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Abstract 

Statistical data acquired from US citizens in 2013 showed that the overall percentage of all 

disabilities for all ages in this country was around 12.6%, in which the “ambulatory 

disabilities” had the highest prevalence rate (7.1 %) [1]. This amount is estimated around 

7.2% for all Canadian adults, which corresponds to more than 2.5 million people [2]. In 

order to improve the quality of life of those with ambulatory disabilities (e.g., paraplegic 

people), wearable robotic exoskeleton is being developed in our lab.  

In this project, Ground Reaction Forces and Moments (GRF/M), which are 

important data for closed-loop control of an exoskeleton, is estimated based on lower limb 

motion of a wearable hip exoskeleton user. This method can reduce manufacturing cost 

and design complications of these types of robots. In order to model GRF/M, Neural 

Network, Random Forest and Support Vector Machine algorithms are utilized. Afterward, 

the achieved results from the three algorithms are compared with each other and some of 

the most recent similar studies. In the next step, the trained models are employed in an 

online control loop for assisting a healthy exoskeleton user to walk easier. The device 

applies forces on the user’s upper thigh, which reduces the required torque of the hip 

flexion-extension joint for the user. Finally, the exoskeleton’s performance is compared 

experimentally with the cases when the device is not powered or it is simply following the 

user’s motion based on the inverse kinematics. The results showed the presented algorithm 

can help the exoskeleton user to walk easier. 

 

Keywords: Ground Reaction Forces and Moments Estimation, Machine Learning, Neural 

Network, Random Forest, Support Vector Machine, Assistive Hip Exoskeleton 
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Chapter 1.  
 
Introduction 

Powered lower limb exoskeletons, also referred to as wearable robots, are an emerging 

technology that assist individuals with mobility disabilities. They can completely or 

partially carry the weight of the user and help them to stand and walk. People with mobility 

disabilities often are at a greater risk of secondary health conditions due to their inability 

to stand and walk. Some of these conditions may include: pressure sores, bowel or bladder 

problems, depression, obesity, fatigue, and pain. The users of mobility aids such as 

wheelchairs and scooters that substitute walking by providing a wheeled device on which 

the users sit are still at risk since they are still confined to seating, instead of standing and 

walking.  

     Another purpose of using an exoskeleton robot is for augmenting the strength of healthy 

adults in military or industry applications. For example, exoskeletons can be used to reduce 

energy consumption while walking which can help soldiers to walk longer distances. They 

can also assist factory workers in carrying heavy loads and reducing injuries and fatigue. 

In Sections 1.1 and 1.2 below, some of the most famous commercial and research 

exoskeleton robots are discussed.  

1.1. Lower Limb Exoskeletons for Gait Rehabilitation and 
Locomotion Assistance: 

Strokes, aging, accidents, etc. are some of the main reasons for having minor or major 

walking disabilities. Spinal cord injuries (SCI) caused by accidents can cause full lower-

limb disabilities in children or adults. Powered lower limb exoskeleton robots can bring 

back the walking abilities to the paralyzed people. In these cases, the robot needs to carry 

the load of their user and have a predefined motion to help the user walk naturally again. 

ReWalk, ExoAtlet, HAL, etc. are some of the commercial or research exoskeleton robots 

with these capabilities. Some of the most famous and advanced lower-limb exoskeletons 

are presented in the following sections. 
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1.1.1. ReWalk 

ReWalk is an Israeli commercial wearable lower-limb exoskeleton that utilizes powered 

actuators to enable paraplegics to regain standing and walking abilities. This robot which 

is developed by ReWalk Robotics was commercialized in 2011. The 4 degrees-of-freedom 

(DoF) mechanism of this robot helps the user to stand and walk using a solid load-bearing 

structure. A tilt sensor is implemented in the robot which signals the onboard computer 

when to take the next step [3]. Also, a wrist unit is provided in order to select settings for 

the robot’s functions. As can be seen in Figure 1.1 it is recommended to use walking 

crutches while wearing the device for balancing purposes. 

  

Figure 1.1: ReWalk lower limb exoskeleton 

     

     In 2012, Esquenazi et al. studied the safety and performance of ReWalk on 12 subjects 

with paraplegia due to SCI to carry out routine ambulatory functions [3]. The results 

showed that the subjects were able to safely participate in training sessions up to three 

times a week with no falls or occurrences of autonomic dysreflexia. Also, most of the 

subjects had improvement in their level of walking proficiency. 

     Moreover, Talayi et al. investigated the effectiveness of using ReWalk on 12 adults with 

chronic motor complete cervical and thoracic (C7-T12) SCI. It was a preliminary analysis 

on the difference of walking kinematics between subjects in order to understand possible 
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improvement to the walking velocity range and walking ability by mimicking the better 

walkers [4]. Their results showed that the range of walking speed between the paraplegic 

users was mostly between 0.1 m/s to 0.2 m/s which is in the range of slow motion. Also, 

the lateral motion of the body which is required for robot walking can cause discomfort for 

a paralyzed user while walking with ReWalk robot.  

     Another study by Raab et al. in 2016 on an incomplete SCI case showed progress in 

walking ability using ReWalk. Also, QoL (Quality of Life), mobility, the risk of falling, 

motor skills and control of bladder and bowel functions were improved as well [5]. 

1.1.2. MINDWALKER 

     MindWalker is a full wearable lower-limb exoskeleton developed in the University of 

Twente which can empower paraplegics to stand and walk. Design, control and preliminary 

evaluation of this exoskeleton robot are presented in [6]. MindWalker utilizes series elastic 

actuators (SEA) in each joint which can deliver up to 100 Nm torque and 1 kW power. 

Also, a finite-state machine-based controller provides balance and gait assistance for the 

robot in both sagittal and frontal planes. In this robot, walking is triggered by displacement 

of the Center of Mass (CoM). Moreover, in [7], the series elastic actuator joint of 

MindWalker is analyzed in detail. This type of joint is normally used for torque control of 

an actuator by controlling the actuator’s position [8]. The MindWalker robot structure can 

be seen in Figure 1.2. 
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Figure 1.2: MindWalker lower limb exosekeleton 

1.1.3. HAL 

     The Japanese Hybrid Assistive Limb (HAL) exoskeleton was developed in Tsukuba 

University together with Cyberdyne, which is a robotic company. The first prototype of 

this robot was presented in 1997 and in 2002 HAL-3 was developed only for leg function. 

Lee and Sankai in [9], described power assist control for walking aid with HAL-3 robot. 

They used EMG sensors on flexor and extensor muscles for acquiring the intention of the 

robot user in order to adjust impedance around the knee joint. This method was able to 

reduce amplitudes of EMG sensor data and the user was able to swing the leg lighter and 

easier. Also, knee strain could get alleviated by adding stiffness to the joints. Afterward, 

Kawamoto et al. proposed a method for motion and torque assistants to realize required 

power assist corresponding to the operator’s intention. They used phase sequencing control 

and a feedback controller for motion and torque assist respectively which resulted in 

effective power assist [10]. An extended version of this work was presented by Kawamoto 

and Sankai in [11].  
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     HAL-5 robot which is a full body exoskeleton robot was presented as a commercialized 

exoskeleton robot in 2012. Modifications on this version with respect to previous versions 

include adding upper-body limbs, lighter and more compact power units and longer battery 

life [12]. Figure 1.3 shows pictures of this exoskeleton robot. 

 

  

Figure 1.3: HAL exoskeleton robot 

 

     A case study from Crucige et al. on the impact of locomotion training with HAL 

exoskeleton robot on two subjects with severe chronic and therapy-resistant neuropathic 

pain due to chronic SCI showed beneficial impact of the neurologic controlled exoskeletal 

intervention on pain severity and health-related quality of life (HRQoL). They both had 

improvements in motor functions and walking abilities alongside with significant reduction 

in pain severity and improvements in all HRQoL domains [13].  

     It is required to use walking crutches while using most of the above-mentioned 

exoskeleton robots, except REX Bionics [14] and MindWalker. Their structural design and 

control algorithm allow their users to walk balanced without using crutches.  

     There are other exoskeleton robots in this category such as eLEGS [15], Austin [16], 

ExoAtlet [17], and Ekso GT [18]. The eLEGS and Austin exoskeletons are developed by 

Berkeley Robotics. ExoAtlet and Ekso GT are developed by ExoAtlet Company and Ekso 
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Bionics, respectively. All of these exoskeleton robots are claiming to have a lightweight 

structure with one or two DoF in their hip joint which is not enough to assist paraplegic 

users with all natural 3-DoF capability in their hip joint. Figure 1.4 shows some of the most 

famous exoskeleton robots that are designed for paraplegic users. 

 

     

(a) (b) (c) (d) (e) 

Figure 1.4: a) eLEGS, b) Austin, c) ExoAtlet, d) Ekso GT, e)REX bionics 

 

1.2. Lower Limb Exoskeletons for Human Strength 
Augmentation 

     There is another type of wearable exoskeletons that are being used for augmenting 

healthy users for performing activities that need higher than normal body strength. Most of 

these robots are being used for carrying heavy loads in the areas that are too rugged or 

enclosed for vehicles to access, especially in military applications. The most famous 

exoskeleton robot in this category is the BLEEX exoskeleton developed at Berkley 

University. BLEEX, which was presented in 2003, has the capability of carrying the user’s 

weight and a load up to 34 kg and can walk at the average speed of 1.3 m/s. The structural 

design of this wearable robot while using hydraulic actuators is presented in Chu et al. [19], 

[20]. They used clinical gait data of human subjects in order to find suitable actuators for 

using in this robot. Also, the electrically actuated version of this robot is presented in Zoss 
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and Kazerooni [21]. Figure 1.5, demonstrates this robot while being used to carry heavy 

loads. 

 

Figure 1.5: BLEEX exoskeleton robot 

 

     Control structure of BLEEX robot is presented and discussed in [22], [23] and [24]. The 

control algorithm developed for this robot increases the closed-loop system sensitivity to 

its wearer’s applying forces and torques without doing any measurement from the wearer 

[22]. The robot controller uses the inverse dynamics of the exoskeleton as a positive 

feedback controller so that the loop gain for the exoskeleton approaches almost unity [23]. 

The dynamic model of the system needs to be relatively good because the control method 

has little robustness to parameter variations. Therefore, GHAN et al. designed a series of 

system identification experiments as well as determining the mass and inertia properties of 

the segments of the legs and various non-ideal elements, such as friction, stiffness and 

damping forces which resulted in a dynamic model significantly more accurate than the 

original model predicted from the designs of the robot [24]. Also, the improved control 

algorithm of this robot called “hybrid BLEEX controller” was presented by Kazerooni et 

al. in 2006 which added robustness to changing BLEEX backpack payload [25].  

     This team also developed another exoskeleton robot for military purposes called the 

ExoHiker. The advantages of this robot with respect to BLEEX were the substantial 

reduction in system weight, simplification in control, and increased load support capability 

[26].  
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     ExoClimber is the name of another robot developed by UC Berkley team which has the 

capability of rapid vertical ascent while carrying heavy loads. Combination of ExoHiker 

and ExoClimber resulted in an advanced exoskeleton robot named Human Universal Load 

Carrier (HULC) which has the ability to carry 200lbs. Figure 1.6, shows ExoHiker, 

ExoClimber and HULC robots, respectively. 

 

   

(a) (b) (c) 

Figure 1.6: a) ExoHiker, b) ExoClimber, c) HULC 

 

     There are other exoskeleton robots in this category such as XOS, which has two 

versions. XOS 1 was developed by SARCOS Robotics at Utah University under DARPA 

funding. In 2007, SARCOS Research was acquired by Raytheon and the first generation 

XOS 1 system was publically announced in 2008. The second version of this robot called 

XOS 2 that can be seen in Figure 1.7, was unveiled and publically demonstrated in 2010 

[27]. This robot that can carry loads up to 200lbs utilizes hydraulic actuators similar to 

BLEEX robot. Although, it has a lighter-weight structure with respect to previous 

exoskeleton robots in this category.  
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Figure 1.7: XOS 2 exoskeleton robot 

1.2.1. Honda 

During the past decade, Honda Company established a number of exoskeleton robots that 

can be used for healthy or elderly people. Their target was to use these robots in daily life 

in order to compensate minor walking problems or reducing the energy consumption of 

their users. The walking assist devices developed by Honda are “Bodyweight Support 

Assist” and “Stride Management Assist”.  

     The Bodyweight Support Assist robot which is indicated in Figure 1.8, is a user-friendly 

walking assist device that is designed for elderlies, production operation employees, etc. 

The robot reduces the ground reaction forces applied to the users’ sole in order to reduce 

muscle activities and consumed energy by the user [28].  
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Figure 1.8: Honda’s bodyweight support assist exoskeleton robot 

 

     Another Honda product for walking assistance is “Stride Management Assis” which is 

shown in Figure 1.9. It utilizes a rotary motor in each hip joint to help those with weakened 

leg muscles walk easier and achieve longer strides while walking [29]. The main control 

loop actuates the motors based on hip encoder data during walking. It improves symmetry 

of user and robot motion during natural walking while each leg is lifting from the ground 

and extending forward. 
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Figure 1.9: Honda’s stride management assist exoskeleton robot 

 

     In 2014, Kitatani et al. investigated the effects of Honda’s Stride Management Assist 

robot on energy expenditure during walking in healthy young adults [30]. The results 

showed 7.06% reduction in energy consumption while walking with comfortable walking 

speed and 10.52% while walking with maximum speed. Also, Buesing et al. investigated 

the effects of the stride management assist system on spatiotemporal gait characteristics in 

individuals after stroke [31]. Their results showed this robot can be a useful therapeutic 

tool to improve spatiotemporal parameters and contribute to improved functional mobility 

in stroke survivors.  

     There are several other powered or unpowered wearable robots which can be used for 

reducing energy consumption. As an example, Collins et al. presented an unpowered ankle 

exoskeleton that reduced around 7.2% of metabolic rate of human walking. They built a 

light weighted elastic device that worked in parallel with the user’s calf muscles, off-

loading muscle force that reduced the metabolic energy consumed in contractions [32]. 

Also, in 2018 Nasiri et al. presented an unpowered exoskeleton which can reduce 

approximately 8% of metabolic rate of the robot user [33]. They used a torsional spring 

that applied torque as a linear function of the difference between two hips angles. They 

showed it can have a better effect than using a local spring that applies torque as a function 
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of hip angle. A similar perspective is defined for our robot, but the criterion in this study is 

robot and user interaction forces instead of energy consumption. 

1.2.2. Hip Exoskeleton Robot with Agile Eye Mechanism 

In the Assistive Robotic Systems Lab at Simon Fraser University, a hip exoskeleton robot 

has been developed [34, 35]. It has the advantage of using a parallel mechanism called 

“Agile Eye” [36] in its structure which has the benefit of providing a full range of motion. 

This capability has a significant impact on users’ motion and helps them to walk naturally, 

especially in circular paths. Figure 1.10 shows pictures of the device worn by a healthy 

adult.  

 

  

Figure 1.10: Hip exoskeleton robot with agile eye mechanism  

 

     One of the goals of this project is to design a preliminary control structure for this robot 

to be used by healthy users or elderlies. The robot is required to assist the user to walk 

easier for longer distances similar to Honda’s Stride Management Assist by applying force 

on the upper thigh.  
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     One of the most important required data for designing control loop of most exoskeleton 

or biped robots is Ground Reaction Forces and Moments (GRF/M) which can be acquired 

using force sensors implemented under user’s sole. However, the attachment of this type 

of sensors to each user’s sole is impractical due to wiring or mounting problems. Also, the 

accurate and advanced versions of this type of sensors are expensive, which leads to the 

increased cost of the exoskeleton. For example, the attachment of the sensors such as a 6-

axis force/moment sensor can cause unnatural walking due to the sensor’s thickness. An 

alternative is the use of pressure sensors such as in-shoe vertical pressure sensors [37]. 

However, they can only provide data in the vertical direction (𝐹𝑧) which may not be enough 

for a full lower-limb exoskeletons control structure. Another method is using machine 

learning algorithms for acquiring GRF/M data based on human body motion. In [38], Joo 

et al. predicted ground reaction forces and moments based on plantar pressure (PP) data 

obtained from insole type measurement devices. Moreover, in 2013, Oh et al. estimated 

GRFs in single support phase based on traditional Newtonian mechanics and used artificial 

neural network for double support phase [39]. Also, Sim et al. used a wavelet neural 

network to construct a model between GRF/M and insole plantar pressure sensors [40]. 

Using this method for GRF/M data acquisition eliminates an expensive force sensor from 

robot structure which can reduce manufacturing costs of exoskeleton robots. Also, it 

reduces wiring complexity and discomforts of using force sensors under the users’ soles. 

1.3. Objectives and Contributions 

1. In this project, the main objective is to predict GRF/M for the hip exoskeleton users 

walking in varying speeds using inertial sensors instead of force/torque sensors. 

The outcome of this work can be used for acquiring all components of GRF/M or 

for gait phase estimation based on inertial data acquired from the exoskeleton user’s 

lower limb motion. For this purpose, different regression methods such as Neural 

Network, Random Forest and Support Vector Machine were employed. Currently, 

there is no exoskeleton available that utilizes machine learning algorithms for 

estimating GRF/M without any force sensors attached to the foot. Hence, the main 

advantage and contribution of the proposed approach is the elimination of the 

force/torque sensors from design and control structure of lower limb exoskeletons, 
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ultimately leading to reduced production costs and a simplified control loop 

structure.  

2. Another objective and contribution of this thesis are a feasibility study and 

successful experimental demonstration of using the estimated GRF/M in an online 

control loop structure of a wearable hip exoskeleton. The trained models with 

machine learning algorithms were applied to the online generation of motion for 

the hip exoskeleton in order to push the user’s upper-thigh in assisting with 

walking. The effectiveness of the generated motion was compared with two other 

cases: when device is off and when the device is following user’s motion based on 

Inverse Kinematics (IK). 

1.4. Thesis Structure 

The remainder of the thesis is structured as follows: 

 In Chapter 2, an overview of different possible methods for GRF/M estimation is 

presented. Also, a summarized description of machine learning algorithms used in 

this research study is provided. Afterward, similar studies in the literature which 

used these methods for estimation of GRF/M are discussed.  

 In Chapter 3, the experimental setup and protocols, as well as data collection 

devices and software, are presented. 

 Chapter 4 presents the results of the trained models with different machine learning 

algorithms and compares their accuracy with each other. Also, the resulted 

accuracies from the trained models are compared with similar studies in the 

literature.  

 Implementation of trained models in the control structure of the hip exoskeleton 

robot for motion generation is described in Chapter 5.  

 Chapter 6, summarizes outcomes of this study and recommendations for future 

studies of this research are presented. 
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Chapter 2. Background 

In this chapter, first, we talk about methods for ground reaction forces and moments 

estimation for a walking person. Afterward, the machine learning methods used in this 

project are introduced and discussed. At the end, advantage and disadvantage of these 

methods are explained. 

2.1. Ground Reaction Forces and Moments Estimation 

In several biped or exoskeleton robots, ground reaction forces and moments data are 

necessary information for designing the control structure of the robot. Also, they can be 

used for balancing the robot while walking, sitting and standing, etc. In some cases, it 

would be beneficial not to use any type of force sensors under the sole, because they can 

cause complexity for the mechanical structure of the robot or may irritate the user while 

wearing the robot. Also, these type of sensors are usually expensive (especially 6 axis force 

sensors). Therefore, it would be beneficial if we could estimate GRF/M without using any 

kind of sensors under the sole of the robot’s users.  

     There are different methods available in the literature for estimating the GRF/M online 

during walking [41]. In summary, the GRF/M estimation can be achieved by: (i) kinematic 

information of the whole body using wearable inertial measurement units (IMU) [42, 43], 

(ii) camera-based motion measurement systems [44] or (iii) plantar pressure data provided 

by force plates [45], insole force sensors [46] or pressure sensors [47, 38]  

In addition, Jung et al. developed an adjustable foot-ground contact model to estimate the 

GRF/M [48]. The purpose of their study was to estimate the GRF during gait by utilizing 

distance and velocity-dependent force models between the foot and ground in an inverse-

dynamics-based optimization. Also, in 2014, Wille et al. used sagittal kinematic variables 

to estimate GRF and joint kinetics [44]. However, this method is not applicable for our 

purpose as we need all GRF/M components for closed-loop control of the proposed hip 

exoskeleton. 
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     Another method for estimating the GRF/M is using cost-effective sensors such as Force 

Sensitive Resistors (FSR) implanted under the user’s soles [49]. However, the exoskeletal 

application of this method is limited due to the fact that this type of sensors are highly noisy 

and inaccurate.  

