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Abstract 

Camera sensors are shrinking, resulting in more defects seen through image analysis. 

Due to cosmic radiation, camera experience both permanent defects known as hot pixels 

and temporal defective spikes which are Single Event Upsets (SEUs). SEUs manifest 

themselves as temporal random bright areas in sequential dark-frame images that are 

taken with long exposure times. In the past, it was difficult to separate SEUs from noise in 

dark-frame images taken with DSLRs at high sensitivity levels (ISO) and cell phone 

cameras at modest sensitivity levels. However, recent software improvements in this 

research have enabled the analysis of defect rates in noisy digital imagers – by leveraging 

local area and pixel address distribution techniques.  In addition, multiple experiments 

were performed to understand the relationship of SEUs and elevation. This study reports 

data from imagers with pixels ranging from 7 μm (DSLR cameras) down to 1.2 μm (cell 

phone cameras). 

Keywords:  SEUs; CMOS; cosmic radiation; noise reduction; elevation 
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Chapter 1.  
 
Introduction 

1.1. The Emergence of Digital Camera Technology  

 

The camera has been around for almost 200 years [1], with records of the ‘pinhole’ 

camera being used for solar observatory in the early 1800s. Many technological 

advancements were made over the years including the invention of the first film camera. 

Some of the earliest innovators were Nicéphore Niépce in 1816 who created the first real 

photograph and Louis-Jacques-Mandé Daguerre in 1837, inventor of the Daguerreotype 

which is the earliest publicly available photographic process. However, these first cameras 

were rare and very expensive to manufacture. Further technological advances made the 

film cameras easier and cheaper to manufacture – making them more common among 

regular civilians. Photographers of the current generation may not recall the early days 

when film was the default technology for amateur and professional photography. Users 

quickly adopted film cameras during the early days due to the relatively low cost and easy 

operation. Purchasing one was not limited to only the rich or the highly skilled. They were 

commonly purchased by average citizens as they became readily available and fairly 

affordable. 

American companies such as Kodak were the leaders of the helm in the film era, 

having a larger market share than the likes of the Japanese manufacturers: Canon, Nikon, 

and Sony to name a few. In the height of its dominance, Kodak’s slogan was “You press 

the button, we do the rest” [2]. Kodak was known to make the overall experience of 

ownership for a film camera straightforward and easy. During the film days, photographers 

were able buy the camera and film from Kodak, capture photos on the film, and finally 

return the film back to Kodak to be processed. Yet the process was expensive and 

relatively slow. The development of these sensors, combined with powerful in camera 

image processors and LCD displays lead to the development in the mid-1990s of the 

digital camera, which has now seen over 25 years of constant development. From being 

an expensive commodity in its initial days, digital cameras only became mainstream about 
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10 years after by about 2000. The photography market that once had Kodak as the leader 

of the pack, underwent a huge change which now saw electronic oriented companies such 

as Canon and Nikon emerge as the new leaders of the digital camera market and film 

companies almost disappearing. Now digital cameras totally dominate the field. A popular 

beginner DSLR – Canon EOS Rebel T7i – costs around $700 CAD at the time of writing 

this thesis [3]. The prominent Japanese camera manufacturers such as Nikon, Canon and 

Sony sell a range of digital cameras models for photographers of all levels. In fact, they 

are not the only ones, there are other manufacturers from around the world – for example 

Europe – that offer similar cameras. However, many of the camera manufacturers are 

indeed from Japan.  

The digital camera hardware (sensor array and lens) alone is not what made digital 

camera technology valuable. The integration of the software in the camera with the imager 

hardware made the digital camera a powerful alternative to film cameras. At its inception, 

the digital imager had a small number of megapixels (i.e. 1-2) which resulted in much 

lower resolution compared to lower cost consumer film camera. Many of the current 

cameras contain software algorithms that have the ability to reduce unwanted errors in 

images. For example, this could be reduction in noise, pixel defects, and over exposure 

to name a few. This use of inbuilt software algorithms required skill on the part of the 

photographer or the print processors in film cameras. Another difference is that certain 

problems such as white balance of the image were originally dependent on the particular 

type of film that was used at the time of image capture. Now with digital cameras, the 

internal software can automatically correct the white balance. The software automatically 

adjusts the white balance based an analysis of the scene or at the photographer’s 

preference. Even if the white balance was not adjusted on the camera, photo editing 

software on computers can be used to adjust the white balance of digital images after the 

image has been captured. Film cameras recorded the images on film negatives, which 

made it a complex process requiring skilled technicians to configure the white balance 

after capturing the image. The image written on the film negative will remain as-is. In 

contrast, digital cameras save digital images to file in digital RAW format – a digital version 

of the film negative. 

Figure 1.1 illustrates the distribution (film vs. digital) of camera sales from 1990 to 

2015. The diagram clearly depicts the immediate impact of the digital camera. The 

introduction of commercial digital cameras (1998) into society saw a steady decline in film 
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camera sales until it fully took over in the early 2000s. Even though film sales continued 

after, they almost seemed negligible in the overall camera sale totals. 

 

Figure 1.1 History of Camera Sales from 1990 to 2015 (taken from Richter [4]) 
 

One observation to make is that DSLRs (Digital Single-Lens Reflex cameras) 

initially did not make up a significant portion of the total digital camera sales – they were 

not as mainstream and popular as they are today. Their current popularity is most likely 

due to the way digital cameras, with their instantaneous image feedback, made it possible 

to significantly improve the skills of a photographer and thus increase the interest in both 

amateur and professional photography. However, the decline starting after 2010 is another 

time period to observe. This coincides with the period of time when iPhones and Android 

smartphones began their dominance in the cell phone market. The first generation of the 

iPhone was introduced to consumers in 2007 and the first Android phone the year after. 

Both of them were well adopted by both consumers and businesses. An interesting fact to 

note is that all these smartphones came with integrated digital cameras. By replacing 

regular cell phones, these smartphone cameras would later remove the necessity for a 

point-and-shoot or DSLR camera. Figure 1.2 illustrates the total number of cell phone 

shipments (by model) during the first quarter of 2018. 
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Figure 1.2 Total number of cell phone (models) shipped during Q1 2018 (taken 
from Richter [5]) 

 

For the general user, the cell phone camera – oftentimes fitting in their pockets – 

meets most of their photography needs. In 2019, Apple revealed the iPhone 11 Pro Max 

as the first triple-camera system to further improve the quality and features of cell phone 

camera photography [6]. One may ask how the digital camera now dominates the 

photography industry. The reason is because of the many advantages it brings to the 

table. One example is that a digital photograph is a lot simpler and cheaper to the user 

than processing film for a film camera. As a rough comparison, film images costs over 50 

cents per photo while digital camera images costs less than a fraction of a cent per photo. 

Now digital cameras have become the most popular devices for all types of photography 

due to their high availability, low cost, and easy compatibility. This is further enhanced by 

the rise of photo editing software like Adobe photo editing software such as Photoshop 

and Lightroom. Digital cameras have been embedded into various electronics recently: 

cell phones, tablets, camera sensors (think of autonomous cars) to name a few. 
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Figure 1.3 Sensor area of different cell phone models (taken from Bhardwaj [7]) 
 

The size of the digital camera sensor has been getting smaller over time, especially 

inside cell phones. This has been a result of a reduction in size of the pixel themselves. 

Figure 1.3 illustrates the sensor area of different cell phone models. The majority of the 

cell phone models shown above have sensors areas in the range of 18-29 mm2.  

Camera manufacturers – both DSLR and cell phone – have been working on 

techniques to make pixels smaller. There has been a trend in the market of increasing the 

number of megapixels for a given sensor size. This can be achieved by shrinking the 

overall size of a single pixel and results in fitting more pixels within the entire sensor. Some 

phone manufacturers such as Nokia have been known of having enormously high number 

of small pixels in their cell phone cameras. However, Nokia has not been able to 

conclusively show any performance or quality benefits of having very high megapixel 

counts. Figures 1.4 and 1.5 illustrate the pixel sizes (in microns) of different cell phone 

and DSLR models respectively. From comparison we can see the pixel sizes of the cell 

phone cameras are a lot smaller – in the general range of 1.1 to 1.5 µm compared to larger 

than 3µm (DSLRs). 
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Figure 1.4 Pixel Size of different cell phone camera models (taken from Rehm [8]) 
 

 

Figure 1.5 Pixel Size of different DSLR models (taken from Rehm [8]) 
 

1.40
1.50

1.12

1.50

1.12

1.40 1.40

1.22

1.50

1.22

1.40 1.40

1.00

1.22

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80
P

ix
el

 S
iz

e 
(µ

m
)

Cell Phone Model

Cell Phone Camera - Pixel Size

4.29
3.70

4.09
3.73

6.41 6.22

5.36

4.13

5.51

3.89
4.34

5.95

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

P
ix

el
 S

iz
e 

(µ
m

)

DSLR Model

DSLR - Pixel Size



7 

In this thesis we will explore DSLRs with sensors that have pixels in the range of 

3-10 µm and cell phones cameras with pixels in the range of 1-2 µm. 

 

1.2. The Defects in Digital Camera Sensors 

 

In every discipline of engineering, reliability and fault tolerance are areas of 

interest. We need to keep a close eye when discussing reliability in the context of digital 

imagers. Camera sensors began to experience defects because they are susceptible to 

cosmic damage. These defects can either be manufacturing time defects that get hidden 

before being sold or defects that develop over time. Film-based cameras did not have the 

potential for repeatable defects, as each image was taken on either a different part of the 

film or a different film roll. This is equivalent to changing the digital camera sensor for 

every picture. In digital cameras, all images are taken on the same sensor. Hence, defects 

both accumulate over time and appear instantaneously. The reliability of a camera will 

directly influence the images it captures. If we were to exclude any software bugs or 

component defect – for the most part, the life of a digital camera is proportional to the life 

or reliability of its camera sensor. Most of the time digital cameras are used by 

photographers for a long time and may be used to capture precise photographs. Visible 

defects in the digital camera’s sensor may affect the overall photo quality.  

The topic of defects is one that can be discussed to death as many people have 

very contrasting opinions. But for the most part – like any other fabricated or manufactured 

product – digital camera sensors do not come absent of defects. If this was not the case, 

they would have perfect yield. A single defect may not be very important, however multiple 

defects can degrade the image. In artificial intelligence applications such as iris 

recognition, multiple defects can cause a real problem. In our field of study there are two 

categories of defects: one being manufacturing defects and the other being post 

manufacturing or induced defects. The defects that are seen in digital cameras from 

manufacturing are referred to as manufacturing defects. The semiconductor wafers have 

evident defects that will affect the camera sensors. One thing to note is that these defects 

themselves appear to cluster together. On the other hand, post manufactured defects 
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occur during operation or ‘infield.’ They are caused by purely random external influences 

that damage or defect the camera sensor. Prior studies in [9, 10] have depicted that the 

most common source for defects are the random external sources as opposed to 

manufactured degradation. To give us better intuition of image defects, Figure 1.6 depicts 

an image of a pen containing defects. 

 

 

Figure 1.6 Cell Phone image containing defects 
 

1.2.1. Cosmic Rays 

 

In the past, researchers had debated the cause of defects in Integrated Circuits 

(ICs). However, the general consensus has been the damage caused by cosmic ray 

particles is the main source [9, 10, 11, 12]. The research surveyed in Ziegler [11] 

characterizes cosmic rays and described them as unknown source energetic particles 

from outer space that cause interference and damage in electronics. More specifically they 

subdivide into four main categories of particles– namely: primary, solar, secondary, and 

terrestrial. To give some detail, primary cosmic rays are composed of nuclei, protons and 

neutrons. They come from within our galaxy and enter our solar system and earth.  A 

Defects
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subset of those are solar cosmic rays which are generated by nuclear reactions in the sun. 

Secondary cosmic particles (or cascade particles) are produced in the atmosphere when 

a primary cosmic ray collides with the atmosphere creating a cluster of lower energy 

particles such as muons – sometimes protons and neutrons. Lastly, terrestrial cosmic rays 

are the ones that eventually make it to earth. While these are less than 1% of the primary 

particles, however, are able to cause defects in ICs. The sun’s cycle affects the solar 

magnetic field which in turn affects the amount of galactic cosmic rays reaching the earth. 

Ziegler [11] also mentions that at sea level, the cosmic rays are primarily composed of 

neutrons, protons, pions, muons, electrons, and photons. 

Since solar cosmic rays originate from the sun, they cause terrestrial cosmic rays 

to vary in intensity over time due to variations in solar activity. Figure 1.7 (taken from 

Ziegler [11]) illustrates the terrestrial cosmic ray intensity in Colorado over 40 years (1950-

1990). The cosmic ray intensity is expressed in terms of the relative intensity (percent 

change) from the 1954 flux. 

 

 

Figure 1.7 Terrestrial cosmic ray intensity (Number of particles) – Colorado [1950-
1990] (taken from Ziegler [11]) 
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It can be seen that the intensity rises to a relative maximum (Quiet Sun) or falls to 

a relative minimum (Active Sun). The intensities during the active sun periods are lower 

than during the quiet sun periods because the sun’s magnetic fields are stronger. There 

are a lot of particles that make it to sea level during Active Sun periods compared to Quiet 

Sun periods when fewer particles make it. Hence, the particular year within the sun’s 22-

year cycle is very important. A full cycle consists of an 11-year low intensity sub cycle and 

an 11-year high intensity sub cycle. The writing of this thesis took place during a Quiet 

Sun period. The intensity changes in the graph are from the sun’s spots and magnetic 

field. As shown in Ziegler [11] and Niedzwiecki [13], the topic of neutrons and cosmic rays 

have been heavily studied. These concepts were mentioned in this thesis as an important 

background before further exploring defect concepts. Temporal defects – which will be 

discussed shortly – are affected differently in different parts of the sun’s cycle. This will be 

a thought to keep in mind when discussing defects throughout the thesis.  

An important factor that will be discussed later in this thesis is the effect elevation 

has on cosmic ray particles. Increasing air density reduces the particle flux, which means 

there is less air to reduce the neutron flux at higher elevations. As a result, the number of 

cosmic ray particles increase with elevation. Equations (1.1) and (1.2) (taken from Ziegler 

[11]) shows the relationship between the neutron flux and altitude (or atmospheric 

pressure). 

𝐼2 = 𝐼1 exp (
𝐴1 − 𝐴2

𝐿
) 

(1.1) 

Where I1 is the flux at altitude A1, I2 is the flux at altitude A2, and L is the absorption length. 

𝐴 = 1033 − (0.03648𝐻) + (4.26 ×  10−7𝐻2) (1.2) 

Where H is the height in feet. 

Understanding the relationship in (1.1) and (1.2) will be extremely important when 

studying and analyzing temporal defects at various elevations in digital cameras later in 

the thesis. As mentioned earlier, ICs are hit by cosmic rays and these generate in-field 

defects in the devices. The defects can be categorized as permanent faults that 

accumulate over time or short-lived transient upsets that are random in location and time. 
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Often times these defects are difficult to record or observe in regular ICs because they 

develop deep within the circuit. They are only measurable by their output signals and 

sometimes create faults that can render the entire circuit useless. What will be shown later 

in the thesis is that, digital camera sensors have the ability to record these defects caused 

by cosmic rays. Dark-frame images (images where no light enters the camera sensor) are 

recordings that represent the camera’s sensor. These images allow us to identify pixel 

defects (both permanent and temporal) in the camera sensor. As a result, digital imagers 

can be used as cosmic ray detectors Niedzwiecki [13]. With this in mind, there are two 

types of digital camera defects that we can categorize. 

When it comes to defects in digital cameras, the user may not notice the defects 

at first, but they become apparent over time. The first type of defect that we can identify 

are hard permanent defects that are induced from cosmic shortly after the fabrication 

process [9, 14, 15]. The second type of defect that we can also identify are soft temporal 

defects that appear randomly in a given image and disappear in the following image. Even 

though there are two different types of defects, both happen very granular at a pixel level. 

We detect the defects by capturing an image to represent the input light intensity. A 

defective pixel will cause the output image to show that pixel with noticeable errors (i.e. 

bright spots). Energy deposited via cosmic radiation in an integrated circuit is going to be 

a function of the energy of the particle. The impact of cosmic rays is different in soft and 

hard defects. In soft defects, the low energy cosmic rays create temporal charges while 

high energy cosmic rays damage the circuit crystal and create a permanent defect. 

 

1.2.2. Permanent Defects – Hot Pixels 

 

The first category of defects are permanent defects which are repeatable. If the 

cosmic ray charge has a high enough density, it will damage the substrate of the IC and 

create a permanent defect. These persist at the same pixel location throughout multiple 

dark-frame images – even with multiple tests at different points of time or with different 

settings. Figure 1.8 identifies some permanent defects – a hot pixel and saturated pixels 

in an iris image taken from Bergmüller [16].  
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Figure 1.8 Hot pixel (1) and stuck pixels (2) in an iris image (taken from Bergmüller 
[16]) 

 

Stuck pixels (as seen in Figure 1.8) are mainly due to manufacturing and can be 

categorized as permanent stuck high (white) or stuck low (dark) defects. Oftentimes stuck 

high defects are just saturated pixels that will become unsaturated with shorter exposure 

times. However, in our research we have found that stuck pixels do not really appear in 

images. This is because camera manufacturers almost always mask them in the camera 

sensor before making the camera available to consumers.  

The more important in-field permanent defect is the Hot Pixel (as seen in Figure 

1.8). Research in Leung [17] has shown that these manifest in camera sensors (as with 

other ICs) shortly after fabrication and build up over time due to cosmic rays. Unlike regular 

ICs which become unusable when permanent defects appear, digital imagers have the 

advantage of only experiencing circuit and image degradation when hot pixels appear. Hot 

pixels have been known to accumulate as cameras age and at a rate that is highly 

dependent on pixel size. You can identify hot pixels in images as bright dots – with their 

brightness increasing with longer exposure times and/or higher sensitivity (ISO). Many 

studies have pointed out that hot pixels are created at a higher rate when cameras are 

primarily at higher altitudes – due to the presence of more cosmic radiation. The values of 
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Hot Pixels can vary as the intensity of the incident ray changes. Figure 1.9 (taken from 

Chapman [18]) plots the Hot pixel output vs. exposure time for three types of hot pixels – 

offset hot pixel, a standard hot pixel, and a regular pixel. The stuck pixels that were 

mentioned earlier have a very high slope and will eventually reach saturation.  

 

 

Figure 1.9 Hot pixel output vs. Exposure time – a good regular pixel, a standard 
hot pixel, and an offset hot pixel (taken from Chapman [18]) 

 

Figure 1.9 does a linear fit for the pixel dark-frame response versus the exposure 

time. For standard hot pixels, there is no offset value and they will have an impact on 

images with long exposure times – say larger than 1 second. In contrast, partially stuck 

hot pixels with a large offset will persist as a bright spot in all images regardless of the 

exposure time. The amplification of the pixel signal by the gain (ISO) setting also amplifies 

the values of both the hot pixel dark current and the offset. 

Identifying and correcting hot pixels presented itself as a challenging task but past 

research has shown methods to correctly tackle this problem. We will not go into too much 

detail regarding Hot Pixels since research over 14 years has adequately discussed this 

topic. For the most part, the high-level concept and experimental conditions will be 

discussed to acknowledge their behaviour in digital cameras. 
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Figure 1.10 5x5 pixel example containing a Hot pixel 
 

Figure 1.10 portrays an example of a 5x5 pixel square containing a hot pixel in the 

center. In a sensor containing no defects, the 5x5 pixel square should not have any bright 

pixels. The presence of this bright pixel clearly illustrates the hot pixel defect. The concepts 

of exposure time and ISO (light sensitivity) will be explained in the next chapter. Increasing 

both of these settings will cause the hot pixel intensity to increase as well. Figures 1.11 

and 1.12 diagrammatically show the influence that exposure time and ISO have on hot 

pixel intensity respectively. It can be observed that hot pixels become brighter by 

increasing either the exposure time or ISO level. When increasing the ISO level, the 

background dark pixels get brighter as well. 

 

 
Figure 1.11 The intensity of a Hot pixel increasing with Exposure time (T1 < T2 < T3 

< T4) 
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Figure 1.12 The intensity of a Hot pixel increasing with ISO Level (ISO1 < ISO2 < 
ISO3 < ISO4) 

 

In hot pixel research the experimental process involves capturing dark-frame 

images over a broad range of ISO levels with increasing exposure times for each ISO 

setting. The data allows us to measure (for a given ISO setting) the increase in hot pixel 

intensity in relation to increasing the exposure time. This data is used by a software 

detection algorithm written in MATLAB that analyzes hot pixels. Noisy pixels become an 

issue when increasing exposure time and ISO as they can be falsely identified as hot 

pixels. Hence, the hot pixel detection algorithms are optimized to deal with high levels of 

noise. 

As mentioned earlier, the research in this thesis will not go into the detection 

algorithms for hot pixels. Our research done in [19, 20] explored hot pixels in detail but the 

focus of this thesis will be on temporal defects. The intent of this section was to give an 

overview regarding the creation of permanent hot pixels due to cosmic radiation, the 

influence that exposure time and ISO have on them and lastly help us differentiate when 

discussing temporal defects.  

 

1.2.3. Temporal Defects – Single Event Upsets 

 

Until now we have only discussed hard permanent defects – specifically hot pixels. 

Much like regular ICs, digital imagers are susceptible to transient in-field defects that 

randomly appear and quickly disappear. The literature [9, 15, 21] suggests that all these 

events appear to be caused by cosmic ray particles striking the sensor at random times 



16 

and locations. The collision of cosmic ray particles with the sensor happens at a low angle 

and energy – hence, it just deposits charge instead of damaging the crystal. These soft 

defects in regular ICs are often referred to as Single Event Upsets (SEUs) and are fairly 

different than permanent defects. SEUs are the transient, short-lived, cosmic ray induced 

events in integrated circuits Mukherjee [22]. These can produce errors in the computation 

of the IC by flipping bits in memory or changing results in sub sections (inverters or flop-

flops) with processing units. As transistors get smaller, the amount of energy needed to 

flip a bit is smaller and the sensitivity to particles rise. SEUs in ICs are of considerable 

interest as induced errors may potentially impact the chip functionality. However, a lot of 

the prior research has artificially simulated SEUs through direct nuclear radiation or lasers 

[22, 23, 24]. 

Other literature has focused on various other types of integrated circuits such as 

Field Programmable Gate Arrays (FPGAs) and Standard Random Access Memory 

(SRAM) [25, 26]. While ‘black matter’ or SEUs appear in regular ICs, studying them is very 

difficult as the event occurs deep within the IC but its effect is only detected as changes 

in the output of the chip. There are three main bodies that are interested in the behaviour 

of SEUs – the space community, the aircraft industry and the military. Research in Brogna 

[27] shows protecting the operation of space vehicles from CPU SEUs. As primary cosmic 

radiation is greater in space, so will the impact of SEUs be greater on satellites and other 

electronics in space. Similarly, the aircraft industry is concerned about SEUs as [28, 29, 

30] show cosmic radiation is also greater at higher elevations on earth. Lastly, the military 

is researching to prevent SEUs for obvious reasons Banu [31]. Despite the research 

performed to understand the count of SEUs in traditional ICs, very few have been able to 

see inside SEUs. They have focused on muons and streaks of SEUs (explained more in 

Chapter 3) which occur less frequent and are not relevant to the SEU community. 

Related to this research, [21, 32] have shown that digital camera sensors have the 

ability to retain the charge deposited via dark frame images, allowing for the detection of 

cosmic ray damage. Since the values are read out in a series of dark-frame images, they 

can be used as radiation event detectors and directly measure information about the 

natural background radiation (or cosmic radiation) impact on ICs. By this, digital imagers 

give us an understanding on how cosmic radiation is impacting sensors as well as the 

ability to look inside SEUs. In general, digital cameras have a range of pixel sizes – high 

end DSLRs have large pixels (4-7 µm) and cell phone cameras having micron size pixels. 
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As they integrate charge, digital imagers allow us to record the rate of SEUs, their location, 

charge deposited, and charge spread. When it comes to digital camera sensors, an SEU 

happens at a random pixel location in a single image. They appear as transient bright 

pixels that appear at a given pixel location in a single image of a sequence of images. The 

SEU will not appear at that same pixel location in other images – causing no lasting 

damage [10,17]. Figure 1.12 gives an illustration of an SEU randomly appearing and 

disappearing in time. 

 

 

Figure 1.13 An SEU randomly appearing and disappearing in a series of 3 images 
 

Research in Thomas [9] has shown that an SEU in a digital camera is over 100 

times more likely to be observed than a permanent hot pixel as we have the ability to see 

weaker events. The same research introduced the basic experimental setup used to 

capture SEUs in high end DSLRs at modest ISO levels. However, this setup failed when 

detecting SEUs in both high end DSLRs at high ISOs and cell phone cameras at modest 

ISO levels. It did not have the ability to analyze high powered cosmic ray occurrence rates. 

This was due to the presence of high noise which made it difficult to identify SEUs. 

Therefore, analyzing the nature of both DSLR and cell phone cameras with high noise 

levels is very important and will be discussed in this thesis. Our objective is to turn studies 

of SEUs in digital imagers into a tool to characterize the injected charge distribution and 

charge area resulting from typical cosmic ray influxes. This will apply to imagers with less 

noisy large pixels and ones with more noisy micron sized pixels. This thesis will dive deep 

into SEUs in noisy digital cameras and extend the research that has already been done 

on this topic. Lastly, earlier when we looked at cosmic rays, we mentioned their 
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relationship with elevation.  However very little research has been done to show the 

noticeable relationship of SEU rate starting from sea level to higher elevations. This topic 

will be covered in Chapter 5. 

 

1.3. Summary 

 

The rise in popularity of digital photography has been quite apparent in the recent 

years. This has been due to the increased sales in DSLRs and cell phones. Along with 

this, digital camera manufacturers have been shrinking the size of their camera sensor 

pixels – this has led to certain complications such as higher amounts of noise. As more 

cameras and cell phones are being sold, it is paramount to look inside the transient defects 

that appear during operation such as single event upsets. Past research has explored hot 

pixels and single event upsets in certain regular conditions – DSLRs at low ISO levels. 

However, very seldom has work been done on cell phones at low ISO levels and DSLRs 

at high ISO levels – both of which generate high amounts of noise. Hence, this thesis will 

focus on identifying weaker SEUs in the midst of noise for both DSLRs and cell phone 

cameras.  

