in
Section 2.2.4, we see that |F| ≤ t and

∑
S/∈F

f̂2(S) ≤ ε

In order to get a deterministic algorithm, we can use the approximation discussed in Sec-
tion 3.1 except that, for approximation of each term in the summation, we will need
a PRG for AC0. Since the ε- concentration degree bound for AC0 circuit of size m =
poly(n) and depth d is O

(
logd−1 n log (1/ε)

)
by Theorem 3.0.1, we need to approximate

nO(logd−1n log(1/ε)) many coefficients. As described in Section 4.1, we can approximate each
coefficient within ± ε

10t . For AC0 in each of 2logd−1m log(1/ε) many terms in the summation, we
can ε

2O(log log(m) logd−1(m) log(1/ε)) fool it. With Servedio and Tan’s [ST19] PRG, the seed length
required for this is

logd+O(1)(m) log logm logd−1m log (1/ε) = log2d+O(1) (m) log(1/ε)

which will take 2log2d+O(1)m log(1/ε) time. Therefore the total time to estimate all
nO(logd−1n log(1/ε)) many coefficients is 2log2d+O(1)m log(1/ε). We then define our approximating
polynomial g with the approximation of coefficients such that the estimated value is greater
than ε/t.

Theorem 5.2.5. There exists a 2log2d+O(1)m time deterministic algorithm that learns a
function computable by a depth d, polynomial size circuit

Note that we do not gain in terms of run time by using a sparse polynomial approxi-
mating AC0 in comparison to DNF learning. This is perhaps due to the fact that the PRG
for AC0 is not as good as PRG for DNFs.

40

Chapter 6

Deterministic Goldreich and Levin
algorithm for DNFs

Recall that the crucial step in Goldreich and Levin algorithm is to approximate for any
1 ≤ k < n the sum over all β ∈ {0, 1}n−k of squares of Fourier coefficients of the form
f̂(αβ) for a fixed α ∈ {0, 1}k. Also recall that DNFs have most of its Fourier mass on degree
less than log(n) log(1/ε) by Theorem 3.0.1. Because of this concentration of Fourier mass,
we only need to find large Fourier coefficients of low degree to learn a DNF.

Given a fixed α ∈ {0, 1}k, let us denote the set of i such that αi = 1 with α1. In
other words, α1 = {i : αi = 1} and α0 = {0, 1}k/α1. Then on the top of the original
recurs condition, that is

∑
β∈{0,1}n−k f̂(αβ) ≥ θ2, we have another condition which is α1 ≤

log(n) log(1/ε). In any case, the number of recursive calls is at most n
θ2 . Therefore, in order

to efficiently derandomize the Goldreich and Levin algorithm, we only need to derandomize
the estimation of Ex∈{0,1}n−k [f2

α(x)] = Ex∈{0,1}n−k
[(

Ey∈{0,1}k [fx(y)χα(y)]
)2
]
efficiently.

Before we show that this can be done, let us first prove a lemma that will be used in
our proof of derandomization of Goldreich and Levin algorithm for the special case of small
degree coefficients and a good pseudo random generator.

Lemma 6.0.1. Assume that we have an ε-pseudorandom generator G of seed length
O (log(n/ε)) for DNFs with poly(n) number of terms. Let us denote the distribution that
is generated by G with D. Then for given DNFs φ : {0, 1} −→ {0, 1} of size m1 and ψ :
{0, 1} −→ {0, 1} of size m2, we can approximate Prx∈{0,1}n [φ(x) ⊕ ψ(x) = 0] within 2ε in
time poly(n/ε).

