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Abstract 

Global air temperatures are projected to rise over the next century following the 

continued increase and amplification of greenhouse gas emissions, mainly due to 

human activity. This rise in air temperature will pose significant changes to the 

landscape, most notably glacier retreat. Salmon watersheds beheaded by glaciers will 

undergo drastic changes as ice melts from the landscape changing downstream river 

flow, water temperature, and channel morphology, and shifting nutrients and availability 

of prey resources. Broadly, my thesis provides insight on how the effects of climate 

change, particularly from glacier retreat, may present challenges and benefits to Pacific 

salmon. In chapter 2, I explore the ways in which glacier retreat impacts salmon habitat 

by reviewing and constructing a conceptual model that defines glacier retreat across four 

distinct phases, from a landscape blanketed by ice to complete deglaciation. I describe 

each of these pathways of impact and how they will affect Pacific salmon across the four 

phases. In chapter 3, I quantify how much new Pacific salmon habitat will be created by 

glacier retreat over the next century. I found that glacier retreat will create hot spots of 

future habitat gains within glacierized regions of western North America, while other 

areas will experience no habitat gain. In my fourth chapter, I assessed how water 

temperatures along an important Pacific salmon migratory river are associated with 

landscape features of tributary systems. I placed temperature loggers at all major 

tributary rivers and determined how they play a role in cooling a major salmon migratory 

corridor. Glacier and snowpack fed tributaries from larger watersheds cooled a major 

salmon migratory river more than other tributaries. Collectively, this thesis provides 

insight into how climate change and glacier retreat impact river systems and their 

salmon. This work illuminates the need for forward-looking conservation and 

management to aid in the protection and preservation of important and iconic species, 

such as Pacific salmon.  

 

Keywords: climate change; glacier retreat; Pacific salmon; Babine River; water 

temperature 
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Chapter 1.  
 
General Introduction 

1.1. Climate change impacts on the physical world 

Global air temperatures have increased by ~0.85°C since the industrial revolution in the 

1880s, and are projected to exceed another 1.5°C over the next century following the 

continued increase and amplification of greenhouse gas emissions (IPCC 2013). Global 

air temperature rise has caused glaciers to retreat and sea level to rise (Zemp et al. 

2019), reduced winter snowfall (Huss et al. 2017), and changed annual precipitation 

patterns (Trenberth 2011), causing ecological changes to both flora and fauna (Walther 

et al. 2002). These changes to the physical world have posed many challenges to 

human societies and other species (IPCC 2013). It is agreed that global air temperatures 

will continue to rise for decades to come due to greenhouse gas emissions produced by 

human activities. Thus, it is integral to understand how climate change is altering the 

physical world, and how this will impact species of cultural or economic importance.  

One important visible indicator of climate change is glacier retreat. Mechanistically, 

glaciers retreat when the mass accumulation (via snowfall) is less than the mass 

ablation (via melting) (Martini et al. 2001). Glaciers around the world are typically 

ablating, or retreating, and forecasts expect this loss to continue (Clarke et al. 2015; 

Huss et al. 2017; Zemp et al. 2019). For example, between 2006 and 2016, glaciers in 

western Canada have lost an average of 1.3% of their ice mass each year (Zemp et al. 

2019), and are projected to lose up to 80% of their ice volume by 2100 in some regions 

(Clarke et al. 2015). Ice loss from mountain glaciers is contributing to the rise in global 

sea level (Zemp et al. 2019), changing seasonal patterns of streamflow (Bliss et al. 

2014), and increasing geohazards (Marzeion et al. 2014). Additionally, glacier retreat is 

changing downstream rivers (Bliss et al. 2014) and creating new habitat that could be 

colonized by important species such as Pacific salmon (Oncorhynchus spp.) (Milner et 

al. 2011).  

Rising global air temperature and landscape features such as glaciers will change the 

thermal regime of river systems. There is a strong relationship between air and water 
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temperature (Caissie 2006) that can be modulated by landscape features such as 

glacier cover, snowpack, watershed elevation, and presence of lakes (Webb et al. 2008; 

Garner et al. 2014; Lisi et al. 2015). Thus, characteristics of landscapes will filter the 

impacts of rising air temperatures. For example, climate change is accelerating the rate 

of glacier melt, transforming solid ice into water, which is altering water temperatures 

downstream (Jansson et al. 2003). Over longer timescales, persistent declining spring 

snowpack and retreating glaciers could lead to a decline of glacier meltwater contribution 

to downstream rivers (Bliss et al. 2014; Huss and Hock 2018), a processes that will 

increase water temperatures. Thus, the interaction of air temperature rise, and glacier 

retreat will alter thermal dynamics in river systems.  

1.2. Pacific salmon responses to climate change and 
glacier retreat 

Climate change will present challenges and benefits to freshwater species, such as 

Pacific salmon. In some instances, climate change is warming rivers and lakes, 

threatening cold-water freshwater fishes, such as Pacific salmon (Schindler 2001; 

Strayer and Dudgeon 2010). For example, water temperature in the Fraser River, British 

Columbia, has risen 1.5°C since the 1950s, causing severe mortality of some Pacific 

salmon populations (Patterson et al. 2007b; Martins et al. 2011). More broadly, with air 

temperatures rise, there will be changes in stream flow patterns and increases in water 

temperatures contributing to the decrease in Pacific salmon survival (Martins et al. 

2011). Glacier retreat is also creating new salmon frontiers. In heavily glacierized 

watersheds, the loss of glacier ice may actually improve downstream habitat for 

freshwater fishes via increases in summer water temperature, river channels stabilizing, 

and stream flow dampening (Pitman et al. 2020). Additionally, as glaciers retreat, new 

rivers and lakes will form that Pacific salmon can rapidly colonize (Milner et al. 2011). 

For example, new pink salmon populations grew to over 10,000 individuals within ~15 

years following extensive glacier retreat in Glacier Bay, Alaska (Milner et al. 2011). Thus, 

while climate change poses many risks, it also presents opportunities for species of 

cultural importance, such as Pacific salmon.  
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1.3. Pacific salmon in glacierized watersheds  

Salmon within the Pacific regions of North America are iconic and foundational to coastal 

ecosystems and cultures. In western North America, there are six species of 

anadromous Pacific salmon, including steelhead trout (O. mykiss), that support 

subsistence fisheries, as well as commercial and recreational fisheries worth billions of 

dollars annually (Clark et al. 2006; Gislason et al. 2017; Johnson et al. 2019a). The 

North American range of Pacific salmon spans from southern California through to 

northwestern Alaska, and 85% of major salmon watersheds have at least some glacier 

coverage (Pitman et al. 2020). Additionally, within Canadian rivers, 25 to 50% of the total 

annual river flow occurs as meltwater from previous winter snowpack (Schindler 2001). 

Thus, most North American salmon watersheds are being influenced by some degree of 

snowpack or glacier ice.  

This thesis aims to understand how climate change will present challenges and benefits 

to freshwater species, such as Pacific salmon. In chapter 2, I explore the ways in which 

glacier retreat impacts salmon habitat by reviewing and constructing a conceptual model 

that defines glacier retreat across four distinct phases, from a landscape blanketed by 

ice to complete deglaciation. I describe the pathways of impact glacier retreat will have 

on the landscape, such as changes to channel morphology, shifts in seasonal water 

temperature and stream flow patterns, and the creation of new rivers and lakes. I 

describe each of these pathways of impact and how they will affect Pacific salmon 

across the four distinct phases. In chapter 3, I build off the theory established in chapter 

2 to quantify how much new Pacific salmon habitat will be created by glacier retreat over 

the next century. I built a model that links glacier mass change, forced by five different 

Global Climate Model projections, with a simple model of salmon stream habitat. I 

projected across the Pacific mountain ranges of western North America the gains in 

future stream kilometers by applying stream gradient thresholds constraining salmon 

migration, and spawning and juvenile rearing for the years 2050, 2100, and potential 

complete deglaciation. In chapter 4, I assessed how water temperatures along an 

important Pacific salmon migratory river are associated with landscape features of 

tributary systems. I placed temperature loggers at all major tributary rivers and 

determined how tributaries fed from varying landscape features play a role in cooling a 

major salmon migratory corridor. In the appendix, I assessed how salmon watersheds 
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are embedded in socio-ecological systems. I examined the relationships between fish, 

anglers, and management interventions on six rivers within the Skeena River watershed, 

British Columbia, to understand if angler satisfaction was attributed to fish abundance, 

angler crowding, or management implementations. The six rivers I examined support 

steelhead, a highly sought-after species for recreational fishers.  

My thesis contributes fundamental research on the impacts that glacier retreat will have 

on Pacific salmon watersheds with implications for conservation and management. By 

building a conceptual model of glacier retreat and Pacific salmon, forecasting future 

habitat gains for Pacific salmon, and examining river temperatures along mainstem and 

tributary rivers, my thesis provides a foundation for understanding how salmon systems 

my shift over the next century. This thesis provides insight on how the effects of climate 

change, particularly from glacier retreat, may present challenges and benefits to Pacific 

salmon. While it is crucial to curb our greenhouse gas emissions to reduce the 

consequences of climate change, I hope that my thesis may help inform forward-looking 

management and conservation to predict where salmon populations may flourish and 

where they will many be challenged over the next century will help in the protection and 

preservation of our salmon futures.  

1.4. Contributions 

The body of this work (chapters 2,3,4, and Appendix A) was collaborative in nature, and 

each chapter is either published or a prepared manuscript with co-authours. Therefore, 

these chapters are written in first-person plural. I was responsible for writing the initial 

draft conducting the spatial analyses, collecting, and analyzing data, but benefited 

greatly from feedback by co-authours and colleagues. Chapters 2 and 3 were conceived 

during a working group – Glacier Retreat and Pacific Salmon – held in Vancouver in 

November in 2017. These works were built from ideas and insights from scientists 

present at the meeting. Chapter 4 was developed out of discussions with Jonathan 

Moore who was instrumental in the writing. Appendix A was conceived during a Salmon 

Watersheds lab retreat with contribution from Samantha Wilson and Elissa Sweeney-

Bergen that was brought to completion with contributions from Patty Hirshfield, Mark 

Beere, and Jonathan Moore. The general introduction and conclusion are works of my 

own and are written in first-person singular.  
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Chapter 2.  
 
Glacier retreat and Pacific salmon1 

2.1. Abstract 

Glaciers have shaped past and present habitats for Pacific salmon (Oncorhynchus spp.) 

in North America. During the last glacial maximum, ~45% of the current North American 

range of Pacific salmon was covered in ice. Currently, most salmon habitat occurs in 

watersheds where glacier ice is present and retreating. This synthesis examines the 

multiple ways that glacier retreat can influence aquatic ecosystems through the lens of 

Pacific salmon life cycles. We predict that the coming decades will result in: (1) areas 

where salmon populations will be challenged by diminished water flows and elevated 

water temperatures; (2) areas where salmon productivity will be enhanced as 

downstream habitat suitability increases, and (3) areas where new river and lake habitat 

will be formed that can be colonized by anadromous salmon. Effective conservation and 

management of salmon habitat and populations should consider the impacts of glacier 

retreat and other sources of ecosystem change. 

  

 
1
 A version of this this chapter appears as Pitman KJ, Moore JW, Sloat MR, Beaudreau AH, Bidlack AL, 

Brenner RE, Hood EW, Pess GR, Mantua NJ, Milner AM, Radić V, Reeves GH, Schindler DE, Whited DC. 
2020. Glacier retreat and pacific salmon. BioScience 7:220–236. 
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2.2. Introduction 

Glaciers are retreating rapidly across Pacific salmon (Oncorhynchus spp.) landscapes, 

driven in large part by anthropogenic climate change (Figure 2.1; Marzeion et al. 2014). 

In western North America, glaciers are predicted to lose up to 80% of their ice volume by 

2100 (Radić et al. 2013) and have already lost up to 3% per year between 2006–2016 

(Zemp et al. 2019). This rapid contemporary ice loss follows longer-term glacier retreat 

— most glaciers in North America have been retreating since the 1600s–1800s Little Ice 

Age maxima (Menounos et al. 2009).  

Glacier retreat can increase or decrease wild Pacific salmon productivity by modifying 

downstream habitat conditions and by creating new habitat. Changes in glacier runoff 

(i.e., all water discharged from the glacier terminus) have important downstream effects 

on hydrology, sediment transport, water temperature, and biogeochemical fluxes, which 

alter conditions for salmon in freshwater and nearshore marine habitats (O’Neel et al. 

2015; Milner et al. 2017). For example, a significant decrease of glacier contribution to 

total watershed runoff generally increases downstream water temperature, which could 

be either beneficial or stressful to salmon. In cold rivers (<5°C), increases in water 

temperature could increase juvenile salmon growth potential (Fellman et al. 2014), 

whereas in warm rivers (>15°C), increases in water temperature could increase stress 

and mortality rates of adult salmon as they migrate upstream (Martins et al. 2012). 

Glacier retreat can also directly create new habitat for salmon. For example, in Glacier 

Bay, Alaska, tidewater glacier retreat created new river systems that were colonized by 

pink salmon (O. gorbuscha) within 30 years of formation (Milner et al. 2011). Thus, 

glacier change can impact salmon ecosystems through a variety of mechanisms (Moore 

et al. 2009; O’Neel et al. 2015; Milner et al. 2017). Overall, the net effects of glacier 

retreat on salmon will likely depend on the phase of glacier retreat, the life-history traits 

of salmon species, and a suite of local environmental, geographic, and ecological 

characteristics of watersheds.  
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Figure 2.1 The North American range of Pacific salmon, ice extents (historic 
and present), and the evolution of Pacific salmon in North America. 
(a) Approximate ice extent from the Cordilleran Ice Sheet around 
16,000 years ago (Dyke 2004), including regions of ice-free refugia 
(i.e., Haida Gwaii, Beringia, and parts of the Washington, Oregon and 
California coasts). The core range of current-day salmon is shown in 
black hatched lines, following 
(http://www.stateofthesalmon.org/resources/sosdb.php). We 
acknowledge that there are some peripheral populations beyond 
this hatched region (e.g., Mackenzie River). (b) Approximate current 
day ice extent from the Randolph Glacier Inventory 6.0 (Pfeffer et al. 
2014) overlapping with the North American range of Pacific salmon. 
Note that there are small high elevation glaciers present in 
conterminous United States. (c) Timeline of major glacial changes 
and evolutionary history of Pacific salmon (from 23.8 million years 
ago – present), adapted from (Waples et al. 2008). 

http://www.stateofthesalmon.org/resources/sosdb.php
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Understanding how glacier retreat will affect Pacific salmon will help inform the 

management and conservation of these economically- and culturally-important species. 

There is growing understanding of the pathways by which glacier retreat alters aquatic 

environments (O’Neel et al. 2015, Milner et al. 2017), and a large body of research on 

how environmental variables influence salmon across their life cycle (Quinn 2018). By 

integrating these two fields of study, we offer a conceptual synthesis of how glacier 

retreat may affect Pacific salmon populations in North America and how these effects 

may vary by species and watershed context. Specifically, we review the historical 

interaction of glaciation and Pacific salmon in North America over geological time scales, 

propose a conceptual model for the evolution of salmon watersheds in response to 

glacier retreat, quantify the current status of glaciers in salmon watersheds, propose 

research frontiers, and highlight implications of glacier loss for salmon management and 

policy. 

2.3. Glaciation and Pacific salmon watersheds over 
geological time scales 

To provide context for the response of Pacific salmon to contemporary glacier retreat, 

we briefly review Pacific salmon and glacier dynamics over geological time scales. Over 

time, the advance and retreat of glaciers are controlled by the difference between rates 

of ice accumulation (via snowfall on the glacier) and ice ablation (via melting, 

sublimation, and glacier calving). Such advance and retreat of glaciers have been driven 

by shifts in global and local climate patterns (Menounos et al. 2009), with rapid glacier 

retreat occurring in the recent decades due to climate change (Zemp et al. 2019). For 

example, with recent glacier ice-loss rates being up to 3% per year, most of today’s 

glacier volume in western Canada and conterminous USA will vanish by the second half 

of this century (Zemp et al. 2019).  

Pacific salmon evolved over millions of years during the Miocene epoch, a time of 

warmer global temperature and relatively little glacier coverage (Figure 2.1; Stearley 

1992). The Miocene radiation, 6 – 20 million years ago (mya), resulted in the species of 

anadromous Pacific salmon in North America (hereafter “salmon”) that are present today 

(Waples et al. 2008, table 2.1). In this paper, we focus on six species: Chinook salmon 

(O. tshawytscha), chum salmon (O. keta), coho salmon (O. kisutch), pink salmon, 

sockeye salmon (O. nerka), and steelhead trout (anadromous O. mykiss; table 2.1) due 
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to their ecological and economic importance and the extensive body of related scientific 

research. During the late Pliocene and early Pleistocene, 1.8 mya to 17 thousand years 

ago (kya), glaciers repeatedly advanced and retreated, reworking the surface of the 

northwestern North American landscape. These repeated ice sheet expansions covered 

large portions of Alaska and British Columbia. Salmon survived in ice-free refugia, 

including Beringia and along the coasts of British Columbia (e.g., Haida Gwaii), 

Washington, Oregon, and California (Figure 2.1; Smith et al. 2001). Based on the 

maximum spatial extent of ice (Dyke 2004), we estimate that approximately 45% of the 

current North American range of salmon was covered by ice at some point in the past 

(Figure 2.1). 

The late Pleistocene and Holocene brought the onset of deglaciation (beginning ~17 

kya) (Figure 2.1; Booth et al. 2003), which shifted and increased the spatial distribution 

of freshwater habitats available to salmon (Smith et al. 2001; Waples et al. 2008). During 

this time, rapid glacier retreat opened major river valleys, land rebounded as a result of 

post-glacier isostatic adjustment, and sea level rose (Beechie et al. 2001, Waples et al. 

2009). Deglaciation led to a range of landscape disturbances, from high-magnitude 

catastrophic glacier lake outburst floods (e.g., Lake Missoula, Benito and O’Connor 

2003) to low-magnitude events such as landslides and annual floods. Retreating glaciers 

left behind landscape features, such as characteristic deep and wide U-shaped valley 

bottoms, that set the stage for development of high-quality salmon habitat (Benda et al. 

1992; Beechie et al. 2001). Thus, much of the current range of salmon bears the legacy 

of glaciers past.  
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Table 2.1 Trends in Pacific salmon life cycles across species. We note that 
there is enormous variation in salmon life cycles within species and 
use this table as a simplifying construct to compare different 
species. Information for this table was predominantly obtained from 
Quinn (2018). 

 SPAWNING FRESHWATER REARING 

species 
years to 
maturity 

winters 
at sea 

spawning 
location 

spawning  

timing 

length of 
freshwater 
rearing  

rearing location 

Chinook 3-8 1-5 Medium-to 
large-sized 
rivers, 
sometimes 
downstream 
of lakes. 

summer – 
fall 

depends 
whether ocean 
or stream 
type3 

rivers, estuaries 

chum 3-5 1-4 Lower 
reaches of 
rivers1 

late summer 
– fall 

none, but 
sometimes 
stay in 
streams for a 
few 
days/weeks 

None 

coho 4-5 1-2 Often in 
smaller 
tributaries.  

late summer 
– winter 

weeks-2 years small streams, off- 
main channel 
habitats, beaver 
ponds, lake 
margins, 
estuaries. 

pink 2  1 Rivers, 
generally 
close to 
ocean 

late summer 
– fall 

none, but 
sometimes 
stay in 
streams for a 
few 
days/weeks 

None 

sockeye 3-6 1-4 Rivers, 
creeks, lake 
beaches2  

late summer 
– fall 

weeks-2 years usually lakes2 

steelhead 

 

1-12  1-5 Small- to 
medium-
sized rivers. 

late winter – 
spring  

1-5 years high gradient 
reaches 

1Some chum salmon populations are long-distant migrants. 2there are also “ocean-type”: populations that migrate to 
sea in their first year of life, and “river-type”: populations that rear in rivers for a year before going to sea 3“Ocean-type”: 
migrate downstream right after emergence (few months in river), “stream-type”: spend full year in river. Ocean-type” 
are almost exclusively south of 56 degrees 

Historical landscape disturbances, such as those associated with glacier dynamics, are 

thought to have shaped many of the life-histories and traits of salmon that we see today 

(Waples et al. 2008, 2009). For example, some salmon species (e.g., Chinook and 
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sockeye salmon, and steelhead trout) have considerable diversity in age-at-maturity that 

can buffer populations against freshwater disturbances (Waples et al. 2008, 2009), such 

as glacier outburst floods that might eradicate a generation of spawning adults or rearing 

juveniles. While most salmon return to spawn in their natal stream, some fraction of the 

population disperses or strays, enabling salmon to colonize new habitats (Pess et al. 

2014), such as watersheds opened following glacier retreat (Milner et al. 2011). 

Additionally, for species with freshwater juvenile rearing (e.g. Chinook and coho salmon, 

and steelhead trout), dispersal within freshwater may further enable salmon to take 

advantage of newly opened and shifting habitat conditions (Reeves et al. 1995). Overall, 

a low but substantial level of dispersal may maximize population resilience in dynamic 

landscapes by enabling salmon to both maintain local adaptations but also enable meta-

population processes (Yeakel et al. 2018). Thus, current salmon life histories and traits 

reflect adaptations to dynamic landscapes, such as those with a legacy of glacier 

disturbances (Waples et al. 2008, 2009).  

Salmon life cycles are complex and vary across and within species (table 2.1). Salmon 

migrate a range of distances in freshwater, from river deltas to more than 1000 km 

upriver, to spawn in diverse habitats that include the mainstem river, river side-channels, 

small headwater streams, groundwater-fed sloughs, and littoral zones of lakes (Quinn 

2018). Subsequently, salmon dig depressions (known as redds) where they deposit their 

eggs in sediments that are generally pebbles to small cobbles (around 5-80 mm in 

diameter; Kondolf and Wolman 1993) that enable sufficient subsurface flow past the 

eggs, thus providing oxygen and removing nitrogenous wastes. Steelhead trout are 

iteroparous (i.e., can undergo multiple reproductive cycles) and generally spawn in the 

spring (Kendall et al. 2015), whereas the other species of Pacific salmon are 

semelparous (i.e., undergo a single reproductive episode before death) and spawn in the 

summer to fall (Quinn 2018). Depending on the species and population, juvenile salmon 

may migrate immediately to the ocean (e.g., chum and pink salmon) or stay in 

freshwater for months to several years (e.g., Chinook, coho, and sockeye salmon, and 

steelhead trout; table 2.1). During this freshwater phase, juvenile salmon may rear in the 

main river channel or off-main channel habitats (e.g., Chinook salmon and steelhead 

trout), ponds (e.g., coho salmon), or lakes (e.g., sockeye salmon). Once young salmon 

migrate to the marine environment, survival can be strongly influenced by food web 

interactions and ocean conditions (Beamish et al. 2016). Thus, life-history variation 
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between and within each salmon species will influence how they respond to glacier 

retreat. 

2.4. Evolution of salmon habitat across phases of glacier 
retreat 

Here we describe a conceptual model for the evolution of salmon habitat during the 

process of glacier retreat (Figure 2.2). Our model describes general biophysical phases 

as glaciers retreat from the coast to higher elevations. Because of the overriding effect of 

local topography and climate on the rate of glacier retreat, we structure the model across 

four phases corresponding to glaciers covering distinct components of the salmon 

landscape rather than by discrete time periods. Therefore, different watersheds or 

regions can be in different phases of glacier retreat. “Phase 1” refers to the beginning of 

glacier retreat from the coast, when new lakes and streams are being formed, but most 

of the watershed remains covered by ice. During “phase 2”, glaciers continue to retreat 

up-valley, further exposing new rivers and proglacial lakes, as well as a mosaic of lateral 

valley-bottom and hillslope tributary habitats. “Phase 3” begins when glaciers have 

retreated to higher elevations, above the extent of accessible salmon habitat, with 

glacier runoff still influencing downstream river evolution. “Phase 4” considers the 

continued evolution of salmon habitats after glaciers have disappeared. We suggest that 

these four generalized phases of glacier retreat are characterized by a unique set of 

processes that influence the biological and physical characteristics of downstream 

ecosystems (Figure 2.2; Milner et al. 2001). We consider how these biophysical changes 

will affect salmon life stages across species and their habitats. Specifically, we assess 

the following watershed changes associated with glacier retreat: river and lake creation, 

channel morphology and form, annual and seasonal hydrology, water temperature, 

turbidity, and, nutrients and prey resources.  

2.4.1. Phase 1: Ice-dominated watersheds 

As glaciers begin to retreat from the coast, freshwater habitats emerge (Figure 2.2). 

However, during this initial phase of glacier retreat, much of the watershed is under ice. 

River systems are “beheaded” by glaciers and have relatively low quantity of salmon 

habitat due to the high glacier coverage. In addition, new rivers can be quite inhospitable 

to salmon due to high sediment loads, channel instability, and frigid temperatures, but do 
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represent new habitat that salmon can colonize (Milner et al. 2011). As glaciers retreat, 

they leave behind large unconsolidated glacial deposits in a vegetation-free landscape 

carved by new proglacial streams. Because of the high sediment load, low bank 

cohesion, and high specific discharge (i.e., discharge per unit watershed area), young 

proglacial streams are typically braided, wide, and shallow with shifting and dynamic 

stream channels (Figure 2.2; Milner and Petts 1994). Young proglacial lakes may also 

form in these landscapes, such as those dammed by glacial moraines. Moraine-

controlled lakes commonly breach and may drain completely if their dams of 

unconsolidated sediments erode (Carrivick and Heckmann 2017). Consequently, new 

habitats created during the early phase of glacier retreat are often ephemeral, and those 

that persist are initially highly unstable. 

