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Abstract 

Evidence from archaeological sites and ancient and modern DNA suggests that people 

first entered northern North America via Beringia no later than 15,000 years ago, and 

potentially as early as 24,000 years ago. When people moved south to colonize the rest 

of the American continents is still debated. The presence of ice sheets means that two 

routes were the most likely: down the unglaciated coast of the Pacific Northwest, and/or 

via an interior route characterized as the ice-free corridor. Large areas of Late 

Pleistocene land on the coast were submerged when sea levels rose at the beginning of 

the Holocene, around 10,000 years ago, making it difficult to locate potentially early 

sites. There is now a need to develop and test methods that identify high potential 

locations for finding sites on those now-submerged landscapes. 

The LAMAP method (Carleton et al. 2012) has been successful in predicting areas of 

high archaeological potential associated with permanently occupied settlements of 

agrarian societies. This study is the first application of LAMAP to mobile hunter-gatherer 

sites. A study area was defined in the Tanana Valley, Alaska, and the location and age 

of known archaeological sites was sourced from files in the Alaska Heritage Resources 

Survey database. The location of each site was plotted on a raster map produced in 

QGIS using six Digital Elevation Models accessed from the USGS’s National Elevation 

Dataset. This provided information relating to six physical variables for each site: 

Elevation, Slope, Aspect, Distance to Drainage, Viewshed and Convexity. The study 

area was divided into more than 700 million cells. LAMAP calculates the similarity of 

each cell to the cells found in a 1-km sample area around each known site. Mapping the 

distribution of similarity indices created a map of archaeological potential. We ran 

LAMAP on 91 randomly selected site locations to create a map of archaeological 

potential, and tested it by examining the location of the second set of 91 sites from the 

study area. Areas of high archaeological potential contained more of the second set of 

sites, confirming LAMAP’s ability to predict high potential areas for mobile hunter-

gatherer sites. A second analysis, using pre and post 10,000 cal BP sites, showed the 

same results, demonstrating that long-standing physical features of the landscape are 

robust predictors of high potential areas, regardless of the time period. 

LAMAP is one of a number of methods for modelling high potential areas, each of which 

has advantages and disadvantages, for the preliminary exploration of now-submerged 

terrestrial landscapes. 
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Chapter 1.  
 
Introduction 

When and how people first arrived in the Americas remains one of archaeology’s 

greatest unsolved mysteries. Currently, the majority of archaeologists agree that people 

first made their way into modern-day Alaska from Siberia sometime before 15,000 years 

ago (Hoffecker et al. 1993, 2016). Central Alaska is “the longest continually inhabited 

area in the Western Hemisphere” (Potter 2008:1). People have lived there longer than 

anywhere else in both North and South America, even though some archaeological sites 

elsewhere have been dated to be even older. The oldest archaeological site, Swan Point 

dates to 14,450 cal BP and is located in Central Alaska’s Tanana River Valley, in what 

would have been eastern Beringia at that time.1  

In this thesis I have chosen to use the term “population expansion” instead of 

“colonization” (see Chapter 2). The expansion of peoples from Siberia to North America 

was most likely not a deliberate migration or colonization effort (in the Colonial sense of 

the word). Rather, “First Peoples” were likely following the big game that they depended 

upon. As herds of mammoth, bison, horse and other Late Pleistocene mega-fauna 

moved eastward across Beringia so too did First Peoples. The word “colonization” is 

also a loaded term that carries many negative connotations, especially for today’s First 

Nations people, who are the descendants of the original First Peoples who arrived in 

North America before 15,000 cal BP. 

While there is consensus amongst most archaeologists that First Peoples arrived 

in North America from Siberia, they do not agree on the route First Peoples used to 

expand into what are now the lower 48 states of the USA (Potter, Baichtal, et al. 2018). 

The ‘Ice-Free Corridor Hypothesis’ is  a long-standing view of how people entered and 

dispersed across North America (Potter et al. 2017). According to this hypothesis, the 

primary entry route into the continent was through the interior of Alaska and then through 

an unglaciated corridor on the eastern side of the Rocky Mountains, between the 

 

1 All dates in this thesis have been expressed as calendar years before present (1950), as reported 
in the relevant literature. 
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Cordilleran and Laurentide Ice Sheets (Pedersen et al. 2016; Potter et al. 2017). 

However, in the last four decades a growing body of research has supported an 

alternative expansion route—down the western coast of North America. Dubbed the 

‘Coastal Migration Hypothesis’, its supporters argue that people travelled, first, down the 

coast of the Pacific Northwest and then further south along the coast of California and 

beyond either on foot or by boat (Davis and Madsen 2020). 

When Knut Fladmark (Fladmark 1979) first proposed the existence of a coastal 

route most scholars rejected the idea because ice sheets were assumed to have 

covered the now submerged North Pacific Continental Shelf. But since the 1970s an 

expanded body of research has demonstrated that parts of the Pacific Northwest Coast 

(PNWC), including portions now inundated by post-glacial rising sea levels, had likely 

been ice-free refugia and were ice free much earlier than previously thought (Hoffecker 

et al. 2016; Lesnek et al. 2018; Waters 2019). Specific parts of the PNWC could have 

supported First Peoples as early as 17,000 years ago on land surfaces that are now 

underwater (McLaren et al. 2020). 

Since Fladmark’s work in the 1970s, there has been a significant increase in 

knowledge about the peopling of the Americas (Potter et al. 2017; Waters 2019). 

Archaeological data from northeast Asia are providing a clearer picture of the technology 

and adaptation of Late Pleistocene populations from which the first Americans are most 

probably descended, and research in interior Alaska has demonstrated similarities 

between artifacts in that region and western Siberia (Buvit et al. 2015, 2016; Graf 2014; 

Graf and Buvit 2017; Terry et al. 2016). Advances in Quaternary geomorphology and 

radiometric dating have also provided a better understanding of the timing and 

environmental conditions of potential routes into the Americas (Froese et al. 2019). In 

addition, the ability to analyze ancient human genomes has added information about 

when and how populations expanded out of Siberia and into the Americas (Raff 2019; 

Raff and Bolnick 2014). Figure 1.1 provides the geographic setting for these debates, as 

well as locations of some key sites and landscape features. 

The long term goal of my research is to look for underwater archaeological 

evidence of the first expansion of people into the Americas. Given the possibility that 

First Peoples utilized now-submerged terrestrial landscapes off the coast of the PNWC, 

we need tools to help locate their archaeological sites, including predictive models that 
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identify areas where sites are most likely to be found. In particular, we need models that 

have been effective in identifying high probability locations for hunter-gatherer sites. My 

MA thesis will test the Locally Adaptive Model of Archaeological Potential, known as 

LAMAP (Carleton et al. 2012), as a tool for modelling mobile hunter-gatherer sites on a 

terrestrial landscape. LAMAP is a predictive computer model that uses known-site 

locations to estimate the archaeological potential of a study area. Known-site locations 

provide us with information about the geographic and ecological characteristics of a 

landscape used by people in the past. The goal of my research is to see if LAMAP can 

estimate the archaeological potential of a region occupied by hunter-gatherers.  

In the first two applications LAMAP was used in studies of sedentary societies. 

To train and test the model on mobile hunter-gatherers I will use archaeological sites 

from the Tanana River Valley of Central Alaska. In addition to being the longest 

inhabited region of North America, it is possible that these sites are also analogous for 

potential human settlement on the PNWC in late glacial times. 

LAMAP uses distributions of landscape variables, such as elevation and slope, to 

make predictions about past human land-use decisions. Most predictive models attempt 

to locate areas where unknown sites are likely to be. LAMAP, on the other hand, takes 

the data from known site locations in a region and then looks for similar areas. The 

question then is not “where are there sites”, but rather, is “where are there (new) areas 

that are most similar to known site locations”. The predictive model then rates these in 

terms of continuous probability values, ranging from 0-1. LAMAP looks at the data 

surrounding a site instead of simply looking at the coordinates of a known site’s location. 

For example, instead of using the elevation value at a known site’s recorded location, in 

this study LAMAP uses all elevation values in a 1 km radius around the site. This 

provides a more comprehensive picture of the site’s setting, which LAMAP then uses to 

search for similar areas in the larger target region. 
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Figure 1.1. Map of Beringia and adjacent regions . Used with permission. 
Showing Beringia (brown), Laurentide and Cordilleran ice sheets (white), the ice-free corridor 
between the ice sheets, the Pacific coastal route and the location of key archaeological and 
geological sites. The Tanana Valley study area includes Swan Point and Upward Sun River sites. 
(Figure from Waters 2019). 

While this thesis is intended primarily to lay the necessary groundwork for 

developing a method for locating sites off the PNWC, it has broader implications. First, 

some of the conclusions may be applicable more generally to attempts to find once-

terrestrial sites that are now submerged in places such as the English Channel, the 

North Sea and off the coasts of Australia (Astrup et al. 2019; Bailey et al. 2017; 

Benjamin et al. 2020; Bicket A. R. et al. 2016). Second, the thesis is the first trial of 

LAMAP on the sites of mobile hunter-gatherers, and this will be of broader relevance to 

the study of hunter-gatherer archaeology worldwide. 

I apply the LAMAP model to archaeological sites in the Tanana River Valley in 

Alaska. This region was in the eastern part of unglaciated Beringia during the Late 

Pleistocene, and includes one of the oldest widely accepted sites in North America, 
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Swan Point, as well as a number of other sites that pre-date 10,000 cal BP. The region, 

the oldest continuously occupied area in North America (Potter et al. 2017), was also 

inhabited by mobile hunter-gatherers throughout the Holocene and has been the subject 

of numerous archaeological projects. As a result, the Tanana River Valley is a good area 

to test a model that predicts hunter-gatherer site locations.  

In this thesis I examine two questions.  First, can LAMAP be used to identify 

regions within the Tanana Valley that have a high potential for finding hunter-gatherer 

sites? Second, does a model built on the location of known Late Pleistocene sites also 

predict the location of Holocene hunter-gatherer sites?  

Before using LAMAP to estimate potential underwater locations, I first need to 

test it on land using known archaeological sites that can reasonably serve as analogues 

for the now-submerged archaeological record. This is the focus of this thesis. It is 

structured as follows: In Chapter 2, I summarize the current state of knowledge of the 

early peopling of the Americas. Chapter 3 explains how LAMAP works, and then tests its 

ability to predict areas of high archaeological potential, using the data from hunter-

gatherer sites in Alaska. Chapter 3 is presented as a multi-authored article that is 

currently being prepared for submission to an academic journal. The co-authors include 

the members of my supervisory committee, notably Chris Carleton, who developed 

LAMAP (Carleton et al. 2012). Dr. Carleton was responsible for running the LAMAP 

computer program and analyzing the modelling results statistically, while I was 

responsible for preparing the data from the 182 known-sites in Alaska used in the study 

and gathering the geographic and environmental data necessary for the LAMAP model. 

Chapter 4 discusses the results of using LAMAP in Alaska. I also examine its potential 

for locating archaeological sites on the now-submerged, formerly terrestrial, landscapes 

off the coasts of Alaska and British Columbia, and, I discuss the advantages and 

disadvantages of using LAMAP for exploration underwater offshore. 
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Chapter 2.  
 
Review of the Current State of Knowledge Regarding 
the Peopling of the Americas 

In this chapter I provide an overview of the present-day understanding of how 

and when people first entered North America. First, I focus on what archaeological 

research tells us about the movement of peoples from Asia to America, from west to 

east across Beringia; when this occurred and where it occurred. Second, I look at how 

the use of DNA adds to our understanding of the "peopling process”, and third, I review 

what the published research on paleo-environmental reconstructions tells us about the 

possible routes First Peoples used to enter the North American continent. Although it is 

common to refer to the peopling of the Americas as one or more “migrations” or 

“colonizations”, I have used the term “population expansion” because it seems more 

likely that the peopling of the North American continent occurred as populations 

expanded, rather than people deliberately migrating. 

There are many hypotheses as to how and when people first arrived in the 

Americas. Some are more widely accepted than others, some are supported with a 

larger degree of physical evidence and some are not. In this thesis I use the term 

“reliably dated”. I have three criteria in defining the reliability of a date assigned to an 

archaeological site. 1.) A site needs to have good stratigraphic context (Harris 1989). 2.) 

A site needs to contain artifacts, found in association with the site’s stratigraphy. 3.) A 

site needs to be dated using one or more well-tested methods, one of which should be 

radiocarbon dating, and, the dates should be consistent with the stratigraphy.  

Radiocarbon dating is the most widely used method for assigning ages to paleo- 

ecological and archaeological phenomena during late Pleistocene and Holocene times. 

Radiocarbon (14C) is a naturally occurring isotope found in the earth’s atmosphere 

(Canadian Archaeology 2020; Jull and Burr 2013; Ramsey et al. 2012; Taylor 2014). 

Plants take up 14C as CO2 during photosynthesis and animals acquire 14C by eating 

plants and/or other animals. When an organism dies, radioactive decay results in the 

loss of 14C atoms, such that the ratio of 14C to 12C and 13C (stable isotopes of carbon) 

declines.  Because the half-life of 14C  is known, this ratio can  be converted into an 
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estimate of time. In conventional radiocarbon dating, estimates of 14C concentration 

were made by counting radioactive decay events, when a beta-particle is released. 

These methods were superseded by the development of accelerator mass spectroscopy 

(AMS) that allows researchers to count 14C  and 12C atoms using an accelerated ion 

beam. This technique requires a much smaller sample size of organic material than 

conventional radiocarbon dating (Canadian Archaeology 2020; Harris 1987; Kutschera 

2016). For example, a radiocarbon date can now be derived from a single plant seed 

using AMS dating. Most dates that form the basis for chronologies discussed in this 

thesis are AMS dates. 

Radiocarbon dates require calibration because the amount of 14C produced in the 

atmosphere has varied over time. As a result, different calibration curves have been 

developed to reconcile this. These curves compare radiocarbon dates against the known 

age of a variety of naturally occurring materials, such as the tree rings of very old trees, 

fossilized ocean corals, mineral deposits found in deep caves, lake bottom sediments or 

ice cores from glaciers in Greenland and Antarctica (Hajdas 2014; Reimer, Reimer, et al. 

2013; Reimer 2012; Reimer, Bard, et al. 2013). In this thesis I have used calibrated 

dates as reported in the relevant literature. 

A critical question for the interpretation of any radiocarbon date is its association 

with the event that one wishes to date. A radiocarbon date measures the time since the 

death of a plant or animal. For a date to be used most effectively in archaeology one 

needs to demonstrate that the organism was alive (or very recently deceased) at the 

same time as the event one wishes to date. For example, a piece of driftwood used for a 

campfire on a beach may date much older than the people who made the fire, because 

the tree from which the wood came died hundreds of years before. The date accurately 

provides a time for the death of the tree, but that date is not associated with the event of 

interest – the time when people built a fire. Bone collagen is second only to charcoal as 

the preferred radiocarbon dating material (Canadian Archaeology 2020). It is also often 

easier to associate bone with human activity at a site than it is with charcoal. 

Other dating methods are also being used to determine the age of some 

archaeological sites. These include, but are not limited to, luminescence dating 

(Munyikwa et al. 2017), cosmogenic radionuclide dating (Menounos et al. 2017) and 

optically stimulated luminescence dating (OSL) (Bluszcz 2005). Again, to reliably date an 
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archaeological site these dating techniques should be used in conjunction with one of 

the two forms of radiocarbon dating. 

For a long time, archaeologists considered the oldest artifacts in North America 

to belong to the Clovis Complex, which is known for its large fluted bifaces (Haynes 

1964). First found in the 1930s near Clovis, New Mexico, stone tools from this Cultural 

Complex date between 13,200 and 12,800 cal BP (Goebel and Buvit 2011; Graf and 

Goebel 2009; Holmes 2011; Potter et al. 2014). Numerous Clovis sites have been found 

throughout the Americas indicating that by this time people had rapidly expanded into 

both North and South America (Madsen 2015; Potter et al. 2017). 

Other archaeological sites have subsequently been found that pre-date the time 

of Clovis, and are defined as being “pre-Clovis” sites. Reliably dated pre-Clovis sites 

include Swan Point (14,450 cal BP) and others in Alaska (Potter, Baichtal, et al. 2018) , 

Monte Verde (14,600 cal BP) in Chile (Dillehay et al. 2008), the Page-Ladson site in 

Florida (14,550 cal BP) (Waters 2019) and others on both continents. It is important to 

remember that such early sites denote the terminus ante quem for the arrival of First 

Peoples in the Americas and are not the actual date of their arrival. New archaeological 

sites continue to be found, some of which will be discussed in this thesis. These recently 

excavated sites both deepen our understanding of the peopling process of the Americas 

and pushes back the arrival time of people in the Americas. There is now general 

consensus within the archaeological community that people first arrived in North 

America before 16,000 cal BP (Braje et al. 2017; Potter, Beaudoin, et al. 2018; Waters 

2019). 

2.1. No Longer Valid 

In recent years, several peopling hypotheses of the Americas have fallen out of 

favour largely because of the preponderance of new evidence. The first is the Solutrean 

Migration Hypothesis (SMH). This theory purported that Solutrean peoples migrated 

from Europe to North America either by boat or on foot along the frozen edge of the 

North Atlantic ocean before 17,000 years ago (Bradley and Stanford 2004; Stanford and 

Bradley 2012). Centered in France and Spain, the Solutrean Cultural Complex is defined 

as existing between 21,000 and 17,000 BP (Straus 1986). 
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While popular with the media and the public, archaeologists had problems with 

the SMH right from when it was first advanced in the late 1970s. The SMH was based 

primarily on the similarities of lithic artifacts found at Solutrean sites in Europe (which 

date between 21,000 and 18,000 cal BP) with stone tools found at sites in North America 

(which date after 13,000 cal BP) (O’Brien et al. 2014). For example, the “Cinmar stone 

knife” was recovered underwater in the 1970s more than 100 kms offshore in 

Chesapeake Bay by the commercial fishing vessel “Cinmar” while it was dredging for 

scallops (Stanford and Bradley 2012). This large laurel leaf biface, that Stanford and 

Bradley believed to be pre-Clovis in origin, was recovered from a depth of approximately 

75 meters beneath the sea along with the partial skeletal remains of a mastodon, most 

of which was distributed amongst the ship’s crew as souvenirs. Eventually, a third upper 

molar, a partial tusk and the stone biface made their way to the Gywnn’s Island Museum 

in Mathews County, Virginia. The tusk was later dated to 23,000 cal BP by the 

Smithsonian Institute using conventional radiocarbon dating. 