Proof. We have that

φ(x)⊕ ψ(x) = 0 ⇐⇒ (φ(x) ∧ ψ(x)) ∨
(
φ(x) ∧ ψ(x)

)

41

Let us denote S = {x : φ(x)⊕ ψ(x) = 0}. Note that (φ(x) ∧ ψ(x)) is a DNF of size m1m2.
Let us denote this DNF with ξ. We can also observe the following(

φ(x) ∧ ψ(x)
)

= φ(x) ∨ ψ(x)

Let us denote the DNF φ(x)∨ψ(x) with η. Let us denote the set of x that satisfy ξ with A
and the set of x that satisfy η with B. That is,

A = {x : ξ(x) = 1}, B = {x : η(x) = 1}

Then we see that A and B are disjoint. Since S = A ∪B we have that

|S| = |A|+ |B| = |A|+ |U | − |B|

where U denotes the set of all 2n assignments. Therefore we have the following

Pr
x∈{0,1}n

[φ(x)⊕ ψ(x) = 0] = |S|
|U |

= |A|+ |U | − |B|
|U |

= A

U
+ 1− B

U

= Pr
x∈{0,1}n

[ξ(x) = 1] + 1− Pr
x∈{0,1}n

[η(x) = 1]

= E
x∈{0,1}n

[ξ(x)] + 1− E
x∈{0,1}n

[η(x)]

= E
x∼D

[ξ(x)] + 1− E
x∼D

[η(x)]± 2ε

Time to construct the distribution D is poly(n/ε) by our assumption.

Theorem 6.0.2. Given a DNF with poly(n) terms f : {0, 1}n −→ {−1, 1}, a fixed α ∈ {0, 1}k

such that |α1| ≤ O (log(n) log(1/δ)) for δ > 0, there exists a deterministic algorithm that
runs in time poly (n/ε) + (n)O(log(1/δ)) for ε > 0 to approximate

E
x∈{0,1}n−k

(E
y∈{0,1}k

[fx(y)χα(y)]
)2


within 4ε under the assumption that an ε-pseudorandom generator for DNFs of seed length
log(n/ε) exists.

Proof. For a given y ∈ {0, 1}k, let us denote with y1 for the bit string that corresponds to
the coordinates of the set α1. Likewise, let y0 be the bit string corresponding to α0. Let G
be a pseudo random generator with seed length log(n/ε) and let D be the distribution over
{0, 1}n that is generated by G.

Note that for a DNF f : {0, 1}n −→ {0, 1}, the marginal distribution denoted by DJ of
the distribution D on the bit strings corresponding to any subset J ⊆ [n] still fools f that

42

is restricted on the coordinates J̄ = [n]/J That is, for a fixed z ∈ {0, 1}J̄∣∣∣∣∣ E
x∼{0,1}n

[fz(x)]− E
x∼D

[fz(x)]
∣∣∣∣∣ =

∣∣∣∣∣ E
w∈{0,1}J

[
E

u∈{0,1}J̄
[fz(wu)]

]
− E
w∼DJ

[
E

u∼DJ̄
[fz(wu)]

]∣∣∣∣∣
=
∣∣∣∣∣ E
w∈{0,1}J

[fz(wu)]− E
w∼DJ

[fz(wu)]
∣∣∣∣∣

=
∣∣∣∣∣ E
w∈{0,1}J

[fz(w)]− E
w∼DJ

[fz(w)]
∣∣∣∣∣

≤ ε (since fz is a DNF thus D ε-fools fz)

Let us denote the marginal distribution of D on the bit strings corresponding to the coor-
dinates of α0 with Dα0 . Then we have

fα(x) = E
y∈{0,1}k

[fx(y)χα(y)]

= E
y0

[
E
y1

[fx(y)χα(y)]
]

= E
y1

[
χα1(y1) · E

y0
[fxy1(y0)]

]
= E

y1

[
χα1(y1) ·

(
E

y0∼Dα0
[fxy1(y0)]± ε

)]
(because Dα0 ε-fools fxy1)

= E
y1

[
χα1(y1) ·

(
E

y0∼Dα0
[fxy1(y0)]

)]
(because Ey1 [χα1(y1) · ε] = 0)

Now,

E
x∈{0,1}k

[
f2
α(x)