Unstable habitats pose many challenges to salmon spawning, egg incubation, and 

rearing. For example, all species of salmon construct redds in stream sediments where 

eggs incubate for several months over the winter prior to emergence (Quinn 2018). 

During incubation in these young glacier streams, high sediment mobility can lead to 

streambed scour, entraining or destroying developing embryos (Jensen et al. 2009), or 

channel avulsions that can lead to dewatering of stream reaches resulting in the 

desiccation of eggs. High channel instability and widely-fluctuating flow regimes can limit 

food resources for juvenile salmon that rear months to years in freshwater, such as 

Chinook and coho salmon, and steelhead trout (table 2.1, Figure 2.3), by reducing the 

abundance and diversity of aquatic macroinvertebrates (Figure 2.3; Death and 

Winterbourn 1995). Within-season channel movement may also strand juveniles in 

abandoned stream channels. Thus, channel instability of young proglacial streams can 

initially limit successful salmon reproduction and juvenile rearing during early phases of 

glacier retreat (Murphy et al. 1989), particularly for stream-rearing species (Figure 2.3). 
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Figure 2.2  Predicted effects of glacier retreat (phases 1-4) on: (a) river and lake 
habitats, (b) channel morphology and form, (c) total annual 
watershed runoff, glacier runoff, and summer turbidity, (d) seasonal 
hydrology and temperature relationships, and (e), predicted stream 
water organic matter and nutrient concentrations and prey 
availability. 
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Figure 2.3 Predictions of how glacier retreat and its associated watershed 
changes will affect salmon species across life phases during the 
different phases of glacier retreat.  

Cold temperatures in young streams may present obstacles to salmon success when the 

landscape is dominated by glacier ice. In heavily glacierized watersheds (e.g., >40% 

glacier coverage), river temperatures remain very cold (<5°C) throughout the year 

because discharge is dominated by glacier meltwater (Figure 2.2; Fellman et al. 2014). 

For example, in a comparative study of watersheds that ranged from 0% to 65% glacier 

coverage, average summer water temperature was ~1C colder for every 10% increase 

in glacier coverage (Fellman et al. 2014). Water temperature plays a critical role in 

regulating the metabolism and development of embryos and juvenile salmon (Brett 

1971). Cold water temperatures in heavily glacierized streams challenge the thermal 

performance of salmon egg and juvenile development (Brett 1971). However, cold water 

temperature does not necessarily preclude salmon embryo and juvenile survival and 

growth (Adelfio et al. 2018). For example, recent work by Campbell et al. (2019)  

suggests that coho salmon in a cold stream (4oC) grew at the same rate as those in a 

warmer stream (10-12oC) that is closer to the assumed optimum temperature for the 

species (Richter and Kolmes 2005). Thus, local adaptation or physiological 
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compensation may potentially allow salmon to persist in what are presumed to be less-

than-ideal thermal conditions. Regardless, when acting in combination with other 

features of young proglacial streams such as channel instability and low prey 

abundance, cold temperatures in young streams can limit salmon productivity (Murray 

and McPhail 1988).  

Despite these limitations, salmon can colonize highly dynamic and very cold rivers. 

Salmon straying combined with high population growth rate potential (20% to 100% per 

generation; Pess et al. 2014) can lead to rapid population expansion in newly 

deglaciated habitat. Estimated salmon stray rates range from approximately 1–20%, 

depending on study, species and life histories, and environmental factors (Keefer and 

Caudill 2014). The amount of straying is also positively related to proximity—most 

straying individuals return to within 30 km of their origin (Pess et al. 2014). Accordingly, 

salmon colonization is affected by four key factors that vary across species: (1) the size 

and distance of nearby (donor) populations; (2) species’ presence in the same or nearby 

watershed(s); (3) the suitability of newly available habitat for the species; and (4) the 

presence of life-history variants in the donor population that facilitate colonization of 

newly opened habitats (Pess et al. 2014). For example, in Stonefly Creek, Alaska, pink 

salmon were the first salmon to establish populations following deglaciation and river 

habitat creation (Milner et al. 2011), likely because pink salmon tend not to have 

extended juvenile rearing phases, stray at high rates, and are in high abundance in this 

region. Thus, different species of salmon will likely colonize river habitats created by 

recent deglaciation at different rates given their life-history traits and location of the 

deglaciated area (Table 2.1).  

2.4.2. Phase 2: Rivers and lakes fed by ice 

During phase 2 of glacier retreat, substantial portions of the valley floor are revealed and 

reorganized by physical processes that affect the geomorphic evolution of potential 

salmon habitat (Figure 2.2). During this phase, there is an increase in the diversity of 

habitats formed and therefore expanded opportunities for different salmon life histories. 

However, continued fluxes of water and sediments from the upstream glacier may limit 

salmon and prey productivity in mainstem river channels. Glaciers are effective agents of 

erosion and carve characteristically broad U-shaped valleys with large volumes of 

excavated sediment (Montgomery 2002). The valley bottoms left behind are typically 
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organized into three linked hydrogeomorphic domains: canyons, gravel-bedded 

floodplains, and lakes (Hauer et al. 2016). Canyons occur where valleys are narrowly 

constrained by shallow resistant bedrock. Gravel-bedded floodplains occur where 

valleys are broad and may be filled with glacier sediment (i.e. silt, clay, sand, and gravel) 

of a range of sizes. Lakes form by dammed bedrock, landslide formations, or moraines 

(Hauer et al. 2016). These hydrogeomorphic domains can alternate and reappear as 

glaciers retreat up-valley depending on watershed-specific lithography and topography 

(Hauer et al. 2016). Streams confined by canyons have low physical complexity, and 

when combined with high river discharge, may even create salmon migration barriers or 

offer limited opportunities for salmon habitat development during glacier retreat (Murphy 

et al. 1989; Bellmore and Baxter 2014; Hauer et al. 2016).  

In contrast, broad unconfined floodplains provide opportunities for the development of 

complex and diverse river habitats (Bellmore and Baxter 2014; Hauer et al. 2016). 

Riverbanks still have low cohesion because terrestrial vegetation remains in early 

successional stages. Increased stream discharge and high sediment loads can maintain 

unstable braided channels (Figure 2.2). Glacier runoff is typically at its highest, known as 

“peak water”, during this phase of glacier retreat before declining in later phases as 

glacier melt declines (Figure 2.2; Jansson et al. 2003, Huss and Hock 2018). This peak 

in glacier runoff typically leads to watershed runoff also being at its maximum during this 

phase of glacier retreat (Figure 2.2). High summer air temperature can also intensify 

runoff from the glacier, resulting in increases in seasonal glacier meltwater that 

decreases downstream water temperature (Fellman et al. 2014). Due to this high glacier 

and watershed runoff, glacier-fed rivers during this phase can have high sediment loads. 

Included in these high sediment loads are suspended sediments that are formed as the 

glacier grinds against rock resulting in fine silt or glacier flour. In watersheds dominated 

by glaciers, more than 500 mg l-1 of glacier flour are typical and up to 2000 mg l-1 occur 

frequently (Gurnell et al. 1987), primarily during the summer months. For example, more 

than 29 x 106 tons of suspended sediment are deposited annually into Cook Inlet, 

Alaska, from the heavily glacierized Susitna River watershed (Brabets et al. 1999). 

Comparatively, the Kenai River watershed, which is less glacierized and contains large 

lakes that trap sediment, is about 1/20th the size of the Susitna River watershed but 

deposits about 1/300th the amount of suspended sediment (~1 x 104 tons) into the Cook 

Inlet (Brabets et al. 1999).  
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High turbidity can act in concert with cold temperature and channel instability to limit 

food resources and growth of juvenile salmon (Milner et al. 2001; Brown and Milner 

2012). The high turbidity can limit visual foraging success by juvenile salmon such as 

Chinook and coho salmon, and steelhead trout (Lloyd et al. 1987). However, juvenile 

salmon may shift to forage on benthic prey or move to more productive off-channel 

habitats that are typically lower in turbidity levels (Tippets and Moyle 1978). Further, 

some degree of glacially derived turbidity may benefit juvenile salmon during rearing and 

outmigration by sheltering them from visual predators (Figure 2.3; Gregory and Levings 

1998).  

Side channels and other off-main channel habitats may be particularly important salmon 

habitat in unconstrained floodplains during this phase of glacier retreat. As braided 

streams cut new paths across broad floodplains, their abandoned channels remain as 

preferential flow paths for clearwater side channels often fed by groundwater (Lorenz 

and Eiler 1989; Curran et al. 2011; Hauer et al. 2016). In combination with other lateral 

habitats, such as precipitation-fed tributaries, side channels can provide important 

habitats for some salmon species to spawn (e.g., Chinook, chum, and coho salmon) or 

rear (e.g., coho and sockeye salmon, steelhead trout; table 2.1; Figure 2.3) because 

they are often warmer, less turbid, have higher prey production, and have lower 

velocities than the mainstem channel dominated by glacier meltwater (Murphy et al. 

1989; Curran et al. 2011; Rine et al. 2016). For example, in the heavily glacierized Taku 

River in Alaska and BC, where sockeye salmon rear within the river rather than in lakes, 

juvenile Chinook, coho and sockeye salmon were found at extremely low densities or not 

at all in the mainstem during the summer, but instead were found rearing in tributaries or 

side channel habitats (Murphy et al. 1989). Typically, in heavily glacierized watersheds, 

groundwater-fed valley margin habitats can receive disproportionately high use by 

salmon for spawning and rearing (Lorenz and Eiler 1989; Murphy et al. 1989; Curran et 

al. 2011). Thus, during this phase of glacier retreat there is a mosaic of habitat 

conditions produced that salmon can utilize across their life phases.  

As glaciers retreat, they leave behind moraines that can result in the formation of ice 

marginal or proglacial lakes (Figure 2.2). Immediately after formation, these unstable 

moraine-dammed lakes are typically cold and have shallow euphotic zones due to high 

levels of suspended glacier flour (Lloyd et al. 1987), rendering them relatively 

unproductive. Regardless, sockeye salmon may spawn and rear in young proglacial 
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lakes, even those with actively calving glaciers and high turbidity (Ramstad et al. 2004; 

Barouillet et al. 2019). Other salmon species do not typically spawn in lakes; however, 

newly created lakes can provide rearing habitat for juvenile coho salmon (Milner et al. 

2011). Thus, the creation of lakes from glacier retreat can directly increase salmon 

spawning and rearing habitat, particularly for sockeye salmon (Figure 2.3).  

Glacially created lakes can also have substantial downstream effects on salmon habitats 

and their suitability (Dorava and Milner 2000). Proglacial lakes modify downstream 

conditions by attenuating peak flows, sustaining base flow through the drier summer 

months, settling bedload and suspended sediment, and increasing stream temperature 

(Dorava and Milner 2000). Consequently, stream channel stability is much higher below 

proglacial lakes, and turbidity and thermal regimes are more hospitable to salmon 

reproduction and juvenile rearing (Dorava and Milner 2000, Schoen et al. 2017). For 

example, Chinook salmon in many regions spawn extensively downstream of large lake 

systems presumably because of the suitability of these habitats for egg incubation due to 

lake-moderation of flow, temperature, and sediment transport (table 2.1; Roni and Quinn 

1995, Brabets et al. 1999, Schoen et al. 2017). Thus, lakes can be a key mediating 

factor that influences the downstream effects of glacier retreat.   

2.4.3. Phase 3: High elevation glaciers with downstream effects  

As glaciers recede, they retreat up valley to steeper terrain that is inaccessible to 

salmon. Therefore, during this phase, there is no creation of additional accessible river 

habitat to salmon, but glacier retreat affects salmon habitat via downstream effects and 

continual river evolution despite lower levels of watershed and glacier runoff than the 

previous “peak water” phase 2 (Figure 2.2). Decreased summer river discharge and 

lower sediment transport lead to increased stabilization of downstream mainstem 

channels and floodplains. Riparian forests have typically matured to the point of 

stabilizing stream banks, corresponding with a more general transition from strict 

physical control of the deglaciated landscape to a period of increasing biotic influence 

(Figure 2.2; Milner et al. 2007). Riparian forests also begin to influence habitat quality as 

wood is recruited to stream channels. Wood accumulations trap suitably sized spawning 

gravel (Buffington et al. 2004) and causes local hydraulic forcing that sorts sediment, 

and scours pools, thus increasing size and number of areas available for juvenile 

rearing, particularly for Chinook and coho salmon (Mossop and Bradford 2004). 
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Increases in channel stability may also improve conditions for species that spawn in the 

mainstem, such as Chinook salmon and steelhead trout. 

Overall, at this later phase of glacier retreat, the proportional contribution of glacier 

meltwater to total watershed runoff will be lower, and therefore downstream water 

temperatures will be warmer (Figure 2.2). However, glacier runoff from relatively small 

high elevation glaciers can still play an important role in regulating downstream water 

temperature. During periods of warm weather, glaciers will provide more cold meltwater 

and thus decrease climate sensitivity of downstream river water temperatures (Jansson 

et al. 2003). For example, during late summer months, glacier runoff can contribute up to 

25% of total watershed runoff even in watersheds that are only 1% glacierized (Huss 

and Hock 2018). Given that summer water temperatures have been shown to decrease 

by ~1C for every 10% increase in glacier coverage (Fellman et al. 2014), in regions 

where water temperatures may otherwise reach high levels (e.g., >15 C), high elevation 

glaciers may be an important source of cold water by stabilizing or buffering stream 

temperatures. 

Increased water temperature during this phase of glacier retreat will generally increase 

development and growth rates of salmon, but the overall effects on salmon populations 

are complex. Warmer temperatures can accelerate embryo development, potentially 

resulting in smaller (Beacham and Murray 1990) and less well-developed fish (Fuhrman 

et al. 2018) that emerge earlier (Adelfio et al. 2018). Increased temperatures can also 

increase juvenile growth rates (Bailey et al. 2018), which could lead to increased marine 

survival due to escaping size-selected mortality (Ward and Slaney 1988). However, 

warmer freshwater temperatures could also induce juvenile salmon to complete 

freshwater rearing in fewer years, which could decrease marine survival (Cline et al. 

2019). Therefore, salmon responses to changing temperatures are complex and will 

depend on how effects cascade over their life cycles. 

Total fluxes and concentrations of suspended sediments are predicted to be lower in 

phase 3 systems compared to the previous phase of glacier retreat (Figure 2.2; Milner et 

al. 2017). Increased water clarity could increase prey production and foraging success of 

mainstem-feeding juvenile salmon (Milner et al. 2001). With stream temperatures 

increasing in phase 3, prey species for juvenile salmon may shift from cold-water 

adapted macroinvertebrates, such as a restricted set of chironomids, to a more diverse 
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benthic invertebrate assemblage (Milner et al. 2008). Terrestrial invertebrates associated 

with riparian vegetation may also increase the diversity of prey available for juvenile 

salmon (Wipfli and Baxter 2010). Downstream lake habitats will also likely have greater 

juvenile salmon growth potential with increases in summer temperature and light 

penetration, which is particularly important for increasing the prey available to lake-

rearing species, such as sockeye salmon. However, lower turbidity could also increase 

predation rates on rearing and outmigrating salmon (Figure 2.3).  

Continued river system evolution and decreased contributions from glacier melt during 

phase 3 will also shift downstream river physiochemistry (Figure 2.2). For example, 

watersheds in southeast Alaska with less than 10% glacier coverage typically have 

substantially higher summer dissolved organic carbon concentration, suggesting that 

terrestrial ecosystem processes play an increasingly important role in determining 

stream water nutrient concentrations as glaciers recede (Hood and Berner 2009). Large 

watersheds with high elevation glaciers may contain a wide range of aquatic habitats 

including clearwater, brownwater, or glacially fed tributaries that feed into the mainstem 

(Schoen et al. 2017). These complex habitats offer diverse habitat mosaics and food 

webs that can support different species and life histories of salmon.  

2.4.4. Phase 4: Watersheds without permanent ice 

The complete loss of glaciers during phase 4 eliminates the effects of glacier meltwater 

on downstream salmon habitat (Figure 2.2). Most notably, the loss of high elevation 

glaciers eliminates an important source of stored water that would otherwise be released 

as cold meltwater during the summer season, increasing the risk of detrimental low 

summer flows, which can further exacerbate sensitivity to warm air temperature (Fellman 

et al. 2014). Thus, the loss of glaciers results in a fundamental change in seasonal 

patterns of hydrology and temperature (Figure 2.2).  

The effects of these shifts in hydrology and temperature on salmon will likely vary 

depending on environmental context. For example, in warm regions with low summer 

precipitation, warm summer water temperature and low stream flows could negatively 

impact salmon by decreasing survival of migratory adult salmon (Figures. 2.3 and 2.5; 

Eliason et al. 2011, Martins et al. 2012), or by restricting juvenile rearing across habitats 

(Sloat and Osterback 2013) or seasons (Munsch et al. 2019) due to reduced or changed 
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stream flow patterns. In temperate coastal regions, the loss of glacier ice and shifts in 

precipitation from snow to rainfall can cause higher streamflow stochasticity that may 

increase winter flooding risks to salmon (Sloat et al. 2018). Additionally, low summer 

stream flows and warm temperatures could result in increased frequency of hypoxic 

events in streams with high salmon abundance (Sergeant et al. 2017). Finally, as 

glaciers are removed from watersheds there may be microclimatic effects, such as local 

temperature and rainfall pattern changes, influencing salmon habitat on a smaller scale 

(Oerlemans 2010). Generally, the loss of glaciers and their meltwater may pose 

challenges in some regions for salmon in terms of habitat quality and quantity, but such 

impacts will be strongly influenced by local context and local adaptations.   

The effects of glaciers on salmon ecosystems are evident for centuries or millennia after 

glaciers have disappeared. For example, thousands of years ago, glaciers shaped large 

lakes and linked river systems in watersheds of southwest Alaska. Presently, these 

watersheds are now devoid of glaciers, but are thriving and dynamic salmon ecosystems 

(Hilborn et al. 2003; Brennan et al. 2019). Gravel-bedded river floodplains are another 

prominent relict feature that can represent highly productive ecosystems (Hauer et al. 

2016). Comparative studies of the evolution of deglaciated landscapes suggest an 

increase in salmon habitat quality as watershed stability increases, but a gradual 

decrease in salmon habitat quantity over time with continued channel incision and 

decreased lateral groundwater-fed habitats over thousands of years (Benda et al. 1992). 

Thus, glaciers have a long-lasting legacy of influence on salmon ecosystems. 

2.5. Contemporary glaciers in salmon watersheds 

North Americas major salmon watersheds currently have varying degrees of glacier 

coverage that roughly correspond to different phases of the conceptual model (Figure 

2.2). We obtained glacier data from the Randolph Glacier Inventory v6.0 (Pfeffer et al. 

2014) — a global inventory of glacier outlines — throughout the current North American 

range of salmon to quantify percent glacier cover in regions that are either major salmon 

watersheds or aggregate coastal regions that contain numerous smaller watersheds 

(Figure 2.4). For example, we estimated glacier coverage in the 50,000 km2 Susitna 

River watershed draining into Cook Inlet, Alaska, as well as the “Central Gulf of Alaska 

Region” that contains an aggregate of small coastal watersheds, some completely 

covered by glacier ice. Therefore, this analysis of glacier coverage is on the scale of 
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larger watersheds and drainage regions. Collectively these watersheds and regions 

cover the North American range of salmon (Figures. 2.1 and 2.4).   

Salmon watersheds and regions have vastly different extents of current glacier 

coverage. For instance, 9% of watersheds or regions (3 of 34 watersheds or regions) 

have high glacier coverage (>20% of watershed area), particularly in southcentral Alaska 

(Figure 2.4). About 32% of watersheds or regions (11 of 34) have significant glacier 

coverage (5% to 20%), such as in southeast and southcentral Alaska and along the 

British Columbia coast. Watersheds or regions with high to significant glacier coverage 

are likely to contain habitats that are in the earlier phases (phase 1 and 2) of our 

conceptual model of glacier retreat (Figure 2.2). Similarly, 35% of watersheds or regions 

(12 of 34) have low glacier coverage (0.1% to 5%), spanning from the Columbia River to 

the Yukon River and Alaska. These watersheds or regions are generally expected to 

exhibit characteristics of phase 3 of our conceptual model. Lastly, 24% of watersheds or 

regions (8 of 34) have minimal or no glacier coverage (<0.1%), corresponding to phase 4 

of our conceptual model. These watersheds or regions primarily occur at the southern 

and northern range extent for salmon, such as the Klamath and Sacramento watersheds 

and northeast Alaska, respectively (Figure 2.4). Collectively, 85% of watersheds or 

regions (29 of 34) that we consider have at least some glacier coverage (Figure 2.4). 

Thus, most of North American salmon watersheds or regions are being influenced by 

contemporary glacier retreat.  

Larger watersheds or regions included in our analysis contain many smaller watersheds 

within them that all have varying degrees of glacier coverage. For example, our analysis 

indicates that the large Susitna River watershed has significant glacier coverage (Figure 

2.4). However, the Susitna River watershed also contains many small sub-watersheds, 

some that have no glacier coverage (i.e., phase 4; Figure 2.2) and other catchments that 

have high glacier coverage and are better represented by phase 1. Thus, watersheds or 

regions contain many smaller sub-watersheds at different phases of glacier retreat.  
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2.6. Research frontiers  

2.6.1. Mediating factors and context-dependency 

The effects of glacier retreat on salmon and their habitat will likely be context-dependent 

and influenced by mediating factors such as lakes, watershed size, river valley form, and 

geographic location (Figure 2.5). As discussed above, lakes trap sediments, store water, 

and alter hydrology; through these processes, lakes mediate the downstream effects of 

glacier retreat (Dorava and Milner 2000, Schoen et al. 2017). Watershed size and 

complexity may also be key mediating factors. For example, the downstream hydrology 

and physiochemistry of large watersheds such as the Copper River in Alaska integrates 

subwatersheds with different climates across the phases of glacier retreat (Figure 2.5). 

Larger and more complex watersheds have broader portfolios of glacier recession, 

climate variability, and habitat types, and thus may have more muted responses (Moore 

et al. 2015; Chezik et al. 2017). In contrast, in watersheds that have linear topology (few 

tributaries) or are smaller, runoff from a single glacier may be the main driver of 

downstream hydrology (Figure 2.5). The location of the watershed and its associated 

climate will be another key mediating factor. Coastal watersheds with more moderate 

climates, higher mean annual precipitation may be less at risk of warm summer water 

temperature and low summer flows following glacier loss. Generally, there is a need for 

long-term studies that address how landscape features modulate the impacts of glacier 

retreat. 
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Figure 2.4 Map showing the percent glacier cover for watersheds or regions 
between California and Alaska. The numbers in parentheses 
following the watershed or region names refer to percent cover of 
glaciers in the watershed or region. 

2.6.2. Plastic and evolutionary responses to glacier retreat 

Salmon have remarkable capacity for both plastic and adaptive responses to rapid 

environmental change (Crozier and Hutchings 2014). Accordingly, rapid evolution and 

phenotypic plasticity will likely mediate the population-level responses of salmon to 

glacier retreat. For example, while adult Chinook salmon may be physiologically 
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sensitive to warm water temperature (Muñoz et al. 2015), adaptive or plastic changes in 

migration phenology could drastically reduce their exposure to periods of warm water 

(Mantua et al. 2015). For instance, an eco-evolutionary model predicted that evolution 

may shift sockeye salmon migration timing by approximately 10 days over the next 

century in a warming river, which could increase the probability of population persistence 

(Reed et al. 2011). Yet there is great uncertainty in such predictions, and these remain 

important key research frontiers. For example, can salmon evolve at a rate that keeps 

pace with climate-driven habitat change (Reed et al. 2011)? What are the limits and 

cues of their adaptive plasticity (Crozier and Hutchings 2014)? 
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Figure 2.5 Map highlighting the mediating factors such as watershed size, 
presence of lakes, river valley form, and regional climate influencing 
the effects of glacier retreat on salmon and their habitat. Watershed 
boundaries (various colors), and rivers and lakes (blue) data were 
obtained from the National Hydro Database 
(www.usgs.gov/products) for Alaska and the Freshwater Atlas 
(www2.gov.bc.ca/gov/content/data/geographic-data-
services/topographic-data/freshwater) for British Columbia. Glacier 
outlines (white), were obtained from the Randolph Glacier Inventory 
v6.0 (Pfeffer et al. 2014). 