Just because archaeological artifacts, such as stone tools, or features from 

different parts of the world and different time periods look similar doesn’t mean that they 

were produced by the same peoples. Archaeologists refer to this phenomenon as 

“convergence” or “parallelism” (Straus et al. 2005). No alleged Solutrean site or artifact, 

such as the Cinmar stone knife, has ever been found in North America that can be 

reliably dated (in a stratigraphic context). The problem with the mastodon tusk found in 

(loose) association with the Cinmar knife is that it, likely, dates to a much older time 

period (similar to the example of older driftwood being used in a more recent campfire). 

This has been a problem with many other alleged pre-Clovis sites found in the Americas, 

some of which I will discuss later in this chapter. 

Several archaeologists have argued that there are more differences than 

similarities between Solutrean-produced lithics and much more recent Clovis-period 

stone tools found on the opposite side of the Atlantic ocean (O’Brien et al. 2014; Straus 

et al. 2005). Likewise, other scientists argue that it is unlikely that Solutrean people could 

have survived the 5,000 km plus journey across the North Atlantic either by boat or on 

foot over the ice. The marine environment along the ice’s edge was not likely capable of 

supporting them, if a continuous ice shelf even existed at all (Westley and Dix 2008). 

There is no palaeoceanographic or paleo-environmental evidence to support the SMH, 

and, there is no evidence in the European archaeological record of Solutrean peoples 
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ever hunting sea mammals, such as seals, producing or using watercraft or foraging for 

marine resources (O’Brien et al. 2014).  

Also, there is no genetic evidence that Solutrean peoples made their way to 

North America and, if they did, passed on their genetics through their descendants. 

Genetics research in the last 20 years demonstrates unequivocally that indigenous 

peoples in both North and South America descended from a common ancestral source 

population in either northeastern Asia or Beringia more than 20,000 years ago (see later 

in this chapter). 

Another migration hypothesis that is no longer considered viable is the possibility 

that ancient Polynesians travelled across the Pacific, either by canoe or sailing vessel, 

arriving on the shores of South America sometime before 15,000 cal BP (Matisoo-Smith 

and Ramirez 2010). The oldest known site on the southern continent is Monte Verde, 

which dates to 14,600 cal BP (Dillehay et al. 2008, 2012). Most recently, several stone 

artifacts there have been recovered that exhibit the remains of seaweed on the tools’ 

working edges. This suggests that people there were reliant on marine resources as part 

of their diet. Beach pebbles from the nearby ancient shoreline were used to make stone 

tools, but there is no archaeological evidence of watercraft being produced or used at 

the site. 

In fact, the earliest evidence anywhere in the Pacific of people having the 

technology and ability to travel vast distances across open ocean doesn’t appear in the 

archaeological record until approximately 3,000 years ago, with Lapita peoples 

intentionally colonizing islands in eastern Polynesia and across Oceania (Irwin 2008). 

The results of genetics research also demonstrates that any admixture of genes 

between Asian and Pacific peoples happened much later than first thought, and, most 

likely resulted from a subsequent migration and not from the original peopling of the 

Americas event (see later in this chapter). 

In addition to theories of migration falling out of favour, many pre-Clovis 

archaeological sites are now viewed as being problematic, although for different 

reasons. One such example is the Cerutti Mastodon site in California. It was originally 

excavated in the early 1990s as part of a highway expansion project near San Diego 

(Holen et al. 2017). The remains of a juvenile male mastodon were uncovered along with 
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the fossilized skeletal remains of several other Late Pleistocene fauna, including 

mammoth, horse, camel and ground sloth. Given that no organic material was found at 

the site, Uranium-thorium dating (Dutton 2015) was used by the team of paleontologists, 

who determined that the site dated to around 130,000 years ago. Also found at the site 

were rocks that the researchers described as being “cobble tools”, early stone tools, that 

were used by humans to break apart the mastodon’s bones. These claims attracted a 

great deal of media attention, but most archaeologists were quick to disagree with such 

an early date for people being in North America because the majority of the earliest 

reliably-dated sites do not date before 15,000 years ago. Subsequent research 

determined that the marks found on the mastodon bones were the result of earth moving 

equipment at the site (as part of the freeway construction) and were not evidence of 

early human tool use (Ferrell 2019). 

Similarly, in the 1990s several researchers in Alberta identified what they 

believed to be cobble tools at two alleged archaeological sites; one near Calgary and the 

other near Grimshaw, that they claimed dated to 21,000 years ago (Chlachula 1994a, 

1994b, 1996; Chlachula and LeBlanc 1996; Chlachula and Leslie 1998). However, their 

critics pointed out that various natural processes can produce attributes on rocks that 

mimic human modification (Driver 2001a, 2001b). And, just because the described 

cobbles resembled those from a known later site (that were modified by humans) doesn’t 

mean that they were produced in the same manner. As one of their critics noted, better 

evidence is needed (than what was presented) to support the argument for humans 

being in western Canada before Clovis (Driver 2001b). The oldest known site in Alberta 

is the Wally’s Beach site (Kooyman et al. 2006), which was found on the banks of the St. 

Mary’s river in the southwestern part of the province. It dates to 13,300 cal BP and 

contains the skeletal remains of seven horses and one camel that were butchered there 

using stone tools (Waters et al. 2015). 

In British Columbia, the oldest known inland site is Tse’K’wa (formerly known as 

Charlie Lake Cave). This site dates to 12,500 cal BP (Driver et al. 1996) and is found in 

the Peace River region near the town of Fort St. John. Several lithic artifacts were found 

at the site, including a partial fluted point (Driver et al. 1996). The skeletal remains of two 

ravens were also found at the site and are considered to be the oldest evidence of 

(spiritual) ritual in Canada (Driver 1999). 



12 

Another site with a dating problem is Bluefish Caves in the Yukon. The site, two 

small caves and several small rock-shelters, was first discovered in 1978 (Cinq-Mars 

1979). Several lithic artifacts and debitage were found in association with the faunal 

remains of several Late Pleistocene animals, including horse and mammoth. Using two 

conventional radiocarbon dates, the site was originally dated as being between 10,000 

and 14,000 years old. In 2017, new research was conducted on an bone artifact found at 

the site in the late 1970s (Bourgeon et al. 2017). It was part of a horse mandible with 

what appeared to be cutmarks on it, described as evidence of human modification. 

Samples of the mandible were taken and radiocarbon dated to 24,000 cal BP. 

Researchers contended that this is evidence of the site being much older than originally 

described. 

However, like the example of the driftwood, the mandible could be much older 

than the Bluefish Caves site itself. In fact, this scenario has also been observed at other 

early archaeological sites, including some of the oldest reliably dated sites in Alaska. At 

several of the earliest sites there, including Swan Point, examples of “fossil ivory” used 

as tools have been found (Holmes 2001). These date between 20,000 cal BP to 18,000 

cal BP and are significantly older than the sites where they were found. The samples 

from each site were reliably dated using radiocarbon dates obtained from samples of 

bone collagen and hearth charcoal, in conjunction with lithic artifacts found in contextual 

stratigraphy at each site. 

The Debra L. Friedkin site, located north of Austin, Texas, is another site that 

some allege is older than it likely is (Waters, Forman, et al. 2011). A number of stemmed 

projectile points have been found at the site, which is situated on an alluvial floodplain. 

No organic material was found at the site, negating the use of radiocarbon dating. 

Instead, OSL was used on river sediments in which the artifacts were found, and, the 

site was dated to 15,500 cal BP. This is not to say the dates assigned, using the OSL 

method, are inaccurate. Rather, as previously noted, using only one form of dating 

technique is less reliable than using radiocarbon dating in conjunction with another 

dating method. It should also be noted that similar “stemmed” fluted points are not found 

in Alaska before 12,400 cal BP (Goebel et al. 2013). Given that the later sites are found 

closer to the initial point of entry into the North American continent suggests one of two 

things: the Friedkin site dates to a more recent time or it changes our understanding of 

the timing of the arrival of peoples in the Americas. 
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Another alleged pre-Clovis site is Meadowcroft Rockshelter in Pennsylvania 

(Adovasio et al. 1990). Situated on the banks of a small stream seven miles upstream 

from the Ohio River and 27 miles west of Pittsburgh, the site was originally dated to be 

16,000 years old (Associated Press 2013). Critics of such an early date raised concern 

about the potential for contamination of the site by ancient carbon from coal-bearing 

strata in the watershed (Tankersley and Munson 1992). They suggested that the site is, 

in fact, much younger and likely dates, instead, to the beginning of the Holocene, around 

10,000 cal BP. 

Paisley Caves on Oregon’s west coast is often held up as another example of a 

pre-Clovis site in North America (Gilbert et al. 2008). There, fossilized feces (coprolites) 

have been dated to 14,000 cal BP but there is debate about whether these are in fact 

human coprolites and whether the dates are accurate (Poinar et al. 2009). The presence 

of rodent middens indicates that burrowing rodents may have disturbed the integrity of 

the deposits (Jenkins et al. 2012). Another possibility is that between the intervening 

years, liquid water or animal urine may have moved DNA molecules between strata 

(Poinar et al. 2009). 

One recent archaeological site that may, in fact, be a bona-fid pre-Clovis site is 

the “Cooper’s Ferry” site in Idaho (Davis et al. 2019). It reliably dates to 16,000 cal BP, 

using radiocarbon, and is located beside a creek that flows, first, into the Salmon River, 

and then, into the Columbia River. It is possible that the Columbia River could have been 

a possible entry route for First Peoples coming into the interior of North America south of 

the Cordilleran Ice Sheet. While being more than 500 kms from the Pacific, the Cooper’s 

Ferry site may, in fact, be evidence of the first expansion of peoples into the continent 

from the coast. 

Another possible entry point into the North American continent south of the ice 

sheets is the Chehalis River in Washington State. Dubbed the “Chehalis River 

Hypothesis” (CRH), its proponents suggest that the Chehalis River Drainage and 

southern Puget Sound, which are both located on the PNWC north of the Columbia 

River, may have been inhabited by First Peoples before 15,000 cal BP (Croes and 

Kucera 2017). The closest early site is the Manis mastodon site at Sequim, Washington, 

which is located 120 kms to the north of the Chehalis River. It dates to 13,800 cal BP 

(Waters, Stafford, et al. 2011). Proponents of the CRH cite the Manis site to support their 
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hypothesis, but, no other (earlier) archaeological sites have yet been found in the 

Chehalis River and Puget Sound areas. In addition, to support their hypothesis, they 

also cite other early Clovis-period sites in the region, such as Ayer Pond (Kenady et al. 

2011) on Orcas Island (Wilson et al. 2009), which dates to 12,000 cal BP. Orcas Island, 

which is the largest of the San Juan Islands in northern Washington State, is located 190 

kms northwest of the Chehalis River. Croes and Kucera (2017) also suggest that the 

region was ice free by 16,000 cal BP and would have been capable of supporting First 

Peoples. 

2.2. Across Beringia 

By approximately 34,000 cal BP people were moving eastward across the vast 

Mammoth Steppe region of Beringia (Hoffecker et al. 2014) This region, the Bering Land 

Bridge, encompassed modern-day western Siberia, the now flooded Bering Sea and 

much of present-day Alaska and existed as early as 28,000 cal BP and lasted in some 

areas until as late as 10,000 cal BP (Buvit et al. 2016; Graf and Buvit 2017; Hoffecker et 

al. 2014) (Figure 1.1). The Yana RHS site in modern-day northern Siberia is the oldest, 

dating between 33,000 and 31,000 cal BP (Graf and Buvit 2017; Pitulko et al. 2016). 

Other sites in northwestern Beringia (present-day eastern Siberia) date between 30,000 

to 23,500 cal BP (Buvit et al. 2015; Graf and Buvit 2017). 

At the height of the LGM (26,500 to 19,000 cal BP) it was too cold and harsh for 

people to live in northern Beringia. They were forced out, first, south into central 

Beringia, and then, even farther south into what is today Russia’s Far East and Japan’s 

northernmost islands, which were then connected to the mainland by another land 

bridge (Buvit et al. 2015; Graf and Buvit 2017). But, by 16,000 cal BP, when 

environmental conditions had improved, people returned to western Beringia as 

evidenced by finds at Diuktai Cave , considered the “gateway to Beringia” (Graf 

2014:72). 

Microlithics, or microblades, first appear in the archaeological record in the 

Transbaikal region of central Siberia (western Beringia) around 22,000 cal BP (Terry et 

al. 2016). This technology likely developed either in place there during the LGM or 

further to the south, in modern-day Mongolia or Japan, when people were forced out of 

Beringia because of the cold at the height of the LGM, and was introduced on their 
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return when environmental conditions improved. Small thin uniform blades only a few 

millimeters thick are struck from a lithic wedge or conical shaped core using pressure 

flaking or indirect percussion. Each microblade has parallel sides 4 to 8 mm apart and 

are 15 – 50 mm long. The width of a microblade is its key attribute. It is generally 

accepted that microblades were used as insets for composite tools, such as projectile 

points made of bone and antler. The wider the microblade the easier it would have been 

to haft and secure in place. 

The oldest site exhibiting the large-scale production of microblades in western 

Beringia is Urez-22, which is today situated in northern Siberia in the Maksunuokha 

River Valley near the shore of the East Siberian Sea (Pitulko et al. 2016). It is 

considered the northernmost paleolithic site in the world and dates to 14,900 cal BP. A 

large collection of stone tools, including microblades, was found there along with 200 

complete bones from at least 11 individual mammoths. Based on the large quantity of 

ivory chips found at the site, most of the animals were small to medium-sized female 

mammoths with straight tusks. Fragments indicate that the microblades used there were 

very short in length (-30 mm), thin (1 mm), and narrow in width (around 2 mm) and were 

not made of locally-sourced lithic materials. Much of the debitage at the site is made up 

of lithic flakes and chips, many of which are broken, indicating that microblade cores 

were repeatedly modified and that most tools had their working edges re-sharpened 

several times before being broken and subsequently discarded. 

Forty kilometers to the east lies the Lake Nikita site. It dates to 13,800 cal BP 

(Pitulko et al. 2016). The remains of 20 mammoths or more, as well as bison and horse, 

have been excavated there. Again, based on the large number of straight-tusk mammoth 

ivory chips found at the site, researchers concluded that hunters there in the Late 

Pleistocene preferred medium-sized, most likely female, mammoths. Butcher marks 

were found on a number of rib bones and one contained the partial remains of a lithic 

projectile point. Unlike the Urez-22 site though, no microblades were found at the Lake 

Nikita site. In fact, no evidence was found of people making or modifying tools there. 

But, a half dozen complete biface points were found along with a modified section of 

ivory tusk – referred to as an ivory rod blank or preform. The tear-drop shaped points, 

referred to as “Chindadn points”, were made and retouched from large flakes of fine-

grained yellow-gray quartzite. They are important because they have been described as 
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some of the best evidence for a cultural connection between peoples on both sides of 

Beringia (Easton et al. 2011; Pitulko et al. 2016). 

When it comes to the process of making microblades there are two basic 

methods, the Yubetsu method and the Campus method (Hirasawa and Holmes 2017). 

Evidence of the Yubetsu method, considered an Old World technology, is found at sites 

mostly in western Beringia. The Swan Point site in Alaska is the only site in eastern 

Beringia where evidence has been found of microblades being produced with the 

Yubetsu method (Holmes 2011). This makes the Swan Point site important because it is 

the earliest site that demonstrates “cultural continuity” between northern Eurasia and 

North America and the only one with the relevant microblade technology. 

Microblades produced in the Yubetsu method are struck from a microcore that is 

bifacially prepared. Microblades produced in the Campus method are struck from a core 

that is unifacially prepared. Campus microcores and blades are associated with the 

(younger) Denali Complex sites (Hirasawa and Holmes 2017). The name “Campus” is 

derived from the Campus site in Fairbanks, Alaska, which was first excavated in the 

early 1930s.  

However, some researchers do not accept that Chindadn and Nenana, another 

early pre-microblade complex named after sites found in Alaska’s Nenana Valley 

(Goebel and Potter 2016; Holmes 2001), are unique technological complexes and lump 

them together under the heading, the “East Beringian Tradition” (Hirasawa and Holmes 

2017; Holmes 2001). These include the earliest Alaskan assemblages that are most 

similar to the Dyuktai culture in Western Beringia. The variability in artifact assemblages 

may be explained by several factors other than that different “culturally distinct” groups 

made different tool types. Other factors may include the availability of raw materials, the 

maker’s understanding of the environment, and the environment itself, including the 

climate and the changing of the seasons. Different lithic tools were likely made for 

different activities at different sites at different times of the year. 

It has been suggested that in a cold environment, like Beringia in the Late 

Pleistocene, osseous points (made of bone, antler or ivory) with inserted (inset) 

microblades were more durable than points made with lithic bifaces (Hirasawa and 

Holmes 2017). As a result, researchers have used the characteristics of different artifact 
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assemblages from different sites across Beringia to group and categorize them. 