After this introductory chapter, the rest of this thesis is structured in the following 

manner: Chapter 2 will look at the technology used in digital cameras – their sensors in 

particular. The underlying technology has changed substantially over the years; hence, 

this chapter will give you better intuition. Continuing, the chapter will go into the 

fundamentals of digital cameras and digital photography pertaining to this research. In 

Chapter 3, single event upsets will be more thoroughly discussed as well as the 

experimental method used to take SEU dark-frame images in both DSLRs and cell 

phones. Chapter 4 extents this by walking through the different SEU detection algorithms 

and noise reduction techniques. At the end of the chapter we will see experimental results 

from three detection algorithms. This leads into Chapter 5, where we will look at analyzing 

camera sensor noise, SEU charge distribution, elevation, and the SEU charge ball size. 

Chapter 6 will wrap up the thesis with concluding thoughts and suggestions for future SEU 

research. 
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Chapter 2.  
 
Digital Camera Sensors and Photography  

2.1 Overview 

 

The digital camera has many components that work together to transform light into 

the final high-quality digital image for the user. However, the most important role in the 

entire process is that of the digital camera’s image sensor. Many features of the digital 

camera are dependent on the image sensor. For example, the ISO (sensitivity), the 

resolution of the images, dynamic range capabilities, and even the compatibility a camera 

has with lenses are all influenced by the image sensor. That is why it is paramount to do 

a review of camera image sensors when exploring the behaviour of temporal defects 

(single event upsets) in both cell phone cameras and DSLRs. Early digital cameras used 

Charge-Coupled Device (CCD) image sensors and present-day digital cameras use 

Complementary Metal-Oxide Semiconductor (CMOS) image sensors. The intent of this 

chapter is to summarize the present-day technologies used in image sensors and the 

theory behind photo detection. When it comes to modern-day photography, many options 

like image gain (or ISO) and light exposure time play an important role – they will be 

examined towards the end of the chapter.  This imager understanding is necessary to 

understand how the imaging sensor allows us to detect cosmic rays impacts on devices. 

 

2.2 Photodetector Theory 

 

Many may wonder what the underlying process that a silicon sensor undergoes to 

actually take a photograph. Incident light is just one type of electromagnetic radiation that 

is received by a photodetector. At its plainest state, a photodetector (or photo sensor) 

takes energy in the form of incident light and turns it into an electronic signal. This signal 

will then undergo signal processing via a digital microprocessor and transition to another 

component in the camera. If it were not for the image processor, present day imager arrays 
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would not be able to produce high quality images. Since a photodetector is a 

semiconductor, it inherently has all of its fundamental attributes – that is its electrons can 

reside in different energy bands. At the lowest possible temperature, 0°K – also known as 

absolute zero – electrons will reside at the lowest possible band which is known as the 

valence band. In the conduction band, electrons typically flow to generate current. 

However, at the temperature of absolute zero, there are no electrons seen in the 

conduction band. Since both of the bands – the valence band on the bottom and the 

conduction band at the top – are separated, they form an energy level called the energy 

band gap (𝐸𝑔). More specifically, the energy band gap (measured in electron volts) 

extends from the top of the valence band to the bottom of the conduction band. The energy 

band gap is a forbidden energy level where no electrons can exist. This is also equal to 

the electron-hole pair energy. 

 

 

Figure 2.1 Energy bands and gaps of conductors (Eg=0), insulators (large Eg), and 
semiconductors (small Eg) (taken from Lecher [33]) 

 

Figure 2.1 above – taken from Lecher [33] – depicts the energy bands (the 

conduction and valence bands) as well as the energy gap between them. Pay attention to 

the difference in 𝐸𝑔 for a conductor versus an insulator. A conductor will have very little or 

even no energy band gap (𝐸𝑔 = 0). When it comes to an insulator, there is a certain energy 

band gap level which was defined earlier as 𝐸𝑔. 
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The movement of photons through different energy states will cause a hole to be 

left in the bottom valence band as the photon excites an electron away from the valence 

band to the higher conduction band. This can be calculated with Equation 2.1 below: 

𝐸 =
ℎ𝑐

𝜆
 

(2.1) 

Analyzing Equation 2.1 makes use of Planck’s constant ℎ and the speed of light 𝑐. 

Equation (2.1) uses 𝜆 which is the wavelength of the photon. Alternatively, Equation (2.2) 

uses 𝑣 which is the frequency of the photon. Hence, Equation (2.1) can be rewritten as 

Equation (2.2): 

𝐸 = ℎ𝑣 (2.2) 

 In order for a semiconductor to detect photon energy, the electron-hole pair energy 

in the semiconductor has to be less than the photon energy E. In the case of silicon this 

is 1.14 eV. As a result, the electron now has the ability to jump from the lower valence 

band to the higher conduction band. In contrast, when the energy of a photon is less than 

the electron-hole pair energy, the semiconductor itself will just absorb its energy. The 

photon will not have sufficient energy to jump from the valence band to the conduction 

band. It can be noted that there is a threshold between insufficient bandgap energy and 

sufficient bandgap energy. For the most part, in the study of semiconductors this level is 

most commonly referred to as the cut-off frequency. This is the frequency that photons 

need to meet in order to be excited from the valence band to the conductive band, causing 

electron-hole pairs. Photons with energies that are greater than the cut-off frequency will 

be excited from the valence band to the conduction band, while photons with lower 

energies will not.  

Every type of semiconductor material has its own unique cut-off frequency. For 

example, diamond has an energy bandgap of 5.5 eV – electron volts – while Silicon and 

Germanium have energy bandgaps of 1.14 eV and 0.67 eV respectively. As you can see, 

the energy band gap – and in turn the cut-off frequency – has a very paramount role when 

it comes to a semiconductor’s overall ability to conduct energy. Referring back to the 

insulators and conductors in Figure 2.1, when a semiconductor has a smaller or no energy 

bandgap, it is a conductor. When a semiconductor has a larger energy bandgap, it is an 
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insulator. Additionally, temperature can also have a major impact. When the heat of a 

semiconductor rises, the exerted heat energy will cause more photons to be excited from 

the valence band to the conduction band. This in turn generates a charge from the moving 

photons. Figure 2.2 illustrates this excitation of an electron from the valence band to the 

conduction band. 

 

 

Figure 2.2 Electron excitation from valence to conduction bands (taken from Dux 
[34]) 

 
 

 Some of the light passing through the semiconductor will be lost as it will interact 

with both the photons and the electrons in the semiconductor – meaning, not all of the 

light will be preserved. The strength of the photons will decay with an exponential 

relationship. Formulaically, we define the initial light intensity as 𝐼𝑂 which gets absorbed 

by the Beer-Lambert exponential decay of Equation 2.3. 

𝐼(𝑥) = 𝐼𝑂 ∗ 𝑒−𝛼𝑧 (2.3) 

This equation is referred to as the Beer-Lambert Law. This law essentially shows 

the overall absorption of a material. In Equation 2.3, 𝛼 is the absorption coefficient of the 

material (in cm-1) and 𝑧 is the depth into the surface of the semiconductor. The absorption 

of photons depends on the type of semiconductor material being used and the initial light 

energy (I0) from Equation 2.3. Different semiconductor materials will have different 
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absorption coefficients and I0 values. In this research we are dealing with electronic 

devices, therefore silicon is a suitable semiconductor material to analyze. Recall that 

Silicon has an energy band gap of 1.14 eV. To properly understand the absorption of light 

in silicon crystal, we should get a better understanding of the absorption coefficient of 

silicon at different wavelengths. Figure 2.3 depicts the absorption coefficient of silicon for 

different wavelengths. Since visible light falls in the wavelength range of 400 to 700 nm, 

the red, green, and blue components of light in silicon will fall under that category. 

 

 

Figure 2.3 Absorption coefficient versus wavelength for Silicon (taken from Green 
[35]) 

 

When discussing photodetectors, attention should be placed on the photo carriers 

that are created when an electron is excited from the valence band to the conduction band. 

Even though they can be used to depict light intensity as well as electron-hole pairs in the 

process, the photo carrier itself is very short lived and does not give much time to be 

measured or analyzed. To measure these better, other electronic devices are often 

leveraged such as photodiodes. These will be looked at in further detail.  
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2.3 Photodiode Theory 

 

In modern imaging sensors the base pixel element detecting the photons is the 

classic photodiode. Consider the PN junction diode (Figure 2.4).   

 

 

Figure 2.4 PN Junction Diode in reverse bias (taken from Nasir [36]) 
 

There are different types of biasing in which a diode can be configured – zero 

biasing, forward biasing, and reverse biasing. The PN junction diode in Figure 2.4 is in 

reverse bias. In general, a PN junction diode is another type of electronic device and is 

most commonly made with some sort of semiconductor material such as silicon, 

germanium, and gallium arsenide. However, often times this semiconductor is silicon as it 

can withstand higher temperatures than other materials. Figure 2.5 shows the general I/V 

characteristic curve of a P-N junction diode. 
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Figure 2.5 I/V characteristic curve of a P-N junction diode (taken from [37]) 
 
 

In a PN junction there is a region of negative charge and a region of positive 

charge. The region of positive charge contains holes and the region of negative charge 

contains electrons. To create the regions, impurity material is added to the base of the 

semiconductor material. The negatively charged region is referred to as the N-type and 

the positively charged region is referred to as the P-type. Another way to think of the PN 

junction diode is if a block of P doped semiconductor were to be attached to a block of N 

doped semiconductor. Since the negatively charged region is touching the positively 

charged region, short flows happen between the regions. Electrons flows from the 

negatively charged N-type region to the positively charged P-type region. Similarly, holes 

flow from the positively charged P-type region to the negatively charged N-type region. 

The existence of both flows leads to diffusion and causes something known as the junction 

effect. This essentially is the creation of another type of region between the P and N 

regions called the ‘depletion region.’ Unlike the P-type and N-type regions that have 

positive charge and negative charge respectively, the depletion region is an area where 

no charge carriers exist. However, the diffusion in the depletion region causes an electric 

field. This results in a net zero charge by forcing the negative and positive charges to 

diverge from joining each other. In the event where the potential in the N-type region is 

lower than the potential in the P-type region, the electrons will flow toward the P-type 

region from the N-type region. Electrons cannot flow from the P-type region back to the 

N-type region as the depletion region prohibits that flow.  
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Returning to the topic of biasing, there are 3 types of biasing shown in Figure 2.6: 

forward biasing, zero biasing, and reverse biasing. 

 

Figure 2.6 PN junction diode in (a) Zero Bias, (b) Forward Bias, (c) Reverse Bias 
(taken from Anderson [38]) 

  

When a PN junction diode is forward biased, the potential within the depletion 

region lowers, hence shrinking the depletion region area. As a result, the carriers begin to 

move through the junction in a ‘forward’ direction of current. When a PN junction diode is 

reverse biased, the holes and the electrons are drawn away from the PN junction. This 

causes the width of the depletion region to get bigger. Recall the reverse breakdown 

voltage from Figure 2.5. This essentially is the largest reverse bias voltage that the diode 

can handle. 

 Since the PN junction diode has been discussed, now it’s time to understand the 

photodiode as it is a type of PN junction diode. In terms of the biasing mode, the 

photodiode is in reverse bias. It takes an input of light and changes it into electronic 

energy. The input of light will be in the form of a photon and creates the excitation to an 

electron which was discussed earlier. The electron will move from the valence band to the 

conduction band, leaving a hole in the valence band. This electron and hole combination 

are the photo carrier.  
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Figure 2.7 Circuit model of a Photodiode (taken from [39]) 
 

Figure 2.7 gives a circuit representation of the photodiode. This is not the exact 

making of the inside of a photodiode but gives a representative illustration of the function 

inside the photodiode – namely capacitance, resistance, and current characteristics. 

When there is no light coming into the photodiode, there is a small current value present 

due to the reverse bias voltage. This voltage then eventually results in a leakage current 

called the dark current as there is no light coming into the photodiode. There are factors 

that can influence the dark current – one being the width of the depletion region. Hence, 

a dark current can be evident when the depletion region is wide. When there is thermal 

energy present, then there is a photoelectric current.  

The photodiode has both benefits and some shortcomings. Looking first at the 

advantages, photodiodes can be grouped together to form a bigger photo sensor. They 

also have the ability to process images fairly quickly compared to some CMOS sensors. 

But the shortcoming of the photodiode will ultimately come down to the dark current that 

was just mentioned. It’s been found that a substantial quantity of dark current is created 

in photodiode sensors. To complement the current analysis of photodetectors, further 

analysis will be done on present-day technology. The next section will discuss the present 

CMOS implementation in modern digital cameras and relate to the current SEU defect 

research.  

Legend
Iph: Photo Current
Id: Dark Current
Cd: Capacitance of Diode
Rsh: Shunt Resistance 
Ish: Shunt Current
Rl: Load Resistance
Rs: Series Resistance
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2.4 CMOS Sensors 

 

As mentioned earlier, the most popular technology used in modern digital imagers 

is CMOS sensors. Since their introduction into the market, many of the camera 

manufacturers started to quickly adopt the technology. This was a change for an industry 

that was primarily accustomed to the dominance of the CCD camera technology for many 

decades. Since we use modern digital cameras in this research, this implies that their 

underlying sensors are based on CMOS technology. Hence, in the remaining sections of 

this thesis, only CMOS sensors will be discussed.  

The CMOS sensor that is used in modern day digital cameras is referred to as the 

Active Pixel Sensor (APS). Hence, you may hear both of the terms used interchangeably 

in this thesis. In the early days of the CMOS sensor, it was referred to as the passive pixel 

sensor because the output current at each pixel row got amplified. When the APS was 

invented, it got its name as the output pixel current got amplified rather than the pixel row 

getting amplified. The combination of many APS circuits in the camera form to create a 

CMOS camera sensor. Since the APS uses complimentary MOS transistors (CMOS) it 

can easily integrate with other peripheral circuits in the camera’s sensor.  

The major understanding to obtain before moving forward is the difference 

between CCDs and CMOS sensors. With CCD technology, it is important to note that 

sensitivity of the sensor was dependent on the overall size or area of the CCD itself. During 

the capturing of an image, the collected electrons are stored in the area of the CCD pixel. 

When the CCD pixel area increases, the sensitivity of the pixel increases and when the 

CCD pixel area decreases, the sensitivity of the pixel decreases. However, the CMOS 

sensor is inherently different. The overall sensitivity of a CMOS sensor is independent of 

its area. Regardless of whether the manufacturer enlarges or shrinks the area of the 

CMOS pixel sensor, the sensitivity of the APS will remain the same.  

CCDs are known for their high-power consumption. The opposite behavior is seen 

with CMOS sensors. Its name suggests that there is a complementary pair of transistors 

in the sensor. However, though there is a pair, both transistors are not always active as 

only one is turned on. By this we can see that the overall power consumed is effectively 

reduced in half. Additionally, it reduces the sensor’s total exposure to noise compared to 



29 

the CCD. The only time power is consumed is the moment there is a logical change in the 

circuit’s output. From all of these advantages it can be reiterated why CMOS sensors are 

the default technology used in modern digital cameras.   

There is a general layout when it comes to designing a pixel sensor in the CMOS 

sensor. Some designs involve more transistors than others. Typically, after designing a 

single CMOS pixel, you can reuse and combine multiple of those CMOS pixels to form a 

CMOS cell. These pixels in the CMOS cell or array are called ‘active pixels’ – hence, the 

active pixel sensor name. Looking at the composition of the active pixel sensor, it uses a 

photodiode which takes up around twenty-five percent of the device. For the purposes of 

our analysis and understanding we will discuss two types of CMOS pixel designs – the 

first design being the 3T (Three Transistor) CMOS pixel design and the second design 

being the 4T (Four Transistor) CMOS pixel design. The main responsibility of these 

transistors in both the 3T and 4T pixel designs is to take in light and transform it into 

electrical energy. The capacitance is larger than the rest of the circuit. In fact, the charge 

is collected at the gate of the output transistor. As the technology shrinks, the capacitance 

scales with the size of the photodiode. Hence, the photocurrent and capacitance scale but 

the sensitivity stays constant when we shrink the pixel. This stays true for DSLRs, but not 

for cell phone pixels which have micron size pixels. In this case, stringent edge effects 

start appearing on the pixel. This is the reason, unlike DSLRs, cell phone pixels experience 

high levels of noise even at modest ISO (sensitivity) levels. To tackle this, we leverage 

different detection methodologies for cell phones. 

The most basic active pixel sensor is the photodiode APS. In this circuit design, 

there are three transistors that dictate the function of the pixel. An important trait of the 

photodiode to point out is that it takes up the majority of the CMOS sensor’s space. 

Dissimilarly, the three transistors take up much less space. Since this is a photodiode 

APS, the photodiode that is part of the circuit takes in incident light (in the form of photon 

light) and convert it into both current and voltage. One thing to keep in mind is that the 

photodiode in the circuit is brought to high in order to cause the light entering inside it to 

discharge itself. We measure the output of the pixel cell as this pixel discharge. By doing 

this, the circuit removes the existence of any outliers when it comes to extracting outputs. 

Figure 2.8 gives a good illustration of the more common design for a basic 3T CMOS pixel. 
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Figure 2.8 Basic 3T CMOS pixel 
 

The three transistors in this circuit that control the operation of the pixel are most 

commonly known as the row selector transistor, the source follower transistor and the 

reset transistor. It is beneficial to discuss the role of each of these three transistors in more 

detail. The first transistor to discuss is the source follower transistor or amplifier. The 

purpose of this transistor is to temporarily act as a buffer in the design. Its role is to gather 

the photodiode output while not removing the diode’s charge. The second transistor is the 

reset transistor. The reset transistor acts as a module to either take the circuit into a reset 

mode or take it out of that reset mode. When a digital camera is turned on by the user, we 

see the need for the reset transistor. At ‘ON’, the pixel needs to be reset for a short period 

of time when the other software and firmware components in the camera are being 

initialized. After this initial setup, the reset can be turned off and the pixel can be brought 

out of the reset stage to its regular function by the reset transistor. The last transistor of 

discussion is the selection transistor. This transistor enables control circuits from higher 

levels to select the specific pixel values it wants to read. This is achieved via column and 

row selectors. 
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Another common design involves four transistors instead of three. This is a more 

multifaceted design and is referred to as the 4T CMOS pixel design. Figure 2.9 illustrates 

the design for a 4T CMOS pixel. 

 

 

Figure 2.9 Basic 4T CMOS pixel 
 

To simplify things a little, we can view a 4T CMOS design similarly to a 3T CMOS design. 

Taking the 3T CMOS design, adding a transistor between the photodiode, source follower 

and reset transistors changes it into a 4T CMOS design. The added transistor is called the 

transfer transistor. This transfer transistor makes the overall circuit faster and increases 

the precision when getting the total charge from the photodiode. By no means are these 

the only CMOS pixel designs used in digital photography. In fact, recently there has been 
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an increased emphasis on increasing the dynamic range of pixels and sensors as a whole 

– the name for this is high dynamic range (HDR). These CMOS pixel designs will have 

special transistors to help achieve this HDR functionality. 

In linear algebra, the concept of a matrix represents element values that are 

structured in an array by rows and columns. The same approach can be taken to visualize 

a CMOS sensor. In a CMOS camera sensor, array elements are CMOS pixels and are 

structured in an array to form the rectangular CMOS sensor array. Additionally, each given 

pixel circuit in the CMOS sensor array leverages a row and a column selection circuity. 

Fundamentally this uses a big multiplexer to read out the pixel’s value based on the 

selected row and column. Something to point out is that the pixels have a reset signal that 

is shared between themselves. This allows them to use a signal for multiple pixels as 

opposed to having one per pixel. Looking at the more present-day CMOS designs, instead 

of reading out each pixel individually, the circuits will read the values of the pixels in 

batches of rows or columns. This helps speed up the read-out time when reading out the 

individual pixel values and results in better overall performance. 

Another area to make mention of is the overall area composition of the pixel 

circuitry. It was mentioned that the photodiode takes up a majority of the space in the 

CMOS pixel’s circuitry. This helps the circuit to maximize its light exposure. Since there 

are other transistors in the pixel, the entire circuit cannot be used for light absorption. 

Hence, designs that add additional transistors reduce the overall fill factor. The term used 

to describe the ratio of light sensitive area to the total area in a pixel cell is referred to as 

the pixel fill factor. A higher fill factor corresponds to less transistors in a circuit and lower 

fill factor corresponds to more transistors in a circuit. When more transistors are added to 

the circuit, the total exposure improves at the expense of a more complex design. To 

illustrate the fill factor concept more clearly, we will take a look at Figure 2.10. 
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Figure 2.10 Pixel Layout (taken from Rehm[8]) 
 

Figure 2.10 depicts the pixel layout of a 3T CMOS pixel cell of 8 μm in size. Recall 

that the photodiode takes up a majority of the area compared to the other transistors. In 

this example the fill factor is ~50% and the light sensitivity area is 4.44 μm x 6.75 μm. In 

all newer cameras, micro-lenses will be used to boost the light collection of the transistor. 

This way, the fill factor becomes greater than 90%.  

 

2.5 Digital Camera Photography 

 

To better understand camera sensor defects, it is important to examine the 

fundamentals when dealing with photography and digital cameras. Figure 2.11 shows an 

image taken of a Canon T5i DSLR’s touchscreen display. 
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Figure 2.11 Image taken of a Canon T5i DSLR’s configuration screen 
 

This display provides the photographer with many digital configuration options that 

they may choose from. Most modern digital cameras have the capability to configure 

digital photography settings such as ISO and shutter speed for example. These will not be 

explained immediately; however, they will be explained towards the end of the chapter. 

It was discussed previously how an active pixel sensor is the most granular CMOS 

sensor for an individual pixel. Multiple CMOS pixel sensors are combined to form an array 

of CMOS pixel sensors – this array is referred to as the CMOS camera sensor. The entire 

camera sensor as a whole has the responsibility to gather and record the incident light 

entering during a given period of time. The light accepting process generates the resulting 

captured image. The photo capture process is a fairly complex concept that has many 

parts. Some of the aspects that are involved in the process of image capture are exposure 

time to light, sensitivity to light (generally known as ISO), interpreting the captured colours, 

and image formatting. Until now we have primarily discussed the hardware components 

of a digital camera and its sensor. However, the remaining sections of this chapter will 

give a quick overview of the various concepts that are used in digital photography. We will 

dive more granularly into the individual sensor pixels by looking at things at a sensor’s 

point of view. Additionally, by doing this we will look at how everything works together in 

the digital camera to finally produce the captured image.  
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2.6 The Colour Filter Array and Bayer Pattern 

 

One inherent problem in Digital cameras is the need to convert the full wavelength 

sensitivity of the photodiode pixel, and into pixel arrays that can sense, and thus 

reproduce, colour images. This is most commonly done using the Bayer mosaic pattern, 

which can be seen of Figure 2.12, which is applied over the sensor array. It is the most 

common colour filter array and is an RGB combination of red filters, green filter and blue 

filters band pass type filters applied over the pixel. In this section we will explain the Colour 

Filter Array (CFA). 

 

Figure 2.12 The Bayer Mosaic Pattern 
 

Pixels are monochromatic, meaning they only contain information regarding one 

colour and oftentimes that colour is unknown. The APS pixel must undergo a process 

known as colour separation where it converts the image in an array of RGB spectral bins. 

A widely used mechanism to perform colour separation is the CFA. When a sensor uses 

the CFA mechanism it is referred to as a CFA sensor. In general, an APS is required to 

process a wide range of color wavelengths. To achieve this, ideally each pixel in the image 

sensor is covered with a colour filter. One thing to note is that the area of the colour filter 

is equivalent to the area of the pixel itself. Theoretically, the respective colour filter only 

lets the respective colour wavelength to pass through and rejects the other colour 

wavelengths. An example of red, green, and blue filters are as follows: A red filter will allow 

wavelengths from 625 nm to 740 nm, the green filter will allow wavelengths from 500 nm 

GreenRed

Green Blue
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to 565 nm, and the blue filter will allow wavelengths from 440 nm to 485 nm [40]. If a pixel 

location has a corresponding blue filter, it will only allow blue light (440 nm to 485 nm) to 

pass through to the photodiode. If any of the other colors – red light or green light – were 

to be sent to the blue filter, the photodiode would not receive any charge. Hence, there 

would be no output for the pixel.  

The similar behaviour is portrayed by red and green filters as well. Only light that 

meets the wavelength requirements of the colour filter at that given pixel location will be 

allowed to pass through to the photodiode and gather charge. Figure 2.13 below illustrates 

the behaviour of light passing through red, green, and blue colour filters. 

 

 

Figure 2.13 Color Filters for Red, Green, and Blue (taken from [41]) 
 
 

Out of all the light wavelengths, green light is able to penetrate to the eye the most 

in comparison to the red-light wavelength and blue light wavelength. Hence, the Bayer 

mosaic pattern takes that into consideration as it will typically have twice the amount of 

green in comparison to the other colours. The Bayer mosaic pattern involves a red layer 

filter, a green layer filter and a blue layer filter – with each Bayer filter compassing a 2x2 

pixel square. The most common 2x2 pixel composition of the Bayer mosaic pattern has 

one red component, two green components, and one blue component – this is generally 

referred to as the RGGB Bayer pattern. Although GRGB and RGBG combinations are 

also feasible, they are not as popular as the RGGB layout. This concurs with our previous 
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statement that the human eye is more delicate to green light and the Bayer pattern 

accounts for this by containing two green components for every red and blue pair. 

Although this is the most common approach, some manufacturers rely on different 

implementations for their colour organization. Lastly, multiple 2x2 Bayer patterns will be 

cascaded together to form the colour filter array. Figure 2.14 below portrays an example 

of a colour filter array. 

 

 

Figure 2.14 Color Filter Array for an image sensor 
 

 

2.7 Colour Demosaicing 

 

Ideally every pixel in the image array would have a true colour measurement of 

red, green, and blue levels. While this happened in classic colour film, and in certain 

specialized pixel designs (the Foveon pixel) regular cameras cannot do this. In most 

imaging sensors a given pixel location will only have one of the three colours as it will only 

have one of the respective colour filters – as per the CFA layout. To compensate for this 

the images must be converted using the concept of ‘demosaicing, which uses software 

interpolation algorithms to calculate the estimated colour breakdown (red level, green 

level, blue level) of each pixel in the image sensor. By doing this, a digital camera can 
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leverage both the Bayer mosaic pattern and demosaicing to calculate a close 

approximation of the image colour of every pixel in a captured image. 