  

2.6.3. Fish community responses to glacier retreat 

Glacier retreat will not only impact anadromous Pacific salmon, but also other fishes. For 

example, Dolly Varden (Salvelinus malma) and their close relative, bull trout (S. 

http://www.usgs.gov/productsv
https://www2.gov.bc.ca/gov/content/data/geographic-data-services/topographic-data/freshwater
https://www2.gov.bc.ca/gov/content/data/geographic-data-services/topographic-data/freshwater
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confluentus), are char with extremely flexible and diverse life histories that may be 

particularly well-suited for utilizing glacier-fed rivers. With both migratory and resident life 

histories, these fish can use coastal ocean habitats and migrate among river basins 

(Brenkman and Corbett 2005). Further, these species are particularly adapted to cold 

waters, such as those found in rivers that are heavily glacierized (e.g., phase 2; Figure 

2.2). For example, Milner et al. (2008) discovered that Dolly Varden were the first fish to 

colonize a new river following glacier retreat. Cutthroat trout (O. clarkii) also have flexible 

and diverse life-histories, including frequent movements within and between watersheds 

(Trotter 1989, Saiget et al. 2007). Thus, the behavior and life-histories of cutthroat trout 

may allow them to capitalize on opportunities offered by glacier retreat. Another fish 

species that may be particularly impacted by glacier retreat are eulachon (Thaleichthys 

pacificus) that are found in many large river systems in the region with high glacial 

influence (Moody and Pitcher 2010). Eulachon are remarkably lipid-rich anadromous 

smelt whose late-winter/early-spring migration to rivers is of critical importance to wildlife 

and human harvesters. These fish migrate and broadcast spawn in the lower reaches of 

rivers during the late winter and early spring, and their planktonic larvae drift out to 

estuaries shortly thereafter (Moody and Pitcher 2010). While these elusive fish remain 

relatively understudied, their spawning timing and survival may be extremely sensitive to 

changes in the hydrology and sediments of the lower reaches of rivers that could be 

modified greatly by rapid glacial retreat. Other fishes, such as sculpins (Cottus aleuticus) 

and stickleback (Pungitius pungitius), while not of direct cultural importance, may also 

colonize glacier rivers and play roles in their food webs (Milner et al. 2011). These shifts 

in other components of the fish communities may play important roles in the ecology of 

salmon watersheds through the phases of glacier retreat.  

2.6.4. Ocean and estuary conditions 

Glacier retreat from either marine- or land-terminating glaciers can affect ocean and 

estuary conditions, by changing the amount and timing of sediment, nutrients, and 

freshwater inputs (O’Neel et al. 2015). On an ocean-basin scale, increased variability in 

glacier runoff patterns is expected to affect the strength of the Alaska Coastal Current 

(ACC), the dominant coastal circulation pattern in the Central Gulf of Alaska, and 

therefore the cross-shelf transport of organisms and nutrients (O’Neel et al. 2015). 

Glacier meltwater is also an important source of bioavailable carbon and nutrients such 
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as phosphorus and iron to downstream habitats (Fellman et al. 2010, Schroth et al. 

2011), and transport terrestrial and riverine organic matter and nutrients downstream 

where they are incorporated into estuarine food webs (Arimitsu et al. 2018). However, 

relatively little is known about how changes in magnitude and timing of freshwater, 

organic matter, and nutrient fluxes from glacier rivers will affect estuaries and oceans. 

Thus, glacier retreat could have profound effects on the ocean basin as well as for 

coastal ocean populations (O’Neel et al. 2015).  

Outmigrating juvenile salmon in estuaries and coastal oceans may also be impacted by 

glacier retreat via different potential pathways of impact. For example, substantial 

changes in the ACC could affect primary production or the spatial-temporal overlap of 

salmon with their prey. For example, interannual variability in the abundance of juvenile 

chum salmon, sampled in July via surface trawl in southeast Alaska, was positively 

correlated to freshwater runoff in the spring (Kohan et al. 2017). This relationship was 

attributed to primary production resulting from stronger water column stratification. 

Changes in environmental conditions arising from shifts in glacier runoff could also 

structure the distribution of salmon and other marine organisms, as in the heavily 

glacierized Glacier Bay, Alaska, where variation in community structure was associated 

with turbidity, water temperature, stratification, and distribution of icebergs from calving 

glaciers (Arimitsu et al. 2016). Similarly, a study of Greenland fjords found that rising 

subsurface meltwater plumes from marine-terminating glaciers bring nutrient-rich water 

to the surface that sustains high phytoplankton productivity during the summer (Meire et 

al. 2017). Changes in turbidity in nearshore marine habitats could also affect the 

vulnerability of juvenile salmon to predators and the feeding success of smolts during 

their outmigration (Gregory and Levings 1998; De Robertis et al. 2003). Indeed, 

estuaries can function as both transitional and rearing habitat for all species of juvenile 

salmon during smolt outmigration to the ocean (Weitkamp et al. 2014). Overall, the net 

effect of glacier retreat on the productivity of estuaries and the ocean for salmon remains 

relatively unknown.  

2.6.5. Multiple stressors and glacier retreat 

Contemporary glacier retreat in salmon ecosystems is occurring in concert with a host of 

additional anthropogenic stressors, such as ocean acidification, habitat loss, warming 

ocean and freshwater temperatures, shifting precipitation regimes, and hatchery 
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influences. For example, in many regions, glacial meltwater contributions to runoff will 

decrease as air temperatures increase (Bliss et al. 2014; Huss and Hock 2018), 

processes that could act additively or multiplicatively to rapidly increased water 

temperatures. Further, some climate precipitation models also predict drier summers in 

the study region (Mote and Salathé 2010), which when combined with losses of summer 

glacier meltwater, could collectively decrease low summer flows. However, precipitation 

climate models are generally highly uncertain and spatially variable (Mote and Salathé 

2010). Shifts in water temperatures could also lead to an increase in invasive or exotic 

species that could reduce or negatively impact salmon (Lawrence et al. 2014). Thus, the 

impacts of glacier retreat on salmon should be considered through the lens of cumulative 

effects. It is also likely that stressors will influence the response of salmon to glacier 

retreat. For example, if the capacity of the ocean to support thriving salmon populations 

is compromised by climate change, then salmon may be slower to colonize new 

habitats. Alternatively, losses of salmon genetic diversity, such as due to habitat loss, 

over-harvest, or hatcheries, may compromise their capacity for rapid evolution (McClure 

et al. 2008). Thus, it is unknown how these multiple processes will interact and impact 

salmon and their ecosystems, as glacier retreat is only one of these many on-going 

stressors.  

2.7. Salmon management in an era of rapid glacier retreat 

Glacier loss may pose challenges and opportunities for effective management and 

conservation of salmon and their habitats. Salmon productivity will likely shift across 

space and time depending on a watershed’s various phases of glacier retreat. Over the 

coming decades, we predict that there will be areas where salmon populations will be 

disadvantaged due to glacier retreat and associated loss of predictable water flows and 

increased water temperature (Mantua et al. 2010), such as some watersheds or regions 

in phase 4 of glacier retreat (Figures. 2.2 and 2.4); areas where glacier retreat will 

enhance salmon productivity as downstream habitat suitability increases (Milner et al. 

2008; Fellman et al. 2014), such as watersheds or regions in phases 2 and 3 of glacier 

retreat (Figures. 2.2 and 2.4); and areas of completely new habitat that can be colonized 

by significant numbers of salmon as glaciers retreat and river and lake habitats form 

(some watersheds or regions in phase 1 of glacier retreat; Figures. 2.2 and 2.4; Milner et 

al. 2011). Thus, glacier retreat, as well as other drivers of global change, will shift 
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salmon production capacity and challenge current management systems. Below we 

highlight key challenges to salmon management associated with glacier retreat. 

Predictive population models, management plans, forecasts, and sustainable harvest 

rates will need to be revisited and revised as salmon productivity shifts within and 

between watersheds with glacier retreat. Relationships between salmon returns and 

environmental conditions may shift as past relationships are pushed beyond their 

historically enumerated bounds and as other processes become dominant drivers. In 

other words, glacier retreat may expedite non-stationarity in relationships between 

environmental factors and salmon (Litzow et al. 2018). As glacier retreat shifts salmon 

productivity, it would be beneficial to frequently revisit management goals such as 

escapement targets and sustainable fishing levels. It is also possible that temporary 

decreases in harvest levels during the expansion phase of salmon colonization may 

expedite the establishment of thriving salmon populations. For instance, in areas where 

glacier retreat enhances salmon production, new salmon harvest opportunities may be 

created, such as on the Kenai Peninsula, southcentral Alaska, where the establishment 

of sockeye salmon populations supported a commercial fishery (Milner 1997). In 

addition, complex and differential responses to glacier retreat within regions may 

differentially shift the productivity of particular locations or populations of salmon. Such 

response diversity, if untracked, may exacerbate risks of accidental mixed-stock 

overharvest. Terminal or carefully managed fisheries may be more robust to such shifts 

in productivity. Alternatively, in regions where glacier loss will degrade salmon habitat, 

such as in some of the southern portion of salmon’s range where glaciers have or are 

nearly retreated from the landscape, fisheries may need to be managed more 

conservatively. For example, in British Columbia’s warming Fraser River, salmon 

managers restrict fisheries in years when the river becomes too warm for migrating 

sockeye (Martins et al. 2011). Effective monitoring will enable adaptive management 

responses to the shifting landscape of salmon. 

Salmon restoration activities should be designed and undertaken with a forward-looking 

outlook (Beechie et al. 2013) that considers how landscapes may change due to glacier 

retreat. It may be tempting to employ major engineering and infrastructure approaches to 

mitigate the effects of lost glaciers. In the European Alps, it has been proposed that new 

reservoirs could be constructed to mitigate projected changes in seasonal water 

availability from melting glaciers by offsetting up to 65% of the expected summer-runoff 
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changes from presently glacierized basins (Farinotti et al. 2016). However, such 

engineering approaches would take massive financial investment, mitigate only one of 

the important potential pathways of connection between glaciers and salmon, and would 

likely pose major risks to salmon. Thus, we suggest that in most cases, such 

engineering approaches to mitigating lost glaciers for salmon may not be appropriate. 

Instead, process-based restoration will likely be more effective in this era of rapid global 

change. Process-based restoration enables the fundamental processes that generate 

and maintain habitat and thus will be more robust to a changing world. This approach to 

restoration should include targeting the root cause of ecosystem change, tailoring 

restoration actions to the local potential, matching the scale of the restorative action to 

the scale of the biological or physical process, and being explicit about outcomes and 

recovery time frames (Beechie et al. 2010). Typical actions such as restoring floodplain 

connectivity, protecting river floodplains from encroaching human infrastructure 

(Johnson et al. 2019b), maintaining or restoring wetlands and beaver ponds (Weber et 

al. 2017), decreasing human water withdrawals to maintain stream flow regimes, and re-

aggrading incised channels are most likely to ameliorate stream flow and temperature 

changes and increase habitat diversity and population resilience (Beechie et al. 2013). 

Such process-based restoration and habitat protection would represent substantial 

investment, but large-scale analyses have suggested that such approaches may be 

cost-effective and provide multiple benefits (Johnson et al. 2019b).  

Proactive protection of future salmon habitat also is likely a wise investment. Regions 

with high glacier coverage (e.g., the Central Gulf of Alaska, Figure 2.4) might have 

substantial gains in salmon habitat and associated returns over the next century, and 

salmon are already growing in importance to commercial fishing portfolios (Beaudreau et 

al. 2019). However, glacier retreat may also expose substantial mineral deposits, and 

choices will need to be made about fostering salmon production versus extracting 

mineral resources. Environmental decision-making is often based on current estimates 

of risks to important species like salmon. For example, mines in the transboundary 

region of British Columbia and Alaska have been recently approved in part because they 

are in heavily glacierized areas and, at present, have presumed low value for salmon 

(Canadian Environmental Assessment Agency 2018). Such environmental decision-

making fails to incorporate the risk of lost future salmon production. Meanwhile, tools 

such as the intrinsic potential models can be used to quantify the potential value of 
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future salmon habitat (Bidlack et al. 2014). There is a need for proactive decision-making 

and conservation that incorporates the potential values and benefits of future salmon 

habitat.   

The future states of resources will always be extremely difficult to forecast (Schindler 

and Hilborn 2015). Preserving the genetic diversity and evolutionary potential of salmon 

will be of foundational importance towards enabling the adaptive capacity of salmon 

systems (Schindler et al. 2008, Waples et al. 2008). Protecting diverse and connected 

salmon watersheds is also essential for supporting sustainable fisheries (Hilborn et al. 

2003). The story of glaciers and salmon goes back millions of years. In the present 

phase, there is a key role for management and conservation that are robust to rapid 

glacier retreat and an uncertain future of salmon stocks.  

2.8. Acknowledgments 

We gratefully acknowledge funding from the Gordon and Betty Moore Foundation for the 

Salmon Science Network Initiative, which provided the opportunity to hold a working 

group of scientists from Canada, United States, and United Kingdom in November 2017. 

Kara Pitman was supported by the National Science and Engineering Research Council 

and Association of Canadian Universities for Northern Studies. We thank three 

anonymous reviewers for insightful comments. 

  



34 

Chapter 3.  
 
Glacier retreat creating new Pacific salmon habitat in 
western North America 

3.1. Summary 

Rapid glacier retreat poses risks but also potential benefits for species of cultural and 

economic importance. One example is Pacific salmon (Oncorhynchus spp.) (O’Neel et 

al. 2015; Milner et al. 2017; Schoen et al. 2017; Pitman et al. 2020), which support 

subsistence harvests as well as commercial and recreational fisheries worth billions of 

dollars annually (Clark et al. 2006; Gislason et al. 2017; Johnson et al. 2019a). Although 

decreases in summer streamflow and warming of freshwaters is reducing Pacific salmon 

habitat in many parts of their range (Moore et al. 2009; Mantua et al. 2010), glacier 

retreat is creating new rivers and lakes that salmon can rapidly colonize (Milner et al. 

2008, 2011). However, potential gains in future salmon habitat associated with glacier 

loss have yet to be quantified across the range of Pacific salmon. Here we project the 

extent of future gains in Pacific salmon freshwater habitat by linking a model of glacier 

mass change for almost 600 glaciers, forced by five different Global Climate Models 

(GCMs), with a simple model of salmon stream habitat potential across a 623,000 km2 

study region throughout the Pacific mountain ranges of western North America. Based 

on conservative estimates of the swimming performance and habitat requirements of 

Pacific salmon, we project that by the year 2100 glacier retreat will create ~6,000 km of 

new streams accessible to be colonized by Pacific salmon, of which ~1,900 km have the 

potential to be used for spawning and juvenile rearing. These increases in accessible 

stream kilometers represent 0 to 27% gains within the 18 sub-regions we studied. 

Identifying these potential hotspots of future Pacific salmon habitat within glacierized 

regions of western North America can inform proactive management and conservation of 

Pacific salmon in this era of rapid climate change. 
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Climate change is altering Earth’s ecosystems at an accelerating rate, providing new 

challenges and opportunities for effective management and conservation of important 

resources such as Pacific salmon. Abundance of pacific salmon shift substantially from 

region to region over decades to centuries (Rogers et al. 2013). Currently, ocean heat 

waves, low summer water flows, and excessively warm river temperatures are 

negatively affecting many wild salmon populations (Crozier et al. 2019). However, the 

warming of Arctic and subarctic freshwaters (Nielsen et al. 2013) and contemporary 

glacier retreat (Milner et al. 2008, 2011) are creating potential new frontiers for salmon. 

While glacier retreat can have a variety of direct and indirect impacts on salmon 

ecosystems (O’Neel et al. 2015; Milner et al. 2017; Schoen et al. 2017; Pitman et al. 

2020), the retreat of glacier ice will create new streams that, if not too steep for salmon 

migration, can provide future salmon habitat. For example, new pink salmon populations 

grew to over 10,000 individuals within ~15 years following extensive glacier retreat in 

Glacier Bay, Alaska (Milner et al. 2011). 

Although salmon colonization of recently deglaciated streams has been well 

documented in individual watersheds (Milner et al. 2011), predicting future shifts in the 

distribution of productive salmon habitat remains a challenge, and there are no regional 

projections for the creation of new salmon habitat in response to retreating glaciers. 

Forecasting the location of emerging salmon habitat is imperative because while 

declining glacier ice can present local opportunities for salmon it is also creating new 

prospects for large-scale resource extraction industries such as mining or oil and gas, 

which, if developed without adequate environmental risk management, have the 

potential to degrade these climate frontiers (Casper 2009; Harsem et al. 2011; 

Kronenberg 2013; Sexton et al. 2020). Here we project the amount, location, and timing 

of salmon habitat that will be created throughout the Pacific mountain ranges of western 

North America as glaciers retreat. Understanding the timing and location of emerging 

salmon habitat frontiers can inform forward-looking management decision-making and 

conservation planning. 

The ~46,000 North American glaciers in the Pacific mountain ranges cover an area of 

~81,000 km2 (RGI Consortium 2017), of which 80% falls within the range of Pacific 

salmon (Figure 3.1a). These glaciers are rapidly declining in volume and area, 

accelerated by recent anthropogenic climate warming (Marzeion et al. 2014, 2020). For 

example, between 2006 and 2016, glaciers in western Canada have lost an average of 
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1.3% of their ice mass each year (Zemp et al. 2019), and are projected to lose up to 

80% of their ice volume by 2100 in some regions (Clarke et al. 2015).  

 

Figure 3.1 Current Pacific salmon range in glacierized watersheds and how 
glaciers will create new streams. (a) Map showing the Pacific salmon 
range in North America (pink), and our study region (blue). Glacier 
outlines are in grey. The black box indicates the location of example 
focal area, shown in panel (b), Harriman Glacier, Prince William 
Sound, Alaska, showing glacier retreat (for the benchmark years 
2050 and 2100), future salmon-accessible streams (<10% stream 
gradient threshold over ~500 m; blue and black), and suitable habitat 
below a 2% stream gradient over ~500 m (blue). Streams >10% 
stream gradient threshold are marked with an X and colored in red.   

To quantify emerging salmon streams created from glacier retreat, we used Digital 

Elevation Models within a Geographic Information Systems framework to derive a 

synthetic stream network for glacierized watersheds in the 623,000 km2 region extending 

from southern British Columbia to southcentral Alaska (Figure 3.1a). Synthetic stream 

networks included both present-day and future salmon streams (Methods). Using stream 

gradient-based salmon migration thresholds, we identified which glaciers are accessible 

to salmon (Methods). For the accessible glaciers within the 18 sub-regions of our study 

region, we modelled the timing of glacier retreat (Huss and Hock 2015) and derived 

future stream networks based on sub-glacial terrain (Figure 3.1b). Modelled glacier 

retreat was driven by temperature and precipitation projections from an ensemble of five 

Global Climate Models (GCM; Methods) forced by two climate emission scenarios 
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(Representative Concentration Pathways, RCP), RCP 4.5 and 8.5, under which global 

emissions are expected to peak at ~2050 and after 2100, respectively. We present both 

scenarios but focus on the more moderate RCP 4.5.  

We quantified future salmon-accessible stream kilometers (kms) by applying stream 

gradient thresholds constraining salmon migration, and spawning and juvenile rearing. 

First, we quantified the extent of the stream network that could be colonized by adult 

migrating salmon based on two stream gradient thresholds inhibiting adult salmon 

migration. These gradient thresholds were guided by an analysis of salmon presence 

records and stream network geomorphology in the Susitna River, a large watershed 

(53,000 km2) within our study region with extensive data on the spatial extent of different 

salmon species (Figure 3.4; Methods). In the Susitna River watershed, the presence of 

most salmon species occurred in reaches that were accessible at a gradient threshold of 

<10% and the occurrence of all species was rare in reaches above a gradient of 15% 

(Figure 3.4). This range of gradient thresholds is supported by past studies (Methods) 

(Cooney and Holzer 2006; Burnett et al. 2007; Sheer et al. 2009); gradient thresholds 

vary with body size and salmon species due to differences in salmon leaping and burst 

swimming capabilities. Thus, we selected the conservative (10%) and a more inclusive 

(15%) stream gradient thresholds for our salmon accessibility analysis. Second, we 

estimated the extent of new salmon habitat within future salmon-accessible streams that 

were larger in size (i.e., greater than first order; Methods) with gradients ranging from 0-

2% and 0-4% bracketing less and more inclusive bounds of preferred salmon spawning 

and juvenile rearing habitat, respectively (Methods) (Montgomery et al. 1999). Salmon 

generally rely on lower stream gradients (i.e., ≤ 4%; Table 3.1) and do not access small 

mountainous tributary streams for spawning and juvenile rearing habitat (Beechie et al. 

1994; Burnett et al. 2007; Bidlack et al. 2014). Thus, this second step defined the extent 

of newly accessible streams within gradient ranges associated with productive salmon 

habitat. While a variety of factors, such as changing hydrology, water temperature, and 

sediment dynamics will continue to change following glacier retreat that ultimately 

determine habitat productivity (O’Neel et al. 2015; Milner et al. 2017; Schoen et al. 2017; 

Pitman et al. 2020), here we quantify for the first time the lengths of new salmon-

accessible streams and potentially productive salmon habitat that will be available 

following glacier retreat by 2050, 2100, and under potential complete deglaciation.  
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3.2. Glaciers creating future salmon-accessible streams 

We identified 300 retreating glaciers at the headwaters of present-day streams that will 

create salmon-accessible streams assuming a 10% stream gradient threshold for 

upstream salmon migration, and ~600 glaciers assuming a 15% stream gradient 

threshold. Although the number of glaciers currently covering salmon-accessible 

streams is proportionally low, given that there are ~46,000 glaciers in the study region, 

these glaciers are particularly large representing ~50% of the total glacier area in the 

study region regardless of which stream gradient threshold is used to define salmon 

accessibility. The total number of accessible glaciers doubles when assuming the 15% 

stream gradient versus the 10%; however, the glaciers are small and represent a 

negligible increase in total glacier area.  

Over the entire study region, we estimate an increase of between ~6,000 km and ~9,500 

km of future salmon-accessible streams by 2100 using the RCP 4.5 climate scenario 

under the 10% (Figure 3.2) and 15% (Figure 3.5) gradient thresholds, respectively. The 

projected increase in salmon-accessible streams was not evenly distributed evenly 

across the 18 sub-regions of our study region, both in terms of absolute and proportional 

habitat gains. For example, our analysis indicates that seven out of 18 sub-regions show 

negligible to no gains in salmon habitat because most contemporary glaciers in these 

sub-regions have already retreated above the limits of upstream salmon migration 

(Figure 3.2). In contrast, we project that the Gulf of Alaska will have an additional ~2,600 

km (27% increase) of salmon-accessible streams under the conservative stream 

gradient threshold of 10% (Figure 3.2). In some sub-regions, we project substantial 

absolute gains in salmon-accessible stream kms even though the proportional increase 

is relatively small. For example, the Copper River will gain a projected ~1,000 salmon-

accessible stream km, but this represents only a 2% increase within this large stream 

network (Figure 3.2). In general, our analysis indicates that the greatest salmon-

accessible stream gains will occur in areas where large glaciers occupy low gradient 

terrain near the coast.  
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Figure 3.2  Projected future salmon-accessible stream kms with <10% stream 
gradient migration threshold. Map shows the projected percent 
increase in future salmon-accessible stream kms, below a 10% 
stream gradient threshold for 2100, relative to present-day stream 
kms summed for each of the 18 sub-regions. Glacier retreat 
projections, in response to five GCMs with RCP4.5 emission 
scenario, are used as an ensemble-mean. Bar plots represent the 
projected future salmon-accessible stream kms with <10% stream 
gradient threshold for the years 2050, 2100, and complete potential 
deglaciation (i.e., once glaciers have retreated completely from the 
landscape) for each of the 18 sub-regions. Projections are computed 
from 10-year averages centred around these years. Error bars 
represent + one standard deviation of projected stream kms derived 
from the ensemble of glacier retreat projections for RCP4.5.   
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The timing of when future salmon-accessible streams are exposed depends on the 

modelled rate of glacier retreat across the 18 sub-regions investigated (Figure 3.2). Of 

the total salmon-accessible stream kms that could be gained with potential complete 

deglaciation, 22% will be gained by 2050, and 62% by 2100. Although few, all the 

salmon-accessible stream gains projected for the Skeena River watershed and North 

Coast of BC will be created by 2050. In contrast, in the Gulf of Alaska sub-region, which 

contains some of the largest remaining icefields in North America, only ~20% of new 

stream kms will be created by 2050. The different climate scenarios affect the projected 

rates of new stream creation, with the RCP8.5 scenario projecting faster rates of glacier 

retreat, and thus earlier potential salmon-accessible stream gains in all 18 sub-regions.  

3.3. Creation of Pacific salmon habitat for spawning and 
juvenile rearing 

A subset of the created future salmon-accessible streams will possess geomorphic 

conditions associated with favorable salmon spawning and juvenile rearing habitat. We 

conservatively estimate that glacier retreat will create a total of ~1,900 kms of future 

salmon habitat (gradient threshold <10%, 0-2% gradient for spawning and rearing 

habitat) by 2100 under RCP 4.5 (Figure 3.3). However, it will likely take additional time 

for further habitat evolution, such as channel stabilization, in order for newly accessible 

and appropriate salmon habitat to become productive for some salmon species (O’Neel 

et al. 2015; Milner et al. 2017; Schoen et al. 2017; Pitman et al. 2020). The Gulf of 

Alaska and Copper River sub-regions have the largest projected increase in salmon 

spawning and rearing habitat, with ~760 and ~410 kms, respectively, by 2100 (Figure 

3.3). However, watershed topography exerts a strong control on future habitat 

expansion. For example, projections for the Alsek River watershed using lower 

accessibility (<10%) and habitat (0-2%) gradients show an increase of ~160 km of 

spawning and rearing habitat by 2100, whereas projections using steeper accessibility 

(<15%) and habitat (0-4%) gradients show over two times (~385 km) more habitat 

gained (Figure 3.3). Thus, future increases in salmon habitat will vary depending on the 

swimming abilities of the particular species and the specific topography of each 

watershed.  
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Figure 3.3  Projected kms suitable for salmon spawning and juvenile rearing 
habitat by 2050 and 2100 for each of the 18 sub-regions. Habitat kms 
for the 18 sub-regions were computed from a glacier projection 
model for the years 2050 (yellow) and 2100 (green), based on 10-year 
averages centred around these years. The glacier projections are 
shown as an ensemble-mean + one standard deviation for each of 
the two emission scenarios (RCP4.5, RCP8.5). The 18 sub-regions 
are listed from higher to lower latitude. (a) Projected kms of 
spawning and juvenile rearing habitat (0-2% gradient) from salmon-
accessible (<10% gradient) streams larger than first order. (b) 
Projected kms of spawning and juvenile rearing suitable habitat (0-
4% gradient) from salmon-accessible streams with steeper 
accessibility (<15% gradient). 
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Gains in salmon habitat are substantial enough that they could lead to emerging salmon 

fisheries in some locations. For example, one km of suitable stream habitat can produce 

~500–1,500 juvenile coho salmon (Table 3.2) (Bradford et al. 1997). Thus, with 

hundreds to thousands of kms of new habitat being created from glacier retreat there is 

a potential to produce hundreds of thousands to millions of additional juvenile salmon, 

depending on species (Quinn 2018). These estimates of suitable salmon habitat are 

measured from stream gradient and accessible stream length. Despite potentially 

interacting freshwater conditions that can influence salmon productivity such as water 

temperature and flow, sediment supply, and stream morphology, juvenile salmon 

production is strongly and positively related to available stream length across diverse 

watersheds (Bradford et al. 1997). Thus, as the extent of stream habitat increases, the 

number of salmon in those streams will generally increase, assuming adequate water 

quality and supply. Unless overshadowed by larger-scale declines in salmon 

productivity, such as due to decreased ocean survival (Mantua et al. 1997; Mueter et al. 