Chindadn points and microblades were first found together in Alaska in the late 1960s in 

the Tanana River Valley at the Healy Lake Village site, which dates to 11,000 cal BP, 

and were defined as the Chindadn Complex. Chindadn points have been found as far 

east as the Little John site in the Yukon, which is situated at the eastern end of the 

Tanana River Valley. This site dates to 14,000 cal BP (Easton et al. 2011, 2007; Easton 

and MacKay 2008). 

In the 1970s and 1980s, sites in Alaska’s Nenana River Valley were found to 

contain Chindadn artifacts in the oldest (lowest) stratum. Lower strata contained only 

points and uniface scrapers, with the younger strata above containing microcores and 

microblades. Despite this, all artifacts were re-classified as the “Nenana Complex” 

(Hirasawa and Holmes 2017). Assemblages of artifacts assigned to the Nenana 

Complex date between 13,400 – 11,500 cal BP. All are from sites in central Alaska at 

relatively low elevations (none are above 520 m asl). Given the dates of these sites and 

the fact that the earliest contain bifaces and no microblades, some researchers equate 

the Nenana Complex to that of the Clovis Complex. 

Chronologically speaking, the next artifact complex found in central Alaska is the 

Denali Complex, which dates after 12,500 cal BP (Holmes 2011). Assemblages at sites 

are most often found in strata above those containing Nenana Complex artifacts. But, 

unlike the former, sites with Denali Complex artifacts are found throughout Alaska and at 

higher altitudes. Some early Holocene (post 12,000 cal BP) sites are found as far away 

as the Alaskan Peninsula. Denali Complex artifacts include microblades but also include 

large lithic blades, lanceolate bifacial projectile points and knives. 

Swan Point is important for understanding this chronology. Its oldest component 

(CZ4b) dates to 14,450 cal BP. Charles Holmes, the site’s principal investigator, 

interprets the oldest assemblage of artifacts as evidence of a “specialized workshop” - 

where a small group of knappers worked for several days making projectile points from 

bone and antler with inset microblades sourced from grayish green igneous rock, 

chalcedony and rhyolite, found onsite (Hirasawa and Holmes 2017).  

He believes that the people who first used the site must have been well 

acquainted with the surrounding area and chose the site because it afforded them a 
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suitable place to procure the lithic and faunal materials they needed to replenish their 

tool kit. The faunal evidence at the site from this time period indicates that people hunted 

megafauna, such as mammoth, horse, bison and caribou, as well as smaller game, 

including hare and birds. The faunal remains also indicate that only select parts of 

animal carcasses were brought to the site, suggesting that they were hunted or 

scavenged elsewhere. This, combined with the physical evidence of using the Yubetsu 

method for producing microblades, may also indicate a common Mammoth Steppe 

environment that existed across all of Beringia at this time and that the people who 

occupied the Swan Point site, most likely seasonally, had either come from western 

Beringia or were the direct descendants of those who did (Hirasawa and Holmes 2017; 

Holmes 2001, 2011; Lanoë and Holmes 2016). Holmes considers Swan Point CZ4b to 

be the most eastern branch of western Beringia’s Dyuktai Culture.  

Swan Point is also important for another reason. Holmes considers it ancestral to 

the Denali Complex. Microcores made with the Campus-method were found in more 

recent layers (CZ1b and 2) which date after 8,300 cal BP. The analysis of the different 

artifact assemblages over time shows that, despite changing the way they were 

produced, from the Yubetsu-method to the Campus-method, microblades remained 

consistent in their width and thickness (Coutouly and Holmes 2018; Hirasawa and 

Holmes 2017). 

A possible explanation for this is because microblades were part of a very 

specialized hunting tool. Composite osseous points using microblades are well 

documented in the archaeological record of Siberia (Goebel and Potter 2016; Hirasawa 

and Holmes 2017). While the design and the method in which microblades were 

produced changed over time, they remained morphologically the same. Another reason 

may be related to the environment in which osseous points were used. Studies show 

that organic points are more flexible and durable than lithic points in a cold environment. 

This means that using points made of bone or antler, instead of stone, with small inset 

microblades would have been much more advantageous than using large single 

component tools, like spears, that are prone to break in a cold environment. 

The frozen, tree-less Mammoth Steppe was replaced by the more temperate, 

boreal forest of the Taiga period, beginning around 7,500 cal BP. Larger mega-fauna, 

such as the woolly mammoth and the horse became extinct around 12,500 cal BP but 
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other species, such as the steppe bison and Dall sheep survived (Lanoë and Holmes 

2016). Studies show that microblade components at different archaeological sites are 

most commonly associated with the remains of steppe bison, moose and elk (Hirasawa 

and Holmes 2017). This suggests that microblades, as part of osseous points, were 

used primarily to hunt large mammals in the Late Pleistocene and Early Holocene in 

central Alaska. As the environment changed over time so too did the technology used by 

people there, as demonstrated by the archaeological record at sites like Swan Point and 

others in central Alaska (Lanoë et al. 2017, 2018). 

2.3. The Main Event 

There are two main hypotheses about how people first expanded into North 

America. The first hypothesis is that peoples travelled eastward across the Beringian 

land mass (Figure 1.1) from Siberia to Alaska, and then down an ice-free corridor of 

open land between the Cordilleran and Laurentide ice sheets as big game hunters 

(Potter et al. 2017). The other hypothesis focuses on the coastal Pacific route. According 

to this hypothesis, as ice receded at the end of the Last Glacial Maximum (LGM) people 

moved down the Pacific Northwest coast either on foot or by boat (Erlandson and Braje 

2011).  

However, the routes are not mutually exclusive (Potter, Baichtal, et al. 2018; 

Potter, Beaudoin, et al. 2018; Waters 2019). Assuming that the initial entry point into the 

Americas was through Siberia, it is quite possible that some First Peoples travelled down 

the coast of modern day Alaska, British Columbia and Washington State, while others 

expanded inland, entering the interior of the North American continent by moving down 

the east side of the Rocky Mountains (Froese et al. 2019; Lesnek et al. 2018; Misarti et 

al. 2012). 

Our understanding of how and when people first arrived in the Americas is 

changing rapidly with the announcement of new finds. It turns out that the Interior 

Corridor route may have been open by 15,000 cal BP (Dawe and Kornfeld 2017). A 

coastal route may also have been viable by this time. In recent years, a handful of early 

sites have been found on both the PNWC and further south in California and Mexico 

(McLaren et al. 2020). These include sites in BC’s Hakai Passage on the Central Coast. 
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e.g. Calvert and Triquet Islands. At Calvert Island, researchers claim to have found close 

to 30 human footprints in a paleosol dating to 13,000 cal BP (McLaren et al. 2020).  

But, given that the footprints were found in the intertidal zone and that they are 

extremely hard to date reliably, some archaeologists have questioned their age. At 

nearby Triquet Island, which is to the immediate northwest of Calvert Island, charcoal 

from a hearth feature has been dated to 14,000 cal BP. At Quadra Island, located in the 

Inside Passage between Vancouver Island and the mainland, artifacts have been dated 

to 12,900 cal BP (McLaren et al. 2020). Quadra Island is known to have been ice-free by 

14,000 cal BP (Fedje et al. 2011). Several sites in southwestern BC, near Stave Lake, 

have dated as early as 12,460 cal BP. The area is thought to have been ice-free by 

14,500 cal BP (McLaren et al. 2020). Two recent sites on the southern Oregon coast, 

“Indian Sands” and “Devil’s Kitchen” date to 12,000 cal BP and 13,400 cal BP 

respectively (McLaren et al. 2020). All of these sites exhibit evidence of a terrestrially-

adapted subsistence strategy. It seems likely that the earliest peoples in the Americas 

were hunters who travelled on foot. 

As will be discussed later, there is also compelling evidence from the world of 

DNA analysis that supports the idea that people in Alaska separated from their Siberian 

ancestors genetically sometime between 25,000 and 18,000 cal BP. This genetic “stand 

still” most likely occurred in central Beringia (much of which is now submerged), after 

which a small group expanded into eastern Beringia (Alaska) around 16,000 cal BP 

(Hoffecker et al. 2014). 

The coastal landscape may also have been accessible much earlier than once 

thought. Deglaciation began by 19,000 cal BP, with some areas open to animals and 

people by 18,000 cal BP, and, by 15,000 cal BP an unimpeded land route south along 

the PNWC may have existed (Graf and Buvit 2017; Potter et al. 2017). At the height of 

the LGM, what is now the seafloor of the Chukchi and Bering Seas was exposed, 

forming the Bering Land Bridge (central Beringia) which effectively blocked moisture 

from entering eastern Beringia (Elias and Crocker 2008). As a result, the former sea 

bottom of central Beringia, as well as exposed parts of the Continental Shelf to the south 

(along the coasts of Alaska, BC and further south), were “steppe like”. In Haida Gwaii 

(formerly known as the Queen Charlotte Islands), a “treeless and tundra-like 

environment” existed by at least 13,700 cal BP (Hetherington et al. 2003:1758). The 
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term “steppe like” refers to the “Mammoth Steppe” which was a vast grassland – the 

ideal habitat for grazing animals such as mammoth, bison and horse (Schwartz-

Narbonne et al. 2019; Zimov, Zimov, Tikhonov, et al. 2012; Zimov, Zimov, and Chapin 

2012). 

Paleoenvironmental reconstructions from fossil pollen, macroplant fossils and 

insect fossils in Beringia shows that at the end of the LGM the environment was similar 

to tundra regions found today in the high Arctic - except that it was much colder and 

dryer. This evidence was derived from sediment cores taken either offshore in the Bering 

Sea, such as at St. Lawrence Island and St. Paul’s Island, or at modern coastal 

locations, such as the Seward Peninsula. Prior to 14,000 cal BP, the landscape of 

central Beringia was covered in grasses and sedges with few trees and shrubs (Elias 

and Crocker 2008).  

There are also some finds of megafauna from coastal Washington State and 

British Columbia. As already noted, the remains of a mastodon, with an osseous 

projectile point in it, was found at the Manis site in northern Washington State and dates 

to 13,000 cal BP (Waters, Stafford, et al. 2011). The butchered remains of a male Bison 

antiquus from Ayer Pond on Orcas Island, in northwestern Washington’s San Juan 

Islands, dates to 11,700 cal BP (Kenady et al. 2011). Previously, the area had been 

steppe-like but by this time it was more of a pine parkland. The remains of other Bison 

antiquus have also been found on nearby Vancouver Island – suggesting a land bridge 

between it and the nearby mainland at that time (Kenady et al. 2011; Wilson et al. 2009). 

The remains of mammoth and other Late Pleistocene animals, such as mastodon, 

muskox, horse and bison, have also been found on Vancouver Island – most notably in 

the “Saanichton Gravels” at the southern end of the island. A mammoth’s humerus found 

there dated to 17,000 cal BP (Keddie 1979). Faunal evidence from the Port Eliza cave 

on the northwestern coast of Vancouver Island included the remains of small mammals 

such as marmot, vole and marten as well as other animals and indicates that, between 

18,000 cal BP to 16,000 cal BP, the area was open parkland with a cool climate. And 

while no evidence of human occupation was detected at the site, the evidence found 

does suggest that the environment there at that time may have been able to support 

humans (Ward et al. 2003). 
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As the world warmed at the end of the LGM and beginning of the Holocene, 

approximately 10,000 cal BP, sea levels worldwide rose (Dobson et al. 2020). Most of 

the coastline and exposed continental shelf on the PNWC, as much as 40 to 50 

kilometers distant from modern shorelines, disappeared beneath the advancing waves 

(Carrara et al. 2007). In some parts of the PNWC, sea level rose as much as 150 meters 

(Mackie et al. 2018; Shugar et al. 2014). 

2.4. Genetics 

The results from the research on human ancient DNA supports the expansion of 

peoples from west to east across Beringia before 15,000 cal BP. Researchers 

determined that people on the eastern side of Beringia “diverged” from those on the 

western side sometime between 25,000 cal BP and 18,000 cal BP (Faught 2017; Graf 

and Buvit 2017; Hoffecker et al. 2014; Llamas et al. 2017; Mulligan and Szathmáry 

2017). This split in populations, referred to mostly commonly as the “Beringia Standstill 

Model” (Tamm et al. 2007), is believed to have occurred somewhere in Beringia when 

people were confined to a specific region, likely because of “ecological barriers” (Tamm 

et al. 2007:1). Essentially, people were likely pushed out of more northern latitudes 

because of the harsh environmental conditions, e.g. the extreme cold, that existed there 

prior to 15,000 cal BP. Where the genetic “standstill” occurred is still not clear. It could 

have happened anywhere in Beringia, which was more than 4,000-km-wide at the height 

of the LGM. According to recent genetics research, a small group, less than 2,000 

persons, moved out of central Beringia and into eastern Beringia sometime between 

20,000 cal BP and 15,000 cal BP, likely coinciding with improved environmental 

conditions (Llamas et al. 2016; Schurr and Sherry 2004). 

The results of this study are consistent with another larger one that suggests 

Native Americans diverged from their East Asian ancestors no earlier than 23,000 cal 

BP, and that the “standstill period” (when they were geographically isolated) lasted no 

more than 8,000 years, after which they were able to expand eastward into present-day 

Alaska (Raghavan et al. 2015). Several studies looking at DNA from both archaeological 

remains and living Native Americans shows that Native Americans inherited their 

mitochondrial DNA (mtDNA) from a founding source population in Beringia. This 

ancestral population remained there long enough for genetic variation to occur – 

separating them from their Asian sister-clades (Tamm et al. 2007). After 15,000 cal BP 
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peoples in eastern Beringia continued to diversify genetically and expand outward, first 

into North America and then into South America until ultimately there were the two 

genetically distinct branches of Native Americans.(Llamas et al. 2016, 2017; 

Rothhammer and Dillehay 2009; Skoglund et al. 2015). 

Research also shows that, after 13,000 cal BP, the founding haplotypes are 

evenly distributed across both North and South America and are not “nested” from north 

to south (Llamas et al. 2017; Poznik et al. 2016; Rothhammer and Dillehay 2009). A 

haplotype is a set of DNA variations that are inherited together – such as a set of alleles 

found on the same chromosome (Bailey-Wilson 2020). This indicates that the peopling 

of the Americas was a rapid progression and not a gradual dispersal. The pattern of 

genetic variation on both continents, as observed in the human remains found in the 

archaeological record, also shows that after the initial expansion event there followed the 

development of regional haplotypes and further genetic variation in Native American 

populations (Llamas et al. 2016; Scheib et al. 2018).  

This means that the rate of expansion was not the same in all parts and that 

peoples settled in some areas while others expanded into new ones. Different groups 

also came into contact with others so that over time genetic differences developed 

(Perego et al. 2009). More recently, increased study has led to a better understanding of 

Native American-specific haplotypes as well as the worldwide mtDNA phylogeny. Today, 

for example, the overall number of recognized founding Native American maternal 

lineages has gone from five to a current count of 15. Of these, seven are found 

distributed across both North and South America, and, of the five haplogroups found in 

Native American populations today on both continents, four are estimated to have 

entered North America from Asia between 18,000 cal BP to 15,000 cal BP (de Saint 

Pierre 2017). The origin of the fifth has yet to be determined conclusively but is likely the 

result of genetic admixture from a later time and most likely also originates from (coastal) 

Beringia. Research relating to the nuclear genome has also found an allele unique to the 

Native Americans populations studied, along with two populations in Northeast-Asia 

(Hoffecker et al. 2016). The allele is absent in the rest of the world. This adds credibility 

to the idea that the Native American and northeastern Asian populations derive from a 

common ancestor. Other studies looking at the expansion of people into South America 

describes the process there as a series of population splits, with decreasing genetic 

variation from west to east (Borrero 2015; Rothhammer and Dillehay 2009).  
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It is important to note that while the study of “paleo-genomics” has provided 

compelling evidence relevant to the expansion of peoples on both continents, it hasn’t 

answered, definitively, some of the biggest question relating to the peopling of the 

Americas, such as what route(s) people took, when they travelled them and how long it 

took for people to get from one part of the Americas to another. One thing is for sure 

though, reliably dated pre-Clovis sites in Alaska, as well as those south of the ice sheets, 

such as Cooper’s Ferry (Davis et al. 2019), are compatible with the genetic data. 

What is clear is that the results of recent genetics research does not rule out the 

possibility that First Peoples expanded into North America before 15,000 cal BP. Exactly 

where the “Beringia Standstill” occurred is still not known, but the research indicates that 

people could have moved into eastern Beringia (Alaska) as early as 20,000 cal BP. Sites 

like Swan Point, Broken Mammoth, Mead and others, all of which are in the interior of 

Alaska, lend credibility to the idea that even older sites are likely to exist in Alaska, 

closer to the initial point of entry for peoples expanding into eastern Beringia. In addition 

to new sites being found closer to the coasts of Alaska, other sites are likely to be found 

offshore in the neighboring Bering Sea, in what would have been central Beringia prior to 

the beginning of the Holocene, approximately 10,000 cal BP, when sea levels rose to 

their current levels. 

2.5. Possible Routes 

Both archaeological and genetic evidence now supports the idea that people first 

arrived in eastern Beringia sometime before 15,000 cal BP and from there expanded into 

the rest of the Americas (Braje et al. 2020; Froese et al. 2019; Potter, Baichtal, et al. 

2018; Waters 2019). Debate continues regarding which of the two predominant routes, 

the Ice-Free Corridor (IFC) or the Pacific Coastal Route (PCR) were environmentally 

viable and whether one was preferred over the other. In fact, both may have been 

followed, but possibly at different times. The possibility of either route having been used 

first is largely dependent on the state of glaciation at various times (Lesnek et al. 2018; 

Misarti et al. 2012). At some point, when either or both the Cordilleran and western 

Laurentide ice sheets started to recede, pathways would have opened up (Dawe and 

Kornfeld 2017; Heintzman et al. 2016). A central question is how long did it take 

between when the ice receded and environmental conditions improved to the point 

where a local environment could have supported both plants and animals, and in turn, 
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humans. In the case of the IFC, proponents contend that people moved out of Alaska via 

the lowlands of the Tanana and Yukon rivers, into the Mackenzie River Valley then down 

along the eastern side of the Rocky Mountains and into the rest of North America (Potter 

et al. 2017). Those arguing for the PCR suggest that, after the Cordilleran Ice Sheet 

receded, people were able to travel down the length of the Pacific coast by boat, 

entering the continent from its western shores (Dixon 2013; Erlandson et al. 2008; 

Erlandson and Braje 2011; Madsen 2015). 