     More recently, Rosquist et al. used a tenfold cross-validation process to calibrate a 

separate mathematical model for each component to estimate GRF/M based on data 

collected from nanocomposite piezo-responsive foam while walking [50]. Also, there are 

other studies that only estimated vertical GRF which may not be enough information for 

closed-loop control system design of many exoskeletons. Guo et al. used a new proxy 

measurement algorithm to estimate the vertical GRF using wearable sensors [51]. 

     A different method for finding GRF/M is using machine learning algorithms to estimate 

all the components with high accuracy. The machine learning algorithm can be applied on 

data acquired from other types of sensors and using them GRF/M data can be estimated.In 

[52], Joo et al. predicted 6-axis ground reaction forces and moments based on plantar 

pressure (PP) data obtained from insole type measurement devices. Moreover, in 2013, Oh 

et al. predicted GRFs in single support phase based on traditional Newtonian mechanics 

and used artificial neural network for predicting GRFs in double support phase [53]. Also, 

Sim et al. used a wavelet neural network to construct a model between GRF/M and insole 

plantar pressure sensors [46]. Most of the mentioned methods provide accurate enough 

results which can be used in control loop structure of an exoskeleton robots. In this project, 

three machine learning methods are used for estimating GRF/M of a user while wearing a 

hip exoskeleton robot and walking in a straight line. Based on data provided in literature, 

artificial neural networks are one of best methods for this purpose. Also, support vector 

machine(SVM) algorithm is an accurate method for solving regression problems. Random 

forest is another accurate and fast method that can provide high accuracy in regression 

problems which has never been used before for estimation of GRF/M. In this project these 

three methods are being used and compared to find most suitable method that can be used 

in control structure of exoskeleton robots. In the next section, the estimated forces are going 

to be used for controlling the robot and helping the user to apply less torque while walking.  
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2.2. Random Forest 

Random forest or random decision forest is a machine learning method for classification 

or regression that operates by constructing several decision trees while training a model 

and outputting a class for classification or mean prediction of the individual trees for 

regression method [54, 55, 56]. Figure 2.1 shows a general RF for regression purpose. 

 

Figure 2.1: General structure of a regression random forest 

 

It has the advantage of correcting overfitting to their training set with respect to decision 

trees. It only optimizes two parameters which are the number of variables in the random 

subset at each node to split and the number of trees in the forest while it is not very sensitive 

to these parameters [57, 58].  

      Consider a dataset that has 𝑁 data points, and each one is constructed from 𝑀 features. 

By the method developed by Breiman in [57], in order to construct each tree, a random 

subset of the samples including 𝑁′ data points is selected. Afterward, each node is divided 

by the best guess among a random subset of the features. So instead of using all M features 

to make a decision at each node, 𝑀′ features are used for making the decision. The majority 

of the votes for classification and averaging for regression in the whole forest are being 

used for predicting a new sample [59].  

This method has some advantages and disadvantages [60].  Advantages include the 

following: 
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 There is no need for feature normalization, so it reduces the complexity of using 

this method 

 Individual decision trees can be trained in parallel 

 They reduce overfitting, therefore it can be used for many test subjects 

Also, the disadvantages of this method include: 

 This method is not easily interpretable 

 They’re not a state-of-the-art algorithm 

2.3. Support Vector Machine (SVM) 

SVMs are supervised learning models that are first identified by Vladimir Vapnik and can 

be used as a regression method [61]. This method constructs a hyperplane or set of 

hyperplanes in a high or infinite-dimensional space for both classification and regression 

problems. In SVM classification, the algorithm is separating different classes of data based 

on a subset of data. Although, the Regression Support Vector Machine (RSVM) has minor 

differences with SVM for classification. First of all, the number of possibilities for an 

answer increases significantly, because the output is a real number. Therefore, a margin of 

tolerance is needed which will be defined by the user. Also, the algorithm itself is more 

complicated. 

     For classification, SVM uses a Kernel function to transfer the input data to a kernel 

space to find a linear relationship between input and target values. Due to relying on 

different kernel functions (i.e. linear, polynomial, radial basis function (RBF), or sigmoid), 

it can be adapted to many different problems [62, 63]. An important advantage of SVMs is 

that the determination of the model parameters corresponds to a convex optimization 

problem. Therefore, local solutions are also global optimums. Although, training a model 

on a dataset with many subsets needs a long time, which makes it impossible to use for 

some applications. 
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2.4. Neural Network 

One of the most useful methods for solving a regression or classification problem is neural 

network method. It is mainly because this method can be trained easily and usually 

provides high accuracy. The neural network models consist of an input and an output layer 

and one or more hidden layers of nodes between the input and output which construct the 

relation between them. The general structure of a fully connected neural network model is 

presented in Figure 2.2. 

 

Figure 2.2: General structure of a fully-connected neural network model with hidden layers 

     The nodes of the input layer are features which construct each sample and the outputs 

are the target of the model. The output of each layer multiplied by weight vectors construct 

inputs of the next layer. Each layer has a specific activation function which can be similar 

to other layer’s activation functions. The activation function of a node defines the output 

of that node given an input or set of inputs. These functions are a very important feature of 

the neural network models because they are making the output of each layer which 

eventually results in the output of the whole models. There are different activation 

functions available and following table shows the main and most useful activation 

functions. 

 

 



20 

Table 2.1: The most common activation function employed in artificial neural networks  

Name Plot Equation Derivative 

Identity(Linear) 

 

𝑓(𝑥) = 𝑥 𝑓′(𝑥) = 1 

Binary Step 

 

𝑓(𝑥) = {
0  𝑓𝑜𝑟  𝑥 < 0
1  𝑓𝑜𝑟  𝑥 ≥ 0

 𝑓′(𝑥) = {0 𝑓𝑜𝑟 𝑥 ≠ 0 

Logistic(Sigmoid) 

 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 𝑓′(𝑥) = 𝑓(𝑥)(1 − 𝑓(𝑥)) 

Tanh 

 

𝑓(𝑥) = tanh(𝑥) =
2

1 + 𝑒−2𝑥
− 1 𝑓′(𝑥) = 1 − 𝑓(𝑥)2 

ArcTan 

 

𝑓(𝑥) = tan−1(𝑥) 𝑓′(𝑥) =
1

𝑥2 + 1
 

Rectified Linear 

Unit(ReLU) 
 

𝑓(𝑥) = {
0  𝑓𝑜𝑟  𝑥 < 0
𝑥  𝑓𝑜𝑟  𝑥 ≥ 0

 𝑓′(𝑥) = {
0  𝑓𝑜𝑟  𝑥 < 0
1  𝑓𝑜𝑟  𝑥 ≥ 0

 

Parametric 

Rectified Linear 

Unit(PRELU)  

𝑓(𝑥) = {
𝛼𝑥  𝑓𝑜𝑟  𝑥 < 0
𝑥  𝑓𝑜𝑟  𝑥 ≥ 0

 𝑓′(𝑥) = {
𝛼  𝑓𝑜𝑟  𝑥 < 0
1  𝑓𝑜𝑟  𝑥 ≥ 0

 

Exponential 

Linear Unit(ELU) 
 

𝑓(𝑥) = {
𝛼(𝑒𝑥 − 1)   𝑓𝑜𝑟  𝑥 < 0

𝑥   𝑓𝑜𝑟  𝑥 ≥ 0
 𝑓′(𝑥) = {

𝑓(𝑥) + 𝛼   𝑓𝑜𝑟  𝑥 < 0
1   𝑓𝑜𝑟  𝑥 ≥ 0

 

SoftPlus 

 

𝑓(𝑥) = log𝑒(1 + 𝑒𝑥) 𝑓′(𝑥) =
1

1 + 𝑒−𝑥
 

     The activation functions in Table 2.1 are the most common and useful ones that have 

been tested in this project for the GRF/M modeling. Some desirable properties in an 

activation function include: 



21 

 Nonlinearity: If an activation function is non-linear, then a two-layer neural 

network is a universal function approximator [64]. It gives the network more ability 

and accuracy with the same amount of training data. The identity (linear) activation 

function does not satisfy this property. If multiple layers in a neural network model 

use the identity activation function, the entire network is basically equivalent to a 

single-layer model.  

 Range: If the range of an activation function is finite, neural network gradient-based 

training algorithms tend to be more stable, because pattern presentations 

significantly affect only limited weights. But if it is infinite, training is generally 

more efficient because pattern presentations significantly affect most of the 

weights. 

      There are other properties such as “continuously differentiable”, which is desirable for 

enabling gradient-based optimization methods [65] or being “Monotonic”, which makes 

the error surface associated with a single-layer model in the form of a convex [66]. The 

proper activation functions for this study are presented and discussed in section 4.1.  

Some advantages of ANN include: 

It has the ability to learn non-linear and complex datasets. It is an important feature because 

in real life, many of the relationships between inputs and outputs are non-linear and 

complex. This featured is helpful for training models on data used in this study as they are 

non-linear. Moreover, this method doesn’t make restrictions on the distribution of input 

data [67].  

The most famous disadvantage of this method is that it has a black box nature. It means 

you can not understand how and why some specific result is provided by the neural 

network model [68]. 
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Chapter 3. Experimental Setup and Protocol: 

This chapter explains experiments for modeling ground reaction forces and moments based 

on the lower limb of human body motion while wearing the hip exoskeleton robot and 

walking in a straight path.  For this purpose, required material and information about the 

participants, instruments and protocols are provided. Afterward, data analysis based on the 

mentioned methods in Chapter 2 is discussed. In the end, the results of the modeling with 

different methods are provided and compared. In order to validate the accuracy of the 

resulted models, some of the recent studies’ results are compared with them.   

3.1. Material and Methods 

3.1.1. Participants 

Three females (age: 27 ± 2 years, height: 161.5 ± 4.5 cm, and weight: 58.5 ± 11.5 Kg) and 

seven males (age: 26.5 ± 2.5 years, height: 180.5 ± 11.5 cm, and weight: 93 ± 23 Kg) were 

recruited for this study. The experiment protocol was approved by the Research Ethics 

Board at Simon Fraser University and all participants provided informed written consent. 

They were all healthy young adults with the ability to walk naturally and without any 

assistance.  

3.1.2. Instrumentation 

Walking motion of the right leg of each participant was acquired by using 7 Vicon MX-

40+ motion capture cameras (Vicon Motion Systems Ltd., UK). The cameras were 

positioned around the participant’s body and it was checked that it is possible to observe 

each marker at least with three cameras. Ground reaction forces and moments were 

collected by force sensors implanted in a Bertec’s Fully Instrumented Treadmill (FIT) 

(Bertec Corporation, USA). Both cameras and force sensors were set to acquire data at 

120Hz and a voltage pulse was collected from the camera system at the start of each 

experiment in order to synchronize the force and motion data for better accuracy. Figure 3.1 

shows Vicon MX-40+ and Bertec’s FIT treadmill equipped in this experiment. 
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(a) (b) 

Figure 3.1: a) A Vicon MX-40+ camera  b) Bertec’s Fully Instrumented Treadmill (FIT) 

treadmill 

Specification of the Vicon MX-40+ and Bertec’s Fully Instrumented (FIT) treadmill are 

provided in Table 3.1 and Table 3.2. 

Table 3.1: Vicon MX-40+ specification 

Imager CMOS 

Aspect Ratio 4:3 

Pixel Size 7 microns x 7 microns 

Photosensitive Pixels 2352 H x 1728 V 

Sensor Size 16.46 mm (H) x 12.10 mm (V), 20.43 mm 

(Diagonal) 

Sensor Dynamic Range 59 dB 

Digital Responsivity Monochrome 2500 bits per luxsecond @ 550nm 

ADC ref @ 1V 

Lens Mounts C- and SLR-mount options 

Size (with 20 mm SLR lens) 215 mm (H) x 138 mm (W) x 255 mm (D) 

Weight (with 20 mm SLR lens) 2.6 kg 

RoHS compliant Yes (MX40+ camera) 
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Table 3.2: Bertec’s Fully Instrumented (FIT) treadmill specification 

Size of Each Belt 1.75 × 0.5 m 

Maximum Load Range 𝐹𝑋 , 𝐹𝑌: 2500 𝑁  , 𝐹𝑍: 5000 𝑁 

Speed Range 0-24 km/h 

Acceleration 0-25 m/s2 

3.1.3. Experimental Protocols 

In order to find ground reaction forces and moments, it is necessary to have data from 

different subjects at different walking speeds. Therefore, the participants were asked to 

walk on Bertec’s fully instrumented treadmill (FIT) (Bertec Corporation, USA) with 0% 

inclination. The trials included walking at 0.2 m/s, 0.4 m/s, 0.6 m/s, 0.8 m/s, 1 m/s, 1.2 m/s 

and 1.4 m/s for 4 minutes each. This range of speed helps the models to estimate GRF/M 

for a wider range of walking speeds. Although, in order to reduce the effect of fatigue in 

the results, the speed of each test was chosen randomly for each participant.  For example, 

for one of the participants the tests were done in 0.8 m/s, 0.4 m/s, 0.2 m/s, 1 m/s, 1.2 m/s, 

0.6 m/s. If this randomness didn’t exist while testing participants, then all participants were 

tired on 1.2 m/s speed and the provided data may have not been realistic. 

     Figure 3.2 shows the markers placements on a participant as well as the placement of 

the hip exoskeleton. As you can see markers are attached on different points of the right 

leg. In order to find lower limb joint angles of each user, three markers are attached on the 

upper thigh, two on the lower thigh and three others are attached to the foot. Knee joint, 

ankle flexion-extension and toe joint angles were calculated based on the position of these 

markers. Also, Figure 3.3 shows motion capture cameras positioning in the lab while 

recording motion data from markers. 
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Figure 3.2. Optical markers placements while wearing the hip exoskeleton 

 

Figure 3.3. Position of motion capture cameras while data acquisition 

     After data acquisition and data post-processing, it is necessary to find the joints angles 

based on the 3D position of the markers. Therefore, using simple angle calculation based 
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on the attached markers one the body, knee, ankle flexion-extension, and toe angles can 

be acquired. 

Figure 3.4, shows the obtained angles for the knee, ankle flexion/extension and toe joints 

over two gait cycles. It should be noted that all toes are considered as one joint and the 

angle is considered the same for all toes. The obtained results agree with real data 

available in reference books [69]. Figure 3.5 and Figure 3.6 show the three components 

(𝐹𝑥, 𝐹𝑦 and 𝐹𝑍) of the ground reaction forces and the three components (𝑀𝑥, 𝑀𝑦 and 𝑀𝑍) 

of the ground reaction moments, respectively, obtained from the Bertec treadmill.   

 

 

Figure 3.4. Knee rotation, ankle flexion/extension and toe rotation of a random 

participant walking with 0.4 m/s (slow) speed 



27 

 

Figure 3.5. Ground reaction forces components acting on a random participant sole while 

walking with 0.4 m/s (slow) speed 

 

Figure 3.6. Ground reaction moment components acting on a random participant sole 

while walking with 0.4 m/s (slow) speed 
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     Figure 3.7 shows the increasing maximum value of the 𝐹𝑍 ground reaction forces as 

the gait speed increases from 0.4 m/s to 1.4 m/s.  

 

Figure 3.7. Comparison between 𝐹𝑍 in different walking speeds (from slow to high speed)  

3.2. Data Analysis 

In order to find a suitable model for lower body motion and GRF/M, three different 

methods are being used. Neural network, random forest and support vector machine 

methods were tested to find the most accurate method for this study. As can be seen in 

Figure 3.5 and Figure 3.6 the raw force data is noisy. Therefore, before using the raw data 

in the model, a fifth-order Butterworth filter with 8 Hz cut-off frequency was used to make 

the force and moment data less noisy and suitable for modeling. Although this filtering 

may clear some range of GRF/M data, it will increase the model's accuracy Figure 3.8 and 

Figure 3.9 show the comparison between ground reaction forces and moments’ raw data 

and filtered data. 
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Figure 3.8. Comparison between ground reaction forces’ raw data and filtered data 

 

Figure 3.9. Comparison between ground reaction moments’ raw data and filtered data 
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   In order to increase the accuracy of these models, it is better to have the effect of 

dynamics and motion in the input data. Therefore, “Angular Velocity” and “Angular 

Acceleration” of the knee, ankle flexion/extension and toe joints are considered as input as 

well. As a result, each model can have 12 inputs and 1 output which is one of the 

components of GRF/M. You can see the input features in Table 3.3. 

Table 3.3: Inputs of machine learning models  

Inputs 

1-Walking Speed (m/2) 

2-Weigh(lbs) 

3-Height(cm) 

4-Knee Angle (deg) 

5-Knee Angular Velocity (deg/sec) 

6-Knee Angular Acceleration (deg/sec2) 

7-Ankle Angle (deg) 

8-Ankle Angular Velocity (deg/sec) 

9-Ankle Angular Acceleration (deg/sec2) 

10-Toe Angle (deg) 

11-Toe Angular Velocity (deg/sec) 

12-Toe Angular Acceleration (deg/sec2) 

      

     Walking speed, weight and height of the user are constant inputs and joint angle, angular 

velocity and angular acceleration of knee, ankle flexion/extension and toe joints’ recorded 

data of the user while walking are variable inputs to each model.  

     In order to better see the effect of dynamics in the model and increase its accuracy, the 

data is employed in batches for model training. It means each subset of data is combined 

with 20 previous ones. Therefore, the change in each input can be seen better by models. 

By combining 21 steps of data together and clearing similar features, such as speed, weight, 

and height the number of inputs changes from 12 to 192. 
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Chapter 4. GRF/M Estimation Using Machine 
Learning Algorithms 

In this chapter detailed information about machine learning algorithms used for training 

models on the data is provided. Also, results of each method are presented and compared 

with each other. At the end, bests resulted accuracies of this study are compared with some 

recent similar studies in GRF/M estimation. 

4.1. Neural Network 

In order to estimate the six components of GRF/M using neural network models, six 

separate fully connected artificial neural networks (ANN) are used. The modeling is 

performed in Python 3.6.3 using Keras and TensorFlow libraries. Each neural network 

model contains one input layer with 192 input features and one output that is one of the 

GRF/M components. Also, five hidden layers with 300 neurons are used. For modeling 𝐹𝑍 

component, the activation functions of all hidden layers are “Rectified Linear Unit” 

(RELU) due to its higher accuracy and less noise. For modeling the remaining components, 

“Sigmoid” function is used as the activation function for all layers except the last one. The 

last layer output needs to have a “linear” activation function to be able to perform 

accurately and reduce noises on output data. The combination of activation functions and 

the number of layers and neurons are chosen by try and error. Figure 4.1 shows a schematic 

of the neural network structure used in this study. In addition, Table 4.1 shows the 

summarized information for the training models. The models use error backpropagation to 

improve the accuracy. 
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Figure 4.1. Structure of the employed neural network model  

Table 4.1: Summarized information of trained artificial neural network models 

Items Detail 

Subjects 10 healthy young adults (7 men, 3 women) 

Training 

Data 

Data from randomly selected 8 subjects: 192 inputs, 6 outputs (Fx, Fy, Fz, Mx, My, Mz) 

for a total of ~200000 entries 

Validation 

Data 
15% of recorded data from each participant for a total of ~ 35250 entries 

Test Data 
Data from 2 remaining subjects that are not part of the training data for a total of 

~55000 entries 

ANN 

Structure 

 

1 input 

layer 

192 nodes 

5 hidden 

layers 

1st layer, 300 nodes(Sigmoid Activation Function) 

2nd to 5th layer, 300 nodes(Sigmoid Activation Function, with Bias) 

(Note: Activation Function only for 𝐹𝑧 is Rectified Linear Unit) 

1 output 

layer 

1 output (Linear Activation Function) 

 

ANN 

properties 

Using Keras library in Python 3.6, 80 Iterations, Learning Rate=0.001, Optimizer = 

'rmsprop' 
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4.2. Random Forest (RF) 

Another machine learning method that was employed to estimate the GRF/M was RF. The 

training, validation and testing data used for this method were the same as the data used 

for training the NN models. In this method, the algorithm constructs a multitude of decision 

trees and by changing the combination and branch structure of the tree, it tries to output 

the mean prediction of the individual trees. Similar to NN method, the GRF/M data was 

filtered with Butterworth filter with 8 Hz cut-off frequency filter. Also, a similar filter was 

used on the angles data provided by motion capture cameras. In this study, six different RF 

models were constructed for each output. Each model contained 150 trees that have enough 

diversity for finding the most accurate model. Further details about the RF regression 

algorithm can be found in [70]. Table 4.4 shows the summarized information for the RF 

trained models. 