2002), these forecasted increases in stream kms could lead to emerging salmon 

fisheries of local importance when the adults return to spawn. For example, over the last 

century, glacier retreat in the Kenai Peninsula, Alaska, led to the establishment of 

sockeye salmon populations that supported a local commercial fishery (Milner 1997). 

While salmon populations are controlled by many factors across their life-cycles that are 

shifting with climate change (Crozier et al. 2019), areas with increases in the extent of 

freshwater habitat represent new hotspots of potential increased salmon production.  

3.4. Downstream effects of glacier retreat and broader 
context 

Approximately 50% of the glacier area within the study region occurs in steep, 

mountainous terrain that is inaccessible to migratory salmon, particularly in British 

Columbia, Canada (Figures 3.2 and 3.3). However, the decrease of runoff from these 

perched alpine glaciers will impact the quality of downstream salmon habitat (Martins et 

al. 2012; Milner et al. 2017; Pitman et al. 2020). Across the range of Pacific salmon, 

southern arid regions will be challenged as glacier meltwater diminishes. This meltwater 

can sustain water flow and provide cool well-oxygenated water for salmon during the 

summer months, and its loss could decrease the quality and quantity of salmon habitat 

(Sergeant et al. 2017; Fellman et al. 2018; Pitman et al. 2020). In contrast, southcentral 
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Alaska regions, such as the Copper River, will experience substantial increases in 

glacier meltwater during the summer months over the coming years due to the extensive 

network of glaciers that contribute flow to pro-glacial rivers (Huss and Hock 2018). Thus, 

retreat of inaccessible glaciers will have contrasting impacts on downstream salmon 

habitats across an extensive region via a variety of mechanisms (Pitman et al. 2020).  

More broadly, rapid contemporary glacier retreat is only one consequence of 

anthropogenic climate change; the realized effects of glacier retreat on Pacific salmon 

populations will depend on interactions with other climate-induced stressors such as 

ocean heat waves, sea level rise, warming air temperature, and extreme flood events or 

droughts, all of which could cause widespread declines in salmon abundance (Crozier et 

al. 2019). Nevertheless, our results indicate that the next century of rapid climate change 

will cause shifts in both the amount and location of potential salmon habitat.   

Understanding future shifts in suitable habitat for Pacific salmon and other species of 

importance (Morley et al. 2018) can support forward-looking management and 

conservation. For example, glacial retreat may not only represent a frontier for salmon 

habitat, but also for mining opportunities. The heavily glacierized ‘transboundary region’ 

of southeast Alaska/British Columbia, which has substantial forecasted gains in salmon 

habitat, is concurrently experiencing a modern-day gold rush with potentially far-reaching 

and long-lasting environmental impacts (Sexton et al. 2020). Mineral claims have been 

staked in regions currently covered by ice, and mines have been approved in recently 

deglaciated areas. Our findings indicate that effective protection of Pacific salmon from 

mining and other watershed developments will entail conserving current salmon habitat 

while also avoiding the degradation of their future habitat. Whether the climate frontiers 

in the Arctic ocean, or glacier-covered watersheds, there is an urgent need for science to 

inform the conservation and management of Pacific salmon and the future distributions 

of their freshwater habitat (Standal 2003; MacNeil et al. 2010; Gross 2018; Pirotta et al. 

2018). 
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3.5. Methods 

3.5.1. Sub-regions.  

The study region focuses on 18 sub-regions within the Pacific mountain ranges of North 

American overlapping with the North American range of Pacific Salmon with more than 

1.5% glacier cover (Figures 3.1 and 3.2). The term “sub-region” here refers to either a 

single major salmon watershed or aggregates of small coastal watersheds, which range 

in area from ~13,000 to ~68,000 km2. For sub-regions within Alaska, USA, we accessed 

boundary data from the Watershed Boundary Database at the USGS 

(https://www.usgs.gov/). For sub-regions within British Columbia, Canada, we accessed 

boundary data from the Freshwater Atlas of British Columbia 

(https://catalogue.data.gov.bc.ca/). Pacific salmon range data were from the National 

Center for Ecological Analysis and Synthesis (Figure 3.1). The study region covers 

~623,000 km2 across the British Columbia, Canada and Alaska, USA and approximately 

20% of the total North American range of Pacific salmon.  

3.5.2. Glacier outlines. 

Outlines for the 45,963 glaciers within the study region were obtained from the Randolph 

Glacier Inventory v6.0 (https://www.glims.org/RGI/), which provides a globally complete 

dataset of glacier outlines outside of Greenland and Antarctic ice sheets (RGI 

Consortium 2017). These glaciers cover a total area of ~81,000 km2, which corresponds 

to 80% of total glacier area in the Pacific mountain ranges within North America. The 

glacier outlines refer roughly to the years 2009 + 2 for Alaska, and 2004 + 5 for Western 

Canada (Pfeffer et al. 2014; RGI Consortium 2017). Glacierization for each of 18 sub-

regions ranges from 1.5% to 52%. 

3.5.3. Present-day streams.  

Synthetic stream networks were constructed from Digital Elevation Models (DEMs) for 

each of the 18 sub-regions using Geographic Information Systems (GIS; ArcGIS 10.6 

and QGIS 2.18) hydrology tools to represent present-day streams and rivers throughout 

the study region. Specifically, we used Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) global DEMs v2.0 with a spatial resolution of ~30 m 

https://www.usgs.gov/
https://catalogue.data.gov.bc.ca/
https://www.glims.org/RGI/
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(Tachikawa et al. 2011), and vertical resolution of ~+ 5 m (Elkhrachy 2018). Open 

access synthetic stream network datasets such as the National Hydrography Dataset 

(NHD) from the USGS and the Freshwater Atlas from British Columbia government are 

available but were not used due to inconsistencies in spatial resolution across the study 

region. From our synthetic stream networks, we eliminated all stream segments that 

overlapped with the RGI glacier outlines because the ASTER global DEMs used to 

create the synthetic stream networks represent glacier surface elevation rather than 

estimated deglaciated terrain. Our analysis required estimated deglaciated terrain values 

to create newly formed streams following glacier retreat. 

3.5.4. Identifying salmon migration barriers in present-day streams.  

There is a large body of literature that estimates the stream gradient suitability for 

migrating Pacific salmon (Cooney and Holzer 2006; Burnett et al. 2007; Sheer et al. 

2009; Bidlack et al. 2014). Based on the literature suggesting particular stream gradients 

suitable for salmon migration (e.g., ranging from <10% - 20%), and our own validation 

results (see below), we applied a conservative stream gradient threshold of 10%, and 

more inclusive alternative of 15%, to the synthetic present-day stream networks 

representing streams suitable for migrating adult salmon. The 15% gradient threshold 

represents accessibility for salmon that are capable of swimming up steeper gradients 

(e.g., Chinook salmon). To measure stream gradient, we broke the synthetic stream 

network in ~500 m segments, calculated the slope of each stream segment by extracting 

elevation values from the ASTER global DEMs for both ends of each segment, then 

divided the elevation difference by the segment length. The ~500 m stream segment 

length was the minimum distance possible given the spatial resolution of our study 

region (see Uncertainties). The upper limits of salmon migration within present-day 

streams were then identified by selecting contiguous stream segments in the direction 

from river mouth to headwaters (i.e., glacier tongue) that were below the different stream 

gradient thresholds (10% and 15%). The synthetic present-day stream network was 

used to identify which glaciers would be accessible to migrating adult salmon below the 

identified migration thresholds.  

To verify the migration stream gradient thresholds presented in the literature, we used 

Pacific salmon presence data, containing a spatial reference (latitude and longitude), 

obtained from the Anadromous Waters Catalogue (AWC; 
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www.adfg.alaska.gov/sf/SARR/AWC) for a sample watershed, the Susitna River 

watershed, that supports good coverage of all five species of Pacific salmon (Figure 

3.4). Using GIS, we ran a network analysis on our present-day stream networks that 

were segmented into ~500 m stream lengths containing slope values for each of these 

segments. We used the slope value associated with each ~500 m segment representing 

the maximum stream gradient that salmon could pass, between river mouth and 

observed location for each Pacific salmon species (Figure 3.4). The values show that 

apart from coho, all species of Pacific salmon can migrate in stream sections with 

gradients of 10%, with Chinook, chum, and pink salmon being identified in stream 

segments > 15% (Figure 3.4). Thus, we selected the migration stream gradient 

thresholds of 10% and 15% based on maximum rather than median values as it is likely 

that there are salmon present in the upper more difficult reaches of streams that are not 

identified in this dataset. The AWC is maintained by the State of Alaska and contains all 

known anadromous streams based on fish surveys. However, given the difficulties 

inherent in surveying for fish throughout Alaska, the AWC is incomplete, and Pacific 

salmon are likely present in many unsurveyed streams. Thus, this analysis of fish 

presence represents a minimum of the extent of fish occurrence and therefore is 

conservative.  

3.5.5. Future salmon-accessible streams created from estimated 
deglaciated bedrock.  

We selected glaciers that were within 100 m of the present-day stream network below 

adult salmon migration stream gradient thresholds of 10% and 15%. We define these 

glaciers as “accessible”. From each of the accessible glaciers, we created future 

synthetic stream networks from estimated deglaciated bedrock (see below). We joined 

the present-day stream network with the future stream network creating one continuous 

stream that salmon could access once deglaciated.  

We estimated the deglaciated bedrock terrain by subtracting gridded ice thickness data 

from ice surface DEMs for every accessible glacier within our study region. Ice thickness 

distribution was calculated at a grid resolution of 25 to 200 m (depending on glacier 

area) using a simple dynamic model that considers glacier mass turnover and ice flow 

mechanics, and by inverting the glaciers’ surface topography (Huss and Farinotti 2012). 

The data set was updated to RGI v6.0 and is in close agreement with the recently 

http://www.adfg.alaska.gov/sf/SARR/AWC
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released global consensus glacier ice thickness product (Farinotti et al. 2019). Inferred 

ice thickness was validated against a set of ice-penetrating radar observations (Huss 

and Farinotti 2012). Surface DEMs were obtained from the Shuttle Radar Topography 

Mission (SRTM) DEMs for glaciers below 60N, and from ASTER global DEMs for 

glaciers above 60N.  

We built a future synthetic stream network derived from estimated deglaciated bedrock 

terrain beneath accessible glaciers using the ArcGIS hydrology toolbox. As with the 

present-day stream network, we split the future synthetic stream network into ~500 m 

segments, extracted the elevation value from both ends of each segment, applied the 

rise/run equation, and eliminated all segments above 10% or 15% from the stream 

network. We assigned stream order to each stream segment using the program RivEX 

to determine each stream segments size. Stream order is a metric used to measure the 

relative size of streams, where the smallest tributaries are referred to as first-order 

streams, which flow into larger streams that combine to form streams of higher order. All 

future stream segments derived from deglaciated bedrock terrain beneath accessible 

glaciers below the adult migration thresholds (<10% and 15%) of all sizes (stream orders 

1-4) were termed “future salmon-accessible streams”. The absolute future salmon-

accessible stream kms were summed for each of the 18 sub-regions (including stream 

order; Table 3.3) to determine the extent of new streams suitable for migrating adult 

salmon. Last, we calculated the relative increase in stream kms for each of the 18 sub-

regions by dividing the total future salmon-accessible stream kms, projected to be 

created in 2100, by the total present-day stream kms below either a 10% (Figure 3.2) or 

15% (Figure 3.5) stream gradient threshold.   

3.5.6. Glacier retreat modelling and exposure of future salmon-
accessible streams.  

To project the retreat of glaciers, we applied the Global Glacier Evolution Model 

(GloGEM) to each of the accessible glaciers (Huss and Hock 2015). GloGEM computes 

glacier mass balance and associated geometry changes for each individual glacier in the 

study region (Huss and Hock 2015). To calculate glacier surface mass balance, as a 

difference between accumulation (snowfall and refreezing) and ablation (glacier surface 

melting), GloGEM was forced with a monthly timeseries of near-surface air temperature 

and precipitation. Glacier geometry changes (e.g. thinning and/or shrinking) were 
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assessed from the surface mass balance coupled with the empirically derived functions 

of glacier thinning along the glacier centerline (Huss et al. 2010). For annual mass 

losses at marine- or lake-terminating glacier fronts, glacier retreat was approximated by 

accounting for glacier front height and width (Oerlemans and Nick 2005). The total mass 

changes for each glacier were used to adjust surface elevation and extent on a yearly 

basis. Previous work gives further details of the model, its calibration, and downscaling 

procedures (Huss and Hock 2015, 2018).  

To project the glacier retreat for the benchmark years 2050 and 2100, we forced the 

glacier model with temperature and precipitation time series from an ensemble of five 

GCMs. The five GCM models were selected as they showed better performance in 

simulating climatology over North America relative to other Coupled Model 

Intercomparison Project 5 GCMs (Radić and Clarke 2011): CanESM2, CSIRO-Mk3-6-0, 

GFDL-CM3, MIROC-ESM, and MPI-ESM-LR. The GCMs are subjected to a range of 

specified climate forcings that correspond to plausible scenarios for the rate of change in 

the concentration of atmospheric CO2 and other greenhouse gases. For the IPCC AR5 

these scenarios are referred to as Representative Concentration Pathways (RCPs) and 

the standard emission scenarios are RCP2.6, RCP4.5, RCP6.0, RCP8.5 (Meinshausen 

et al. 2011). For several of the GCMs we used, the RCP6.0 was omitted, and the 

RCP2.6 is likely to not be reached (Sanford et al. 2014), therefore we selected the 

RCP4.5 and RCP8.5 for the glacier modelling. The glacier model is forced by each GCM 

in the ensemble, while the projections of glacier retreat are presented as the ensemble-

mean for each RCP.  

We use the glacier retreat projections to assess how many future salmon-accessible 

stream kms would come available by the years 2050, 2100, and in the case of total 

potential deglaciation for each of our 18 sub-regions (Figure 3.1b). We considered when 

each future salmon-accessible stream segment, below either the 10% or 15% stream 

gradient thresholds, would become exposed from glacier ice based on 10-year averages 

of modelled glacier extent centered around the years 2050 and 2100 for both the RCP 

4.5 and RCP 8.5 and each of the five GCMs, and the ensemble-mean. We then summed 

the stream kms that would be available by the projected 2050 and 2100 years for each 

of the 18-sub regions. 
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3.5.7. Defining salmon habitat requirements using stream gradient 
and order.  

We determined how many of the future salmon-accessible stream kms could be used 

specifically for salmon spawning and rearing habitat by selecting stream segments with 

stream orders greater than first order, and with gradients ranging from either 0-2% or 0-

4%. While we acknowledge that salmon can use first-order streams, we focus on 

streams greater than first order, which includes second-, third-, and fourth-order 

streams. Thus, our analysis indicates that suitable spawning and rearing habitat from the 

future salmon-accessible stream networks had segments with stream orders that ranged 

from second to fourth, with stream gradients ranging from either 0-2% or 0-4%.  

From the future salmon-accessible streams, we determined the amount of salmon 

habitat by summing the stream kms based on two scenarios (i.e., 0-2% 

spawning/rearing with a <10% stream gradient threshold; and, 0-4% spawning/rearing 

with a <15% threshold), then determined when the stream habitat would become 

available for the years 2050 and 2100 for each of the 18 sub-regions (Figure 3.3). The 

two scenarios help capture the fact that different salmon species have different 

tendencies in terms of stream gradients associated with spawning and rearing (Figure 

3.6) (Quinn 2018).  

3.5.8. Uncertainties 

Given that our study integrated models, data inputs, and analytical approaches for 

salmon habitat across a large study region, it is important to consider potential 

uncertainties and sensitivities. These potential sources of uncertainty include the 

selected segment lengths used for the stream gradient thresholds, glacier model 

forecasts, and glacier ice thickness estimates. Below we examine these sources of 

uncertainty. While there are important assumptions and uncertainties, our analysis 

provides reasonably robust predictions across a 623,000 km2 region containing almost 

50,000 glaciers.  

The stream gradient thresholds applied were based on a segment length of ~500 m and 

a DEM with a 30 m resolution. We chose the ~500 m segment length because 

shortening the segment length created streams that were dissimilar to established 

stream networks (such as the NHD USGS), and the 30 m DEM resolution was the finest 
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resolution available across the study region. These segment length and resolution limit 

the accuracy and precision of the synthetic stream networks, and thus how we derived 

our stream gradient thresholds. For example, in a ~500 m segment it is impossible to 

know the exact stream characteristics present (e.g., longer series of riffles vs. a single 

large waterfalls), and Pacific salmon upstream migration is generally restricted by certain 

stream features such as waterfalls. Therefore, some segments with 10% stream gradient 

may contain a migration barrier whereas others may not. For comparison, other studies 

have used similar reach lengths of 200 m (Beechie and Imaki 2014) and 500 m (Klett et 

al. 2013).  

We could not validate our stream gradient thresholds for adult salmon migration against 

known barriers (e.g., waterfalls) because there are no known datasets of salmon 

migration barriers between southern British Columbia and Alaska. Therefore, to 

determine if the number of accessible glaciers would vary under different stream 

segment lengths used for determining stream gradient thresholds, we ran a sensitivity 

analysis on the present-day streams using ~250 m, ~400 m, ~600 m, and ~750 m 

segment lengths and a 10% stream gradient threshold. We ran this analysis for two 

sample sub-regions, North Southeast, AK, and Taku River, AK. For the North Southeast, 

AK, watershed the number of salmon-accessible glaciers changed within the range of -

16% to 9% (~90- ~350 ha), depending on the segment length (Table 3.4). For the Taku 

River, AK sub-region there were the same number of salmon-accessible glaciers in all 

segment length scenarios (Table 3.4). Thus, given the available resolution of the DEM, 

the application of ~500 m segment lengths did not strongly influence the results. We also 

acknowledge that some migration barriers depend on river flows. Our analysis covering 

623,000 km2 should be viewed as the best-available predictions that require field 

validation at specific locations.  

We also ran a sensitivity analysis on future salmon-accessible streams using ~250 m 

and ~750 m segment lengths and a 10% stream gradient threshold for each of the 18 

sub-regions to understand variations in total future salmon-accessible stream kms given 

different segment lengths (Table 3.5). The difference in future salmon-accessible stream 

kms when applying a ~250 m versus the ~500 m segment length ranged from -27% to 

+3% depending on sub-region, whereas the difference in future salmon-accessible 

stream kms ranged from -2% to +51% when applying a ~750 m segment length. With 

the ~250 m segment length there are more opportunities for the slope calculation to be 
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above the 10% stream gradient because there are more segments in the stream 

network, whereas the opposite is true of the ~750 m segment length. In addition, there 

are more salmon-accessible stream kms when using the ~750 m segment lengths as the 

segments extend further into the upper reaches of the stream network, whereas the 

opposite is true of the ~250 m segment length. Thus, the total future salmon-accessible 

stream kms are greater when using the ~750 m segment length versus the ~250 m. On 

average between all 18 sub-regions, the total future salmon-accessible stream kms 

when using the ~250 m segment length is 14% less, and when using the ~750 m 

segment length is 11% more. Given that the uncertainties in the DEM become more 

relevant for shorter versus longer lengths, and the small amount of variation in our 

sensitively analysis results, we chose to use the ~500 m segment length, which was a 

good trade-off between capturing the accuracy and precision of the stream network and 

data limitations.  

We were unable to measure or estimate the many landscape variables (e.g., channel 

width and confinement, stream flow, stream temperature, riparian forest development) 

that are important to Pacific salmon throughout their life cycle (Beechie et al. 2001; Pess 

et al. 2002; Steel et al. 2004; Firman et al. 2011; Bidlack et al. 2014). Moreover, field 

measurements of variables such as sediment supply, grain size, bankfull discharge, and 

channel slope are not readily available over large geographic areas (Beechie et al. 2006; 

Davies et al. 2007), and impossible to obtain for sub-glacier environments. Many studies 

have determined ways to extract important environmental variables for salmon using 

DEMs (Beechie and Imaki 2014; Sloat et al. 2018). However, this type of analysis was 

not possible given the uncertainties in estimating the deglaciated bedrock topography, 

which was generated from ice surface DEMS and gridded ice thickness data, some that 

had a resolution of up to 200 m for the largest glaciers. Therefore, only stream order and 

gradient were used in determining salmon streams and suitable habitat for spawning and 

rearing (Lunetta 1997). However, these metrics are useful and accurate in identifying 

suitable habitat for Pacific salmon, as shown by other studies (Lunetta 1997; Sharma 

and Hilborn 2001; Burnett et al. 2003).  

There are uncertainties in the IPCC climate model projections (IPCC 2013), and 

therefore, in the projected 2050 and 2100 deglaciated terrain beneath accessible 

glaciers. However, climate models similar to those used in this analysis have shown to 

be quite accurate at predicting future temperature changes (Hausfather et al. 2020). To 
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illustrate the uncertainty in the climate models, for each of the 18 sub-regions, we 

display variation due to the choice of GCM by calculating the future glacier extents as 

the ensemble-mean + one standard deviation in both Figures 3.1 and 3.2.  

There is known error in modelled ice thickness distribution based on a comparison of ice 

thickness models. Farinotti et al. (2017) estimate deviations on the order of 10 + 24% of 

the mean ice thickness for 21 glaciers relative to in situ measurements. Thus, there 

could be some error in the inferred elevation estimates for the estimated deglaciated 

bedrock topography. However, ice thickness models show a good performance 

regarding the patterns of thickness distribution (thin/thick parts of the glacier), even when 

the average estimated ice thickness of an individual glacier may be high or low. 

Moreover, errors in estimated elevation of the bedrock are likely similar at either end of a 

~500 m reach (Farinotti et al. 2017). Hence, the errors in calculation of slopes are likely 

reduced due to spatial correlation of errors in the ice thickness estimates. 