]
= E

x∈{0,1}k

[(
E
y1

[
χα1(y1) · E

y0∼Dα0
[fxy1(y0)]

])2
]

= E
x∈{0,1}k

[
E

y1∈{0,1}|α1|

[
E

z1∈{0,1}|α1|
[χα1(y1)χα1(z1)]

]
E

y0∼Dα0

[
E

z0∼Dα0
[fxy1(y0)fxz1(z0)]

]]

= E
y1∈{0,1}|α1|,z1∈{0,1}|α1|

[χα1(y1)χα1(z1)] E
y0∼Dα0 ,z0∼Dα0

[
E

x∈{0,1}k
[fy0y1(x)fz0z1(x)]

]

Since |α1| ≤ O (log(n) log(1/δ)), calculating Ey1∈{0,1}|α1|,z1∈{0,1}|α1| [χα1(y1)χα1(z1)] takes

22O(log(n) log(1/δ)) = nO(2 log(1/δ))

time.
Furthermore, the size of the support of the distribution D is at most poly (n/ε) therefore

if we can estimate Ex∈{0,1}k [fy0y1(x)fz0z1(x)] for each fixed y0, y1, z0, z1 efficiently, then we

43

will approximate

E
y0∼Dα0 ,z0∼Dα0

[
E

x∈{0,1}k
[fy0y1(x)fz0z1(x)]

]
efficiently by enumerating each of y0 ∼ Dα0 , z0 ∼ Dα0 .

Let us denote with φ : {0, 1}k −→ {0, 1} for fy0y1 and ψ : {0, 1}k −→ {0, 1} for fz0z1 . Note
that we only changed the encoding of True and False for φ and ψ. So we see that φ and
ψ are both computed by DNFs. Since for fy0y1 and fz0z1 , True and False are encoded with
(−1)1 = −1 and (−1)0 = 1, we see that the product fy0y1 · fz0z1 corresponds to XOR of two
bits φ and ψ. Therefore, we get

E
x∈{0,1}k

[fy0y1(x)fz0z1(x)] = Prx∈{0,1}k [φ(x) = ψ(x)]− Prx∈{0,1}k [φ(x) 6= ψ(x)]

= Prx∈{0,1}k [φ(x)⊕ ψ(x) = 0]− Prx∈{0,1}k [φ(x)⊕ ψ(x) = 1]

= 2Prx∈{0,1}k [φ(x)⊕ ψ(x) = 0]− 1

By Lemma 6.0.1, we see that

E
x∈{0,1}k

[fy0y1(x)fz0z1(x)] = 2
(

E
x∼D

[ξ(x)] + 1− E
x∼D

[η(x)]± 2ε
)
− 1

= 2
(

E
x∼D

[ξ(x)] + E
x∼D

[η(x)]
)
± 4ε+ 1

where η and ξ are defined as in the proof of Lemma 6.0.1. This estimation is done in
poly(n/ε). We need to do this estimation for each of y0 ∼ Dα0 , z0 ∼ Dα0 which is at most
poly(n/ε) times. Therefore, we can 4ε-estimate Ex∈{0,1}k

[
f2
α(x)

]
in time

nO(log(1/δ)) + poly(n/ε)

Now we will use the above deterministic version of Goldreich and Levin algorithm to
learn a DNF with poly(n) number of terms.

Theorem 6.0.3. Assume that an ε-pseudorandom generator for DNFs of seed length log(n/ε)
exists. Then given a DNF with poly(n) terms f : {0, 1}n −→ {−1, 1}, and for δ > 0, there
exists a deterministic algorithm that outputs a sparse polynomial that δ-approximates f in
L2 norm in time nO(log logn log(1/δ))

poly(δ) .