2.5.1. Interior Route 

There are more than 100 archaeological sites in eastern Beringia that predate 

10,000 cal BP (Potter et al. 2014, 2017). Of these, more than 70 are located in Alaska 

and the Yukon. There are only two sites that predate 14,000 cal BP – Swan Point in the 

Tanana River Valley and Little John in the Yukon River Valley. Supporters of the IFC 

route contend that these two sites, and other later ones, are the best evidence for the 

initial expansion of people out of Beringia via the IFC route (Jackson et al. 2020; 

McLaren et al. 2020; Potter et al. 2017). Some researchers have suggested that the IFC 

was not an actual corridor between the two ice sheets, but rather, was a series of 

different pathways through the Laurentide ice sheet (Dawe and Kornfeld 2017). These 

pathways would have allowed First Americans to travel south alongside the Rocky 

Mountains and then onto the unglaciated Plains to the east and to the south. 

As to when the IFC was passable, supporters of the IFC route suggest that there 

is no consensus on the exact timing of deglaciation, despite critics arguing that the IFC 

was not open until after 13,000 cal BP – too late for it to be the initial entry point into 

North America (Pedersen et al. 2016). But, new dating techniques, such as 

luminescence and cosmogenic dating, have recently produced dates for the ice sheets 

separating around 15,000 cal BP (Dawe and Kornfeld 2017; Ives et al. 2013). Glacial 

valleys along the way would have become ice-free refugia and could have supported 

plant and animal life as well as humans. They point to several radiocarbon dates from 

the remains of several small mammals found in northeastern British Columbia (BC), 

which date to 15,000 cal BP, as supporting evidence for this (Hebda et al. 2008). 
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2.5.2. Coastal Route 

Only a couple of dozen sites predating 10,000 cal BP have been found on the 

Pacific Coast (McLaren et al. 2020; Potter et al. 2013, 2017). Of these, only six reliably 

predate 13,000 cal BP (McLaren et al. 2020) and only one, the Cooper’s Ferry site in 

western Idaho, predates 14,000 cal BP (Davis et al. 2019). Technically not a coastal site, 

being more than 500 kms from the ocean, this recently-found site is situated on the 

banks of a creek that flows into the Snake River, which in turn, flows into the Columbia 

River. The Columbia River does flow to the Pacific and it is the largest river in the Pacific 

Northwest. It is also the fourth largest river, by volume, in the United States (Kammerer 

1990). The Columbia River Valley could have been a possible entry point into the interior 

of the continent for people migrating down the coast. Further south, several sites in 

California’s Channel Islands and Mexico’s Baja Peninsula have dated as early as 13,500 

cal BP (Des Lauriers 2005; Des Lauriers et al. 2017; Erlandson and Braje 2011; Wade 

2017). 

There is no evidence in the archaeological record of Siberia (western Beringia) in 

the Late Pleistocene of people being marine-adapted (Davis et al. 2016; Potter et al. 

2017). In eastern Beringia (Alaska) the earliest archaeological evidence of people 

fishing, for salmon, dates to 11,500 cal BP and comes from the Upward Sun River site in 

the Tanana River Valley (Halfman et al. 2015). It is not on the coast and it is the oldest 

evidence of people fishing for salmon anywhere in North America. Direct evidence of 

people using marine-adapted technologies, such as fish hooks and harpoons, doesn’t 

appear anywhere on the Pacific coast of the Americas until 12,500 cal BP from several 

small islands off the coast of Baja, Mexico (Fujita 2014). There, small fish hooks made of 

polished marine shell have been found in the oldest components (Des Lauriers et al. 

2017). On the coast of Alaska the earliest evidence of a marine adaptation doesn’t occur 

until 9,000 cal BP in the Aleutian Islands (Davis et al. 2016). 

Just like the IFC, the ability of people to move down the length of the Pacific 

coast was most likely dictated by two factors; the state of deglaciation at the time and 

the state of the environment being able to support an expanding population (Amick 

2017; Froese et al. 2019; Lesnek et al. 2018; Misarti et al. 2012). Dubbed the “Kelp 

Highway Hypothesis”, some researchers have suggested that First Peoples could have 

survived on a diet based on marine resources (Erlandson et al. 2008), But, there is no 
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archaeological evidence to support this. In fact, the evidence from the oldest 

archaeological sites on the Pacific coast strongly suggests that people lived on a diet of 

mostly big game. For example, a projectile-point embedded in the rib of a mastodon at 

the Manis site in northern Washington State dates to 13,800 cal BP (Waters, Stafford, et 

al. 2011). Lithic artifacts from the more recently discovered Cooper’s Ferry site include 

non-fluted projectile points, used for hunting game, and date between 16,000 cal BP and 

13,000 cal BP (Davis et al. 2019). 

So far, all of the sites found on the PNWC demonstrate that their earliest 

occupants were terrestrially-adapted big game hunters. They were not marine-adapted. 

The earliest archaeological evidence in BC comes from K1 Cave in west-central Haida 

Gwaii where stone points and flaked tools associated with bear hunting have been 

found, dating between 12,800 – 12,500 cal BP (Fedje et al. 2011). 

Along the southern coast of Alaska deglaciation began to occur by 19,000 cal BP 

(Misarti et al. 2012). The Alexander Archipelago, which borders BC, may have been free 

of ice as early as 15,000 cal BP (Kiefer and Kienast 2005; Taylor et al. 2014; Wilson and 

Ward 2006). The faunal remains of Late Pleistocene animals have been found on Prince 

of Wales Island in southern Alaska, dating to 15,000 cal BP, as well as on the Haida 

Gwaii Islands, dating to 17,000 cal BP (Darvill et al. 2018). Pollen and faunal data 

recovered from the Port Eliza Cave on the north-west coast of Vancouver Island 

indicates an environment capable of supporting people existed there as early as 18,000 

cal BP (Al‐Suwaidi et al. 2006; Ward et al. 2003). Prior to sea levels rising, starting 

around 12,000 cal BP, a 30-kilometer distance (now the Hecate Strait) separated the 

islands of Haida Gwaii from the mainland (Fedje et al. 2011). Pollen samples extracted 

from a pond at Kilgii Gwaay (Ellen Island) at the south end of Haida Gwaii indicates that 

by 14,500 cal BP a shrub-tundra environment existed there (Mathewes et al. 2019). 

Charcoal also found in core samples recovered from Kilgii pond demonstrates the 

presence of campfires, indicating people were on the landscape there as early as 13,000 

cal BP. But, archaeological evidence of a maritime adaptation at Kilgii Pond does not 

appear until 10,800 cal BP – as demonstrated by the remains of a (largely mussel) shell 

midden – after sea levels rose, inundating most of the formerly terrestrial Hecate Strait. 

The steppe-like environment of the then exposed Hecate Strait and continental 

shelf to the west would have been familiar to its first inhabitants, who would have 
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experienced the same further to the north in central and eastern Beringia. Other studies 

suggest that the PCR would have been free of ice and environmentally viable for first 

peoples by 16,000 cal BP (Dixon 2013; Erlandson and Braje 2011; Mackie et al. 2011; 

Madsen 2015; Shugar et al. 2014). Regardless, the overwhelming majority of 

archaeological evidence to date supports the idea that the earliest migrants on the 

PNWC were big-game hunters (before 13,000 cal BP) and that they were not marine 

adapted until much more recently (after 13,000 cal BP). 

2.5.3. Both Routes Viable 

A growing body of evidence from the disciplines of genetics and archaeology 

supports the idea that people entered North America before 15,000 cal BP. In addition to 

understanding when people first arrived, new research is providing evidence as to where 

people first moved into the continent.  

For a long time, the IFC was viewed by the majority of researchers as being the 

preferred route for the initial expansion of people into the Americas. More recently, 

researchers began to favor the PCR as the preferred route. But, neither route is 

exclusive. Even more recent research demonstrates that both routes could have been 

viable, likely much earlier than previously thought. The IFC could have been viable as 

early as 15,000 cal BP (Potter, Baichtal, et al. 2018) and the PCR could have been 

viable by 17,000 cal BP (McLaren et al. 2020). 

Archaeological evidence from sites such as Kilgii Pond and others along the 

PNWC may speak to First Peoples adapting In situ, moving from a terrestrially-adapted 

big game subsistence to a marine-adapted one, as environmental conditions changed at 

the beginning of the Holocene. The first expansion of peoples out of eastern Beringia, 

present-day Alaska, and into the rest of North America may have been down the coast 

of the Pacific Northwest via the PCR, or, it may have been through the interior of the 

North American continent via the IFC. Likewise, both routes are in line with the genetic 

data that shows people entered the continent before 16,000 cal BP. 

So far, only the Cooper’s Ferry site in Idaho (Davis et al. 2019), which reliably 

dates to 16,000 cal BP, favors the PCR over the IFC. Time will tell though, with the 

addition of more sites to the archaeological record. 
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3.1. Introduction 

Archaeologists have long sought ways of assessing whether an unsurveyed area 

contains archaeological sites (Mehrer et al. 2005; Wheatley and Gillings 2002). 

Recently, Carleton et al. (2012) have proposed a new approach, called the Locally-

Adaptive Model of Archaeological Potential, or LAMAP. It differs from existing 

techniques in that it does not treat archaeological sites like points on a map and it does 

not depend on having “non-site locations” to make its “potential” predictions. LAMAP 

does not try to predict the probability, or odds, of finding sites given a set of landscape 

variables. Instead, LAMAP considers the distribution of values for landscape variables 

around known sites and then uses these data to classify and map the archaeological 
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potential of the unsurveyed parts of the study area. In effect, LAMAP is estimating the 

similarity of known site locations to the unsurveyed parts of the study area. 

So far, only two tests of LAMAP have been published. Carleton et al. (2017) 

initially tested LAMAP with data from an area around the large Classic Maya centre of 

Minanha, in west-central Belize. They used the locations of 69 known Classic Maya 

civic-ceremonial centres to produce a high-resolution predictive model for a 280 km2 

study area around Minanha. The LAMAP predictions were then tested with a 

combination of ground-truthing survey and LiDAR data. The evaluation revealed a strong 

correlation between the LAMAP predictions and the number of previously unrecorded 

sites. There were in excess of 300% more sites in areas that were deemed high 

potential by the LAMAP model, as compared to areas that the model predicted as having 

low potential. 

The second test of LAMAP was reported by Wilett et al. (2019). These authors 

used LAMAP to identify high and low potential areas in the Sagalassos region of 

southwestern Turkey. The model was then tested using a pedestrian survey. In total, 15 

previously unknown sites were discovered, many represented by multi-period artifact 

concentrations. Like Carleton et al.(2017), Wilett et al. (2019) found markedly more sites 

in areas that LAMAP predicted to have high archaeological potential than in areas that 

LAMAP predicted to have low archaeological potential. 

While LAMAP has shown promise, its use has so far been limited to largely 

sedentary agricultural societies from more recent time periods. Each of the two case 

studies are different in their own right and the results need to be assessed individually. 

In the case of the Belize case study, the survey area consisted of several Classic Mayan 

regions that were surveyed over several years. The first pedestrian field survey covered 

about 50 km2. The next survey was remote, covering 400 km2, and was conducted using 

recently produced high-resolution LiDAR data. “Sites” were defined as architectural 

features and included domestic structures as well as large ceremonial centres. Following 

the development of a map of archaeological potential, a random sample of one hundred 

500 m X 500 m survey blocks were investigated using a pedestrian survey in 

combination with a LiDAR (desktop) survey to test the LAMAP predictions (Carleton et 

al. 2017). In the Turkey case study, seven LAMAP surface maps were produced - one 

for each time period the researchers were interested in studying -with data acquired from 
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satellite imagery for the 1,200 km2 study area. (Wilett et al. 2019). The study area was 

divided into 50 m X 50 m cells. The LAMAP model was tested by ground truthing 101 

randomly selected cells. “Sites” ranged in nature from rock shelters to stone-built 

structures and water wells. 

LAMAP has not yet been applied to the problem of assessing archaeological 

potential in relation to hunter-gatherer sites and we cannot simply assume that LAMAP 

will work as well for hunter-gatherer sites as it seems to do for sedentary agricultural 

sites. Hunter-gatherer sites were often used only briefly and, hunter-gatherers were 

often highly mobile. Decisions about where to locate may have depended more on 

immediate circumstances and context, and less on long-term considerations. Given 

these considerations, it is important to formally evaluate LAMAP’s ability to estimate 

archaeological potential in relation to hunter-gatherer sites. Here, we report such an 

assessment. 

In this study, we used part of the Tanana River Valley in central Alaska as a test 

case (Figure 3.1). The valley was part of unglaciated Beringia during the Late 

Pleistocene and includes Swan Point (14,450 cal BP), which is the oldest continually-

occupied archaeological site in North America. Archaeological evidence, from the Late 

Pleistocene to the Historic period, demonstrates that people have lived there, and at 

other sites in the Tanana River Valley, longer than anywhere else in the Americas. Swan 

Point is equally important for being the only site in North America to exhibit cultural 

continuity between western and eastern Beringia. Microblades, produced using the 

Yubetsu method, evidence of Dyuktai Culture, have only been found there. Many other 

documented sites that pre-date 10,000 cal Before Present (BP)2 are also found in the 

study area. As such, the study area is an excellent location to evaluate LAMAP’s ability 

to estimate archaeological potential in relation to hunter-gatherer sites. A further benefit 

of using the Tanana River Valley as a test case is that it may also provide researchers 

with tools for locating other early sites in North America. This is particularly important for 

finding new sites in Beringia, which at the end of the Pleistocene was a vast “mammoth 

steppe” covering 2.5 million square kilometers (Schwartz-Narbonne et al. 2019). 

 

2 All dates presented in this article are calibrated and “Present” refers to 1950. 
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We addressed two questions in the study. The first was, can LAMAP be used to 

identify areas within the Tanana Valley that have a high potential of containing hunter-

gatherer sites? To answer this question we carried out an analysis using random cross-

validation. Half of the currently known sites were randomly selected to use as a training 

dataset and the remaining sites were used to test the model. We reasoned that if the 

LAMAP method is suitable for identifying high potential areas for hunter-gatherer sites, 

there should be a strong positive correlation between LAMAP predictive classes and the 

number of cross-validation sites associated with those predictions. The second research 

question we addressed was, does a model built on the location of sites occupied during 

one period predict areas of high potential for sites from a different time period? We first 

divided the sample into pre-10,000 cal BP sites and post-10,000 cal BP sites. We then 

used the pre-10,000 cal BP sites to train the model and the post-10,000 cal BP to test it. 

This analysis also allowed us to investigate whether site location preferences shifted 

over time. We reasoned that if the LAMAP method was suitable for hunter-gatherer sites 

despite the significant passage of time, there should be a strong correlation between 

LAMAP predictive values and the numbers of cross-validation sites—i.e., places with 

higher LAMAP values should contain more sites. 

3.2. Background 

3.2.1. LAMAP 

LAMAP uses known-site locations to estimate archaeological potential (Carleton 

et al. 2012). The model’s key assumption is that known-site locations provide us with 

insight into the geographic and ecological characteristics of places used by people in the 

past. If people spent time at a location, as evidenced by material culture remains, this 

implies that the landscape around the site was suitable for whatever activity was taking 

place there. For instance, if a known site appears to have been a base camp it is 

reasonable to assume that the location was suitable for base camp activities. This 

implies that other areas possessing the same geographical and ecological 

characteristics were probably also suitable for a base camp. In other words, target areas 

that resemble known sites were probably selected on other occasions. Thus, without 

knowing exactly why humans made certain land-use decisions in the past or even what 

precisely people were doing in a given place, we can estimate the suitability of any 
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target location given known-site locations as a basis for comparison. This ‘known site 

suitability assumption is the foundation of LAMAP (Carleton et al. 2012).  

LAMAP assesses archaeological potential by comparing unsurveyed areas in a 

target region to areas around known-sites. Specifically, it uses empirical data to estimate 

the probability of finding areas in the target region that are similar to areas around 

known-sites with respect to a set of landscape variables. Ideally, the landscape variables 

represent persistent landscape characteristics that change relatively slowly so that 

measurements at different locations would have remained relatively constant with 

respect to each other through time. It is also preferable to use variables for which data 

are readily available, such as derivatives of physiography (e.g. elevation and slope), 

ecological and environmental observations (e.g. vegetation or soil type), or the product 

of computation (e.g. distances to water or intervisibility estimates). 

LAMAP employs a raster image (i.e. a grid of cells) representing the study area. 

Each cell/pixel in the raster image corresponds to a spot on the Earth’s surface for which 

we want to estimate archaeological potential (Ebert 2004). The study area was chosen 

because it represents a “swath” of the Tanana Valley that includes all of the oldest sites 

in Alaska. All of the site data within the study area was first compiled in a QGIS 

database. QGIS a free and open source Geographic Information System (GIS) (QGIS 

Group 2020). 