The stream gradient analysis is based on the deglaciated bedrock topography, 

estimated from the bedrock beneath the glacier ice, and does not account for any 

sediment accumulation, or valley fill. Therefore, our stream gradients analyses are likely 

to be conservatively estimated for larger, less steep streams. In these streams, sediment 

will accumulate on the bedrock surface, making their overall stream gradient less steep 

(May and Gresswell 2003), whereas in relatively small and steep streams that typically 

originate in high elevation mountain slopes, sediment accumulation will occur less 

frequently, and our projections may be more accurate.   
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3.7. Supplementary Material 

 

Figure 3.4  Migration stream gradient thresholds for each Pacific salmon 
species in the Susitna River, Alaska.  (a) points represent Pacific 
salmon presence obtained from the Anadromous Waters Catalogue 
(AWC; www.adfg.alaska.gov/sf/SARR/AWC), maximum stream 
gradient value that a salmon would cross along stream segments 
(~500 m lengths), between stream outlet and observed location. (b) 
box plot showing median stream gradient along stream segments 
from stream outlet to point data. Upper quartiles of the boxplot are 
maximum gradient each Pacific salmon species can access. Dotted 
lines represent the 10% and 15% stream gradient thresholds. 

http://www.adfg.alaska.gov/sf/SARR/AWC)
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Figure 3.5  Projected future salmon-accessible stream kms with <15% stream 
gradient migration threshold. Map shows the projected percent 
increase in future salmon-accessible stream kms, below a 15% 
stream gradient threshold for 2100, relative to present-day stream 
kms summed for each of the 18 sub-regions. Glacier retreat 
projections, in response to five GCMs with RCP4.5 emission 
scenario, are used as an ensemble-mean. Bar plots represent the 
projected future salmon-accessible stream kms with <15% stream 
gradient threshold for the years 2050, 2100, and complete potential 
deglaciation (i.e., once glaciers have retreated completely from the 
landscape) for each of the 18 sub-regions. Projections are computed 
from 10-year averages centred around these years. Error bars 
represent + one standard deviation of projected stream kms derived 
from the ensemble of glacier retreat projections for RCP4.5. Note 
that x-axis is different from Figure 3.2. 
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Figure 3.6 Projected salmon spawning and rearing habitat kms over stream 
gradients ranging from 0-10% for different RCP scenarios in 2050 
and 2100. The results refer to the summed stream kms by habitat 
(spawning and rearing) slope thresholds (light – dark blue) for the 18 
sub-regions based on either 10% or 15% stream gradient migration 
thresholds. Results are derived from the ensemble-mean of glacier 
retreat projections in response to five GCMs for each of the two 
emission scenarios (RCP4.5, RCP8.5) for the years 2050 and 2100. 
The 18 sub-regions are listed from higher to lower latitude. 
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Table 3.1 Stream gradient representing habitat suitability for spawning and 
rearing for different Pacific salmon species including referenced 
literature. 

species value location life phase resource 

coho 0 – 4% South Fork Stillaguamish 
River, USA 

spawning and rearing (Benda et al. 1992) 

coho 0 – 4%  Skagit River, WA spawning (Beechie et al. 1994) 

coho 0 – 4.8% Washington State, USA rearing (Beechie and Sibley 
1997) 

coho 0 – 3% Regional rearing  (Bradford et al. 1997) 

coho 0 – 7%1 western Oregon rearing (Burnett et al. 2007) 

coho 0 – 7% Pacific Northwest spawning and rearing (Sheer et al. 2009) 

coho 0 – 4.5% southeast Alaska spawning (Sloat et al. 2018) 

chum 0 – 3% Pacific Northwest spawning and rearing (Sheer et al. 2009) 

chum 0 – 4.5% southeast Alaska spawning (Sloat et al. 2018) 

pink 0 – 4.5% southeast Alaska spawning (Sloat et al. 2018) 

sockeye 0 – 7% Pacific Northwest spawning and rearing (Sheer et al. 2009) 

Chinook 0 – 1.5% Puget Sound rearing (Cooney and Holzer 
2006) 

Chinook 0 – 7% Pacific Northwest spawning and rearing (Sheer et al. 2009) 

Chinook <4%2 Copper River, AK spawning and rearing (Bidlack et al. 2014) 

steelhead 0 – 4% South Fork Stillaguamish 
River, USA 

spawning and rearing (Benda et al. 1992) 

steelhead 0 – 4.8% Washington State, USA rearing (Beechie and Sibley 
1997) 

steelhead 0.5 – 7%3 Puget Sound rearing (Cooney and Holzer 
2006) 

steelhead 2 – 3%4 western Oregon rearing (Burnett et al. 2007) 

steelhead 0 – 8% Pacific Northwest spawning and rearing (Sheer et al. 2009) 

1rear mostly in low gradients and decrease in density as slope increases, nothing 
upstream of 7. 2Highest intrinsic potential between 0.5 – 1.5%. 3densities remained high 
as gradients increased >4%. Low density at gradients <0.5%, increasing as gradients 
rose to ~4%. 42 – 3% are optimal, no use upstream of reaches with gradients exceeding 
10%.  
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Table 3.2 Smolt productions/km for coho salmon including referenced 
literature.   

species value location life phase resource 

coho 600 smolts/km Skagit River, WA smolts (Beechie et al. 1994, 2001) 

coho 2,732 smolts/km Big Qualicum River, BC smolts (Johnson 1986) 

coho 1,367 smolts/km glacially fed streams smolts (Zillges 1977) 

coho 250 smolts/km Baker River, WA smolts  (Chapman 1981) 

coho 457-1,476 smolts/km Regional smolts (Bradford et al. 1997) 
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Table 3.3 Total kms by stream order once the glaciers have reached potential 
complete deglaciation. 

 

<10% stream gradient <15% stream gradient 

stream order 

1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 

Susitna River, AK 404 151 93 15 0 723 269 196 18 0 

Cook Inlet, AK 268 94 50 0 0 374 177 100 0 0 

Knik Arm, AK 127 38 44 0 0 155 66 65 0 0 

Kenai Peninsula, AK 58 29 13 0 0 208 107 39 32 22 

Prince William Sound, AK 265 105 48 0 0 486 245 137 12 0 

Copper River, AK 1,008 452 219 12 0 1,406 678 396 37 0 

Gulf of Alaska, AK 2,918 954 299 179 52 3,883 1,375 527 320 62 

Alsek River, AK 493 171 57 0 0 1,077 471 235 94 4 

North Southeast, AK 297 167 56 16 0 579 330 203 46 0 

Taku River, AK 69 41 8 0 0 125 102 29 0 0 

Central Southeast, AK 121 61 32 26 0 219 123 64 26 0 

Stikine River, BC 56 32 21 0 0 105 88 31 0 0 

Nass River, BC 0 0 0 0 0 45 26 24 0 0 

South Southeast, AK 0 0 0 0 0 26 18 0 0 0 

Skeena River, BC 2 1 0 0 0 5 1 0 0 0 

North Coast, BC 2 0 0 0 0 2 0 0 0 0 

Central Coast, BC 0 0 0 0 0 18 5 0 0 0 

South Coast, BC 18 7 0 0 0 44 30 18 0 0 
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Table 3.4 Total number (and area) of glaciers that salmon can access 
modelled from present day streams based on the 10% stream 
gradient threshold using four different stream segment lengths for 
two sample sub-regions, North Southeast, AK, and Taku River, AK. 
Bolded is the ~500 m segment length used in this analysis.  

 North Southeast, AK Taku River, AK 

number of glaciers area (HA) number of glaciers area (HA) 

250m 27 3593.7 8 1241.9 

400m 32 3889.0 8 1241.9 

500m 32 3505.0 8 1241.9 

600m 33 3821.5 8 1241.9 

750m 35 3857.5 8 1241.9 
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Table 3.5 Total future salmon-accessible stream kilometres using the 10% 
stream gradient threshold for two different segment length 
scenarios, ~250 m and ~750 m for once the glaciers have reached 
potential complete deglaciation summed by sub-region. Included is 
the % change from the ~500 m segment length used in our analysis  

 500 m 250 m % change 750 m % change 

Susitna River, AK 675 596 -12 707 5 

Cook Inlet, AK 423 387 -8 459 9 

Knik Arm, AK 212 183 -14 229 8 

Kenai Peninsula, AK 104 76 -27 102 -2 

Prince William Sound, AK 429 301 -30 424 -1 

Copper River, AK 1713 1284 -25 1878 10 

Gulf of Alaska, AK 4423 4134 -7 4932 11 

Alsek River, AK 721 578 -21 807 10 

North Southeast, AK 546 433 -21 662 21 

Taku River, AK 120 94 -22 124 3 

Central Southeast, AK 243 204 -16 367 51 

Stikine River, BC 111 91 -18 111 0 

Nass River, BC 0 0 0 0 0 

South Southeast, AK 0 0 0 0 0 

Skeena River, BC 3 3 3 3 14 

North Coast, BC 2 2 -2 2 -10 

Central Coast, BC 0 0 0 0 0 

South Coast, BC 25 24 -6 25 -1 
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Chapter 4.  
 
The role of tributaries in cooling an important salmon 
migratory corridor.  

4.1. Abstract  

Climate change and its associated symptoms, such as warming temperatures, glacier 

retreat, reduced snowpack, and increased variability in precipitation, are warming rivers 

and lakes. Such warming water temperatures are harming cold-water fishes. For 

instance, warm water temperatures may kill or harm important populations of 

anadromous Pacific salmon as they migrate upstream to spawning grounds. In this study 

we assessed how tributaries, and their relative watershed properties, shape the temporal 

and spatial dynamics of temperatures in salmon migratory rivers. We focused on the 

Babine River of British Columbia, an important migratory corridor for steelhead and the 

five eastern Pacific salmon species, but particularly for sockeye salmon that spawn in 

stream reaches above the Babine Lake, at the river’s headwaters. We discovered that 

large glacier- and snowpack- fed tributaries cooled the Babine River by approximately 

2C over its 96 km length. Different tributaries played different temperature functions. 

Cooler and more glacierized rivers showed a bigger change in temperature between the 

upstream and downstream sites. Understanding the spatial and temporal dynamics of 

water temperatures in riverscapes, especially those on the edge of potentially harmful 

levels, can help inform management options in a warming world. While climate change 

requires a global effort in reducing greenhouse gas emissions, there are options for 

localized land use management actions to try to mitigate the effects of oncoming climate 

warming.  

4.2. Introduction 

Climate change is warming rivers and lakes and threatening cold-water freshwater fishes 

(Schindler 2001; Strayer and Dudgeon 2010). For example, the mean summer water 

temperature of the Fraser River in British Columbia, Canada, has increased by ~1.5C 

since the 1950’s (Patterson et al. 2007a). This warming has caused mass mortality to 

some populations of migrating Pacific salmon (Oncorhynchus spp.) in particularly hot 
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years, and is predicted to drive a 9-16% decrease in Pacific salmon survival by the end 

of the century (Martins et al. 2011). More broadly, increasing air temperatures due to 

climate change (IPCC 2013), as well as  associated decreases in glaciers (Zemp et al. 

2019), decline in annual mountain snowpack (Mote et al. 2005), earlier spring snowmelt 

(Rauscher et al. 2008; Islam et al. 2017), and changes in annual distribution of 

precipitation, are all affecting stream flow and temperature (Hartmann et al. 2013). 

Climate warming is an urgent threat to freshwater biodiversity, thus it is imperative to 

understand the landscape processes driving temperature regimes in important Pacific 

salmon rivers (Isaak et al. 2010; Mantua et al. 2010; Martins et al. 2011). 

The impacts on fishes of climate warming in river systems will be influenced by the 

spatial configuration of aquatic habitats (Fullerton et al. 2017; Steel et al. 2017). River 

systems, with their branching network structure and potentially high connectivity, are 

particularly interesting thermal landscapes (Isaak et al. 2010; Peterson et al. 2013; 

Fullerton et al. 2015). While the diverse climate portfolios of each tributary watershed 

can buffer downstream flow patterns (Chezik et al. 2017), climatic changes may lead to 

stream flow and temperatures changes within tributary catchments that may alter the 

thermal profile of downstream rivers (Fullerton et al. 2015; Steel et al. 2017). In 

mountainous watersheds, like many in British Columbia, tributary rivers are commonly 

fed from glacierized and snow-covered mountains, with stream runoff from these 

landscapes acting as “air conditioners” to downstream rivers, many of which are major 

migratory corridors for Pacific salmon (Islam et al. 2017; Milner et al. 2017). However, 

the cooling power of these tributaries may be increasingly compromised by rapid glacier 

retreat (Clarke et al. 2015) and diminishing persistent spring snowpack (Islam et al. 

2017). The spatial distribution of temperatures in river networks influences the 

management options for effective conservation of cold-water fishes in a warming world 

(Ebersole et al. 2020). 

Stream temperature is a product of local climate, landscape features, and human land-

use (Lisi et al. 2013; Steel et al. 2017). While water temperatures generally track air 

temperatures (Caissie 2006), this relationship may be modulated by multiple complex 

processes that operate at different scales to ultimately control stream temperature 

(Webb et al. 2008; Garner et al. 2014; Lisi et al. 2015). Landscape features and 

characteristics such as glacier cover, snowpack, watershed elevation, and presence of 

lakes can all influence temperature dynamics. For example, during periods of warm 
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weather glaciers and persistent snowpack experience a significant amount of melt, 

contributing cold water to downstream water temperatures (Jansson et al. 2003), which 

can decouple the air and water temperature relationship. Over longer timescales, 

persistent declining spring snowpack and retreating glaciers will lead to a decline of 

glacier meltwater contributions to stream runoff (Bliss et al. 2014; Huss and Hock 2018), 

a processes that would inevitably increase water temperatures. Additionally, large lakes 

can stabilize and in some instances warm downstream water temperatures depending 

on the lake-feeding water source (Dorava and Milner 2000; Schoen et al. 2017). Forest 

harvest also can increase stream temperatures (Pollock et al. 2009). Thus, the local 

climate and landscape characteristics of the sub-catchments will influence tributary 

temperatures, and thus control whether tributaries act to cool, or warm, rivers (Bellmore 

and Baxter 2014; Fullerton et al. 2015). 

Pacific salmon populations are increasingly adversely impacted by warming water 

temperatures in rivers throughout North America (Eliason et al. 2011; Martins et al. 

2011; Barnett et al. 2020). High water temperature can alter the rate of physiological 

processes of migrating Pacific salmon, which depletes their energy reserves increasing 

mortality rates (Rand et al. 2006; Martins et al. 2011). Generally, water temperatures 

exceeding 18C can lead to a reduction in aerobic scope or mortality for sockeye salmon 

(O. nerka) (Naughton et al. 2005; Keefer et al. 2008; Martins et al. 2011), although this 

may vary based on population and their local adaptions (Eliason et al. 2011; Martins et 

al. 2011). While salmon have capacity for plastic and adaptive responses to 

environmental change (Crozier and Hutchings 2014), such as by migrating at different 

times to avoid excessively warm waters (Reed et al. 2011), quantifying the thermal 

landscapes of key migratory corridors is of timely importance. 

The Babine River, British Columbia, Canada, is an important migratory corridor for 

steelhead(O. mykiss) and the five eastern Pacific salmon species, but particularly for 

sockeye salmon that spawn in stream reaches above the Babine Lake, at the river’s 

headwaters (Gottesfeld and Rabnett 2008). The Babine River is the origin of most of the 

sockeye salmon (80-94%) in the Skeena River Watershed and supports commercial, 

recreational, and cultural fisheries (Gottesfeld and Rabnett 2008). In some years with 

warmer temperatures and higher flows, it appears that migration by sockeye salmon 

may be challenged or delayed through this steep river (Stiff et al. 2015). Water 

temperature at the outlet of the Babine Lake draining into the Babine River has 
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increased by 1.5C since the 1900’s (Stiff et al. 2015). Unlike other major salmon 

migratory rivers such as the Fraser River (Patterson et al. 2007a; Martins et al. 2011), 

there is little understanding of the thermal regime for the Babine River and its tributaries.  

Here we investigated the role of tributaries in controlling the water temperatures of an 

important sockeye salmon migratory river. More specifically, we quantified the monthly 

and daily temperature profiles along the Babine River mainstem and its major tributaries, 

determined if tributary rivers entering the Babine River provided cool water inputs, and 

assessed potential relationships between climate and landscape characteristics of the 

tributary rivers. We hypothesized that the size and watershed characteristics of each 

tributary would correlate with its cooling power. We also hypothesized that the tributaries 

and Babine River mainstem seasonal temperature patterns would vary, driving 

asynchronous contributions to downstream temperatures. These analyses provide 

insight into the thermal landscape of the Babine River to inform forward-looking 

management and conservation of a culturally- and economically- important river and 

fishery.  

4.3. Methods 

4.3.1. Babine River watershed 

This study was conducted in the Babine River watershed, which drains 10,477 km2 from 

the Nechako Plateau through the southern Skeena mountains (Figure 4.1). The Babine 

River watershed is broken into an upper and lower portion, with the upper watershed 

being situated in the low-relief Nechako Plateau composed mainly of the Babine Lake, 

the largest natural lake in British Columbia. The lower watershed, draining from the 

Babine Lake, consists of the 96 km-long Babine River and other major tributaries, 

including the Nichyeskwa, Nilkitkwa, Shelagyote, and Shedin drainages (Figure 4.1). 

The elevation at the Babine Lake outlet is ~700 m, and ~320 m at the Skeena River 

confluence with a ~380 m loss in elevation along the river’s profile. The Babine River is 

predominantly in a canyon, high gradient, and contains falls and rapids rated up to class 

IV. Major tributaries, some of which originate from high-elevation snow-capped 

mountains and glaciers, are steep with widely fluctuating water temperatures, flows, and 

sediment supply (Gottesfeld and Rabnett 2008). There is presently, and a long history 

of, extensive forestry within the watershed with some areas such as the Nilkitkwa 
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drainage being more heavily impacted than others (de Groot 2014). In 1999, the Babine 

River was protected from future development activities by designating the river as the 

Babine River Corridor Provincial Park (Gottesfeld and Rabnett 2008). The upper part of 

the Babine River watershed is within Lake Babine Nation territory and the lower portion 

is within Gitxsan territory.  

 
Figure 4.1  

Figure 4.1  Babine River watershed and its major tributary watersheds overlaid 
on a digital elevation model in British Columbia, Canada. Red points 
represent location of temperature logger sites. Inset map shows 
temperature logger placement at upstream, within stream and 
downstream tributary sites. Tributary watersheds identified in bold 
are those used in our analyses. The Babine River flows northwest 
from Babine and Nilkitkwa Lake downstream to the Skeena River. 

The Babine River watershed is a major producer of all five species of eastern Pacific 

salmon, including Chinook salmon (O. tshawytscha), chum salmon (O. keta), coho 

salmon (O. kisutch), pink salmon (O. gorbuscha), and sockeye salmon fished by 
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Indigenous, commercial, and recreational fisheries. The Babine River supports the 

largest sockeye salmon population in Canada, with enhancement channels above 

Babine Lake; the Babine River produces 90% of the sockeye salmon within the Skeena 

River watershed. Sockeye salmon typically migrate up the Babine River mainstem 

between mid-July and the end of August (Gottesfeld and Rabnett 2008). The Skeena 

River downstream of the Babine River is generally cool (Stiff et al. 2015); thus, the 

Babine River represents the warmest portion of the arduous migration of these important 

fishes.  

4.3.2. Stream temperature data  

We deployed temperature loggers in the Babine River watershed with the goal of 

understanding how major tributaries influence the Babine River mainstem temperature. 

Loggers were placed upstream, within, and downstream of major tributaries to capture 

the relative contribution of each stream to the subsequent downstream temperatures 

(Marsha et al. 2018). In 2015, we deployed 32 temperature loggers (HOBO Pendants®) 

upstream, within, and downstream (~1 km) the Nichyeskwa, Nilkitkwa, Hanawald, 

Shelagyote, Gail, Thomlinson, Shedin, and Shegisic rivers (major tributaries) and along 

the mainstem of the Babine River (Figure 4.1). In 2016, we obtained, downloaded, and 

redeployed the loggers, and added 15 additional loggers to the Babine River mainstem 

and at Boucher, Cataline, Shanagha, Le Claire, and Sam Green tributaries (Figure 4.1). 

We retrieved all temperature loggers from the Babine River in October 2017. The Babine 

River is largely inaccessible due to its remoteness and Class IV whitewater rapids. Thus, 

we accessed and navigated the length of the Babine River by raft, entering the river at 

the Babine fish weir and exiting at the Skeena River confluence. This project was 

developed with full recognition of Aboriginal Rights, and all research was conducted with 

permission to access the territories of Lake Babine and Gitxsan Nations.   

Stream temperatures were monitored at two-hour intervals from August 2015 to October 

2017. At each site, we anchored the loggers by attaching cable to large healthy trees on 

the riverbank beyond predicted extreme river flows levels. The loggers were cased with 

white PVC shields and attached to the cable protecting them from debris and solar 

radiation that may bias temperature readings (Isaak and Horan 2011). To protect the 

loggers from de-watering events or being torn out from debris, we attached weights to 

the loggers and sunk them in deep pools outside of the rivers thalwag. Upon retrieval 
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and downloading of the data, we cleaned the temperature data via manual inspection 

and removed data believed to be associated with de-watering events (e.g., Sowder & 

Steel 2012), and averaged remaining raw temperature readings to the daily level. All 

2017 data were eliminated from our analysis due to a large flood in early May that 

destroyed 44% of the data loggers via de-watering events, wedging them beneath 

boulders, or ripping them off anchored trees. In addition, the Gail River temperature 

logger data were eliminated from 2016 due to a de-watering event. Thus, our analysis of 

stream temperature considers July 1 – August 31, 2016, which is typically the period of 

warmest annual water temperatures and when most Babine River sockeye salmon 

populations migrate upstream (Stiff et al. 2015).  

We assessed the thermal dynamics of the Babine River mainstem and tributaries 

throughout July and August 2016 (hereafter “summer”) to understand how the 

temperatures change during the warmest annual period and when adult sockeye salmon 

typically migrate within the Babine River watershed (Gottesfeld and Rabnett 2008; Stiff 

et al. 2015). First, we averaged July/August stream temperatures from the 15 sites along 

the Babine River, and six tributary sites to determine if tributaries that had various 

watershed sizes played a role in cooling the Babine River during peak summer 

temperature months. Second, we assessed the mean daily temperature from July 1 – 

August 31, 2016 for each of the tributary upstream, within stream, and downstream sites 

to understand how the varying seasonal temperature patterns of the tributaries would 

affect Babine River temperatures. Last, we calculated the difference in summer 

temperature between upstream and downstream temperatures to determine how much 

each tributary impacted the mainstem Babine River water temperature.  

4.3.3. Climate and landscape variables associated with tributary water 
temperature  

Many climate and landscape (hereafter “watershed”) variables are known to contribute to 

stream temperatures (e.g., Isaak et al. 2010). Using Geographic Information Systems 

(GIS), we obtained watershed data from several sources. Climate data were calculated 

using the open-source tool ClimateBC (Wang et al. 2016), which extracts and 

downscales PRISM climate normal data and extrapolates to any location within British 

Columbia (Daly et al. 2008). We used climate data averages for each of the six tributary 

watersheds by sampling at a 1 km resolution across the Babine River watershed, then 
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used ClimateBC to estimate the mean summer air temperature and precipitation in 2016, 

and previous winter precipitation as snow (Table 4.1). Landscape variables included 

glacier coverage obtained from the Randolf Glacier Inventory (v6.0) (RGI Consortium 

2017), watershed and lake areas calculated from polygons within the Freshwater Atlas 

of British Columbia, and elevation values extracted from a 25 m digital elevation model 

(DEM). We extracted forest harvest data from the National Forest Information System, 

derived from Landsat images, identifying yearly forest harvest activity at a 30 m 

resolution. We calculated the total area of forest harvest within each tributary watershed 

over a 30-year (1985-2015) period. To characterize the contribution of glaciers and 

forest harvest relative to the size of each tributary watershed, we divided these variables 

by their watershed area to calculate their proportional coverage. Similarly, to 

characterize how much each tributary watershed contributed to the Babine River 

watershed, we calculated the proportion watershed area relative to Babine River 

watershed.  

We used a Pearson’s correlation analysis to identify relationships between watershed 

characteristics of each tributary, with emphasis on how watershed characteristics are 

associated with summer stream temperature. We were limited in the number of 

tributaries (n = 6) and therefore did not conduct further statistics. The watersheds and 

their characteristics are included in our correlation analyses listed in Table 4.1.  

Table 4.1 Characteristics of tributary watersheds. 

tributary 

mean 
summer 

water 
temp. 

(C) 

watershed 
area 

(ha) 

percent 

glaciers 
(%) 

lake 
area 
(ha) 

mean 
elevation 

(m) 

mean 
summer 

air 
temp. 

(C) 

summer 
precip. 
(mm) 

previous 
winter 

precip. as 
snow 
(mm) 

percent 
harvest 
30-year 

(%) 

prop. 

tributary 
size to 
Babine 

(%) 

Nilkitkwa 12.4 82,642 3.6 528.8 693 11.8 61.5 219.7 5.9 7.9 

Hanawald 15.0 17,433 0.0 521.4 591 12.7 54.8 203.5 0.1 1.7 

Shelagyote 10.5 57,746 10.8 537.0 542 12.0 66.7 253.6 0.1 5.5 

Thomlinson 10.3 10,635 8.2 5.6 484 11.7 49.3 243.2 0.2 1.0 

Shedin 9.8 55,635 7.5 321.9 342 12.2 70.7 264.4 1.0 5.3 

Shegisic 8.2 9,818 8.6 61.2 333 11.7 55.3 258.7 0.2 0.9 
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4.4. Results 

4.4.1. River temperature patterns 

Mean summer stream temperature of the Babine River decreased by ~2.0 C from 

Babine Lake outlet site (15.79 C + 0.80 C) to the Skeena River confluence site (13.76 

C + 1.13 C) (Figure 4.1). The large and glacierized tributary rivers – Nilkitkwa, 

Shelagyote, and Shedin – contributed cold water (mean summer temperatures of 12.4 

C, 10.5 C, 9.8 C, respectively), which appeared to reduce the summer stream 

temperature of the Babine River mainstem (Table 4.1; Figure 4.2). The smaller tributary 

watersheds, Thomlinson and Shegisic, with cold mean summer temperatures of 10.3 C 

and 8.2 C (Table 4.1), and the warmer Hanawald River (15.0 C mean summer 

temperature) appeared to have very little effect in changing the Babine River mainstem 

temperatures (Figure 4.2). The Babine River mainstem water temperature warmed 

between the major glacierized watersheds, with summer stream temperature increasing 

by 1.2 C between the downstream Nilkitkwa tributary and upstream Shelagyote 

tributary, and 0.2 C between the downstream Shelagyote tributary and upstream 

Shedin tributary.  

Seasonal dynamics of temperatures in the different tributaries and mainstem were 

similar. Apart from Hanawald, all tributary sites had mean daily stream temperatures 

colder than the Babine River mainstem (upstream and downstream) sites between July 

1 and August 31, in 2016 (Figure 4.3). Throughout the summer months, the mean daily 

temperatures of the Nilkitkwa, Shelagyote, and Shedin within stream sites appeared to 

reduce the Babine River downstream mean daily temperatures (Figure 4.3a,c,e). 