Table 4.2: Summarized information of trained random forest models 

Items Detail 

Subjects 10 healthy young adults (7 men, 3 women) 

Training 

Data 

Data from randomly selected 8 subjects: 192 inputs, 6 outputs (Fx, Fy, Fz, Mx, 

My, Mz) for a total of ~200000 entries 

Test Data 
Data from 2 remaining subjects that are not part of the training data for a total 

of ~55000 entries 

RF 

Properties 
150 trees per forest, Using MATLAB 2017b 

 

 

4.3. Support Vector Machine 

This method constructs a hyper-plane or set of hyper-planes in a high or infinite 

dimensional space for both classification and regression problems. Due to relying on 

different kernel functions (i.e. linear, polynomial, radial basis function (RBF), or sigmoid), 

it can be adapted to many different problems. The suitable kernel function for this study is 

the radial basis function (RBF) that can be seen in equation (4.1) and it is necessary to tune 
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RBF variables. Therefore, using regression support vector machine toolbox on MATLAB 

2016b, ε, Kernel Scale and Box Constraint variables are optimized and a coarse grid-search 

is used which increases exponentially (i.e. 2-5, 2-4, 2-3,…, 23,24,25). Moreover, a 10-fold 

cross-validation is performed in order to increase the accuracy. 

  

𝐾(𝑥, 𝑥′) = exp (−
‖𝑥 − 𝑥′‖2

2𝜎2
) (4.1) 

     The data used for the SVM method was less than those of the NN and RF algorithms: 

70500 entries as training data and 16500 entries as testing data. The reason behind this was 

that a longer time was required for this method to train accurate models in comparison to 

the NN and RF algorithms. However, we were still able to obtain high accuracy SVM 

models despite the lower number of entries. Table 4.3 shows the summarized information 

for the SVM trained models. 

 

Table 4.3: Summarized information of trained support vector machine models 

Items Detail 

Subjects 10 healthy young adults (7 men, 3 women) 

Training 

Data 

Data from randomly selected 8 subjects: 192 inputs, 6 outputs (Fx, Fy, Fz, Mx, 

My, Mz) for a total of ~70500 entries 

Test Data 
Data from 2 remaining subjects that are not part of the training data for a total 

of ~16500 entries 

SVM 

Properties 

ε, Kernel Scale and Box Constrain variables are 

optimized and a coarse grid-search is used which 

increases exponentially (ε = 2-8 , 2-7 ,…, 23 ,24 and 

Kernel Scale and Box Constraint = 2-5 , 2-4 ,…, 24 ,25) 
 

 

4.4. Results and Discussion 

After training the models with NN, RF, and SVM, the test data from the same subjects 

were used for all methods in order to find the one that has the best accuracy and Figure 4.2 
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to Figure 4.7 show the results. It should be mentioned that in order to decrease noise on 

output data a low pass Butterworth filter with 6 Hz cut-off frequency is used.  

 

Figure 4.2. Comparison between the 𝐹𝑥 resulted from neural network, random forest, 

support vector machine models and desired value 

 

Figure 4.3. Comparison between the 𝐹𝑦 resulted from neural network, random forest, 

support vector machine models and desired value 
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Figure 4.4. Comparison between the 𝐹𝑧 resulted from neural network, random forest, 

support vector machine models and desired value 

 

Figure 4.5. Comparison between the 𝑀𝑥 resulted from neural network, random forest, 

support vector machine models and desired value 
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Figure 4.6. Comparison between the 𝑀𝑦 resulted from neural network, random forest, 

support vector machine models and desired value 

 

Figure 4.7. Comparison between the 𝑀𝑧 resulted from neural network, random forest, 

support vector machine models and desired value 

     As you can see in Figure 4.2 to Figure 4.7, all models follow the trend of desired value 

with high accuracy. However, in some steps, the peak values differ slightly from the 

measured value from force plates which is normal in machine learning methods. Moreover, 
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Table 4.4 shows the correlation between estimated and measured values with different 

utilized methods for each component.  

Table 4.4: Correlation coefficient and NRMSE% of the GRFs and GRMs trained with 

neural network, random forest and support vector machine models 

 Neural Network Random Forest 
Support Vector 

Machine 

Component 𝑅 NRMSE% 𝑅 NRMSE% 𝑅 NRMSE% 

𝐹𝑥 0.8802 7.86 0.8911 7.52 0.7703 10.56 

𝐹𝑦 0.8879 5.28 0.9314 4.18 0.8989 5.03 

𝐹𝑧 0.9658 8.03 0.9641 8.22 0.9509 9.58 

𝑀𝑥 0.9113 10.22 0.8978 10.94 0.8165 14.33 

𝑀𝑦 0.9318 10.36 0.9547 8.49 0.8777 13.68 

𝑀𝑧 0.8247 7.12 0.8906 5.73 0.6985 9.01 

 

As you can see in Table 4.4 the differences among the results from the three machine 

learning methods are not significant. For some components such as 𝐹𝑧 and 𝑀𝑥, neural 

network works slightly better and for other components, random forest model shows better 

accuracy. The SVM results are also acceptable; however, the problem with this method is 

that it requires significantly more time to train. Therefore, this method which normally is 

highly accurate can be used only if it is possible to spend a long time modeling with it. In 

order to ensure that the trained models are accurate enough, the results of this study are 

compared with those from Joo et al. [52] and Sim et al. [46]. In [52], Joo et al. predicted 6-

axis ground reaction forces and moments based on plantar pressure (PP) data obtained from 

insole type measurement devices. Also in [46], Sim et al. proposed a prediction model for 

GRFs and GRMs, which only used plantar pressure information measured from insole 

pressure sensors with a wavelet neural network (WNN) and principal component analysis-

mutual information (PCA-MI). 
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Table 4.5 Comparison between the correlation coefficient and NRMSE% of the estimated 

GRF/M components trained using the proposed models versus models from Sim et al. 

[52] and Sim et al. [46] trained models 

 
Sim et al. research 

results 

Joo et al. research 

results 
Presented Method 

Component 𝑅 NRMSE% 𝑅 NRMSE% 𝑅 NRMSE% 

𝐹𝑥 0.84 15.02 0.80 3.89 0.8911 7.52 

𝐹𝑦 0.96 12.92 0.94 2.95 0.9314 4.18 

𝐹𝑧 0.97 12.95 0.96 2.43 0.9658 8.03 

𝑀𝑥 0.85 14.87 0.92 7.25 0.9113 10.22 

𝑀𝑦 0.87 18.08 0.94 5.21 0.9547 8.49 

𝑀𝑧 0.83 17.88 0.75 5.21 0.8906 5.73 

 

     Table 4.5  shows that for all components of GRF/M the accuracy of trained models in 

this study is either almost the same or higher than most recent similar studies. By 

comparing the results of this study with other available studies, it can be noticed that the 

random forest method can have high accuracy for this application. Specially, 

𝑀𝑧 component of GRF/M usually had lower accuracy with respect to other component 

while modeling with machine learning algorithms. However,  random forest method result 

shows a higher accuracy with respect to famous and common methods such as neural 

network. 

     Due to high accuracy of trained models for GRF/M while wearing a hip exoskeleton 

robot, it can be concluded that it may be possible to use machine learning algorithms 

instead of gold-standard six-axis force/torque sensor in control algorithm of wearable 

robots which can reduce costs of commercial wearable robots and also reduces complexity 

of equipped devices which helps to utilize these robots easier. In the next chapter, 

feasibility of this idea in a real-time control loop is tested and the results are discussed. 
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Chapter 5. Real-Time Control Structure Design 

In this chapter, a control loop for the hip exoskeleton robot is designed. To implement the 

controller, motion and GRF/M of the exoskeleton user during walking is required. In order 

to acquire the motion, Xsens MTw IMUsensors are utilized while,as it is mentioned in 

section 2.1, machine learning algorithms are deployed to obtain GRF/M data.  

This sensor can provide orientation, angular velocity, and angular acceleration, etc. data 

with sampling rates up to 120 Hz. Therefore, by setting same frequency and adjustment on 

the body it can be possible to utilize the information provided by these sensors for use in 

machine learning algorithms. If the frequency of IMU data is not the same as acquired data 

from motion capture cameras and GRF/M sensors, the model can not predict the GRF/M 

accurately. Also, if the IMUs are positioned on bad location on the leg which has undesired 

motions, the trained models will output un-accurate results. The sensors were attached on 

the thigh, shin and foot of each leg in order to acquire the knee and ankle (dorsiflexion) 

angles.   

     As it is discussed in section 2.1, different methods can be utilized to design closed-loop 

control of the hip exoskeleton robot. our exoskeleton robot (details explained in 1.2.1), is 

similar to Stride Management Assist exoskeleton [29] and can be controlled such that it 

helps users during walking by pushing the upper thigh back and forth. In this project, to 

keep implementation and testing simple, the goal is to design the control algorithm for one 

degree of freedom (right hip flexion-extension). This work can later on extended to include 

more degrees of freedom. In order to design an online control loop for the exoskeleton and 

read IMU data and send necessary commands to motors, a desktop computation system 

(Intel® Core™  i7 CPU @ 3.60GHz, 16.0 GB RAM, 64-bit Operating System) is used. 

This controller will generate motion of the flexion-extension DoF of the hip exoskeleton 

based on the user’s walking motion. Also, the IMU sensor is sending the data using 

Bluetooth. The used actuators for three degrees of freedom of agile eye mechanism are 

Maxon (DCX32L GB KL 18V) motor with planetary gearhead (GPX37 LZ 172:1). The 

Maxon motors are derived using Epos 2 drivers and the commands are sent to motors using 

serial protocol. The motors require 18 Volts which is provided by a laboratory power 

supply. Moreover, a miniature load cell is attached in the robot and human body interaction 
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point to monitor exoskeleton’s activity. Therefore, the applied force by the robot on the 

user’s body can be measured and compared in different cases and situations. The load cell 

used in this test is demonstrated in Figure 5.1. Also, the specification of the load cell can 

be seen in Table 5.1. 

 

Figure 5.1. Miniature load cell  

Table 5.1: Miniature load cell specifications  

Load Cell Type Strain Gauge 

Capacity 5 Kg 

Size 55.25mm x 12.7mm x 12.7mm 

Precision 0.05% 

 

     One of the goals of this project is to study the feasibility of acquiring all components of 

GRF/M for controlling the hip exoskeleton robot. Therefore, a control loop is developed in 

MATLAB for the robot using the sensors, actuators, and desktop computer mentioned 

earlier. The libraries for using trained models with Keras library, sample codes for Maxon 

motors and Xsens IMU sensors and the load cell are available in MATLAB  and. As the 

first step, the six trained neural network models for six components of GRF/M are loaded 

into the software and the whole loop was tested. The tests showed the estimation of GRF/M 

using trained models while acquiring data from sensors and driving Maxon motors takes a 

long time and makes delay for the loop that can reduce the performance of the online 

control algorithm. Trained models with three different algorithms were tested in the main 
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control loop. The SVM and RF models had long delays which interrupted real-time 

computing and processing of motion generation. It was not possible to predict even one of 

the GRF/M components in real-time mode with these methods..  the tests with neural 

network models, however, showed that while running the online control loop, it is possible 

to predict up to four components of the GRF/M in the real-time mode which can be used 

in many studies as well as the current project. 

     There are a couple of options for solving this problem and use trained models in the 

control loop structure of the hip exoskeleton robot. First one is using much faster computers 

or advanced boards such as Field Programmable Gate Arrays (FPGA) for controlling the 

robot which can be explored in the future Another choice can be training models with fewer 

layers and neurons which will reduce the accuracy of the training models and therefore 

they weren’t used. The goal of this study was to have accuracies higher than recent similar 

studies.  

     Another application for using trained models for GRF/M in control structure of the hip 

exoskeleton robot is using them for detecting gait phases. Many researches demonstrated 

that it may be possible to use the trained machine learning models in order to detect phases 

of walking for the hip exoskeleton robot and move the robot based on the detected phase 

and assist the user to walk easier.  Williamson and Andrews in 2000 used a single cluster 

of accelerometers attached to the shank and used rule-based detectors to detect main phases 

of normal gait during walking [71]. Also, in 2001 Pappas et al. implemented FSR sensors 

and gyroscope sensors on shoes and a used rule-based detection algorithm to do phase 

detection on a walking person [72]. More studies in this category are reviewed by 

Rueterbories et al.. [73]. In 2015, Jung et al. used sensors equipped on lower limb 

exoskeleton robots and neural network algorithm to classify gait phase for the robot users 

[74]. They utilized eight FSR sensors under the sole to detect walking phases for the robot 

users. Basically, if the algorithm can detect walking step of the robot user, the hip 

exoskeleton robot can move forward and backward with respect to the user. The advantage 

of our method with respect to other mentioned methods is that no force sensor is used in 

the structure of our robot as it is hard to connect several sensors from user’s sole to a hip 

exoskeleton robot. The best situation for using the hip exoskeleton robot is to be used 

without any attachments to different user’s sole. Also, in most exoskeletons, IMU sensors 



43 

are being used for detecting motion of users or robots and the same sensor can be used for 

detecting the phase of the motion. Moreover, since most cell phones have embedded IMU 

sensors, it may be possible to use those while the user is walking with robot. Therefore, the 

control algorithm for the hip exoskeleton robot can be structured as Figure 5.2. 

 

Figure 5.2. Designed control loop for hip exoskeleton robot 

5.1. Robot Motion Generation 

In this section motion generation for the hip exoskeleton robot is discussed. The robot is 

designed to be an assistive robot and it is needed to apply force to the upper thigh of the 

user to assist walking. This robot can be used by healthy adults and elderlies as well. Most 

elderlies have difficulty while walking especially in swing phase. Because when both feet 

are on the ground the skeletal structure of the body helps them to maintain balance and 

requires less torque from hip joints. But in swing phase, hip joints need to apply a higher 

amount of torque to move the leg which may be difficult for them. Therefore, this robot 

can help them to walk easier both in swing and stance phase. It is important for the robot 

to move such that the links move slightly ahead of the user’s body to push the upper thigh. 

Otherwise, the robot would interfere with the legs' natural motion and it would cause 

discomfort. Using the force data provided by neural network trained models, it is possible 

to predict the next step of the user. During past decades many researchers studied human 

walking gait and their reports showed that most people have the same gait cycle when they 

are walking naturally with normal walking speed. Figure 5.3 demonstrates Generic healthy 

adult’s gait cycle while walking with normal speed. As you can see, a healthy adult’s 

walking is in the swing phase approximately 38% of each gait cycle and the rest (62%) is 

in the stance phase [75]. In Figure 5.3, DS and SS are double support and single support, 

respectively.  
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Figure 5.3. Generic healthy adult’s gait cycle while walking with normal speed [75] 

     Therefore, using the normal walking gait of the robot user and detecting walking steps, 

it is possible to move the robot’s joint based on the user’s body. In addition, based on the 

limitation of the SPM’s Maxon motors’ angular velocity, the walking speed of the user was 

limited to around 0.4 m/s. Therefore, it is possible to predict the next step of the user and 

move the robot’s link slightly ahead of it in order to push the user’s body and assist him 

while walking. In order to assist the user’s walking, the exoskeleton provides additional 

force to help swinging the legs in each step. In my experiment, the hip exoskeleton was 

programmed to move the user’s thigh at about 5% prior to the start of the swing or the 

stance phase of the user’s gait. This amount was chosen based on trial and error during our 

human subject testing. The important difference between this method and making an 

offline predefined motion for the robot is that step detection is resetting each section of 

walking cycle. Therefore, if the user stops moving or each phase of the cycle takes a 

different amount of time, it can be detected based on 𝐹𝑍 value. Therefore whenever the 

force value of the trained model for 𝐹𝑍 of stance foot is almost zero, it shows that the other 

foot is in swing phase and whenever it is not almost zero it means that the other foot is on 

the ground. As you can see in section 3.2, the algorithm uses 21 steps of the data which 
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means that algorithm predicts the force value based on the change of the angle and not only 

based on the real-time amount of angle, angular velocity or angular acceleration which is 

another benefit of this method for detecting gait phases. Figure 5.4 shows a healthy adult’s 

gait cycle and the exoskeleton’s corresponding actuation points (in red). As it can be seen 

in the figure, when approximately 57% point of the user’s walking cycle (from the start of 

the stance phase) has been reached, the exoskeleton’s motion transfer mechanism starts to 

swing forward which pushes the user’s thigh in the flexion direction. Next, the NN model 

detects the step and then after 33% from the start of the swing phase, the device swings 

backward which applies force on the user’s thigh in the extension direction.  

 

Figure 5.4. Robots gait cycle based on human walking motion 

5.2. Control Loop Performance Analysis 

In order to analyze performance of the proposed method, two scenarios were tested for 

comparison purposes. In the first scenario, the exoskeleton was powered off and the user 

simply walked while donning the hip exoskeleton. In the second scenario, the robot was 

powered on and tracked the user’s thigh based on the Inverse Kinematic (IK) model 

developed by Sadeqi et al. in [35]. Based on their work, the robot can follow the user’s 

body and imitate the motion. It needs to be mentioned that in this case, the exoskeleton 

robot is the follower of the user’s motion and therefore the user needs to push the robot to 

be able to move. Therefore, the robot not only doesn’t help the user to walk easier, but it 
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also makes the user exhausted. The second case can show the difference between the 

proposed method and the case that the robot is only imitating the user’s motion. Due to 

similarity between walking steps, the results for one of the steps are provided as follows. 

Figure 5.5 demonstrates applying interaction force between the user’s body and robot in 

the attachment point recorded by the load-cell with respect to knee angle as a reference.  

 

Figure 5.5. The exoskeleton and user’s interaction force vs. the knee angle when the exoskeleton is 

powered off 

As you can see in Figure 5.5, in this scenario, the user is pushing the powered-off 

exoskeleton and the exoskeleton-user interface force value (the dotted line) changes as user 

walks in the gait cycle. 

In the second scenario, the robot is moving based on the user’s body and robot link follows 

user’s upper thigh based on the inverse kinematics developed in [35]. One of the randomly 

chosen walking step’s result is provided in Figure 5.6. 
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Figure 5.6. The exoskeleton and user’s interaction force vs. the knee angle when the exoskeleton is 

following the user’s motion 

 

     Figure 5.6 demonstrates that in this scenarios robot is moving after body motion and 

can not apply assistive force on the user’s body. Therefore, in the second scenario robot is 

avoiding user to move properly and therefore the interaction force is higher than first case. 

In addition, a direct comparison between the two scenarios shows that the maximum 

interaction force is around 15N when the exoskeleton is not actuating, while it is around 

35N when the device is actuated based on the user’s IK model. This implies that the user 

exerts more effort during walking in order to work against the exoskeleton when the 

exoskeleton’s motion is generated based on the user’s IK model. 

     In the last scenario which is the algorithm defined in this project, robot is assisting the 

user and pushes the upper thigh by applying torque using agile eye mechanism. Figure 5.7 

shows the applied force by the exoskeleton on the user’s thigh when the proposed assistive 

control with NN-based step detection is used.  
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Figure 5.7. The exoskeleton-user interaction force vs. the knee angle with the proposed 

assistive control with NN-based step detection 

 

By comparing Figure 5.7 against Figure 5.5 and Figure 5.5, it can be seen that the 

exoskeleton is actuating slightly ahead of the user and pushing on the thigh and assisting 

with the gait at all times. In the case that exoskeleton is powered off or working based on 

the IK model, the interaction forces are increasing whenever the user starts walking. 