LAMAP employs a simple algorithm to estimate the archaeological potential of 

unsurveyed areas. The algorithm scans the raster image for the study area and assigns 

a probability value to every cell. The probabilities are derived from the distributions of 

landscape variables around a set of known site locations. These distributions are based 

on the cells in the raster image located around the known-sites. Each cell contains a 

value for a given landscape variable - say, the elevation value of the terrain in meters 

above sea level at the corresponding location on the ground. Together, the cells then 

represent the distribution of values for the relevant landscape variable around the 

known-site locations - e.g., the distribution of elevation values. With these distributions, 

the algorithm can then estimate the probability of finding a target cell with a given value 

for a given landscape variable that is similar to the sample area around any and all 

known-sites. The estimate is effectively the empirical likelihood of finding a spot in a 

target location that is similar to the sample area around known archaeological sites. 
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As noted, LAMAP’s estimates of archaeological potential are probabilities. They 

are calculated on a cell-by-cell basis to produce a LAMAP raster surface. A LAMAP 

estimate for the target cell is like a response to the question, “what is the probability of 

finding a cell similar to the target one within the area around a known-site”? With a set of 

landscape variables in mind, the question then is, “what is the probability of finding a 

spot within a known-site area that has X elevation multiplied by Y slope, multiplied by Z 

aspect, and so on”? The LAMAP algorithm uses empirical frequency distributions of 

measurements for the relevant variables around a given known-site location to estimate 

the probability. So, for six landscape variables, there would be six probabilities for a 

single comparison between one target cell and one known-site location. These 

probabilities are then multiplied to give the probability of finding a spot like the target cell 

in the area around the known-site. The same calculation is performed for every known-

site, producing a list of probabilities for a given target cell. Each element of the list is the 

LAMAP estimate comparing the target cell and one known-site location. Every cell in the 

study area is compared to each known-site sample area. Then, the probabilities in the 

list are weighted according to the distance between the target cell and the relevant 

known-site. Lastly, the weighted probabilities are combined using the “Law of Total 

Probability”, a formula for determining the overall probability of an outcome (find similar 

spots in all known-sites) that can be realized by multiple distinct events (find a similar 

spot at one site). The calculation results in a value ranging from 0 to 1 for every cell in 

the study area. The higher the value for a given cell, the higher its archaeological 

potential. The estimates can then be binned into categories (e.g., quantiles) and re-

classified into an ordinal variable ranging from 1 to 5 (to facilitate evaluating the model’s 

utility). These ordinal values indicate relative potential, with higher values indicating 

higher archaeological potential. Areas with the highest LAMAP values should contain 

more sites than areas with lower LAMAP values. 

Prior to computing the LAMAP values, the landscape variables are typically 

transformed with Principal Component Analysis to facilitate faster computation and 

improve the contrast between locations. PCA is a dimension reduction technique usually 

used to emphasize variation and reduce redundancy among variables in an analysis 

(Jolliffe 2002). It takes a set of potentially correlated variables (in this case, elevation, 

slope, distance to drainages, and so on) and reduces them to a new set of uncorrelated 

ones. Fewer variables, means faster calculations. The PCA also helped to avoid 
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rounding or floating-point computational limits. Computers have a limited number of 

decimal places to work with, so multiplying small probabilities by other small probabilities 

can lead to false zeros. Perhaps most importantly, though, the use of PCA improved the 

LAMAP algorithm’s ability to discern potential differences between locations in the study 

area, which would make discerning high- and low- potential areas easier. 

3.2.2. Study Area 

The study area comprises 7,000 km2 of the valley of the Tanana River (Figure 

3.1). It was chosen because it includes all of the oldest sites in Alaska as well as many 

later archaeological sites. The Tanana River is a tributary of the Yukon River and lies 

between the Alaska Range of mountains to the south and the Yukon River to the north. It 

is fed by meltwater from glaciers in the Alaska Range and flows northward to the Tanana 

Lowlands. The Tanana River Valley bottom ranges in width from less than a kilometer-

wide to 6.4 kms (Reger et al. 2008). The study area is made up of rounded ridges and 

bedrock hills, with a maximum elevation of 681 meters (Reger et al. 2011). Large free-

standing craggy rock outcrops, known as tors, are found on summits or ridge crests. 
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Figure 3.1. Map of study area within the Tanana River Valley of Central Alaska. 

The valley floor is covered in thick layers of river silt and lowland loess (Reger et 

al. 2008). Strong katabatic winds, high-density dry air coming off the Alaska Range of 

mountains, have been active in the area for millennia, especially during the Late 

Pleistocene. Such winds are found today in Antarctica. They sweep down off glaciers 

and contribute to reducing snowfall there (Grazioli et al. 2017). In the Tanana River 

Valley, katabatic winds strip sand and silt from unvegetated stream bars and exposed 

slopes. The thickest concentration of loess soils, made up of minerals from igneous and 

metamorphic rock, are found on lower north-facing slopes. See Figure 3.2. 
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Figure 3.2. A photo of typical north-facing slopes in the Tanana River Valley. 

The average summer temperature in the valley is 17 degrees Celsius and the 

average winter temperature is -23 degrees Celsius. The typical annual precipitation in 

the valley is 27 centimeters (Pattison et al. 2018). The area is considered a “Dfc climate 

type”, which is a subarctic climate (Alaska Department of Fish and Game 2020; Kottek et 

al. 2006) 

The valley is covered by subarctic boreal forest of the Nearctic Ecozone (Pattison 

et al. 2018). Black spruce forest makes up 68% of all tree species, followed by birch, 

balsam poplar, white spruce, tamarack, and aspen. Common shrub species include 

lingonberry, black spruce, birch, alder, Labrador tea, prickly rose, and blueberry (Schulz 

2015). Recent studies show that the vegetation in both the Tanana Valley and across 

Alaska is changing as a result of climate change. In some areas, shrubs are replacing 

tundra, and hardwoods, like aspen, are replacing softwoods, such as black and white 

spruce. An infestation of pests is also on the rise and this will, undoubtedly, have an 

effect in the future on the composition of vegetation both within the valley and across the 

rest of the state (Schulz 2015). Today, wetlands provide habitat for a variety of wildlife, 

including many game animals and migratory birds.  
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3.2.3. Human history in the Tanana River Valley 

The name ‘Tanana’' comes from the Denaakke term ‘tene no, tenene’, which 

means ‘trail river’ (Bright 2004). Denaakke (also known as Koyukon) is part of the Dene-

Athabaskan language family (Holton 2020). The Goodpaster River, a tributary of the 

Tanana River, is the demarcation line in the Tanana Athabaskan language area, 

separating upriver speakers of the Upper Tanana languages from the Lower and Middle 

Tanana speakers downriver. Descendants whose traditional territories include the study 

area are the Salcha(ket) and the Delta-Goodpaster (Smith 2020). 

Tanana Athabaskans have always relied on a hunter-gatherer subsistence. Prior 

to Contact, they were semi-nomadic and lived in semi-permanent settlements in the 

lowlands of the Tanana River Valley (Haynes and Simeone 2007). Traditionally, they 

relied on hunting big game in the fall, including moose, caribou, and Dall sheep. 

Throughout the rest of the year, they trapped beavers, wolverines, and other fur-bearing 

animals, and hunted bears, wolves, and other fauna. They also fished for salmon and 

trout in the rivers and streams, foraged for berries, and harvested other plants and 

natural resources. The economy of Tanana Athabaskans today is a mixed cash-

subsistence one, like many other Indigenous communities in Alaska, and still includes 

the hunting and gathering of wild resources (Haynes and Simeone 2007; Shinkwin and 

Case 1984). 
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Figure 3.3. Dr. Charles Holmes stands over part of Cultural Zone 4b at the Swan 
Point site, one of the oldest archaeological sites in the Americas 
(dating to 14,450 cal BP). Photo taken in June, 2019. 

Early archaeological sites found in the Tanana River Valley are conventionally 

divided into two time periods—14,000 cal BP to 13,000 cal BP and 13,000 cal BP to 

9,500 cal BP (Holmes 2001). Lithic assemblages from the earliest time period include 

microblades and burins that are similar in design and production to those found in the 

area that was once western Beringia and are assigned to the Dyuktai Culture. This time 

period includes sites such as Swan Point (East Beringian Tradition, 13,000 cal BP) 

(Holmes 2001). The earliest layers at Swan Point show evidence of ‘steppe grazers’ 
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including horse, bison, and mammoth (Potter et al. 2014). After 12,000 cal BP, people 

subsisted on mostly bison and wapiti, with the addition of small game, birds and fish 

(Holmes 2001; Lanoë and Holmes 2016; Potter et al. 2014). Sites from the more recent 

period include Broken Mammoth, Healy Lake, Gerstle River, and others. This period is 

referred to as the ‘Transitional Period’ (13,000 cal BP to 9,500 cal BP) (Holmes 2001). 

Some sites from this period do not include microblades, favouring smaller bi-faces 

instead. This indicates a possible shift in subsistence strategy, with hunters moving 

away from hunting bigger game, such as mammoth, to smaller animals, such as caribou 

and bison. The term ‘transitional’ reflects the environmental and technological changes 

that started to occur at the beginning of the Holocene, around 10,000 cal BP. 

The climate became warmer and wetter, some animals such as the mammoth, 

became extinct, and the ‘steppe-like’ environment was replaced by boreal forest. The 

results of pollen studies at Broken Mammoth demonstrate that from 13,800 cal BP to 

12,000 cal BP the environment there was a birch-shrub tundra. After 11,000 cal BP, this 

changed to a woodland, or parkland, environment that included both hardwood trees and 

shrubs, such as Alder, and softwood trees and shrubs, such as Spruce. The faunal 

remains of Red squirrel and porcupine from Broken Mammoth, dating to 9,100 cal BP, 

support the idea that by the early Holocene the area became more forested (Holmes 

2001).  

Archaeological evidence also suggests that early hunter/gatherers in the Tanana 

River Valley lived in small groups, were highly mobile, hunting migratory animals, and 

situated their seasonal base camps, as well as their temporary hunting and kill 

processing campsites, usually on bluffs or rises. Some sites within the Tanana River 

Valley have been described as “overlook” or look-out places (Holmes 2004). For 

example, Swan Point (Figures 3.3, 3.4) is located on the top of a ridge (at 322 meters 

above sea level) and strategically overlooks up to 86% of the surrounding area (Lanoë 

and Holmes 2016). 
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Figure 3.4. The Swan Point site is referred to as an “overlook site” because of 
its commanding view over the surrounding landscape, including 
nearby creeks and streams, which can be seen through the trees. 
Photo taken in June, 2019. 

3.3. Materials and Methods 

The dataset included information about 182 archaeological sites in the middle 

Tanana River Valley. Twelve of the sites predate 10,000 cal BP; 17 date between 

10,000 cal BP and 5,000 cal BP; 23 sites post-date 5,000 cal BP; and 130 are undated 

at the moment. Site data were compiled from the Alaska Heritage Resources Survey, 

with permission from the State of Alaska’s Office of History and Archaeology. Details of 

the individual sites are provided in Supplementary Materials. 

We used six variables in LAMAP to predict the location of previously unknown 

sites: elevation, slope, aspect, distance to drainages, cumulative viewshed, and 

convexity. The variables were selected for several reasons. They represent landscape 

features that have likely changed little over time and are readily available from satellite 

imaging data. We did not use vegetative cover as a variable, for example, because there 

are no palaeoecological records available for the area that could be used to infer 
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vegetation change over time or with a level of detail that would reflect variation between 

known sites. We chose the variables that we did because they would have been 

important to hunter-gatherers, and, because the six variables do have a relationship with 

other environmental variables such as vegetation, temperature and soil.  

The variable “elevation” was determined from the satellite data used. The 

variable “slope” was also derived from the elevation data. “Distance to drainage” values 

were, likewise, extracted from the elevation data using GRASS, a GIS used for 

geospatial modelling (OSGEO Foundation Project 2019). After extracting the drainages, 

“R” was used to create the raster map containing the distance from every cell in the 

study area to the nearest drainage cell from the extracted drainages map (The R 

Foundation 2020). The variable “aspect” was derived from the slope data. The variable 

“convexity” describes the degree to which a focal-cell represents a convex/concave 

location on the landscape, i.e. the degree to which the cell is on a hill-like surface or a 

depression-like surface. It was derived from the elevation data and was processed using 

the GIS spatial algorithm “Terrain Surface Convexity” provided through SAGA (System 

for Automated Geoscientific Analyses) (The SAGA Group 2020). The variable 

“cumulative viewshed” describes the visibility of a given cell in the study area from a 

large grid of points that was overlaid on the area using QGIS’s “Viewshed Analysis” 

algorithm. The grid contained thousands of points spaced 1,000 meters apart covering 

the entire study region. It was also derived from the elevation data and assumes a tress-

less, obstruction-free view of the land surface from a height of 1.6 meters. 

A total of six Digital Elevation Models (DEMS) for the study area were obtained 

from the United States Geological Survey’s publicly-accessible National Elevation 

Dataset (USGS 2020). These DEMs were imported and merged into a single geo-

referenced raster (surface) map. The DEMs acquired were very high resolution, with 

each cell measuring 5 X 5 m. This is an unusually high resolution for publicly-accessible 

satellite data. Typically, the average resolution for such data has been 30 X 30 m. The 

higher 5 X 5 m resolution had the potential to produce very high-precision estimates, but 

it had implications for processing the data. In their raw form, the six DEMS included 1.6 

billion 5 X 5 m cells, which would have meant unreasonably long processing times, even 

with a high-performance computing cluster. To reduce the amount of processing time, 

the six DEMS were resampled at 15 m x 15 m resolution by using a moving-average 

window after they were stitched together. The lower-resolution raster map was then 
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cropped to fit the study area, focusing specifically on the region where sites were 

located. Lastly, the map was re-projected from a geographic to Universal Transverse 

Mercator (UTM) projection (Natural Resources Canada 2008), with the longitude and 

latitude coordinates converted into meters.  

Every cell in the study area was compared to those in a 1-km diameter circular 

sample area around each known site. There were roughly 3,500 15 m X 15 m cells in 

each 1-km diameter sample area, depending on where precisely the circle overlapped 

the cells. The simplest way to quantify the character of the landscape around a known-

site was to sample places in the vicinity of that site, measure a given landscape variable, 

and estimate the corresponding frequency distribution of measurements. From this 

distribution it was possible to estimate the empirical probability of finding a spot within 

the site’s vicinity that is similar to a location of interest. Each target location was then 

assigned a probability value that reflects its similarity to the landscape around known 

sites. The procedure was repeated for each of the six landscape variables used to derive 

the LAMAP estimate for each target cell compared to each known-site. Once these 

calculations had been completed, all target locations were divided into five classes 

(quintiles) of equal size based on their probability values, and ranked from 1 (lowest 

potential) to 5 (highest potential). The distribution of target locations in each class was 

then mapped. 

In the first LAMAP analysis, half of the known-sites (n=91) were randomly 

selected to use as the training dataset and the remaining 91 sites were used to validate 

the model. In the second analysis we divided the dataset into pre- and post-10,000 cal 

BP sites. We then used the 12 pre-10,000 cal BP sites to train the model and the 60 

post-10,000 cal BP known-sites to test it. The validation sample was small because the 

post-10,000 cal BP set of sites did not include any pre-10,000 cal BP sites with a post-

10,000 cal BP component, such as Swan Point. A site was never used to both train and 

test the model. And, for obvious reasons, no sites of unknown age were used in the 

second analysis. To prevent data loss due to potential interruptions (like network and/or 

power outages) each tile was processed separately and then all of the tiles were stitched 

together. 

We used a simple regression analysis to determine whether LAMAP was 

performing adequately in each analysis. As mentioned, the LAMAP estimates were 
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reclassified into ordinal classes with higher classes representing higher archaeological 

potential. Thus, if the method was producing useful estimates, there should be more 

validation sites located on raster cells assigned higher potential classes. Following the 

validation approach taken in the earlier Belize case study (Carleton et al. 2017), we 

counted the number of validation sites located in cells of each predictive class and then 

compared the number of sites to the corresponding predictive class value. The 

comparison was done with a simple Poisson regression model, chosen because the 

data are comprised of counts of sites per predictive class. In each model, we used 

LAMAP class as the “predictor/independent” variable and validation site count as the 

“response/dependent” variable. We then examined the estimated regression coefficients. 

Assuming the LAMAP approach was useful, we expected to find evidence for a 

statistically significant, positive relationship between site counts and LAMAP classes, 

which would be indicated by positive regression coefficients associated with the LAMAP 

class variable. In both analyses, the slope of the regression was demonstrably positive. 

All analyses were conducted in R (see https://github.com/wccarleton/lamap for relevant 

scripts) and computed on the WestGrid high performance computing cluster that is 

managed by Canada’s national computing science partnership, Compute Canada 

(https://www.computecanada.ca/home/). 

3.4. Results 

In Figure 3.5, the randomly selected training set of sites are represented by white 

circles while the sites used to test the model’s predictions are represented by blue 

circles. Areas of high archaeological potential contained most of the second set of 

validation sites. There is a trend (as demonstrated by the regression results), with more 

sites being located in higher than lower LAMAP classes. This confirms LAMAP’s ability 

to predict high potential areas.  
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Figure 3.5. Map of Archaeological Potential based on 91 randomly selected 
sites (white) and tested with 91 other sites (blue. The five classes of 
archaeological potential are coded from 1 (lowest potential) to 5 
(highest potential). 

As Figure 3.5 shows, more of the sites used to test the LAMAP model (blue 

circles) are located in areas that LAMAP classifies as Class 3 or higher, with most in 

Class 4 or 5 locations. There were 19 sites in Class 2 and 21 sites in Class 5 (Table 

3.1). While these numbers appear close in magnitude, it is only in the absolute sense. 

The closeness actually reflects the positive slope of the model’s regression results. The 

differences between potential estimates across classes is not huge unless one goes 

from a lower class, e.g. Class 1, to a higher one, e.g. Class 5. The model’s regression 

results indicate that the higher classes yield more sites on average. By inference, then, 

one is better to look in a Class 5 area than a Class 2 area if the goal is to maximize the 
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number of sites found. But, the regression results are not saying that Class 5 is the best 

area – only that it is likely to be the best area on average. 