Some related issues with the CFA method or Bayer mosaic pattern is that potential 

occurrences of Moiré patterns and resolution loss in parts of an image – sometimes in 

multiple parts of a captured image. A Moiré pattern is a severe interference pattern that 

can be seen in the captured image but not in the original scene. Sometimes certain camera 

manufacturers associate these patterns with anti-aliasing filters in digital cameras. Hence, 

these manufacturers remove the anti-aliasing filters in their digital cameras altogether. 

Another known CFA related issue is that they generally preserve twice the amount of 

green light information in comparison to red light and blue light (recall the RGGB Bayer 

mosaic pattern). As a result, a lot of information involving red light and blue light is not 

recorded in the image capture process. This fortifies the argument that digital cameras 

using the CFA approach are not fully sensitive to red and blue. As we will see, Hot pixels 

and SEUs can both be affected by colour demosaicing as their pixel values and colours 

get affected. Before moving on, it is paramount to discuss a few of the common 

demosaicing algorithms that are used in modern digital photography. From Leung [42] we 

see they are: 

• The Bilinear Demosaicing Algorithm 

• The Median Demosaicing Algorithm 

• The Kimmel Demosaicing Algorithm 

We will discuss all three demosaicing algorithms before proceeding further. Please keep 

in mind that these are not perfect filters that often result in false colour at edge boundaries, 

Moiré patterns and resolution loss. 

 

2.7.1 The Bilinear Demosaicing Algorithm  

 

The Bilinear demosaicing algorithm is the simplest and almost always used as the 

initial step for other more complex methods. The idea of this algorithm is to calculate the 

value of a missing colour in a pixel location by interpolating the values of adjacent pixels 
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in the missing colour plane. Each pixel location will have the value of one colour and will 

require the calculation of the two other colours. However, the two estimated colour values 

for each pixel will be calculated separately – not relying on each other. Figure 2.15 depicts 

the colour kernels that are used to interpolate the respective missing colours in a pixel. 

This method is known to perform rather quickly, however, it suffers from many artifacts 

such as Moiré patterns.  

 

 

Figure 2.15 Color Filter Array for an image sensor 
 
 

The CFA from Figure 2.14 and the kernels for red, green, and blue in Figures 2.15 

(a)–(c) respectively can help us formulate the equations that are used in Bilinear 

demosaicing. Equations 2.4, 2.5, and 2.6 depict the method used to calculate the missing 

red, green, and blue values respectively. 
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The equations above are used to find the missing colours in each pixel throughout 

the camera sensor. As mentioned previously, the Bayer pattern uses a RGGB layout – 
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hence, there are 2 green pixels for every red and blue pixel. As a result, the bilinear 

interpolation equation (2.5) always evaluates using 4 green pixels while the red bilinear 

interpolation equation (2.4) uses only 2 red pixels; unless in the case of 𝑅5 where the 

missing red pixel is surrounded by 4 red pixels – but this is less frequent. The same applies 

to blue pixels as there is a higher frequency of interpolating the missing blue pixel using 2 

red pixels instead of using 4 red pixels. Therefore, the interpolations for missing green 

pixels are more accurate than the other colours in bilinear interpolation. Overall, the 

bilinear demosaicing algorithm is suited for slowly changing areas. However, the location 

and direction of edges create many problems such as colour artifacts and fringing. 

Alternatively, the Median and Kimmel demosaicing algorithms are optimized to reduce 

these effects. 

 

2.7.2 The Median Demosaicing Algorithm 

 

 

Figure 2.16 The Freeman Median Demosaicing Algorithm (taken from Zapryanov 
[43]) 
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To improve the demosaicing algorithm the basic bilinear interpolation is corrected 

by processes such as the Median demosaicing algorithm by created Freeman [43]. The 

major variation from the earlier method is that this method leverages other colour planes 

rather than relying on the same colour plane. Figure 2.16 shows the workflow of the 

median interpolation by Freeman. The filter in this algorithm looks at the surrounding pixels 

to find the median value. 

The median method begins by recovering the missing colours using bilinear 

interpolation. Next, it uses equations (2.7) through (2.9) to compute the difference between 

each colour plane. The functions 𝑓𝑅(𝑥, 𝑦), 𝑓𝐺(𝑥, 𝑦), 𝑓𝐵(𝑥, 𝑦) express the value at pixel 

location (x, y) for the red, blue, and green colour planes respectively. Variations to the 

algorithm – such as Cok’s implementation – use ratios instead of differences [43]. 

𝐷𝑅𝐺(𝑥, 𝑦) = 𝑓𝑅(𝑥, 𝑦) − 𝑓𝐺(𝑥, 𝑦)                                              (2.7) 

𝐷𝐺𝐵(𝑥, 𝑦) = 𝑓𝐺(𝑥, 𝑦) − 𝑓𝐵(𝑥, 𝑦)                                              (2.8) 

𝐷𝑅𝐵(𝑥, 𝑦) = 𝑓𝑅(𝑥, 𝑦) − 𝑓𝐵(𝑥, 𝑦)                                              (2.9) 

After calculating the differences, a median filter is applied to the values of 

𝐷𝑅𝐺(𝑥, 𝑦), 𝐷𝐺𝐵(𝑥, 𝑦), and 𝐷𝑅𝐵(𝑥, 𝑦) to generate values for M1, M2, and M3. The role of the 

median filter is to remove any large inconsistencies between the colour planes by looking 

at the adjacent pixels. For each pixel location (x,y), the median filter is often applied to 

either a 3x3 pixel area or 5x5 pixel area around (x,y). Finally, the algorithm will perform a 

correction in which M1, M2, and M3 are used to correct the bilinear interpolated red, green, 

or blue colours. The median method is much better at reducing artifacts at edge regions 

in the image. This becomes important when dealing with sensor defects as they do fall 

under the category of edges that might eventually result in artifacts. Unfortunately, the 

orientation of the edge becomes important and so a more complex iterative method is 

applied. 
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2.7.3 The Kimmel Demosaicing Algorithm 

 

Unlike the Bilinear and Median demosaicing algorithms, the final algorithm that will 

be discussed is an adaptive method – the Kimmel demosaicing algorithm Leung [42]. 

Adaptive methods are more complex and leverage local area equations to achieve the 

best results. The Kimmel interpolation is composed of multiple methods – bilinear 

interpolation, a weighted gradient, and colour interpolation. Before proceeding to the 

actual steps of the algorithm it is important to take a look at the green pixel kernel in Figure 

2.17. 

 

 

Figure 2.17 Green Pixel Kernel 
 

As with any other demosaicing algorithm, the Kimmel method begins by using 

bilinear interpolation. Figure 2.17 shows that 𝐺2, 𝐺4, 𝐺6, and 𝐺8 are used in the regular 

bilinear method to interpolate the missing green value (𝐺5). However, this time we will use 

a weighted version to compute the missing green values. The intent of this is to adjust the 

bilinear algorithm that we saw earlier into the direction of the local edge. Hence, equation 

(2.10) calculates the missing green value (𝐺5) using weighted bilinear interpolation.  

𝐺5 =
𝐸2𝐺2 + 𝐸4𝐺4 + 𝐸6𝐺6 + 𝐸8𝐺8

𝐸2 + 𝐸4 + 𝐸6 + 𝐸8
 

(2.10) 
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For the next set of equations, it is important to take a look at the Kimmel gradient 

kernel in Figure 2.18.  The reason for using 𝑃𝑖  instead of the 𝑅𝑖, 𝐺𝑖, or 𝐵𝑖 notation is to 

show that the calculations remain the same irrespective of the particular colour at 𝑃5. 

 

 

Figure 2.18 Kimmel Gradient Kernel 
 

After understanding the Kimmel gradient kernel in Figure 2.18, we can use (2.11) 

to calculate the weights. 

𝐸𝑖 =
1

√1 + 𝐷2(𝑃5) + 𝐷2(𝑃𝑖)
 

(2.11) 

Equation (2.11) is used to calculate each weight factor that is used in equation 

(2.10). The value of 𝐷 that is shown in (2.11) represents the gradient function. To find the 

value of 𝐷 we will use the appropriate equation from (2.12) through (2.15) – depending on 

the direction of 𝑃𝑖  in respect to 𝑃5.   

𝐷y(𝑃5) =
𝑃2 − 𝑃8

2
 

(2.12) 

𝐷x(𝑃5) =
𝑃4 − 𝑃6

2
 

(2.13) 
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𝐷yd(𝑃5) = max {
𝑃1 − 𝑃5

√2
,
𝑃9 − 𝑃5

√2
} 

(2.14) 

𝐷xd(𝑃5) = max {
𝑃3 − 𝑃5

√2
,
𝑃7 − 𝑃5

√2
} 

(2.15) 

Something to point out is that (2.12) and (2.13) will be used to calculate the vertical 

and horizontal gradients respectively. Equations (2.14) and (2.15) will be used to calculate 

the +45° and -45° diagonals. This completes the first step in the Kimmel demosaicing 

which is the weighted bilinear interpolation. 

The second step involves interpolating the missing red and blue components by 

means of ratios. Equations (2.16) and (2.17) show this step. You will notice that both 

equations are relying on green values. This is because there is more green information 

than blue and red information in the Bayer filter – leading to the notion that the ratio 

between the colour planes stays the same.  

𝑅5 =
(𝐸1 ∙

𝑅1
𝐺1

) + (𝐸3 ∙
𝑅3
𝐺3

) + (𝐸7 ∙
𝑅7
𝐺7

) + (𝐸9 ∙
𝑅9
𝐺9

)

(𝐸1 + 𝐸3 + 𝐸7 + 𝐸9)
× (𝐺5) 

(2.16) 

𝐵5 =
(𝐸1 ∙

𝐵1
𝐺1

) + (𝐸3 ∙
𝐵3
𝐺3

) + (𝐸7 ∙
𝐵7
𝐺7

) + (𝐸9 ∙
𝐵9
𝐺9

)

(𝐸1 + 𝐸3 + 𝐸7 + 𝐸9)
× (𝐺5) 

(2.17) 

The final step involves a correction process to ensure the proper colour ratio. The 

computed green values from weighted bilinear interpolation are recalculated using the 

computed red and blue values from (2.16) and (2.17) respectively. This is shown by 

equations (2.18) through (2.20).  

𝐺𝑅5
=

(𝐸2 ∙
𝐺2
𝑅2

) + (𝐸4 ∙
𝐺4
𝑅4

) + (𝐸6 ∙
𝐺6
𝑅6

) + (𝐸8 ∙
𝐺8
𝑅8

)

(𝐸2 + 𝐸4 + 𝐸6 + 𝐸8)
× (𝑅5) 

(2.18) 

𝐺𝐵5
=

(𝐸2 ∙
𝐺2
𝐵2

) + (𝐸4 ∙
𝐺4
𝐵4

) + (𝐸6 ∙
𝐺6
𝐵6

) + (𝐸8 ∙
𝐺8
𝐵8

)

(𝐸2 + 𝐸4 + 𝐸6 + 𝐸8)
× (𝐵5) 

(2.19) 
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𝐺5 =
𝐺𝑅5

+ 𝐺𝐵5

2
 

(2.20) 

After recalculating the green values using (2.18) through (2.20), the red and blue 

values need to be readjusted by recalculation using equations (2.21) and (2.22) 

respectively.  

𝑅5 =
∑ (𝐸𝑖 ∙

𝑅𝑖
𝐺𝑖

)9
𝑖=1

∑ 𝐸𝑖
9
𝑖=1

× 𝐺5 , 𝑖 ≠ 5 

(2.21) 

𝐵5 =
∑ (𝐸𝑖 ∙

𝐵𝑖
𝐺𝑖

)9
𝑖=1

∑ 𝐸𝑖
9
𝑖=1

× 𝐺5 , 𝑖 ≠ 5 

(2.22) 

The final correction process is iterated multiple times – typically 3 or more times. 

This finally concludes the Kimmel demosaicing algorithm. The benefit of combining 

multiple methods – bilinear interpolation, weighted gradient, and colour interpolation – is 

that it reduces the number of artifacts that are produced compared to other demosaicing 

algorithms. Hence, this is why many camera manufacturers and photography software 

programs choose the Kimmel demosaicing algorithm. There are many other complex 

demosaicing methods, but they are not as popular.  

 

2.7.4 Demosaicing Imager Defects 

 

We have gone over three types of demosaicing algorithms – Bilinear interpolation, 

the Freeman Median method, and the Kimmel algorithm. However, these methods are 

designed for relatively large objects within the imaging field and do not responds well to 

single defects like hot pixels.  Given the research in camera sensor defects it is paramount 

to discuss the impact that demosaicing can have. As mentioned earlier, bilinear 

demosaicing takes into account the adjacent pixels and produces artifacts in the image. If 

the camera sensor had a defect captured in a dark-frame image, then bilinear demosaicing 

creates artifacts, spreading the impact of the defect pixels and interfere with our defect 



46 

analysis (see Figure 2.19(a)). The two more advanced methods (the Median and Kimmel 

algorithms) create less artifacts, but the Kimmel algorithm actually spreads the defect even 

further – see Figure 2.19(d). Figure 2.19 illustrates a single pixel defect and the impact by 

each of the three demosaicing algorithms. 

 

 

Figure 2.19 Original single pixel defect and impact of demosaicing algorithms 
(taken from Chapman [18]) 

 

From Figure 2.19(b) we can see that bilinear interpolation creates the most 

damage compared to the Median and Kimmel results in Figures 2.20(c) and 2.20(d) 

respectively. While the Median creates little damage, it causes a significant reduction in 

the colour intensity of the original image because it spreads the defect into other colours 

(hence the pastel image). This is something that even the bilinear method does not do. As 

a result, the Kimmel method provides the most desirable demosaicing outcome of the 

three – maintaining the colour intensity of the original image and minimizing the artifact 

effect on edges. Towards the end of this chapter we will discuss certain image formats – 

such as digital RAW – that do not perform demosaicing of any kind. These image formats 

are ideal for defect analysis there is no chance for demosaicing artifacts. 

 

2.8 Exposure Time 

 

Outside of CMOS technology and engineering – in the context of general 

photography – the most important concepts are exposure time, ISO, and f-number (or 

aperture). First, let us take a look at and discuss exposure. Before going any further, it is 

(a) Original (b) Bilinear (c) Median (d) Kimmel
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important to define the term of exposure. Typically, light exposure is defined by the 

following formula: 

𝐻 = 𝐸 ∙ 𝑡                                                             (2.7) 

 In (2.7), 𝐻 is defined as the luminous exposure of a sensor – measured in lx∙s (lux 

seconds). 𝐻 is calculated by two inputs which are 𝐸 and 𝑡. 𝐸 is defined as the illumination 

of the sensor’s surface area – measured in lux (units are lx). In physics, this is also 

sometimes referred to as the total flux of the surface area. Lastly, 𝑡 is the exposure time – 

measured in seconds (s). Together these two terms multiply to output the luminous 

exposure, 𝐻. Hence, the product units are lx∙s. From mathematical intuition we can see 

that this is a linear equation and that the luminous exposure scales linearly in proportion 

to the exposure time (𝑡). As we increase the exposure time, the total exposure goes up. 

Similarly, as we decrease the exposure time, the total exposure goes down. 

 

 

Figure 2.20 (a) An under exposed image of a pen and (b) an over exposed image of 
a pen 

 

 The two images in Figure 2.20 illustrate a pen at different exposures. Figure 2.20 

(a) shows an under exposed image of the pen and Figure 2.20 (b) shows an over exposed 

image of the pen. Underexposure gives the picture a very dark or low-light environment 

while overexposure gives a very bright or high-light environment. In most scenarios both 

overexposure and underexposure image captures are not ideal and cause problems to 

the final image. For example, an underexposed image will have the underlying trait of 

being too gloomy in contrast to the actual real scene viewed by a human eye. Similarly, 

(a) (b)
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an overexposed image will not be able to retain certain details in the captured image as 

the overexposure tends to hide them. This is also not the actual real-life scene viewed by 

a human eye. 

For most people trying to do digital photography, it becomes paramount to know 

how to change the exposure time of image they are about to capture. This is controlled by 

a configurable feature known as shutter speed. Exposure time and shutter speed may be 

used interchangeably. When a picture is taken, its pixels are exposed to the light for a 

certain duration. Exposure time is essentially the time the camera’s pixels are exposed to 

the incident light. Slower shutter speed results in a longer exposure, which means the 

camera’s pixels are exposed to the incident light for a longer duration. Faster shutter speed 

results in a shorter exposure, which means the camera’s pixels are exposed to the incident 

light for a shorter duration.  

When it comes to the units used to express shutter speed or exposure time, 

cameras use seconds as well as fractions of seconds. One of the quickest cameras on 

the market is capable of capturing an image with a shutter speed of 1/8000 seconds. This 

theoretically means that at this exposure speed the camera can take 8000 images in a 

single second. However, in reality since there are other behind-the-scene tasks that need 

to complete after each image capture (probably taking a few seconds), the camera will not 

be able to take 8000 continuous photos in a span of a second. On the long side of things, 

most DSLR cameras are capable of achieving exposures as high as 30 seconds. If an 

image were taken with a 30 second shutter speed, that means that the pixels will be 

exposed to the incident for that long. As expected, cameras are not limited to a high and 

a low shutter speed. There are ranging shutter speeds that will be available between the 

longest and shortest exposure times. Since this thesis will focus on digital camera defects 

that are categorized as single event upsets, varying exposure times will play an important 

role in the test data that is presented. The pixel and defect characteristics are not always 

constant as the exposure time changes – hence, the necessity to further analyze it. 

Prefacing a correlated topic that will be explored in greater length later in this thesis is how 

increasing exposure time results in more noise being seen in our test images. This directly 

influences our analysis and will be discussed in greater detail in the following chapters. 

 



49 

2.9 Aperture 

 

In relation to the previous section of exposure time is the concept of aperture. It 

was mentioned that the shutter speed option on the camera configures the exposure time 

value in which the camera allows its pixels sensors to be exposed to light. To help 

understand this better, a common analogy that is mentioned to relate exposure time and 

aperture is that of the human iris [44]. Aperture is essentially the size of the light opening 

or how much light is allowed to come through the lens into the camera sensor. One thing 

to note is that this concept is not something that was introduced with digital photography. 

In fact, it existed in the days of film photography as well. When contrasting to shutter 

speed, you may think of aperture as the amount of light allowed in the camera sensor 

instead of the duration that light is allowed into the camera sensor. This can be better 

illustrated via an example. For a fixed shutter speed and a bright environment, the aperture 

or light opening does not need to that high. For the same shutter speed in a dark 

environment, a higher aperture setting is required as it requires more incident light entering 

into the camera [44]. Hence, a simple method to classify the two is to think of shutter speed 

as the duration of light exposure and aperture as the size of the light opening. 

Photographers typically look at f-numbers on lenses to determine the maximum aperture, 

however f-stops and f-numbers will not be discussed in this thesis. 

 

2.10 ISO 

 

In general photography – that is both digital and film – the concept of ISO refers to 

the sensitivity to light during image capture. Increasing the ISO increases the camera’s 

sensitivity to light and generally makes your image brighter. To the same effect, 

decreasing the ISO decreases the camera’s sensitivity to light and makes your image 

darker. Dating back to film cameras, ISO was known as film speed or sensitivity. When it 

came to film photography, the film sensitivity was a constant that was determined by the 

type of film that was being used. Lower film sensitivity meant that the image capture was 

less sensitive to light.  The development of bigger grains led to the production of higher 
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ISO film – this came at a trade-off with image resolution. Once the film was in the camera, 

the ISO could not be changed as it was fixed. In order to brighten the image capture, the 

exposure time would have to be increased. The inherent relationship between ISO and 

the exposure time is fairly straightforward in the context of film photography since the 

aperture is held constant. For example, if ISO 400 and an exposure time of one second 

are used for a given scene, then for ISO 800 the needed exposure time will be half of a 

second. In this example doubling the ISO reduces the exposure time into half of its original 

value. This reiterates that ISO and exposure time are inversely proportional to each other. 

Unlike in film photography, in digital photography there is no concept of fixed film speed 

or sensitivity for a respective film type. Since there is no film, the light sensitivity is referred 

to as ISO.  

There are many other factors that come into play when discussing light sensitivity 

in digital cameras – some of these include pixel noise, sensor characteristics, and the 

camera’s software processing. Due to all of these factors, the sensitivity of the outputted 

image capture will be different than the light sensitivity seen by the human eye at the same 

scene. When it comes to ISO settings, they are configurable on a digital camera as 

opposed to a film camera. This is possible by amplifying the output of the pixel sensor to 

the correct amplification in order to get the desired sensitivity. In the midst of this, the 

charge of the photodiode in the APS circuit does not get amplified by the ISO level itself. 

ISO may be thought of as an amplifier that increases the gain of the signal. When the gain 

is increased the pixel information from the output at the top gets thrown away and the 

noise at the bottom gets amplified. When the gain is turned up, more thermal heat is 

produced in the pixel sensor. This results in more noise being generated as well – recall 

the grainy look of higher ISO images. Modern digital cameras leverage a lot of noise 

suppression to combat the high noise levels at high ISO levels. As a result, this is a trade-

off with image resolution. Typically, to reduce the thermal noise in the image, the noise 

suppression algorithms smear or blur the image. This is an undesirable outcome when 

doing defect analysis. Another thing to take note of is that the same amplification or gain 

level is applied to all the pixels in the digital camera sensor in order to make it uniform. 

Hence, when a pixel location of a transient defect gets amplified, the single event upset 

will appear more apparent or intense at higher ISO levels.  

Since ISO is a fundamental part of defect analysis, it will be looked at in more 

detail. Both SEU and noise amplification from increasing ISO levels will be discussed 
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further in the following chapters. In terms of configuring the ISO settings, each digital 

camera manufacturer has their own defined settings and implementations. For the most 

part, the manufacturers try to make the digital camera sensitivity settings output equivalent 

images as their film counterparts. However, digital photography is not quite at the 

resolution quality as film photography for a given ISO level. 

 

2.11 Digital Image Format 

 

The last item that will be covered in this section is the format of digital images. This 

section will briefly discuss different image formats that are used in digital photography and 

the preferred format when detecting image defects. The conversion of RAW image data 

to a format that is consumable by the end user, such as JPEG is typically performed 

through a workflow of multiple stages. To make it clearer, it is important to look at the 

image processing method inside the camera more granularly. After the image has been 

captured by the CMOS sensor – that is, after the lens’ shutter has been closed and the 

light absorption process has ended – the image will be generated as RAW data. This form 

of the image is most commonly known as the RAW image. RAW data is essentially the 

read-out representation of the imager’s pixels. The camera will run its noise suppression 

algorithm on the image between the image capture and generating the RAW image. 

Typically, a RAW image stores its pixel values in either 12-bit or 14-bit values. With a 12-

bit value there are approximately 68 billion color values and with a 14-bit value there are 

approximately 4 trillion color values. Another point is that RAW images have no post-

processing, compression, or demosaicing algorithms performed on them. Hence, making 

them very large and hard to view. Given this nature, RAW images give photographers the 

flexibility to process images in the way of their choosing before converting to compressed 

image formats such as JPEG.  

During the conversion process to compressed image formats, the RAW image data 

will undergo noise suppression and demosaicing. The noise suppression process is often 

a proprietary solution implemented by the camera manufacturer. Depending on the make 

and model of the camera there may be one or more noise suppression stages. Noise in 

an image can result from a number of sources such as sensor heat, long exposure times, 
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and high ISO values to name a few. To help combat this, noise suppression is often used; 

but, can have both advantages and disadvantages. The benefit of noise suppression is 

that it has the ability to remove or reduce the intensity of noise throughout the image. The 

disadvantage is that it can remove clarity or sharpness to areas in an image. In addition, 

some styles of photography view noise as an important effect in the image scene. The 

other process that happens during the image conversion process is demosaicing. As we 

saw earlier, each pixel location in a RAW image only contains information of one colour 

(Red, Green, or Blue). As a result, demosaicing algorithms are used to create a true colour 

image with interpolated values for the missing colours at each pixel location. Similar to 

noise suppression, each camera manufacturer typically implements their own proprietary 

demosaicing process – with the Kimmel algorithm being quite popular. Demosaicing has 

the ability to create a true colour image with interpolated values for every pixel location. 

However, regardless of the algorithm used it can create problems in the resulting image 

(similar to noise suppression). Some of these problems are viewable artifacts in an image 

such as zipper effects, bright dots, and blurring. When a manufacturer designs noise 

suppression and demosaicing algorithms they have to keep these factors in mind.  

Earlier, Figure 2.19 showed that demosaicing algorithms can create artifacts that 

are troublesome to deal with in defect analysis. That is one of the main reasons why 

lossless formats such as digital RAW (e.g. CR2) are used to avoid demosaicing in other 

formats. A problem that arises with compressed formats like JPEG is that they further 

spread the artifacts created by demosaicing.  

 

 

Figure 2.21 A TIFF image of a single pixel defect and the impact of JPEG 
compression (taken from Chapman [18]) 

 

(a) TIFF (b) JPEG 12
(low loss)

(c) JPEG 7
(medium loss)

(d) JPEG 3
(high loss)
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Figure 2.21(a) shows a lossless single pixel defect in TIFF format that has already 

undergone bilinear demosaicing (same as Figure 2.19(b)) and contains a noticeable 3x3 

pixel artifact. Something to note is that the TIFF format is a lossless format that has 

undergone zero compression but has undergone demosaicing. Figures 2.21(b)-(c) show 

various levels of JPEG compression that further cause the artifact effect. At JPEG 12 

compression, the artifact shows resemblance to the TIFF image – albeit at a lower 

resolution. At JPEG 7 compression it spreads into an 8x8 pixel artifact and at JPEG 3 

compression it spreads into a 16x16 pixel artifact. JPEG 7 and JPEG 3 also distort the 

colour of the defect. One thing to point out that even though it has the lowest quality, JPEG 

3 compression is the most commonly used JPEG compression. From this we can see that 

JPEG is an undesirable image format for defect analysis as it creates and spreads artifacts 

that are not in the original lossless image format. 

To avoid the possibility of creating further artifacts during the conversion of RAW 

image data to JPEG via noise suppression and demosaicing, RAW images are used for 

defect analysis. JPEG images may have the defects visible at a lower value and not in 

their correct positions due to these methods as well. Thus, the inherent characteristic of 

RAW images having little to zero alteration helps identifying the exact locations of defects 

much easier. With this in mind, the experimental results in this paper will only leverage 

RAW images. 