However, in the proposed method, the interaction force starts slightly before the user’s 

walking initiation (starting point of the plots in Figure 5.7) which shows that exoskeleton 

is exerting force on the user’s upper thigh. In addition, during the gait cycle, the direction 

of the force exerted by the exoskeleton on the user’s thigh changes when the user starts the 

double stance phase – this assists the user by pushing back the thigh in this phase. 
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Chapter 6. Conclusion  

 

This chapter summarizes the results and findings of this project. Afterward, 

recommendations for future work are presented. 

6.1. Conclusion 

In this project, motion generation for a wearable hip exoskeleton robot is presented. The 

main objective of this project was to use mathematical models for ground reaction forces 

and moments (GRF/M) trained with machine learning algorithms instead of actual force or 

pressure sensors. For this purpose, neural network, random forest and support vector 

machine (SVM) algorithms were utilized to find the most suitable and accurate model. In 

order to acquire the required data for training models, 10 healthy young adults were asked 

to walk on a treadmill with different speed and GRF/M data was acquired using sensors 

implemented in the treadmill. Moreover, the motion of the lower limb was recorded using 

attached markers on the body and motion capture cameras. Data acquired from 8 subjects 

were used as training data and 2 remaining subjects as test data. The results showed that 

the neural network and random forest methods were able to estimate GRF/M more 

accurately. Also, random forest algorithm was cable of estimating 𝑀𝑍 with higher accuracy 

with respect to available studies.  

     In the second part of the project, the trained models were used for generating motion of 

a hip flexion-extension joint of the exoskeleton robot which utilizes agile eye mechanism 

in order to assist the user to walk easier. The models were supposed to provide GRF/M 

data in an online control loop. The tests showed that only neural network was capable of 

estimating GRF/M data while using the exoskeleton. Also, it should be mentioned that 

using provided PC for this study, at best 4 components of GRF/M were estimated 

accurately in online mode. But these data still could be used for generating motion of the 

robot. Also, trained models can be used as a sensor for studying the motion of the user after 

test is done. Based on the 𝐹𝑍 value from the neural network model, the walking steps of 

the user were detected. Whenever the force value of a leg was around zero it was counted 



50 

as moving in swing phase and in other cases it was counted as stance phase. Based on the 

available studies, most healthy adults have similar walking phases. Generically, healthy 

adults are in stance phase 62% of their walking gait cycle and 38% in the swing phase. 

Hence, after detecting each step, the robot estimated the next step of the user’s motion and 

moved the robot’s link slightly before the time user intended to move the upper thigh. 

Therefore, in all steps of walking gait cycle, the exosksleton is pushing the upper thigh and 

assist the user to walk easier.  

      The presented method was compared with two other cases. In the first case, the 

exoskeleton is inactive and the interaction force between robot and user’s body was 

acquired. In the second case, the exoskeleton was following user’s upper thigh motion 

based on developed inverse kinematic models. The interaction forces showed that in the 

second case, exoskeleton is pushing the body back and makes walking harder. The 

comparison between the three scenarios demonstrated that in the presented method robot 

is moving slightly before the user’s motion and is assisting the user to apply less torque by 

the hip joint. 

6.2. Future Studies 

In order to continue this study, it is necessary to design a lighter robot that can be used for 

the purpose of reducing the consumed energy of its user. Although, this study helped the 

exoskeleton robot user to apply less torque by the hip joint, but due to heavy structure of 

the exoskeleton the consumed energy is still higher than normal. Using lighter material can 

reduce weight of the robot. Also, the mechanism needs to be redesigned to reduce backlash 

in each joint. The reason is that in the existence of the backlash, the legs can move slightly 

in the mechanism and it is harder to design control strategy for them.  

     Furthermore, the utilized computing system (PC) in this study was capable of estimating 

four trained models at best. But using more advanced computing systems it can be possible 

to estimate all components of the GRF/M which can be used for development of better 

controllers for the robot. Moreover, training models based on data provided by more 

participants can increase accuracy of the trained models.  
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     Moreover, utilized motors in the robots were only working in position control mode. 

Using torque controlled motors better control algorithms can be used which can improve 

performance of the robot.  

     Different machine learning algorithms can be used on the available data as well to have 

a better comparison between available machine learning algorithms. Another suggestion is 

to find models for GRF/M data based on one DoF of the leg (hip flexion-extension as an 

example). In that case, even IMUs implemented in cell-phones can be used as input to the 

models and no other sensors are needed to be attached to the exoskeleton user.  

     In this study, the motion generation for the exoskeleton robot is only for the hip flexion-

extension joint. In the next step, motion generation can be done for the other hip joints (hip 

abduction-adduction and hip rotation).  
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Appendix A.   
 

Maxon (DCX32L GB KL 18V) motor datasheet: 

 

 
Figure 6.1. Datasheet of the maxon motor used in the SPM mechanism of the hip exoskeleton 
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Planetary gearhead (GPX37 LZ 172:1) datasheet: 

 

 
 

 

Figure 6.2. Datasheet of gearhead used for the maxon motor 
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Appendix B.  

As a part of this project, I tried to derive a dynamic model for lower limb of a healthy adult 

in order to find the applying torque of each degree of freedom of lower body joints while 

walking. The plan was to compensate a part of the calculated torque of the hip flexion-

extension joint using the hip exoskeleton robot. Therefore, lower limb of a person was 

assumed as a biped with 6 DoF in each leg and utilized Newton-Euler and Lagrange 

methods to derive dynamic models. The reason that Newton-Euler method was chosen is 

that this method is analytical and can calculate the joint torques with high speed. Lagrange 

method was used as a verification method. If the torque results for a sample motion was 

similar between these two methods, it means each one of these methods are verified. These 

models needed GRF/M as input to calculate torque of each joint and my first goal was to 

estimate these forces using machine learning algorithms. But as may have seen in Chapter 

5, it was only possible to predict up to four components of the GRF/M which wasn’t enough 

for estimating torques of each joint of lower body. Therefore, another strategy was applied 

for motion generation of the robot (Section 5.1).  

     In this appendix, dynamic modeling of lower limb of a healthy adult using Newton-

Euler and Lagrange is discussed. Also, a comparison between these two methods will 

verify each of the derived models. Before that, it is necessary to find Denavit-Hartenberg 

parameters which are necessary for finding rotation and translation matrices for the 

dynamic models. The coordinate systems of biped joints are positioned and oriented as you 

can see in following figure based on the general instruction of Denavit-Hartenberg method.  

Only Z and X axes are presented for simplification. 
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Figure 6.3. Coordinate systems of a biped based on Denavit-Hartenberg’s procedure 

 

Based on the coordinates presented in Figure 6.3 and Denavit-Hartenberg 

procedures, table of parameters for rotation and translation matrices can be seen in Table 

6.1. 
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Table 6.1 Biped parameters for Denavit-Hartenberg procedure 

𝑖 𝑎𝑖−1 𝛼𝑖−1 𝑑𝑖 𝜃𝑖 

1 0 0 0 𝜃1 

2 0 90 0 𝜃2 + 90 

3 0 90 0 𝜃3 + 180 

4 𝐿1 90 0 𝜃4 + 90 

5 𝐿2 -90 0 𝜃5 

6 0 90 0 𝜃6 + 90 

7 0 90 0 𝜃7 − 90 

8 𝐿3 -90 0 𝜃8 

9 0 90 0 𝜃9 − 90 

10 0 90 0 𝜃10 − 90 

11 𝐿2 0 0 𝜃11 

12 𝐿1 90 0 𝜃12 + 180 

13 0 90 0 𝜃13 + 90 

14 0 90 0 𝜃14 

 

In the Table 6.1, 𝐿1, 𝐿2 and 𝐿3 are distances between ankle and knee, knee and hip 

and distance between two hips of the user, respectively. The transfer matrices can be found 

based on the values mentioned in Table 6.1 and following formula. 

𝑇𝑖
𝑖−1 = [

cos𝜃𝑖 −𝑠𝑖𝑛𝜃𝑖 0 𝑎𝑖−1

sin𝜃𝑖  𝑐𝑜𝑠𝛼𝑖−1 cos 𝜃𝑖 𝑐𝑜𝑠𝛼𝑖−1 −𝑠𝑖𝑛𝛼𝑖−1 −𝑠𝑖𝑛𝛼𝑖−1𝑑𝑖

sin𝜃𝑖  𝑠𝑖𝑛𝛼𝑖−1 cos𝜃𝑖  𝑠𝑖𝑛𝛼𝑖−1 𝑐𝑜𝑠𝛼𝑖−1 𝑐𝑜𝑠𝛼𝑖−1𝑑𝑖

0 0 0 1

] 

 

 Newton-Euler 

In order to calculate joints’ torque of biped robot using newton-euler method, it is necessary 

to calculate position, angular velocity and angular acceleration of COM(center of mass) of 

each limb. These calculations can be done recursively and it should start from first joint 

toward the last one. Following formulas are needed to be calculated recursively in order to 

find all required information [76]. 
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Outward Iteration: i=0 to 13 

 

Inward Iteration: i=14 to 1 

 

By having angle (θ), angular velocity and acceleration (θ̇, θ̈) of each joint, approximate 

weight and inertial information (m,I) of each limb and distance between joints(P), it is 

possible to estimate the applying torque(τ) of each joint of the body while user is walking. 

Important missing information in the formulas are GRF/M which could be estimated from 

machine learning models. However, in order to find θ, θ̇, θ̈ of all body joints, several IMUs 

need to be attached to the body and in the online closed-loop, they could not perform 

properly and machine learning models could not estimate GRF/M correctly. 

 

 Lagrange 

In order to verify the Newton-Euler method, the Lagrange method is developed. The 

equations of motion for a mechanical system with generalized coordinates q and 

Lagrangian L are [77]: 
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𝐿(𝑞, 𝑞̇) = 𝑇(𝑞, 𝑞̇) − 𝑉(𝑞) 

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞̇
−  

𝜕𝐿

𝜕𝑞
= 𝜏 

where F,T and V are external force acting on the whole body, kinetic energy and potential 

energy, respectively. In order to use these equations, center of mass of each joint is 

considered as a pendulum and kinetic and potential energy formulation for all biped limb 

is derived. In the next step, using lagrangian formulas, torque of each joint is calculated.  

 

 Verification of Two models 

In order to compare these two models, one random and similar motion for the end-effector 

of the biped (right leg as an example) is considered and torque of each joint calculated from 

two methods are compared. For this purpose, the biped limb lengths and weights are 

considered as can be seen in Figure 6.4. 

 

Figure 6.4. Mass distribution and length considered as an example for verification of two dynamic 

models 
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In order to test two developed dynamic models, a sample motion was generated for a 

random joint. Therefore, a motion from zero to 45 degrees in 2 seconds was generated for 

left hip abductiuon-adduction joint and the torque on the right inversion-deversion ankle 

joint was calculated with both methods. Figure 6.5, shows the trajectory of the moving leg 

in 2D. 

 

Figure 6.5. Generated motion for the hip joint as an example 

After generating the motion, angle,angular velocity and angular acceleration of all joints 

was imported into dynamic models and the result was calculated. It should be mentioned 

that the calculation with newton-euler method was drastically faster as expected. 

Figure 6.6, shows the calculated torques with lagrange and newton-euler methods and both 

are highly similar. Other motions have been tested with these two methods and all had the 

same results for all joints. Therefore, both methods were verified and could be used to 

estimate the torque of all body joints. 
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Figure 6.6. Calculated torques with two methods for the sample generated motion  
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Appendix C.   

Python code for training GRF/M models with neural network method 

 
# -*- coding: utf-8 -*- 

 

import numpy as np 

import csv 

 

from keras.models import Sequential 

from keras.layers import Dense, Activation 

from keras import optimizers 

from keras import backend as K 

 

import matplotlib.pyplot as plt 

 

 

x_train=[] 

y_train=[] 

x_test=[] 

y_test=[] 

 

# load training dataset 

traindata = np.loadtxt("input_train_forRealRobot_0.4_knee_ang.csv", delimiter=",") 

 

# split into input (X) and output (Y) variables 

x_train = traindata 

OutputTrain =np.loadtxt("output_train_filtered_forRealRobot_0.4_knee_ang.csv", delimiter=",") 

 

y_train = OutputTrain[:,2] 

  

# load testing dataset 

testdata = np.loadtxt("input_test_forRealRobot_0.4_knee_ang.csv", delimiter=",") 

 

# split into input (X) and output (Y) variables 

OutputTest = np.loadtxt("output_test_filtered_forRealRobot_0.4_knee_ang.csv", delimiter=",") 

 

x_test= testdata 

y_test = OutputTest[:,2] 

 

 

 

x_train=np.array(x_train) 

x_test=np.array(x_test) 

y_train=np.array(y_train) 

y_test=np.array(y_test) 

print(x_train[0][0]) 

         

 

model = Sequential() 

model.add(Dense(150, activation="relu", input_dim=24, use_bias=False)) 

model.add(Dense(150, activation="relu", use_bias=True))   



69 

model.add(Dense(150, activation="relu", use_bias=True))   

model.add(Dense(150, activation="relu", use_bias=True))   

model.add(Dense(150, activation="relu", use_bias=True))   

model.add(Dense(150, activation="relu", use_bias=True))   

model.add(Dense(1,activation="linear"))  

 

model.compile(optimizer='rmsprop',loss='mse') 

 

 

model.summary() 

 

batch_size = 2 

num_epochs = 5 

 

history=model.fit(x_train,y_train,epochs=num_epochs,batch_size=batch_size, validation_split=0.15) 

 

outval=model.evaluate(x=x_test, y=y_test, batch_size=1, verbose=1) 

outval 

 

my_array=model.predict( x_test, batch_size=1, verbose=1) 

my_array=my_array*cf 

============================================================= 

plt.plot(my_array) 

plt.plot(y_test,'r') 

plt.axis([14500,15500,-100,1000]) 

plt.ylabel('force') 

plt.xlabel('num') 

plt.show() 

 

np.savetxt("predicted_output.csv", my_array, delimiter=",") 

 

model.save('convnet_exo.h5') 

model.save_weights('convnet_exo_weights_60hz_30on60.h5') 

print('model saved') 

 

tr_y_test=np.transpose(y_test) 

res_data=[my_array,tr_y_test] 

print(history.history.keys()) 

 

 

 

MATLAB code for training GRF/M models with support vector machine method: 
 

input_train=csvread('H:\Thesis\Codes\input_train.csv'); 

output_train=csvread('H:\Thesis\Codes\output_train.csv'); 

  

input_test=csvread('H:\Thesis\Codes\input_test.csv'); 

output_test=csvread('H:\Thesis\Codes\output_test.csv'); 

 

 

%% Prepare Cross-Validation and variables for Bayesian Optimization 

c = cvpartition((length(input_train)),'KFold',10); 

sigma = optimizableVariable('sigma',[2.^(-

5),2.^(5)],'Type','real','Transform','none'); 
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box = optimizableVariable('box',[2.^(-

5),2.^(5)],'Type','real','Transform','none'); 

eps = optimizableVariable('eps',[2.^(-

8),2.^(4)],'Type','real','Transform','none'); 

 

minfn1 = 

@(z)kfoldLoss(fitrsvm(input_train,output_train(:,3),'CVPartition',c,... 

    

'KernelFunction','rbf','Standardize',true,'BoxConstraint',z.box,'KernelScale',z

.sigma,'Epsilon',z.eps)); 

results1 = bayesopt(minfn1,[sigma,box,eps],'IsObjectiveDeterministic',true,... 

    'AcquisitionFunctionName','expected-improvement-plus') 

 

%% Training using optimized parameters 

 

x(1) = results1.XAtMinObjective.sigma; 

x(2) = results1.XAtMinObjective.box; 

x(3) = results1.XAtMinObjective.eps; 

x=[14.559   , 31.988   , 15.895]; 

Mdl1 = fitrsvm(input_train,output_train(:,3),'KernelFunction','rbf',... 

    'Standardize',true,'KernelScale',x(1),'BoxConstraint',x(2),'Epsilon',x(3)); 

 

%% Save the model 

save(sprintf('SVM_RBFRegModel_GRFz_201802'), 'Mdl1'); 

 

%% Makig predictions from the trained model 

Mdl1_GRFz = predict(Mdl1,input_test); 

Actual_GRFz = output_test(:,3); 

plot(Mdl1_GRFz,'r') 

hold on 

plot(Actual_GRFz) 

Tbl_op = table(Actual_GRFz,Mdl1_GRFz); 

R2_RF = 1 - sum((Actual_GRFz - Mdl1_GRFz).^2)/sum((Actual_GRFz -

nanmean(Actual_GRFz)).^2) 

 

MATLAB code for training GRF/M models with random forest method 

t_RF_start = tic; 

  

input_train=csvread('H:\Thesis\Codes\input_train_forRealRobot_0.4.csv'); 

output_train_filtered=csvread('H:\Thesis\Codes\output_train_filtered_forRealRobot_0.4.csv

'); 

  

input_test=csvread('H:\Thesis\Codes\input_test_forRealRobot_0.4.csv'); 

output_test_filtered=csvread('H:\Thesis\Codes\output_test_filtered_forRealRobot_0.4.csv')

; 

  

mdl_RF = 

TreeBagger(150,input_train,output_train_filtered(:,3),'OOBPred','On','Method','regression

','OOBVarImp','on','OOBPredictorImportance','on'); 

save('model_Fz_forRealRobot_0.4.mat','mdl_RF'); 

%% 

PREDL_RF =  predict(mdl_RF, input_test); 

R2_RF = 1 - sum((output_test_filtered(:,3) - PREDL_RF).^2)/sum( 

(output_test_filtered(:,3) - nanmean(output_test_filtered(:,3))).^2) 

RMSE_RF = sqrt(sum((output_test_filtered(:,3) - 

PREDL_RF).^2)/length(output_test_filtered(:,3))) 

Max_Y_RF = max(output_test_filtered(:,3)); 

Min_Y_RF = min(output_test_filtered(:,3)); 
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Range_Y_RF = max(output_test_filtered(:,3))-min(output_test_filtered(:,3)); 

RMSEN_RF = RMSE_RF/Range_Y_RF; 

t_RF_sum = toc(t_RF_start); 

  

plot(PREDL_RF) 

hold on 

plot(output_test_filtered(:,3)) 

  

%% 

imp = mdl_RF.OOBPermutedPredictorDeltaError; 

figure; 

bar(imp); 

title('Curvature Test'); 

ylabel('Predictor importance estimates'); 

xlabel('Predictors'); 

h = gca; 

h.XTickLabel = mdl_RF.PredictorNames; 

h.XTickLabelRotation = 45; 

h.TickLabelInterpreter = 'none'; 

 

MATLAB codes for Newton-Euler dynamic model: 

%%Right Foot is Moving and Left foot is stable on the ground 

 

clear all 

clc 

close(figure(1),figure(2),figure(3)) 

 

%% Test Data 

NoD=46; 

T=2; 

dt=T/NoD; 

time=dt:dt:T; 

 

teta1=zeros(NoD,1); 

teta2=zeros(NoD,1); 

teta3=zeros(NoD,1); 

teta4=[0:-1:-45].'*pi/180; 

teta5=zeros(NoD,1); 

teta6=zeros(NoD,1); 

teta7=zeros(NoD,1); 

teta8=[0:-1:-45].'*pi/180; 

teta9=zeros(NoD,1);  %% Z9 and Z10 or opposit wrt to Newton Euler  %% 

teta10=[0:-1:-45].'*pi/180; 

teta11=zeros(NoD,1); 

teta12=zeros(NoD,1); 

teta13=zeros(NoD,1); 

teta14=zeros(NoD,1); 

 