Certain features of the landscape stand out as having a particularly high potential 

according to the model, in LAMAP Classes 4 and 5. Some of these features include 

prominent landscape features, like river valley corridors and the plains between ridges. 

According to the Poisson regression model results, increasing the LAMAP class by one 

level corresponds to a 12% increase in the number of sites identified, on average. 

Despite this, the number of potential sites did not go up, when going from Class 4 to 

Class 5. This is most likely due to random sampling. The only way to known if the 

projected average increase is consistent is to rerun the analysis many times and ground 

truth the model’s results. Running the model over and over again does not get away 

from the problem that LAMAP, like any other predictive model, is biased by the (known 

sites) data it used to train itself. In practice though, one could expect to find 12% more 

sites in regions estimated to have a Class of 2 than those estimated to have a Class of 

1. Going from a Class 1 region to a Class 5 region, one could expect to find nearly 88% 

more sites in the latter region compared to the former.  
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Figure 3.6. Map of Archaeological Potential based on the location of pre-10,000 
cal BP sites (white and tested with post-10,000 calBP dated sites.  
Sites are dated by radiocarbon and/or artifact typology. Undated 
sites excluded from analysis. The five classes of archaeological 
potential are coded from 1 (lowest potential) to 5 (highest potential). 

In Figure 3.6 the pre-10,000 cal BP training set are represented by white circles 

while the post 10,000 cal BP sites are represented by green circles. As the figure shows, 

the vast majority of the post-10,000 cal BP sites are located in areas with LAMAP 

Classes of 3 or higher, with most in Class 4 or 5 locations. The same features 

highlighted by the first analysis were also highlighted in this second map. These include 

the same river valleys and plains. The results from the second analysis also 

demonstrated areas of high archaeological potential and contained more of the later 

(Holocene) sites. In this analysis, a one class level increase corresponded to a 50% 

increase in the number of identified sites on average, according to the relevant Poisson 

regression model. Going from a Class 1 to a Class 5 region would, therefore, be 

expected to yield nearly 657% more sites on average.  

This is an average estimate given the data, results and model used. The 

estimate is simply that, an estimate, and does not speak to the real underlying 
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distribution of sites in the study area. The results from both analyses suggest that the 

model is 1) “working” in the sense that there is a relationship between site density and 

potential as estimated by the model and 2) LAMAP is useful for planning future 

surveying in the study area. 

Table 3.1. Number of sites per LAMAP Class of Archaeological Potential in 
Both studies. 

Class Random Pre/Post 

1 6 0 

2 19 4 

3 21 8 

4 25 13 

5 21 8 

 

Table 3.1 shows the results of both analyses numerically, with the number of 

sites listed for each LAMAP class. In both analyses, Class 4 had the largest number of 

sites within it. In the first analysis, 25 sites were found to be located in it. In the second 

analysis, 13 sites were found in the Class 4 region. 

The regression models, one for the first random cross-validation analysis and the 

other for the second post 10,000 cal BP analysis, were based on the “Poisson 

Distribution” because the data (number of sites found in each LAMAP Class) are count 

data. A Bayesian approach to estimate the regression parameters was also used. This 

involved using a Markov Chain Monte-Carlo (MCMC) simulation for sampling the 

distribution of the relevant parameters. The MCMC simulations were run for a minimum 

of 20,000 iterations to ensure convergence. The priors used for the model parameters 

had a wide variance. 

Both sets of regression results support the visual impression that more validation 

sites are found in areas deemed higher potential by the model. The MCMC chains for 

both model parameters (Figures 3.7 and 3.8) indicate convergence, which means that 

the simulation found stable estimates for the posterior distributions of the model 

parameters. 
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Figure 3.7. LAMAP Counts – Random. 
Results of a Poisson regression for each prediction. The grey vertical bars indicate the number of 
sites located in a region with the given potential estimate. 

 

Figure 3.8. LAMAP Counts – Pre-10,000 cal BP. 
Results of a Poisson regression for each prediction. The grey vertical bars indicate the number of 
sites located in a region with the given potential estimate. 
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Figures 3.7 and 3.8 show the results of a Poisson regression for each prediction. 

The grey vertical bars indicate the number of sites located in a region with the given 

potential estimate. Both plots show that more sites were found in areas the LAMAP 

model predicts to have higher potential. There were more randomly chosen cross-

validation sites located in high potential areas than in low potential areas. Similarly, there 

were more post-10k sites located in high potential areas than in low potential ones.  

The regression models confirm this impression. The solid black trend-lines in 

both plots indicate the expected number of sites for a given LAMAP class according to 

the Poisson regression model. This line trends upwards for both predictive surfaces. The 

95% and 99% posterior predictive intervals (indicated by the darker and lighter grey 

transparent ribbons in Figures 3.7 and 3.8) also include the observed data and indicate 

an upward trend. 

The regression models also provide estimates of the effect of increasing LAMAP 

class on the number of sites identified in each analysis. This estimate is given by the 

posterior distribution of the regression coefficient (Figures 3.9 and 3.10). 

 

Figure 3.9. Plot showing the regression results for the random model. 
On the left, the diagnostic of Class levels & number of sites. On the right, the distribution of the 
regression coefficient & the intercept. 
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Figure 3.10. Plot showing the regression results for the Pre-10K. 
On the left, the diagnostic of Class levels & number of sites. On the right, the distribution of the 
regression coefficient & the intercept. 

The model’s regression results demonstrate that the higher classes have the 

best chance of containing sites within them, even if there are small differences between 

potential estimates, the number of sites per class. The results of the second analysis 

may appear to be better, but it is important to consider that it is a very limited subsample 

of the original data. As a result, the small sample size is more susceptible to sampling 

effects, which could give a false impression about the relationship between LAMAP 

class and the number of sites in the test sample. Since the sampling effects may give 

rise to a false impression, archaeological potential may be over estimated. 

3.5. Discussion 

This is the first application of LAMAP to a region occupied by mobile hunter-

gatherers. The first part of the study used the location of a random selection of known 

sites from all time periods to model the archaeological potential of the study area within 

the Tanana River Valley of Central Alaska. The data that were considered related to the 

underlying structure of the landscape (variables such as elevation and slope), rather 
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than the resources that might potentially be exploited by hunter-gatherers (such as stone 

tool sources or concentrations of game). The model was tested by analyzing the location 

of a second set of randomly selected known sites. Areas of high archaeological potential 

defined by the first set of sites contained higher frequencies of sites from the second set, 

and thus validated the model’s ability to predict areas of higher archaeological potential. 

The second part of the study built a model based only on data from 12 pre-

10,000 cal BP sites. The model was then tested with sites from later time periods (post-

10,000 cal BP). The areas of high potential based on the earlier (Late Pleistocene) sites 

were validated by the higher frequencies of later (Holocene) sites. These results suggest 

that relatively stable landscape variables (such as aspect or distance to drainages) 

structure hunter-gatherer site locations, even though biotic variables may have changed 

through time.  

Six variables were used in this study; elevation, slope, aspect, distance to 

drainages, cumulative viewshed and convexity. Much of the highest potential region 

(Class 5) includes prominent features overlooking a river valley. The PCA indicated that 

the landscape variables aspect, convexity and distance to drainages account for 70% of 

all variation. But, the variables distance to drainages, elevation and slope correlate the 

most with each other. The PCA showed that all the variables load on the top three 

principal components to some extent but that the top three, aspect, convexity and 

distance to drainages, together dominate the variability in the landscape, and as such, 

have the greatest potential for distinguishing between locations. The variables 

contributing most to variation in the landscape allow us to discriminate between high and 

low potential areas. While LAMAP looks at the correlation of all six variables as a whole, 

we can gain insight by reviewing the data associated with each variable. In this regard, 

distance to drainages is an important variable to consider. It factors into both the overall 

variation and in the first PCA. 

Given that distance to drainage features so prominently in this study’s results 

suggests that the variable was important to early hunter-gatherers in the Tanana River 

Valley. Accessing a reliable water source would have been important to First Peoples for 

a variety of reasons, such as sourcing water for drinking, washing, bathing and other 

activities. Waterways such as rivers, streams and creeks would also have attracted 

animals that were an important food source for First Peoples. Waterways were also 
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important travel routes, especially in mountainous terrain. When travelling on foot, the 

easiest way for people to move from higher elevations to lower ones would have been 

for them to follow a gently sloping, incised drainage, such as on the shore beside a river 

or stream. Larger drainages, such as a river valley, would also have acted like highways 

for both people and animals, especially in winter.  

These reasons, as well as others, would be good material for a deeper 

discussion about the LAMAP predictive model and may have implications for future 

research. One future research question could be, why does the variable distance to 

drainage correlate so strongly with the first PCA? Clearly, there is something about this 

study area that causes distance to drainage (that’s distance to relatively major 

drainages, not just any potential drainage) to be so highly variable. 

 

Figure 3.11. A DEM of relevant archaeological sites in the Lower Shaw Creek 
Valley. Used with permission. Retrieved from: 
http://www.alaska.net/~taiga2/Swan_Point.html. 

Swan Point is located on top of a ridge at 322 meters above sea level and 

strategically overlooks up to 86% of the surrounding Shaw Creek and Tanana and 

Yukon Rivers Uplands (Lanoë and Holmes 2016). The site’s location is striking because 
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it lies at the boundary of uplands and lowlands and has a high vantage point over the 

surrounding landscape (Figure 3.11). Clearly, the LAMAP variables of distance to 

drainage, elevation and slope are factors in this area. However, Swan Point is not 

located in the highest potential area (Figure 3.12). 

 

Figure 3.12. Swan Point in relation to the Top 10 Percent of the LAMAP Class 5 
predictive area. 

LAMAP, like any other predictive model, cannot differentiate between earlier and 

later sites in terms of landscape use – site age is not being predicted. If there is no 

difference between older and younger sites in terms of locational preference, there is no 

way to specifically target older sites with LAMAP. But, the model did predict more sites, 

both older and younger, in higher potential areas, such as Classes 4 and 5. Therefore, 

older sites, such as Swan Point, are just as likely to be found in higher potential areas. 

In June of 2019, Rob Rondeau visited central Alaska and saw first-hand several 

pre-10,000 cal BP sites in the Tanana River Valley including the oldest, Swan Point 

(Figures 3.3 & 3.4). Most of these sites were located within the Shaw Creek basin, a 

major tributary of the Tanana River. In fact, all of the sites in the study area dating before 
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10,000 cal BP are found overlooking tributaries or tributary confluences with the Tanana 

River, Canyon Creek, and the Big and Little Delta Rivers. 

3.5.1. Limitations 

As with any other predictive model, LAMAP is biased towards the training dataset 

which is made up of the known archaeological sites in the study area. The LAMAP 

model, or any other model for that matter, can only make predictions based on the 

training data used. The data sample used in this study is the only information we have 

about the location of prehistoric sites in the Tanana River Valley. Therefore, it is the best 

source of data for us to use in predicting the location of additional sites there. Because 

the site database is the result of numerous archaeological projects with different 

objectives, we clearly do not have a representative sample of the universe of 

archaeological sites preserved in the study region. But, given that the sites in the training 

data set were used by First Peoples, we can say that the LAMAP model is indicative of 

landscape behaviour (people’s preference for certain locations) for at least some sub-set 

of the site types. The model is indeed telling us about past site location preferences 

even if it is biased by the sampling preferences of the archaeologists. 

The LAMAP model was successful in identifying areas in the Tanana River 

Valley that have high potential for containing archaeological sites, demonstrating that the 

model is useful in making predictions about archaeological potential in a hunter-gatherer 

context. In addition to finding sites, understanding the landscape preferences of hunter-

gatherers in the past is equally important. This research improves our understanding of 

how people in the distant past situated themselves on the landscape, opening the door 

to further archaeological investigation. 

3.5.2. Future Directions 

This study indicates that LAMAP can successfully predict the location of areas 

that have a high potential to contain hunter-gatherer sites in Central Alaska, just as 

previous studies have shown that LAMAP can predict the location of areas that have a 

high potential to contain Mayan sites in Belize or Imperial Roman sites in Turkey (as well 

as other sites there from different time periods). In this case study, LAMAP identified 

areas of high predictive value that warrant further investigation. The only real way to 
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know if the LAMAP model works in Alaska though is to field test (ground truth) the 

results. Just like in the other two previous case studies, it will be a matter of surveying all 

areas of potential, not just the high potential ones, and comparing the results. 

3.6. Conclusions 

The results may reflect the biases of the archaeologists who excavated the 

known sites. For example, most known sites within the Tanana River Valley are found 

near major highways or the Trans- Alaska Pipeline (Pipeline 2011). But, LAMAP 

identified “high potential” areas in the study area that have never been investigated by 

archaeologists. As a result, these key areas warrant further archaeological investigation. 

Key landscape features include ridges, hills and knolls overlooking rivers. There is a high 

probability that as yet undiscovered sites, which pre-date 15,000 cal. BP, exist within the 

Tanana River Valley. 

Using LAMAP allowed us to see how people in the Tanana River Valley may 

have used the landscape there in the distant past. This is in line with what archaeologist 

Charles Holmes believes. He suggests that Swan Point and other nearby early sites, 

such as Broken Mammoth or Mead, represent “overlook sites” from which game could 

be spotted and a variety of microenvironments exploited (Holmes 2004). Both LAMAP 

predictive maps suggest possible “corridors of use” – the areas that are brightest in 

colour – which may reflect resource pathways or how people moved on the landscape. 
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3.7. Supplementary Materials 

AHRS Sites Database 

Data from the Alaska Heritage Resources Survey, the State of Alaska’s Office of History 
and Archaeology. 
 

Site  Components Stratified Pre-10K BP 10–5K BP 
5K BP - 
Present 

Date 
Unknown 

HEA_00102 Single No 
   

X 

HEA_00103 Single No 
   

X 

HEA_00104 Single No 
   

X 

HEA_00685 Single No 
   

X 

XBD_00010 Single No 
   

X 

XBD_00011 Single No 
   

X 

XBD_00012 Single No 
   

X 

XBD_00013 Single No 
   

X 

XBD_00014 Single No 
   

X 

XBD_00015 Single No 
   

X 

XBD_00017 Single No 
   

X 

XBD_00018 Single No 
   

X 

XBD_00019 Single No 
   

X 

XBD_00028 Multi Yes X 
   

XBD_00031 Single No 
   

X 

XBD_00042 Single No 
   

X 

XBD_00071 Multi No 
   

X 

XBD_00072 Single No 
   

X 

XBD_00073 Single No 
   

X 

XBD_00089 Single No 
   

X 

XBD_00106 Multi No 
  

X 
 

XBD_00107 Single No 
   

X 

XBD_00108 Single No 
   

X 

XBD_00109 Single No 
   

X 

XBD_00110 Single No 
  

X 
 

XBD_00131 Multi Yes X X X 
 

XBD_00155 Multi Yes X X 
  

XBD_00156 Multi Yes X X X 
 

XBD_00157 Single No 
   

X 

XBD_00158 Single No 
   

X 

XBD_00159 Single Yes 
  

X 
 

XBD_00160 Single No 
   

X 

XBD_00161 Single No 
   

X 

XBD_00165 Single No 
   

X 
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Site  Components Stratified Pre-10K BP 10–5K BP 
5K BP - 
Present 

Date 
Unknown 

XBD_00166 Single No 
   

X 

XBD_00167 Single No 
   

X 

XBD_00171 Multi Yes 
   

X 

XBD_00183 Multi Yes 
  

X 
 

XBD_00235 Single No 
  

X 
 

XBD_00247 Single No 
   

X 

XBD_00265 Single No 
   

X 

XBD_00283 Single No 
  

X 
 

XBD_00286 Single No 
  

X 
 

XBD_00287 Single No 
  

X 
 

XBD_00288 Single No 
 

X 
  

XBD_00289 Single No X 
   

XBD_00290 Single No X 
   

XBD_00291 Multi No X 
   

XBD_00297 Single No X 
   

XBD_00298 Multi Yes X 
   

XBD_00299 Single No 
   

X 

XBD_00300 Single No 
   

X 

XBD_00301 Single No 
  

X 
 

XBD_00302 Single No 
   

X 

XBD_00303 Single No 
 

X 
  

XBD_00304 Single No 
   

X 

XBD_00305 Single No 
   

X 

XBD_00306 Single No 
   

X 

XBD_00307 Single No 
 

X 
  

XBD_00308 Single No X 
   

XBD_309 Single No 
   

X 

XBD_00311 Single No 
 

X 
  

XBD_00312 Single No 
 

X 
  

XBD_00313 Single No 
 

X 
  

XBD_00314 Single No 
   

X 

XBD_00315 Single No 
   

X 

XBD_00316 Single No 
  

X 
 

XBD_00317 Single No 
 

X 
  

XBD_00318 Single No 
   

X 

XBD_00319 Single No 
   

X 

XBD_00320 Single No 
   

X 

XBD_00321 Single No 
   

X 

XBD_00322 Single Yes 
   

X 

XBD_00323 Single Yes 
   

X 

XBD_00324 Single No 
  

X 
 

XBD_00325 Single No 
 

X 
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Site  Components Stratified Pre-10K BP 10–5K BP 
5K BP - 
Present 