 

2.12 Summary 

 

This chapter has examined the various circuit concepts that are used in the image 

sensor of digital cameras. There are many sensor technologies that a camera 

manufacturer may use. However, industry standards such as CMOS technology and more 

specifically the active pixel sensor have been adopted by most. This chapter has also 

discussed the fundamentals of Digital Cameras and Photography that need to be taken 

into consideration when dealing with digital images and their defects. Concepts such as 

the Bayer filter pattern and the Colour filter array in the context of color demosaicing as 

well as ISO, aperture, and exposure time in the context of photo capture were introduced. 
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Lastly, the importance of using RAW images in defect analysis was heavily stressed. The 

next three chapters will get into more thorough detail regarding Single Event Upsets seen 

in digital cameras as well as the experimental methods used to detect them in both DSLRs 

and cell phones. 
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Chapter 3.  
 
Single Event Upsets in Digital Cameras 

3.1. Introduction 

 

Up to this point in the thesis we have discussed in detail the fundamentals of digital 

photography as well as the progression of the digital imager design over the years – 

particularly leading to the popularity of the current CMOS sensor technology. Some of the 

more common permanent and non-permanent defects have been touched on as well. The 

ones that are visible in CMOS imagers are known as hot pixels (permanent) and SEUs 

(temporal) [22]. Both hot pixels and SEU defects are caused by cosmic ray particles hitting 

the digital camera sensor at random times and locations. Since the research of hot pixels 

is a more mature space, SEU research will be the focus area from this chapter onwards 

as it has a lot of room to grow. 

The goal of this chapter is to discuss SEUs in digital imagers. In particular, the 

necessity to pursue this research as well as the basic concepts that characterize SEUs. 

Past research provided an introduction to SEU analysis for DSLRs at modest ISO levels 

but lacked the ability to identify SEUs with long exposure times in cell phones at modest 

ISO levels and DSLRs at high ISO levels – all due to the presence of high noise.  Hence, 

the SEU research in this thesis will focus on these missing aspects of the previous 

research. Within the topic of SEUs there are three types – single pixel SEUs, SEU clusters, 

and SEU streaks – which have different characteristics. Lastly, the experimental 

procedures to capture SEU dark-frame images will be shown for both DSLRs and cell 

phone cameras. This will serve as a precursor to the next chapter where we will dive into 

the algorithms that are used to supress noise and detect SEUs in digital camera sensors. 
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3.2. Digital Camera SEUs 

 

SEUs are of significant interest in ICs as they occur at a higher rate than permanent 

defects. For many ICs, an SEU could completely ruin their intended function and 

sometimes in environments where faults cannot be tolerated. Take the example of ICs for 

data encryption. It would be undesirable if the system were to encrypt or decrypt the data 

incorrectly due to an SEU. Another technology that has low tolerance for these faults is 

control systems. Since these are regular integrated circuits, it is very hard to study and 

explore what actually happens during the SEUs. There are methods to create models and 

artificial evidence, but very few ways of exploring real SEUs as there is no way of seeing 

into them. Hence, SEUs are often difficult to observe for most types of ICs as they are 

temporary events that get lost in the system. In contrast, digital camera pixels are also 

susceptible to SEUs and have the ability to retain the deposited charge – making them 

easier to observe, record, and analyze. When dark-frame images are captured in a series, 

they inherently contain the readout values of the camera sensor’s pixels. This sensor data 

can be later used for SEU analysis which helps identify the location of SEUs, the rate of 

SEU occurrence, and various characteristics of the SEU charge ball. The physics 

community had initially proposed using digital cameras for the purposes of detecting 

cosmic rays. However, since SEUs are a result of cosmic radiation we decided to use 

digital cameras to detect SEUs. With this in mind, our research leverages digital cameras 

to develop an understanding of SEUs which is almost impossible to do with traditional ICs.  

When this current research began, past research focused on permanent defects 

in digital cameras – most commonly known as hot pixels. As mentioned in Chapter 1, 

these are the defects that present themselves shortly after the camera sensor is 

manufactured and grow throughout the lifetime of the camera. They appear as high 

intensity spots in the images and persist in a series of images. Their intensities tend to 

increase if either the ISO level or exposure time increase. Past research focused on 

different ways to detect hot pixels, understanding their creation process and their rate of 

occurrence. When it came to SEUs, much of the existing research scratched the surface 

on this topic. As a result, our research focuses on areas that were not addressed before. 

These are identifying SEUs in DSLRs at high ISO levels and cell phones at modest ISO 

levels. In additional the relationship of elevation to the SEU occurrence rate will be 
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explored. Before progressing onto these more advanced aspects of the research, we will 

begin by going over the basics of SEUs in digital cameras.  

 

3.2.1. Basic Concept of Digital Camera SEUs 

 

A single event upset in a digital imager occurs when cosmic particles collide with 

an imager sensor pixel and gets recorded during image capture. Cosmic charge deposits 

energy which the camera sensor records in the image. When the cosmic particle comes 

into contact with the silicon it loses the energy to the silicon and the energy creates an 

electron hole pair. Keep in mind the electrons are accepted by a pixel the same way 

photons are accepted by a pixel. This is important because it creates a ball of charge that 

upsets the IC – in this case the camera sensor. As previously mentioned, camera sensors 

are the only ICs that tell us information such as the charge distribution, area of charge, 

and the occurrence rate.  

Unlike hot pixels which are permanent, single event upsets are temporal. They do 

not appear in previous and subsequent images that are captured. To help us understand, 

Figures 3.1 through Figure 3.4 illustrate examples of hot pixels and SEUs. The example 

in Figure 3.1 below depicts a diagrammatic view of a zoomed-in area of 5x5 pixels 

containing a permanent hot pixel that is seen in a sequence of four images. The most 

important characteristic is the hot pixel persists through all four images – that is images j, 

j+1, j+2 and j+3.  

 

Figure 3.1 Example of a hot pixel 
 

Image J Image J+1 Image J+2 Image J+3
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The example in Figure 3.2 below depicts a diagrammatic view of a zoomed-in area 

of 5x5 pixels containing an SEU that appears in a single image of a sequence of four 

images. The most important characteristic is the SEU appears only once throughout all 

four images – that is images j, j+1, j+2 and j+3. This particular type of SEU is contained in 

a single pixel. 

 

 

Figure 3.2 Example of an SEU contained in a single pixel 
 

The example in Figure 3.3 below depicts a diagrammatic view of a zoomed-in area 

of 5x5 pixels containing an SEU that appears in a single image of a sequence of four 

images. This is a different type of SEU than the one illustrated in Figure 3.2. This particular 

type of SEU covers multiple pixels instead of a single pixel. Similarly, to a single pixel 

SEU, the most important characteristic of the SEU cluster is that it appears only once 

throughout all four images – that is images j, j+1, j+2 and j+3. 

 

 

Figure 3.3 Example of an SEU cluster spanning multiple pixels 

 

Image J Image J+1 Image J+2 Image J+3

Image J Image J+1 Image J+2 Image J+3
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The example in Figure 3.4 below depicts a diagrammatic view of a zoomed-in area 

of 5x5 pixels containing an SEU that appears in a single image of a sequence of four 

images.  

 

 

Figure 3.4 Example of an SEU streak spanning multiple pixels 

 

This is a different type of SEU than the ones illustrated in Figures 3.2 and 3.3. This 

particular type of SEU is not clumped together like a cluster but covers multiple pixels in 

a streak pattern. Similarly, to the other types of SEUs, the most important characteristic to 

make note of the SEU streak is that it appears only once throughout all four images – that 

is images j, j+1, j+2 and j+3.  

It is important to note that Figures 3.1 through 3.4 are diagrammatic examples of 

hot pixels and SEUs, not their actual representation in digital camera images. Likewise, 

the colours used in the figures are completely arbitrary. The main details to pay attention 

to are the respective high intensity defects (hot pixels or single event upsets) which 

contrast with their background. In the SEU cases, a fixed ISO level, exposure time, and 

dark-room environment are all necessary to capture dark-frame images. A unique 

characteristic of an SEU is that they appear random in both time and location – leaving a 

very close to zero probability of reappearing in adjacent images. Regardless of its 

particular colour, an SEU will randomly appear as a bright pixel (or group of bright pixels) 

at a given pixel location exactly only once in a sequence of adjacent dark-frame images. 

It will not appear at that respective pixel location in the few images prior and the few 

images following. If found appearing before and after, that potential SEU could easily be 

noise or a hot pixel – these false positives will be discussed later. In addition, to get a 

visualization of an actual SEU in a dark-frame image, actual snapshots of SEUs from real-

life digital camera dark-frame images will be shown shortly. A lot of times there is an 

Image J Image J+1 Image J+2 Image J+3
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argument to be made that SEUs generally do not influence photography for the most part. 

In non-dark-frame images many consider an SEU as extra image noise as opposed to a 

defect. Hence, you will find many ignoring it, except for cases where high radiation levels 

exist such as photography in outer space.  

Much of the research in this field of study has been around regular ICs. This is 

because SEUs in these environments can cause issues with the overall operation of the 

circuit – creating unpredictable outcomes [22, 47, 21]. But an undesirable pattern in all of 

these studies is that they have synthetically created SEUs by the means of laser energy 

or nuclear radiation. On a more related note, past SEU research has identified digital 

cameras as instruments that can be used for cosmic ray detection [21, 49]. However, only 

recently have researchers began to identify the cell phone as a useful digital camera to 

collect cosmic ray information. In our past research, it has been shown that the active pixel 

sensor (APS) has the capability of being able to store and integrate all of the cosmic 

charge that enters the pixel diode. As SEUs appear as high intensity pixels in a dark-frame 

image, cameras are quite accurate at recording SEU values. They also provide us with 

distributions in relation to noise and charge values. Overall, the plan of this research is to 

continue on from past research and understand the degradation in images caused by 

these SEUs and discuss possibilities for camera makers to avoid them appearing in the 

image capturing process.  

 

3.2.2. Types of Digital Camera SEUs 

 

Figures 3.2 through 3.4 introduced us to the idea of the different types of SEUs – 

that is, a single pixel SEU (Figure 3.2), an SEU cluster (Figure 3.3) and an SEU streak 

(Figure 3.4). Figure 3.5 diagrammatically illustrates the three types of SEU again. In this 

case they all appear close to each other but as mentioned will not always be. 
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Figure 3.5 Three different types of SEUs 
 

In Figure 3.5 there are three different types of SEUs that are shown – namely a 

single pixel SEU in the top left of the figure, an SEU streak of pixels in the top right of the 

figure, and an SEU cluster of pixels in the bottom left of the figure. 

As mentioned earlier, cosmic energy collides with a pixel sensor and gets 

deposited. This event causes a build-up in the circuit’s charge and results in an SEU. In 

this section we will spend some time giving more detail regarding the different types of 

SEUs. First, we will start by discussing the simplest case of the three, that being a single 

pixel SEU. As the name suggest, the important characteristic of this type of SEU is that 

the event upset caused by the cosmic particles is confined to a single pixel. Unlike the 

other types of SEUs, the charge in a single pixel SEU will not bleed over to neighboring 

pixels. The next type of SEU that was shown at the bottom left of Figure 3.5 is an SEU 

cluster. Unlike the single pixel SEU, this type of SEU is made up of multiple adjacent SEU 

pixels – forming a ‘cluster’. The shape of an SEU cluster is not always identical or even 

the same orientation every time. However, for the most part it will follow the shape of an 

‘L’ or a ‘T’ – possibly rotated or flipped. Another characteristic to understand is that the 

cosmic charge deposits into one pixel and bleeds over to the adjacent pixels. Hence, the 

SEU cluster will also have its charge value spread over all of its pixels instead of being 

confined to a single pixel. This characteristic is also true for the last type of SEU – an SEU 
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streak (sometimes referred to as tracks or worms in SEU literature Groom [45]). Figures 

3.6 through 3.8 display three clear examples of SEU streaks. 

 

Figure 3.6 SEU Streak identified during SEU Analysis (Example 1 – 20x3 pixels, 
6.41 µm pixels) 

 

 

Figure 3.7 SEU Streak identified during SEU Analysis (Example 2 – 7x4 pixels, 6.41 
µm pixels) 
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Figure 3.8 SEU Streak identified during SEU Analysis (Example 3 – 16 x 21 pixels, 
6.41 µm pixels) 

 

The three examples of SEU streaks in Figures 3.6 through 3.8 show that streaks 

do not all appear in the same sizes and orientations. In fact, most of the time they look 

quite different from one another. The SEU streak in Figure 3.6 portrays a generally vertical 

streak that appears to have stronger intensity towards the bottom. The next streak shown 

in Figure 3.7 appears very bright and follows the very definition by resembling a lightning 

streak. The bright intensity depicts the high charge value being fairly equally distributed 

throughout the streak’s pixels. Lastly, the longest and most fascinating streak of the three 

happens to be the streak shown in Figure 3.8. This particular streak starts at one corner 

of the zoomed in area of the image and proceeds to the extreme opposite corner along a 

diagonal trajectory. You will notice that certain areas of the streak have a higher intensity 

than the others. For example, the streak is fairly dull in nature except for a few notable 

areas – that is the bright spots in the streak. These areas have a higher distribution of the 

SEU charge than the rest of the pixels in the SEU. This also means they contribute to a 

higher percentage of the total SEU streak charge than the other pixels that are also part 

of the SEU streak. Streaks essentially tell us that charge can be spread over a line of area. 

This means that multiple ICs can be affected by a single cosmic particle. The effect of 

streaks can be understood similarly to a traditional cloud chamber. Cosmic rays shoot 

through the cloud chamber and leave behind charge – this causes condensation to 



64 

accumulate as water vapor. The same behaviour can be seen in the case of digital 

imagers. Cosmic rays leave back packets of energy which result in SEU streaks that affect 

multiple pixels (ICs). In our research we have found that streaks account for less than 5% 

of the total SEUs in an image dataset.  

It is fortunate that digital camera sensors have this ability to record single event 

upsets through dark-frame images of medium to high sensitivity levels and long exposure 

times. When an event occurs, the charge value is recorded in the pixel’s location in the 

image and the information is available after the image capture. As mentioned earlier, 

traditional integrated circuits face difficulties recording single event upsets as the charge 

area and intensity get lost in the circuit itself. Our past research and detection algorithms 

had already been able to detect and analyze the three types of SEUs. Our focus was to 

be able to detect and analyze them in environments that were previously not possible. 

These are when dealing with DSLRs at high ISO levels and cell phone cameras at modest 

ISO levels. At these ISOs, the SEUs are generally weaker and often get lost with the noise. 

We will discuss this phenomenon in more detail throughout the remainder of this thesis. 

In the next section we will discuss the process of experimentally detecting SEUs, prior to 

the next chapter where we will discuss the different SEU detection algorithms. 

 

3.3. Capturing Dark-frame Images for SEU Analysis 

 

Up until this point in this chapter we have discussed some of the fundamental 

concepts of SEUs. In this section we will look at the experimental procedure involved in 

capturing dark-frame images that can be used to detect SEUs. Dark-frame images of 

digital cameras have not only the ability to record the existence of SEUs but also their 

respective deposited charge value. Hence, with large datasets of time-lapsed dark-frame 

images, pixel analysis allows us to calculate the intensity and energy distribution of 

deposited cosmic ray charges, the energy vs occurrence rate, the total area of the charge 

ball, and the correlation between the number of SEUs and the elevation at which the image 

has been taken. 
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3.3.1. General SEU Experimental Setup with DSLRs 

 

Before getting into the various detection algorithms it is paramount to understand 

the experimental procedure. In the past, the focus had been on capturing dark-frame 

images with DSLRs for SEU analysis. The SEU analysis tools used in past research 

lacked the ability to detect SEUs in images with high ISO levels or images with long 

exposures. This is because increasing the exposure time or the ISO level generates more 

thermal noise in the camera’s sensor. We will understand this topic of noise in more detail 

in the next chapter. In comparison, our focus has been on capturing dark-frame images 

with both DSLRs and cell phone cameras for SEU analysis. More specifically taking dark-

frame images with DSLRs at higher ISO levels as well as with cell phone cameras at 

modest ISO levels. Previously in our research it had been a struggle to separate this noise 

from the actual SEUs, but the current detection algorithms enable us to make such 

separations within higher ISO images.  

The max exposure times used for DSLRs and cell phone cameras were 30 

seconds and 4 seconds respectively. At exposure times longer than these, high amounts 

of noise would make the dark-frame images unusable for the SEU analysis tools. The 

highest tolerable exposure time is different when comparing camera models and is also 

dependent on the ISO setting used. Increasing the ISO also amplifies the collected charge. 

ISOs that are not used are levels greater than ISO 12800 in DSLRs or greater than ISO 

800 in cell phones. Our initial research started off with capturing dark-frame images with 

DSLRs in digital RAW format. As mentioned in the previous chapter, the images taken in 

digital RAW format are free of demosaicing, compression, and additional noise 

suppression which is very beneficial when analyzing SEUs. Compressed formats such as 

JPEG remove important details and alter the recorded pixel data of the image [46]. Hence, 

dark-frame images are taken in digital RAW format to give the best results as it allows the 

SEU analysis tools to look for SEUs with a dataset of generally unaltered pixel values. The 

dark-frame images provide benefit to the analysis tools themselves by presenting the 

stored charge data collected during the light exposure period. Hence, to leverage the 

benefit of long exposure time, a dataset was composed of dark-frame images with a fixed 

ISO level and exposure time.  
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To understand the differences between datasets, different ISO levels and 

exposure times were used to capture multiple datasets for a given camera. Looking at the 

datasets that were collected, ISO levels ranged from ISO 100 to ISO 25600 for DSLRs 

and from ISO 100 to ISO 800 for cell phone cameras. As mentioned earlier, the max 

exposure times for DSLRs and cell phone cameras were 30 seconds and 4 seconds 

respectively. By this, dark-frame images in an image dataset record both the temporal and 

spatial occurrences of all SEU events that have occurred during that exposure period.  

Since SEUs appear during one exposure period and disappear in the next exposure 

period, having set exposure times in a dataset gives the SEU analysis tools the ability to 

see that behavior. Looking at the process of capturing dark-frame images for SEU analysis 

is quite different than the process for capturing dark-frame images for hot pixel analysis. 

The hot pixel image capturing process involves linear fitting after taking dark-frame images 

at a fixed ISO level and increasing exposure times [46]. Since this research does not focus 

on hot pixel detection or analysis, the experimental method for hot pixels will not be 

discussed. 

First, we will take a look at the general environmental setup for DSLRs and get into 

the environmental setup for cell phone cameras in the next section. Cell phone cameras 

have very specialized environment conditions that do not apply to general digital cameras 

such as DSLRs. The first prerequisite for capturing these images is for the camera to be 

in a darkroom used for film development. Alternatively, any ‘pitch-black’ room or box that 

blocks out all light may be used. The environment that was used in this research ensured 

that no outside light entered the already ‘black’ room. Hence, this guaranteed that no light 

would enter the imaging array of the camera. By adhering to this strict, no-light 

environment the only details that an image will record (other than their black pixel values) 

are SEUs, Hot Pixels and noise. Since we are only interested in SEUs, the detection 

algorithms would be able to later separate out false positives such as Hot Pixels and noise 

from the desired SEUs.  

In order for a pixel to be considered a potential SEU, the pixel will have to show no 

signs of an SEU in the first image, the existence of an SEU in the second image, and 

return to showing no signs of an SEU in the third image. Figure 3.9 illustrates the process 

to better understand these stages in SEU detection. This figure illustrates the nature of an 

SEU event in respect to the pixel readout at its location in the before and after images. At 

this point it is beneficial to set the numbering convention for the images that are in the 
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three-image sequence to make the sequence more intuitive. The middle image will be 

classified as the current image as it is in between two images – the previous and the next 

images. The previous image will be defined as image j, the current image will be defined 

as image j+1, and the next image will be defined as image j+2.    

 

Figure 3.9 The SEU Detection Algorithm demonstrating an SEU that was detected 
in image ‘j+1’ and not present in images ‘j’ and ‘j+2’ (Taken from 
Chapman [47]) 

 

The stages in Figure 3.9 are meant to show the appearance of an SEU in the series 

of images j, j+1, j+2. In other words, the SEU will be detected at a given pixel location in 

image j+1 and not in image j and image j+2. The same pixel location that was identified 

as an SEU in image j+1 will be a dark pixel (denoting a very small signal value) in image j 

and image j+2. The pixel location in image j+1 that is identified as an SEU will appear as 

a very bright pixel (denoting the deposited cosmic charge value).  

A single SEU dataset is composed of dark-frame images that have the exact same 

gain level (ISO) setting and exposure time duration. In the early stages of our research, 

the dark-frame image datasets contained roughly 200 images. However, as our SEU 

detection software improved – 200 images were not enough. To fully benefit from the 

higher accuracy of the pixel address distribution method (explained in the next chapter), 

each dataset contains around 1000 images. Between each time lapsed image is a user-

defined wait interval for the image sensor to cool down between shots. Neglecting to follow 

this step will lead to the build-up of high amounts of thermal heat in the CMOS pixel sensor 

as well as other circuits within the camera. This results in an image having a lot of thermal 

noise. These amounts of noise make the dark-frame images unusable for SEU analysis 
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and can be avoided entirely by inserting wait times between the shots. Therefore, the total 

time being used for a single image in an SEU dataset is equal to the exposure time plus 

the wait time interval. From this we can understand that an entire SEU dataset will take a 

very long time to be captured. For example, if the exposure time is set to 30 seconds and 

the standard wait interval for the camera sensor to rest is 60 seconds, the total time to 

complete one dark-frame image is 90 seconds. Figure 3.10 clearly illustrates this scenario. 

 

 

Figure 3.10 Timeline of capturing a single Dark-Frame image for SEU detection 
with a DSLR. (Exposure time=30 seconds, Waiting time=60 seconds) 

 
 

As Figure 3.10 shows, the total time spent is 90 seconds per image in the dataset. In total, 

capturing 1000 images will take over 1500 minutes (or 25 hours) to complete. Earlier in 

our research, the memory card capacity was an issue and required copying over the 

images after a few hundred images were stored on the memory card. However, moving 

to larger memory cards solved this issue, allowing for an entire image dataset to be stored 

on a single memory card. Since most DSLR models use camera batteries that do not have 

very long battery life, changing batteries multiple times was required to capture an entire 

image dataset of 1000 images. Towards the end of the research, camera power packs 

connecting to power outlets were used. This would allow a camera to capture images for 

25 hours uninterrupted.  

The main objective of capturing these dark-frame images is to obtain precise 

temporal readings of the pixels in the camera sensor during a specific time period as well 

as at various camera settings, i.e., gain level (ISO) and exposure time. In order to capture 



69 

1000 dark-frame images in every image dataset, a robust image capturing process had to 

be put in place. Manually taking thousands of dark-frame images would be prone to errors 

and almost impossible. Hence, the process of capturing all of the dark-frame images in an 

image dataset is fully automated – requiring no manual human involvement once started. 

Image settings are initially configured with fixed time intervals (both exposure time per 

image and waiting time between images) and are controlled by an external computer 

software tool. This control tool is most commonly known in photography as an 

intervalometer. Typically, intervalometers are used to take time-lapsed photos of outside 

scenes but can also be used for the purposes of taking dark-frame images for SEU 

analysis. There are many types of intervalometers available today, but two types were 

used in this research: 

1. Software intervalometer program – This particular type of intervalometer 

required no other physical hardware other than the DSLR and a laptop for 

the software to run. The intervalometer interfaces from the computer to the 

DSLR via a wired connection or wireless communication. This is a very 

commonly used intervalometer method as it is readily available to any 

DSLR photographer who owns a laptop – and often times is free. The main 

benefit of this intervalometer type is that it does not require any other 

physical devices and can save images directly to a computer. Saving 

images onto a computer instead of a DSLR reduces the battery usage as 

well as thermal noise produced by the camera as it is doing less work. 

2. Hardware intervalometer – This particular type of intervalometer is a 

hardware device that can remote control a DSLR by connecting via a wired 

connection or through wireless communication. Depending on the make 

and model of the hardware intervalometer, the configuration options differ. 

However, most common configuration options are exposure time, wait time, 

and lastly the number of iterations to capture. A significant benefit to this 

type of intervalometer is that it is relatively inexpensive and does not 

require any other devices such as a laptop or a cell phone. 

 

There are other types of intervalometers such as built in DSLR intervalometers that 

essentially integrate the functionality of a hardware or software intervalometer into the 

DSLR itself. Some find this appealing as everything is done on the DSLR. However, since 

this type of intervalometer was not used in the research it will not be discussed. Of the two 

intervalometers used in this research, the software intervalometer program is the most 

common as it provides the mentioned advantages of consuming less camera battery 
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power and having the ability to store RAW image files on an external computer or hard 

drive.  

Now that we are aware of the general experimental setup and the process involved 

in capturing dark-frame images with DSLR cameras for SEU analysis we may proceed to 

cell phone cameras. However, as mentioned earlier, the process involved in taking dark-

frame images with cell phone cameras is slightly different. The next section will explain 

their experimental setup. 

 

3.3.2. SEU Experimental Setup with Cell Phones 

 

The current trend in the IC industry has been shrinking the overall size of the 

transistor in CMOS circuits. Therefore, it is paramount in our research to study the topic 

of SEU detection in cell phone camera sensors. More specifically, cell phone 

manufacturers have specialized in including inexpensive small cameras with the largest 

number of megapixels possible. As a result, manufacturers have made the quality of 

everyday photography rather similar to that of DSLR photography. When comparing the 

price of the cell phone camera to a DSLR you will see that the cell phone camera system 

will cost around 10 dollars in comparison to a DSLR costing anywhere from 500 dollars to 

5000 dollars. Presently, the size of cell phone camera pixels ranges from 1.4 m down to 

1.2 m and sensor areas are generally around 24 mm2. In our most current research, the 

cell phone camera pixel sizes were generally in that range. A disadvantage of cell phone 

cameras is that they generate a substantial amount of noise in comparison to DSLR 

sensors. One of the main reasons for this is the absence of high-end noise suppression 

algorithms that are included in DSLR cameras. Computationally these algorithms are quite 

expensive, hence, cannot be used in cell phone cameras.  