%% 

for i=2:NoD 

    qdot1(i)=[teta1(i)-teta1(i-1)]/dt; 

    qdot2(i)=[teta2(i)-teta2(i-1)]/dt; 

    qdot3(i)=[teta3(i)-teta3(i-1)]/dt; 

    qdot4(i)=[teta4(i)-teta4(i-1)]/dt; 

    qdot5(i)=[teta5(i)-teta5(i-1)]/dt; 

    qdot6(i)=[teta6(i)-teta6(i-1)]/dt; 

    qdot7(i)=[teta7(i)-teta7(i-1)]/dt; 

    qdot8(i)=[teta8(i)-teta8(i-1)]/dt; 

    qdot9(i)=[teta9(i)-teta9(i-1)]/dt; 

    qdot10(i)=[teta10(i)-teta10(i-1)]/dt; 

    qdot11(i)=[teta11(i)-teta11(i-1)]/dt; 

    qdot12(i)=[teta12(i)-teta12(i-1)]/dt; 

    qdot13(i)=[teta13(i)-teta13(i-1)]/dt; 

    qdot14(i)=[teta14(i)-teta14(i-1)]/dt; 

 

end 

 

for i=2:NoD 

    dqdot1(i)=[qdot1(i)-qdot1(i-1)]/dt; 

    dqdot2(i)=[qdot2(i)-qdot2(i-1)]/dt; 

    dqdot3(i)=[qdot3(i)-qdot3(i-1)]/dt; 
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    dqdot4(i)=[qdot4(i)-qdot4(i-1)]/dt; 

    dqdot5(i)=[qdot5(i)-qdot5(i-1)]/dt; 

    dqdot6(i)=[qdot6(i)-qdot6(i-1)]/dt; 

    dqdot7(i)=[qdot7(i)-qdot7(i-1)]/dt; 

    dqdot8(i)=[qdot8(i)-qdot8(i-1)]/dt; 

    dqdot9(i)=[qdot9(i)-qdot9(i-1)]/dt; 

    dqdot10(i)=[qdot10(i)-qdot10(i-1)]/dt; 

    dqdot11(i)=[qdot11(i)-qdot11(i-1)]/dt; 

    dqdot12(i)=[qdot12(i)-qdot12(i-1)]/dt; 

    dqdot13(i)=[qdot13(i)-qdot13(i-1)]/dt; 

    dqdot14(i)=[qdot14(i)-qdot14(i-1)]/dt; 

end 

 

%%     

    

qdot1(1)=qdot1(2);qdot2(1)=qdot2(2);qdot3(1)=qdot3(2);qdot4(1)=qdot4(2);qdot5(1)=qdot5(2)

;qdot6(1)=qdot6(2);qdot7(1)=qdot7(2);qdot8(1)=qdot8(2);qdot9(1)=qdot9(2);qdot10(1)=qdot10

(2);qdot11(1)=qdot11(2);qdot12(1)=qdot12(2);qdot13(1)=qdot13(2);qdot14(1)=qdot14(2);dqdot

1(1) =dqdot1(3);dqdot2(1) =dqdot2(3);dqdot3(1) =dqdot3(3);dqdot4(1) =dqdot4(3);dqdot5(1) 

=dqdot5(3);dqdot6(1) =dqdot6(3);dqdot7(1) =dqdot7(3);dqdot8(1) =dqdot8(3);dqdot9(1) 

=dqdot9(3);dqdot10(1)=dqdot10(3);dqdot11(1)=dqdot11(3);dqdot12(1)=dqdot12(3);dqdot13(1)=d

qdot13(3);dqdot14(1)=dqdot14(3);   dqdot1(2) =dqdot1(3);dqdot2(2) =dqdot2(3);dqdot3(2) 

=dqdot3(3);dqdot4(2) =dqdot4(3);dqdot5(2) =dqdot5(3);dqdot6(2) =dqdot6(3);dqdot7(2) 

=dqdot7(3);dqdot8(2) =dqdot8(3);dqdot9(2) 

=dqdot9(3);dqdot10(2)=dqdot10(3);dqdot11(2)=dqdot11(3);dqdot12(2)=dqdot12(3);dqdot13(2)=d

qdot13(3);dqdot14(2)=dqdot14(3);  

     

walk_data=[teta1,teta2,teta3,teta4,teta5,teta6,teta7,teta8,teta9,teta10,teta11,tet

a12,teta13,teta14]; 

%% 

m1=0; %mass of lower thigh 

m1_2=0; m1_3=7; 

m2=9; %mass of upper thigh 

m3=0; % mass of upper body 

m3_2=0; m3_3=20; 

m4=0; % mass of upper thigh 

m4_2=0; m4_3=9; 

m5=7; % mass of lower thigh 

m6=0; %mass of foot 

m6_2=0; m6_3=2; 

 

lS2c=0.05;         

lA2c=0.2; 

lK2c=0.45/2; 

lH2cy=0.15; 

lH2cz=0.4; 

rK2cz=0.2; 

rA2cz=0.08; 

rH2cz=0.45/2; 

 

lA2K=0.4; %length of lower thigh 

lK2H=0.45; 

lH2rH=0.3; 

rH2K=0.45; 

rK2A=0.4; 

lS2A=0.1; 

data_save=zeros(NoD,1); 

%% 

for i=1:NoD 

w00=[0;0;0]; 

dw00=[0;0;0]; 

dq1=0; 

ddq1=0; 

v00=[0;0;0]; 

dv00=[9.81;0;0]; 

% i=1: Left Ankle Qx 

R01=[cos(teta1(i)), -sin(teta1(i)), 0; 

     sin(teta1(i))*cos(0) ,cos(teta1(i))*cos(0) ,-sin(0); 

     sin(teta1(i))*sin(0) ,cos(teta1(i))*sin(0) , cos(0)]; 

R10=R01.'; 

Z11=[0;0;1]; 
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P01=[0;0;0]; 

Pc11=[0;0;0]; 

RAdq1=qdot1(i); %???input 

RAddq1=dqdot1(i); %???input 

dq1=RAdq1; 

ddq1=RAddq1; 

lc1=0.3; %??? 

Ic11=[1,0,0; 

      0,1,0; 

      0,0,1];  

w11(:,i)=R10*w00+dq1*Z11; 

dw11(:,i)=R10*dw00+cross(R10*w00,dq1*Z11)+ddq1*Z11; 

v11(:,i)=R10*(v00+cross(w00,P01)); 

dv11(:,i)=R10*(cross(dw00,P01)+cross(w00,cross(w00,P01))+dv00); 

dvc11(:,i)=cross(dw11(:,i),Pc11)+cross(w11(:,i),cross(w11(:,i),Pc11))+dv11(:,i); 

F11(:,i)=m1*dvc11(:,i); 

N11(:,i)=Ic11*dw11(:,i)+cross(w11(:,i),Ic11*w11(:,i)); 

 

% i=2: Left Ankle Qy 

R12=[cos(teta2(i)+pi/2)      ,    -sin(teta2(i)+pi/2)   ,     0   ; 

     sin(teta2(i)+pi/2)*cos(pi/2), cos(teta2(i)+pi/2)*cos(pi/2), -sin(pi/2); 

     sin(teta2(i)+pi/2)*sin(pi/2), cos(teta2(i)+pi/2)*sin(pi/2),  cos(pi/2)]; 

R21=R12.'; 

Z22=[0;0;1]; 

P12=[0;0;0]; 

Pc22=[0;0;0] 

LAdq2=qdot2(i); 

LAddq2=dqdot2(i) 

dq2=LAdq2;%???input 

ddq2=LAddq2;%???inpu 

lc1=0.3; %??? 

Ic22=[1,0,0; 

      0,1,0; 

      0,0,1];   

w22(:,i)=R21*w11(:,i)+dq2*Z22; 

dw22(:,i)=R21*dw11(:,i)+cross(R21*w11(:,i),dq2*Z22)+ddq2*Z22; 

v22(:,i)=R21*(v11(:,i)+cross(w11(:,i),P12)); 

dv22(:,i)=R21*(cross(dw11(:,i),P12)+cross(w11(:,i),cross(w11(:,i),P12))+dv11(:,i))

; 

dvc22(:,i)=cross(dw22(:,i),Pc22)+cross(w22(:,i),cross(w22(:,i),Pc22))+dv22(:,i); 

F22(:,i)=m1_2*dvc22(:,i); 

N22(:,i)=Ic22*dw22(:,i)+cross(w22(:,i),Ic22*w22(:,i)); 

 

% i=3: Left Ankle Qz 

 

R23=[cos(teta3(i)+pi)      ,    -sin(teta3(i)+pi)   ,     0   ; 

     sin(teta3(i)+pi)*cos(pi/2), cos(teta3(i)+pi)*cos(pi/2), -sin(pi/2); 

     sin(teta3(i)+pi)*sin(pi/2), cos(teta3(i)+pi)*sin(pi/2),  cos(pi/2)]; 

R32=R23.'; 

Z33=[0;0;1]; 

P23=[0;0;0]; 

Pc33=[0;0;lA2c]; 

LAdq3=qdot3(i); 

LAddq3=dqdot3(i); 

dq3=LAdq3;%???input 

ddq3=LAddq3;%???input 

m1_3=7;%??? mass of lower thigh 

lc1=0.3; %??? 

Ic33=[1,0,0; 

      0,1,0; 

      0,0,1]; 

   

w33(:,i)=R32*w22(:,i)+dq3*Z33; 

dw33(:,i)=R32*dw22(:,i)+cross(R32*w22(:,i),dq3*Z33)+ddq3*Z33; 

v33(:,i)=R32*(v22(:,i)+cross(w22(:,i),P23)); 

dv33(:,i)=R32*(cross(dw22(:,i),P23)+cross(w22(:,i),cross(w22(:,i),P23))+dv22(:,i))

; 

dvc33(:,i)=cross(dw33(:,i),Pc33)+cross(w33(:,i),cross(w33(:,i),Pc33))+dv33(:,i); 

F33(:,i)=m1_3*dvc33(:,i); 

N33(:,i)=Ic33*dw33(:,i)+cross(w33(:,i),Ic33*w33(:,i)); 
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% i=4: Left Knee Q 

 

R34=[cos(teta4(i)+pi/2)      ,    -sin(teta4(i)+pi/2)   ,     0   ; 

     sin(teta4(i)+pi/2)*cos(pi/2), cos(teta4(i)+pi/2)*cos(pi/2), -sin(pi/2); 

     sin(teta4(i)+pi/2)*sin(pi/2), cos(teta4(i)+pi/2)*sin(pi/2),  cos(pi/2)]; 

R43=R34.'; 

Z44=[0;0;1]; 

P34=[0;0;lA2K]; 

Pc44=[lK2c;0;0] 

LKdq4=qdot4(i); 

LKddq4=dqdot4(i) 

dq4=LKdq4;%???input 

ddq4=LKddq4;%???inpu 

lc1=0.3; %??? 

Ic44=[1,0,0; 

       0,1,0; 

       0,0,1];   

w44(:,i)=R43*w33(:,i)+dq4*Z44; 

dw44(:,i)=R43*dw33(:,i)+cross(R43*w33(:,i),dq4*Z44)+ddq4*Z44; 

v44(:,i)=R43*(v33(:,i)+cross(w33(:,i),P34)); 

dv44(:,i)=R43*(cross(dw33(:,i),P34)+cross(w33(:,i),cross(w33(:,i),P34))+dv33(:,i))

; 

dvc44(:,i)=cross(dw44(:,i),Pc44)+cross(w44(:,i),cross(w44(:,i),Pc44))+dv44(:,i); 

F44(:,i)=m2*dvc44(:,i); 

N44(:,i)=Ic44*dw44(:,i)+cross(w44(:,i),Ic44*w44(:,i)); 

% i=5: Left Hip Qx 

R45=[cos(teta5(i))      ,    -sin(teta5(i))   ,     0   ; 

     sin(teta5(i))*cos(-pi/2), cos(teta5(i))*cos(-pi/2), -sin(-pi/2); 

     sin(teta5(i))*sin(-pi/2), cos(teta5(i))*sin(-pi/2),  cos(-pi/2)]; 

R54=R45.'; 

Z55=[0;0;1]; 

P45=[lK2H;0;0]; 

Pc55=[0;0;0]; 

LHdq5=qdot5(i); 

LHddq5=dqdot5(i); 

dq5=LHdq5;%???input 

ddq5=LHddq5;%???input 

lc1=0.3; %??? 

Ic55=[1,0,0; 

      0,1,0; 

      0,0,1];    

w55(:,i)=R54*w44(:,i)+dq5*Z55; 

dw55(:,i)=R54*dw44(:,i)+cross(R54*w44(:,i),dq5*Z55)+ddq5*Z55; 

v55(:,i)=R54*(v44(:,i)+cross(w44(:,i),P45)); 

dv55(:,i)=R54*(cross(dw44(:,i),P45)+cross(w44(:,i),cross(w44(:,i),P45))+dv44(:,i))

; 

dvc55(:,i)=cross(dw55(:,i),Pc55)+cross(w55(:,i),cross(w55(:,i),Pc55))+dv55(:,i); 

F55(:,i)=m3*dvc55(:,i); 

N55(:,i)=Ic55*dw55(:,i)+cross(w55(:,i),Ic55*w55(:,i)); 

 

% i=6: Left Hip Qy 

R56=[cos(teta6(i)+pi/2)      ,    -sin(teta6(i)+pi/2)   ,     0   ; 

     sin(teta6(i)+pi/2)*cos(pi/2), cos(teta6(i)+pi/2)*cos(pi/2), -sin(pi/2); 

     sin(teta6(i)+pi/2)*sin(pi/2), cos(teta6(i)+pi/2)*sin(pi/2),  cos(pi/2)]; 

 

R65=R56.'; 

Z66=[0;0;1]; 

P56=[0;0;0]; 

Pc66=[0;0;0]; 

LHdq6=qdot6(i); 

LHddq6=dqdot6(i) 

dq6=LHdq6;%???input 

ddq6=LHddq6;%???input 

lc1=0.3; %??? 

Ic66=[1,0,0; 

      0,1,0; 

      0,0,1];    

w66(:,i)=R65*w55(:,i)+dq6*Z66; 

dw66(:,i)=R65*dw55(:,i)+cross(R65*w55(:,i),dq6*Z66)+ddq6*Z66; 

v66(:,i)=R65*(v55(:,i)+cross(w55(:,i),P56)); 
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dv66(:,i)=R65*(cross(dw55(:,i),P56)+cross(w55(:,i),cross(w55(:,i),P56))+dv55(:,i))

; 

dvc66(:,i)=cross(dw66(:,i),Pc66)+cross(w66(:,i),cross(w66(:,i),Pc66))+dv66(:,i); 

F66(:,i)=m3_2*dvc66(:,i); 

N66(:,i)=Ic66*dw66(:,i)+cross(w66(:,i),Ic66*w66(:,i)); 

% i=7: Left Hip Qz 

R67=[cos(teta7(i)-pi/2)      ,    -sin(teta7(i)-pi/2)   ,     0   ; 

     sin(teta7(i)-pi/2)*cos(pi/2), cos(teta7(i)-pi/2)*cos(pi/2), -sin(pi/2); 

     sin(teta7(i)-pi/2)*sin(pi/2), cos(teta7(i)-pi/2)*sin(pi/2),  cos(pi/2)]; 

 

R76=R67.'; 

Z77=[0;0;1]; 

P67=[0;0;0]; 

Pc77=[lH2cy;0;lH2cz]; 

LHdq7=qdot7(i); 

LHddq7=dqdot7(i); 

dq7=LHdq7;%???input 

ddq7=LHddq7;%???input 

 

lc1=0.3; %??? 

Ic77=[1,0,0; 

      0,1,0; 

      0,0,1];     

w77(:,i)=R76*w66(:,i)+dq7*Z77; 

dw77(:,i)=R76*dw66(:,i)+cross(R76*w66(:,i),dq7*Z77)+ddq7*Z77; 

v77(:,i)=R76*(v66(:,i)+cross(w66(:,i),P67)); 

dv77(:,i)=R76*(cross(dw66(:,i),P67)+cross(w66(:,i),cross(w66(:,i),P67))+dv66(:,i))

; 

dvc77(:,i)=cross(dw77(:,i),Pc77)+cross(w77(:,i),cross(w77(:,i),Pc77))+dv77(:,i); 

F77(:,i)=m3_3*dvc77(:,i); 

N77(:,i)=Ic77*dw77(:,i)+cross(w77(:,i),Ic77*w77(:,i)); 

 

% i=8: Right Hip Qx 

R78=[cos(teta8(i))       ,    -sin(teta8(i))   ,     0   ; 

     sin(teta8(i))*cos(-pi/2), cos(teta8(i))*cos(-pi/2), -sin(-pi/2); 

     sin(teta8(i))*sin(-pi/2), cos(teta8(i))*sin(-pi/2),  cos(-pi/2)]; 

R87=R78.'; 

Z88=[0;0;1]; 

P78=[lH2rH;0;0]; 

Pc88=[0;0;0] 

RHdq8=qdot8(i); 

RHddq8=dqdot8(i) 

dq8=RHdq8;%???input 

ddq8=RHddq8;%???input 

 

lc1=0.3; %??? 

Ic88=[1,0,0; 

      0,1,0; 

      0,0,1];  

 

w88(:,i)=R87*w77(:,i)+dq8*Z88; 

dw88(:,i)=R87*dw77(:,i)+cross(R87*w77(:,i),dq8*Z88)+ddq8*Z88; 

v88(:,i)=R87*(v77(:,i)+cross(w77(:,i),P78)); 

dv88(:,i)=R87*(cross(dw77(:,i),P78)+cross(w77(:,i),cross(w77(:,i),P78))+dv77(:,i))

; 

dvc88(:,i)=cross(dw88(:,i),Pc88)+cross(w88(:,i),cross(w88(:,i),Pc88))+dv88(:,i); 

F88(:,i)=m4*dvc88(:,i); 

N88(:,i)=Ic88*dw88(:,i)+cross(w88(:,i),Ic88*w88(:,i)); 

% i=9: Right Hip Qy 

R89=[cos(teta9(i)-pi/2)      ,    -sin(teta9(i)-pi/2)   ,     0   ; 

     sin(teta9(i)-pi/2)*cos(pi/2), cos(teta9(i)-pi/2)*cos(pi/2), -sin(pi/2); 

     sin(teta9(i)-pi/2)*sin(pi/2), cos(teta9(i)-pi/2)*sin(pi/2),  cos(pi/2)]; 

  

R98=R89.'; 

Z99=[0;0;1]; 

P89=[0;0;0]; 

Pc99=[0;0;0]; 

RHdq9=qdot9(i); 

RHddq9=dqdot9(i); 

dq9=RHdq9;%???input 

ddq9=RHddq9;%???input 
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lc1=0.3; %??? 

Ic99=[1,0,0; 

      0,1,0; 

      0,0,1];   

w99(:,i)=R98*w88(:,i)+dq9*Z99; 

dw99(:,i)=R98*dw88(:,i)+cross(R98*w88(:,i),dq9*Z99)+ddq9*Z99; 

v99(:,i)=R98*(v88(:,i)+cross(w88(:,i),P89)); 

dv99(:,i)=R98*(cross(dw88(:,i),P89)+cross(w88(:,i),cross(w88(:,i),P89))+dv88(:,i))

; 

dvc99(:,i)=cross(dw99(:,i),Pc99)+cross(w99(:,i),cross(w99(:,i),Pc99))+dv99(:,i); 

F99(:,i)=m4_2*dvc99(:,i); 

N99(:,i)=Ic99*dw99(:,i)+cross(w99(:,i),Ic99*w99(:,i)); 

% i=10: Right Hip Qz 

R910=[cos(teta10(i)-pi/2)      ,    -sin(teta10(i)-pi/2)   ,     0   ; 

      sin(teta10(i)-pi/2)*cos(pi/2), cos(teta10(i)-pi/2)*cos(pi/2), -sin(pi/2); 

      sin(teta10(i)-pi/2)*sin(pi/2), cos(teta10(i)-pi/2)*sin(pi/2),  cos(pi/2)]; 

  

R109=R910.'; 

Z1010=[0;0;1]; 

P910=[0;0;0]; 

Pc1010=[rH2cz;0;0]; 

RHdq10=qdot10(i); 

RHddq10=dqdot10(i); 

 

dq10=RHdq10;%???input 

ddq10=RHddq10;%???input 

 

lc1=0.3; %??? 