Proof. Recall that the threshold we want for the small degree Fourier coefficients is the total
error of the sparse polynomial δ-approximating the target DNF divided by the spectral norm
of the DNF up to δ-concentration bound degree for some δ > 0. That is we set

θ = δ

nO(log logn log(1/δ))

44

So we need to approximate Ex∈{0,1}k
[
f2
α(x)

]
within, say, θ/4. By substituting ε = θ/4 in

the above theorem, this approximation takes

nO(log(1/δ)) + poly
(
nO(log logn log(1/δ))

δ

)
= nO(log logn log(1/δ))

poly(δ)

For constant δ, we get nO(log logn) time which matches Mansour’s time [Man92].

45

Chapter 7

Conclusions

We have shown that there exists a deterministic algorithm to learn a DNFs that produces a
sparse polynomial approximating the target DNF. In the case of DNFs,we were able to show
that there is an advantage in using the current best pseudo random generator [GMR13] to
estimate the small degree coefficients. That is, we were able to get a better time than the
randomized algorithm of [LMN93]. However, we did not get an improvement over [LMN93]
in the run time when we used the same approach with constant depth circuits (AC0) with
the best PRG for AC0 circuits [ST19]. It will be interesting to research why the current
state of AC0 PRG is not as good as PRG for DNFs. It can be in two directions. One is
to see if there is a lower bound in the number of random bits that is required to generate
a pseudorandom distribution for AC0. The other will be to improve the bound and get a
better PRG for AC0.

We have also covered in great details how for small L1 norm functions, Goldreich and
Levin algorithm can be derandomized. We then derandomized the algorithm in a different
condition where we are only looking for small degree Fourier coefficients of a DNF assuming
that we have an ideal PRG for DNFs. Our original goal was to generalize the derandomiza-
tion to the case when we don’t know if a function has a small l1 norm but know that the
function is sandwiched or just approximated by another function that has a small l1 norm.
If we know that there exists a collection U of sets S ⊆ [n] such that U contains all S such
that |f̂(S)| ≥ θ and

∑
T /∈U f̂

2(T) ≤ ε then we can use the Goldreich and Levin algorithm to
find such collection U . So the existence of the collection U is a sufficient condition for the
hypothesis formed from the output of Goldreich and Levin algorithm is a good hypothesis.
Conversely, if the hypothesis formed from the Goldreich and Levin algorithm is a good one,
then there exists the collection U which is just the output of the algorithm.

The problem is that we need to let the algorithm know the threshold. In the case of
small l1 norm Boolean function f , [KM93] showed that the threshold for the collection U is
ε/||f ||1. It will be interesting to see if such a collection with a threshold exists for a function
that is approximated by a small l1 norm function.

46

We do not have L1 bound for general DNF and we are limited to knowing the bound on
the sum of absolute values of small degree Fourier coefficients. The bound given by Mansour
[Man92] is nearly tight for bounded width DNFs.

Since the fastest randomized algorithm under the uniform distribution with membership
query is in polynomial time [Jac97], it would be interesting to consider the problem whether
this randomized method can be derandomized. Toward this direction, it would be interesting
to look into the connection between the Boosting and the hardcore set construction [Imp95]
such as the result of [KS03]. The randomized process in Jackson’s algorithm is Boosting
where the examples are randomly output according to the updated distribution in each
round. It would be interesting to see if we can derandomize this sampling process, just as
we used a pseudo random distribution to mimic sampling from the uniform distribution.

47

Bibliography

[AGHP92] Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple con-
struction of almost k-wise independent random variables. Random Struct. Al-
gorithms, 3(3):289–304, 1992.

[Ang87] Dana Angluin. Queries and concept learning. Mach. Learn., 2(4):319–342, 1987.

[Baz09] Louay M. J. Bazzi. Polylogarithmic independence can fool DNF formulas. SIAM
J. Comput., 38(6):2220–2272, 2009.

[BMOS05] Nader H. Bshouty, Elchanan Mossel, Ryan O’Donnell, and Rocco A. Servedio.
Learning DNF from random walks. J. Comput. Syst. Sci., 71(3):250–265, 2005.