Meanwhile the Hanawald, Thomlinson, and Shegisic within-stream temperature sites 

had little to no effect on the Babine River downstream sites. All sites had the warmest 

mean daily temperature on July 19, 2016, with the peak temperature varying by site. For 

each within stream tributary site, the warmest mean daily temperature on July 19, 2016 

was 17.7 C for Nilkitkwa, 18.9 C for Hanawald, 17.6 C for Shelagyote, 16.7 C for 

Thomlinson, 17.0 C for Shedin, and 16.2 C for Shegisic. The warmest mean daily 

water temperature within the Babine River was 17.7 C on July 20, 2016. Thus, counter 

to predictions, seasonal patterns of water temperatures were coherent among tributaries 

and the mainstem.  
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Figure 4.2 Mean summer temperature (C) + one standard deviation (shown in 
grey shading) from temperature sites located within the Babine 
River, from Babine Lake (distance = 0) to the Skeena River (distance 

= 96). Blue points represent mean summer temperature (C) for each 
tributary that feeds into the Babine River, scaled to watershed size. 
Note: Hanawald Creek drains from a small watershed with no 
glaciers, and Shedin and Shegisic are in close proximity and 
therefore share the same upstream and downstream temperature 
loggers.   
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Figure 4.3 Mean daily temperatures (C) + one standard deviation (shown in 
grey shading) for upstream, within stream, and downstream 
tributary sites from July 1 – August 31, 2016. 

The contribution of stream temperature from each tributary site to the Babine River was 

different, with cooler and more glacierized rivers causing bigger change in temperature 

between the upstream and downstream sites. The change in temperature between 

upstream and downstream sites at the Nilkitkwa, Shelagyote, and Shedin tributaries was 

-1.5 C, -1.03 C, and -0.71 C respectively (Figure 4.4). The temperature change at 

Hanawald was positive (0.63 C), with changes at the Thomlinson (-0.06 C) and 

Shegisic (-0.19 C) tributaries being trivial. Thus, stream temperatures from large 

glacierized watersheds appear to be the major contributors to temperature changes 

within the Babine River mainstem.  
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Figure 4.4 Map showing the temperature (C) change between upstream and 
downstream sites at each tributary site. Blue shading represents a 
cooling of the Babine River mainstem temperature, red represents a 
warming of the Babine River mainstem, and yellow represents a 
mimimal change. Red points represent location of temperature 
logger sites. 

4.4.2. Watershed characteristics associated with tributary stream 
temperature  

There were strong relationships between some of the six watershed characteristics and 

tributary temperatures (Figure 4.5). Mean summer water temperature were inversely 

related to previous winter precipitation as snow (r = -0.93; p = 0.01) and percent glacier 

cover (r = -0.87; p = 0.02). Not surprisingly, these two variables were strongly correlated 
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with each other (r = 0.9, p = 0.02). Mean summer water temperature had a positive 

association with mean elevation (r = 0.76), mean summer air temperature (r = 0.74), and 

lake area (r = 0.67), although insignificant (p > 0.05; Figures 4.5 and 4.6). There was no 

relationship between mean summer water temperature and summer precipitation (r = -

0.15), watershed area (r = 0.13), percent harvest (30-year) (r = 0.24), and proportion 

tributary to Babine River watershed (r = 0.14; all p > 0.05). Thus, watershed variables 

vulnerable to the effects of climate change that have the strongest effect on mean 

summer stream temperature are previous winter precipitation as snow or percent glacier 

and mean summer air temperature.     

    

Figure 4.5 Correlations watershed landscape characteristics. Black box 
represents correlations between mean summer water temperature 
and watershed characteristics. Values represent Pearson’s 
correlation coefficients, with higher values shown by increasingly 
intense colours; blue indicates negative correlations and orange, 
positive. Asterixis represent statistically significant correlations. N = 
6 throughout. 
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Figure 4.6 Relationship between watershed characteristics and summer stream 
temperature for the six tributaries. Tributary sites are listed and 
colored by percent glacier, with values indicated in parenthesis. The 
x-scales vary depending on the watershed characteristic. 
Regression lines (in grey) are for visual purposes only.  

4.5. Discussion 

We assessed the role of tributaries in cooling a major salmon migration corridor. While 

water temperatures often increase as watershed size increases due to cumulative 

thermal loading (Lisi et al. 2013), here we showcase how large tributaries can decrease 

mainstem river temperatures. Particularly, tributaries with more snowpack throughout the 

previous winter and glaciers in their catchment had cooler water temperatures. These 

glacier- and snowpack- fed tributaries cooled the Babine River by approximately 2 C 

over its 96 km length. Specifically, the large and cold Nilkitkwa, Shelagyote and Shedin 

rivers, with mean summer water temperatures of 12.4 C, 10.5 C, and 9.8 C 

respectively, provided the most cooling to the Babine River mainstem, and reduced the 
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Babine River by -1.5 C, -1.0 C, and -0.71 C, respectively. Other studies have also 

found that glaciers have a cooling effect on summer stream temperature, where water 

temperatures are reported to decrease by ~1 C for every 10% increase in glacier cover 

(Moore 2006; Fellman et al. 2014). Meanwhile, the Thomlinson and Shegisic rivers, 

which are also cold and glacierized, contributed very little to cooling the Babine River 

mainstem temperatures. This lack of cooling impact is likely because they contributed 

less water given their smaller watershed area, even though there was no relationship 

between mean summer water temperature and the proportion of tributary watershed to 

the Babine River watershed. Surprisingly, the seasonal temperature dynamics across 

sites, both mainstem and tributaries, were synchronous. Regardless, cold meltwater 

from mountainous tributaries is currently decreasing thermal stress to migrating salmon, 

which agrees with previous work on thermal riverscapes in mountainous region (Fellman 

et al. 2014).  

The Babine River is currently on the edge of posing thermal challenges to sockeye 

salmon. The Babine River summer water temperatures are approaching those that could 

potentially harm sockeye salmon, depending on the thermal tolerance of the Babine 

River sockeye salmon population. For example, sockeye salmon survival declined when 

water temperatures exceeded 15 C in the Koeye River, a small watershed on the 

central coastal of British Columbia (Atlas et al. 2020), whereas some sockeye salmon 

populations in the Fraser River appear to be adapted to tolerate warmer water 

temperatures (Eliason et al. 2011). While there are no population-specific studies of 

Babine River sockeye thermal tolerance, there is some evidence suggesting that when 

water temperatures near the Babine Lake outlet exceed ~18 C, sockeye salmon delay 

migration and stay in cooler waters downstream (Stiff et al. 2015). Thus, while the 

Babine River may be on the edge of suitable water temperatures, it appears that cold 

water inputs from major tributaries currently play a key role in maintaining suitable water 

temperatures for migratory salmon.   

The longitudinal thermal profile of rivers can be complex (Fullerton et al. 2015), but all 

migratory Pacific salmon accessing headwater streams and lakes for spawning must 

transit through the entire thermal regime. In the Babine River watershed, we discovered 

that the upstream section is warmer than the downstream portion. This downstream 

portion is also the location of waterfalls, canyons and steep sections that could present 
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migratory challenges (Gottesfeld and Rabnett 2008). Maximum aerobic scope is 

required to ascend through difficult portions of upstream migration (Eliason and Farrell 

2016), and sockeye salmon have been observed recovering in pools or back eddies, 

sometimes fed from cold upwelling groundwater (Ebersole et al. 2001), while migrating 

through challenging river sections (Brett 1995). In addition, the lower sections of the 

Babine River have been reported to act as a temperature refugium where migrating 

sockeye salmon delay migration until waters cool down before continuing their migration 

(Stiff et al. 2015). Thus, the major tributaries of the Babine River are essential in cooling 

the more challenging lower sections, providing more suitable conditions for migrating 

sockeye salmon. However, the cold tributaries do not cool the entire river, such as the 

upper portion, which is still required for transit to spawning grounds.  

Like rivers across western North American and beyond (Isaak et al. 2012; Luce et al. 

2014), Babine River water temperatures will likely continue to warm. Glacier- and snow-

fed rivers maintain cool water temperatures in the Babine River, and projections show a 

70% decline of glaciers in British Columbia over the next century (Clarke et al. 2015), 

and 20% decline in winter snowpack levels by 2050 (Islam et al. 2017), thus impacting 

the cold water runoff from snow and ice. In addition, the Babine Lake surface water 

temperatures has increased in recent years (Stiff et al. 2015), and forest harvest has 

continued to rise (de Groot 2014). Thus, warming temperatures are a potentially pending 

problem for Babine River and its migratory sockeye salmon. 

Understanding the spatial and temporal dynamics of water temperatures in riverscapes 

can help inform management options in a warming world (Ebersole et al. 2020). While 

many aspects of climate change require a global effort in reducing greenhouse gas 

emissions (IPCC 2013), there are options for localized management actions to try to 

mitigate climate impacts (Johnson and Jones 2000; Pollock et al. 2009). Here we identify 

that tributaries do measurably cool a major salmon migratory corridor. Land use in the 

major tributary catchments will influence their ongoing role as effective “air conditioners” 

for the downstream river. For example, forest harvest increases stream temperatures 

(Mellina et al. 2002; Pollock et al. 2009), and some of these catchments have already 

been substantially harvested (e.g., Nilkitkwa River watershed, 5.9% forest harvest). 

Although our findings did not indicate a relationship between forest harvest and mean 

summer water temperature, likely due to consequences of the large scale of our 

analysis. We suggest further research on the impacts forest harvest is having on major 
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important tributary water temperatures, such as the Nilkitkwa River. Further restriction of 

forest harvest within important tributaries that cool downstream Babine River sections 

would likely help maintain the cold-water refugia during upstream migration. Spatial 

heterogeneity in river temperatures, whether it is small-scale groundwater seepages or 

tributaries that act as cold-water refuges or the cooling inputs of major tributaries, play a 

key role in the persistence and vulnerability of cold-water fishes (Monk et al. 2013; 

Ebersole et al. 2020).  
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Chapter 5.  
 
General Discussion  

The diverse research presented in the preceding chapters presents the multiple ways in 

which climate change and glacier retreat will alter, shift, and impact Pacific salmon 

futures. While there is a growing understanding of the pathways by which glacier retreat 

alters aquatic environments (O’Neel et al. 2015; Milner et al. 2017) and a large body of 

literature on the environmental variables that influence salmon across their life cycle 

(Quinn 2018), the contents of this thesis aims to help fill the knowledge gaps on the 

direct linkages between glaciers and salmon. From constructing a conceptual model, to 

forecasting future salmon habitat gains, then assessing the thermal dynamics within one 

salmon watershed, this thesis crosses temporal and spatial scales of glacier retreat and 

Pacific salmon habitat. Glacier retreat is forecasted to continue with some projections 

showing accelerated melt rates over the next century (Radić et al. 2013) changing 

downstream salmon habitat.  

Glacier retreat is just one of many symptoms of climate change. There have been vast 

amounts of work assessing how climate change will impact species, including Pacific 

salmon. However, much of this work focuses on how temperature warming will shift 

habitats and has given less consideration for how temperature warming will change 

ecosystems. In this case, climate change will transform ice that may be 1000s of years 

old into meltwater. Here I examine some of the direct and indirect consequences of this 

climate-induced transformation and how it will change Pacific salmon’s habitat. Perhaps 

the lessons from this thesis apply broadly to the consideration of climate change in 

glacierized regions of the world. 

5.1. Connections between salmon and glaciers 

Pacific salmon evolved over millions of years ago, enduring various climatic conditions 

including repeated phases of glacier advance and retreat that reworked the landscape of 

northwestern North America (Stearley 1992; Waples et al. 2008). Over time, various 

landscape disturbances, such as those associated with glacier dynamics, have shaped 

the life histories and traits of salmon that we see today (Waples et al. 2008, 2009). 
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Presently, 85% of major salmon watersheds within the range of Pacific salmon have at 

least some glacier coverage (Pitman et al. 2020). Thus, the story between salmon and 

glaciers has long been established, and glaciers continue to play a key role in salmon 

watersheds.         

In chapter 2, I built off previous literature that addresses the pathways of impact glacier 

retreat has on aquatic environments and the environmental variables that influence 

salmon across their life cycle to construct a conceptual model of glacier change on 

salmon habitat over four distinct phases. This conceptual model highlights the many 

ways in which downstream effects from glacier retreat will impact Pacific salmon and 

their habitat across their range. For example, in warm rivers, the loss of glacier melt 

water during summer months could lead to increase stress and higher mortality rates for 

adult Pacific salmon (Martins et al. 2012). Whereas in cool waters, a reduction of cold 

water input from glacier fed rivers could increase juvenile salmon growth potential 

(Fellman et al. 2014). Given the drastic changes projected for the North American 

glaciers, I hope that the contents of chapter 2, will be used in understanding how salmon 

futures may shift within glacierized watersheds. Salmon management plans will need to 

be revisited and revied as salmon productivity shifts within and between watersheds with 

glacier retreat, and this chapter provides a framework for understanding how salmon 

may respond to glacier retreat changes over their range.    

5.2. Pacific salmon habitat gains 

Globally, glaciers are rapidly declining in volume and area, accelerated by recent 

anthropogenic climate warming (Marzeion et al. 2014, 2020). In western Canada, 

glaciers are projected to lose up to 80% of their ice volume by 2100 in some regions. 

This loss in glacier ice will alter salmon watershed drastically over the next century. 

Thus, in chapter 3, I considered Pacific salmon habitat gains following the transformation 

of glacier ice to rivers and lakes. I forecasted, throughout the Pacific mountain ranges of 

North America, the total amount of river kilometer gains over the next century. I 

projected that by 2100, glacier retreat will create ~6,000 kilometers of new streams that 

can be colonized by Pacific salmon, of which ~1,900 kilometers have the potential to be 

used for spawning and rearing, representing a 0 to 27% gain depending on the region. 

Regions that are currently heavily glacierized, particularly in southcentral Alaska, could 

lead to emerging fisheries in the future. Meanwhile, southern parts of Pacific salmon’s 
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range, particularly in British Columbia, may experience very little to no habitat gain as 

glaciers have already retreated far upslope. Through identifying salmon future hotspots, I 

hope the contents of this chapter will inform forward-looking management and 

conservation. Glacier retreat may not only present opportunities for Pacific salmon, but 

also for resource extraction such as mining opportunities (Sexton et al. 2020). Our 

findings in chapter 3 indicates that effective protection of Pacific salmon from watershed 

development will entail conserving current salmon habitat while also avoiding the 

degradation of their future habitat.  

Pacific salmon habitat gains in chapter 3 only considers the direct association between 

glacier ice and the expansion of new habitat. I did not consider the indirect, or 

downstream, effects glacier retreat will have on salmon habitat. Downstream effects will 

present as gains or losses depending on how landscape features integrate across the 

changes of stream flow patterns following glacier retreat, as suggested in chapter 2. The 

analysis in chapter 3 considered the entire range of Pacific salmon habitat within 

glacierized regions. Thus, projecting downstream impacts at this spatial scale was not 

possible. However, future research could build off the modelled salmon habitat gains 

presented in chapter 3 and assess the associated downstream changes following the 

modelled glacier retreat rates within select watersheds. Additionally, I did not consider 

the creation of lake habitat. Lakes provide key habitat for salmon spawning and rearing, 

particularly for sockeye salmon. It was not possible to model future gains in lake area 

within chapter 3 due to the DEM’s resolution and limitations to the glacier retreat model. 

However, glacier-created lakes can be key habitat for salmon. Thus, this chapter 

provides a broad-scale spatial forecast of salmon habitat creation by glacier retreat.  

5.3. Downstream thermal dynamics 

One of the main pathways of impact glacier retreat has on downstream rivers is via 

changes to thermal regimes, which plays an important role for migrating Pacific salmon. 

Glaciers have a cooling effect on summer stream temperature, where water 

temperatures are reported to decrease ~1C for every 10% increase in glacier cover 

(Moore 2006; Fellman et al. 2014). This cold glacier fed water can be beneficial for 

salmon by cooling downstream rivers during critical upstream migration periods when 

river temperatures are typically their warmest. Along an important salmon migratory 
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river, the Babine River (Chapter 4), water temperatures along the mainstem were cooled 

by large glacier fed tributary rivers. Over the Babine River’s 96-kilometer distance, the 

river cooled by approximately 2C, with two large tributary rivers beheaded by glaciers 

providing most of the cooling.  

British Columbia glaciers are projected to decline by 70% over the next century (Clarke 

et al. 2015), and winter snowpack levels are expected to decline 20% by 2050 (Islam et 

al. 2017). The loss of glacier ice and winter snowpack will alter the rivers thermal regime 

potentially impacting adult migrating salmon. While limiting the effects of glacier retreat 

and reduced winter snowpack levels may require a global effort in reducing greenhouse 

gas emissions (IPCC 2013), there are options for localized management actions to try to 

mitigate climate impacts. For example, further restriction of forest harvest within 

important tributaries that cool downstream Babine River sections would likely help 

maintain the cold water refugia during upstream migration. Thus, as we globally work 

towards limiting our greenhouse gas emissions to slow or dampen the effects of climate 

change and glacier retreat, it will be necessary to also implement conservation or 

management plans that protect important salmon watersheds from climate change 

effects such as rising water temperatures.  

5.4. Salmon in a warming world 

While this thesis considers relationships between glacier retreat and salmon habitat, 

there are many ways climate change and other anthropogenic stressors are presenting 

challenges for salmon populations. In chapter 3, we model where salmon populations 

will gain from glacier ice loss. However, the findings from this chapter should be taken 

with caution, as climate change will present many challenges to salmon futures. 

Anthropogenic stressors, such as ocean acidification, habitat loss, warming ocean and 

freshwater temperatures, shifting precipitation regimes, and hatchery influences are 

threatening salmon populations and their habitat. For example, if the capacity of the 

ocean to support thriving salmon populations is compromised by climate change, then 

salmon may be slower or unable to colonize new habitats such as those presented in 

chapter 3. Additionally, if we are unable to slow the rate of global air temperature rise, 

glacier ice will vanish, leaving all salmon watersheds in the final phase – watersheds 

without permanent ice (Chapter 2). In this phase, water temperatures could be too warm 
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negatively affecting salmon by decreasing survival for migratory adult salmon (Eliason et 

al. 2011; Martins et al. 2012). It is unknown how the multiple processes will interact and 

affect salmon and their ecosystems, and glacier retreat is only one of the many ongoing 

stressors. Thus, glacier retreat will present potential opportunities in some locations, but 

these opportunities will only be available if the other consequences of climate change do 

not diminish salmon populations.   

Beyond salmon, glacier retreat will have many detrimental effects potentially harming 

humans and other species. Globally, glacier meltwater is crucial for multiple societal 

needs such as agriculture, hydropower generation, drinking water supplies, and industry, 

whereby half of the worlds population depends on mountain water downstream (Huss et 

al. 2017). Glacier retreat is also causing sea level rise, changing downstream river 

patterns, and increasing geohazards. The changes to the cryosphere are impacting 

species globally, from penguins in the Antarctic to polar bears in the Arctic. Thus, 

incorporating the impacts glacier retreat is having on the physical world is integral for 

understanding the Earth’s ecosystems.  

5.5. Salmon management and conservation  

Glacier loss will pose challenges and opportunities for effective management and 

conservation of salmon and their habitats. Salmon productivity will likely shift across 

space and time as landscapes and rivers change following glacier retreat. I present 

some considerations for the conservation and management of salmon within glacier fed 

systems:  

1) Salmon management plans need to be fluid – revised and revisited – as salmon 

productively shifts with environmental conditions changes and past relationships 

are pushed beyond their historical enumerated bounds and other conditions 

become dominant drivers.  

2) In regions where glacier retreat will degrade salmon habitat via reduced stream 

flow and warming water temperatures fisheries need to be managed more 

conservatively and cautiously.   

3) Glacier retreat is predicted to create new salmon habitat, but is also presenting 

opportunities for resource extraction, particularly mining. Thus, there is a need for 



83 

proactive conservation and decision making that incorporates the potential 

values and benefits of future salmon habitat.   

4) Salmon restoration activities should be designed and undertaken with a forward-

looking outlook that considers how landscapes may change because of glacier 

retreat. 

5) There is a need for localized protection and preservation of tributary watersheds, 

from resource management activities that additively warm water temperatures, 

that play a key role in regulating thermal regimes of migration corridors for highly 

valued salmon. 

6) Consider integrating socio-ecological systems within salmon management plans. 

More broadly, salmon have persisted through multiple drastic changes to their 

environments (Waples et al. 2009). Due to attributes such as having multiple reproducing 

populations, metapopulation structure, high genetic diversity, phenotypic plasticity, 

variable life-history traits, and opportunistic use of habitat (Healey 2009) salmon have 

remained resilient to these environmental changes. However, in many instances, human 

stressors (e.g. hatcheries or dams) and management actions (e.g., maximizing yields) 

have threatened the resilience of salmon. In addition, salmon hold cultural and 

watershed importance; thus, a loss of salmon resilience will also affect the resilience of 

humans and ecosystems. There is a need to integrate harvest management and habitat 

protection into fisheries management to enhance resilience. One such example is 

through co-management arrangements that involve community and indigenous fisheries 

so that those who depend on the resource have an input in the management plans.  

5.6. In conclusion 

The fate of salmon futures lies in the hands of societies ability to curb greenhouse gas 

emissions stalling the effects of climate change and reducing the number of other 

stressors such as habitat loss, hatchery influence, and mismanaged fisheries. For 

example, since the mid-20th century, salmon populations in British Columbia have 

reduced by 13 to 50% of historic levels with some small populations being lost 

completely (Slaney et al. 1996; Northcote and Atagi 1997). However, salmon are a 
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highly resilient species. Given reasonable access to good-quality habitat and protection 

of overfishing and their habitat, they are capable of recovery and productivity. Within this 

thesis, I present a conceptual model of glacier retreat and Pacific salmon habitat, 

forecast future salmon habitat gains, and assess the thermal dynamics within one 

salmon watershed. I hope that the contents of this thesis will be incorporated into the 

management and conservation of our salmon futures.  
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Appendix. 
 
Linking anglers, fish, and management in a catch-
and-release steelhead trout fishery2 

Abstract 

Fisheries are complex social-ecological systems with multiple potential linkages between 

fish and anglers. Understanding these linkages help support effective fisheries 

management. We examined the social-ecological dynamics of a recreational fishery by 

assessing relationships between fish, anglers, and a management intervention. We 

focus on catch-and-release steelhead trout (Oncorhynchus mykiss) fisheries on six 

rivers within the Skeena River Watershed, British Columbia, Canada, the location of a 

recent management intervention. First, based on analyses of annual steelhead trout 

abundance and annual angler effort information, years with higher abundance of 

returning steelhead trout were associated with years of higher catch rates and angler 

effort. Second, based on analyses of non-resident angler effort, we discovered that a 

new management intervention provided periods of lower angler effort, but effort was 

apparently redistributed to other rivers and time periods. Third, responses from angler 

interviews post-management intervention revealed that anglers were more satisfied if 

they caught more fish and experienced less crowding and at higher crowding levels, it 

took higher catch rates to increase satisfaction. Thus, we found that this recreational 

fishery is influenced by both human dimensions and natural ecological dynamics such as 

fish population fluctuations.  

 

2 Aversion of this chapter appears as Pitman KJ, Wilson SM, Sweeney-Bergen E, Hirshfield P, Beere 

MC, Moore JW. 2019. Linking anglers, fish, and management in a cath-and-release steelhead trout fishery. 
Canadian Journal of Fisheries and Aquatic Sciences 76:1060–1072. 
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Introduction 

Fisheries are social-ecological systems with bi-directional connections between fish, 

anglers, and managers (Arlinghaus et al. 2013; Fenichel et al. 2013; Hunt et al. 2013; 

Ward et al. 2016). For instance, angler effort – the aggregate of how individual fishing 

effort is distributed across space and time – can influence fish populations (Fulton et al. 

2011; Fenichel et al. 2013; Hunt et al. 2013). Reciprocally, variation in fish abundance 

can affect the spatial and temporal distribution of angler effort. For example, if fish 

abundance in a specific site declines, some anglers may become less satisfied with their 

fishing experience and shift their effort to other sites (Gillis 2003; Abernethy et al. 2007; 

Wilson et al. 2016). Lack of consideration of angler effort can lead to unexpected 

consequences of fisheries management and undermine management objectives. For 

example, creation of marine protected areas (MPA) can displace fishing effort to outside 

of the protected area and increase fishing pressure and risks of local over-fishing 

(Halpern et al. 2004; Hilborn et al. 2004; Kellner and Hastings 2009). Similarly, 

management interventions that limit or reduce fishing seasons can lead to a 

redistribution of effort at other times, increasing fishing pressure before or after the 

closure period (Hall and Shelby 2000; Murray et al. 2001). Therefore, understanding the 

drivers of angler effort and how effort may respond to management interventions is a key 

component of effective fishery management.  

Angler effort in recreational fisheries may be particularly unpredictable because 

individual angler incentives may be more complicated or dynamic than in other fisheries. 

It is generally thought that commercial fishers prioritize a single attribute (i.e., net profit) 

and therefore have a tightly coupled relationship between predator and prey (Hilborn and 

Walters 1992; Smith 1999; Post et al. 2002). Thus, their utility function, that is 

preferences for certain options over others, may be focused on profit. However, in 

recreational fisheries, anglers’ choices may be driven by their own personal satisfaction, 

which can depend on multiple attributes that individual anglers seek to maximize when 

making their choice of where and how much to fish (i.e., their utility function). Many 

variables have been reported to contribute to angler satisfaction, some include: catch 

rate, size of fish, general enjoyment, natural beauty and serenity, or gear type (Holland 

and Ditton 1992; Miko et al. 1995; Arlinghaus 2006; McCormick and Porter 2014). 

Anglers may be satisfied with a fishing trip even if there were dissatisfied with their 
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fishing success (Fedler and Ditton 1994; Beardmore et al. 2015). Conversely, anglers 

may have high fishing success and be dissatisfied with their fishing trip based on the 

social environment of the trip (Beardmore et al. 2015). For example, crowding has been 

shown to negatively affect anglers’ choices of fishing sites independent of catch (Hunt 

2005). Thus, angler effort in recreational fisheries is likely linked to multiple potential 

factors that could influence their personal satisfaction with their fishing experience. 