Ic1010=[1,0,0; 

        0,1,0; 

        0,0,1];    

w1010(:,i)=R109*w99(:,i)+dq10*Z1010; 

dw1010(:,i)=R109*dw99(:,i)+cross(R109*w99(:,i),dq10*Z1010)+ddq10*Z1010; 

v1010(:,i)=R109*(v99(:,i)+cross(w99(:,i),P910)); 

dv1010(:,i)=R109*(cross(dw99(:,i),P910)+cross(w99(:,i),cross(w99(:,i),P910))+dv99(

:,i)); 

dvc1010(:,i)=cross(dw1010(:,i),Pc1010)+cross(w1010(:,i),cross(w1010(:,i),Pc1010))+

dv1010(:,i); 

F1010(:,i)=m4_3*dvc1010(:,i); 

N1010(:,i)=Ic1010*dw1010(:,i)+cross(w1010(:,i),Ic1010*w1010(:,i)); 

% i=11: Right Knee Qy 

R1011=[cos(teta11(i))      ,    -sin(teta11(i))   ,     0   ; 

       sin(teta11(i))*cos(0), cos(teta11(i))*cos(0), -sin(0); 

       sin(teta11(i))*sin(0), cos(teta11(i))*sin(0),  cos(0)]; 

R1110=R1011.'; 

Z1111=[0;0;1]; 

P1011=[rH2K;0;0]; 

Pc1111=[rK2cz;0;0]; 

RHdq11=qdot11(i); 

RHddq11=dqdot11(i); 

 

dq11=RHdq11;%???input 

ddq11=RHddq11;%???input 

 

lc1=0.3; %??? 

Ic1111=[1,0,0; 

        0,1,0; 

        0,0,1];  

w1111(:,i)=R1110*w1010(:,i)+dq11*Z1111; 

dw1111(:,i)=R1110*dw1010(:,i)+cross(R1110*w1010(:,i),dq11*Z1111)+ddq11*Z1111; 

v1111(:,i)=R1110*(v1010(:,i)+cross(w1010(:,i),P1011)); 

dv1111(:,i)=R1110*(cross(dw1010(:,i),P1011)+cross(w1010(:,i),cross(w1010(:,i),P101

1))+dv1010(:,i)); 

dvc1111(:,i)=cross(dw1111(:,i),Pc1111)+cross(w1111(:,i),cross(w1111(:,i),Pc1111))+

dv1111(:,i); 

F1111(:,i)=m5*dvc1111(:,i); 

N1111(:,i)=Ic1111*dw1111(:,i)+cross(w1111(:,i),Ic1111*w1111(:,i)); 

 

% i=12: Right Ankle Qx 

R1112=[cos(teta12(i)+pi)      ,    -sin(teta12(i)+pi)   ,     0   ; 
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       sin(teta12(i)+pi)*cos(pi/2), cos(teta12(i)+pi)*cos(pi/2), -sin(pi/2); 

       sin(teta12(i)+pi)*sin(pi/2), cos(teta12(i)+pi)*sin(pi/2),  cos(pi/2)]; 

R1211=R1112.'; 

Z1212=[0;0;1]; 

P1112=[rK2A;0;0]; 

Pc1212=[0;0;0]; 

 

 

RHdq12=qdot12(i); 

RHddq12=dqdot12(i); 

 

dq12=RHdq12;%???input 

ddq12=RHddq12;%???input 

 

% m6=2; % mass of right foot 

lc1=0.3; %??? 

Ic1212=[1,0,0; 

        0,1,0; 

        0,0,1];    

w1212(:,i)=R1211*w1111(:,i)+dq12*Z1212; 

dw1212(:,i)=R1211*dw1111(:,i)+cross(R1211*w1111(:,i),dq12*Z1212)+ddq12*Z1212; 

v1212(:,i)=R1211*(v1111(:,i)+cross(w1111(:,i),P1112)); 

dv1212(:,i)=R1211*(cross(dw1111(:,i),P1112)+cross(w1111(:,i),cross(w1111(:,i),P111

2))+dv1111(:,i)); 

dvc1212(:,i)=cross(dw1212(:,i),Pc1212)+cross(w1212(:,i),cross(w1212(:,i),Pc1212))+

dv1212(:,i); 

F1212(:,i)=m6*dvc1212(:,i); 

N1212(:,i)=Ic1212*dw1212(:,i)+cross(w1212(:,i),Ic1212*w1212(:,i)); 

% i=13: Right Ankle Qy 

R1213=[cos(teta13(i)+pi/2)      ,    -sin(teta13(i)+pi/2)   ,     0   ; 

       sin(teta13(i)+pi/2)*cos(pi/2), cos(teta13(i)+pi/2)*cos(pi/2), -sin(pi/2); 

       sin(teta13(i)+pi/2)*sin(pi/2), cos(teta13(i)+pi/2)*sin(pi/2),  cos(pi/2)]; 

 

R1312=R1213.' 

rA2cz=0.08; 

Z1313=[0;0;1]; 

P1213=[0;0;0]; 

Pc1313=[0;0;0] 

RHdq13=qdot13(i); 

RHddq13=dqdot13(i); 

dq13=RHdq13;%???input 

ddq13=RHddq13;%???input 

lc1=0.3; %??? 

Ic1313=[1,0,0; 

        0,1,0; 

        0,0,1];    

w1313(:,i)=R1312*w1212(:,i)+dq13*Z1313; 

dw1313(:,i)=R1312*dw1212(:,i)+cross(R1312*w1212(:,i),dq13*Z1313)+ddq13*Z1313; 

v1313(:,i)=R1312*(v1212(:,i)+cross(w1212(:,i),P1213)); 

dv1313(:,i)=R1312*(cross(dw1212(:,i),P1213)+cross(w1212(:,i),cross(w1212(:,i),P121

3))+dv1212(:,i)); 

dvc1313(:,i)=cross(dw1313(:,i),Pc1313)+cross(w1313(:,i),cross(w1313(:,i),Pc1313))+

dv1313(:,i); 

F1313(:,i)=m6_2*dvc1313(:,i); 

N1313(:,i)=Ic1313*dw1313(:,i)+cross(w1313(:,i),Ic1313*w1313(:,i)); 

 

% i=14: Right Ankle Qz 

R1314=[cos(teta14(i))      ,    -sin(teta14(i))   ,     0   ; 

       sin(teta14(i))*cos(pi/2), cos(teta14(i))*cos(pi/2), -sin(pi/2); 

       sin(teta14(i))*sin(pi/2), cos(teta14(i))*sin(pi/2),  cos(pi/2)]; 

R1413=R1314.'; 

rA2cz=0.08; 

Z1414=[0;0;1]; 

P1314=[0;0;0]; 

Pc1414=[0;0;-rA2cz] 

RHdq14=qdot14(i); 

RHddq14=dqdot14(i); 

dq14=RHdq14;%???input 

ddq14=RHddq14;%???input 

lc1=0.3; %??? 

Ic1414=[1,0,0; 
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        0,1,0; 

        0,0,1];    

w1414(:,i)=R1413*w1313(:,i)+dq14*Z1414; 

dw1414(:,i)=R1413*dw1313(:,i)+cross(R1413*w1313(:,i),dq14*Z1414)+ddq14*Z1414; 

v1414(:,i)=R1413*(v1313(:,i)+cross(w1313(:,i),P1314)); 

dv1414(:,i)=R1413*(cross(dw1313(:,i),P1314)+cross(w1313(:,i),cross(w1313(:,i),P131

4))+dv1313(:,i)); 

dvc1414(:,i)=cross(dw1414(:,i),Pc1414)+cross(w1414(:,i),cross(w1414(:,i),Pc1414))+

dv1414(:,i); 

F1414(:,i)=m6_3*dvc1414(:,i); 

N1414(:,i)=Ic1414*dw1414(:,i)+cross(w1414(:,i),Ic1414*w1414(:,i)) 

%  

Tr01=[R01(1,1),R01(1,2),R01(1,3),0; 

      R01(2,1),R01(2,2),R01(2,3),0; 

      R01(3,1),R01(3,2),R01(3,3),0; 

        0    ,    0   ,   0    ,1]; 

Tr12=[R12(1,1),R12(1,2),R12(1,3),0; 

      R12(2,1),R12(2,2),R12(2,3),0; 

      R12(3,1),R12(3,2),R12(3,3),0; 

        0    ,    0   ,   0    ,1]; 

Tr23=[R23(1,1),R23(1,2),R23(1,3),0; 

      R23(2,1),R23(2,2),R23(2,3),0; 

      R23(3,1),R23(3,2),R23(3,3),0; 

        0    ,    0   ,   0    ,1]; 

Tr34=[R34(1,1),R34(1,2),R34(1,3),0; 

      R34(2,1),R34(2,2),R34(2,3),0; 

      R34(3,1),R34(3,2),R34(3,3),0; 

        0    ,    0   ,   0    ,1]; 

Tr45=[R45(1,1),R45(1,2),R45(1,3),0; 

      R45(2,1),R45(2,2),R45(2,3),0; 

      R45(3,1),R45(3,2),R45(3,3),0; 

        0    ,    0   ,   0    ,1]; 

Tr56=[R56(1,1),R56(1,2),R56(1,3),0; 

      R56(2,1),R56(2,2),R56(2,3),0; 

      R56(3,1),R56(3,2),R56(3,3),0; 

        0    ,    0   ,   0    ,1]; 

Tr67=[R67(1,1),R67(1,2),R67(1,3),0; 

      R67(2,1),R67(2,2),R67(2,3),0; 

      R67(3,1),R67(3,2),R67(3,3),0; 

        0    ,    0   ,   0    ,1]; 

Tr78=[R78(1,1),R78(1,2),R78(1,3),0; 

      R78(2,1),R78(2,2),R78(2,3),0; 

      R78(3,1),R78(3,2),R78(3,3),0; 

        0    ,    0   ,   0    ,1]; 

Tr89=[R89(1,1),R89(1,2),R89(1,3),0; 

      R89(2,1),R89(2,2),R89(2,3),0; 

      R89(3,1),R89(3,2),R89(3,3),0; 

        0    ,    0   ,   0    ,1]; 

Tr910=[R910(1,1),R910(1,2),R910(1,3),0; 

      R910(2,1),R910(2,2),R910(2,3),0; 

      R910(3,1),R910(3,2),R910(3,3),0; 

           0   ,    0    ,   0     ,1]; 

Tr1011=[R1011(1,1),R1011(1,2),R1011(1,3),0; 

        R1011(2,1),R1011(2,2),R1011(2,3),0; 

        R1011(3,1),R1011(3,2),R1011(3,3),0; 

           0     ,     0    ,    0     ,1]; 

Tr1112=[R1112(1,1),R1112(1,2),R1112(1,3),0; 

        R1112(2,1),R1112(2,2),R1112(2,3),0; 

        R1112(3,1),R1112(3,2),R1112(3,3),0; 

           0     ,     0    ,    0     ,1]; 

Tr1213=[R1213(1,1),R1213(1,2),R1213(1,3),0; 

        R1213(2,1),R1213(2,2),R1213(2,3),0; 

        R1213(3,1),R1213(3,2),R1213(3,3),0; 

           0     ,     0    ,    0     ,1]; 

Tr1314=[R1314(1,1),R1314(1,2),R1314(1,3),0; 

        R1314(2,1),R1314(2,2),R1314(2,3),0; 

        R1314(3,1),R1314(3,2),R1314(3,3),0; 

           0     ,     0    ,    0     ,1] 

% 

Tp34=[1,0,0,P34(1); 

      0,1,0,P34(2); 
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      0,0,1,P34(3); 

      0,0,0,  1  ]; 

Tp45=[1,0,0,P45(1); 

      0,1,0,P45(2); 

      0,0,1,P45(3); 

      0,0,0,  1  ]; 

Tp78=[1,0,0,P78(1); 

      0,1,0,P78(2); 

      0,0,1,P78(3); 

      0,0,0,  1  ]; 

Tp1011=[1,0,0,P1011(1); 

        0,1,0,P1011(2); 

        0,0,1,P1011(3); 

        0,0,0,   1   ]; 

Tp1112=[1,0,0,P1112(1); 

        0,1,0,P1112(2); 

        0,0,1,P1112(3); 

        0,0,0,   1   ];    

LAnklePos=[0;0;0;1];    

LKneePos=Tr01*Tr12*Tr23*[P34;1]; 

LHipPos=Tr01*Tr12*Tr23*Tp34*Tr34*[P45;1]; 

RHipPos=Tr01*Tr12*Tr23*Tp34*Tr34*Tp45*Tr45*Tr56*Tr67*[P78;1]; 

RKneePos=Tr01*Tr12*Tr23*Tp34*Tr34*Tp45*Tr45*Tr56*Tr67*Tp78*Tr78*Tr89*Tr910*[P1011;

1]; 

RAnklePos=Tr01*Tr12*Tr23*Tp34*Tr34*Tp45*Tr45*Tr56*Tr67*Tp78*Tr78*Tr89*Tr910*Tp1011

*Tr1011*[P1112;1]; 

 

RSolePos=Tr01*Tr12*Tr23*Tp34*Tr34*Tp45*Tr45*Tr56*Tr67*Tp78*Tr78*Tr89*Tr910*Tp1011*

Tr1011*Tp1112*Tr1112*Tr1213*Tr1314*[0;0;-0.1;1]; 

f1=figure(3); 

movegui(f1,'north'); 

plot3([-0.1 0],[0 0],[0 0],'k');hold on; 

plot3([0 LKneePos(1)],[0 LKneePos(2)],[0 LKneePos(3)],'r');hold on; 

plot3([LKneePos(1) LHipPos(1)],[LKneePos(2) LHipPos(2)],[LKneePos(3) 

LHipPos(3)],'b');hold on; 

plot3([LHipPos(1) RHipPos(1)],[LHipPos(2) RHipPos(2)],[LHipPos(3) 

RHipPos(3)],'y');hold on; 

plot3([RHipPos(1) RKneePos(1)],[RHipPos(2) RKneePos(2)],[RHipPos(3) 

RKneePos(3)],'g');hold on; 

plot3([RKneePos(1) RAnklePos(1)],[RKneePos(2) RAnklePos(2)],[RKneePos(3) 

RAnklePos(3)],'b');hold on; 

plot3([RAnklePos(1) RSolePos(1)],[RAnklePos(2) RSolePos(2)],[RAnklePos(3) 

RSolePos(3)],'m');hold on; 

xlabel('x'); 

ylabel('y'); 

zlabel('z'); 

xlim([-1 1]) 

ylim([-1 1]) 

zlim([-1 1]) 

%% Velocities 

v04(:,i)=R01*R12*R23*R34*v44(:,i); 

v05(:,i)=R01*R12*R23*R34*R45*v55(:,i); 

v06(:,i)=R01*R12*R23*R34*R45*R56*v66(:,i); 

v07(:,i)=R01*R12*R23*R34*R45*R56*R67*v77(:,i); 

v08(:,i)=R01*R12*R23*R34*R45*R56*R67*R78*v88(:,i); 

%% Dynamics 

% i=14  

f1515=[0;0;0]; %we don't need foot sensor data here 

n1515=[0;0;0]; 

R1415=[1,0,0 ; 

       0,1,0 ; 

       0,0,1]; 

rA2S=0.1; 

P1415=[0;0;-rA2S]; 

f1414=R1415*f1515+F1414(:,i); 

n1414=N1414(:,i)+R1415*n1515+cross(Pc1414,F1414(:,i))+cross(P1415,R1415*f1515); 

Tau14=transpose(n1414)*Z1414; 

 

% i=13  

% R1413=R1314.'; 

f1313=R1314*f1414+F1313(:,i); 
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n1313=N1313(:,i)+R1314*n1414+cross(Pc1313,F1313(:,i))+cross(P1314,R1314*f1414); 

Tau13=transpose(n1313)*Z1313; 

% i=12  

% R1312=R1213.'; 

f1212=R1213*f1313+F1212(:,i); 

n1212=N1212(:,i)+R1213*n1313+cross(Pc1212,F1212(:,i))+cross(P1213,R1213*f1313); 

Tau12=transpose(n1212)*Z1212; 

% i=11  

% R1211=R1112.'; 

f1111=R1112*f1212+F1111(:,i); 

n1111=N1111(:,i)+R1112*n1212+cross(Pc1111,F1111(:,i))+cross(P1112,R1112*f1212); 

Tau11=transpose(n1111)*Z1111 

% i=10  

R1110=R1011.'; 

f1010=R1011*f1111+F1010(:,i); 

n1010=N1010(:,i)+R1011*n1111+cross(Pc1010,F1010(:,i))+cross(P1011,R1011*f1111); 

Tau10=transpose(n1010)*Z1010; 

 

% i=9  

R109=R910.'; 

f99=R910*f1010+F99(:,i); 

n99=N99(:,i)+R910*n1010+cross(Pc99,F99(:,i))+cross(P910,R910*f1010); 

Tau9=transpose(n99)*Z99; 

 

% i=8  

 

R98=R89.' 

f88=R89*f99+F88(:,i); 

n88=N88(:,i)+R89*n99+cross(Pc88,F88(:,i))+cross(P89,R89*f99); 

Tau8=transpose(n88)*Z88; 

%  

% i=7  

R87=R78.'; 

 

f77=R78*f88+F77(:,i); 

n77=N77(:,i)+R78*n88+cross(Pc77,F77(:,i))+cross(P78,R78*f88); 

Tau7=transpose(n77)*Z77; 

Tauu5=20*9.81*[0.15*cos(-teta2(i))-0.4*sin(-teta2(i))]; 

% i=6  

R76=R67.'; 

f66=R67*f77+F66(:,i); 

n66=N66(:,i)+R67*n77+cross(Pc66,F66(:,i))+cross(P67,R67*f77); 

Tau6=transpose(n66)*Z66; 

 

% i=5 

R65=R56.'; 

 

f55=R56*f66+F55(:,i); 

n55=N55(:,i)+R56*n66+cross(Pc55,F55(:,i))+cross(P56,R56*f66); 

Tau5=transpose(n55)*Z55; 

 

% i= 

R54=R45.'; 

 

f44=R45*f55+F44(:,i); 

n44=N44(:,i)+R45*n55+cross(Pc44,F44(:,i))+cross(P45,R45*f55) 

Tau4=transpose(n44)*Z44; 

 

% i=3 

R43=R34.'; 

 

f33=R34*f44+F33(:,i); 

n33=N33(:,i)+R34*n44+cross(Pc33,F33(:,i))+cross(P34,R34*f44); 

Tau3=transpose(n33)*Z33; 

% i=2 

R32=R23.'; 

f22=R23*f33+F22(:,i); 

n22=N22(:,i)+R23*n33+cross(Pc22,F22(:,i))+cross(P23,R23*f33); 

Tau2=transpose(n22)*Z22; 

% i=1 

R21=R12.'; 
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f11=R12*f22+F11(:,i); 

n11=N11(:,i)+R12*n22+cross(Pc11,F11(:,i))+cross(P12,R12*f22); 

Tau1=transpose(n11)*Z11; 

%% Plot 

f2=figure(1); 

plot(time(i),Tau1,'*'); 

hold on 

xlabel('Torque-newton'); 

movegui(f2,'northwest'); 

data_save(i)=Tau1; 

end 

fid=fopen('NE.txt','wt'); 

fprintf(fid,'%f\n',data_save); 

fclose(fid); 

MATLAB code for Lagrange dynamic model: 
syms teta1 teta2 teta3 teta4 teta5 teta6 teta7 teta8 teta9 teta10 teta11 

teta12 teta13 teta14 dq1 dq2 dq3 dq4 dq5 dq6 dq7 dq8 dq9 dq10 dq11 dq12 dq13 

dq14 ddq1 ddq2 ddq3 ddq4 ddq5 ddq6 ddq7 ddq8 ddq9 ddq10 ddq11 ddq12 ddq13 ddq14  

q=[teta1,teta2,teta3,teta4,teta5,teta6,teta7,teta8,teta9,teta10,teta11,te

ta12,teta13,teta14]; 

dq=[dq1,dq2,dq3,dq4,dq5,dq6,dq7,dq8,dq9,dq10,dq11,dq12,dq13,dq14]; 

ddq=[ddq1,ddq2,ddq3,ddq4,ddq5,ddq6,ddq7,ddq8,ddq9,ddq10,ddq11,ddq12,ddq13

,ddq14]; 