[DETT10] Anindya De, Omid Etesami, Luca Trevisan, and Madhur Tulsiani. Improved
pseudorandom generators for depth 2 circuits. In Maria J. Serna, Ronen Shaltiel,
Klaus Jansen, and José D. P. Rolim, editors, Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, 13th Interna-
tional Workshop, APPROX 2010, and 14th International Workshop, RANDOM
2010, Barcelona, Spain, September 1-3, 2010. Proceedings, volume 6302 of Lec-
ture Notes in Computer Science, pages 504–517. Springer, 2010.

[Fel12] Vitaly Feldman. Learning DNF expressions from fourier spectrum. In Shie
Mannor, Nathan Srebro, and Robert C. Williamson, editors, COLT 2012 - The
25th Annual Conference on Learning Theory, June 25-27, 2012, Edinburgh,
Scotland, volume 23 of JMLR Proceedings, pages 17.1–17.19. JMLR.org, 2012.

[Fre95] Yoav Freund. Boosting a weak learning algorithm by majority. Inf. Comput.,
121(2):256–285, 1995.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. In David S. Johnson, editor, Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton,
USA, pages 25–32. ACM, 1989.

[GMR+12] Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil P.
Vadhan. Better pseudorandom generators from milder pseudorandom restric-
tions. In 53rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 120–129.
IEEE Computer Society, 2012.

[GMR13] Parikshit Gopalan, Raghu Meka, and Omer Reingold. DNF sparsification and a
faster deterministic counting algorithm. Computational Complexity, 22(2):275–
310, 2013.

48

[Imp95] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In
36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wis-
consin, USA, 23-25 October 1995, pages 538–545. IEEE Computer Society, 1995.

[Jac97] Jeffrey C. Jackson. An efficient membership-query algorithm for learning DNF
with respect to the uniform distribution. J. Comput. Syst. Sci., 55(3):414–440,
1997.

[KM93] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the Fourier
spectrum. SIAM J. Comput., 22(6):1331–1348, 1993.

[KS03] Adam R. Klivans and Rocco A. Servedio. Boosting and hard-core set construc-
tion. Mach. Learn., 51(3):217–238, 2003.

[KS04] Adam R. Klivans and Rocco A. Servedio. Learning DNF in time 2õ(n
1/3). J.

Comput. Syst. Sci., 68(2):303–318, 2004.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits,
fourier transform, and learnability. J. ACM, 40(3):607–620, 1993.

[Man92] Yishay Mansour. An O(nlog logn) learning algorithm for DNF under the uniform
distribution. In David Haussler, editor, Proceedings of the Fifth Annual ACM
Conference on Computational Learning Theory, COLT 1992, Pittsburgh, PA,
USA, July 27-29, 1992, pages 53–61. ACM, 1992.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient construc-
tions and applications. SIAM J. Comput., 22(4):838–856, 1993.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press,
2014.

[Raz09] Alexander A. Razborov. A simple proof of bazzi’s theorem. ACM Trans. Com-
put. Theory, 1(1):3:1–3:5, 2009.

[Sit95] Meera Sitharam. Pseudorandom generators and learning algorithms for acˆ0.
Comput. Complex., 5(3/4):248–266, 1995.

[SS97] Meera Sitharam and Timothy Straney. Deranomized learning of boolean func-
tions. In Ming Li and Akira Maruoka, editors, Algorithmic Learning Theory,
8th International Conference, ALT ’97, Sendai, Japan, October 6-8, 1997, Pro-
ceedings, volume 1316 of Lecture Notes in Computer Science, pages 100–115.
Springer, 1997.

[ST19] Rocco A. Servedio and Li-Yang Tan. Improved pseudorandom generators from
pseudorandom multi-switching lemmas. In Dimitris Achlioptas and László A.
Végh, editors, Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, APPROX/RANDOM 2019, September 20-22,
2019, Massachusetts Institute of Technology, Cambridge, MA, USA, volume 145
of LIPIcs, pages 45:1–45:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

49

[Tal17] Avishay Tal. Tight bounds on the Fourier spectrum of AC0. In Ryan O’Donnell,
editor, 32nd Computational Complexity Conference, CCC 2017, July 6-9, 2017,
Riga, Latvia, volume 79 of LIPIcs, pages 15:1–15:31. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017.