For the longest time cell phones did not support saving images in digital RAW 

format –some still do not support it. Ever since the release of Android version 7 (Nougat) 

in 2017, camera applications on Android cell phones have had the ability to support digital 

RAW images. Unlike Android smartphones, there has not been a viable option to capture 

RAW images on iPhones. As mentioned earlier, digital RAW format is essential for 
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detecting and analyzing SEUs in any camera. However, this format in cell phone comes 

with its drawbacks. Cell phone cameras have been optimized for JPEG format – hence, 

they do not include some of the optimizations in digital RAW format.  

Overall there are two major drawbacks when dealing with images taken with cell 

phone cameras. Firstly, the highest exposure time that we are capable of setting before 

the image starts to contain too much noise is 4 seconds. This is substantially lower in 

comparison to DSLRs which are capable of reaching exposure times of 30 seconds or 

longer. Longer exposure times give the ability to detect SEUs with lower rates. Secondly, 

the maximum gain level (ISO) of cell phone cameras (ISO 800) is again quite lower in 

comparison to DSLRs that are capable of ISO 25600 in some cases. Historically, looking 

at when the DSLR maximum was at ISO 800, one would have to look back to around 18 

years ago. These two drawbacks clearly show that cell phone cameras are somewhat 

inferior to DSLRs.  

Another point that needs to be addressed is that there are many other electronic 

components and software processes operating in the cell phone that contribute to the 

overall temperature of the cell phone. Unlike DSLRs, cell phones are used for multiple 

purposes as well as have many other applications and services running simultaneously. 

Hence, in order to reduce the amount of noise seen in cell phone dark-frame images, 

regulating their temperature is very essential. DSLRs do not have this issue as they are 

only used to capture images and do not have any other non-camera applications and 

services running in parallel. There are only two times when thermal heat is dissipated in a 

DSLR sensor. This first being when the image has been captured and read out. The 

second being when the image is being stored. Both of these operations do not take much 

time. Therefore, in the case of cell phone cameras, it is all the more important to time 

space the images being captured in an SEU dataset. Like in the case of DSLRs, this will 

help reduce the thermal noise that is generated by the cell phone cameras during image 

capture. 

During our research we were able to create a unique method to effectively capture 

SEU dark-frame images with cell phone cameras. As mentioned earlier, cell phones are 

prone to substantial thermal heat generated from the camera sensor, communication and 

other background processes. To alleviate this, we perform a few actions prior to capturing 

the dark-frame images. Firstly, we enable ‘airplane mode’ on the cell phone to turn off and 
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block out any external communication on the cell phone. Secondly, we turned the 

brightness of the cell phone screen to the lowest brightness setting possible with the intent 

to eliminate some thermal heat generated from its OLED (Organic Light-Emitting Diode) 

display as well as conserve battery power. Generally speaking, a lot of the cell phone’s 

battery gets drained due to its screen being turned on – hence, the need to turn it low 

since turning it off is not an option.  

On a related note, the cell phone’s screen as well as the lens of the camera were 

covered to block out all light during image capture. Refusing to do this would cause light 

to enter the camera sensor during image capture and affect the dark-frame image. Lastly, 

to ensure that the cell phone is cooled down to a lower temperature we place it in a 

refrigerator (on a metal portion of the frame) that has an inside temperature of 

approximately 4°C. This step is crucial as it essentially lowers the internal temperature of 

the cell phone by approximately 16°C – further lowering the thermal noise level during 

image capture. This step was not a practice done during image capture with DSLRs as 

some preliminary experiments during the beginning stages of the research provided 

evidence that it had no impact on the noise levels. Setting the refrigerator’s temperature 

lower than 4°C would bring it closer to that of a freezer which is undesirable.  

If you recall, with DSLRs we leveraged either a software intervalometer program 

or a physical hardware intervalometer to capture time spaced images. Unfortunately, 

these options for the most part do not exist for cell phones. In seldom cases where the 

cell phone applications have intervalometers, the support for digital RAW format is not 

included. Fortunately, we developed an innovative work-around solution that mimics the 

behaviour of an intervalometer for Android camera applications. As most are familiar, 

Android operating systems as well as most of the other cell phone operating systems 

support voice control. This gives them the ability to listen to human voice commands and 

capture images with their standard camera applications. Knowing this functionality, we 

developed a short Python script that outputs the word ‘cheese’ as many times as the user 

specifies in the script. 

The Python script has the following workflow: 

1. Imports the necessary Python libraries. 

2. Imports the WAV file recording of a human voice saying ‘Cheese.’  

3. Runs a loop to repeat as many iterations as specified. In the loop: 
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a. Plays the cheese sound once per iteration. 

b. Waits a duration equaling the exposure time plus 30 seconds – 

enough time for the sensor to cool down. 

i. Example 1: 32 seconds if the exposure time is 2 seconds. 

ii. Example 2: 34 seconds if the exposure time is 4 seconds. 

4. Repeat (3) until the completion of the total number of iterations 

 

Figure 3.11 below provides a code snippet of the short Python program that 

provides this intervalometer functionality. 

 

Figure 3.11 Code snippet of the Python intervalometer program 

 

Running the code in the above figure plays the word cheese every 34 seconds for 

1000 images. The end result would provide us with a single dataset containing 1000 cell 

phone dark-frame image. To cause the cell phone camera to properly capture dark-frame 

images in a refrigerator, we placed an audio speaker in the same refrigerator. It would 

trigger the cell phone camera every time it outputs the word ‘cheese.’ The cell phone 

camera application would be preconfigured with the desired sensitivity level (ISO) and 

exposure time prior to inserting it into the refrigerator – it would not be changed by the 

Python program. Figure 3.12 below clearly illustrates this configuration that was just 

described – 4 seconds of exposure time and 30 seconds of waiting intervals. One major 

advantage of this intervalometer method is that it can trigger multiple cell phone cameras 

at a time. All that needs to be satisfied is that triggering speaker that outputs ‘cheese’ 
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needs to be in the same refrigerator as all of the cell phones. Any single one of the DSLR 

intervalometer methods that were mentioned earlier could at most trigger one DSLR at a 

time. 

 

Figure 3.12 Timeline of capturing a single Dark-Frame image for SEU detection 
with a Cell Phone camera. (Exposure time=4 seconds, Waiting 
time=30 seconds) 

 

An important point to mention is regarding the storage of images when using a cell 

phone to capture them. Almost all present-day cell phones ship with gigabytes of 

dedicated flash storage. However, most of this storage space gets consumed with its 

respective flavour of UNIX operating system as well as services and applications. This in 

turn leaves very little to no room for storing digital RAW image files. To overcome this – 

since Android operating systems support expandable storage – we insert a Micro-SD card 

to store the captured dark-frame images. The total available storage for the dark-field 

image datasets is limited by the capacity of the expandable storage card. In our 

experiments a single 100 gigabyte Micro-SD card had the capacity of supporting over 

1000 images. Hence, this gives us the ability to store an entire 1000 image dataset.  

Overall, this provides us with a robust method to capture SEU dark-frame images 

for cell phone cameras. Studying cell phone cameras is important for detecting SEUs and 

for other future applications. As cell phone sensors become smaller over time, they store 

less deposited charge but on the other hand become more portable to travel around with 

humans as well as act as cosmic ray detectors. This is related to a concept that has been 

discussed by the physics community where cell phone cameras distributed around the 

world would act as cosmic ray detectors since a significant portion of the world’s population 

owns a cell phone. Time will indicate to us the adoption of this idea throughout the world.  

|
T=0 seconds

Triggered by ’Cheese.’

Start of exposure time

|
T=4 seconds

End of exposure.

Image Captured.
Start of wait interval.

|
T=34 seconds

End of wait interval.

Repeat from A. 

A B C

Image Exposure to Light Waiting – Sensor Cooling Down
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As mentioned earlier, dark-frame images with long exposure times can record the 

existence of SEUs and their respective deposited charge values. A characteristic that is 

associated with long exposure times (e.g. 30 seconds) is a high amount of noise. This 

further increases in cell phones cameras as they have much more noise than DSLRs even 

at modest ISOs. The same issue is noticed with DSLRs at high ISO settings. As a result, 

the next chapter will walk through the different SEU detection algorithms that try to tackle 

the noise problem in different ways. The most recent method, the Pixel address 

distribution method uses distributed noise reduction to properly discard image noise and 

identify SEUs in cell phone cameras at modest ISO levels and DSLRs at high ISO levels. 

 

3.4. Summary 

 

This chapter has discussed many theoretical concepts related to Single Event 

Upsets in digital cameras – their different forms and how they contrast to hot pixels. The 

experimental process for capturing dark-frame images with DSLRs and cell phone 

cameras was discussed. As prior research was rather preliminary, the motivation of this 

research is to analyze SEUs in DSLRs at high ISO levels (greater than ISO 1600) and cell 

phone cameras at modest ISO levels (lower than ISO 1600). The next chapter will present 

the various SEU detection algorithms that have been developed over time as well as 

methods to overcome high levels of noise. 
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Chapter 4.  
 
SEU Detection Algorithms 

4.1. Overview 

 

In the previous chapter the theoretical concepts related to Single Event Upsets in 

digital cameras were discussed – namely the different types and their respective 

characteristics. Additionally, the general experimental procedures for capturing dark-

frame images were discussed for both DSLRs and cell phone cameras. The goal of this 

chapter is to discuss the research advancements that have been made in respect to SEU 

detection in digital camera sensors – including newer methods to identify weaker SEUs. 

We will look at DSLRs at higher ISO levels and cell phone cameras at modest ISO levels 

– both resulting in high amounts of noise. The newer methods have been optimized to 

differentiate SEUs from false positives such as noise and hot pixels. The topics will include 

a discussion on noise analysis in SEU images and different SEU detection algorithms that 

have been used. The three algorithms that we have developed in this research are (from 

oldest to newest): 

• The Threshold Method: Identifies an SEU at a pixel location k using a 

user defined threshold value. 

• The Local Area Distribution Method: Identifies an SEU at a pixel 

location k using a noise threshold value calculated by the local area noise 

in a single dark-frame image. 

• The Pixel Address Distribution Method: Identifies an SEU at a pixel 

location k using the distributed mean and standard deviation of k over 1000 

dark-frame images.  

The most accurate method that is currently being used is the Pixel Address 

distribution method. The experimental results of each of the methods will be compared in 

detail towards the end of the chapter. 
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4.2. The Threshold Method 

 

Over the period of our research we have explored different SEU analysis 

techniques – the first of which is the Threshold Method [48]. In the early development 

stages, the Python intervalometer script (recall from Chapter 3) had not been written. 

Hence, this method was initially only used for DSLR images. In addition, a single image 

dataset contained a maximum of 200 dark-frame images. The benefit of capturing 1000 

images in a single dark-frame image dataset was not learned until more recently. As 

mentioned previously, DSLR sensors have larger pixels which are great for recording pixel 

values with a certain level of noise reduction in digital RAW format. The threshold method 

is a software algorithm implemented in MATLAB (called seu_analysis_threshold.m) that 

begins by reading in the dark-frame images of an SEU image dataset one by one. Recall, 

all images in a single image dataset are of a fixed ISO and exposure time. The tool would 

accept a pre-defined threshold value and always store at most three images at a time in 

order to compare pixel values of the previous, current, and next images (recall from Figure 

3.9). In order to properly identify the presence of SEUs (whether a single pixel, clusters, 

or streaks) at a pixel location k, the software would perform the following steps: 

1. Check for an increase in pixel intensity at pixel location k by subtracting 

the previous image j from the current image j+1. Identify whether the 

resulting difference is larger than the predefined threshold. 

2. Check for a decrease in pixel intensity at pixel location k by subtracting 

the next image j+2 from the current image j+1. Identify whether the 

resulting difference is larger than the predefined threshold. 

3. Check that both (1) and (2) are satisfied. If so, the pixel location k in the 

current image j+1 is classified as an SEU. Equation 4.1 shows this 

logically. If only one of (1) and (2) are satisfied, reject pixel location k in 

current image j+1. 
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((𝐼𝑚𝑎𝑔𝑒𝑗+1(𝑥𝑘, 𝑦𝑘) − 𝐼𝑚𝑎𝑔𝑒𝑗(𝑥𝑘, 𝑦𝑘)) > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)  

∧ 

((𝐼𝑚𝑎𝑔𝑒𝑗+1(𝑥𝑘, 𝑦𝑘) − 𝐼𝑚𝑎𝑔𝑒𝑗+2(𝑥𝑘 , 𝑦𝑘)) > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 

⟹   𝐼𝑚𝑎𝑔𝑒𝑗+1(𝑥𝑘, 𝑦𝑘) is an SEU                                       (4.1) 

                              Where 𝑥𝑘, 𝑦𝑘represents pixel location 𝑘 

Since this algorithm looks at the value at pixel location k and compares its value in 

the current image to the same location in the previous and next images, it should 

theoretically not classify a hot pixel as an SEU event. Hot pixels by definition should 

appear at a given pixel location in every image – that is every pixel location k in images j, 

j+1, and j+2.    

The initial implementation of the algorithm performed very slow as it read in all the 

images (up to 200) at the start and held them in the computer’s memory until the script 

was completed. Additionally, it used nested for-loops which are contrary to MATLAB 

coding best practices. This resulted in high CPU and memory usage as well as took many 

hours for the full analysis script to complete. In an effort to reduce the total compute 

utilization and time we leveraged parallel processing within MATLAB to replace the old 

nested for-loop approach. An example of this is the find() function in MATLAB which 

searches for values that meet a certain criterion – in our case exceeding a threshold value. 

The find() function removes the need to iterate inside each image one pixel at a time. This 

is a reason the performance of the script greatly improved. Prior to this change, analyzing 

200 images took 4 hours. After implementing the find() function, the analysis reduced to 

10 minutes.  

After the Python intervalometer was developed for cell phones we began to 

capture and analyze their dark-frame images. When we attempted to analyze cell phone 

dark-frame images we often discovered the inefficiency of using a threshold value to deal 

with inherently high noise levels. Many of the pixels that were classified as SEUs were 

essentially sensor noise even at modest sensitivity levels (ISO) and stood out as false 

positives. Also, increasing the threshold value too high would exclude more SEU 
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candidates than necessary. The same was observed for DSLR cameras at high sensitivity 

levels (ISO). The newer analysis methods have tried to make optimizations to improve this 

behaviour, with only one being successful. In relation to the threshold method, the end of 

the chapter will contain SEU results for a range of camera models (both DSLRs and cell 

phones) using this method. 

 

4.3. Local Image Noise 

 

As mentioned earlier, cell phone images captured in digital RAW format do not 

undergo the same compute intensive noise suppression algorithms as images captured 

by DSLR cameras. Hence, cell phone camera images are vulnerable to high levels of 

thermal pixel noise. To get a better understanding of the distribution of the thermal noise 

within a cell phone camera sensor we wrote a short MATLAB script (called local_noise.m) 

that performed noise analysis [49]. This script read in a single dark-frame image and 

created a histogram of its pixel noise values using noise bin widths of 256 – i.e. 8-bit of a 

16-bit pixel output value. Instead of simply plotting the histogram as pixel count versus 

noise output bins, a change was made in the script. The histogram would be displayed 

with a modified pixel count metric in the form of a percentage of the bin count to the total 

pixels. This is essentially dividing the pixel count in a bin by the total number of pixels in 

the cell phone camera sensor (e.g. 12 megapixels or 1.2x107 pixels). In addition, to better 

view the distribution, the y-axis is outputted in log base-10 scale. Figure 4.1 shows an 

example of a histogram generated for a dark-frame image (ISO 800, T=4 sec) captured 

with a Samsung S7 cell phone (1.4 m pixels). 
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Figure 4.1 Cell phone dark-frame pixel count vs noise output bins of 256 (ISO 800, 

T=4 sec, Pixel Size = 1.4 m) 

 

 By inspecting the histogram, it is clear that the distribution is much closer to a 

Poisson distribution (exponential distribution) as opposed to a common Gaussian 

distribution. Given the principles of an exponential distribution, in order for a value to be 

above the noise floor, the noise threshold must be the mean plus 7 standard deviations 

(denoted as μ+7σ). If this was a typical Gaussian distribution, the noise threshold would 

be the mean plus 3 standard deviations. Pictorially, this threshold can be seen as the 7th 

bin from the left in the histogram which also denotes the point where the probability of it 

being random noise is less than 0.1%. Every SEU image dataset will have a different noise 

threshold as the camera model, ISO, and exposure time settings will vary. For comparison, 

Figures 4.2 and 4.3 show histograms generated from a low ISO dark-frame image (ISO 

800, T=30 sec) and a high ISO dark-frame image (ISO 3200, T=30 sec) respectively 

captured with a Canon MD Mark II DSLR (6.41 m pixels). 
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Figure 4.2 DSLR dark-frame pixel count vs noise output bins of 256 (ISO 800, T=30 

sec, Pixel Size = 6.41 m) 

 

 

Figure 4.3 DSLR dark-frame pixel count vs noise output bins of 256 (ISO 3200, 

T=30 sec, Pixel Size = 6.41 m) 

 

It can be seen that the DSLR at a modest ISO level (ISO 800) in Figure 4.2 has 

very modest levels of noise – much less than the cell phone at the same ISO level in 

Figure 4.1. Further analyzing, the histogram of the DSLR at a high ISO level (ISO 3200) 

in Figure 4.3 has very high levels of noise, similar to the cell phone at a lower ISO level 

(ISO 800) in Figure 4.1. This proves that cell phones at modest ISO levels experience 

similar noise levels to DSLRs at high ISO levels. The next method that will be introduced 

– the Local Area Distribution Method – will leverage noise threshold values in the SEU 
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analysis. The initial threshold along with the noise threshold will be used in the initial steps 

of the next method.  Using a basic user defined threshold had the inability to differentiate 

SEUs from false positives such as noise and hot pixels – hence, the need to explore other 

techniques such as local area noise.   

 

4.4. The Local Area Distribution Method 

 

Following the implementation of the Threshold method was the development of an 

algorithm that took a deeper look at the local noise distribution around a given pixel [49]. 

This analysis method is most commonly referred to as the Local Area Distribution method. 

Like before, we will define the previous image as image j, the current image as image j+1, 

and the next image as image j+2. Additionally, the image before the previous image will 

be defined as image j-1 and the image after the next image will be defined as image j+3. 

There are two major ideas that differentiate the Local Area Distribution method from the 

previous Threshold method. The objective of making these two requirements is to discard 

potential SEUs that are either noisy pixels or hot pixels. These may appear in the local 

area around the potential SEU in the previous or following images – hence, the decision 

to look at images j-1 and j+3 as well. These requirements are: 

• A potential SEU at pixel location k in the current image j+1 should never 

repeat at the same pixel location k in images j-1, j, j+2, or j+3. The threshold 

method did not consider images j-1 and j+3. 

• A potential SEU at pixel location k in the current image j+1 should never 

repeat within a close proximity to the same pixel location k in images j-1, j, 

j+2, or j+3. The threshold method did not consider pixels within a close 

proximity to pixel location k in images j-1, j, j+2, and j+3. 

Figures 4.4 and 4.5 illustrate a potential SEU accepted by the method and a 

potential SEU rejected by the method respectively.  
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Figure 4.4 A potential SEU accepted by the Local Area Distribution method 
 

 

Figure 4.5 A potential SEU rejected by the Local Area Distribution method 
 
 

Similar to the threshold method, the local area distribution method [49] is a 

software algorithm implemented in MATLAB (called seu_analysis_lad.m) that begins by 

reading in the dark-frame images of an SEU image dataset one by one – again, of a fixed 

ISO and exposure time. The tool would again accept a pre-defined threshold value and 

always store at most five images at a time (that is, images j-1, j, j+1, j+2, and j+3). In order 

to properly identify the presence of SEUs at a pixel location k in the current image j+1, the 

algorithm performs the following steps: 
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1. Check for an increase in pixel intensity at pixel location k by subtracting the 

previous image j from the current image j+1. Identify whether the resulting 

difference is larger than 10,000. 

Step 2 is targeting cell phone cameras. 

2. Check that the pixel intensity at pixel location k in the current image j+1 is 

greater than the minimum noise threshold. As mentioned in the previous 

noise section, the noise threshold value is defined as the mean (denoted 

by μ) plus 7 standard deviations (denoted by 7) of the mean.  

3. Check that both (1) and (2) are satisfied. If so, the pixel location k in the 

current image j+1 is classified as a potential SEU candidate but unverified. 

If so, proceed to (4). If only one of (1) and (2) are satisfied, reject pixel 

location k in current image j+1. Equation 4.2 shows this step logically: 

(𝐼𝑚𝑎𝑔𝑒𝑗+1(𝑥𝑘, 𝑦𝑘) > 10,000)  

∧ 

(𝐼𝑚𝑎𝑔𝑒𝑗+1(𝑥𝑘 , 𝑦𝑘) > 𝑁𝑜𝑖𝑠𝑒 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 

⟹   𝐼𝑚𝑎𝑔𝑒𝑗+1(𝑥𝑘, 𝑦𝑘) is a potential SEU but unverified                      (4.2) 

                        Where 𝑥𝑘, 𝑦𝑘represents pixel location 𝑘 and 𝑁𝑜𝑖𝑠𝑒 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝜇 + 7𝜎 

Step 4 will look at two images before and two images after. 

4. Check that the pixel intensity at pixel location k in the current image j+1 is 

not similar to the pixel intensity at the corresponding location in image j-1 

and image j+3. Since SEUs are random, the probability of them 

reappearing at the exact same location it did either two images prior or two 

images latter is almost zero.  

Step 5 will look at the local area noise distribution. 

5. Check the intensities of the local areas around pixel location k in the 

previous, current, and next images by creating a 5x5 square around (and 
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not including) pixel location k in images j, j+1, j+2. The three centerless 

squares can be represented as following:  

𝑨𝒋 =

(𝑥𝑘𝑗
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+ 2) (𝑥𝑘𝑗
− 1, 𝑦𝑘𝑗

+ 2) (𝑥𝑘𝑗
, 𝑦𝑘𝑗

+ 2) (𝑥𝑘𝑗
+ 1, 𝑦𝑘𝑗

+ 2) (𝑥𝑘𝑗
+ 2, 𝑦𝑘𝑗

+ 2)

 

 

(4.3) 

                             Where 𝑨𝒋 represents the 5x5 pixel square around 𝑘 in image 𝑗 and 

                             𝑥𝑘, 𝑦𝑘 represents pixel location 𝑘 in image 𝑗  

𝑨𝒋+𝟏 =  

(𝑥𝑘𝑗+1
− 2, 𝑦𝑘𝑗+1

− 2) (𝑥𝑘𝑗+1
− 1, 𝑦𝑘𝑗+1

− 2) (𝑥𝑘𝑗+1
, 𝑦𝑘𝑗+1

− 2) (𝑥𝑘𝑗+1
+ 1, 𝑦𝑘𝑗+1

− 2) (𝑥𝑘𝑗+1
+ 2, 𝑦𝑘𝑗+1

− 2)

(𝑥𝑘𝑗+1
− 2, 𝑦𝑘𝑗+1

− 1) (𝑥𝑘𝑗+1
− 1, 𝑦𝑘𝑗+1

− 1) (𝑥𝑘𝑗+1
, 𝑦𝑘𝑗+1

− 1) (𝑥𝑘𝑗+1
+ 1, 𝑦𝑘𝑗+1

− 1) (𝑥𝑘𝑗+1
+ 2, 𝑦𝑘𝑗+1

− 1)

(𝑥𝑘𝑗+1
− 2, 𝑦𝑘𝑗+1

) (𝑥𝑘𝑗+1
− 1, 𝑦𝑘𝑗+1

) 𝐸𝑚𝑝𝑡𝑦 (𝑥𝑘𝑗+1
+ 1, 𝑦𝑘𝑗+1

) (𝑥𝑘𝑗+1
+ 2, 𝑦𝑘𝑗+1

)

(𝑥𝑘𝑗+1
− 2, 𝑦𝑘𝑗+1

+ 1) (𝑥𝑘𝑗+1
− 1, 𝑦𝑘𝑗+1

+ 1) (𝑥𝑘𝑗+1
, 𝑦𝑘𝑗+1

+ 1) (𝑥𝑘𝑗+1
+ 1, 𝑦𝑘𝑗+1

+ 1) (𝑥𝑘𝑗+1
+ 2, 𝑦𝑘𝑗+1

+ 1)

(𝑥𝑘𝑗+1
− 2, 𝑦𝑘𝑗+1

+ 2) (𝑥𝑘𝑗+1
− 1, 𝑦𝑘𝑗+1

+ 2) (𝑥𝑘𝑗+1
, 𝑦𝑘𝑗+1

+ 2) (𝑥𝑘𝑗+1
+ 1, 𝑦𝑘𝑗+1

+ 2) (𝑥𝑘𝑗+1
+ 2, 𝑦𝑘𝑗+1

+ 2)

 

 

(4.4) 

                             Where 𝑨𝒋+𝟏 represents the 5x5 pixel square around 𝑘 in image 𝑗 + 1 and 

                             𝑥𝑘𝑗+1
, 𝑦𝑘𝑗+1

 represents pixel location 𝑘 in image 𝑗 + 1 

𝑨𝒋+𝟐 =

(𝑥𝑘𝑗+2
− 2, 𝑦𝑘𝑗+2

− 2) (𝑥𝑘𝑗+2
− 1, 𝑦𝑘𝑗+2

− 2) (𝑥𝑘𝑗+2
, 𝑦𝑘𝑗+2

− 2) (𝑥𝑘𝑗+2
+ 1, 𝑦𝑘𝑗+2

− 2) (𝑥𝑘𝑗+2
+ 2, 𝑦𝑘𝑗+2

− 2)

(𝑥𝑘𝑗+2
− 2, 𝑦𝑘𝑗+2

− 1) (𝑥𝑘𝑗+2
− 1, 𝑦𝑘𝑗+2

− 1) (𝑥𝑘𝑗+2
, 𝑦𝑘𝑗+2

− 1) (𝑥𝑘𝑗+2
+ 1, 𝑦𝑘𝑗+2

− 1) (𝑥𝑘𝑗+2
+ 2, 𝑦𝑘𝑗+2

− 1)

(𝑥𝑘𝑗+2
− 2, 𝑦𝑘𝑗+2

) (𝑥𝑘𝑗+2
− 1, 𝑦𝑘𝑗+2

) 𝐸𝑚𝑝𝑡𝑦 (𝑥𝑘𝑗+2
+ 1, 𝑦𝑘𝑗+2

) (𝑥𝑘𝑗+2
+ 2, 𝑦𝑘𝑗+2

)

(𝑥𝑘𝑗+2
− 2, 𝑦𝑘𝑗+2

+ 1) (𝑥𝑘𝑗+2
− 1, 𝑦𝑘𝑗+2

+ 1) (𝑥𝑘𝑗+2
, 𝑦𝑘𝑗+2

+ 1) (𝑥𝑘𝑗+2
+ 1, 𝑦𝑘𝑗+2

+ 1) (𝑥𝑘𝑗+2
+ 2, 𝑦𝑘𝑗+2

+ 1)

(𝑥𝑘𝑗+2
− 2, 𝑦𝑘𝑗+2

+ 2) (𝑥𝑘𝑗+2
− 1, 𝑦𝑘𝑗+2

+ 2) (𝑥𝑘𝑗+2
, 𝑦𝑘𝑗+2

+ 2) (𝑥𝑘𝑗+2
+ 1, 𝑦𝑘𝑗+2

+ 2) (𝑥𝑘𝑗+2
+ 2, 𝑦𝑘𝑗+2

+ 2)

 

 

(4.5) 

                             Where 𝑨𝒋+𝟐 represents the 5x5 pixel square around 𝑘 in image 𝑗 + 2 and 

                              𝑥𝑘𝑗+2
, 𝑦𝑘𝑗+2

 represents pixel location 𝑘 in image 𝑗 + 2  

Pool all three 24-pixel (5x5) arrays together and flatten to form a 72-pixel 

vector (denoted by 𝑷𝟕𝟐) and check the following: 

a. Check that the pixel intensity at pixel location k in the current image 

j+1 is greater than the mean (of the 72-pixel vector, denoted by μ𝑃72
) 

plus 7 standard deviations (denoted by 7σP72
) of the mean.  
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b. Calculate the absolute difference between pixel intensity k in the 

current image j+1 and the previous image j. Check that the resulting 

difference is greater than 2 standard deviations (denoted by 2σP72
) 

of the mean. 

c. Calculate the absolute difference between pixel intensity k in the 

current image j+1 and the next image j+2. Check that the resulting 

difference is greater than two standard deviations (denoted by 

2σP72
) of the mean.  