 

g=9.81; 

%% 

Tr01=[1,0,0,0; 

      0,cos(teta1),-sin(teta1),0; 

      0,sin(teta1), cos(teta1),0; 

      0,    0     ,    0      ,1]; 

 

Tr12=[cos(teta2),0,+sin(teta2),0; 

      0,1,0,0; 

      -sin(teta2),0,cos(teta2),0; 

      0,0,0,1]; 

 

Tr23=[cos(teta3),-sin(teta3),0,0; 

      sin(teta3),cos(teta3),0,0; 

      0,0,1,0; 

      0,0,0,1]; 

 

Tr34=[cos(teta4),0,+sin(teta4),0; 

      0,1,0,0; 

      -sin(teta4),0,cos(teta4),0; 

      0,0,0,1]; 

 

Tr45=[1,0,0,0; 

      0,cos(teta5),-sin(teta5),0; 

      0,sin(teta5), cos(teta5),0; 

      0,0,0,1]; 

 

Tr56=[cos(teta6),0,+sin(teta6),0; 

      0,1,0,0; 

      -sin(teta6),0,cos(teta6),0; 

      0,0,0,1]; 

 

Tr67=[cos(teta7),-sin(teta7),0,0; 

     sin(teta7), cos(teta7),0,0; 
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     0,0,1,0; 

     0,0,0,1]; 

 

Tr78=[1,0,0,0; 

     0,cos(teta8),-sin(teta8),0; 

     0,sin(teta8), cos(teta8),0; 

     0,0,0,1]; 

 

Tr89=[cos(teta9),0,+sin(teta9),0; 

     0,1,0,0; 

     -sin(teta9),0,cos(teta9),0; 

     0,0,0,1]; 

 

Tr910=[cos(teta10),-sin(teta10),0,0; 

     sin(teta10), cos(teta10),0,0; 

     0,0,1,0; 

     0,0,0,1]; 

 

Tr1011=[cos(teta11),0,+sin(teta11),0; 

     0,1,0,0; 

     -sin(teta11)  ,0,cos(teta11),0; 

     0,0,0,1]; 

 

Tr1112=[1,0,0,0; 

     0,cos(teta12),-sin(teta12),0; 

     0,sin(teta12),cos(teta12),0; 

     0,0,0,1]; 

 

Tr1213=[cos(teta13),0,+sin(teta13),0; 

         0        ,1,      0,0; 

       -sin(teta13),0,cos(teta13),0; 

       0,0,0,1]; 

 

Tr1314=[cos(teta14),-sin(teta14),0,0; 

        sin(teta14),cos(teta14) ,0,0; 

            0      ,       0    ,1,0; 

            0      ,       0    ,0,1]; 

 

         

%% 

m1=7; 

m2=9; 

m3=20; 

m4=9; 

m5=7; 

m6=2 

lS2c=0.05;         

lA2c=0.2; 

lK2c=0.45/2; 

lH2cy=0.15; 

lH2cz=0.4; 

rH2c=0.45/2; 

rK2c=0.2; 

rA2c=0.05; 

Pc00=[0;0;lS2c]; 
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Pc11=[0;0;lA2c]; 

Pc44=[0;0;lK2c];  

Pc55=[0;-lH2cy;lH2cz]; 

Pc1111=[0;0;-rH2c]; 

Pc1212=[0;0;-rK2c]; 

Pc1414=[0;0;-rA2c]; 

lA2K=0.4; 

lK2H=0.45; 

lH2rH=0.3; 

rH2K=0.45; 

rK2A=0.4; 

lS2A=0.0; 

P10=[0;0;lS2A]; 

P43=[0;0;lA2K]; 

P54=[0;0;lK2H]; 

P87=[0;-lH2rH;0]; 

P1110=[0;0;-rH2K]; 

P1211=[0;0;-rK2A]; 

 

Tp10=[1,0,0,P10(1); 

      0,1,0,P10(2); 

      0,0,1,P10(3); 

      0,0,0,  1  ]; 

Tp43=[1,0,0,P43(1); 

      0,1,0,P43(2); 

      0,0,1,P43(3); 

      0,0,0,  1  ]; 

Tp54=[1,0,0,P54(1); 

      0,1,0,P54(2); 

      0,0,1,P54(3); 

      0,0,0,  1  ]; 

Tp87=[1,0,0,P87(1); 

      0,1,0,P87(2); 

      0,0,1,P87(3); 

      0,0,0,  1  ]; 

Tp1110=[1,0,0,P1110(1); 

        0,1,0,P1110(2); 

        0,0,1,P1110(3); 

        0,0,0,   1   ]; 

Tp1211=[1,0,0,P1211(1); 

        0,1,0,P1211(2); 

        0,0,1,P1211(3); 

        0,0,0,   1   ]; 

 

%% Foot Position     

LAnklePos=[P10;1]; 

     

LKneePos=Tp10*Tr01*Tr12*Tr23*[P43;1]; 

LKnee_x=LKneePos(1); 

LKnee_y=LKneePos(2); 

LKnee_z=LKneePos(3); 

 

LHipPos=Tp10*Tr01*Tr12*Tr23*Tp43*Tr34*[P54;1]; 

LHip_x=LHipPos(1); 

LHip_y=LHipPos(2); 
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LHip_z=LHipPos(3); 

 

RHipPos=Tp10*Tr01*Tr12*Tr23*Tp43*Tr34*Tp54*Tr45*Tr56*Tr67*[P87;1]; 

RHip_x=RHipPos(1); 

RHip_y=RHipPos(2); 

RHip_z=RHipPos(3); 

 

RKneePos=Tp10*Tr01*Tr12*Tr23*Tp43*Tr34*Tp54*Tr45*Tr56*Tr67*Tp87*Tr78*Tr89

*Tr910*[P1110;1]; 

RKnee_x=RKneePos(1); 

RKnee_y=RKneePos(2); 

RKnee_z=RKneePos(3);   

 

RAnklePos=Tp10*Tr01*Tr12*Tr23*Tp43*Tr34*Tp54*Tr45*Tr56*Tr67*Tp87*Tr78*Tr8

9*Tr910*Tp1110*Tr1011*[P1211;1]; 

RAnkle_x=RAnklePos(1); 

RAnkle_y=RAnklePos(2); 

RAnkle_z=RAnklePos(3); 

 

RSolePos=Tp10*Tr01*Tr12*Tr23*Tp43*Tr34*Tp54*Tr45*Tr56*Tr67*Tp87*Tr78*Tr89

*Tr910*Tp1110*Tr1011*Tp1211*Tr1112*Tr1213*Tr1314*[0;0;-0.1;1]; 

RSole_x=RSolePos(1); 

RSole_y=RSolePos(2); 

RSole_z=RSolePos(3); 

 

%% Foot Velocities 

% 

LKnee_xdot=[jacobian(LKnee_x,teta1),jacobian(LKnee_x,teta2),jacobian(LKne

e_x,teta3),jacobian(LKnee_x,teta4),jacobian(LKnee_x,teta5),jacobian(LKnee_x,tet

a6),jacobian(LKnee_x,teta7),jacobian(LKnee_x,teta8),jacobian(LKnee_x,teta9),jac

obian(LKnee_x,teta10),jacobian(LKnee_x,teta11),jacobian(LKnee_x,teta12),jacobia

n(LKnee_x,teta13),jacobian(LKnee_x,teta14)]*dq.'; 

LKnee_ydot=[jacobian(LKnee_y,teta1),jacobian(LKnee_y,teta2),jacobian(LKne

e_y,teta3),jacobian(LKnee_y,teta4),jacobian(LKnee_y,teta5),jacobian(LKnee_y,tet

a6),jacobian(LKnee_y,teta7),jacobian(LKnee_y,teta8),jacobian(LKnee_y,teta9),jac

obian(LKnee_y,teta10),jacobian(LKnee_y,teta11),jacobian(LKnee_y,teta12),jacobia

n(LKnee_y,teta13),jacobian(LKnee_y,teta14)]*dq.'; 

LKnee_zdot=[jacobian(LKnee_z,teta1),jacobian(LKnee_z,teta2),jacobian(LKne

e_z,teta3),jacobian(LKnee_z,teta4),jacobian(LKnee_z,teta5),jacobian(LKnee_z,tet

a6),jacobian(LKnee_z,teta7),jacobian(LKnee_z,teta8),jacobian(LKnee_z,teta9),jac

obian(LKnee_z,teta10),jacobian(LKnee_z,teta11),jacobian(LKnee_z,teta12),jacobia

n(LKnee_z,teta13),jacobian(LKnee_z,teta14)]*dq.'; 

VLKnee=sqrt(LKnee_xdot^2+LKnee_ydot^2+LKnee_zdot^2); 

 

RAnkle_xdot=[jacobian(RAnkle_x,teta1),jacobian(RAnkle_x,teta2),jacobian(R

Ankle_x,teta3),jacobian(RAnkle_x,teta4),jacobian(RAnkle_x,teta5),jacobian(RAnkl

e_x,teta6),jacobian(RAnkle_x,teta7),jacobian(RAnkle_x,teta8),jacobian(RAnkle_x,

teta9),jacobian(RAnkle_x,teta10),jacobian(RAnkle_x,teta11),jacobian(RAnkle_x,te

ta12),jacobian(RAnkle_x,teta13),jacobian(RAnkle_x,teta14)]*dq.'; 

RAnkle_ydot=[jacobian(RAnkle_y,teta1),jacobian(RAnkle_y,teta2),jacobian(R

Ankle_y,teta3),jacobian(RAnkle_y,teta4),jacobian(RAnkle_y,teta5),jacobian(RAnkl

e_y,teta6),jacobian(RAnkle_y,teta7),jacobian(RAnkle_y,teta8),jacobian(RAnkle_y,

teta9),jacobian(RAnkle_y,teta10),jacobian(RAnkle_y,teta11),jacobian(RAnkle_y,te

ta12),jacobian(RAnkle_y,teta13),jacobian(RAnkle_y,teta14)]*dq.'; 
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RAnkle_zdot=[jacobian(RAnkle_z,teta1),jacobian(RAnkle_z,teta2),jacobian(R

Ankle_z,teta3),jacobian(RAnkle_z,teta4),jacobian(RAnkle_z,teta5),jacobian(RAnkl

e_z,teta6),jacobian(RAnkle_z,teta7),jacobian(RAnkle_z,teta8),jacobian(RAnkle_z,

teta9),jacobian(RAnkle_z,teta10),jacobian(RAnkle_z,teta11),jacobian(RAnkle_z,te

ta12),jacobian(RAnkle_z,teta13),jacobian(RAnkle_z,teta14)]*dq.'; 

VRAnkle=sqrt(RAnkle_xdot^2+RAnkle_ydot^2+RAnkle_zdot^2); 

 

RSole_xdot=[jacobian(RSole_x,teta1),jacobian(RSole_x,teta2),jacobian(RSol

e_x,teta3),jacobian(RSole_x,teta4),jacobian(RSole_x,teta5),jacobian(RSole_x,tet

a6),jacobian(RSole_x,teta7),jacobian(RSole_x,teta8),jacobian(RSole_x,teta9),jac

obian(RSole_x,teta10),jacobian(RSole_x,teta11),jacobian(RSole_x,teta12),jacobia

n(RSole_x,teta13),jacobian(RSole_x,teta14)]*dq.'; 

RSole_ydot=[jacobian(RSole_y,teta1),jacobian(RSole_y,teta2),jacobian(RSol

e_y,teta3),jacobian(RSole_y,teta4),jacobian(RSole_y,teta5),jacobian(RSole_y,tet

a6),jacobian(RSole_y,teta7),jacobian(RSole_y,teta8),jacobian(RSole_y,teta9),jac

obian(RSole_y,teta10),jacobian(RSole_y,teta11),jacobian(RSole_y,teta12),jacobia

n(RSole_y,teta13),jacobian(RSole_y,teta14)]*dq.'; 

RSole_zdot=[jacobian(RSole_z,teta1),jacobian(RSole_z,teta2),jacobian(RSol

e_z,teta3),jacobian(RSole_z,teta4),jacobian(RSole_z,teta5),jacobian(RSole_z,tet

a6),jacobian(RSole_z,teta7),jacobian(RSole_z,teta8),jacobian(RSole_z,teta9),jac

obian(RSole_z,teta10),jacobian(RSole_z,teta11),jacobian(RSole_z,teta12),jacobia

n(RSole_z,teta13),jacobian(RSole_z,teta14)]*dq.'; 

VRSole=sqrt(RSole_xdot^2+RSole_ydot^2+RSole_zdot^2); 

 

%% CoG Positions 

LSole_AnkleCoG=[Pc00;1]; 

 

LAnkle_KneeCoG=Tp10*Tr01*Tr12*Tr23*[Pc11;1]; 

LAnkle_KneeCoG_x=LAnkle_KneeCoG(1); 

LAnkle_KneeCoG_y=LAnkle_KneeCoG(2); 

LAnkle_KneeCoG_z=LAnkle_KneeCoG(3); 

 

LKnee_HipCoG=Tp10*Tr01*Tr12*Tr23*Tp43*Tr34*[Pc44;1]; 

LKnee_HipCoG_x=LKnee_HipCoG(1); 

LKnee_HipCoG_y=LKnee_HipCoG(2); 

LKnee_HipCoG_z=LKnee_HipCoG(3); 

 

UHipCoG=Tp10*Tr01*Tr12*Tr23*Tp43*Tr34*Tp54*Tr45*Tr56*Tr67*[Pc55;1]; 

UHipCoG_x=UHipCoG(1); 

UHipCoG_y=UHipCoG(2); 

UHipCoG_z=UHipCoG(3); 

 

RHip_KneeCoG=Tp10*Tr01*Tr12*Tr23*Tp43*Tr34*Tp54*Tr45*Tr56*Tr67*Tp87*Tr78*

Tr89*Tr910*[Pc1111;1]; 

RHip_KneeCoG_x=RHip_KneeCoG(1); 

RHip_KneeCoG_y=RHip_KneeCoG(2); 

RHip_KneeCoG_z=RHip_KneeCoG(3); 

 

RKnee_AnkleCoG=Tp10*Tr01*Tr12*Tr23*Tp43*Tr34*Tp54*Tr45*Tr56*Tr67*Tp87*Tr7

8*Tr89*Tr910*Tp1110*Tr1011*[Pc1212;1]; 

RKnee_AnkleCoG_x=RKnee_AnkleCoG(1); 

RKnee_AnkleCoG_y=RKnee_AnkleCoG(2); 

RKnee_AnkleCoG_z=RKnee_AnkleCoG(3); 
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RSoleCoG=Tp10*Tr01*Tr12*Tr23*Tp43*Tr34*Tp54*Tr45*Tr56*Tr67*Tp87*Tr78*Tr89

*Tr910*Tp1110*Tr1011*Tp1211*Tr1112*Tr1213*Tr1314*[Pc1414;1]; 

RSoleCoG_x=RSoleCoG(1); 

RSoleCoG_y=RSoleCoG(2); 

RSoleCoG_z=RSoleCoG(3); 

 

%% CoG Velocities 

% 

LAnkle_KneeCoG_xdot=[jacobian(LAnkle_KneeCoG_x,teta1),jacobian(LAnkle_Kne

eCoG_x,teta2),jacobian(LAnkle_KneeCoG_x,teta3),jacobian(LAnkle_KneeCoG_x,teta4)

,jacobian(LAnkle_KneeCoG_x,teta5),jacobian(LAnkle_KneeCoG_x,teta6),jacobian(LAn

kle_KneeCoG_x,teta7),jacobian(LAnkle_KneeCoG_x,teta8),jacobian(LAnkle_KneeCoG_x

,teta9),jacobian(LAnkle_KneeCoG_x,teta10),jacobian(LAnkle_KneeCoG_x,teta11),jac

obian(LAnkle_KneeCoG_x,teta12),jacobian(LAnkle_KneeCoG_x,teta13),jacobian(LAnkl

e_KneeCoG_x,teta14)]*dq.'; 

LAnkle_KneeCoG_ydot=[jacobian(LAnkle_KneeCoG_y,teta1),jacobian(LAnkle_Kne

eCoG_y,teta2),jacobian(LAnkle_KneeCoG_y,teta3),jacobian(LAnkle_KneeCoG_y,teta4)

,jacobian(LAnkle_KneeCoG_y,teta5),jacobian(LAnkle_KneeCoG_y,teta6),jacobian(LAn

kle_KneeCoG_y,teta7),jacobian(LAnkle_KneeCoG_y,teta8),jacobian(LAnkle_KneeCoG_y

,teta9),jacobian(LAnkle_KneeCoG_y,teta10),jacobian(LAnkle_KneeCoG_y,teta11),jac

obian(LAnkle_KneeCoG_y,teta12),jacobian(LAnkle_KneeCoG_y,teta13),jacobian(LAnkl

e_KneeCoG_y,teta14)]*dq.'; 

LAnkle_KneeCoG_zdot=[jacobian(LAnkle_KneeCoG_z,teta1),jacobian(LAnkle_Kne

eCoG_z,teta2),jacobian(LAnkle_KneeCoG_z,teta3),jacobian(LAnkle_KneeCoG_z,teta4)

,jacobian(LAnkle_KneeCoG_z,teta5),jacobian(LAnkle_KneeCoG_z,teta6),jacobian(LAn

kle_KneeCoG_z,teta7),jacobian(LAnkle_KneeCoG_z,teta8),jacobian(LAnkle_KneeCoG_z

,teta9),jacobian(LAnkle_KneeCoG_z,teta10),jacobian(LAnkle_KneeCoG_z,teta11),jac

obian(LAnkle_KneeCoG_z,teta12),jacobian(LAnkle_KneeCoG_z,teta13),jacobian(LAnkl

e_KneeCoG_z,teta14)]*dq.'; 

VLAnkle_KneeCoG=sqrt(LAnkle_KneeCoG_xdot^2+LAnkle_KneeCoG_ydot^2+LAnkle_K

neeCoG_zdot^2); 

% 

LKnee_HipCoG_xdot=[jacobian(LKnee_HipCoG_x,teta1),jacobian(LKnee_HipCoG_x

,teta2),jacobian(LKnee_HipCoG_x,teta3),jacobian(LKnee_HipCoG_x,teta4),jacobian(

LKnee_HipCoG_x,teta5),jacobian(LKnee_HipCoG_x,teta6),jacobian(LKnee_HipCoG_x,te

ta7),jacobian(LKnee_HipCoG_x,teta8),jacobian(LKnee_HipCoG_x,teta9),jacobian(LKn

ee_HipCoG_x,teta10),jacobian(LKnee_HipCoG_x,teta11),jacobian(LKnee_HipCoG_x,tet

a12),jacobian(LKnee_HipCoG_x,teta13),jacobian(LKnee_HipCoG_x,teta14)]*dq.'; 

LKnee_HipCoG_ydot=[jacobian(LKnee_HipCoG_y,teta1),jacobian(LKnee_HipCoG_y

,teta2),jacobian(LKnee_HipCoG_y,teta3),jacobian(LKnee_HipCoG_y,teta4),jacobian(

LKnee_HipCoG_y,teta5),jacobian(LKnee_HipCoG_y,teta6),jacobian(LKnee_HipCoG_y,te

ta7),jacobian(LKnee_HipCoG_y,teta8),jacobian(LKnee_HipCoG_y,teta9),jacobian(LKn

ee_HipCoG_y,teta10),jacobian(LKnee_HipCoG_y,teta11),jacobian(LKnee_HipCoG_y,tet

a12),jacobian(LKnee_HipCoG_y,teta13),jacobian(LKnee_HipCoG_y,teta14)]*dq.'; 

LKnee_HipCoG_zdot=[jacobian(LKnee_HipCoG_z,teta1),jacobian(LKnee_HipCoG_z

,teta2),jacobian(LKnee_HipCoG_z,teta3),jacobian(LKnee_HipCoG_z,teta4),jacobian(

LKnee_HipCoG_z,teta5),jacobian(LKnee_HipCoG_z,teta6),jacobian(LKnee_HipCoG_z,te

ta7),jacobian(LKnee_HipCoG_z,teta8),jacobian(LKnee_HipCoG_z,teta9),jacobian(LKn

ee_HipCoG_z,teta10),jacobian(LKnee_HipCoG_z,teta11),jacobian(LKnee_HipCoG_z,tet

a12),jacobian(LKnee_HipCoG_z,teta13),jacobian(LKnee_HipCoG_z,teta14)]*dq.'; 