Understanding the factors that influence angler satisfaction can help illuminate what 

underpins their decisions about effort allocation and therefore help inform recreational 

fisheries management.   

One important and illustrative recreational fishery is that of steelhead trout 

(Oncorhynchus mykiss) in the rivers of the Skeena River Watershed, British Columbia 

(BC), Canada. This fishery is well known to both local anglers as well as anglers who 

travel from around the world to target these migratory fish (Hooton 2011). This fishery is 

exclusively catch-and-release, which can cause stress and some low level of incidental 

mortality in the hooked and handled fish (Twardek et al. 2018). However, one of the 

primary management challenges in this region is that of crowding. Stakeholder 

engagement processes suggested that increases in fishing effort over the last several 

decades were leading to crowding concerns and potentially reducing satisfaction of the 

local anglers (Alan Dolan & Associates 2009; Ministry of Environment 2010). 

Accordingly, the Skeena Region BC Ministry of Forests, Lands, Resource Operations, 

and Rural Development Fisheries Section (Skeena Region Fisheries Section) 

implemented new regulations (hereafter “management intervention”) starting in 2012 that 

restricted unguided non-resident anglers, any angler who was not Canadian and had not 

hired a fishing guide, from fishing during certain times and zones (Ministry of 

Environment 2010; Ministry of Forests Lands and Natural Resource Operations 2013). 

Therefore, there is an opportunity to examine the degree to which this management 

intervention altered angler effort and thus crowding within the larger context of other 

potential controls on angler effort, such as annual variation in steelhead trout 

abundance. Given angler effort is ultimately a product of individuals’ incentives and 

perceptions, further insight can be gained through connected social studies of factors 

that influence angler satisfaction. More generally, given successful management of 

fisheries hinges on the effective management of people (Hilborn 2007), this important 
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recreational fishery can serve as a broadly-relevant examination of how multiple factors, 

including management intervention, could influence both catch rate and angler effort.  

Here we examined the factors associated with angler effort, catch, and satisfaction in a 

globally-notable recreational fishery over a period with a management intervention. 

While there is increasing appreciation that effective fisheries management depends on 

the consideration of multiple potential feedbacks between social and ecological aspects 

of fisheries and their management (Carpenter and Brock 2004; Hunt et al. 2011; Ward et 

al. 2016; Arlinghaus et al. 2017), there still are relatively few studies that bring together 

data on both the ecological and social dimensions (Arlinghaus et al. 2013). Through 

combining extensive datasets from both social science approaches and ecological 

analyses, here we asked three questions. First, how does angler annual catch rate and 

effort change in response to annual variation in steelhead trout abundance and a 

management intervention? Second, did unguided non-resident anglers redistribute effort 

across space and time in response to the management intervention? Third, how do 

crowding and catch rates influence angler satisfaction post-management intervention?  

These analyses provide insight into the socio-ecological linkages that underpin the 

management and dynamics of a catch-and-release fishery.  

Materials and methods 

Study system 

The large Skeena River Watershed in northwestern British Columbia (BC), Canada, 

drains 54 532 km2 from the Nechako Plateau and Coast Mountains into the Pacific 

Ocean (Gottesfeld and Rabnett 2008). The Skeena River and its tributaries are 

internationally recognized as a world-class fishing destination for steelhead trout. 

Steelhead trout are anadromous rainbow trout that spend one to six years in freshwater, 

migrate to the ocean for one to three years, and then return back to freshwater to spawn 

(Moore et al. 2014). Within the Skeena River Watershed, there are many locally-adapted 

steelhead trout populations (Beacham et al. 2012) that spawn in the different tributaries 

(Tautz et al. 1992). This paper focuses on the recreational fisheries for summer-run 

steelhead trout, the populations that enter the drainage between June and October and 

spawn from mid-May to late June of the following year (Beacham et al. 2012).  
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Return migrating adult steelhead trout are highly sought after by recreational anglers. 

Each year, approximately 3,000 non-resident anglers visit the Skeena River Watershed 

to fish for steelhead trout, bringing in approximately $16 million to the economy of this 

watershed (Counterpoint Consulting 2008). Since the mid-2000s in BC, the steelhead 

trout recreational fishery has been restricted to catch-and-release due to conservation 

concerns and efforts to maintain the viability of the recreational fishery (Hooton 2011). A 

small proportion of steelhead trout are caught by First Nation peoples for food, social or 

ceremonial fisheries and as bycatch in international and local commercial salmon 

fisheries (Hooton 2011).  

This study focuses on the six most popular steelhead trout rivers within the Skeena 

River Watershed: the Babine, Bulkley, Kispiox, Morice, and Zymoetz rivers as well as 

the mainstem of the Skeena River (Figure A1). These six rivers are designated as 

Classified Waters by a BC provincial management framework implemented in 1990 

(Ministry of Environment 1998). Anglers fishing rivers or river sections designated as 

such are required to purchase a “Classified Waters licence”. There are a total of 20 

Classified Waters within the Skeena Region, ranging in foot and boat accessibility. Of 

the six rivers included in our study, the Morice, Bulkley, and Skeena rivers are highly 

accessible for both foot and boat-based anglers. The Kispiox and Zymoetz rivers have 

remote road-access points for most of their lengths, however, have limited boat access. 

The Babine River is relatively inaccessible; therefore, anglers are generally guided by 

one of the fishing outfitters located on the river.  

One of the emerging management challenges for the steelhead trout recreational fishery 

in the Skeena River Watershed is increasing crowding pressure. In 2010, a stakeholder 

consultation and engagement process revealed that the quality of angling experience 

was being compromised in the Skeena Region for some BC anglers due to 

overcrowding (Ministry of Forests Lands and Natural Resource Operations 2013). The 

Skeena Region Fisheries Section therefore implemented new regulations to 12 

Classified Waters within the region in 2012. The most significant change was mandating 

Canadian-only fishing times and zones. This regulation restricted angling to all unguided 

non-residents, on many of the Classified Waters, including all six study rivers (Figure 

A1). However, the Skeena River mainstem (Skeena IV) had sections that were void of 

the regulations. Therefore, the Skeena River offers an experimental contrast for 

understanding the potential influence of the new regulations on angler effort. This 
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management intervention attempted to balance the local economic benefits of visiting 

non-resident anglers while providing angling opportunities with lower crowding for BC 

residents, and thus maintaining a high-quality angling experience for all anglers (Ministry 

of Environment 2010).  

 

Figure A1 The Skeena River Watershed and its major tributary rivers overlaid 
on a digital elevation model in British Columbia, Canada. All of the 
listed major tributary rivers had a mangement intervention that 
restricted unguided non-residents from fishing (mainly) during the 
weekend, while the Skeena (Section IV) had sections void of this 
management intervention. The map is projected in BC Albers to 
provide equal area depiction of the region, but labels are expressed 
in WGS84 latitude and longitude.  
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Analysis Overview 

This study consisted of three main sets of analyses which are overviewed here and 

described in more detail below (Table A1):  

1. Annual catch rate and angler effort as a function of annual steelhead trout 

abundance and a management intervention. These analyses examined the 

relationships between annual angler catch rates or effort and annual steelhead 

trout abundance as well as years before and after the management intervention. 

Angler catch rates and effort were obtained from the Steelhead Harvest Analysis 

(SHA; 1997-2016; De Gisi 1999) and steelhead trout index of abundance data was 

obtained from the Tyee test fishery (1997-2016). The Skeena River, for which 

there were mixed regulations imposed, was used as a reference with regards to the 

management intervention. These analyses examine the interannual patterns of 

effort and catch for the whole recreational fishery population (Canadians and non-

residents).   

2. Management intervention and distribution of angler effort. The management 

intervention restricted unguided non-resident anglers from fishing at certain times 

and places. Therefore, to understand if unguided non-resident angler effort 

redistributed across space and time due to the management intervention we 

examined daily unguided non-resident angler effort information from the 

Classified Waters e-licensing database in the six focal rivers (2009-2016).  

3. Angler satisfaction. To understand the determinates of angler satisfaction, and 

thus perhaps the factors that influence their effort, we performed and analyzed 

data from a large survey study (River Guardian Program). This survey occurred 

post-management intervention (2013-2015). These analyses considered if 

Canadians and non-residents had different satisfaction levels, if satisfaction varied 

by river, and how satisfaction was associated with catching fish and crowding.  
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Table A1 Databases used in this study 

Database 
name 

Organizatio
n 

Location 
Year 
range 

Years 
used in 

this study 

Associate
d Figure 

Angler 
residency 
surveyed 

Variables used in 
analysis 

Steelhead 
Harvest 
Analysis 
(SHA) 

BC 
provincial 
government 

BC 
Province 
wide 

1967-
present 

1997-
2016 

Figure A2 
Figure A3 

Canadian 
and non-
residents 

response variables: 
‘annual angler catch’ 
and ‘annual angler 
effort’ used for angler 
catch and effort models 
(Table A2). 

Tyee test 
fishery 

Fisheries 
and Oceans 
Canada 

 

Skeena 
River 

1955-
present 

1997-
2016 

Figure A2 
Figure A3 

NA explanatory variables: 
‘annual steelhead trout 
abundance’ used for 
angler catch and effort 
models (Table A2). 

 

Classified 
Waters e-
licencing 

 

BC 
provincial 
government 

BC 
Province 
wide 

2009-
present 

2009-
2016 

Figure A4 unguided 
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Annual catch rate and angler effort as a function of annual steelhead 

trout abundance and a management intervention 

To understand if annual catch rate and angler effort reflected annual steelhead trout 

abundance, and if angler catch or effort changed before or after the management 

intervention, we used two datasets that spanned the management intervention: the 

Steelhead Harvest Analysis (SHA) and Tyee test fishery steelhead trout index of 

abundance datasets (Table A1). Since 1967, the BC government has conducted an 

annual mail-out survey, known as the SHA, to document catch and effort trends in the 

steelhead trout recreational fishery throughout the province. This survey provides a 

means for the provincial fisheries managers to monitor angling activity on more than 400 

streams in BC (De Gisi 1999). In March of each angling licence year, approximately 62% 

of anglers who purchased a steelhead licence receive a questionnaire requesting 
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information on steelhead trout angling activity and catch in the previous year. Over the 

years, approximately 27% of the surveyed anglers who fished for steelhead trout 

provided a response to the questionnaire (De Gisi 1999). Although this survey has been 

conducted since 1967, we only focused on data from 1997-2016 to align with the Tyee 

test fishery data. From the SHA, we obtained annual angler effort for each river (total 

number of reported angler days fished during the fishing licence year) and annual catch 

rate, calculated by dividing the annual total reported fish landed by the annual total 

angler days reported for each river, providing a mean catch per angler day for each year 

of the six study rivers. According to the SHA responses, on the six study rivers there was 

an average of 5380 + 3564 (this and the following represent mean + sd) reported angler 

days fished and annual mean catch rate of 1.1 + 0.4 steelhead trout landed per angler 

day between the years 1997 and 2016. 

We obtained annual steelhead trout index of abundance data from the Tyee test fishery 

located on the Skeena River mainstem (Figure A1). In operation annually since 1955, 

the Tyee test fishery uses gillnet sets in the tidal portion of the Skeena River. Each year, 

the fishery starts operation on June 10 and ends on August 31 (and more recently into 

September). Prior to 2002, an undyed, fibrous nylon gillnet was used, subsequently 

replaced with a 6 strand “Alaska Twist” net being set across a channel measuring two to 

five km long and 0.8 km wide multiple times per day, providing an index of abundance 

for returning salmon and steelhead trout to the Skeena River Watershed (Jantz et al. 

1990). The annual cumulative index for steelhead trout represents the cumulative sum of 

the daily catch per hour standardized to June 10, allowing for comparison across years. 

We obtained the cumulative index of abundance values, thereafter, “steelhead trout 

abundance”, until August 31 (date at which the Tyee test fishery was consistently 

operated across all years). While the Tyee test fishery steelhead trout is only an index of 

abundance, the annual steelhead trout abundance from Tyee has a strong positive linear 

relationship (r2=0.67) with the annual estimates of steelhead trout abundance from a 

tagging program conducted on the Bulkley River, a tributary to the Skeena River that 

supports the largest steelhead population (analyses not shown, Saimoto and Saimoto 

2011). Thus, it is likely that different rivers within the Skeena have steelhead 

abundances that are positively correlated with each other (Kendall et al. 2017) and that 

the Tyee test fishery provides a reasonable index of abundance for steelhead trout 

within the watershed.  
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In two independent models, we examined the relationship between either reported 

annual catch rates (mean catch per angler day) or annual effort (total angler days) for 

each year and potential predictor variables of steelhead trout abundance, river, and the 

interaction of the management intervention (i.e. before vs. after regulations) and river. 

Angler effort and catch rates were from the SHA database. We had hypotheses about all 

covariates considered and consequently compared all possible model combinations of 

variables using Akaike’s Information Criteria corrected for small sample sizes (AICc). For 

each of the annual catch rate and angler effort models, we compared 10 candidate 

models using AICc (Burnham and Anderson 2002), and assessed the relative plausibility 

of each candidate model using Akaike weights (Table A.S1 and A.S2). We centered and 

standardized the steelhead trout abundance variable so that its mean was 0 and 

standard deviation was 2 (Grueber et al. 2011). To compare the effect that steelhead 

trout abundance and the management intervention had on the six study rivers, we 

considered the Skeena River mainstem as a reference, given that the management 

intervention was not applied to all sections of the Skeena River mainstem, making the 

Skeena a “mixed” system. Therefore, all other rivers significance levels are compared to 

the Skeena River mainstem. To determine if anglers’ effort in one year was based on 

steelhead trout abundance from the previous year, we competed the top candidate 

model from the AICc results with a model using the same covariates but with a one-year 

time lag for angler effort. The one-year time lag model received a higher AICc score and 

was therefore not considered in any further analyses. Model selection results are 

available in the Supporting Information (Table A.S1 and A.S2). All analyses were 

performed in R version 3.4.2. 

Management intervention and distribution of angler effort  

The management intervention restricted unguided non-resident anglers from fishing 

during certain times and zones. Therefore, to understand if unguided non-resident angler 

effort redistributed across space and time due to the management intervention we 

examined effort information from the Classified Waters e-licensing database. In 2009, 

the BC provincial government created an electronic database that records all licence 

sales information from anglers who purchased any type of angling licence, including the 

Classified Waters licence (Table A1). For rivers in the Skeena Region, non-resident 

anglers are required to purchase a Classified Waters license for the specific river and 

day that they will be fishing during the steelhead trout season (September through 



111 

October). Therefore, the database records a unique angler ID associated with the 

number of days (organized by date) each non-resident angler fished on any specific river 

in BC, and whether they were guided or unguided. BC anglers are only required to 

purchase one annual Classified Waters license, are able to fish any river over the entire 

licensing year (April 1 to March 31), and are therefore not included in this analysis as 

day- and river-specific data are not available. On the six study rivers there was an 

average of 12.5 + 15.7 (mean + sd) unguided non-resident angler license sales sold per 

day between the years 2009 and 2016. 

We compared unguided non-resident angler effort (based on Classified Waters license 

sales) for the three years before and five years after the 2012 management intervention 

on each of the six study rivers. To determine how the management intervention 

influenced angler effort by unguided non-residents, we averaged the daily unguided non-

resident angler licence sales for each day (Monday – Sunday) for each river (Babine, 

Bulkley, Kispiox, Morice, Skeena (Section IV), Zymoetz) during the Classified Waters 

period (September 1 – October 1, while excluding any dates outside this range). We 

normalized these data by the 2009-2011 mean angler licenses sold for each day of the 

week and river to facilitate comparison before and after management intervention. We 

examined post-hoc daily guided non-resident angler effort to determine if non-residents 

were hiring guides more often since the management intervention, given that guided 

non-resident anglers are void of the weekend angling restriction.  

Angler satisfaction  

After the management intervention was implemented, a Skeena River Guardian 

Program was initiated to gain insight into how the management intervention may have 

impacted anglers (Table A1). This three-year program from 2013-2015 involved stream-

side angler surveys on the Bulkley, Kispiox and Zymoetz rivers during the peak angler 

season (September through October). Stream-side angler surveys were based on a 

stratified random sampling design (Zar 1984; Pollock et al. 1994), whereby interviews 

were scheduled to occur 3 days/week during the weekdays, and 2 days/week during the 

weekend days. There were three crews of two River Guardians each surveying one of 

the three rivers during either early (830-1630) or late (1100-1900) shifts to allow for 

interception of anglers at different times of the day. River Guardians accessed known 

angling locations by truck or jet boat and surveyed all accessible anglers, that is anglers 
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who could exit the water to conduct an interview. Anglers surveyed were asked a suite of 

questions pertaining to their basic licence information, quality of angling experience 

rating (i.e., satisfaction), effort, catch, and compliance (see: Pitman and Hirshfield 2015 

for questionnaire). For this study, we only included the survey questions pertaining to 

crowding, catch, and satisfaction. These questions included, “How many anglers do you 

remember seeing today?”, “How many steelhead have you landed?”, and “Between 1 

and 5, how would you rate your quality angling experience today, 1 being very poor and 

5 being excellent” (thereafter “satisfaction level”). 

We examined how the number of steelhead trout landed and crowding levels impacted 

angler satisfaction level based on angler residency and the specific river they were 

fishing. To identify the best predictors of angler satisfaction level, we fit ordinal logistic 

regression models using the MASS package in R (Venebles and Ripley 2002). We 

examined the relationship between angler satisfaction as an ordered categorical factor 

(very poor < poor < fair < good < excellent) and covariates such as number of steelhead 

trout landed, number of anglers seen, residency status (Canadian or non-resident), and 

river (Bulkley, Kispiox, and Zymoetz). We also examined the potential support of 

including the following interactions: residency status and number of anglers seen, 

residency status and number of steelhead trout landed, and the number of anglers seen 

and number of steelhead trout landed. BC residents and Canadian non-BC residents are 

combined and considered “Canadian” in this analysis due to the small sample size of 

Canadian non-BC residents. Ordinal logistic regression models are ideal for analyzing 

ranked categorical response variables, such as satisfaction level, because they preserve 

the structure of the original ordinal ranks of the categorical response variable. We had 

hypotheses about all covariates considered and subsequently compared all possible 

model combinations of variables, including only single interactions. We compared the 28 

candidate models using AICc (Burnham and Anderson 2002) and assessed the 

relatively plausibility of each candidate model using Akaike weights. We centered and 

standardized our covariates to a mean of 0 and standard deviation of 2 to enable direct 

comparison of effect sizes among variables (Grueber et al. 2011). Model selection 

results are available in Supporting Information (Table A.S3).   

For all data on steelhead trout anglers, information was aggregated and anonymized 

prior to analyses. This study was approved by Simon Fraser University’s Office of 

Human Ethics.   
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Results 

Annual catch rate and angler effort as a function of annual steelhead 

trout abundance and a management intervention 

The most parsimonious model for annual catch rate (mean catch per angler day) 

included river, management intervention, and annual steelhead trout abundance (Table 

A.S1). This model accounted for 94% of the Akaike weight and was strongly supported 

as the top model by ΔAICc (next best model had ΔAICc = 6.7; Table A.S1). Across all 

rivers, the relationship between annual catch rate and annual steelhead trout abundance 

was positive, with the overall annual catch rate varying by river (Table A2; Figure A2). As 

predicted, the catch rate was higher in years when there was greater steelhead trout 

abundance. Surprisingly, the management intervention had a significant positive effect 

on annual catch rate, where annual catch rate was slightly higher after the management 

intervention (p < 0.001; Table A2). The model selection results did not support the 

inclusion of an interaction term between management intervention and river.  
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Table A2  Parameter estimates obtained from the linear regression model fit to 
estimate either annual catch rate (mean catch per angler day, model 
1) or annual angler effort (total angler days, model 2) in the six study 
rivers of the Skeena River Watershed, in British Columbia, Canada. 
Management intervention was a categorical variable of either 
unregulated (before 2012 management intervention) or regulated 
(reg; after 2012 management intervention) when unguided non-
resident anglers were restricted angling at certain times and zones. 
Model results are references to unregulated years.  

Parameter 
Model 1: catch rate   Model 2: angler effort 

Estimate + SE p  Estimate + SE p 

   (intercept) 0.567 + 0.041 <0.001  6325.7 + 330.8 < 0.001 

   steelhead trout 
abundance 

0.240 + 0.034 <0.001  603.1 + 242.6 0.015 

   Babine River 0.968 + 0.057 <0.001  -2938.7 + 467.5 < 0.001 

   Bulkley River 0.398 + 0.057 <0.001  4603.7 + 467.5    < 0.001 

   Kispiox River 0.256 + 0.057 <0.001  -3017.9 + 467.5 < 0.001 

   Morice River 0.603 + 0.057 <0.001  -2882.7 + 467.5     < 0.001 

   Zymoetz River 0.682 + 0.057 <0.001  -3605.9 + 467.5 < 0.001 

   reg 0.118 + 0.040 0.004  5159.1 + 684.0 <0.001 

   Babine River: reg    -5542.3 + 963.7 <0.001 

   Bulkley River: reg    -2227.2 + 963.7  0.023 

   Kispiox River: reg    -5162.3 + 963.7 <0.001 

   Morice River: reg    -4696.1 + 963.7 <0.001 

   Zymoetz River: reg    -4116.1 + 963.7 <0.001 

Note: Coefficient (b) and standard error (SE) are given in standard deviation units, which 
allow for comparisons of effect sizes among explanatory variables. All river specific 
levels of significance are based on the model confidence intervals and fit relative to the 
Skeena River. Bolded probability (p) values are significant to the 95% confidence level. 
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Figure A2 Relationships between annual steelhead trout abundance and 
annual catch rate (mean catch per angler day) by recreational 
anglers in the six study rivers. Shown is a predicted line before and 
after the management intervention in 2012, grey line indicates before 
the 2012 management intervention, dashed black line indicates after 
the 2012 management intervention. Each point is the annual catch 
rate from 1997-2016, where grey points are years before the 
management intervention and black points are years after the 
management intervention.  

 

The most parsimonious model for annual angler effort (total angler days) included 

annual steelhead trout abundance, river, management intervention, and interaction 

between management intervention and river (Table A.S2). This model accounted for 

89% of the Akaike weight and the next-best model had a ΔAICc of greater than 4 (Table 

A.S2), indicating substantial support for the top model. Across all rivers, the relationship 

between annual angler effort and annual steelhead trout abundance was significantly 

positive with annual angler effort varying by river (Table A2; Figure A3). There was a 

significant interaction effect between river and management intervention on annual 

angler effort, where annual angler effort appeared to increase after the management 



116 

intervention on all rivers except for the Babine and Kispiox rivers (Table A2; Figure A3). 

Over time, angler effort has varied by year and river. There has been an increase in 

annual angler effort on the Bulkley, Morice, Skeena, and Zymoetz rivers, a decrease on 

the Babine River, and has stayed relatively constant on the Kispiox River (Figure A.S1).  

 

Figure A3 Relationships between annual steelhead trout abundance and 
annual angler effort (annual total angler days) by recreational 
anglers in the six study rivers. Shown is a predicted line before and 
after the management intervention in 2012, grey line indicates before 
the 2012 management intervention, dashed black line indicates after 
the 2012 management intervention. Each point is the annual catch 
rate from 1997-2016, where grey points are years before the 
management intervention and black points are years after the 
management intervention. 

 

Management intervention and distribution of angler effort  

The 2012 management intervention, which was applied to certain rivers at certain times, 

appeared to redistribute unguided non-resident angler effort temporally and spatially. 

Before the 2012 management intervention, unguided non-resident angler effort was 
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distributed throughout the week (Monday-Sunday) (Figure A4). However, after the 

management intervention was implemented on the Bulkley, Kispiox, Morice and 

Zymoetz rivers, unguided non-resident angler effort decreased during restricted times 

(primarily weekends) (Figure A4), as expected given the restrictions during these times. 

For example, prior to the management intervention, there were an average 36.2 + 19.2 

(mean + sd) unguided non-resident licences sold per day during the weekdays, and 32.0 

+ 15.8 licenses sold per day during the weekend day for the Bulkley River. After the 

management intervention, weekday sales by unguided non-resident anglers increased 

by 35% on average, while weekend sales decreased by 93%, given that some unguided 

non-resident anglers either violate the regulation, or accidentally purchase angler days 

during restricted times. In contrast, sections of the Skeena River were not affected by 

the management intervention, and angler effort has been generally higher on this river 

since 2012 regardless of day of the week (Figure A3; Figure A.S1). Angler effort from 

unguided non-resident anglers appears to be slightly lower on the Babine River after the 

management intervention (Figure A4). The Kispiox River does not exhibit an increase in 

during-week fishing by unguided non-residents after the regulations as seen on the 

Bulkley, Morice and Zymoetz rivers. Non-residents who hire a guide are void of the 

weekend fishing restriction. Angler effort by guided non-residents since the management 

intervention has increased (with the exception of the Zymoetz River), however, there has 

been no particular increase in guided non-resident angler effort during restricted times 

(primarily weekends) specifically (Figure A.S2). There is no equivalent effort data for BC 

resident anglers. Regardless, the management intervention appears to be associated 

with temporal and spatial redistribution of unguided non-resident angler effort in the 

Skeena River Watershed. 
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Figure A4  Proportional change in daily license sales by unguided non-
residents from 2009-2016 for the six study rivers in the Skeena River 
Watershed, British Columbia, Canada. All values are expressed 
relative to the mean angler licenses sold for each weekday and river 
from 2009 to 2011, prior to the 2012 management intervention. 
Positive values therefore represent increased sales since the 
management intervention. BC residents are not included as they are 
not required to purchase daily licences. Each line represents one 
year of licence sales. Light grey lines are sales before the 
management intervention and black lines are sales after the 
management intervention. Shaded grey regions are restricted 
angling days when unguided non-residents are not allowed to fish. 
Bulkley, Kispiox, Morice, and Babine Rivers are restricted on 
Saturday and Sunday, the Zymoetz River is restricted on Friday, 
Saturday and Sunday, and the Skeena IV section has restricted and 
unrestricted sections. Skeena IV is a management unit of the Skeena 
River (Figure A1). 