[Val84] Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142,
1984.

[Ver90] Karsten A. Verbeurgt. Learning DNF under the uniform distribution in quasi-
polynomial time. In Mark A. Fulk and John Case, editors, Proceedings of the
Third Annual Workshop on Computational Learning Theory, COLT 1990, Uni-
versity of Rochester, Rochester, NY, USA, August 6-8, 1990, pages 314–326.
Morgan Kaufmann, 1990.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (ex-
tended abstract). In 23rd Annual Symposium on Foundations of Computer Sci-
ence, Chicago, Illinois, USA, 3-5 November 1982, pages 80–91. IEEE Computer
Society, 1982.

50

Appendix A

Estimating Fourier coefficients

First, observe that the sandwiching approximation works also for {−1, 1}-valued functions,
with the same proof. LetD be a pseudorandom distribution that ε-fools the class of functions
C. Let f : {−1, 1}n → {−1, 1} be any function that is ε-sandwiched by fl (from below) and
fu (from above), for some functions fl, fu ∈ C. Then we get that D (2ε)-fools f .

Let χ = χS =
∏
i∈S xi be an arbitrary n-variate Fourier basis function, for some S ⊆ [n].

Suppose that fu · χS ∈ C for every set S ⊆ [n] (i.e., C is closed under multiplication with
any Fourier basis function) and so D ε-fools also fu · χS , for every S ⊆ [n]. We show that
then D also (6ε)-fools f · χS , for every S, i.e., D can be used to approximately compute
each Fourier coefficient f̂(S).

Lemma A.0.1. Under the assumptions on D, f , fu, fl, and χ above, we get that∣∣∣∣ED[f̂(S)]− E
U

[f̂(S)]
∣∣∣∣ ≤ 6ε.

Proof. We have that f̂(S) = EU [f · χ], where χ = χS is the Fourier basis function for the
set S. We have

E
D

[f · χ] = E
D

[(f − fu + fu) · χ]

= E
D

[(f − fu) · χ] + E
D

[fu · χ]

= E
U

[fu · χ]± (ε+ E
D

[(fu − f)]) (because D ε-fools fu · χ)

= E
U

[fu · χ]± (4ε+ E
U

[(fu − f)]) (because D (3ε)-fools (fu − f))

= E
U

[fu · χ]± 5ε (because fu ε-approximates f)

= E
U

[(fu − f + f) · χ]± 5ε

= E
U

[(fu − f) · χ] + E
U

[f · χ]± 5ε

= E
U

[f · χ]± 6ε (because fu ε-approximates f)

51

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	Introduction
	Introduction
	Our Results

	Main Result
	Preliminaries
	Vector space
	Fourier transform
	Restriction
	Secure pseudorandom generators
	Derandomization using pseudorandom generators
	Biased distribution
	Learning model
	Sandwiching Approximators

	Main Results
	Estimation of Fourier coefficients from random examples
	Goldreich and Levin Algorithm: Application in Learning of Boolean functions
	Derandomization of Goldreich Levin algorithm for small TEXT norm functions
	Sparse polynomial approximation

	 Deterministic approximation of the Fourier coefficients
	Estimation based on conditional expectation and GMR pseudorandom generator
	Estimation based on biased distribution that fools small TEXT norm functions

	Deterministic learning of DNF
	Learning from GMR PRG
	Learning from biased distribution

	Deterministic learning of TEXT
	Fourier spectrum bound approach
	Sparse polynomial approach

	Deterministic Goldreich and Levin algorithm for DNFs
	Conclusions
	Bibliography
	Appendix Estimating Fourier coefficients