VLKnee_HipCoG=sqrt(LKnee_HipCoG_xdot^2+LKnee_HipCoG_ydot^2+LKnee_HipCoG_z

dot^2); 

% 

UHipCoG_xdot=[jacobian(UHipCoG_x,teta1),jacobian(UHipCoG_x,teta2),jacobia

n(UHipCoG_x,teta3),jacobian(UHipCoG_x,teta4),jacobian(UHipCoG_x,teta5),jacobian
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(UHipCoG_x,teta6),jacobian(UHipCoG_x,teta7),jacobian(UHipCoG_x,teta8),jacobian(

UHipCoG_x,teta9),jacobian(UHipCoG_x,teta10),jacobian(UHipCoG_x,teta11),jacobian

(UHipCoG_x,teta12),jacobian(UHipCoG_x,teta13),jacobian(UHipCoG_x,teta14)]*dq.'; 

UHipCoG_ydot=[jacobian(UHipCoG_y,teta1),jacobian(UHipCoG_y,teta2),jacobia

n(UHipCoG_y,teta3),jacobian(UHipCoG_y,teta4),jacobian(UHipCoG_y,teta5),jacobian

(UHipCoG_y,teta6),jacobian(UHipCoG_y,teta7),jacobian(UHipCoG_y,teta8),jacobian(

UHipCoG_y,teta9),jacobian(UHipCoG_y,teta10),jacobian(UHipCoG_y,teta11),jacobian

(UHipCoG_y,teta12),jacobian(UHipCoG_y,teta13),jacobian(UHipCoG_y,teta14)]*dq.'; 

UHipCoG_zdot=[jacobian(UHipCoG_z,teta1),jacobian(UHipCoG_z,teta2),jacobia

n(UHipCoG_z,teta3),jacobian(UHipCoG_z,teta4),jacobian(UHipCoG_z,teta5),jacobian

(UHipCoG_z,teta6),jacobian(UHipCoG_z,teta7),jacobian(UHipCoG_z,teta8),jacobian(

UHipCoG_z,teta9),jacobian(UHipCoG_z,teta10),jacobian(UHipCoG_z,teta11),jacobian

(UHipCoG_z,teta12),jacobian(UHipCoG_z,teta13),jacobian(UHipCoG_z,teta14)]*dq.'; 

VUHipCoG=sqrt(UHipCoG_xdot^2+UHipCoG_ydot^2+UHipCoG_zdot^2); 

% 

RHip_KneeCoG_xdot=[jacobian(RHip_KneeCoG_x,teta1),jacobian(RHip_KneeCoG_x

,teta2),jacobian(RHip_KneeCoG_x,teta3),jacobian(RHip_KneeCoG_x,teta4),jacobian(

RHip_KneeCoG_x,teta5),jacobian(RHip_KneeCoG_x,teta6),jacobian(RHip_KneeCoG_x,te

ta7),jacobian(RHip_KneeCoG_x,teta8),jacobian(RHip_KneeCoG_x,teta9),jacobian(RHi

p_KneeCoG_x,teta10),jacobian(RHip_KneeCoG_x,teta11),jacobian(RHip_KneeCoG_x,tet

a12),jacobian(RHip_KneeCoG_x,teta13),jacobian(RHip_KneeCoG_x,teta14)]*dq.'; 

RHip_KneeCoG_ydot=[jacobian(RHip_KneeCoG_y,teta1),jacobian(RHip_KneeCoG_y

,teta2),jacobian(RHip_KneeCoG_y,teta3),jacobian(RHip_KneeCoG_y,teta4),jacobian(

RHip_KneeCoG_y,teta5),jacobian(RHip_KneeCoG_y,teta6),jacobian(RHip_KneeCoG_y,te

ta7),jacobian(RHip_KneeCoG_y,teta8),jacobian(RHip_KneeCoG_y,teta9),jacobian(RHi

p_KneeCoG_y,teta10),jacobian(RHip_KneeCoG_y,teta11),jacobian(RHip_KneeCoG_y,tet

a12),jacobian(RHip_KneeCoG_y,teta13),jacobian(RHip_KneeCoG_y,teta14)]*dq.'; 

RHip_KneeCoG_zdot=[jacobian(RHip_KneeCoG_z,teta1),jacobian(RHip_KneeCoG_z

,teta2),jacobian(RHip_KneeCoG_z,teta3),jacobian(RHip_KneeCoG_z,teta4),jacobian(

RHip_KneeCoG_z,teta5),jacobian(RHip_KneeCoG_z,teta6),jacobian(RHip_KneeCoG_z,te

ta7),jacobian(RHip_KneeCoG_z,teta8),jacobian(RHip_KneeCoG_z,teta9),jacobian(RHi

p_KneeCoG_z,teta10),jacobian(RHip_KneeCoG_z,teta11),jacobian(RHip_KneeCoG_z,tet

a12),jacobian(RHip_KneeCoG_z,teta13),jacobian(RHip_KneeCoG_z,teta14)]*dq.'; 

VRHip_KneeCoG=sqrt(RHip_KneeCoG_xdot^2+RHip_KneeCoG_ydot^2+RHip_KneeCoG_z

dot^2); 

% 

RKnee_AnkleCoG_xdot=[jacobian(RKnee_AnkleCoG_x,teta1),jacobian(RKnee_Ankl

eCoG_x,teta2),jacobian(RKnee_AnkleCoG_x,teta3),jacobian(RKnee_AnkleCoG_x,teta4)

,jacobian(RKnee_AnkleCoG_x,teta5),jacobian(RKnee_AnkleCoG_x,teta6),jacobian(RKn

ee_AnkleCoG_x,teta7),jacobian(RKnee_AnkleCoG_x,teta8),jacobian(RKnee_AnkleCoG_x

,teta9),jacobian(RKnee_AnkleCoG_x,teta10),jacobian(RKnee_AnkleCoG_x,teta11),jac

obian(RKnee_AnkleCoG_x,teta12),jacobian(RKnee_AnkleCoG_x,teta13),jacobian(RKnee

_AnkleCoG_x,teta14)]*dq.'; 

RKnee_AnkleCoG_ydot=[jacobian(RKnee_AnkleCoG_y,teta1),jacobian(RKnee_Ankl

eCoG_y,teta2),jacobian(RKnee_AnkleCoG_y,teta3),jacobian(RKnee_AnkleCoG_y,teta4)

,jacobian(RKnee_AnkleCoG_y,teta5),jacobian(RKnee_AnkleCoG_y,teta6),jacobian(RKn

ee_AnkleCoG_y,teta7),jacobian(RKnee_AnkleCoG_y,teta8),jacobian(RKnee_AnkleCoG_y

,teta9),jacobian(RKnee_AnkleCoG_y,teta10),jacobian(RKnee_AnkleCoG_y,teta11),jac

obian(RKnee_AnkleCoG_y,teta12),jacobian(RKnee_AnkleCoG_y,teta13),jacobian(RKnee

_AnkleCoG_y,teta14)]*dq.'; 

RKnee_AnkleCoG_zdot=[jacobian(RKnee_AnkleCoG_z,teta1),jacobian(RKnee_Ankl

eCoG_z,teta2),jacobian(RKnee_AnkleCoG_z,teta3),jacobian(RKnee_AnkleCoG_z,teta4)

,jacobian(RKnee_AnkleCoG_z,teta5),jacobian(RKnee_AnkleCoG_z,teta6),jacobian(RKn

ee_AnkleCoG_z,teta7),jacobian(RKnee_AnkleCoG_z,teta8),jacobian(RKnee_AnkleCoG_z

,teta9),jacobian(RKnee_AnkleCoG_z,teta10),jacobian(RKnee_AnkleCoG_z,teta11),jac



88 

obian(RKnee_AnkleCoG_z,teta12),jacobian(RKnee_AnkleCoG_z,teta13),jacobian(RKnee

_AnkleCoG_z,teta14)]*dq.'; 

VRKnee_AnkleCoG=sqrt(RKnee_AnkleCoG_xdot^2+RKnee_AnkleCoG_ydot^2+RKnee_An

kleCoG_zdot^2); 

% 

RSoleCoG_xdot=[jacobian(RSoleCoG_x,teta1),jacobian(RSoleCoG_x,teta2),jaco

bian(RSoleCoG_x,teta3),jacobian(RSoleCoG_x,teta4),jacobian(RSoleCoG_x,teta5),ja

cobian(RSoleCoG_x,teta6),jacobian(RSoleCoG_x,teta7),jacobian(RSoleCoG_x,teta8),

jacobian(RSoleCoG_x,teta9),jacobian(RSoleCoG_x,teta10),jacobian(RSoleCoG_x,teta

11),jacobian(RSoleCoG_x,teta12),jacobian(RSoleCoG_x,teta13),jacobian(RSoleCoG_x

,teta14)]*dq.'; 

RSoleCoG_ydot=[jacobian(RSoleCoG_y,teta1),jacobian(RSoleCoG_y,teta2),jaco

bian(RSoleCoG_y,teta3),jacobian(RSoleCoG_y,teta4),jacobian(RSoleCoG_y,teta5),ja

cobian(RSoleCoG_y,teta6),jacobian(RSoleCoG_y,teta7),jacobian(RSoleCoG_y,teta8),

jacobian(RSoleCoG_y,teta9),jacobian(RSoleCoG_y,teta10),jacobian(RSoleCoG_y,teta

11),jacobian(RSoleCoG_y,teta12),jacobian(RSoleCoG_y,teta13),jacobian(RSoleCoG_y

,teta14)]*dq.'; 

RSoleCoG_zdot=[jacobian(RSoleCoG_z,teta1),jacobian(RSoleCoG_z,teta2),jaco

bian(RSoleCoG_z,teta3),jacobian(RSoleCoG_z,teta4),jacobian(RSoleCoG_z,teta5),ja

cobian(RSoleCoG_z,teta6),jacobian(RSoleCoG_z,teta7),jacobian(RSoleCoG_z,teta8),

jacobian(RSoleCoG_z,teta9),jacobian(RSoleCoG_z,teta10),jacobian(RSoleCoG_z,teta

11),jacobian(RSoleCoG_z,teta12),jacobian(RSoleCoG_z,teta13),jacobian(RSoleCoG_z

,teta14)]*dq.'; 

VRSoleCoG=sqrt(RSoleCoG_xdot^2+RSoleCoG_xdot^2+RSoleCoG_xdot^2); 

%% 

T=0.5*m1*VLAnkle_KneeCoG^2+0.5*m2*VLKnee_HipCoG^2+0.5*m3*VUHipCoG^2+0.5*m

4*VRHip_KneeCoG^2+0.5*m5*VRKnee_AnkleCoG^2+0.5*m6*VRSoleCoG^2; 

U=m1*g*(LAnkle_KneeCoG_z-lA2c)+m2*g*(LKnee_HipCoG_z-

(lK2c+lA2K))+m3*g*(UHipCoG_z-(lK2H+lA2K+lH2cz))+m4*g*(RHip_KneeCoG_z-

(lK2c+lA2K+lS2A))+m5*g*(RKnee_AnkleCoG_z-(lS2A+lA2c))+m6*g*(RSoleCoG_z-lA2c); 

L=T-U; 

tau=jacobian(jacobian(T,dq),q)*dq.'+jacobian(jacobian(T,dq),dq)*ddq.'-

jacobian(T,q).'+jacobian(U,q).'; 

 

n1=tau(1);n2=tau(2);n3=tau(3);n4=tau(4);n5=tau(5);n6=tau(6);n7=tau(7);n8=

tau(8);n9=tau(9);n10=tau(10);n11=tau(11);n12=tau(12);n13=tau(13);n14=tau(14); 

%% 

NoD=46; 

T=2; 

dt=T/NoD; 

time=dt:dt:T; 

 

tetan1=zeros(NoD);tetan2=zeros(NoD);tetan3=zeros(NoD);tetan4=zeros(NoD); 

tetan5=zeros(NoD);tetan6=zeros(NoD);tetan7=zeros(NoD);tetan8=90*sin(0:-

pi/180:-pi/4).'*pi/180;%teta8=[-

45:0].'*pi/180;tetan9=zeros(NoD);tetan10=zeros(NoD);tetan11=zeros(NoD);tetan12=

zeros(NoD);tetan13=zeros(NoD);tetan14=zeros(NoD); 

%% 

for i=2:NoD 

    dqn1(i)=[tetan1(i)-tetan1(i-1)]/dt;    dqn2(i)=[tetan2(i)-tetan2(i-

1)]/dt;dqn3(i)=[tetan3(i)-tetan3(i-1)]/dt;dqn4(i)=[tetan4(i)-tetan4(i-

1)]/dt;dqn5(i)=[tetan5(i)-tetan5(i-1)]/dt;dqn6(i)=[tetan6(i)-tetan6(i-1)]/dt; 

    dqn7(i)=[tetan7(i)-tetan7(i-1)]/dt;dqn8(i)=[tetan8(i)-tetan8(i-

1)]/dt;dqn9(i)=[tetan9(i)-tetan9(i-1)]/dt;dqn10(i)=[tetan10(i)-tetan10(i-

1)]/dt;dqn11(i)=[tetan11(i)-tetan11(i-1)]/dt;dqn12(i)=[tetan12(i)-tetan12(i-



89 

1)]/dt;dqn13(i)=[tetan13(i)-tetan13(i-1)]/dt;dqn14(i)=[tetan14(i)-tetan14(i-

1)]/dt; 

end 

 

for i=2:NoD 

ddqn1(i)=[dqn1(i)-dqn1(i-1)]/dt;ddqn2(i)=[dqn2(i)-dqn2(i-1)]/dt; 

    ddqn3(i)=[dqn3(i)-dqn3(i-1)]/dt;ddqn4(i)=[dqn4(i)-dqn4(i-1)]/dt; 

    ddqn5(i)=[dqn5(i)-dqn5(i-1)]/dt;ddqn6(i)=[dqn6(i)-dqn6(i-1)]/dt; 

    ddqn7(i)=[dqn7(i)-dqn7(i-1)]/dt;ddqn8(i)=[dqn8(i)-dqn8(i-1)]/dt; 

    ddqn9(i)=[dqn9(i)-dqn9(i-1)]/dt;ddqn10(i)=[dqn10(i)-dqn10(i-1)]/dt; 

    ddqn11(i)=[dqn11(i)-dqn11(i-1)]/dt;ddqn12(i)=[dqn12(i)-dqn12(i-

1)]/dt;ddqn13(i)=[dqn13(i)-dqn13(i-1)]/dt;ddqn14(i)=[dqn14(i)-dqn14(i-1)]/dt; 

end 

 

%%     

    dqn1(1)=dqn1(2);dqn2(1)=dqn2(2);dqn3(1)=dqn3(2);dqn4(1)=dqn4(2);  

dqn5(1)=dqn5(2);dqn6(1)=dqn6(2);dqn7(1)=dqn7(2);dqn8(1)=dqn8(2);  

dqn9(1)=dqn9(2);dqn10(1)=dqn10(2);dqn11(1)=dqn11(2); 

dqn12(1)=dqn12(2);dqn13(1)=dqn13(2);dqn14(1)=dqn14(2);   

     

    ddqn1(1) =ddqn1(3);ddqn2(1) =ddqn2(3);ddqn3(1) =ddqn3(3);ddqn4(1) 

=ddqn4(3);ddqn5(1) =ddqn5(3);ddqn6(1) =ddqn6(3);ddqn7(1) =ddqn7(3);ddqn8(1) 

=ddqn8(3);ddqn9(1) =ddqn9(3);ddqn10(1)=ddqn10(3);   

ddqn11(1)=ddqn11(3);ddqn12(1)=ddqn12(3);dqn13(1)=ddqn13(3);ddqn14(1)=ddqn14(3);    

     

    ddqn1(2) =ddqn1(3);ddqn2(2) =ddqn2(3); 

    ddqn3(2) =ddqn3(3);ddqn4(2) =ddqn4(3); 

    ddqn5(2) =ddqn5(3);ddqn6(2) =ddqn6(3); 

    ddqn7(2) =ddqn7(3);ddqn8(2) =ddqn8(3); 

    ddqn9(2) =ddqn9(3);ddqn10(2)=ddqn10(3); 

    ddqn11(2)=ddqn11(3);ddqn12(2)=ddqn12(3); 

    ddqn13(2)=ddqn13(3);ddqn14(2)=ddqn14(3);  

     

%% 

for i=1:NoD 

    g1(i,1)= subs(n1,dq1,dqn1(i)); 

    g1(i,1)= subs(g1(i,1),dq2,dqn2(i)); 

    g1(i,1)= subs(g1(i,1),dq3,dqn3(i)); 

    g1(i,1)= subs(g1(i,1),dq4,dqn4(i)); 

    g1(i,1)= subs(g1(i,1),dq5,dqn5(i)); 

    g1(i,1)= subs(g1(i,1),dq6,dqn6(i)); 

    g1(i,1)= subs(g1(i,1),dq7,dqn7(i)); 

    g1(i,1)= subs(g1(i,1),dq8,dqn8(i)); 

    g1(i,1)= subs(g1(i,1),dq9,dqn9(i)); 

    g1(i,1)= subs(g1(i,1),dq10,dqn10(i)); 

    g1(i,1)= subs(g1(i,1),dq11,dqn11(i)); 

    g1(i,1)= subs(g1(i,1),dq12,dqn12(i)); 

    g1(i,1)= subs(g1(i,1),dq13,dqn13(i)); 

    g1(i,1)= subs(g1(i,1),dq14,dqn14(i)); 

    

    g1(i,1)= subs(g1(i,1),ddq1,ddqn1(i)); 

    g1(i,1)= subs(g1(i,1),ddq2,ddqn2(i)); 

    g1(i,1)= subs(g1(i,1),ddq3,ddqn3(i)); 

    g1(i,1)= subs(g1(i,1),ddq4,ddqn4(i)); 

    g1(i,1)= subs(g1(i,1),ddq5,ddqn5(i)); 
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    g1(i,1)= subs(g1(i,1),ddq6,ddqn6(i)); 

    g1(i,1)= subs(g1(i,1),ddq7,ddqn7(i)); 

    g1(i,1)= subs(g1(i,1),ddq8,ddqn8(i)); 

    g1(i,1)= subs(g1(i,1),ddq9,ddqn9(i)); 

    g1(i,1)= subs(g1(i,1),ddq10,ddqn10(i)); 

    g1(i,1)= subs(g1(i,1),ddq11,ddqn11(i)); 

    g1(i,1)= subs(g1(i,1),ddq12,ddqn12(i)); 

    g1(i,1)= subs(g1(i,1),ddq13,ddqn13(i)); 

    g1(i,1)= subs(g1(i,1),ddq14,ddqn14(i)); 

  

    g1(i,1)= subs(g1(i,1),teta1,tetan1(i)); 

    g1(i,1)= subs(g1(i,1),teta2,tetan2(i)); 

    g1(i,1)= subs(g1(i,1),teta3,tetan3(i)); 

    g1(i,1)= subs(g1(i,1),teta4,tetan4(i)); 

    g1(i,1)= subs(g1(i,1),teta5,tetan5(i)); 

    g1(i,1)= subs(g1(i,1),teta6,tetan6(i)); 

    g1(i,1)= subs(g1(i,1),teta7,tetan7(i)); 

    g1(i,1)= subs(g1(i,1),teta8,tetan8(i)); 

    g1(i,1)= subs(g1(i,1),teta9,tetan9(i)); 

    g1(i,1)= subs(g1(i,1),teta10,tetan10(i)); 

    g1(i,1)= subs(g1(i,1),teta11,tetan11(i)); 

    g1(i,1)= subs(g1(i,1),teta12,tetan12(i)); 

    g1(i,1)= subs(g1(i,1),teta13,tetan13(i)); 

    g1(i,1)= subs(g1(i,1),teta14,tetan14(i)); 

    g1(i,1)= vpa(g1(i,1)); 

end 

%% Plots 

figure(12) 

plot(g1); 

 