Date 
Unknown 

XBD_00326 Single No 
 

X 
  

XBD_00327 Single No 
   

X 

XBD_00328 Single No 
  

X 
 

XBD_00335 Multi Yes 
  

X 
 

XBD_00338 Multi Yes X 
   

XBD_00339 Multi Yes 
 

X X 
 

XBD_00340 Single No 
 

X 
  

XBD_00341 Single No 
 

X 
  

XBD_00342 Single No 
  

X 
 

XBD_00343 Single No 
   

X 

XBD_00344 Single Yes 
  

X 
 

XBD_00345 Single No 
   

X 

XBD_00361 Single No 
  

X 
 

XBD_00362 Single No 
  

X 
 

XBD_00363 Single No X 
   

XBD_00371 Single No 
   

X 

XBD_00374 Single No 
   

X 

XBD_00377 Single No 
   

X 

XBD_00378 Single No 
   

X 

XBD_00383 Single No 
   

X 

XBD_00389 Single No 
   

X 

XBD_00390 Single No 
   

X 

XBD_00391 Single No 
   

X 

XBD_00392 Single No 
   

X 

XBD_00393 Single No 
   

X 

XBD_00407 Single No 
   

X 

XBD_00410 Single No 
   

X 

XBD_00411 Single No 
 

X 
  

XBD_00412 Single No 
  

X 
 

XBD_00413 Single No 
   

X 

XBD_00415 Single No 
   

X 

XBD_00416 Single No 
   

X 

XBD_00417 Single No 
   

X 

XBD_00418 Single No 
   

X 

XBD_00419 Single No 
   

X 

XBD_00421 Single No 
   

X 

XBD_00422 Multi Yes 
   

X 

XBD_00425 Single No 
   

X 

XBD_00426 Single No 
   

X 

XBD_00427 Single No 
   

X 

XBD_00428 Single No 
   

X 

XBD_00429 Single No 
   

X 
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Site  Components Stratified Pre-10K BP 10–5K BP 
5K BP - 
Present 

Date 
Unknown 

XBD_00430 Single No 
   

X 

XBD_00431 Single No 
   

X 

XBD_00444 Multi Yes 
 

X X 
 

XBD_00445 Single No 
   

X 

XBD_00448 Single No 
  

X 
 

XMH_00232 Single No 
   

X 

XMH_00233 Single No 
   

X 

XMH_00234 Single No 
   

X 

XMH_00235 Single No 
   

X 

XMH_00236 Single No 
   

X 

XMH_00237 Single No 
   

X 

XMH_00299 Single No 
   

X 

XMH_00300 Single No 
   

X 

XMH_00301 Single No 
   

X 

XMH_00302 Single No 
   

X 

XMH_00303 Single No 
   

X 

XMH_00304 Single No 
   

X 

XMH_00305 Single No 
   

X 

XMH_00306 Single No 
   

X 

XMH_00307 Single No 
   

X 

XMH_00310 Single No 
   

X 

XMH_00313 Single No 
   

X 

XMH_00829 Single No 
   

X 

XMH_00830 Single No 
   

X 

XMH_00831 Single No 
   

X 

XMH_00832 Single No 
   

X 

XMH_00833 Single No 
   

X 

XMH_00834 Single No 
   

X 

XMH_00835 Single No 
   

X 

XMH_00836 Single No 
   

X 

XMH_00837 Single No 
   

X 

XMH_00839 Single No 
   

X 

XMH_00840 Single No 
   

X 

XMH_00841 Single No 
   

X 

XHM_01414 Single No 
   

X 

XHM_01415 Single No 
   

X 

XMH_01434 Single No 
   

X 

XHM_01435 Single No 
   

X 

XMH_01436 Single No 
   

X 

XMH_01437 Single No 
   

X 

XMH_01438 Single No 
   

X 

XMH_01439 Single No 
   

X 
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Site  Components Stratified Pre-10K BP 10–5K BP 
5K BP - 
Present 

Date 
Unknown 

XMH_01440 Single No 
   

X 

XMH_01441 Single No 
   

X 

XMH_01442 Single No 
   

X 

XMH_01443 Single No 
   

X 

XMH_01444 Single No 
   

X 

XMH_01445 Single No 
   

X 

XMH_01446 Single No 
   

X 

XMH_01447 Single No 
   

X 

XMH_01448 Single No 
   

X 

XMH_01449 Single No 
   

X 

XMH_01450 Single No 
   

X 

XMH_01451 Single No 
   

X 

XMH_01452 Single No 
   

X 

XMH_01453 Single No 
   

X 

XMH_01454 Single No 
   

X 

XMH_01491 Single No 
   

X 

XMH_01492 Single No 
   

X 

XHM_01544 Single No 
   

X 

XHM_01545 Single No 
   

X 

XHM_01549 Single No 
   

X 

XHM_01550 Single No 
   

X 

XHM_01551 Single No 
   

X 

Note: GPS Co-ordinates for each site have been redacted to protect site locations. 
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Chapter 4.  
 
Discussion 

The results for LAMAP in Alaska demonstrate that the model was successful in 

predicting archaeological potential in the Tanana River Valley of Central Alaska. Two 

analyses were run. In the first, half of the sites in the dataset were randomly selected to 

train the model. The other half were used to test LAMAP. The areas deemed to have the 

highest potential for containing sites (LAMAP Classes 3, 4 and 5) contained most of the 

second half of the validation sites, thereby confirming LAMAP’s ability to predict high 

potential areas. In the first analysis, increasing the LAMAP class by one level 

corresponded to a 12% increase (on average) in the number of sites identified. This 

would mean that one could expect to find 12% more sites in areas estimated to be Class 

2 compared to those areas estimated to be Class 1. This is expressed visually in the 

(surface) map (Figure 3.5), with the highest class, Class 5, being the brightest in colour 

(yellow), and, the subsequent classes, 4,3,2 and 1, being darker in colour, with Class 1 

being black. Going from a Class 1 region to a Class 5, one could expect to find nearly 

88% more sites (in Class 5 compared to Class 1). In the second analysis, the pre-10,000 

cal BP sites were used to train LAMAP and the post-10,000 cal BP sites were used to 

test the model. However, this time one could expect to see a 50% increase in sites when 

moving from one class to another, i.e. going from Class 1 to Class 2 and so on. When 

going from Class 1 to Class 5 though one could expect nearly 657% more sites on 

average. Again, the model’s results are visually displayed in the map (Figure 3.6) with 

Class 5 being bright yellow and Class 1 being black in colour. 

The first random analysis was run only once. In a sense, we were looking at a 

sample of a sample. If we re-ran the analysis many times, we don’t know what the 

results would be. They may be better, but they may be worse. So, the patterns we see in 

the results shouldn’t be seen as being “stable”. Likewise, we shouldn’t focus on the 

specific number of sites that fall into a given LAMAP class in either analysis. Rather, we 

should focus on the average trend (slope) of each model’s results. The second analysis 

involved a small number of sites. Its results are even more susceptible to sampling 

fluctuations. It could appear to be performing very well when, in fact, the model is 

actually not. As a result, we need to be very careful in interpreting its results.  
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When interpreting all of the findings of this study we also need to consider how 

landscape use and landscape variability factors into the model’s utility. For example, as 

more and more people occupied the study area, doing different activities at different 

sites at different times, we would expect LAMAP to have trouble distinguishing between 

areas of high and low archaeological potential. This is because there would be little 

difference in the underlying probabilities of land use for different locations, except at the 

extremes, i.e. there would be no sites on mountain peaks or at the bottom of a river. This 

would be even more true in a highly variable landscape. 

But, by finding more sites, especially early ones, we can do a better analysis of 

the archaeological landscape of the Tanana River Valley. Theoretically speaking, finding 

more sites is not at odds with trying to understand the distribution of sites on a 

landscape. It is more a meta-analytical difference, with the one being sequential to the 

other. With more sites, you can do more detailed analysis. 

The results from both analyses suggest that some landscape variables such as 

aspect and distance to drainages structure hunter-gatherer site locations. Given the 

model’s results, there is no evidence of a change in First Peoples’ landscape 

preferences over time. These two variables were clearly important to the earliest 

inhabitants of the Tanana River Valley, as evidenced by the earliest known site, Swan 

Point at 14,450 cal BP, to more recent sites dating from the Holocene. The 

archaeological evidence for all time periods confirms that First Peoples preferred sites 

situated on a hillside or hilltop that were also close to a major water source, such as a 

river or stream. It is quite possible that the rationale for these site preferences had to do 

with the hunting and processing of the game that they relied upon, such as mammoth, 

bison and caribou. Both of the variables, aspect and distance to drainage are key 

indicators that researchers should consider when focusing their efforts in the future to 

find undiscovered sites. 

Just like in the two previous applications of LAMAP, in Belize (Carleton et al. 

2017) and Turkey (Wilett et al. 2019), in Alaska the model gave us the ability to study a 

remote area that would otherwise be difficult to access. Modelling the archaeological 

potential of the study area also provided us with valuable insight into how people in the 

past occupied the landscape of the Tanana River Valley. In all three applications, the 

location of all known sites was entered along with the natural landscape variables that 
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influenced the land-use choices made by people in the past. In the Turkey case study, 

cultural variables such as the proximity to urban centers and ancient roadways were also 

used. The results from all three applications of LAMAP showed that the model produced 

potential estimates that strongly correlated with the archaeological resources found 

within the study area – although the results from Alaska have yet to be field-tested. This 

means that the variables used were important to past human-landscape interaction. 

The Alaska application of LAMAP also demonstrates the model’s usefulness for 

identifying areas on a terrestrial landscape that have high potential for containing hunter-

gatherer sites. As such, it would be a useful technique for heritage management in other 

regions where mobile hunter-gatherers dominate the archaeological record, such as in 

Canada’s boreal forest. Given that large datasets of site information now exist in many 

regions, the result of decades of archaeological surveys mandated by local and national 

legislation, researchers could develop similar LAMAP models for other regions – just as 

we did in Central Alaska.   

4.1. Looking for Sites Underwater 

The idea now is to take LAMAP and apply it to parts of the PNWC in an attempt 

to find new archaeological sites underwater. Some formerly terrestrial sites now 

underwater have been found accidentally, such as the discovery of the “Cinmar stone 

knife” (see Chapter 2). This large laurel-leaf biface was found on the bottom of the sea 

by the commercial scallop dredging vessel Cinmar in Chesapeake Bay, off the coast of 

Virginia in the 1970s (Stanford and Bradley 2012).  

On the PNWC, to date no pre-10,000 cal BP archaeological sites have been 

found underwater either accidentally or by archaeologists intentionally looking for sites. 

In the mid-1970s, fragments of mammoth and mastodon tusks were recovered at a 

depth of approximately 40 meters by a NOAA research expedition taking sediment 

samples from the bottom of the Bering and Chukchi Seas. There was no evidence of 

human involvement though (Dixon 1983). Archaeological sites have been found in the 

inter-tidal zone on the PNWC by archaeologists who have extended their surveys on the 

shore into shallow water. A large-scale wooden stake fish trap was investigated at 

Comox Harbour on Vancouver Island (Greene et al. 2015). It dates to 1,400 cal BP and 

was used by Indigenous peoples to catch salmon. Evidence of ancient shellfish 
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mariculture has also been found on the PNWC (Lepofsky et al. 2015). The process 

involves building “clam gardens”, intertidal terraces, which increase the productivity of 

bivalve habitat. Indigenous communities on the PNWC have a long history of using clam 

gardens to feed themselves. Some clam gardens on Quadra Island, for example, have 

been dated to 3,700 cal BP. Older, now submerged, clam gardens may yet be found at 

other locations, such as in the Gulf Islands or San Juan Islands, where sea levels have 

rose substantially since the beginning of the Holocene (Lepofsky et al. 2015). 

In more recent years, archaeologists have also used underwater remote sensing 

technologies in an attempt to find sites in deeper water. In 2010, several Alaskan 

surveys were undertaken to identify archaeological potential in areas of the seafloor in 

Bristol Bay, Shaken Bay and the Gulf of Esquibel (Dixon and Monteleone 2014). 

Sediment samples were recovered using a Remotely Operated Vehicle (ROV) but no 

evidence of cultural occupation was recovered.  

The only underwater archaeological survey project on the PNWV to produce 

archaeological evidence was conducted between 1997 and 1999 in western Hecate 

Strait near Haida Gwaii (Fedje and Josenhans 2000). A total of 10 km2 of the sea floor 

was mapped using multibeam sonar. Using a clamshell grab bucket, researchers 

recovered and screened sediment from several sites. They recovered buried wood and 

other evidence of the ancient terrestrial environment. The only evidence of human 

occupation was a single basalt blade-like flake recovered from sediments at a depth of 

53 meters at a site in Werner Bay, one kilometer offshore of Moresby Island. Based on 

the sea-level history for the area, researchers suggested 10,000 cal BP as the age of 

this site, but this was not confirmed by radiocarbon dating of barnacles adhering to the 

artifact. 

In addition to archaeological sites being found using methods such as accidental 

finds, excavations in inter-tidal areas and through the use of underwater remote sensing 

technologies, some researchers are now using predictive modelling in an attempt to find 

new sites underwater. 
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4.2. Predictive Modelling For Surveying Underwater 

There is little doubt that it will be extremely difficult to find former terrestrial sites 

on the PNWC that are now on the ocean floor. Not only are there huge technical and 

logistical challenges, but the potential survey area is vast. Using a predictive model like 

LAMAP, which can identify areas with high archaeological potential, could improve the 

chances of finding as yet undiscovered sites underwater. 

In recent years, several different types of predictive modelling approaches have 

been used in an underwater or coastal archaeology context in other parts of the world. 

Some have been very successful in locating sites, such as the use of agent based 

modelling in Lake Huron, while others have been less so, i.e. the application of an ideal 

free distribution model at Santa Rosa Island, and some hold promise for the future, i.e. 

using agent based modelling in conjunction with other remote sensing technologies to 

study Doggerland. 

4.2.1. Lake Huron Case Study 

An agent based model (ABM) typically simulates the actions of “agents”, 

autonomous decision-making entities, to assess their effect on a system as a whole 

(Bonabeau 2002). The goal of an ABM is usually to see what happens when the various 

agents interact with each other. ABMs are often complex computer simulations not 

statistical models like LAMAP. It is easy for the programmer to make an agent(s) do 

what you want them to, such as in a video game. For example, if the programmer tells 

the agents to “do X”, they do it - which means that if your validation of the model involves 

seeing whether the agents “do X” it is guaranteed by the model’s design that they will. 

The more complex an ABM is the more likely it is to produce unintended behaviours that 

makes them hard to evaluate. Instead of calculating similarity, like LAMAP does, the 

goal of many agent-based models is to create a sense of realism, giving the viewer an 

idea of what a particular landscape looked like in the past. This isn’t to say that ABMs do 

not work. In a sense, all predictive models have some assumptions built into them and 

most “work” to some extent. They are all better than randomly picking places on the 

landscape to look for sites. 
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Researchers in Lake Huron were able to create an agent-based simulation of 

ancient caribou herd movements across the now submerged Alpena-Amberley Ridge, 

dating to approximately 9,500 cal BP locating archaeological sites there (Reynolds et al. 

2014). Using present-day herd movement data and ethnographic information, they were 

able to predict the location of ancient hunting sites that are now submerged in over 40 

meters of water. First, they detected “hot spots” on the submerged landscape, which 

represented areas likely to contain hunting structures (O’Shea et al. 2014). Then, by 

combining information about caribou migratory behaviour and ethnographic and 

archaeological data, researchers simulated how caribou and hunters might have 

interacted on the landscape.  

An important result of the simulation was the prediction that there should be 

distinct seasonal routes, one in the spring and one in the fall. The simulation also 

highlighted two critical “choke points” within the study area - where all preferred 

migration routes for both seasons converged. Using the model’s results, the team 

identified underwater more than 60 drive lanes and hunting blinds, as well as possible 

caribou meat caches and associated artifacts (O’Shea et al. 2014; O’Shea and 

Meadows 2009). This modelling approach worked very well in this instance because 

caribou are well documented in the archaeological record for the area surrounding Lake 

Huron. It was an accurate assumption, on the researchers part, to assume that caribou 

behaved in the past the same way that they do in the present. A problem in using this 

approach on the PNWC is that we know very little about what game First Peoples 

hunted and how and where these animals moved on the landscape. 

4.2.2. Doggerland Case Study 

The University of Bradford’s (U of B) ongoing “Europe’s Lost Frontiers” project 

(Gaffney et al. 2017) aims to study past environments, ecological change, and the 

transition between hunter-gathering societies and farming in north western Europe 

during the Mesolithic. The project’s research team is using agent-based modelling in 

conjunction with relative sea level models and other data relating to climate and 

landform change to map and model ecological processes and simulate the interaction 

between animals, plants and the environment of “Doggerland” (Coles 2000). Until sea 

levels rose at the end of the LGM, approximately 10,000 cal BP, Doggerland, the area 

now under the North Sea, connected Britain to Scandinavia and the European continent. 
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The aim of the research is to recreate what the landscape looked like in the past. 

Researchers suggest that agent-based modelling allows for different hypotheses and 

“what if” scenarios, and ultimately, will allow them to better understand how people 

adapted to a changing landscape over time (University of Bradford 2020). The 

geophysical data being used by the U of B researchers to map the topography of the 

ancient drowned and buried landscapes of Doggerland comes from several sources, 

most notably from offshore petroleum exploration (Cohen and Peeters 2019; Gaffney et 

al. 2007). The database of donated 3D seismic data represents approximately 45,000 

km2 of inundated prehistoric landscape in the North Sea.  

Researchers are attempting to reconstruct the palaeogeography of Doggerland 

prior to inundation  (Bicket A. R. et al. 2016) using the donated underwater survey data. 

Using the data in conjunction with the archaeological data from known coastal sites, they 

are focusing on how relative sea level has changed over time For example, the radio-

carbon date from hazelnut shells at one site confirmed that at 9,600 cal BP the shoreline 

was 1.3 kms farther out than it is presently. Researchers have been able to infer that, in 

this particular part of the English coastline at that time, people chose to establish their 

settlement at a site that was set back from the ocean shore, close to a small stream 

estuary. The researchers also speculated that larger known sites in the neighbouring 

area were likely associated with smaller processing ones that would have been closer to 

the shore, but are now underwater. 