6. Check that (5a), (5b), and (5c) are satisfied. If so, the pixel location k in the 

current image j+1 is ready to proceed to the last step (7). If any of (5a), 

(5b), or (5c) are not satisfied, reject pixel location k in current image j+1. 

Equation 4.6 shows this step logically: 

(𝐼𝑚𝑎𝑔𝑒𝑗+1(𝑥𝑘, 𝑦𝑘) > μP72
+ 7 ∗ σP72

)  

∧ 

( |𝐼𝑚𝑎𝑔𝑒𝑗+1(𝑥𝑘, 𝑦𝑘) − 𝐼𝑚𝑎𝑔𝑒𝑗(𝑥𝑘, 𝑦𝑘)| > 2 ∗ 𝜎𝑃72
 )  

∧ 

( |𝐼𝑚𝑎𝑔𝑒𝑗+1(𝑥𝑘, 𝑦𝑘) − 𝐼𝑚𝑎𝑔𝑒𝑗+2(𝑥𝑘, 𝑦𝑘)| > 2 ∗ 𝜎𝑃72
 ) 

⟹   𝐼𝑚𝑎𝑔𝑒𝑗+1(𝑥𝑘, 𝑦𝑘) is a potential SEU but unverified                            (4.6) 

                     Where 𝑥𝑘, 𝑦𝑘represents pixel location 𝑘, 𝜇𝑃72
 is the mean of the 72-pixel array,   

                     and 𝜎𝑃72
 is the standard deviation of the 72-pixel array           

Step 7 does a pixel address lookup using previously verified SEUs that have been 

recorded. 

7. Check that the potential SEU at pixel location k in the current image j+1 is 

not a repetition of a previously verified SEU at the corresponding location 

or at a location within a 5x5 square around that corresponding location. If 



87 

no match is found, the pixel location k in the current image j+1 is verified 

unique and is classified as an SEU. If there is a match with one of the 

previously verified SEUs, reject pixel location k in current image j+1.  

This algorithm was used on dark-frame images captured on both DSLR and cell 

phone cameras. Locations that passed all the criteria listed above are identified as SEUs 

and more granularly defined as either single pixel, cluster, or streak SEUs. When 

introducing this method, it was mentioned that it was designed to target improvements in 

the software by eliminating hot pixels and noise. When it came to hot pixels being falsely 

detected as SEUs, this method was observed to have improved over the previous 

Threshold method. Our hypothesis was that hot pixels that were getting misidentified as 

SEUs would now be caught by expanding our search area to 5x5 squares around pixel 

address k in images j-1, j, j+1, j+2, and j+3. Likewise, using both the threshold of 10,000 

and the noise threshold (7 standard deviations more than the mean) in this method, 

showed a reduction in the number of false positives due to noise. However, many false 

positives that were from inherently noisy pixels were still being counted as SEUs. This is 

because there was no single noise threshold that did not exclude too many SEU 

candidates. As a result, this method was still not capable to detect SEUs in cell phones at 

modest ISO levels and DSLRs at high ISO levels. The next algorithm will get into details 

on tackling this persisting issue. Lastly, it was mentioned that the threshold method had 

become fairly performant after making certain software optimizations – i.e. being able to 

analyze 200 images in 10 minutes. The added checks associated with the Local Area 

Distribution method caused the script to take twice as long. Hence, analyzing 200 images 

took around 20 minutes. But this was an acceptable trade-off as the SEU detection 

process became more accurate. 

 

4.5. Pixel Noise Distribution 

 

As mentioned previously, cell phones have very high levels of thermal pixel noise 

since their digital RAW images do not undergo any noise suppression algorithms – 

something different from DSLR cameras. Cell phone cameras even at modest sensitivity 

levels (less than ISO 1600) show this behaviour. When it comes to DSLRs, images taken 
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with modest sensitivity levels have tolerable amounts of noise. However, when capturing 

images with DSLRs at higher sensitivity levels (greater than ISO 1600) they also show 

high levels of thermal pixel noise – much like the cell phone cameras. Another factor that 

makes it more problematic is that the noise varies from pixel to pixel and even in specific 

areas of the sensor. 

Earlier we saw that the noise of a single cell phone camera sensor was analyzed 

by a MATLAB script (called local_noise.m) in order to understand the distribution of the 

thermal noise within a cell phone camera sensor. This essentially created a histogram of 

the pixel noise values in a single dark-frame image by using noise bin widths of 256 and 

a percentage of the total count for each bin. This provided insight on the local area noise 

and further helped set a noise threshold for the Local Area Distribution Method. However, 

this method still showed the existence of noisy SEU false positives when it came to cell 

phone cameras at modest ISO levels and DSLRs at high ISO levels. Hence, it became 

clear that looking at the local area noise of a single dark-frame image was truly not 

effective.  Therefore, as a new approach we decided to understand the distribution of each 

pixel address in the camera sensor over 1000 images. Despite the effort and time involved 

in capturing 1000 images per image dataset for every camera, it remained vital in order to 

properly understand the distribution of noise. Therefore, we developed another algorithm 

in MATLAB (called noise_map.m) to generate a colour noise map of the camera sensor 

using 1000 dark-frame images [50].  

Keep in mind that each image dataset consisted of 1000 images and had its own 

combination of camera model, ISO setting, and exposure time. Figure 4.6(a)–(c) above 

show the algorithm creating a colour noise map from the dark-frame images. For 

illustrative purposes, this camera captures images each having dimensions of 4032 x 3024 

(x-dimension vs. y-dimension). The script began by averaging the noise values of all the 

pixels in the sensor over the 1000 images. This process can be seen in Figure 4.6(a)–(b) 

and resulted in a single averaged image. 
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Figure 4.6 Colour noise map of a camera sensor. (a) Averaging 1000 images. (b) 
The averaged image. (c) Creating area boxes and generating a noise 
map. 

 

Since each image was 4032 pixels wide and 3024 pixels high, the script created 

smaller area boxes filling the entire image. The area boxes had the following dimensions: 

• x-dimension: 252 pixels ( 
4032

252
= 16 area boxes spanning the width of the 

image) 

• y-dimension: 126 pixels (  
3024

126
 = 24 area boxes spanning the height of the 

image)  

In total there were 384 area boxes (16*24) that were able to fit in the 4032 x 3024 

image. As a next step, the algorithm would iterate through all of the area boxes and replace 

(c) Single image Noise Map
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their respective pixel values with the average value of the area box. This occurred for all 

of the area boxes in the image until the image consisted solely of averaged area boxes. 

The last step of the algorithm is to output a colour noise map of the ‘area-boxed’ image. 

This can be seen in Figure 4.6(c). It can be noted that the colour noise map is represented 

similarly to a traditional heat map, with darker and lighter colours indicating more and less 

noisy areas respectively. Also shown with the colour noise map is a colour scale that 

identifies the noise intensity of a given colour strength used by the color noise map. This 

particular analysis was used on both cell phone at modest ISO levels and DSLR cameras 

at high ISO levels. One thing to note is that every camera will have different area box 

dimensions as all cameras have a particular sensor size – further resulting in different 

dark-frame image sizes.  

A thorough breakdown of colour noise maps for different camera models will be 

shown at the end of the chapter. However, before proceeding to the final SEU analysis 

algorithm (the Pixel Address Distribution method), we need to fully understand the 

behaviour of noise in both types of camera sensors. This will be done by analyzing the 

colour noise map results from a cell phone and a DSLR – more specifically, the Samsung 

S7 and the Canon 5D Mark II. The results of both cameras can be seen in Figures 4.7 and 

4.8 respectively.  

 

Figure 4.7 Noise Map of Samsung S7 at ISO 800 (Sensor Size: 4.76 mm x 4.29 mm) 
 
 

Noise Map of Samsung S7 

[Phone A] at ISO 800

Each box is 126 pixels high (y) and 252 pixels wide (x)
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Figure 4.8 Noise Map of Canon 5D Mark II at ISO 3200 (36 mm x 24 mm sensor) 
 
 

By analyzing the noise maps in the above figures, it is evident that they show 

different characteristics and patterns. The DSLR in Figure 4.8 shows randomly distributed 

noise, no distinct pattern, and a generally lower range of noise intensities than the cell 

phone camera. Contrastingly, the cell phone camera in Figure 4.7 exhibited a distinct 

pattern of ‘three noisy outer rings’ and a generally higher range of noise intensities than 

the DSLR. Since the ring behaviour was fairly astonishing, another noise map was 

generated with images captured by an identical Samsung S7 camera and its resulting 

noise maps followed the same noise distribution pattern. One reasoning for this similarity 

in noise distributions may be due to similar manufacturing conditions. Since both cell 

phones are the same model and made by the same manufacturer, they most likely would 

have been fabricated under the same conditions. 

Recent experiments that were performed observed that some of the pixels (and 

some areas of the sensor) to be inherently too noisy – generating false positives in the 

SEU analysis. In an attempt to solve the noise problem that persisted in the two earlier 

SEU analysis algorithms (the Threshold method and the Local Area Distribution method) 

we proposed for the next SEU analysis method to follow our most recent noise analysis 

and consider the pixel noise distribution in all 1000 images. Follow-up experiments led to 

the development of another MATLAB script (called pixel_histogram.m) that would read in a 

Noise Map of Canon 5D Mark I I

at ISO 3200

Each box is 139 pixels high (y) and 313 pixels wide (x)
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1000 image dataset for this purpose of observing the distribution of noise in individual 

pixels [50]. For every pixel address in the sensor, the algorithm would calculate the mean 

and standard deviation over 1000 dark-frame images.  The script then would randomly 

select 100 pixel addresses in the sensor to generate histograms. It would then query the 

database for every pixel address that is selected and obtain their mean, standard 

deviation, as well as simply their values in the 1000 images. Lastly, using these values it 

plots a histogram for each pixel address using bins of dynamically sized widths and 

optionally display the mean and standard deviation of that respective pixel address. 

Figures 4.9(a)-(b) and 4.10(a)-(b) are examples of histograms for different pixel 

addresses. A characteristic that will be important to understand when implementing the 

Pixel Address Distribution method is the statistical distribution of the pixel address 

histograms. In general, most of them followed a Poisson (exponential) distribution in 

contrast to the well-known Gaussian distribution. 

 

 

Figure 4.9 Two randomly selected pixel addresses of a Samsung S7 from 1000 
dark-frame images (ISO 800) showing: (a) Poisson Distribution (b) 
Gaussian Distribution 
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Figure 4.10 Two randomly selected pixel addresses of a Canon 5D Mark II from 
1000 dark-frame images (ISO 3200) showing: (a) Poisson 
Distribution (b) Gaussian Distribution 

 
 

The Figure pairs above each show pixel addresses with a Poisson (or exponential) 

distribution (Figures 4.9(a) and 4.10(a)) and pixel addresses with a Gaussian distribution 

(Figures 4.9(b) and 4.10(b)). After running the script to generate histograms for 100 

randomly chosen pixel addresses, it can be observed that a majority of them do indeed 

follow an exponential distribution instead of a Gaussian distribution. If we go back to the 

definition of an SEU, they possess the characteristics of being non-permanent and random 

in nature – something which concurs with exponential distribution. The pixel addresses 

that showed a Gaussian distribution were a lot less common and most likely represent a 

very noisy pixel or a permanent hot pixel – both of which should not be falsely identified 

as an SEU. These observations on the exponential behaviour have influenced the 

implementation of the most recent SEU detection algorithm – the Pixel Address 

Distribution method [50]. 

 

4.6. The Pixel Address Distribution Method 

 

Following the implementations of the Threshold and Local Area Distribution 

methods was the development of the most recent SEU analysis algorithm. Its focus is to 
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look at the distributed pixel address noise for every pixel in a camera’s sensor. This 

analysis method is most commonly referred to as the Pixel Address Distribution method 

[50]. It follows the same image numbering convention as before with images j, j+1, and 

j+2 referring to the previous, current, and next images respectively. However, there is one 

major difference that differentiates the Pixel Address Distribution method from the Local 

Area Distribution method. That is, it relies on the distribution of a given pixel’s value over 

1000 iterations (images) to determine the presence of an SEU rather than relying on the 

local area noise of a pixel. Since we leveraged many cameras and each had a range of 

sensitivities to choose from, we constructed a database of images from all of the datasets.  

Similar to the previous analysis algorithms, the pixel address distribution method 

is a software algorithm written in MATLAB (called seu_analysis_pad.m) [50]. A difference is 

that it does not start analyzing images and pixels at the start. Rather, it leverages the 

database for a chosen image dataset that has a fixed ISO and exposure time. The 

algorithm begins by calculating the mean and standard deviation of each pixel address in 

the camera sensor using their values seen over 1000 images. This is the section of the 

algorithm where the majority of the computation time and resources are spent. During the 

initial development, the software would try to read and store 1000 images at once before 

calculating the mean and standard deviation. This would constantly cause the lab 

computer to crash as it would fully consume its memory resources. The implemented 

workaround was to read in the images one-by-one and keeping running totals of the mean 

and standard deviation while progressing through each image. The following formulas 

were used to calculate the mean and standard deviation for a pixel address (𝑥𝑝𝑎 , 𝑦𝑝𝑎) in 

the camera sensor and will help us understand optimizations using running totals: 

𝑀𝑒𝑎𝑛 =  𝜇 =
∑ 𝐼𝑚𝑎𝑔𝑒𝑛(𝑥𝑝𝑎 , 𝑦𝑝𝑎)1000

𝑛=1

𝑚
=  

𝑀𝑠𝑢𝑚

𝑚
 

 

(4.7) 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  𝜎 =  √∑ (𝐼𝑚𝑎𝑔𝑒𝑛(𝑥𝑝𝑎 , 𝑦𝑝𝑎) − 𝜇)
21000

𝑛=1

𝑚
=  √

𝑆𝑠𝑢𝑚

𝑚
  

 

(4.8) 

where 𝑛 = 1,2,3 … 1000 , 𝑚 = 1000 images , 𝐼𝑚𝑎𝑔𝑒𝑛(𝑥𝑝𝑎 , 𝑦𝑝𝑎) represents the value of a  

pixel at an location 𝑥𝑝𝑎 , 𝑦𝑝𝑎 in image 𝑛   
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𝑀𝑠𝑢𝑚 =  𝐼𝑚𝑎𝑔𝑒1(𝑥𝑝𝑎, 𝑦𝑝𝑎) +  𝐼𝑚𝑎𝑔𝑒2(𝑥𝑝𝑎 , 𝑦𝑝𝑎) + ⋯ +  𝐼𝑚𝑎𝑔𝑒1000(𝑥𝑝𝑎 , 𝑦𝑝𝑎) (4.9) 

𝑆𝑠𝑢𝑚 =   (𝐼𝑚𝑎𝑔𝑒1(𝑥𝑝𝑎, 𝑦𝑝𝑎) − 𝜇)
2

+ (𝐼𝑚𝑎𝑔𝑒2(𝑥𝑝𝑎 , 𝑦𝑝𝑎) − 𝜇)
2

+ ⋯

+ (𝐼𝑚𝑎𝑔𝑒1000(𝑥𝑝𝑎 , 𝑦𝑝𝑎) − 𝜇)
2
 

 

(4.10) 

The final running totals are 𝑀𝑠𝑢𝑚 and 𝑆𝑠𝑢𝑚. For 𝑀𝑠𝑢𝑚, the value of 

𝐼𝑚𝑎𝑔𝑒𝑛(𝑥𝑝𝑎, 𝑦𝑝𝑎) for pixel location 𝑥𝑝𝑎, 𝑦𝑝𝑎 in each image (n) is calculated and added to 

the previous running total until the script has iterated through the 1000 images. For 𝑆𝑠𝑢𝑚, 

the value of (𝐼𝑚𝑎𝑔𝑒𝑛(𝑥𝑝𝑎, 𝑦𝑝𝑎) − 𝜇)
2
 for pixel location 𝑥𝑝𝑎, 𝑦𝑝𝑎 in each image (n) is 

calculated and added to the previous running total until the script has iterated through the 

1000 images. Please note that after iterating through 1000 images twice, every pixel 

address in the sensor will have values for 𝑀𝑠𝑢𝑚 and 𝑆𝑠𝑢𝑚 and can be used to calculate 

the values of (4.7) and (4.8) for every pixel address 𝑥𝑝𝑎, 𝑦𝑝𝑎. Since the script has 

calculated the mean and standard deviation for every pixel location in the image sensor, 

we can now proceed to the next phase of the algorithm.  

Next, the script will again iterate over every image in the dataset and further iterate 

through each pixel address in a given image. In order to properly identify the presence of 

an SEU at a pixel location k in the current image j+1, the algorithm does the following: 

1. Check that the pixel intensity at pixel location k in the previous image j is 

less than the mean (denoted by μ) plus 4 standard deviations (denoted by 

4) of the mean. 

2. Check that the pixel intensity at pixel location k in the current image j+1 is 

greater than the mean (denoted by μ) plus 5 standard deviations (denoted 

by 5) of the mean. The necessity of this step is to ensure that the potential 

SEU has a very low probability (less than 10-6) of being a simple statistical 

realization for data of this particular pixel. 

3. Check that the pixel intensity at pixel location k in the next image j+2 is less 

than the mean (denoted by μ) plus 4 standard deviations (denoted by 4) 

of the mean. 
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4. Check that (1), (2), and (3) are satisfied. If so, pixel location k in the current 

image j+1 is classified as an SEU. Equation 4.11 shows this logically. If one 

or more of (1), (2), or (3) are not satisfied, reject pixel location k in current 

image j+1. 

(𝐼𝑚𝑎𝑔𝑒𝑗(𝑥𝑘 , 𝑦𝑘) <  𝜇 + 4𝜎) 

∧ 

(𝐼𝑚𝑎𝑔𝑒𝑗+1(𝑥𝑘, 𝑦𝑘) >  𝜇 + 5𝜎) 

∧ 

(𝐼𝑚𝑎𝑔𝑒𝑗+2(𝑥𝑘, 𝑦𝑘) <  𝜇 + 4𝜎) 

⟹   𝐼𝑚𝑎𝑔𝑒𝑗+1(𝑥𝑘, 𝑦𝑘) is an SEU 

 

 

 

 

 

 

(4.11) 

                             Where 𝑥𝑘, 𝑦𝑘represents pixel location 𝑘 

We looked for outliers that were clearly noisy pixels such as the same location 

appearing in many images (which is statistically extremely unlikely) and dropped those. 

As we increase the number of images for a given camera to 1000, we get more SEU data 

and better statistical metrics on each pixel. When introducing this method, it was 

mentioned that it was designed to target improvements when detecting SEUs in cell phone 

cameras at modest ISO levels and DSLRs at high ISO levels. As far as noisy pixels being 

falsely detected as SEUs, this method was observed to have improved accuracy over the 

previous methods. The Pixel Address Distribution method reduced the number of noisy 

false positives being identified as SEUs and improved the detection accuracy in general. 

Increasing the number of images in a dataset (1000 images) increased the computation 

required to calculate the mean and standard deviation for every pixel location. Hence, the 

Pixel Address Distribution method took substantially longer. The algorithm was able to 

analyze 1000 images in 5 hours. But this was an acceptable trade-off as the SEU detection 

became very accurate. Analyzing 1000 images with the other two methods took ~55 

minutes for the Threshold method and ~2 hours for the Local Area Distribution method. 

The results of all three methods will be compared in detail in the next section. 
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4.7. Results 

4.7.1. Colour Noise Maps 

 

Section 4.5 introduced the concept of colour noise maps to illustrate the distribution 

of noise in a digital camera sensor. The MATLAB script (called noise_map.m) generates a 

single colour noise map using a 1000 dark-frame image dataset. Recall, an image dataset 

is composed of a single camera model, ISO setting, and exposure time. At a high level, 

the script performs the following tasks: 

1. Averages the entire image dataset into a single image 

2. Creates sub-area boxes spanning the entire image 

3. Replaces the pixel values in each area box with their average value 

4. Generates a colour noise map from the resulting image 

As mentioned earlier, each camera model has specific dimensions for their area 

boxes. Hence, Table 4.1 lists the dimensions of different DSLRs, and cell phone sensors 

used in the experiments along with the dimensions of their respective noise area boxes. 

Table 4.1 Colour Noise Map Dimensions 

Camera Model Pixel Size 

(m) 

Sensor 
Width (px) 

Sensor Height 
(px) 

Area Box 
Width (px) 

Area Box 
Height (px) 

Canon 5DS R 4.13    8688    5820    543    194 

Canon 5D Mark II 6.41    5634    3753    313    139 

Canon T2i 4.29    5202    3465    306    105 

Samsung S7  1.4    4032    3024    252    126 

 

Colour noise maps are shown below for the image datasets listed in Table 4.2. 

Table 4.2 Dark-frame Image Datasets for Colour Noise Map Analysis 

# Camera Model ISO Exposure Time (s) 

1 Canon 5DS R 3200 30 

2 Canon 5DS R 6400 30 
3 Canon 5DS R 12800 30 

4 Canon 5D Mark II 3200 30 
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5 Canon 5D Mark II 6400 30 

6 Canon 5D Mark II 12800 30 
7 Canon T2i 3200 30 

8 Canon T2i 6400 30 

9 Samsung S7 [Phone A] 400 4 

10 Samsung S7 [Phone A] 800 4 

11 Samsung S7 [Phone B] 400 4 

12 Samsung S7 [Phone B] 800 4 

 

Figures 4.11 though 4.22 illustrate colour noise maps for the camera datasets 

listed in Table 4.2. For each camera model, noise maps with increasing ISO levels will be 

presented to better understand the relationship. 

 

Figure 4.11 Colour Noise Maps for Canon 5DS R (ISO 3200, T = 30s, Sensor Size: 

36 mm x 24 mm, Pixel Size = 4.13 m) 
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Figure 4.12 Colour Noise Maps for Canon 5DS R (ISO 6400, T = 30s, Sensor Size: 

36 mm x 24 mm, Pixel Size = 4.13 m) 

 

 

Figure 4.13 Colour Noise Maps for Canon 5DS R (ISO 12800, T = 30s, Sensor Size: 

36 mm x 24 mm, Pixel Size = 4.13 m) 
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Figure 4.14 Colour Noise Maps for Canon 5D Mark II (ISO 3200, T = 30s, Sensor 

Size: 36 mm x 24 mm, Pixel Size = 6.41 m) 

 

 

Figure 4.15 Colour Noise Maps for Canon 5D Mark II (ISO 6400, T = 30s, Sensor 

Size: 36 mm x 24 mm, Pixel Size = 6.41 m) 
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Figure 4.16 Colour Noise Maps for Canon 5D Mark II (ISO 12800, T = 30s, Sensor 

Size: 36 mm x 24 mm, Pixel Size = 6.41 m) 
 

 

Figure 4.17 Colour Noise Maps for Canon T2i (ISO 3200, T = 30s, Sensor Size: 22.3 

mm x 14.9 mm, Pixel Size = 4.29 m) 
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Figure 4.18 Colour Noise Maps for Canon T2i (ISO 6400, T = 30s, Sensor Size: 22.3 

mm x 14.9 mm, Pixel Size = 4.29 m) 
 

 

Figure 4.19 Colour Noise Maps for Samsung S7 [Phone A] (ISO 400, T = 4s, Sensor 

Size: 5.76 mm x 4.29 mm, Pixel Size = 1.4 m) 
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Figure 4.20 Colour Noise Maps for Samsung S7 [Phone A] (ISO 800, T = 4s, Sensor 

Size: 5.76 mm x 4.29 mm, Pixel Size = 1.4 m) 
 

The noise maps of the DSLRs (Figures 4.11 through 4.18) and the cell phone 

camera (Figures 4.19 and 4.20) were considerably different in both their noise distributions 

and patterns. The three DSLR models followed a more randomly distributed noise pattern 

with lower intensities – albeit each of them had different patterns and ranges of noise 

intensity. On the other hand, the cell phone camera seemed to have a pattern of three 

‘noisy outer rings’ with higher intensities. It can be observed for a given camera model, as 

the sensitivity level (ISO setting) increased the noise pattern remained the same and the 

noise intensity range depicted by the colour scale increased. 

Given the observed ring like pattern in the cell phone camera, we generated noise 

maps for another cell phone camera (same camera model) in Figures 4.21 and 4.22 below 

and noticed that it followed the same noise distribution pattern as Figure 4.19 and 4.20. 