 

Angler satisfaction 

We used interview information post-management intervention on steelhead trout anglers 

to examine their fishing experience and provide insight into angler satisfaction. A total of 

1,972 anglers provided their satisfaction level: 761 rated their experience as ‘excellent’, 
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578 as ‘good’, 416 as ‘fair’, 142 as ‘poor’, and 75 as ‘very poor’. The median satisfaction 

level was ‘good’. Of the satisfaction levels reported, 1,274 were Canadian and 698 were 

non-residents. There were 945 satisfaction levels reported on the Bulkley River, 408 on 

the Kispiox River, and 619 on the Zymoetz River. Based on these interviews, the 

average number of anglers seen was 7 (sd=7.5); the average number of steelhead trout 

landed was 0.5 (sd=1.2).  

The most parsimonious model of angler satisfaction included river, angler residency, 

number of steelhead trout landed, number of anglers seen, and the interaction between 

number of steelhead trout landed and number of anglers seen (Table S3). This model 

accounted for 72% of the Akaike weight and the next-best model had a ΔAICc of greater 

than 4 (Table A.S3), indicating substantial support for the top model. This top model was 

used to predict the probability that an angler would respond with a satisfaction level (very 

poor, poor, fair, good or excellent) given different scenarios of number of steelhead trout 

landed and anglers seen.  

An angler’s satisfaction level increased as a function of the number of steelhead trout 

they landed and decreased with the number of anglers seen and depended on river and 

angler residency (Table A3; Figure A.5). For example, for every one additional steelhead 

trout landed by a Canadian angler fishing the Bulkley River, which is approximately the 

equivalent of two standard deviations from the mean, an angler was approximately three 

times as likely to have a higher satisfaction level. In contrast, if that angler encountered 

14 other additional anglers on the river (i.e. 2 sd), the odds that the angler responded 

with a higher satisfaction level (e.g., excellent) instead of a lower satisfaction level (e.g., 

poor) decreased by approximately 70%. In other words, if more anglers were seen on 

the river, anglers were more likely to respond with a lower satisfaction level. There was 

also a significant interaction between the number of steelhead trout landed and number 

of other anglers seen (p < 0.001, Table A3). Specifically, it took more fish landed at 

higher crowding levels to maintain a high satisfaction level (Figure A.5). In addition, 

angler satisfaction level depended on angler residency; anglers who were Canadian had 

a higher probably of reporting a higher satisfaction level than non-resident anglers 

(Table A3, Figure A5). Last, anglers fishing different rivers had different satisfaction 

levels (Table A3; Figures A.S3 and A.S4).  
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Table A3  Parameter estimates obtained from the ordinal logistic regression 
model explaining angler satisfaction level as a function of angler 
residency (Canadian or non-resident), river (Bulkley, Kispiox, and 
Zymoetz river), the number of steelhead trout landed (num steelhead 
trout landed), and number of other anglers seen (num anglers seen) 
in the Skeena River Watershed, British Columbia, Canada. 
Coefficients are interpreted as odds ratios relative to Canadian 
resident anglers on the Bulkley River.    

Parameters Estimate + SE  
Confidence intervals 

p 
Lower Upper 

non-resident angler 0.61 + 0.09 0.51 0.73 <0.001 

Kispiox River 1.37 + 0.12 1.1 1.7 <0.001 

Zymoetz River 1.01 + 0.1 0.83 1.23 0.9 

num anglers seen 0.60 + 0.09 0.51 0.71 <0.001 

num steelhead trout landed 5.77 + 0.15 4.36 7.74 <0.001 

num steelhead trout landed * num 
anglers seen 

0.51 + 0.25 0.32 0.85 
0.007 

Note: Coefficient and standard error (SE) are given in standard deviation units, which 
allow for comparisons of effect sizes among explanatory variables. Bolded probability 
(p) values are significant to the 95% confidence level. Parameter levels of significance 
are based on the model confidence intervals and fit relative to Canadian resident anglers 
on the Bulkley River. 
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Figure A5 Probability of either a Canadian (including BC residents) or a non-
resident angler having a predicted satisfaction level of “excellent”, 
“fair”, “good”, poor”, or “very poor” given landing either zero, one, 
two, or four steelhead trout and the number of anglers seen that day 
(0-50) on the Bulkley River. These ranges capture most of the range 
in the observed catch and crowding.  
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Discussion 

This study examined extensive datasets utilizing both social science approaches and 

ecological analyses to examine the linkages that underpin the dynamics of an 

internationally-recognized catch-and-release steelhead trout fishery over the period of a 

management intervention. The study had several key findings. First, we found that 

annual catch rates and effort were higher in years when there were more steelhead 

trout. In addition, we found that the management intervention did indeed reduce 

unguided non-resident anglers’ effort during the weekend, as intended, but was also 

apparently associated with the spatial and temporal displacement of effort to other times 

and places. Last, angler surveys revealed that anglers were more satisfied when they 

caught more fish and encountered fewer anglers, but that this satisfaction also 

depended on residency of the angler as well as the river they were fishing. Collectively, 

this study not only helps evaluate a specific management intervention but also provides 

a broadly-relevant example of how both ecological and social factors influence 

recreational fishery dynamics.  

In all of our study rivers, anglers caught more fish in years when there was greater 

steelhead trout abundance. Perhaps not surprisingly, anglers often catch more fish when 

there are more fish around to catch (Beard et al. 1997; Harley et al. 2001; Wilson et al. 

2016). However, this is not always the case. In some fisheries, catch rates plateau as 

fish abundance increases likely due to saturation of anglers (Peterman 1980). Other 

studies of recreational fisheries have found that catch rates stay high as fish abundance 

declines, also called hyperstability (Erisman et al. 2011; Ward et al. 2013). Several 

processes may cause hyperstability; for example “effort sorting” (Walters and Martell 

2004), where fishing skill level varies across individual anglers, and therefore success 

rate that anglers are willing to tolerate varies – less skilled anglers will typically exit the 

fishery (or seek other recreational opportunities) before more skilled individuals during 

periods of fish decline (Ward et al. 2013; Post 2013; van Poorten et al. 2016). In 

contrast, our analyses indicated that on all study rivers the relationship between annual 

catch rate and fish abundance appears to be positive and linear in the range of the data 

we examined. This pattern is analogous to a Type I functional response of predator-prey 

relationships (Holling 1959), with the major difference that catch-and-release fisheries 



123 

often do not kill the fish. Accordingly, in this system, higher steelhead trout abundances 

translate to higher angler catch rates and thus alter their angling experience.  

Our study found that there was a significant positive relationship between annual angler 

effort and annual steelhead trout abundance. These results complement many studies 

showing strong effort-abundance relationships (Carpenter et al. 1994; Johnson and 

Carpenter 1994; Cox et al. 2002; Post et al. 2002), similar to a numerical response of 

predatory-prey relationships, where the density of predators (angler effort) changes as 

prey numbers (steelhead trout abundance) increase (Holling 1959). We note that the 

relationship between annual angler effort and steelhead trout abundance was not as 

strong as the relationship between annual catch rate and steelhead trout abundance 

(Figures A2 and A3). It is likely challenging for anglers to predict returns of steelhead 

trout or respond to within-season steelhead trout abundance estimates because of the 

travel costs and pre-planning required for many anglers to visit the Skeena River 

Watershed. While we hypothesize that there may also be longer-term feedbacks 

between steelhead trout abundance, angler satisfaction, and future effort, our analyses 

did not observe lag effects of steelhead trout abundance on total angler effort in the next 

year. The observation that years with more steelhead trout are associated with higher 

angler effort is of importance given that steelhead trout angling has been estimated to 

bring upwards of $16 million CAD to the local economy (Counterpoint Consulting 2008). 

More fish should translate into more effort and more money for the local economy.  

The management intervention was associated with shifts in both annual catch rates and 

angler effort. First, for all angler residency types combined there was an intriguing 

increase in annual catch rates after the regulations, with annual catch rate increasing 

after management implementation on all six study rivers. This pattern might be because 

the management intervention was associated with a general increase in relative use of 

guides by non-resident anglers on all rivers (with the exception of the Zymoetz River) 

after the management intervention (Figure A.S2). Guided non-resident anglers are 

exempt from the management intervention that restricts fishing on weekends; thus, the 

new regulations may have incentivized non-residents to hire guides. Presumably guided 

anglers have a greater success at landing fish. Therefore, it is possible that the increase 

in guided activity on these rivers has contributed to the increase in catch rate after the 

management intervention. However, the increase in catch rate after the management 

intervention could also be due to other factors, such as developments in gear or fishing 
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techniques or shifts in the experience level of anglers. Second, the management 

intervention was associated with shifts in total angler effort (Canadians and non-

residents), but these shifts manifested differently depending on the river. Total angler 

effort increased on the Skeena, Bulkley, Morice, and Zymoetz rivers after the 

management intervention, however, decreased or stayed the same on the Babine and 

Kispiox. Thus, in terms of total annual angler effort, the management intervention was 

not associated with a consistent pattern. 

Our study found that the management intervention, which focused on reducing angler 

effort by unguided non-resident anglers, did most likely provide times and places with 

less fishing pressure, but that this effort was apparently displaced to other times and 

places. As intended, the management intervention resulted in a shift to virtually no 

angler effort by unguided non-resident anglers during the weekend days, which likely 

provided fishing opportunities for BC resident anglers with lower angler crowding on the 

Bulkley, Kispiox, Morice, and Zymoetz rivers (Figure A4). Thus, the new regulation 

achieved its primary objective. However, following the management intervention, 

unguided non-resident angler effort increased during the weekdays on these rivers (with 

the exception of the Kispiox River) (Figure A4), likely increasing crowding challenges at 

a different time. This temporal displacement of effort has been previously observed in 

other systems – temporary closures can lead to an increase in angler effort outside of 

the closure window (Hall and Shelby 2000; Murray et al. 2001). Furthermore, unguided 

non-resident angler effort also increased on river sections (Skeena River section IV; 

Figure A4) where there were areas void of the management intervention during times 

when other rivers were restricted. This spatial displacement is analogous to the 

movement of fishing effort to the edges of MPAs following designation (Halpern et al. 

2004; Hilborn et al. 2004). Thus, our study indicates that Skeena Region fisheries 

managers did achieve the goal of reducing crowding for local anglers on some rivers 

during the weekends, yet there was an apparent temporal and spatial displacement of 

unguided non-resident angler effort to other times and places, which exacerbates 

crowding challenges at different times. Therefore, our study contributes to building 

understanding of how the spatial and temporal displacement of angler effort can 

complicate fisheries management (Hall and Shelby 2000; Murray et al. 2001; Halpern et 

al. 2004) 
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Our study found that landing a fish and seeing few other anglers were determinants of 

angler satisfaction in this recreational steelhead trout fishery, and that satisfaction varied 

by angler residency and river. Importantly, there was an interaction between the number 

of fish landed and crowding – as anglers experience higher levels of crowding, higher 

catch rates are needed to maintain a high level of angler satisfaction (Figure A5). Our 

work adds to the understanding of how both ecological (fish abundance) and social 

(angler effort and crowding) processes define angler satisfaction. Previous studies have 

shown that both catch-related attributes, such as the number of fish landed and fish size, 

as well as non-catch-related factors, such as crowding, accessibility, and fishing 

regulations can be important to anglers, however, some factors are more important than 

others (Holland and Ditton 1992; Fisher 1997; Aas et al. 2000; Hunt 2005; Askey et al. 

2006; Dorow et al. 2010; Mee et al. 2016; Wilson et al. 2016). In some recreational 

fisheries, angler satisfaction can be determined primarily by catch rates or size of fish 

landed (Graefe and Fedler 1986; Arlinghaus 2006; Hutt and Neal 2010; McCormick and 

Porter 2014; Beardmore et al. 2015), while in others, non-catch-related factors, such as 

crowding, take precedence (Martinson and Shelby 1992; Hunt 2005). These different 

angler satisfaction levels are likely determined by the diversity of fisheries and anglers 

(Beardmore et al. 2011; 2015). Indeed, we found that different types of anglers 

(Canadian vs. non-residents) had slightly different levels of satisfaction. Regardless, this 

portion of the study reveals that both catching fish and crowding influence the 

satisfaction of both Canadian and non-resident anglers in this fishery.  

Our study suggests that the multiple factors that control steelhead trout abundance in 

the Skeena River Watershed can translate into angler satisfaction and angler effort. 

Because catching fish was important to anglers (Figure A5), and catch rates were linked 

to steelhead trout abundance, higher abundances of steelhead trout should lead to 

higher levels of angler satisfaction (Figure A6). On the other hand, angler effort was also 

positively associated with steelhead trout abundance, which could lead to crowding and 

lower levels of angler satisfaction. There are many factors that contribute to the 

population dynamics of steelhead trout in the Skeena River Watershed and beyond 

(Kendall et al. 2017). The commercial mixed-stock salmon fishery in the Skeena River 

directed at sockeye (O. nerka) and pink salmon (O. gorbuscha) intercepts a variable 

number of summer-run steelhead trout (ranging from and estimated 1000-17,000 fish 

caught, depending on the year) as bycatch because they overlap in their migration 
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timing (J.O. Thomas and Associates Ltd. 2010; Beacham et al. 2012), with recent 

continued attempts to implement alternative practices to decrease steelhead trout 

bycatch (Walters et al. 2008). Catch-and-release fishing for steelhead trout can kill some 

individuals and has negative physiological consequences (Bartholomew and Bohnsack 

2005; Cooke and Schramm 2007; Pollock and Pine 2007; Twardek et al. 2018), with 

unknown population-level consequences (Policansky 2002; Arlinghaus et al. 2007). 

Multiple other factors can influence steelhead trout abundance, such as changes in 

freshwater habitat (Gustafson et al. 2007; Kendall et al. 2017) and ocean conditions, 

which have been unfavourable for many populations of steelhead trout over the last 

several decades (Moore et al. 2015; Kendall et al. 2017). Regardless of the multiple 

mechanisms governing variation in steelhead trout abundance, our analyses make the 

important linkage that processes that impact steelhead trout abundance will alter angler 

catch rate, satisfaction, and effort.  

 

Figure A6  Conceptual model of social-ecological linkages in Skeena River 
steelhead trout fisheries. Black arrows indicate pathways of 
connections quantified in this paper. Positive relationships are 
indicated by a plus symbol, negative relationships are indicated with 
a minus symbol, and zero or negative relationships are indicated by 
a 0/- symbol. For example, Figure A5 demonstrates the positive 
relationship between annual catch rate and angler satisfaction. Grey 
arrows indicate hypothesized connections. 
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Our study integrated multiple data sources that have limitations and caveats. Annual 

catch rates were based on SHA self-reported catch numbers. We believe that these self-

reported catch rates are likely biased high. Indeed, the median self-reported catch 

estimate was approximately twice as high as the median catch rates quantified by the 

River Guardians angler survey. It is likely that the self-reported catch rates were 

exaggerated due to prestige or recall bias. Prestige bias occurs when angler catch 

reporting is biased high due to a subconscious or  conscious urge for anglers to 

demonstrate their angling prowess (Pollock et al. 1994; Sullivan 2003). Recall bias 

occurs when anglers can’t recall fishing failure due to the time span between when the 

angler was fishing and when they received the survey, leading to an overestimation of 

catch (Sullivan 2003). Unless prestige or recall bias shifted unevenly across years, we 

believe the qualitative patterns we observed are robust to this bias. It is also possible 

that anglers completing mail-in surveys may have been vague in identifying where they 

were fishing. For example, anglers might have reported that they fished the “Skeena 

River”, when they may have actually fished one of its tributaries (e.g., the Bulkley, 

Babine, and Kispiox rivers). Another potential bias in the SHA is non-response error, a 

potentially serious shortcoming of mail-in surveys, where non-respondents are typically 

less active or more successful participants in the fishery, resulting in an over 

represented sample of less success or more successful anglers (Brown 1991; Pollock et 

al. 1994). These types of errors and biases are typical for mail-in surveys, and still 

provide benefit for understanding the social science of the fishery (Pollock et al. 1994). 

Furthermore, actual numbers of returning steelhead trout to the different focal study 

rivers are generally unknown; analyses relied on the Skeena River mainstem indices of 

abundance that integrate multiple river systems. However, population dynamics of 

nearby steelhead trout populations are generally positively correlated (Kendall et al. 

2017), lending support to our use of these data sources. We also highlight that there is 

not within-season effort information for BC residents as they are not required to 

purchase day-specific Classified Waters licences. Collectively these factors undoubtedly 

contributed unexplained variation to the dynamics that we describe in our analyses.  

Our study illuminates the direct and indirect linkages between anglers, management, 

and fish abundance in this recreational catch-and-release fishery (Figure A6). Angler 

satisfaction is directly influenced by catch rate and crowding, which are in turn influenced 

by management intervention and fish abundance. Higher steelhead trout abundance 
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was not only associated with higher catch rates but also higher effort, which could be 

interpreted as having opposing effects on angler satisfaction given that higher angler 

effort would lead to more crowding. It also seems likely that there will be a longer-term 

feedback between angler satisfaction and the popularity of the fishery (gray arrow 

between angler effort and angler satisfaction in Figure A6). The resultant future higher 

effort could erode angler satisfaction due to crowding. In addition, there is likely some 

level of mortality imposed on steelhead trout from catch-and-release angling – even if 

mortality rates are low (<10%) – (Bartholomew and Bohnsack 2005; Taylor and Barnhart 

2010), the tens of thousands of angler days each year and catch rates of approximately 

one fish per angler per day could lead to lower numbers of steelhead trout, and therefore 

dissatisfied anglers (grey arrow between angler effort and fish abundance in Figure A6). 

Thus, this fishery is influenced by a complicated combination of socio-cultural (e.g., 

management intervention), socio-economic (e.g., by-catch in commercial fisheries) and 

ecological processes (e.g., ocean survival, habitat integrity). Our study adds to the 

growing appreciation of the importance of social-ecological linkages into fisheries 

management (Ward et al. 2016; Arlinghaus et al. 2017). 
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Supplementary Material  

Table A.S1  Comparison of linear regression models that estimate annual catch 
rate (mean catch per angler day) for the six study rivers in the 
Skeena River Watershed, British Columbia, Canada. Number of 
parameters (k), Akaike’s information criteria corrected for small 
sample sizes (AICc), change in AICc score (ΔAICc), and AICc weight 
(Weight) were used to select the top model from all possible 
combinations of candidate models. Variables considered in the 
models included management intervention (reg), river, and annual 
steelhead trout abundance. 

Models k AICc ΔAICc Weight 

reg + river + steelhead abundance 9 -64.488       0.000   0.940   
river + steelhead trout abundance 8 -57.759       6.729   0.033   
reg + river + steelhead trout abundance + reg * river 14 -57.421       7.067   0.027   
river 7 -24.006      40.483   0.000   
reg + river 8 -23.265      41.223   0.000   
reg + river + reg * river 13 -14.423      50.065   0.000   
steelhead abundance 3 83.511     148.000   0.000   
reg + steelhead trout abundance 4 83.701     148.190   0.000   
null 2 90.661     155.150   0.000   
reg 3 92.316     156.805   0.000   

 

 

 

Table A.S2  Comparison of linear regression models that estimate annual angler 
effort (total angler days) for the six study rivers in the Skeena River 
Watershed, British Columbia, Canada. Number of parameters (k), 
Akaike’s information criteria corrected for small sample sizes (AICc), 
change in AICc score (ΔAICc), and AICc weight (Weight) were used 
to select the top model from all possible combinations of candidate 
models. Variables considered in the models included management 
intervention (reg), river, and annual steelhead trout abundance. 

Models k AICc ΔAICc Weight 

reg + river + steelhead trout abundance+ reg * river 14 1753.358       0.000   0.889 
reg + river + reg * river 13 1757.516       4.159   0.111 
reg + river + steelhead trout abundance 9 1784.858      31.501   0.000 
reg + river 8 1786.936      33.578   0.000 
river 7 1800.852      47.495   0.000 
river + steelhead trout abundance 8 1802.039      48.681   0.000 
reg 3 1960.325     206.967   0.000 
null 2 1961.046     207.689   0.000 
reg + steelhead trout abundance 4 1961.772     208.414   0.000 
steelhead trout abundance 3 1962.953     209.595   0.000 
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Table A.S3  Comparison of ordinal logistic regression models that estimate 
satisfaction levels of anglers (1=very poor: 5= excellent) on the 
Bulkley, Kispiox, and Zymoetz rivers in the Skeena River Watershed, 
British Columbia, Canada. Number of parameters (k), Akaike’s 
information criteria corrected for small sample sizes (AICc), change 
in AICc score (ΔAICc), and AICc weight (Weight) were used to select 
the top model from all possible combinations of candidate models. 
Variables considered in the models included residency, river, 
number of anglers seen, and number of steelhead trout landed.  

Models  k AICc ΔAICc Weight 

residency+ river + num anglers seen + num 
steelhead landed + num anglers seen * num 
steelhead landed  

 10 5151.5    
 

0.0 0.721 

residency + num anglers seen + num steelhead 
landed + num anglers seen * num steelhead landed 

 8 5155.8 4.3   0.083 

residency + river + num anglers seen + num 
steelhead landed  

 9 5156.2 4.7 0.068 

residency + river + num anglers seen + num 
steelhead landed + residency * num steelhead 
landed     

 10 5156.5 5.0 0.059 

residency + river + num anglers seen + num 
steelhead landed + residency * num anglers seen  

 10 5156.9 5.5 0.047 

residency + num anglers seen + num steelhead 
landed + residency * num steelhead landed  

 8   5160.3 8.8 0.009 

residency + num anglers seen + num steelhead 
landed 

 7   5160.5 9.0 0.008 

residency + num anglers seen + num steelhead 
landed + residency * num anglers seen  

 8   5161.7 10.2 0.005 

num anglers seen + num steelhead landed + num 
anglers seen * num steelhead landed 

 7 5177.0 25.6 0.000 

river + num anglers seen + num steelhead landed + 
num anglers seen * num steelhead landed  

 9   5178.2 26.7 0.000 

num anglers seen + num steelhead landed   6 5181.2 29.7   0.000 
river + num anglers seen + num steelhead landed   8 5182.4 30.9   0.000 
residency + river + num steelhead landed + 
residency * num steelhead landed 

 9 5184.9 33.4 0.000 

residency + river + num steelhead landed   8   5184.9 33.5 0.000 
residency + num steelhead landed + residency * 
num steelhead landed  

 7   5195.1 43.6 0.000 

residency + num steelhead landed   6   5195.6 44.1 0.000 
river + num steelhead landed   7   5212.6 61.1 0.000 
num steelhead landed   5   5216.1 64.6 0.000 
residency + river + num anglers seen  8   5360.3 208.8 0.000 
residency + river + num anglers seen + residency * 
num anglers seen 

 9 5360.8 209.3   0.000 

residency + num anglers seen   6   5371.2 219.7 0.000 
residency + num anglers seen + residency * num 
anglers seen 

 7   5372.1 220.6 0.000 

river + num anglers seen   7 5375.6 224.1   0.000 
residency + river   7   5377.9 226.5 0.000 
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num anglers seen   5 5381.4 229.9 0.000 
river   6   5394.5 243.0 0.000 
residency  5   5397.8 246.3 0.000 
null  4 5408.2 256.7   0.000 

 

 

 

 

 

Figure A.S1 Annual angler effort across time for the six study rivers in the 
Skeena River Watershed. Black points are years after the 
management intervention, grey points are years before the 
management intervention. Note that the y-axes vary. 
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Figure A.S2  Proportional change in license sales by guided non-residents from 
2009-2016 for the six study rivers in the Skeena River Watershed, 
British Columbia, Canada. All values are expressed relative to the 
mean angler licenses sold for each weekday and river from 2009 to 
2011, prior to the 2012 management intervention. Positive values 
therefore represent increased sales since the management 
intervention. BC residents are not included as they are not required 
to purchase daily licenses. Each line represents one year of license 
sales. Light grey lines are sales before the management intervention 
and black lines are sales after the management intervention.  
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Figure A.S3  Probability of either a Canadian (including BC residents) or a non-
Canadian resident angler having a predicted satisfaction level of 
“excellent”, “fair”, “good”, “poor”, or “very poor” given landing 
either zero, one, two, or four steelhead trout and the number of 
anglers seen that day (0-50) on the Kispiox River. These ranges 
capture most of the range in the observed catch and crowding. 
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Figure A.S4  Probability of either a Canadian (including BC residents) or a non-
Canadian resident angler having a predicted satisfaction level of 
“excellent”, “fair”, “good”, “poor”, or “very poor” given landing 
either zero, one, two, or four steelhead trout and the number of 
anglers seen that day (0-50) on the Zymoetz River. These ranges 
capture most of the range in the observed catch and crowding. 
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