More recently, the U of B research team used the survey data to recover two 

pieces of flint from a depth of 32 m near Cromer (BBC 2019) . The smaller piece was 

possibly the waste product (debitage) of stone tool making, but the second larger piece 

appears to be part of a hammerstone. Researchers concluded that, before inundation, 

the area was once woodland. Previous offshore surveys in the areas identified 

geophysical features, such as the location of ancient river valleys, marshlands, hills and 

even cliffs, but never evidence of human activity. 

While the use of an agent based modelling approach has not directly resulted in 

finding any sites in Doggerland, its use has contributed to a better understanding of what 

the now submerged paleo-landscape looked like in the past. This combined approach of 

using the results from several sources, e.g. predictive modelling, seismic and 3D survey 

data and others, is useful and is worth consideration in my future research. 
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4.2.3. Channel Islands Case Study 

Researchers have used an Ideal Free Distribution (IFD) model to study the 

arrival of  people on Santa Rosa Island, one of the Channel Islands off the coast of 

California (Jazwa et al. 2015). The IFD model is based on behavioral ecology and, 

basically, states that animals will distribute themselves amongst resource patches so as 

to maximize resource acquisition and minimize competition (Kennedy and Gray 1993). In 

this case study, habitat suitability was used to make predictions about how people 

situated themselves on Santa Rosa Island (Tregenza 1995). While not underwater, the 

survey area is situated in a coastal context and would have been used by prehistoric 

peoples who were marine-adapted. The goal of the IFD model was to calculate the 

relative suitability of different habitats on the island based on the spatial distribution of 

available environmental resources. The model predicted that people should first settle 

the habitat with the highest overall suitability. As population density increased on the 

island, resource exploitation and competition should have caused a decrease in the 

effective suitability of that habitat. As a result, people would have expanded into and 

settled in lower-ranked habitat. According to the IFD model, the earliest settlements 

there should occur at the highest-ranked locales. 

Four locations on Santa Rosa Island were studied, with habitat value ranked from 

lowest to highest. The IFD model predicted that higher ranked areas should show 

evidence of resource depression before lower ranked ones. But, the archaeological 

evidence for the earliest sites on the island was distributed in both the high and middle-

ranked areas. Researchers suggested that any of the better locations on Santa Rosa 

Island would have provided adequate resources for the first people who settled there. 

They noted that factors, such as the weather, could also have drawn smaller populations 

to the south coast of the island, which is sunnier and more protected from the wind. They 

noted that rising sea level may also have obscured evidence of the earliest occupations 

in the highest ranking areas. The IFD Model described involved a simple assumption 

that people move into more desirable places first.  

However, on the PNWC I have no way of knowing where resources were 

distributed in the past. The examples presented here focused on environmental 

variables, e.g., the movement of herd animals, plant ecology or environmental factors 

such as weather and exposure to the sun. These models were more interested in 
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reconstructing how resources were distributed on the landscape and identifying places 

that had the highest efficiency for people exploiting those resources. 

LAMAP, on the other hand, focuses on measuring the similarity of sites (weighed 

by distance). Generally speaking, LAMAP is based on a much simpler assumption, that 

sites that are closest together should be the most similar. In theory, the LAMAP model 

will work on any landscape, providing there are quantifiable variables for it to use in 

making its comparisons. A big question now is can LAMAP work underwater? 

4.3. Potential of LAMAP In Underwater Landscapes 

LAMAP, like any other computer predictive model, is limited by the assumptions, 

rules and information built into it. In the Alaska case study this included the dataset of 

182 known sites as well as the datasets for the six variables used. These were derived 

from high-resolution satellite imagery in the form of DEMs. The marine equivalent to this 

is multibeam sonar, which produces high-resolution bathymetry. Hundreds of narrow 

sonar beams, arranged parallel to each other in a fanlike swath, provides high angular 

resolution and digital accuracy of the seafloor (Theberge and Cherkis 2013). 

High-resolution bathymetry is not nearly as available as satellite data though. 

Oceans cover two-thirds of the earth’s surface, approximately 140 million square miles, 

of which less than 10 percent has been surveyed (Mayer et al. 2018). Bathymetric data 

is available for some areas of the world, such as the territorial waters of the United 

States (USGS 2020), but is limited in other parts, such as off both coasts of Canada. 

Large-scale surveying efforts are now underway worldwide though to increase the 

amount of high-resolution bathymetry available. One project, Seabed 2030, which is a 

joint project of two non-governmental agencies, the Nippon Foundation and the General 

Bathymetric Chart of the Oceans, aims to map the entire ocean floor by 2030 (Mayer et 

al. 2018). The project’s goal is to provide the most authoritative, publicly available 

bathymetry datasets for the world’s oceans. Government agencies, such as the 

International Hydrographic Organization and, here in Canada, Natural Resources 

Canada, are also making efforts to increase their number of bathymetric surveys. Having 

more detailed bathymetric data will allow LAMAP to better model the archaeological 

potential of submerged landscapes. 
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4.4. Suitability of LAMAP Variables When Surveying 
Underwater 

Another future research question involves the potential variables used by the 

LAMAP model and its settings. In the Alaska case study LAMAP used the six variables; 

elevation, slope, aspect, distance to drainages, cumulative viewshed and convexity. 

These variables were selected because of their physiographic nature, i.e. their physical 

form has changed very little over time unlike other possible variable choices that are 

more likely to vary through time, such as the presence and distribution of flora or fauna. 

 

Figure 4.1. Some Underwater Site Formation Processes. 

In determining where is the best spot to find formerly terrestrial sites now 

underwater, consideration will need to be given not only to the location of a site at the 

time of inundation but also to how sea levels rose, where it did and when. One strategy 

to deal with this, when using LAMAP, will be to exclude areas of the modern seafloor 

that have (a) been subject to significant sedimentation, or (b) subject to significant 

erosion. 

The taphonomic processes that impact terrestrial sites are different than those 

site formation processes that affect sites underwater. Such processes include, but are 

not limited to, how sites were inundated, i.e. sites that are currently closest to shore have 

been impacted by wave action while sites farther offshore, that are in deeper water, have 
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been impacted less. In addition to the processes shown in Figure 4.1, erosion is another 

process that will need to be considered when looking for sites underwater. The amount 

of erosion that took place as sea levels rose will depend on; (a) the rate at which sea 

levels rose, with more rapid rates causing less erosion (Zhang et al. 2004), (b) the 

resistance of the surface deposits to erosion (Carter and E. Guy 1988) and (c) the slope 

of the surface of the land that is being inundated (Passeri et al. 2015). 

In terms of sedimentation, prior to 10,000 cal BP on the PNWC, “outwash plains” 

(Salamon 2009) would have been created by rivers carrying easily-eroded 

unconsolidated sediments downriver and spilling them out onto the sea floor where a 

river met the ocean (Stanley 2005). Likewise, “alluvial fans” (Blair and McPherson 2009) 

would also have developed at the mouth of rivers and streams. At the time of inundation, 

both coarse and fine sediments from up-river would have piled up at the discharge point 

of rivers and streams, in these semi-circular, fan-shaped bodies, potentially burying 

evidence of archaeological sites, in some cases under several meters of sediment.  

Over time, sediments also extended seaward to form a delta (Hoy and Ridgway 

2003; Seybold et al. 2007) similar to an alluvial fan (Stanley 2005). Long shore currents 

would have deposited sediments up and down the coast of the PNWC and wave energy 

would also have moved sediments around (Haghani and Leroy 2016). Wave action 

decreases with depth, i.e. waves are strongest at the surface (Khattak 2020). As a 

result, only coarse sediments are deposited in shallower water. As the water depth 

increases there is less wave action, resulting in finer sediments falling to the bottom. The 

sediments deposited range from sands near the shore to silts and clays farther offshore.  

Sedimentation may seriously impede LAMAP’s ability to predict the location of 

archaeological sites on formerly terrestrial, now submerged, landscapes. The answer 

may be a matter of resolution though. When looking at the bathymetry, at a larger scale, 

it is easier to determine the topography of the seafloor, i.e. when you pull back the 

bathymetry’s depth of field you can see canyons, river valleys and the remnants of river 

estuaries. You can identify features such as down-cut paleo-river channels, paleo-river 

mouths, drowned delta floodplains and paleo-deltas. Then, by zooming in, increasing the 

digital terrain image’s depth of field, you can better identify areas that may have 

experienced a high degree of sedimentation. Basically, you can zoom in to better 

examine what the sedimentation on the seafloor looks like. 
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In my PhD research, using the results from bathymetry, I will need to, first, 

determine if the LAMAP’s results for Alaska are applicable to the PNWC.  Then, I will 

need to identify the best areas off the PNWC that have, according to LAMAP, the 

highest archaeological potential. For example, a particular area of the coast may have a 

LAMAP Class 5 predictive value, but it may be an area that has experienced a high 

degree of sedimentation, such as an area in the estuary of a river. As a result, potential 

archaeological sites there may be buried under meters of sediment. The same is true 

when it comes to areas of the coastline that have experienced a great deal of erosion. 

LAMAP might identify such an area near a shoreline, for example, that has high 

archaeological potential. But, again, I might have to rate this area has having less 

excavation potential, should it be inaccessible due to wave action or other factors. 

 In my future research, I will also need to consider how to investigate a potential 

archaeological site underwater. The only previous attempt to do so on the PNWC (Fedje 

and Josenhans 2000) used a clam shell drop bucket to extract sediment from the sea 

floor (in which they found a single flaked tool). The problem with this method is that it 

does not capture the stratigraphy of a site. Instead, I plan to take core samples of the 

sea floor. This will protect the stratigraphic context of any potential archaeological site(s). 

I plan to use a system of coring technology referred to as “vibro-coring”. The type of 

vibro-coring I am interested in using is similar to that used recently off the coast of 

Northwestern Scotland and the Shetland Islands by environmental scientists to collect 

sediment cores to help them better understand what happened to Scotland’s ice sheets 

at the end of the last Ice Age (McDaid 2017). 

4.5. Limitations 

Another question that I will need to answer going forward, in attempting to use 

LAMAP offshore on the PNWC, is whether it can model archaeological potential for an 

area where there are few known archaeological sites or none at all. Presently, LAMAP 

uses the data from known sites to predict the location of other, as yet undiscovered, 

sites in a defined survey area. It is important to differentiate the “archaeological 

potential” of a survey area versus “the probability of finding a site” within it. While the 

distinction may seem subtle it is important.  
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The odds of finding a site at random, especially underwater, are totally unknown. 

This is why I need to consider using a predictive model, such as LAMAP, to narrow 

down the survey area. Beringia underwater is 2.5 million-square kilometers in size. The 

model’s results, as in the Alaskan LAMAP class study, may tell one thing (about an 

area’s potential) leading me to make interpretations about where to look (assertions of 

probability) that may or may not lead me to actually find sites. As so far demonstrated in 

Alaska, the model may be computationally accurate, but the oldest site(s), or any sites at 

all for that matter, may not be found in the highest LAMAP classes. Put more simply, the 

probability of finding a site underwater off the coast of the PNWC may be much less than 

the area’s potential, as identified by LAMAP. While I am encouraged by the modelling 

results in Alaska, I need to make sure that I don’t have unrealistic expectations as to 

whether or not a site, regardless of its age, will be found in an area designated by 

LAMAP to be of high-potential. 

There are several possible ways to address the problem of where to look for 

sites. The first is to use the data that was used successfully in Alaska and look for areas 

off the PNWC that have similar landscape characteristics underwater. Essentially, we 

would use the six variables from the Alaska case study, along with the resulting data, as 

a proxy for known sites off the PNWC. Instead of using DEMs, like we did in Alaska, on 

the PNWC we would use the results of bathymetric surveys. Another alternative would 

be to create a new LAMAP model for an area where there are known Late Pleistocene 

sites underwater; such as off the coast of California, i.e. the Channel Islands (Laws et al. 

2020), or Florida, i.e. Apalachee Bay (Hale et al. 2019; Halligan et al. 2016), in the Gulf 

of Mexico (Evans et al. 2013), in Lake Huron (O’Shea and Meadows 2009; Reynolds et 

al. 2014) or in the English Channel, i.e. Doggerland (Bicket A. R. et al. 2016; Tizzard L. 

et al. 2014). Then, we would apply the results from this new LAMAP case study to a 

study area off the shores of the PNWC. A third method would be to use LAMAP to 

create a generalized model of hunter-gatherer site location preferences that could be 

applied to the PNWC as well as other coastal areas worldwide. 

4.6. Conclusion 

The Alaska case study of LAMAP was the first application of LAMAP to a region 

in a hunter-gather context. Most other predictive models that have attempted to model 

archaeological site potential (especially underwater) have focused on the availability of 
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resources in the past, such as the movement of big game on the landscape or where 

stone tool material could be found. LAMAP, on the other hand, focuses on the decisions 

made by people in the past, as evidenced by the archaeological record, as to where to 

situate themselves on the landscape. 

The first part of the study used the random selection of known sites from all time 

periods to model archaeological potential for the study area within the Tanana River 

Valley of Central Alaska. The LAMAP model was tested, and validated, by analyzing the 

location of a second set of sites containing higher frequencies of sites than from the first 

set. For the second part of the Alaska case study, the LAMAP model was based only on 

data from the oldest, pre -10,000 cal BP, sites. It was then tested, and validated, with 

data from the more recent, post -10,000 cal BP, sites. The variables aspect and distance 

to drainages were found by LAMAP to be the most reliable in identifying areas with the 

highest potential of containing archaeological deposits. 

Just like the two previous case studies before it, the application of LAMAP in 

Alaska was successful in predicting the location of archaeological sites that had not 

been used to build the model. LAMAP has demonstrated that it can predict the potential 

location of sites using quantifiable variables, such as landscape characteristics. In the 

Alaskan case study, these were physiographic variables. In the other two case studies, 

Belize and Turkey, LAMAP again was successful using both landscape and cultural 

variables. In the Turkey case study, the LAMAP predictive classes were also defined by 

time period. 

The landscape characteristics of archaeological sites found in the Tanana River 

Valley are important because they are from some of the oldest sites in the Americas. As 

such, they are an important reference for developing the LAMAP predictive model in the 

future, whether it is looking for archaeological sites underwater off the PNWC or hunter-

gatherer sites on land in other parts of the world.  

The six variables used in the Alaska case study; elevation, slope, aspect, 

distance to drainages, cumulative viewshed, and convexity may be used, or modified, or 

replaced with other variables to work most effectively with a bathymetry model. For 

example, it may be harder to determine data from bathymetry (than DEMs) for the 

variable cumulative viewshed. And, as already noted, to use the LAMAP model for the 
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PNWC underwater site formation processes, including sedimentation, erosion and 

others will need to be factored in. But, even if the use of LAMAP does not lead to finding 

a single site underwater, this research is valuable because it will improve our ability to 

find undiscovered archaeological sites both on land and underwater.  

Clearly, good chronological control of natural and human events and processes 

is vital to locating the earliest Paleoamerican sites. There are so few pre-Clovis sites in 

the Americas that it is now difficult to say with certainty which route, whether it was 

through the interior of the North American continent or down the coast of the Pacific, 

First Peoples used to expand into both continents. Finding even one site underwater that 

predates the Holocene on the PNWC would be significant (Tremayne and Winterhalder 

2017). So far, the earliest archaeological evidence of marine adaptation on the West 

coast reliably dates to only 12,500 cal BP. This consists of a single shell fish hook found 

at a site on an island off the southern coast of California (Des Lauriers et al. 2017).  

Evidence of marine-adapted technologies for either Siberia or Alaska are not 

found in the archaeological record before 13,000 cal BP (Davis et al. 2016; Halfman et 

al. 2015; Potter et al. 2014). This implies that earlier people were terrestrially-adapted 

and not marine-adapted. In British Columbia, the earliest sites show evidence of a 

terrestrially-adapted subsistence (Fedje et al. 2011; Mackie et al. 2011). Sites on Haida 

Gwaii demonstrate that people there were hunting bears at 12,600 cal BP (Fedje et al. 

2011), and, at the Manis site in northern Washington State the remains of a projectile 

point found in one of the animal’s ribs shows that people were hunting mastodon there at 

13,800 cal BP (Waters, Stafford, et al. 2011). 

The archaeological evidence to date supports the idea that First Peoples 

travelled down the PNWC on foot, hunting mega fauna such as mammoth, bison and 

horse. The, then, exposed North Pacific Continental Shelf extended in some areas more 

than 40 km west of the present-day shoreline. Mammoth and other mega fauna in large 

numbers grazed on the area’s rich grasses and sedges. This is evidenced from the data 

acquired from numerous paleo-environmental reconstruction studies of the last forty 

years (Elias and Crocker 2008; Hetherington et al. 2003). Large grazing animals were an 

attractive food source for the First Peoples who occupied this landscape. As the world 

warmed at the beginning of the Holocene, around 10,000 cal BP, this area disappeared 

beneath the advancing waves.  
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As the coastal landscape changed, people adapted. Over time, they changed 

from being mobile (big-game) hunter-gatherers to become mostly marine-adapted 

fishers, marine mammal hunters and seafood foragers. It is important to remember that 

the (earliest) known sites found on the PNWC today were not directly “coastal” at the 

time of their deposition. They were, in fact, inland of the prehistoric coastline prior to 

inundation. It follows, then, that even older sites are expected to be found further to the 

west of today’s shores on the former Mammoth Steppe that extended down the coast of 

the Pacific Northwest. Using LAMAP, an example of the latest advancement in computer 

predictive modelling, and other underwater remote sensing technologies, such as the 

latest in sonar and underwater vehicles, we now have the potential to look for and 

investigate underwater the archaeological evidence left behind by First Peoples.  

This research will help archaeologists and environmental scientists better 

understand site formation processes, both on land and below the ocean’s surface, and it 

will help archaeologists make better inferences about how people on the PNWC lived in 

the distant past. It will also allow them to better appreciate the deep time connections 

descendant First Nations communities have with the land of their ancestors.  
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