Both cell phone cameras were made by the same manufacturer and were the same model. 

They would have undergone the same fabrication conditions and have similar heating 

conditions. This may have been the reason for seeing similar noise distributions. 
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Figure 4.21 Colour Noise Maps for Samsung S7 [Phone B] (ISO 400, T = 4s, Sensor 

Size: 5.76 mm x 4.29 mm, Pixel Size = 1.4 m) 
 

 

Figure 4.22 Colour Noise Maps for Samsung S7 [Phone B] (ISO 800, T = 4s, Sensor 

Size: 5.76 mm x 4.29 mm, Pixel Size = 1.4 m) 
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4.7.2. Comparison of SEU Detection Algorithms 

 

This section will go over the results of the three SEU detection methods that were 

discussed earlier in the chapter and demonstrate the high accuracy of the Pixel Address 

Distribution method. Results of DSLRs at high ISO levels and cell phone cameras at 

modest ISO levels will be presented here. All the algorithms were run on a standard lab 

desktop machine – not on GPUs. As a reminder, these are the three algorithms that we 

have developed in this research (from oldest to newest): 

• The Threshold Method: Identifies an SEU at a pixel location k using a 

user defined threshold value. 

• The Local Area Distribution Method: Identifies an SEU at a pixel 

location k using a noise threshold value calculated by the local area noise 

in a single dark-frame image. 

• The Pixel Address Distribution Method: Identifies an SEU at a pixel 

location k using the distributed mean and standard deviation of k over 1000 

dark-frame images.  

SEU results using the three detection algorithms are shown below for the image 

datasets listed in Table 4.3. For each camera model, image datasets with different 

sensitivity levels (ISO settings) were used to observe the correlation of light sensitivity and 

the number of SEUs. The exposure time used for DSLRs and cell phones were 30 

seconds and 4 seconds respectively. 

Table 4.3 Dark-frame Image Datasets for SEU Detection Algorithm Comparison 

# Camera Model ISO Exposure Time (s) 

1 Canon 5DS R 3200 30 

2 Canon 5DS R 6400 30 
3 Canon 5DS R 12800 30 

4 Canon 5D Mark II 3200 30 

5 Canon 5D Mark II 6400 30 

6 Canon 5D Mark II 12800 30 

7 Canon T2i 3200 30 
8 Canon T2i 6400 30 

9 Samsung S7 [Phone A] 400 4 

10 Samsung S7 [Phone A] 800 4 

11 Samsung S7 [Phone B] 400 4 

12 Samsung S7 [Phone B] 800 4 
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The names of the three MATLAB scripts are seu_analysis_threshold.m, 

seu_analysis_lad.m, and seu_analysis_pad.m. Figures 4.23 through 4.34 represent the 

SEU results of the three SEU detection algorithms for each camera model. 

 

Figure 4.23 SEU algorithm comparison – Canon 5DS R (ISO 3200, T = 30s, 
Sensor Size: 36 mm x 24 mm) 

 

Figure 4.24 SEU algorithm comparison – Canon 5DS R (ISO 6400, T = 30s, 
Sensor Size: 36 mm x 24 mm) 
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Figure 4.25 SEU algorithm comparison – Canon 5DS R (ISO 12800, T = 30s, Sensor 
Size: 36 mm x 24 mm) 

 

Figure 4.26 SEU algorithm comparison – Canon 5D Mark II (ISO 3200, T = 30s, 
Sensor Size: 36 mm x 24 mm) 
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Figure 4.27 SEU algorithm comparison – Canon 5D Mark II (ISO 6400, T = 30s, 
Sensor Size: 36 mm x 24 mm) 

 

 

Figure 4.28 SEU algorithm comparison – Canon 5D Mark II (ISO 12800, T = 30s, 
Sensor Size: 36 mm x 24 mm) 

 

8151

1798 1502

0

5000

10000

15000

20000

25000

N
u

m
b

e
r 

o
f 

S
E

U
s
 d

e
te

c
te

d
 i
n

 1
0

0
0
 i

m
a
g

e
s

Threshold Method

Local Area Distribution Method

Pixel Address Distribution Method

20616

5658

3360

0

5000

10000

15000

20000

25000

N
u

m
b

e
r 

o
f 

S
E

U
s

 d
e
te

c
te

d
 i
n

 1
0
0

0
 i
m

a
g

e
s

Threshold Method

Local Area Distribution Method

Pixel Address Distribution Method



109 

 

Figure 4.29 SEU algorithm comparison – Canon T2i (ISO 3200, T = 30s, Sensor 
Size: 22.3 mm x 14.9 mm) 

 

 

 

Figure 4.30 SEU algorithm comparison – Canon T2i (ISO 6400, T = 30s, Sensor 
Size: 22.3 mm x 14.9 mm) 
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Figure 4.31 SEU algorithm comparison – Samsung S7 [Phone A] (ISO 400, T = 4s, 
Sensor Size: 5.76 mm x 4.29 mm) 

 

 

Figure 4.32 SEU algorithm comparison – Samsung S7 [Phone A] (ISO 800, T = 4s, 
Sensor Size: 5.76 mm x 4.29 mm) 
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Figure 4.33 SEU algorithm comparison – Samsung S7 [Phone B] (ISO 400, T = 4s, 
Sensor Size: 5.76 mm x 4.29 mm) 

 

 

Figure 4.34 SEU algorithm comparison – Samsung S7 [Phone B] (ISO 800, T = 4s, 
Sensor Size: 5.76 mm x 4.29 mm) 
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We wanted to reject any noisy pixels or hot pixels that were being incorrectly considered 

as SEU events by our previous algorithms. The SEU results depicted in Figures 4.23 

through 4.34 clearly show that the Pixel Address Distribution method – the most recent 

algorithm – is the most superior method. The original threshold method can be visibly seen 

misidentifying hot pixels and noisy pixels as SEUs. The Local Area Distribution method 

did a much better job of discarding these false positives than the Threshold Method but 

was still unable to fully resolve the issue. Therefore, this proves that the Pixel Address 

Distribution method is able to utilize noise suppression via pixel distribution and properly 

identify weaker SEUs in DSLRs at high ISOs and cell phones at modest ISO levels. 

  

4.8. Summary 

 

This chapter continued the topic of Single Event Upsets from the previous chapter 

and discussed noise reduction and SEU detection. The improvements over time have 

showed that the SEU analysis methods have tried to filter out false positives such as Hot 

Pixels and noise in order to make the results more accurate. Therefore, our focus has 

been to separate sensor noise from SEUs in dark-frame images and have the ability to 

detect weaker SEUs in cell phone cameras at modest ISO levels and DSLR cameras at 

high ISO levels. The experimental results from a range of digital cameras using all three 

detection algorithms show that the Pixel Address Distribution method gives us the best 

results. The next chapter will continue this analysis and further investigate SEUs. Some 

of the concepts that will be explored are the charge distribution of SEUs, the relationship 

of SEU occurrence with elevation and the size of the SEU charge ball. 

 

 

 

 

 



113 

Chapter 5.  
 
SEU Results and Analysis 

5.1. Overview 

 

In the previous chapters of this thesis we walked through the various concepts of 

SEUs in digital imagers as well as defined algorithms to both reduce noise and detect 

weaker SEUs. Additionally, at the end of the previous chapter we generated colour noise 

maps and presented experimental results using the three developed algorithms for a 

range of digital imagers. Specifically, the experimental data showed the higher accuracy 

of the Pixel Address Distribution method in comparison to the two previous methods. This 

chapter will continue the SEU analysis from the Pixel Address Distribution method by 

exploring the following concepts: 

• The SEU occurrence rates with respect to time and area  

• The SEU charge distribution 

• The relationship of SEU events and elevation 

• The size analysis of the SEU charge ball 

We will walk through these concepts in this chapter before concluding the thesis 

in the final chapter.  

 

5.2. SEU Occurrence rates 

 

Earlier we saw results of SEUs in terms of count per image dataset – each 

consisting of 1000 dark-frame images. However, the SEU count per 1000 images does 

not translate well when comparing image datasets of different sizes. As a result, it is 

important to calculate the SEU occurrence rate. This will help us develop an understanding 

of the behaviour and extend it to image datasets of different sizes. Our previous research 

in Chapman [51] followed the assumption that events caused by cosmic radiation follow a 
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Poisson process for their occurrence rate. This will also be the assumption taken in this 

thesis. The equation for the Poisson process is given by equation (5.1). 

𝑓(𝑘, 𝜆, 𝑡) =
(𝜆𝑡)𝑘𝑒−𝜆𝑡

𝑘!
 

(5.1) Chapman [51] 

Where 𝜆 is the event rate (per second), and 𝜆𝑡 𝑖s the expected number of events 

occurring in t seconds   

 

Given that we are working with variations of pixel sizes, sensor areas, and 

exposure times, the metrics that will be used to quantify the occurrence rate are: 

1. Event rate per second 

2. Event rate per second per cm2  

Occurrence rates are shown in for the following image datasets listed in Table 5.1. 

Occurrence rates for DSLRs are shown in Tables 5.2 through 5.4 and for cell phone 

cameras in Tables 5.5 and 5.6.  

 

Table 5.1 Dark-frame Image Datasets for SEU Occurrence Rate Analysis 

# Camera Model    ISO    Exposure                 
   Time (s) 

1 Canon 5DS R 3200 30 
2 Canon 5DS R 6400 30 

3 Canon 5DS R 12800 30 
4 Canon 5D Mark II 3200 30 

5 Canon 5D Mark II 6400 30 
6 Canon 5D Mark II 12800 30 
7 Canon T2i 3200 30 

8 Canon T2i 6400 30 
9 Samsung S7 [Phone A] 400 4 
10 Samsung S7 [Phone A] 800 4 

11 Samsung S7 [Phone B] 400 4 
12 Samsung S7 [Phone B] 800 4 
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Table 5.2 DSLR SEU rates (per second and per second per area) at ISO 3200, T=30s 

Camera Model Pixel Size 

(m) 

Sensor Size 
(mm x mm) 

Rate per 
second (𝝀t) 

Rate per second 
per cm2 (𝝀t/cm2) 

Canon 5DS R    4.13 36 x 24    0.0237    0.0027 

Canon 5D Mark II    6.41  36 x 24    0.0189    0.0022 
Canon T2i    4.29 22.3 x 14.9    0.0230    0.0069 

 

Table 5.3 DSLR SEU rates (per second and per second per area) at ISO 6400, T=30s 

Camera Model Pixel Size 

(m) 

Sensor Size 
(mm x mm) 

Rate per 
second (𝝀t) 

Rate per second 
per cm2 (𝝀t/cm2) 

Canon 5DS R    4.13 36 x 24    0.0501    0.0058 

Canon 5D Mark II    6.41  36 x 24    0.0474    0.0055 
Canon T2i    4.29 22.3 x 14.9    0.0508    0.0153 

 
 
Table 5.4 DSLR SEU rates (per second and per second per area) at ISO 12800, T=30s 

Camera Model Pixel Size 

(m) 

Sensor Size 
(mm x mm) 

Rate per 
second (𝝀t) 

Rate per second 
per cm2 (𝝀t/cm2) 

Canon 5DS R    4.13 36 x 24    0.1120    0.0130 

Canon 5D Mark II    6.41  36 x 24    0.0974    0.0113 

 
 
Table 5.5 Cell Phone SEU rates (per second and per second per area) at ISO 400, T=4s 

Camera Model Pixel Size 

(m) 

Sensor Size 
(mm x mm) 

Rate per 
second (𝝀t) 

Rate per second 
per cm2 (𝝀t/cm2) 

Samsung S7 
[Phone A] 

   1.4 5.76 x 4.29    0.0006    0.0024 

Samsung S7 
[Phone B] 

   1.4  5.76 x 4.29    0.0005    0.0020 

 
 
Table 5.6 Cell Phone SEU rates (per second and per second per area) at ISO 800, T=4s 

Camera Model Pixel Size 

(m) 

Sensor Size 
(mm x mm) 

Rate per 
second (𝝀t) 

Rate per second 
per cm2 (𝝀t/cm2) 

Samsung S7 
[Phone A] 

   1.4 5.76 x 4.29    0.0404    0.1635 

Samsung S7 
[Phone B] 

   1.4  5.76 x 4.29    0.0249    0.1009 
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By examining the SEU rates of the various camera models in Tables 5.2 through 

5.6, we can see that the SEU occurrence rates increase significantly as the ISO level is 

doubled. This is consistent for all the camera models. The DSLR SEU occurrence rates 

experience a 110% to 150% increase when going from ISO 3200 (Table 5.2) to ISO 6400 

(Table 5.3) and a 105% to 124% increase when going from ISO 6400 (Table 5.3) to ISO 

12800 (Table 5.4). The cell phone cameras see an even more significant percent increase 

when doubling the ISO level. The cell phone SEU occurrence rates experience a 4,880% 

to 6,630% increase when going from ISO 400 (Table 5.5) to ISO 800 (Table 5.6). This 

huge spike in cell phone SEU occurrence rates when going from ISO 400 to ISO 800 might 

be due to the fact that there are very few events at ISO 400 – less than 20 to be more 

accurate. Since the smaller pixels in cell phones (1.4 m) are less sensitive to light than 

DSLRs, the gain may need to be increased to ISO 800 before really noticing any SEU 

events. As mentioned earlier, shrinking the pixel size does not change the sensitivity level 

until you reach the micron pixel size that cell phone camera pixels fall within. 

 

5.3. SEU Charge Distribution 

 

In the previous chapter, results from the three SEU detection algorithms were 

shown – in particular, the Pixel Address Distribution method results. However, we did not 

explore the charge distribution of the identified SEUs. To better visualize and understand 

the charge distributions, we created a MATLAB script (seu_charge_analysis.m) that 

generated a histogram of the SEU results for each image dataset. The script scanned the 

charge values of all the SEUs that were output from the Pixel address distribution method 

and generated a histogram using bins widths based on the SEU charge ranges. The 

histograms have bin widths of 8192 (or 213) representing the charge ranges of the SEUs 

identified in an image dataset. Charge distribution histograms of SEU results are shown 

for the image datasets in Table 5.7.  
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Table 5.7 Dark-frame Image Datasets for SEU Charge Distribution Analysis 

# Camera Model    ISO    Exposure Time (s) 
1 Canon 5DS R 3200 30 
2 Canon 5DS R 6400 30 
3 Canon 5DS R 12800 30 

4 Canon 5D Mark II 3200 30 
5 Canon 5D Mark II 6400 30 

6 Canon 5D Mark II 12800 30 
7 Canon T2i 3200 30 
8 Canon T2i 6400 30 

9 Samsung S7 [Phone A] 400 4 
10 Samsung S7 [Phone A] 800 4 
11 Samsung S7 [Phone B] 400 4 

12 Samsung S7 [Phone B] 800 4 
 
 

Figures 5.1 through 5.8 contain the charge distribution histograms of the DSLR 

results and Figures 5.9 and 5.12 contain the charge distribution histograms of the cell 

phone results. 

 
 

 

Figure 5.1 Histogram of SEU charge distribution: Canon 5DS R (ISO 3200, T = 30s, 

Sensor Size: 36 mm x 24 mm, Pixel Size = 4.13 m, Bin Width = 8192) 
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Figure 5.2 Histogram of SEU charge distribution: Canon 5DS R (ISO 6400, T = 30s, 

Sensor Size: 36 mm x 24 mm, Pixel Size = 4.13 m, Bin Width = 8192) 
 

 

Figure 5.3 Histogram of SEU charge distribution: Canon 5DS R (ISO 12800, T = 

30s, Sensor Size: 36 mm x 24 mm, Pixel Size = 4.13 m, Bin Width = 

8192) 
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Figure 5.4 Histogram of SEU charge distribution: Canon 5D Mark II (ISO 3200, T = 

30s, Sensor Size: 36 mm x 24 mm, Pixel Size = 6.41 m, Bin Width = 

8192) 
 

 

Figure 5.5 Histogram of SEU charge distribution: Canon 5D Mark II (ISO 6400, T = 

30s, Sensor Size: 36 mm x 24 mm, Pixel Size = 6.41 m, Bin Width = 

8192) 
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Figure 5.6 Histogram of SEU charge distribution: Canon 5D Mark II (ISO 12800, T = 

30s, Sensor Size: 36 mm x 24 mm, Pixel Size = 6.41 m, Bin Width = 

8192) 
 

 

Figure 5.7 Histogram of SEU charge distribution: Canon T2i (ISO 3200, T = 30s, 

Sensor Size: 22.3 mm x 14.9 mm, Pixel Size = 4.29 m, Bin Width = 

8192) 
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Figure 5.8 Histogram of SEU charge distribution: Canon T2i (ISO 6400, T = 30s, 

Sensor Size: 22.3 mm x 14.9 mm, Pixel Size = 4.29 m, Bin Width = 

8192) 
 

 

Figure 5.9 Histogram of SEU charge distribution: Samsung S7 [Phone A] (ISO 400, 

T = 4s, Sensor Size: 5.76 mm x 4.29 mm, Pixel Size = 1.4 m, Bin 

Width = 8192) 
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Figure 5.10 Histogram of SEU charge distribution: Samsung S7 [Phone A] (ISO 

800, T = 4s, Sensor Size: 5.76 mm x 4.29 mm, Pixel Size = 1.4 m, Bin 

Width = 8192) 
 

 

Figure 5.11 Histogram of SEU charge distribution: Samsung S7 [Phone B] (ISO 

400, T = 4s, Sensor Size: 5.76 mm x 4.29 mm, Pixel Size = 1.4 m, Bin 

Width = 8192) 
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Figure 5.12 Histogram of SEU charge distribution: Samsung S7 [Phone B] (ISO 

400, T = 4s, Sensor Size: 5.76 mm x 4.29 mm, Pixel Size = 1.4 m, Bin 

Width = 8192) 

 

By analyzing the charge distributions of the various camera models in Figures 5.1 

through 5.12, we can see that each camera has its own unique distribution pattern. 

However, there are two characteristics that are common among all imagers. The first being 

that their charge distributions get wider as the ISO level increases. In other words, there 

are higher SEU tail values as the ISO level increases as well as higher bin counts. This is 

because as the ISO level increases, the gain on the pixel increases. As a result, they 

become extra sensitive to both cosmic rays and SEUs. The longer tails represent higher 

bins which are essentially stronger SEUs that we can detect at higher ISOs. We also know 

that higher ISOs are more susceptible to noise, however, this is less of a concern with the 

recent noise reduction optimizations of the Pixel Address Distribution method. 

The second inherent characteristic found in the DSLR charge distribution 

histograms (Figures 5.1 through 5.8) is that they have two relative maximums. They reach 

an absolute maximum at the second lowest charge bin (start of bin: 16x1024), then decline 

almost exponentially until another relative maximum at the 8 th bin from the left (start of bin: 

64x1024) and experience a long tail after that. Surprisingly, the relative maximum at the 

8th bin does not shift to another bin as the ISO level increases. Instead the count of the 8th 
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bin increases by at least 100% while the count of other bins also increases. The first peak 

is centered around the 2nd bin (start of bin: 16x1024) and the second peak is centered 

around the 8th bin (start of bin: 64x1024). An interesting observation is that the two peaks 

never shift and are always at the 2nd and 8th bins irrespective of the ISO level. It is very 

unclear what is causing this shape in the distribution. Hence, future research will have to 

explore this further. The cell phone charge distributions are rather different than the DSLR 

charge distributions. The cell phone charge distributions only have a single peak and have 

fairly narrower distributions. Their highest bin range was the 5 th bin from the left (start of 

bin: 40x1024) compared to the highest bin of 312x1024 for the DSLR in Figure 5.8 – an 

approximately 87% decrease. This characteristic can be attributed to the fact that cell 

phones experience weaker SEUs than DSLRs.  

 

5.4. Relationship: SEU rate and Elevation  

 

In Chapter 1 (Section 1.2.1), we introduced the concept of cosmic rays, their 

impact on ICs, and their role in creating defects. Another concept that we promised to 

revisit was temporal defects in digital cameras at various elevations – primarily to 

understand the relationship with elevation. Since the location of Vancouver, BC, Canada 

is very advantageous with a wide range of elevations, we were able to test four different 

elevations (24 m, 74 m, 117 m, 366 m) with two DSLR cameras (Canon 5D Mark II and 

Canon T2i). An additional dataset was captured with the Canon 5D Mark II at an elevation 

of 1088 m. Something to point out is that the dark-frame images at 24m were captured in 

the city of Maple Ridge, BC, Canada and the dark-frame images at 1088m were captured 

at Grouse Mountain in the city of North Vancouver, BC, Canada. The dark-frame images 

at the other elevations (74 m, 117 m, 366 m) were captured in the city of Burnaby, BC, 

Canada. Since Maple Ridge and Grouse Mountain are approximately 60 km apart from 

each other with Burnaby in between, there may be a difference in the amount of cosmic 

radiation experienced in the three locations. It can be observed that the elevation test in 

this thesis only leverages DSLRs. The reason cell phones were omitted from this 

experiment is because it was difficult to share equipment during the global pandemic of 

COVID-19. For the elevation experiment, Table 5.8 lists the image datasets (consisting of 
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1000 dark-frame images) that we captured and analyzed using the Pixel Address 

Distribution method. 

Table 5.8 Dark-frame Image Datasets for Elevation Analysis (ISO 3200, T = 30s) 

# Camera Model Elevation (m) 
1 Canon 5D Mark II 24 
2 Canon 5D Mark II 74 

3 Canon 5D Mark II 117 
4 Canon 5D Mark II 366 
5 Canon 5D Mark II 1088 

6 Canon T2i 24 
7 Canon T2i 74 
8 Canon T2i 117 

9 Canon T2i 366 

After capturing the image datasets listed above (~9000 dark-frame images in total), 

they were analyzed using the Pixel Address Distribution algorithm. To easily understand 

the relationship of elevation and SEU count, the results were plotted on a graph as ‘Total 

SEU Count per cm2 in 1000 images’ against elevation (m). This plot can be seen in Figure 

5.13. 

 

Figure 5.13 SEUs per cm2 (or Neutron Flux) vs. Elevation (m) (ISO 3200, T = 30s) 

 

Figure 5.13 depicts the SEU counts per cm2 at four elevations – 24 m, 74 m, 117 

m, 366 m – for the Canon 5D Mark II and Canon T2i. An additional elevation (1088 m) is 

shown for the Canon 5D Mark II. The graph displays that both cameras demonstrate a 
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linear relationship between SEU count per cm2 and elevation. Please note that the y-axis 

for the SEU count per cm2 is represented by the primary y-axis. Based on the slopes of 

the two cameras (in a dataset of 1000 images), the Canon 5D Mark II adds ~0.16 SEUs 

per cm2 per added metre in elevation and the Canon T2i adds ~0.65 SEUs per cm2 per 

added metre in elevation. When analyzing the Canon 5D Mark II further, it can be seen 

that a 50 m increase in elevation (from 24 m to 74 m) causes a ~78.5% increase in the 

number of SEUs per cm2 seen in 1000 dark-frame images. The next increase of 43 m in 

elevation (from 74 m to 117 m) causes a ~12.1% increase in the number of SEUs per cm2 

seen in 1000 dark-frame images. A 249 m increase in elevation (from 117 m to 366 m) 

causes a ~59.6% increase in the number of SEUs per cm2 seen in 1000 dark-frame 

images. Lastly, a 722 m increase in elevation (from 366 m to 1088 m) causes a ~143.7% 

increase in the number of SEUs per cm2 seen in 1000 dark-frame images. Similar percent 

increases can be seen with the Canon T2i. A ~40.4% increase going from 24 m to 74 m, 

a ~5.5% increase going from 74 m to 117 m, and a ~47.2% increase going from 117 m to 

366 m. It has always been understood that SEU rates in ICs were higher at high elevations, 

however, this data proves that even a modest elevation increase – say 50 m – has a 

significant impact. Backed by these results, we can state that high ISO levels and high 

elevations can lead to 3 to 4 SEUs per cm2 per dark-frame image.  

Additionally, there is one more curve that is plotted on the graph – the theoretical 

neutron flux at various elevation points. This curve is based on equation (1.1) from Chapter 

1 and the relative values of the neutron flux are presented in terms of Isea. Please note that 

the y-axis for neutron elevation is represented by the secondary y-axis. By analyzing this 

curve, it can be seen that in the elevation range from sea level to 1200 m there is a linear 

relationship between the neutron flux and elevation. Even though the neutron flux curve 

depicts a linear relationship with elevation, its slope is a lot lower than the SEU count 

increase that was observed. For example, there is a ~3.9% increase in relative neutron 

flux (Isea) going from 24 m to 74 m, compared to the Canon 5D Mark II increasing by 

~78.5% for the same elevation change. There are ~3.7% and ~21.8% increases in relative 

neutron flux going from 74 m to 117 m and 117 m to 366 m respectively. This is in contrast 

to the ~12.1% and ~59.6% increases that are seen by the Canon 5D Mark II for the same 

respective elevation changes. Lastly, there is a ~79.1% increase in relative neutron flux 

going from 366 m to 1088 m, compared to the Canon 5D Mark II increasing by ~143.7% 

for the same elevation change. In fact, we are seeing traditional IC level changes in the 
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case of DSLRs. The recorded data shows us both the event and amount of the charge 

being deposited. By this, we can conclude that the SEU occurrences in digital cameras 

scale linearly with increasing elevation – even with modest changes in elevation. As the 

altitude rises, we see more and more weaker neutrons that are creating SEUs. Specific to 

imagers is that weaker events are getting noticed by the camera which go unnoticed in 

other IC systems. As a result, cameras are perfectly suited to view weaker SEU events 

than traditional ICs. 

Since the SEU data is more intuitive when represented as occurrence rates, Table 

5.9 and 5.10 list the SEU rates per second (𝜆𝑡) and SEU rates per second per area 

(𝜆𝑡/cm2), respectively. 

Table 5.9 DSLR SEU rate per second at different elevations (ISO 3200, T=30s) 

Camera 
Model 

Sensor 
Size 
(mm2) 

Rate per s 
(𝝀t) at  
24 m 

Rate per s 
(𝝀t) at  
74 m 

Rate per s 
(𝝀t) at  
117 m 

Rate per s 
(𝝀t) at  
366 m 

Rate per s 
(𝝀t) at 
1088 m 

Canon 5D 
Mark II 

36 x 24    0.0074    0.0133    0.0149    0.0237    0.0578 

Canon T2i 22.3 x 
14.9 

   0.0230    0.0322    0.0340    0.0500  

Table 5.10 DSLR SEU rate per second per area at different elevations (ISO 3200, T=30s) 

Camera 
Model 

Sensor 
Size 
(mm2) 

Rate per s 
per cm2 
(𝝀t/cm2) at 
24 m 

Rate per s 
per cm2 
(𝝀t/cm2) at 
74 m 

Rate per s 
per cm2 
(𝝀t/cm2) at 
117 m 

Rate per s 
per cm2 
(𝝀t/cm2) at 
366 m 

Rate per s 
per cm2 
(𝝀t/cm2) at 
1088 m 

Canon 5D 
Mark II 

36 x 24    0.0009    0.0015    0.0017    0.0027    0.0067 

Canon T2i 22.3 x 
14.9 

   0.0069    0.0097    0.0102    0.0151  

As we did for the earlier datasets, we ran seu_charge_analysis.m to generate 

charge histograms for the image datasets at different elevations. Figures 5.14 through 

5.18 contain the charge distribution histograms for the Canon 5D Mark II at 24 m, 74 m, 

117 m, 366 m, 1088 m respectively and Figures 5.19 through 5.22 contain the charge 

distribution histograms for the Canon T2i at 24 m, 74 m, 117 m, 366 m respectively. 
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Figure 5.14 Histogram of SEU charge distribution: Canon 5D Mark II, 24 m (ISO 

3200, T = 30s, Sensor Size: 36 mm x 24 mm, Pixel Size = 6.41 m, 

Bin Width = 8192) 

 

 

Figure 5.15 Histogram of SEU charge distribution: Canon 5D Mark II, 74 m (ISO 

3200, T = 30s, Sensor Size: 36 mm x 24 mm, Pixel Size = 6.41 m, Bin 

Width = 8192) 
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Figure 5.16 Histogram of SEU charge distribution: Canon 5D Mark II, 117 m (ISO 

3200, T = 30s, Sensor Size: 36 mm x 24 mm, Pixel Size = 6.41 m, Bin 

Width = 8192) 

 

 

Figure 5.17 Histogram of SEU charge distribution: Canon 5D Mark II, 366 m (ISO 

3200, T = 30s, Sensor Size: 36 mm x 24 mm, Pixel Size = 6.41 m, Bin 

Width = 8192) 
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Figure 5.18 Histogram of SEU charge distribution: Canon 5D Mark II, 1088 m (ISO 

3200, T = 30s, Sensor Size: 36 mm x 24 mm, Pixel Size = 6.41 m, Bin 

Width = 8192) 

 

 

Figure 5.19 Histogram of SEU charge distribution: Canon T2i, 24 m (ISO 3200, T = 

30s, Sensor Size: 22.3 mm x 14.9 mm, Pixel Size = 4.13 m, Bin 

Width = 8192) 
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Figure 5.20 Histogram of SEU charge distribution: Canon T2i, 74 m (ISO 3200, T = 

30s, Sensor Size: 22.3 mm x 14.9 mm, Pixel Size = 4.13 m, Bin 

Width = 8192) 

 

 

Figure 5.21 Histogram of SEU charge distribution: Canon T2i, 117 m (ISO 3200, T = 

30s, Sensor Size: 22.3 mm x 14.9 mm, Pixel Size = 4.13 m, Bin 

Width = 8192) 
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Figure 5.22 Histogram of SEU charge distribution: Canon T2i, 366 m (ISO 3200, T = 

30s, Sensor Size: 22.3 mm x 14.9 mm, Pixel Size = 4.13 m, Bin 

Width = 8192) 

 

The charge distribution histograms for each camera at different elevations show 

that the overall pattern of the charge distribution persists at different elevations. The 

important characteristic to pay attention to is the length of the distribution’s tail. At lower 

elevations, the tails are longer which mean there are stronger SEUs in the overall charge 

distribution. However, as seen earlier there are less SEUs overall at lower elevations. As 

elevation increases, the tails become shorter which mean there are weaker SEUs in the 

overall charge distribution despite there being more SEUs overall. For example, at an 

elevation of 24 m the highest charge bin for the Canon 5D Mark II is the 14 th bin from the 

left (start of bin: 112x1024) and at an elevation of 366 m the highest charge bin is the 11 th 

bin (start of bin: 88x1024). Essentially, the highest charge bin at an elevation of 366 m is 

3 charge bins lower than the highest charge bin at an elevation of 24 m. The similar 

behaviour can be seen with the Canon T2i. The highest charge bin at an elevation of 24 

m is the 27th bin (start of bin: 216x1024) and the highest charge bin at an elevation of 366 

m is the 17th bin (start of bin: 136x1024). Essentially, the highest charge bin at an elevation 

of 366 m is 10 charge bins lower than the highest charge bin at an elevation of 24 m. The 

only case where this is not true is for the Canon 5D Mark II at 1088 m. At this elevation 

the charge tail is longer than it is at 366 m. It is very unclear what is causing this behaviour. 

Hence, future research will have to explore this further. The cause of this bigger gap may 
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be a correlation to the pixel size and design. A future investigation would be to perform 

the elevation test with cell phone cameras which have smaller pixels. Overall, we are 

seeing through these sets of elevation tests that we have developed a very stable 

detection method that is able to record repeatable increases in elevation. The Pixel 

Address Distribution algorithm is essentially as system that can accurately measure subtle 

differences such as marginal elevation changes – e.g. 50 m.  

 

5.5. Analysis of SEU Size  

 

This final section in Chapter 5 will cover the size of single pixel SEU charges in 

digital imagers based on our prior research from Chapman [52]. In the current research 

we have seen that SEU streaks (caused by muons) in digital cameras account for less 

than 5% of the total SEU count in a given image dataset. The percentage slightly varies 

due to a number of factors such as pixel size, ISO level, and elevation. Other than the 

case of streaks and clusters, SEU charges in digital camera dark-frame images were 

never found crossing two adjacent pixels. This observation causes the size of the initial 

SEU charge ball to be very small in comparison to the size of the single pixel it occurs 

inside. The ability to experimentally measure the actual size of the SEU fault is not 

possible. However, we leverage statistical methods on current SEU data to achieve a 

confident approximation of the SEU charge ball size. As previously assumed, they are 

fairly small in size in comparison to the pixel itself.  

 

Figure 5.23 Defect model of SEU charge ball in 3x3 pixel area (taken from 
Chapman [52]) 
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The first step in the statistical method is to create a model of the digital imager with 

pixels of 𝑤 x 𝑤 dimension – where 𝑤 is measured in microns. This is illustrated in Figure 

5.23. The initial SEU charge shape is that of a circle with a random radius, 𝑅. Since the 

entire pixel sensor is assumed to be sensitive to charge, a charge ball landing in the pixel 

area will cause the formation of a SEU and will spread to the entire pixel as the pixel value 

is read out at the time of image capture. As mentioned earlier, an SEU spanning a single 

pixel is known as a single pixel SEU – or in other words, the entire SEU charge remains 

within the 𝑤 x 𝑤 dimensions of the pixel it resides inside. 

As mentioned in Chapter 3, an SEU cluster would occur when the SEU charge 

goes outside the 𝑤 x 𝑤 dimensions of the single pixel and spreads to the adjacent pixels. 

In order for an SEU (with radius 𝑅 = 𝑟) to be classified as a single pixel SEU, its center 

would have to be within the safe area depicted in Figure 5.24. 

 

Figure 5.24 Safe area within pixel for SEU charge ball (taken from Chapman [52]) 
 

Referring to Figure 5.24, we can see that the safe area for the SEU charge ball is 

a square with its width and height equal to 𝑤 − 2𝑟 and its center aligned with the center of 

the pixel. The probability of an isolated SEU (with radius 𝑅 = 𝑟) developing uniformly at 

any location in the pixel would be given by (5.2). 

𝑃𝑟(𝐼𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝑆𝑖𝑛𝑔𝑙𝑒 𝑃𝑖𝑥𝑒𝑙 𝑆𝐸𝑈 | 𝑅 = 𝑟) = {
(1 −

2𝑟

𝑤
)

2

         𝑟 <
𝑤

2

        0                   𝑟 ≥
𝑤

2

 

 

(5.2) 
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Building on (5.2), let us now consider 𝑁 recognized single pixel SEUs and assume 

that all 𝑁 single pixel SEUs have been caused by SEU charges with identical radii, 𝑅 = 𝑟. 

This assumes for the worst-case scenario in which all radii of 𝑁 equal the largest possible 

radius of the 𝑁 single pixel SEUs. The probability of all 𝑁 single pixel SEUs (with radius 

𝑅 = 𝑟) being isolated would be given by: 

𝑃𝑟(𝑁 𝑆𝑖𝑛𝑔𝑙𝑒 𝑃𝑖𝑥𝑒𝑙 𝑆𝐸𝑈𝑠 | 𝑅 = 𝑟) = {
(1 −

2𝑟

𝑤
)

2𝑁

         𝑟 <
𝑤

2

        0                     𝑟 ≥
𝑤

2

 

 

(5.3) 

In order to calculate the maximum value for the radius (𝑟𝑀𝐴𝑋), Bayes theorem is 

leveraged in (5.4). This equation evaluates the probability of the charge causing the SEU 

being less than the upper bound, 𝑟𝑀𝐴𝑋. 

Pr (𝑅 ≤ 𝑟𝑀𝐴𝑋 | 𝑁 𝑆𝑖𝑛𝑔𝑙𝑒 𝑃𝑖𝑥𝑒𝑙 𝑆𝐸𝑈𝑠) =  
∫ (1 −

2𝑟
𝑤 )

2𝑁

𝑓(𝑟)𝑑𝑟
𝑟𝑀𝐴𝑋

0

∫ (1 −
2𝑟
𝑤 )

2𝑁

𝑓(𝑟)𝑑𝑟 
𝑤
2

0

  

 

(5.4) 

In equation (5.4), 𝑓(𝑟) represents an assumed probability density function (PDFs) 

for the SEU charge ball radius. There are many common PDFs that can be used, however, 

the most popular is uniform distribution – with equal likelihood of any radius in the range 

[0,
𝑤

2
]. The uniform distribution can be seen in (5.5). 

𝑓𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑟) = {

1

𝑤/2
        0 ≤ 𝑟 ≤

𝑤

2
         0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

 
(5.5) 

The lower and upper bounds in (5.5) were chosen to consider infinitesimally small 

‘point’ charge balls and the largest possible charge balls respectively. In order to 

conservatively calculate the maximum SEU charge diameter radius, we equate (5.4) to a 

confidence level of 99%, substitute (5.5) for 𝑓(𝑟) in (5.4) and solve for 
 2𝑟𝑀𝐴𝑋

𝑤
. If CL=100% 

were used, it would result in 
 2𝑟𝑀𝐴𝑋

𝑤
= 1 – not very useful. Since 

 2𝑟𝑀𝐴𝑋

𝑤
 is left as a normalized 

value, we can apply it to any camera sensor as it does not depend on a specific pixel size. 
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Figure 5.25 illustrates the graph of 
 2𝑟𝑀𝐴𝑋

𝑤
 against increasing 𝑁 when using uniform 

distribution. Since the graph is using a 99% confidence level, for 𝑁 > 200 there is a 99% 

certainty that 
 2𝑟𝑀𝐴𝑋

𝑤
< 1.15% of the pixel width. Since the distribution saturates for  𝑁 > 

200, 
 2𝑟𝑀𝐴𝑋

𝑤
< 1.15% is valid for the 1000’s of SEUs that we observed in a single image 

dataset. Setting a confidence level of 99% instead of 100% is a very crucial step in solving 

for 
 2𝑟𝑀𝐴𝑋

𝑤
.  

 

Figure 5.25 Uniform distribution: Upper Bound of charge ball diameter (
 𝟐𝒓𝑴𝑨𝑿

𝒘
) vs. 

Number of isolated SEUs (𝑵) 
 

Another more realistic PDF to consider when dealing with SEUs in ICs is an 

exponential distribution with a radius range of [0, ∞). The exponential distribution can be 

seen in (5.6) where the rate parameter 𝑘 is allowed to vary according to the desired spread 

in radii. 

𝑓𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (𝑟) = { 𝑘 ∙ 𝑒−𝑘∙𝑟     𝑟 ≥ 0
                 0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(5.6) 
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As done for the uniform distribution, to conservatively calculate the maximum SEU 

charge diameter radius, we equate (5.4) to a confidence level of 99%, substitute (5.6) for 

𝑓(𝑟) in (5.4) and solve for 
 2𝑟𝑀𝐴𝑋

𝑤
. Again, setting a confidence level of 99% instead of 100% 

is a very crucial step in solving for 
 2𝑟𝑀𝐴𝑋

𝑤
.  Also, since 

 2𝑟𝑀𝐴𝑋

𝑤
 is left as a normalized value, 

we can apply it to any camera sensor as it does not dependent on a specific pixel size. 

Figure 5.26 illustrates the graph of 
 2𝑟𝑀𝐴𝑋

𝑤
 against increasing 𝑁 using exponential 

distribution. 

 

Figure 5.26 Exponential distribution: Upper Bound of charge ball diameter (
 𝟐𝒓𝑴𝑨𝑿

𝒘
) 

vs. Number of isolated SEUs (𝑵) 
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three values of 𝑘 it can be seen that 𝑘 = 2/𝑤 almost resembles a uniform distribution 

where both smaller and larger temporal defects are probable. Larger values such as 𝑘 =
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a large number of isolated SEUs have been identified. Since the graph is using a 99% 

confidence level, there is a 99% certainty that 
 2𝑟𝑀𝐴𝑋

𝑤
< 2.5% of the pixel width for 𝑁 >100 

and any 𝑘. Since the distribution saturates for  𝑁 > 200, 
 2𝑟𝑀𝐴𝑋

𝑤
< 2.5% is valid for the 1000s 

of SEUs that we observed in a single image dataset.  

From the distributions in Figures 5.25 and 5.26 it can be established that the SEU 

charge balls are very small ‘point’ defects in comparison to the pixel size. This is because 

the values of 𝑟𝑀𝐴𝑋 are very small. To help us better understand the SEU charge ball size 

(with CL=99%) let us consider a 4 m pixel. Using uniform distribution, the SEU charge 

ball size would be less than 46 nm (for 𝑁 > 200). Using exponential distribution, the SEU 

charge ball size would be less than 100 nm (for 𝑁 > 200). It was indicated previously that 

most of the digital camera SEUs are single pixel SEUs rather than SEU streaks (< 5%). 

This leads us to believe that for the most part – excluding streaks – SEUs in ICs are 

restricted to single transistors or a small number of transistors. In order words they do not 

extend to large areas or span a large number of ICs. 

 

5.6. Summary 

 

This chapter showed a number of experimental results in relation to SEUs in 

DSLRs at high ISO levels and cell phone cameras at modest ISO levels. The charge 

distribution of SEUs showed that increasing the ISO level in both DSLRs and cell phone 

cameras contributed to larger charge distribution tails – in other words, higher intensity or 

stronger SEUs. This observation was confirmed by the higher ISO levels also contributing 

to higher SEU occurrence rates. Although it is true that higher ISO settings lead to higher 

noise levels, noise reduction in the Pixel Address Distribution method has helped discard 

false positives and identify SEUs even in these noisy settings.   

The earlier literature on cosmic ray particles presented in Chapter 1 concentrated 

our attention to explore the relationship of SEU count and elevation. The experimental 

data in the elevation range of sea level to 400 m showed that there is indeed a linear 

relationship between SEU count and increasing elevation. This aligns with the curve that 

shows the theoretical neutron flux also having a linear relationship with increasing 
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elevation in the same elevation range of sea level to 400 m. Currently, we have created a 

very stable detection method that can report impacts from marginal changes in elevation. 

Further research will determine the impact of running experiments at elevations greater 

than 1000 m as well as experimenting with cell phone cameras at various elevations.  

Lastly, statistical modelling – using uniform and exponential distributions – shows 

that the SEU charge balls that eventually cause SEU events at pixel readout are very 

small ‘point’ defects in comparison to the size of the pixel. Although streaks are observed 

in dark-frame images, they are seldom – less than 5%. This means that SEUs in ICs are 

restricted to single transistors or a small number of transistors. As a result, it can be 

understood that SEUs do not extend to large areas or span a large number of ICs. 
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Chapter 6.  
 
Conclusion 

6.1. Summary 

 

The beginning of this thesis studied the emergence of digital cameras and many 

aspects of their sensors – namely in DSLRs and cell phone cameras. Despite their 

advantages in terms of quality, it was presented that film cameras have disadvantages in 

comparison to digital cameras. As a result, they have been out of popularity in favour of 

digital cameras in the photography market for over a decade. Chapter 2 took a look at the 

design and functionality of the CMOS active pixel sensor and its integration within the 

entire digital camera unit.  Leading up to and including the schematics and layouts of the 

pixel sensors gave a low-level understanding of the circuit design. Today, CMOS camera 

sensors used in digital cameras are able to hold more pixels as technological 

advancements have enabled the development of smaller pixels, especially in cell phones. 

This has caused another market trend in photography where the majority of the consumers 

are satisfied with the convenience and quality of cell phone cameras. Consequently, there 

is an industry wide requirement to create even smaller pixels, hence achieving a better 

sensor density. The shrinkage in pixel size does come with downfalls such as lowered 

resolution and increased noise. 

As noted earlier in the thesis, the phenomenon of cosmic ray particles being 

deposited in ICs can cause them to experience defects in different forms. Some of the 

more common types of infield defects that they experience are permanent defects and 

soft temporal defects. In digital imagers, these defects can be further amplified by a variety 

of factors such as increased ISO and exposure time, colour demosaicing, noise reduction, 

and image format compression. The goal of the research in this thesis was to explore the 

detection of temporal defects in digital camera sensors. The particular areas that were not 

addressed in previous research or literature were regarding cell phone cameras at modest 

ISO levels and DSLRs at high ISO levels.   
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As explained in Chapter 3, the term used for these soft temporal defects in ICs is 

Single Event Upsets. Digital cameras used in the research, have given us the ability to not 

only record the existence of SEUs in dark-frame images but also reveal their respective 

deposited charge values. We have shown that unlike permanent defects such as hot 

pixels, a given SEU will not persist in multiple dark-frame images in a sequence of images 

but exist temporarily in one dark-frame image before disappearing. There are three 

categories of SEUs – single pixel SEUs, SEU clusters, and SEU streaks – but the testing 

data has shown that streaks (although present) account for less than 5% of the total 

identified SEUs in an image dataset. SEU clusters are not very common and as a result, 

the majority of identified SEUs are single pixel SEUs. A major focus area of this research 

was being able to deal with noise and still have the ability to detect SEUs in digital 

cameras. As expected, high levels of noise were common in DSLRs at high ISO levels. 

However, cell phone cameras due to their smaller pixels exemplified similar levels of noise 

even at modest ISO levels. The ingenious dark-frame image capturing processes for both 

cell phones and DSLRs have proven to be both effective and reliable when creating large 

image datasets. Once the automated software intervalometers are configured they have 

the ability to capture large sets of dark-frame images hour over a day without user 

interruption. This thesis has walked through three SEU detection algorithms in detail – 

namely (in order from oldest to newest): The Threshold method, the Local Area 

Distribution method, and the Pixel Address Distribution method. Distributed pixel analysis 

over large image datasets (e.g. 1000 dark-frame images) has proven to be beneficial on 

a number of fronts. Firstly, distributed noise analysis of the sensor via the colour noise 

maps has shown that digital camera sensor noise is quite randomly distributed throughout 

the entire sensor. Hence, a simple threshold or image noise threshold are not effective 

techniques as they incorrectly assume noise is equally distributed throughout the sensor. 

Secondly, distributed pixel analysis has shown that the older SEU detection results contain 

a lot of false positives such as hot pixels and noisy pixels. Noisy or hot pixels typically 

follow a Gaussian distribution while a regular SEU pixel should only follow a Poisson 

distribution. Finally, the Pixel Address Distribution method has proven to be the most 

effective algorithm in detecting weaker SEUs in noisier environments as well as discarding 

these false positives in dark-frame images captured by cell phone cameras at modest ISO 

levels and DSLRs at high ISO levels. Leveraging statistical modelling and calculating both 

the distributed mean and standard deviation at each pixel address in the sensor area are 

key elements that make the algorithm very useful. 
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The accuracy and success of the Pixel Address Distribution method has given us 

the confidence to explore more advanced SEU characteristics in digital camera sensors. 

We have seen there is definitely a relationship between SEU occurrence and the ISO 

level. Earlier we only had the ability to observe the number or rate of SEUs occurring in 

an image dataset. Now, the charge analysis has given us the ability to see the shape of 

the charge distribution pattern of all the SEUs in a given image dataset. We have observed 

that increasing the ISO level widens the charge distribution and also leads to longer tail 

values. This indicates the ability of the algorithm to detect both weaker SEUs at lower 

ISOs and stronger SEUs at higher ISOs. Detecting SEUs at ISO levels greater than ISO 

1600 for DSLRs and ISO levels greater than ISO 200 for cell phones cameras was nearly 

impossible before – given the high noise levels. The Pixel Address Distribution method’s 

capability of leveraging statistical distribution to eliminate noise has made this possible. 

Another characteristic that was explored was the relationship of SEU occurrence with 

increasing elevation. This is an area that had been untouched in the past – where it 

pertained to SEUs in digital camera sensors. Previous literature on cosmic radiation hinted 

to a possible linear relationship in the context of neutron flux and elevation but it was very 

much unknown in the case of SEUs in ICs. Dark-frame images from four different 

elevations – 24 m, 74 m, 117 m, 366 m, 1088 m – were recorded and analyzed using the 

Pixel Address Distribution method in order to help model the elevation relationship. 

Interestingly, it was observed from the results that SEU occurrence does indeed have a 

linear relationship with elevation – similarly to neutron flux, albeit with a higher slope. 

Backed by these results, we can state that high ISO levels and high elevations can lead 

to 3 to 4 SEUs per dark-frame image. A very significant observation is the remarkable 

stability of the detection algorithm to analyze and record repeatable increases in elevation. 

Even subtle differences such as a marginal 50 m change in elevation can be detected by 

this reliable system. Lastly, we explored modelling the size of the SEU charge ball by using 

uniform and exponential distributions. Typically charges land within the safe area of a pixel 

– a square with its width and height equal to 𝑤 − 2𝑟 and its center aligned with the center 

of the pixel. We are able to predict – with a confidence level of 99% and for a large number 

of identified SEUs (𝑁 > 200) – that the upper bound of the charge ball diameter (
 2𝑟𝑀𝐴𝑋

𝑤
) is 

less than 1.15% of the pixel size using the uniform distribution model and less than 2.5% 

of the pixel size using the exponential distribution model. From this we can imply that SEU 

charge balls are generally point-like charges. For the most part (excluding streaks), SEUs 



143 

in ICs are restricted to single transistors or a small number of transistors. In order words 

they do not extend to large areas or span a large number of ICs. 

 

6.2. Suggestions for Future Research 

 

This thesis and research have taken a deep dive in presenting and analyzing SEU 

characteristics in noisy digital cameras – specifically in cell phone cameras at modest ISO 

levels and DSLRs at high ISO levels. Some of the various dark-frame image datasets that 

were collected ranged in ISO level and elevation respectively. However, as mentioned in 

Chapter 3, only selective Android cell phones support digital RAW format. It would be very 

insightful to capture dark-frame images in digital RAW format with iPhone cameras if and 

when they enable support for it. We also observed the lack of noise suppression 

algorithms in the cell phone cameras due to high computation costs which led to extremely 

high levels of noise even at modest ISO levels. Most likely, manufacturers will begin to 

introduce less computationally expensive noise suppression algorithms to combat this 

noise problem. Ideally as the industry progresses, the next steps of this research should 

be to capture dark-frame images with as many different digital cameras as possible – 

DSLRs, mirrorless cameras and cell phones. The Pixel Address Distribution algorithm will 

be able to analyze dark-frame images of any digital camera as long as they support digital 

RAW format. 

Although we gained understanding of the linear relationship between SEU 

occurrence and elevation, it has a lot of space to grow. For the elevation tests, only two 

DSLRs were used – the Canon 5D Mark II and the Canon T2i. Using additional DSLRs for 

these tests will be helpful in providing additional data points with different pixel sizes. A 

more important test to perform is to understand the behaviour of SEUs in cell phone 

cameras at different elevations. As mentioned earlier, given the time of this thesis – circa 

2020 – the global pandemic COVID-19 made it nearly impossible to share cell phones for 

capturing dark-frame images at different elevations. The rather small pixels of cell phone 

cameras could potentially be further affected by SEUs as the elevation changes. 

Additionally, there were only five elevations from which we captured dark-frame images – 
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24 m, 74 m, 117 m, 366 m, and 1088 m. Given Vancouver, B.C is close to Mountains, 

capturing more dark-frame images at elevations between 1000 m and 1500 m will be very 

beneficial. 

Lastly, all the SEU detection scripts that were used for this research were written 

in MATLAB and ran on standard lab computers. A lot of researchers in the industry are 

replacing older algorithms with analytics and deep learning as they provide more intelligent 

and efficient methods of computing. Open-source technologies such as TensorFlow and 

PyTorch are common Python engines that should be explored for SEU analysis. To 

compliment these software platforms, leveraging GPUs instead of desktop machines will 

provide the software with enough computational power to complete the analysis rather 

quickly.  

  

6.3. Closing Thoughts 

 

We have experimented and analyzed a large number of dark-field image datasets 

(each with 1000 images) captured by a range of digital cameras – both DSLRs and cell 

phones. The colour noise maps, the Pixel Address Distribution method, and the charge 

analysis have enabled us to understand sensor noise distributions, detect SEUs and 

discard false positives, and understand charge distribution patterns respectively. 

Additionally, all of these were performed at different elevations to observe the change in 

SEU behaviour. Notably, our results indicate a strong rise in SEU rates even with elevation 

increases of fifty metres. Changes in elevation also indicate to us the effect of weaker SEU 

charges. Similarly, smaller pixels are also susceptible to weaker SEU charges. Therefore, 

our current research will be able to predict the impact of the industry trend of shrinking IC 

sizes. Finally, many physicists have proposed using distributed digital imagers around the 

world as cosmic radiation detectors. Our reliable SEU detection system paired with this 

style of crowd sourcing will give them an accurate procedure of detecting cosmic rays.  
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